理论力学答案完整版(清华大学出版社)1

合集下载

理论力学1课后习题答案

理论力学1课后习题答案

一、判断题(共268小题)1、试题编号:200510701005310,答案:RetEncryption(A)。

质点是这样一种物体:它具有一定的质量,但它的大小和形状在所讨论的问题中可忽略不计。

()2、试题编号:200510701005410,答案:RetEncryption(A)。

所谓刚体,就是在力的作用下,其内部任意两点之间的距离始终保持不变的物体。

()3、试题编号:200510701005510,答案:RetEncryption(B)。

在研究飞机的平衡、飞行规律以及机翼等零部件的变形时,都是把飞机看作刚体。

()4、试题编号:200510701005610,答案:RetEncryption(B)。

力对物体的作用,是不会在产生外效应的同时产生内效应的。

()5、试题编号:200510701005710,答案:RetEncryption(A)。

力学上完全可以在某一点上用一个带箭头的有向线段显示出力的三要素。

()6、试题编号:200510701005810,答案:RetEncryption(B)。

若两个力大小相等,则这两个力就等效。

()7、试题编号:200510701005910,答案:RetEncryption(B)。

凡是受二力作用的直杆就是二力杆。

()8、试题编号:200510701006010,答案:RetEncryption(A)。

若刚体受到不平行的三力作用而平衡,则此三力的作用线必汇交于一点。

()9、试题编号:200510701006110,答案:RetEncryption(A)。

在任意一个已知力系中加上或减去一个平衡力系,会改变原力系对变形体的作用效果。

()10、试题编号:200510701006210,答案:RetEncryption(A)。

绳索在受到等值、反向、沿绳索的二力作用时,并非一定是平衡的。

()11、试题编号:200510701006310,答案:RetEncryption(A)。

清华大学版理论力学课后习题答案大全_____第3章静力学平衡问题习题解

清华大学版理论力学课后习题答案大全_____第3章静力学平衡问题习题解

F DBCBDBF '习题3-3图第3章 静力学平衡问题3-1 图示两种正方形结构所受荷载F 均已知。

试求其中1,2,3各杆受力。

解:图(a ):045cos 23=-︒F FF F 223=(拉) F 1 = F 3(拉) 045cos 232=︒-F F F 2 = F (受压) 图(b ):033='=F F F 1 = 0F 2 = F (受拉)3-2 图示为一绳索拔桩装置。

绳索的E 、C 两点拴在架子上,点B 与拴在桩A 上的绳索AB 连接,在点D 加一铅垂向下的力F ,AB 可视为铅垂,DB 可视为水平。

已知α= 0.1rad.,力F = 800N 。

试求绳AB 中产生的拔桩力(当α很小时,tan α≈α)。

解:0=∑y F ,F F ED =αsin αs i nFF ED = 0=∑x F ,DB ED F F =αcos F FF DB 10tan ==α由图(a )计算结果,可推出图(b )中:F AB = 10F DB = 100F = 80 kN 。

3-3 起重机由固定塔AC 与活动桁架BC 组成,绞车D 和E 分别控制桁架BC 和重物W 的运动。

桁架BC 用铰链连接于点C ,并由钢索AB 维持其平衡。

重物W = 40kN 悬挂在链索上,链索绕过点B 的滑轮,并沿直线BC 引向绞盘。

长度AC = BC ,不计桁架重量和滑轮摩擦。

试用角ϕ=∠ACB 的函数来表示钢索AB 的张力F AB 以及桁架上沿直线BC 的压力F BC 。

(b-1)习题3-1图(a-1)(a-2)'3(b-2)习题3-2图F习题3-5图习题3-4图 解:图(a ):0=∑x F ,0sin 2cos=-ϕϕW F AB ,2sin2ϕW F AB =0=∑y F ,02sincos =---ϕϕAB BC F W W F即 2s i n 2c o s 2ϕϕW W W F BC ++=W W W W 2)c o s 1(c o s =-++=ϕϕ3-4 杆AB 及其两端滚子的整体重心在G 点,滚子搁置在倾斜的光滑刚性平面上,如图所示。

理论力学课后习题答案

理论力学课后习题答案

理论力学课后习题答案理论力学课后习题答案引言:理论力学是物理学的基础课程之一,对于理解和应用物理学的原理和方法具有重要意义。

在学习理论力学的过程中,课后习题是巩固知识、提高能力的重要途径。

本文将针对理论力学课后习题进行解答,帮助读者更好地理解和掌握这门课程。

第一章:牛顿力学1. 一个物体以初速度v0沿直线运动,加速度为a,求物体的位移与时间的关系。

答:根据牛顿第二定律F=ma,可得物体所受合力F=ma=mv/t,其中m为物体的质量,v为物体的速度,t为时间。

由此可得物体的位移s=vt+1/2at^2。

2. 一个质点在重力作用下自由下落,求它在t时刻的速度和位移。

答:在重力作用下,质点的加速度为g,即a=g。

根据牛顿第二定律F=ma,可得质点所受合力F=mg。

根据牛顿第一定律,质点的速度随时间的变化率为v=g*t,位移随时间的变化率为s=1/2gt^2。

第二章:拉格朗日力学1. 一个质点沿半径为R的圆周运动,求它的动能和势能。

答:质点的动能由动能定理可得,即K=1/2mv^2,其中m为质点的质量,v为质点的速度。

质点的势能由引力势能可得,即U=-GmM/R,其中G为引力常数,M为圆周的质量。

2. 一个质点在势能为U(r)的力场中运动,求它的运动方程。

答:根据拉格朗日方程可得,质点的运动方程为d/dt(dL/dv)-dL/dr=0,其中L=T-U,T为质点的动能,U为质点的势能。

第三章:哈密顿力学1. 一个质点在势能为U(x)的力场中运动,求它的哈密顿量和哈密顿运动方程。

答:质点的哈密顿量由哈密顿定理可得,即H=T+U,其中T为质点的动能,U为质点的势能。

质点的哈密顿运动方程为dp/dt=-dH/dx,其中p为质点的动量。

2. 一个质点在势能为U(x)的力场中运动,求它的哈密顿正则方程。

答:质点的哈密顿正则方程为dx/dt=dH/dp,dp/dt=-dH/dx,其中x为质点的位置,p为质点的动量。

结论:通过对理论力学课后习题的解答,我们可以更深入地理解和应用物理学的原理和方法。

理论力学答案完整版(清华大学出版社)1

理论力学答案完整版(清华大学出版社)1
意二力杆和三力平衡汇交定理的应用。不能凭主观想象画约束力。
第一章力和约束 习题解答
1-1 求 图 示 空 间 汇 交 力 系 的 合 力 。 已 知 F1 = 100N , F2 = 200N , F3 = 300N , F4 = 400N ,方向如图示。如果仅改变力 F4 的方向,能否使此力系成为平衡力系?为什么?
解:按合力投影定理计算合力在 x, y, z 轴上的投影: FRx = F1 cosϕ1 + F2 sin γ 2 cosϕ2 − F4 sin2 30o = 111.1 (N); FRy = F2 sin γ 2 sinϕ2 + F3 + F4 sin 30o cos30o
= 601.1 (N); FRz = −F1 sinϕ1 − F2 cosγ 2 sinϕ2 + F4 cos30o
题 1-9(a)图 (b)按三力平衡汇交定理画出整体的受力图,然后依次画出杆 CD、杆 AB、轮 D 的受力图。
题 1-9(b)图
5
(c)折杆 BC 为二力构件,约束力方向一定是沿着 BC 连线。因力偶只能与力偶平衡,所 以,铰链 A 和 B 处的约束力一定互相平行而组成力偶。
题 1-9(c)图 (d)图示结构中,杆 CE 为二力杆,其余杆件的受力按力偶平衡理论确定。
对 x, y, z 轴的力矩和,以及对坐标原点 O 的力矩和。
解:平面 abc 的法向量为 n = 1 i + 1 j + 1 k ,力偶矢为 ab c
M = Mn0 , 其中 i, j,k, n0 依次为 x, y, z, n 方向的单位向
量。力 F 表为 F = Fξ 0
其中ξ 0 为ξ = 1 (a i + b j) − ck 方向的单位向量。

理论力学习题及答案(全)

理论力学习题及答案(全)

第一章静力学基础一、是非题1.力有两种作用效果,即力可以使物体的运动状态发生变化,也可以使物体发生变形。

()2.在理论力学中只研究力的外效应。

()3.两端用光滑铰链连接的构件是二力构件。

()4.作用在一个刚体上的任意两个力成平衡的必要与充分条件是:两个力的作用线相同,大小相等,方向相反。

()5.作用于刚体的力可沿其作用线移动而不改变其对刚体的运动效应。

()6.三力平衡定理指出:三力汇交于一点,则这三个力必然互相平衡。

()7.平面汇交力系平衡时,力多边形各力应首尾相接,但在作图时力的顺序可以不同。

()8.约束力的方向总是与约束所能阻止的被约束物体的运动方向一致的。

()二、选择题1.若作用在A点的两个大小不等的力F1和F2,沿同一直线但方向相反。

则其合力可以表示为。

①F1-F2;②F2-F1;③F1+F2;2.作用在一个刚体上的两个力F A、F B,满足F A=-F B的条件,则该二力可能是。

①作用力和反作用力或一对平衡的力;②一对平衡的力或一个力偶。

③一对平衡的力或一个力和一个力偶;④作用力和反作用力或一个力偶。

3.三力平衡定理是。

①共面不平行的三个力互相平衡必汇交于一点;②共面三力若平衡,必汇交于一点;③三力汇交于一点,则这三个力必互相平衡。

4.已知F1、F2、F3、F4为作用于刚体上的平面共点力系,其力矢关系如图所示为平行四边形,由此。

①力系可合成为一个力偶;②力系可合成为一个力;③力系简化为一个力和一个力偶;④力系的合力为零,力系平衡。

5.在下述原理、法则、定理中,只适用于刚体的有。

①二力平衡原理;②力的平行四边形法则;③加减平衡力系原理;④力的可传性原理;⑤作用与反作用定理。

三、填空题1.二力平衡和作用反作用定律中的两个力,都是等值、反向、共线的,所不同的是。

2.已知力F沿直线AB作用,其中一个分力的作用与AB成30°角,若欲使另一个分力的大小在所有分力中为最小,则此二分力间的夹角为度。

理论力学解答(清华版)

理论力学解答(清华版)

第一章 静力学基本概念1-1 考虑力对物体作用的运动效应,力是( A )。

A.滑动矢量B.自由矢量C.定位矢量1-2 如图1-18所示,作用在物体A 上的两个大小不等的力1F 和2F ,沿同一直线但方向相反,则其合力可表为( C )。

A.1F –2FB.2F - 1FC.1F +2F图1-18 图1-191-3 F =100N ,方向如图1-19所示。

若将F 沿图示x ,y 方向分解,则x 方向分力的大小x F = C N ,y 方向分力的大小y F = ___B __ N 。

A. 86.6B. 70.0C. 136.6D.25.91-4 力的可传性只适用于 A 。

A. 刚体B. 变形体1-5 加减平衡力系公理适用于 C 。

A. 刚体;B. 变形体;C. 刚体和变形体。

1-6 如图1-20所示,已知一正方体,各边长a ,沿对角线BH 作用一个力F ,则该力在x 1轴上的投影为 A 。

A. 0B. F/2C. F/6D.-F/31-7如图1-20所示,已知F=100N ,则其在三个坐标轴上的投影分别为: Fx = -402N ,Fy = 302N ,Fz = 502 N 。

图1-20 图1-21第二章力系的简化2-1.通过A(3,0,0),B(0,4,5)两点(长度单位为米),且由A指向B的力F,在z轴上投影为,对z轴的矩的大小为。

答:F/2;62F/5。

2-2.已知力F的大小,角度φ和θ,以及长方体的边长a,b,c,则力F在轴z和y上的投影:Fz= ;Fy= ;F对轴x的矩M x(F)= 。

答:Fz=F·sinφ;Fy=-F·cosφ·cosφ;Mx(F)=F(b·sinφ+c·cosφ·cosθ)图2-40 图2-412-3.力通过A(3,4、0),B(0,4,4)两点(长度单位为米),若F=100N,则该力在x轴上的投影为,对x轴的矩为。

清华大学版理论力学课后习题答案大全

清华大学版理论力学课后习题答案大全

第6章 刚体的平面运动分析6-1 图示半径为r 的齿轮由曲柄OA 带动,沿半径为R 的固定齿轮滚动。

曲柄OA 以等角加速度α绕轴O 转动,当运动开始时,角速度0ω= 0,转角0ϕ= 0。

试求动齿轮以圆心A 为基点的平面运动方程。

解:ϕc o s )(r R x A += (1) ϕsin )(r R y A +=(2)α为常数,当t = 0时,0ω=0ϕ= 0221t αϕ=(3)起始位置,P 与P 0重合,即起始位置AP 水平,记θ=∠OAP ,则AP 从起始水平位置至图示AP 位置转过θϕϕ+=A因动齿轮纯滚,故有⋂⋂=CP CP 0,即 θϕr R = ϕθr R =, ϕϕrr R A += (4)将(3)代入(1)、(2)、(4)得动齿轮以A 为基点的平面运动方程为:⎪⎪⎪⎩⎪⎪⎪⎨⎧+=+=+=222212sin )(2cos )(t r r R t r R y t r R x A A A αϕαα6-2 杆AB 斜靠于高为h 的台阶角C 处,一端A 以匀速v 0沿水平向右运动,如图所示。

试以杆与铅垂线的夹角θ 表示杆的角速度。

解:杆AB 作平面运动,点C 的速度v C 沿杆AB 如图所示。

作速度v C 和v 0的垂线交于点P ,点P 即为杆AB 的速度瞬心。

则角速度杆AB 为6-3 图示拖车的车轮A 与垫滚B 的半径均为r 。

试问当拖车以速度v 前进时,轮A 与垫滚B 的角速度A ω与B ω有什么关系?设轮A 和垫滚B 与地面之间以及垫滚B 与拖车之间无滑动。

解:RvR v A A ==ωR v R v B B 22==ωB A ωω2=6-4 直径为360mm 的滚子在水平面上作纯滚动,杆BC 一端与滚子铰接,另一端与滑块C 铰接。

设杆BC 在水平位置时,滚子的角速度ω=12 rad/s ,θ=30︒,ϕ=60︒,BC =270mm 。

试求该瞬时杆BC 的角速度和点C 的速度。

理论力学课后习题部分答案

理论力学课后习题部分答案

B
A FAC FBA
P
(l)
(l1)
(l2)
(l3)
图 1-1
1-2 画出下列每个标注字符的物体的受力图。题图中未画重力的各物体的自重不计,所 有接触处均为光滑接触。
(a)
B
FN1
C
FN 2
P2 P1
FAy
A
FAx
(a2)
(b)
FN1
A
P1
FN
(b2)
C
FN′
P2
(a1)
B
FN1
FN 2
FN
P1
F Ay
FCy
FAx (f2)
C FC′x
FC′y F2
FBy
FBx B (f3)
FAy A FAx
FB
C B
(g)
FAy
FAx A
D FT C FCx
(g2)
FB
B
F1
FB′ B
FAy
A
FAx
(h)
(h1)
P (g1)
FC′y
FT
C
FC′x
P (g3)
D
FCy
FB
F2
C FCx
B
(h2)
A FAx
FAy
FCy
D FAy
A
FAx
(k3)
6
FB
F1
FB′
B B
FD D
(l) FD′ D
A FA
(l1) F2
C
FC (l2)
F1
D
F2
B
A
E
FE
FA
(l3) 或
F1
FB′

清华大学理论力学课后习题答案大全

清华大学理论力学课后习题答案大全

第6章 刚体的平面运动分析6-1 图示半径为r 的齿轮由曲柄OA 带动,沿半径为R 的固定齿轮滚动。

曲柄OA 以等角加速度α绕轴O 转动,当运动开始时,角速度0ω= 0,转角0ϕ= 0。

试求动齿轮以圆心A 为基点的平面运动方程。

解:ϕcos )(r R x A += (1) ϕsin )(r R y A +=(2)α为常数,当t = 0时,0ω=0ϕ= 0 221t αϕ=(3)起始位置,P 与P 0重合,即起始位置AP 水平,记θ=∠OAP ,则AP 从起始水平位置至图示AP 位置转过θϕϕ+=A因动齿轮纯滚,故有⋂⋂=CP CP 0,即 θϕr R = ϕθr R =, ϕϕrr R A += (4)将(3)代入(1)、(2)、(4)得动齿轮以A 为基点的平面运动方程为:⎪⎪⎪⎩⎪⎪⎪⎨⎧+=+=+=222212sin )(2cos )(t r r R t r R yt r R x A A A αϕαα6-2 杆AB 斜靠于高为h 的台阶角C 处,一端A 以匀速v 0沿水平向右运动,如图所示。

试以杆与铅垂线的夹角 表示杆的角速度。

解:杆AB 作平面运动,点C 的速度v C 沿杆AB 如图所示。

作速度v C 和v 0的垂线交于点P ,点P 即为杆AB 的速度瞬心。

则角速度杆AB 为6-3 图示拖车的车轮A 与垫滚B 的半径均为r 。

试问当拖车以速度v 前进时,轮A 与垫滚B 的角速度A ω与B ω有什么关系?设轮A 和垫滚B 与地面之间以及垫滚B 与拖车之间无滑动。

解:RvR v A A ==ωR v R v B B 22==ωB A ωω2=6-4 直径为360mm 的滚子在水平面上作纯滚动,杆BC 一端与滚子铰接,另一端与滑块C 铰接。

设杆BC 在水平位置时,滚子的角速度=12 rad/s ,=30,=60,BC =270mm 。

试求该瞬时杆BC 的角速度和点C 的速度。

习题6-1图A BCv 0h习题6-2图 P ABv CA BCv o h习题6-2解图习题6-3解图习题6-3图 v A = vv B = v习题6-6图习题6-6解图解:杆BC 的瞬心在点P ,滚子O 的瞬心在点D BDv B ⋅=ωBPBD BP v B BC ⋅==ωω ︒︒⨯=30sin 27030cos 36012 rad/s 8=PC v BC C ⋅=ωm/s 87.130cos 27.08=︒⨯=6-5 在下列机构中,那些构件做平面运动,画出它们图示位置的速度瞬心。

(完整word版)理论力学课后习题及答案解析.docx

(完整word版)理论力学课后习题及答案解析.docx

理论力学教科书课后习题及解析第一章偶,大小是260Nm,转向是逆时针。

习题 4- 1.求图示平面力系的合成结果,长度单位为m。

习题 4- 3.求下列各图中平行分布力的合力和对于 A 点之矩。

解: (1) 平行力系对 A 点的矩是:解: (1) 取 O 点为简化中心,求平面力系的主矢:取 B 点为简化中心,平行力系的主矢是:求平面力系对O 点的主矩:平行力系对 B 点的主矩是:(2)合成结果:平面力系的主矢为零,主矩不为零,力系的合成结果是一个合力向B点简化的结果是一个力RB和一个力偶M B,且:如图所示;向 A 点简化的结果是一个力R A和一个力偶M A,且:如图所示;将 R B向下平移一段距离d,使满足:最后简化为一个力R ,大小等于R B。

其几何意义是: R 的大小等于载荷分布的将 R A向右平移一段距离d,使满足:矩形面积,作用点通过矩形的形心。

(2)取 A 点为简化中心,平行力系的主矢是:最后简化为一个力R,大小等于R A。

其几何意义是:R 的大小等于载荷分布的三角形面积,作用点通过三角形的形心。

平行力系对 A 点的主矩是:列平衡方程:习题 4-4 .求下列各梁和刚架的支座反力,长度单位为m。

解方程组:反力的实际方向如图示。

校核:解: (1) 研究 AB 杆,受力分析,画受力图:结果正确。

(2) 研究 AB 杆,受力分析,将线性分布的载荷简化成一个集中力,画受力图:(3) 研究 ABC ,受力分析,将均布的载荷简化成一个集中力,画受力图:列平衡方程:解方程组:列平衡方程:反力的实际方向如图示。

校核:解方程组:结果正确。

反力的实际方向如图示。

校核:结果正确。

习题 4-5 .重物悬挂如图,已知G=1.8kN ,其他重量不计;求铰链 A 的约束反力和杆 BC 所受的力。

列平衡方程:解方程组:解: (1) 研究整体,受力分析(BC 是二力杆),画受力图:反力的实际方向如图示。

列平衡方程:习题 4-8 .图示钻井架,G=177kN ,铅垂荷载P=1350kN ,风荷载 q=1.5kN/m ,水平力 F=50kN ;求支座 A 的约束反力和撑杆CD 所受的力。

理论力学课后习题答案_清华大学出版社_2004年版_范钦珊,刘燕,王琪 编著

理论力学课后习题答案_清华大学出版社_2004年版_范钦珊,刘燕,王琪 编著

习题 1-1 图
y
y2
F
F y1
F y1
F y2 F y2
F

Fx1 Fx1
(c)
x
F x2
Fx 2
x2
(d)
解: (a)图(c) : F F cos i1 F sin j1 分力: F x1 F cos i1 投影: Fx1 F cos , ,
F y1 F sin j1 Fy1 F sin
讨论: = 90°时,投影与分力的模相等;分力是矢量,投影是代数量。 (b)图(d) : 分力: F x 2 ( F cos F sin cot ) i 2 投影: Fx 2 F cos , 讨论: ≠90°时,投影与分量的模不等。
1-2 试画出图 a 和 b 两种情形下各物体的受力图,并进行比较。
F Ax
, Fy 2
F sin j2 sin
Fy 2 F cos( )
FAy
A
C
F
B
D
习题 1-2 图
FRD
FAy
F Ax
A
C
F
C
FC
F Ax
FAy
(a-1)
F
C
B
A
B
D
' FC
(a-2)
FRD
(a-3)
FRD
D
(b-1)
比较:图(a-1)与图(b-1)不同,因两者之 FRD 值大小也不同。
解: 图(a) : 2F3 cos 45 F 0
F3 2 F (拉) 2
F1 = F3(拉)
F2 2 F3 cos 45 0
F2 = F(受压) 图(b) : F3 F3 0 F1 = 0 F2 = F(受拉)

清华大学版理论力学课后习题答案大全 第3章静力学

清华大学版理论力学课后习题答案大全               第3章静力学

清华大学版理论力学课后习题答案大全第3章静力学清华大学版理论力学课后习题答案大全-----第3章静力学第三章静态平衡问题3-1图示两种正方形结构所受荷载f均已知。

试求其中1,2,3各杆受力。

解决方案:图(a):2f3cos45??F0f3?2f(拉)2f1=f3(拉)f2?2f3cos45??0f2=f(受压)图(b):f3?f3??0f1=0F2=f(张力)FF3f33a451f2f1(a-1)图3-1:练习内容fdaf3f3df2(a-2)f3?f1(b-1)(b-2)f3?3-2图示为一绳索拔桩装置。

绳索的e、c两点拴在架子上,点b与拴在桩a上的绳索ab连接,在点d加一铅垂向下的力f,ab可视为铅垂,db可视为水平。

已知?=0.1rad.,力f=800n。

试求绳ab中产生的拔桩力(当?很小时,tan?≈?)。

联邦调查局人员?dfcbfdb?fdb?练习B的图3-2f(a)(b)晶圆厂解决方案:?fy?0,联邦调查局??被激怒了??外汇?0,fedcos??fdbfdb?fsi?nf?10ftan?从图(a)中的计算结果可以推断,图(b)中的Fab=10fdb=100F=80KN。

3-3起重机由固定塔ac与活动桁架bc组成,绞车d和e分别控制桁架bc和重物w的运动。

桁架bc用铰链连接于点c,并由钢索ab维持其平衡。

重物w=40kn悬挂在链索上,链索绕过点b的滑轮,并沿直线bc引向绞盘。

长度ac=bc,不计桁架重量和滑轮摩擦。

试用角?=∠acb的函数来表示钢索ab的张力fab以及桁架上沿直线bc的压力fbc。

法比?2.fbcwwx习题3-3图(a)―1―解:图(a):?fx?0,fabcos?2?wsin??0,fab?2wsin?2fy?0,fbc?W世界海关组织??fabsin2s?2wsin是FBC吗?W世界海关组织??2.02wwcosw(1cos)2w3-4杆AB及其两端滚轮的整体重心位于点G,滚轮放置在一个倾斜的光滑刚性平面上,如图所示。

【最新试题库含答案】清华理论力学课后答案4

【最新试题库含答案】清华理论力学课后答案4

清华理论力学课后答案4篇一:理论力学课后习题答案第4章运动分析基础第4章运动分析基础4-1 小环A套在光滑的钢丝圈上运动,钢丝圈半径为R(如图所示)。

已知小环的初速度为v0,并且在运动过程中小环的速度和加速度成定角θ,且 0 <θ<?,试确定小环2A的运动规律。

22解:asin??a?v,a?v nRsin?R2vdvt1a?dv?acos??v,?dt t2??v00vdtRtan?Rtan?v?ds?v0Rtan?dtRtan??v0tstv0Rtan?ds??0?0Rtan??v0tdtAs?Rtan?lnRtan?Rtan??v0t习题4-1图2??x?3sint?x?4t?2t1.?, 2.?2y?2cos2t?y?3t?1.5t??4-2 已知运动方程如下,试画出轨迹曲线、不同瞬时点的解:1.由已知得 3x = 4y ? v?5?5t?y?3?3t? ?a??5 ??y??3????4x????4?4t?x(1)为匀减速直线运动,轨迹如图(a),其v、a图像从略。

2.由已知,得arcsinx3?12arccosy242(b)习题4-2图化简得轨迹方程:y?2?x9(2)轨迹如图(b),其v、a图像从略。

4-3 点作圆周运动,孤坐标的原点在O点,顺钟向为孤坐标的正方向,运动方程为s?12?Rt2,式中s以厘米计,t以秒计。

轨迹图形和直角坐标的关系如右图所示。

当点第一次到达y坐标值最大的位置时,求点的加速度在x和y轴上的投影。

解:v?s???Rt,at?v???R,an?v??2Rt2y坐标值最大的位置时:?s? ax?at??R,ay???R22R12?Rt2??22R,?t?1习题4-3图4-4 滑块A,用绳索牵引沿水平导轨滑动,绳的另一端绕在半径为r 的鼓轮上,鼓轮以匀角速度ω转动,如图所示。

试求滑块的速度随距离x 的变化规律。

解:设t = 0时AB长度为l0,则t时刻有:r (?t?arcta?arctan)r?l?x2?r2l0x2?r2对时间求导:?r??r2x22xx?r?rx ???xx2?r2???xxx?r224-5 凸轮顶板机构中,偏心凸轮的半径为R,偏心距OC = e,绕轴O以等角速转动,从而带动顶板A作平移。

清华大学版理论力学课后习题答案大全(免费下载)(第9章动量矩

清华大学版理论力学课后习题答案大全(免费下载)(第9章动量矩

清华大学版理论力学课后习题答案大全(免费下载)(第9章动量矩第9章动量矩定理及其应用9-1在下列条件下计算系统的动量矩。

1.圆盘以ω的角速度绕o轴转动,质量为m的小球m可沿圆盘的径向凹槽运动,图示瞬时小球以相对于圆盘的速度vr运动到om=s处(图a);求小球对o点的动量矩。

2.图中质量为m的偏心轮在水平面上作平面运动。

车轮中心为a,质心为C,AC=E;车轮半径为R,车轮中心a的惯性矩为JA;c、 a点和B点位于同一铅垂线上(图B)。

(1)当车轮仅滚动而不滑动时,如果VA已知,则计算车轮的动量和到B点的动量矩;(2)当车轮滚动和滑动时,如果VAω已知,求车轮的动量和B点的动量矩。

解:1。

瞧?MS2(逆)2,(1)vrωmoωab(a)crvaep?mvc?m(va??e)?mva(1?)(逆)rv(r?e)2lb?mvc(r?e)?jc??mva?(ja?me2)arr(b)(2)p?mvc?m(va??e)图9-1lb?mvc(r?e)?jc??m(va??e)(r?e)?(ja?me2)??m(r?e)va?(ja?mer)?9-2在图中所示的系统中,已知滚筒绕O轴旋转的角速度ω,其大半径和小半径分别为R和R,相对于O轴的惯性矩为Jo;a区和B区的质量分别为ma和MB;试着找出系统相对于O轴的动量矩。

ω或解:Rlo?(jo?mar2?mbr2)?练习a的图9-2bθ9-3图中所示的均质细杆OA和EC的质量分别为50kg和100kg,它们在a点焊接在一起。

如果结构在图中所示的位置从静态状态下释放,计算刚释放时杆的角加速度和铰链o处的约束力。

没有铰链摩擦。

解:令m=moa=50kg,则mec=2m质心d位置:(设l=1m)d?od?l255l?m66foxfoymgd2mg刚体作定轴转动,初瞬时ω=0jo??mg??2mg?ljo?ml2?即3ml2??131?2m?(2l)2?2ml2?3ml212习题20-3图D习题20-3解图5mgl2??5g?8.17rad/2s6l525tad?lg636由质心运动定理:3m?ad?3mg?foyt2511g?mg?449n(↑)3612n?0,福克斯?0,阿德福?3毫克?3米-1-9-4绞车机构如图所示,能绕固定轴旋转的B轮和C轮的半径分别为R和R,各自旋转轴的惯性矩分别为J1和J2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章 力和约束
本章要点:
一、 三个概念:力、力矩和力偶 1 力: 力的定义、力的三要素、集中力、分布力;
力的投影:直接投影法和二次投影法;力在平行轴上的投影都相等; 力的合成:平行四边形法则、三角形法则、多边形法则; 合力投影定理 2 力矩:力对点之矩的定义、力对点之矩的三要素、对点的合力矩定理; 力对轴之矩的定义、力对轴之矩和对点之矩的关系、对轴的合力矩定理; 3 力偶:力偶的定义、力偶的三要素、力偶的等效条件; 力偶系的合力偶等于分力偶的矢量和.
解:ξ 轴与 y 轴的交点为 B,合力对 B 点的力矩为 M B = FRx 3k − FRz 3i ;
ξ 轴方向的单位向量为:ξˆ = 1 (3i − 2k )。
13
利用力对点吱矩与力对轴之矩的关系有:
Mξ = M B ⋅ξˆ = −513.4 (N) 。
1-4 图示平面 Π 在各坐标轴上的截矩分别为 a,b, c ,且 a = b 。计算图示力 F 和力偶 M
解:(a)图示三铰拱,BC 半拱为二力构件,约束力一定是沿 BC 连线作用,铰链 A 处的约 束力方向由三力平衡汇交定理确定。
题 1-7(a)图 (b)图示三铰拱,铰链 A、B 和 C 三处的约束力方向都不能确定,因此用两个分力力表示。
3
题 1-7(b)图 (c)图示三铰拱,BC 半拱为二力构件,约束力一定是沿 BC 连线作用,AC 半拱上除约束 力外仅有力偶作用,因力偶只能与力偶平衡,因此 A、C 处的约束力必互相平行并组成力偶。
题 1-9(d力的大小为:
其中: cosϕ1
=
3 13 13
, cosγ 2
=
22 11
;ϕ2
=
45o

FR = FR2x + FR2y + FR2z = 645 (N) ;
方向余弦为:
cosα = FRx = 0.172 , cos β = FRy = 0.932 , cosγ = FRz = 0.319
二、五种约束 柔索约束、光滑面约束、光滑铰链约束、辊轴约束、固定端约束. 约束力的方向总是与约束所能阻碍的运动方向相反.,大小未知.
三、受力分析与受力图
解题要领:
1 用合力投影定理计算汇交力系的合力; 2 用合力矩定理计算力对点(轴)的力矩,也可以用力对轴之矩和对点之矩的关系计算力
对轴之矩。 3 画受力图先明确研究对象,取分离体,画出主动力后在根据约束的性质画出约束力,注

= M ⋅τ
=
rAB
abc b2 + c2
F
1-6 试画出图示物体的受力图。除注明的外,物体的自重都不计。
解:分别以指定的物体为研究对象,解除物体所受的全部约束,根据约束的性质画上约束力, 如图示。
(a) (e)
(b)
((cf)) 题 1-6 图
(d) (g)
1-7 图示三铰拱。试画出 AC、BC 及整体的受力图,自重都不计。
意二力杆和三力平衡汇交定理的应用。不能凭主观想象画约束力。
第一章力和约束 习题解答
1-1 求 图 示 空 间 汇 交 力 系 的 合 力 。 已 知 F1 = 100N , F2 = 200N , F3 = 300N , F4 = 400N ,方向如图示。如果仅改变力 F4 的方向,能否使此力系成为平衡力系?为什么?
题 1-2 图
解:
Mx
=
F
cos2
60o h

F
sin 60o r cos30o
=
1 4
F (h

3r ) ;
M y = F cos 60o sin 60o h + F sin 60o r sin 30o
= 3 F (h + r)

4
Mz
=
−F
cos 60o r
=

1 2
Fr
1-3 计算题 1-1 中合力对ξ 轴的力矩,图中长度单位为 m。
对 x, y, z 轴的力矩和,以及对坐标原点 O 的力矩和。
解:平面 abc 的法向量为 n = 1 i + 1 j + 1 k ,力偶矢为 ab c
M = Mn0 , 其中 i, j,k, n0 依次为 x, y, z, n 方向的单位向
量。力 F 表为 F = Fξ 0
其中ξ 0 为ξ = 1 (a i + b j) − ck 方向的单位向量。
题 1-9(a)图 (b)按三力平衡汇交定理画出整体的受力图,然后依次画出杆 CD、杆 AB、轮 D 的受力图。
题 1-9(b)图
5
(c)折杆 BC 为二力构件,约束力方向一定是沿着 BC 连线。因力偶只能与力偶平衡,所 以,铰链 A 和 B 处的约束力一定互相平行而组成力偶。
题 1-9(c)图 (d)图示结构中,杆 CE 为二力杆,其余杆件的受力按力偶平衡理论确定。
解:按合力投影定理计算合力在 x, y, z 轴上的投影: FRx = F1 cosϕ1 + F2 sin γ 2 cosϕ2 − F4 sin2 30o = 111.1 (N); FRy = F2 sin γ 2 sinϕ2 + F3 + F4 sin 30o cos30o
= 601.1 (N); FRz = −F1 sinϕ1 − F2 cosγ 2 sinϕ2 + F4 cos30o
题 1-7(c)图 1-8 试画出结构中 AB 的受力图。 解:图(a)中的构件 ABD,图(b)和(c)中的杆 AB 都是受三力作用而平衡的构件,因 此,可以应用三力平衡汇交定理确定铰链 A 处的约束力方向。
(a) 题 1-8 图
(b)
4
(c)
1-9 试画出图示物体系统以及标字母构件的受力图。除注明的外,物体的自重都不计。 解:(a)图示物体系统由多个物体组成,为确定约束力的方向,要考虑先后次序。我们按以 下次序进行受力分析:轮 D、杆 EB、杆 DC、结构 ABCDE、杆 AB。
rAB = −ai − bj + ck ,
力 F 表为
F=
F rAB
rAB ,
对 O 点的力矩为
MO (F ) = OA× F
=
c rAB
F(bi − aj),
题 1-5 图

M y (F ) =

ac rAB
F.
CD 方 向 的 单 位 向 量 为 τ = bj + ck , 从 而 求 得 : b2 + c2
FR
FR
FR
又,除作用点外,力的大小和方向共有 3 个因素,其中力的方向包含 2 个因素。因此,仅改
变 F4 的方向,不能使此力系成为平衡力系。
1
1-2 圆盘半径为 r ,可绕与其垂直的轴 z 转动。在圆盘边缘 C 处作用一力 F ,此力位 于与 z 轴平行、与圆盘在 C 处相切的平面内,尺寸如图示。计算力 F 对 x, y, z 轴的力矩。
2
题 1-4 图
Mo (F )
=
−ck × F
=
caF ξ
(i −
j)。
得到
( ) ( M
x
=
c k
M
+
2aF
,My
=
c k
M

其中: k = a2 + 2c2 。
) 2aF
,Mz
=
aM k
1-5 力 F 沿长方体的对角线 AB 作用,如图示。试计算力 F 对 y 轴及 CD 轴的力矩。
2
解:向量 AB 为
相关文档
最新文档