安徽省六校教育研究会2014届高三素质测试--数学(理)

合集下载

安徽省六校教育研究会2014届高三素质测试数学(理)试题含答案

安徽省六校教育研究会2014届高三素质测试数学(理)试题含答案

安徽省六校教育研究会2014届高三素质测试数学(理)试题本试卷分第I卷和第II卷(非选择题)两部分,第I卷第1至第2页,第II卷第3至第5页。

全卷满分150分,考试时间为120分钟。

考生注意事项:1 •答题前,务必在试题卷、答题卡规定的地方填写自己的姓名、座位号,并认真核对答题卡上所粘贴的条形码中的姓名、座位号与本人姓名、座位号是否一致。

务必在答题卡背面规定的地方填写姓名和座位号后两位。

2•答第I卷时,每小题选出答案后,用2B铅笔把答题卡上所对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

3•答第II卷时,必须使用0.5毫米的黑色墨水签字笔在答题卡上书写,要求字体工整、笔迹清晰。

作图题可先用铅笔在答题卡的规定的位置绘出,确认后再用0.5毫米的黑色墨水签字笔描清楚。

必须在题号所指示的答题区域作答,超出答题区域书写的答案无效,在试题卷、草稿纸上答题无效。

第I卷(选择题共50 分)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中, 只有一项是符合题目要求的。

1. 已知集合A={1,3, zi}, i为虚数单位,B={4}, A U B=A则复数z=( )A. -2iB. 2iC.-4iD.4i2. “ x 2 ”是“向量a (x 2,1)与向量b (2,2 x)共线”的( )A .充分而不必要条件B .必要而不充分条件C.充分必要条件 D .既不充分也不必要条件3. 函数f (x) sin(2x —)在[0,—]上的单增区间是( )4 2A•。

8]3C [0, 8]4.在正项等比数列{ a n }中,a n i v a n ,6,&45,则 35 =()37.开始,c . 2 则可以输出的函数是( )A . f(x) |x|B . f(x) lg x 2 1 xxx xe eC . f(x) x ——xe eD . f(x)11 2x 2 x5.某流程图如图所示,现输入如下四个函数, 输入f x ’•输出f X '结束―-I6.已知正方形 ABCD 的边长为2, 则满足|PH|< 2的概率为(H 是边DA 的中点.在正方形ABCM 部随机取一点P , 1 8 84e,分别是自然对数的底和圆周率, log e log ee e e e x 27. A. C. C .4则下列不等式不成立的是( B. log e log e 13 3 3 D. e 4(e ) 2 y b 2 1(a 0,b 0)的右焦点为F(2,0),设A B 为双曲线上关于原点 8.已知双曲线 2 a AF 的中点为M,BF 的中点为N,若原点 3 7,则双曲线的离心率为( 7 对称的两点, AB 的斜率为 C . 2 9.某动点在平面直角坐标系第一象限的整点上运动 O 在以线段MN 为直径的圆上,直线 (含x, y 正半轴上的整点),其运动规 律为(m, n) (m 1,n 1)或(m, n) (m 1,n 1)。

2014年安徽高考理科数学试题及详细答案(Word版)

2014年安徽高考理科数学试题及详细答案(Word版)

2014年普通高等学校招生全国统一考试(安徽卷)数学(理科)本试卷分第Ⅰ卷和第II 卷(非选择题)两部分,第Ⅰ卷第1至第2页,第II 卷第3至第4页。

全卷满分150分,考试时间为120分钟。

参考公式:如果事件A 与B 互斥,那么()()()P A B P A P B +=+如果事件A 与B 相互独立,那么()()()P AB P A P B =第Ⅰ卷(选择题 共50分)一.选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

(1) 设i 是虚数单位,z 表示复数z 的共轭复数,若z=1+I,则iz+i ·z = (A )-2 (B )-2i (C )2 (D )2i (2)“x <0”是ln (x+1)<0的 (A )充分不必要条件(B )必要不充分条件 (C )充分必要条件(D )既不充分也不必要条件(3)如图所示,程序框图(算法流程图)的输出结果是(A )34 (B )55 (C )78 (D )89(4) 以平面直角坐标系的原点为极点,x 轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位。

已知直线l 的参数方程是⎩⎨⎧-=+=3,1t y t x (t 为参数),圆C 的极坐标方程是θρcos 4=,则直线l 被圆C 截得的弦长为(A )14 (B )214 (C )2 (D )22(5)x , y 满足约束条件⎪⎩⎪⎨⎧≥+-≤--≤-+.022,022,02y x y x y x 若z=y-ax 取得最大值的最优解不唯一...,则实数a 的值为(A )21 或-1 (B )2或21 (C )2或1 (D )2或-1 (6)设函数f(x)(x ∈R )满足f(x+π)=f(x)+sinx.当0≤x ≤π时,f(x)=0,则)623(πf = (A )21 (B )23 (C )0 (D )21-(7)一个多面体的三视图如图所示,则该多面体的表面积为(A )321+ (B )318+ (C )21 (D )18(8)从正方体六个面的对角线中任取两条作为一对,其中所成的角为60°的共有 (A )24对 (B )30对 (C )48对 (D )60对(9)若函数f(x)=| x+1 |+| 2x+a |的最小值为3,则实数a 的值为 (A )5或8 (B )-1或5 (C )-1或 -4 (D )-4或8(10)在平面直角坐标系xOy 中,已知向量啊a , b , | a | = | b | = 1 , a ·b = 0,点Q 满足=2( a + b ).曲线C={ P | =a cos θ + b sin θ ,0≤θ<2π},区域Ω={ P | 0 < r ≤| | ≤ R , r <R },若C ⋂Ω为两段分离的曲线,则(A )1 < r < R <3 (B )1 < r < 3 ≤ R (C )r ≤ 1 < R <3 (D )1 < r < 3 < R2014普通高等学校招生全国统一考试(安徽卷)数 学(理科) 第Ⅱ卷(非选择题 共100分)考生注意事项:请用0.5毫米黑色墨水签字笔在答题卡上.....作答,在试题卷上答题无效.........。

2014年安徽高考理科数学试题含答案(Word版)

2014年安徽高考理科数学试题含答案(Word版)

2014年普通高等学校招生全国统一考试(安徽卷)数学(理科)本试卷分第Ⅰ卷和第II 卷(非选择题)两部分,第Ⅰ卷第1至第2页,第II 卷第3至第4页。

全卷满分150分,考试时间为120分钟。

参考公式:如果事件A 与B 互斥,那么()()()P A B P A P B +=+如果事件A 与B 相互独立,那么()()()P AB P A P B =第Ⅰ卷(选择题 共50分)一.选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

(1) 设i 是虚数单位,z 表示复数z 的共轭复数,若z=1+I,则iz+i ·z = (A )-2 (B )-2i (C )2 (D )2i (2)“x <0”是ln (x+1)<0的 (A )充分不必要条件(B )必要不充分条件 (C )充分必要条件(D )既不充分也不必要条件(3)如图所示,程序框图(算法流程图)的输出结果是(A )34 (B )55 (C )78 (D )89(4) 以平面直角坐标系的原点为极点,x 轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位。

已知直线l 的参数方程是⎩⎨⎧-=+=3,1t y t x (t 为参数),圆C 的极坐标方程是θρcos 4=,则直线l 被圆C 截得的弦长为(A )14 (B )214 (C )2 (D )22(5)x , y 满足约束条件⎪⎩⎪⎨⎧≥+-≤--≤-+.022,022,02y x y x y x 若z=y-ax 取得最大值的最优解不唯一...,则实数a 的值为(A )21 或-1 (B )2或21 (C )2或1 (D )2或-1 (6)设函数f(x)(x ∈R )满足f(x+π)=f(x)+sinx.当0≤x ≤π时,f(x)=0,则)623(πf = (A )21(B )23(C )0 (D )21-(7)一个多面体的三视图如图所示,则该多面体的表面积为(A )321+ (B )318+ (C )21 (D )18(8)从正方体六个面的对角线中任取两条作为一对,其中所成的角为60°的共有 (A )24对 (B )30对 (C )48对 (D )60对(9)若函数f(x)=| x+1 |+| 2x+a |的最小值为3,则实数a 的值为 (A )5或8 (B )-1或5 (C )-1或 -4 (D )-4或8(10)在平面直角坐标系xOy 中,已知向量啊a , b , | a | = | b | = 1 , a ·b = 0,点Q 满足=2( a + b ).曲线C={ P | =a cos θ + b sin θ ,0≤θ<2π},区域Ω={ P | 0 < r ≤| | ≤ R , r <R },若C ⋂Ω为两段分离的曲线,则(A )1 < r < R <3 (B )1 < r < 3 ≤ R (C )r ≤ 1 < R <3 (D )1 < r < 3 < R2014普通高等学校招生全国统一考试(安徽卷)数 学(理科) 第Ⅱ卷(非选择题 共100分)考生注意事项:请用0.5毫米黑色墨水签字笔在答题卡上.....作答,在试题卷上答题无效.........。

2014年安徽高考理科数学试题含答案(Word版)

2014年安徽高考理科数学试题含答案(Word版)

2014年普通高等学校招生全国统一考试(安徽卷)数学(理科)本试卷分第Ⅰ卷和第II 卷(非选择题)两部分,第Ⅰ卷第1至第2页,第II 卷第3至第4页。

全卷满分150分,考试时间为120分钟。

参考公式:如果事件A 与B 互斥,那么()()()P A B P A P B +=+如果事件A 与B 相互独立,那么()()()P AB P A P B =第Ⅰ卷(选择题 共50分)一.选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

(1) 设i 是虚数单位,z 表示复数z 的共轭复数,若z=1+I,则iz +i·z = (A )-2 (B )-2i (C )2 (D )2i (2)“x <0”是ln (x+1)<0的 (A )充分不必要条件(B )必要不充分条件 (C )充分必要条件(D )既不充分也不必要条件(3)如图所示,程序框图(算法流程图)的输出结果是(A )34 (B )55 (C )78 (D )89(4) 以平面直角坐标系的原点为极点,x 轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位。

已知直线l 的参数方程是⎩⎨⎧-=+=3,1t y t x (t 为参数),圆C 的极坐标方程是θρcos 4=,则直线l 被圆C 截得的弦长为(A )14 (B )214 (C )2 (D )22(5)x , y 满足约束条件⎪⎩⎪⎨⎧≥+-≤--≤-+.022,022,02y x y x y x 若z=y-ax 取得最大值的最优解不唯一...,则实数a的值为 (A )21 或-1 (B )2或21 (C )2或1 (D )2或-1 (6)设函数f(x)(x ∈R )满足f(x+π)=f(x)+sinx.当0≤x≤π时,f(x)=0,则)623(πf = (A )21 (B )23 (C )0 (D )21-(7)一个多面体的三视图如图所示,则该多面体的表面积为(A )321+ (B )318+ (C )21 (D )18(8)从正方体六个面的对角线中任取两条作为一对,其中所成的角为60°的共有 (A )24对 (B )30对 (C )48对 (D )60对(9)若函数f(x)=| x+1 |+| 2x+a |的最小值为3,则实数a 的值为(A )5或8 (B )-1或5 (C )-1或 -4 (D )-4或8(10)在平面直角坐标系xOy 中,已知向量啊a , b , | a | = | b | = 1 , a ·b = 0,点Q 满足=2( a + b ).曲线C={ P | =a cos θ + b sin θ ,0≤θ<2π},区域Ω={ P | 0 < r ≤| | ≤ R , r <R },若C ⋂Ω为两段分离的曲线,则(A )1 < r < R <3 (B )1 < r < 3 ≤ R (C )r ≤ 1 < R <3 (D )1 < r < 3 < R2014普通高等学校招生全国统一考试(安徽卷)数 学(理科) 第Ⅱ卷(非选择题 共100分)考生注意事项:请用0.5毫米黑色墨水签字笔在答题卡上.....作答,在试题卷上答题无效.........。

2014年安徽高考理科数学试题及答案(Word版)

2014年安徽高考理科数学试题及答案(Word版)

2014年普通高等学校招生全国统一考试(安徽卷)数学(理科)本试卷分第Ⅰ卷和第II 卷(非选择题)两部分,第Ⅰ卷第1至第2页,第II 卷第3至第4页。

全卷满分150分,考试时间为120分钟。

参考公式:如果事件A 与B 互斥,那么()()()P A B P A P B +=+如果事件A 与B 相互独立,那么()()()P AB P A P B =第Ⅰ卷(选择题 共50分)一.选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

(1) 设i 是虚数单位,z 表示复数z 的共轭复数,若z=1+I,则iz+i ·z = (A )-2 (B )-2i (C )2 (D )2i (2)“x <0”是ln (x+1)<0的 (A )充分不必要条件(B )必要不充分条件 (C )充分必要条件(D )既不充分也不必要条件(3)如图所示,程序框图(算法流程图)的输出结果是(A )34 (B )55 (C )78 (D )89(4) 以平面直角坐标系的原点为极点,x 轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位。

已知直线l 的参数方程是⎩⎨⎧-=+=3,1t y t x (t 为参数),圆C 的极坐标方程是θρcos 4=,则直线l 被圆C 截得的弦长为(A )14 (B )214 (C )2 (D )22(5)x , y 满足约束条件⎪⎩⎪⎨⎧≥+-≤--≤-+.022,022,02y x y x y x 若z=y-ax 取得最大值的最优解不唯一...,则实数a 的值为(A )21 或-1 (B )2或21 (C )2或1 (D )2或-1 (6)设函数f(x)(x ∈R )满足f(x+π)=f(x)+sinx.当0≤x ≤π时,f(x)=0,则)623(πf = (A )21(B )23(C )0 (D )21-(7)一个多面体的三视图如图所示,则该多面体的表面积为(A )321+ (B )318+ (C )21 (D )18(8)从正方体六个面的对角线中任取两条作为一对,其中所成的角为60°的共有 (A )24对 (B )30对 (C )48对 (D )60对(9)若函数f(x)=| x+1 |+| 2x+a |的最小值为3,则实数a 的值为 (A )5或8 (B )-1或5 (C )-1或 -4 (D )-4或8(10)在平面直角坐标系xOy 中,已知向量啊a , b , | a | = | b | = 1 , a ·b = 0,点Q 满足OQ =2( a + b ).曲线C={ P | =a cos θ + b sin θ ,0≤θ<2π},区域Ω={ P | 0 < r ≤| | ≤ R , r <R },若C ⋂Ω为两段分离的曲线,则(A )1 < r < R <3 (B )1 < r < 3 ≤ R (C )r ≤ 1 < R <3 (D )1 < r < 3 < R2014普通高等学校招生全国统一考试(安徽卷)数 学(理科) 第Ⅱ卷(非选择题 共100分)考生注意事项:请用0.5毫米黑色墨水签字笔在答题卡上.....作答,在试题卷上答题无效.........。

2014年安徽高考理科数学试题含答案(Word版)

2014年安徽高考理科数学试题含答案(Word版)

2014年普通高等学校招生全国统一考试(安徽卷)数学(理科)本试卷分第Ⅰ卷和第II 卷(非选择题)两部分,第Ⅰ卷第1至第2页,第II 卷第3至第4页。

全卷满分150分,考试时间为120分钟。

参考公式:如果事件A 与B 互斥,那么()()()P A B P A P B +=+如果事件A 与B 相互独立,那么()()()P AB P A P B =第Ⅰ卷(选择题 共50分)一.选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

(1) 设i 是虚数单位,z 表示复数z 的共轭复数,若z=1+I,则iz +i·z = (A )-2 (B )-2i (C )2 (D )2i (2)“x <0”是ln (x+1)<0的 (A )充分不必要条件(B )必要不充分条件 (C )充分必要条件(D )既不充分也不必要条件(3)如图所示,程序框图(算法流程图)的输出结果是(A )34 (B )55 (C )78 (D )89(4) 以平面直角坐标系的原点为极点,x 轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位。

已知直线l 的参数方程是⎩⎨⎧-=+=3,1t y t x (t 为参数),圆C 的极坐标方程是θρcos 4=,则直线l 被圆C 截得的弦长为(A )14 (B )214 (C )2 (D )22(5)x , y 满足约束条件⎪⎩⎪⎨⎧≥+-≤--≤-+.022,022,02y x y x y x 若z=y-ax 取得最大值的最优解不唯一...,则实数a的值为 (A )21 或-1 (B )2或21 (C )2或1 (D )2或-1 (6)设函数f(x)(x ∈R )满足f(x+π)=f(x)+sinx.当0≤x≤π时,f(x)=0,则)623(πf = (A )21 (B )23 (C )0 (D )21-(7)一个多面体的三视图如图所示,则该多面体的表面积为(A )321+ (B )318+ (C )21 (D )18(8)从正方体六个面的对角线中任取两条作为一对,其中所成的角为60°的共有 (A )24对 (B )30对 (C )48对 (D )60对(9)若函数f(x)=| x+1 |+| 2x+a |的最小值为3,则实数a 的值为(A )5或8 (B )-1或5 (C )-1或 -4 (D )-4或8(10)在平面直角坐标系xOy 中,已知向量啊a , b , | a | = | b | = 1 , a ·b = 0,点Q 满足=2( a + b ).曲线C={ P | =a cos θ + b sin θ ,0≤θ<2π},区域Ω={ P | 0 < r ≤| | ≤ R , r <R },若C ⋂Ω为两段分离的曲线,则(A )1 < r < R <3 (B )1 < r < 3 ≤ R (C )r ≤ 1 < R <3 (D )1 < r < 3 < R2014普通高等学校招生全国统一考试(安徽卷)数 学(理科) 第Ⅱ卷(非选择题 共100分)考生注意事项:请用0.5毫米黑色墨水签字笔在答题卡上.....作答,在试题卷上答题无效.........。

2014年高考安徽理科数学试题及答案(精校版)

2014年高考安徽理科数学试题及答案(精校版)

2014年普通高等学校招生全国统一考试(安徽卷)数学(理科)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,第I 卷第1至第2页,第II 卷第3至第4页。

全卷满分150分,考试时间120分钟。

参考公式:如果事件A 、B 互斥,那么 如果事件A 、B 相互独立,那么 P (A+B )= P (A )+ P (B ) P (A·B )= P (A )·P (B ) 第I 卷(选择题共50分)一.选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设i 是虚数单位,z 表示复数z 的共轭复数。

若,1i z +=则zi z i+⋅=( )A .2-B .2i -C .2D .2i 2.“0<x ”是“0)1ln(<+x ”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 3.如图所示,程序框图(算法流程图)的输出结果是( ) A .34 B .55 C .78 D .89 4.以平面直角坐标系的原点为极点,x 轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位,已知直线l 的参数方程是⎩⎨⎧-=+=31y y t x ,(t 为参数),圆C的极坐标方程是θρcos 4=,则直线l 被圆C 截得的弦长为( )A .14B .142C .2D .225.y x ,满足约束条件⎪⎩⎪⎨⎧≥+-≤--≤-+02202202y x y x y x ,若ax y z -=取得最大值的最优解不唯一,则实数a 的值为( )A .121-或B .212或C .2或1D .12-或 6.设函数))((R x x f ∈满足()()sin f x f x x π+=+,当π<≤x 0时,0)(=x f ,则=)623(πf ( )A .12B .23C .0D .21-7.一个多面体的三视图如图所示,则该多面体的表面积为( ) A.21 B.18 C .21 D .188.从正方体六个面的对角线中任取两条作为一对,其中所成的角为60︒的共有( ) A .24对 B .30对 C .48对 D .60对 9.若函数()12f x x x a =+++的最小值为3,则实数a 的值为( )A .5或8B .1-或5C .1-或4-D .4-或810.在平面直角坐标系xOy 中,已知向量,,1,0,a b a b a b ==⋅=点Q 满2()OQ a b =+.曲线{|cos sin ,02}C P OP a b θθθπ==+≤≤,区{|0||,}P r PQ R r R Ω=<≤≤<. 若C ⋂Ω为两段分离的曲线,则( ) A .13r R <<< B .13r R <<≤ C .13r R ≤<< D .13r R <<<第Ⅱ卷(非选择题 共100分)考生注意事项:请用0.5毫米黑色墨水签字笔在答题卡上.....作答,在试题卷上答题无........效.. 二.选择题:本大题共5小题,每小题5分,共25分,把答案填在答题卡的相应位置。

2014年安徽高考理科数学试题含答案(Word版)

2014年安徽高考理科数学试题含答案(Word版)

2014年普通高等学校招生全国统一考试(安徽卷)数学(理科)本试卷分第Ⅰ卷和第II 卷(非选择题)两部分,第Ⅰ卷第1至第2页,第II 卷第3至第4页。

全卷满分150分,考试时间为120分钟。

参考公式:如果事件A 与B 互斥,那么()()()P A B P A P B +=+如果事件A 与B 相互独立,那么()()()P AB P A P B =第Ⅰ卷(选择题 共50分)一.选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

(1) 设i 是虚数单位,z 表示复数z 的共轭复数,若z=1+I,则iz +i·z = (A )-2 (B )-2i (C )2 (D )2i (2)“x <0”是ln (x+1)<0的 (A )充分不必要条件(B )必要不充分条件 (C )充分必要条件(D )既不充分也不必要条件(3)如图所示,程序框图(算法流程图)的输出结果是(A )34 (B )55 (C )78 (D )89(4) 以平面直角坐标系的原点为极点,x 轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位。

已知直线l 的参数方程是⎩⎨⎧-=+=3,1t y t x (t 为参数),圆C 的极坐标方程是θρcos 4=,则直线l 被圆C 截得的弦长为(A )14 (B )214 (C )2 (D )22(5)x , y 满足约束条件⎪⎩⎪⎨⎧≥+-≤--≤-+.022,022,02y x y x y x 若z=y-ax 取得最大值的最优解不唯一...,则实数a的值为 (A )21 或-1 (B )2或21 (C )2或1 (D )2或-1 (6)设函数f(x)(x ∈R )满足f(x+π)=f(x)+sinx.当0≤x≤π时,f(x)=0,则)623(πf = (A )21 (B )23 (C )0 (D )21-(7)一个多面体的三视图如图所示,则该多面体的表面积为(A )321+ (B )318+ (C )21 (D )18(8)从正方体六个面的对角线中任取两条作为一对,其中所成的角为60°的共有 (A )24对 (B )30对 (C )48对 (D )60对(9)若函数f(x)=| x+1 |+| 2x+a |的最小值为3,则实数a 的值为(A )5或8 (B )-1或5 (C )-1或 -4 (D )-4或8(10)在平面直角坐标系xOy 中,已知向量啊a , b , | a | = | b | = 1 , a ·b = 0,点Q 满足=2( a + b ).曲线C={ P | =a cos θ + b sin θ ,0≤θ<2π},区域Ω={ P | 0 < r ≤| | ≤ R , r <R },若C ⋂Ω为两段分离的曲线,则(A )1 < r < R <3 (B )1 < r < 3 ≤ R (C )r ≤ 1 < R <3 (D )1 < r < 3 < R2014普通高等学校招生全国统一考试(安徽卷)数 学(理科) 第Ⅱ卷(非选择题 共100分)考生注意事项:请用0.5毫米黑色墨水签字笔在答题卡上.....作答,在试题卷上答题无效.........。

【名师解析】安徽省六校教育研究会2014届高三2月联考数学(理)试题 Word版含解析

【名师解析】安徽省六校教育研究会2014届高三2月联考数学(理)试题 Word版含解析

第Ⅰ卷(共50分)一、选择题:本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若复数221zi i=++,其中i 是虚数单位,则复数z 的模为( )(A (B )2(C (D ) 22.已知命题p :“1a =是0ax x x,+2>≥”的充分必要条件”;命题q :“存在0x R ∈,使得20020x x +->”,下列命题正确的是( ) (A)命题“p q ∧”是真命题 (B)命题“()p q ⌝∧”是真命题 (C)命题“()p q ∧⌝”是真命题 (D)命题“()()p q ⌝∧⌝”是真命题3.执行如图所示的程序框图.若输出15S =, 则框图中① 处可以填入( ) (A) 4n >? (B) 8n >? (C) 16n >? (D) 16n <?4.在极坐标系中,点π(2,)3和圆θρcos 2=的圆心的距离为( )(A)3(B) 2(C) (D)【答案】A5.在平行四边形ABCD 中,AC 与BD 交于点O E ,是线段OD 的中点,AE 的延长线与CD 交于点F .若AC =a ,BD =b ,则AF =( ) (A)1142+a b (B) 1124+a b (C) 2133+a b (D)1233+a b6.数列{}n a 的首项为3,{}n b 为等差数列且1()n n n b a a n N +=-∈*, 若32b =-,1012b =,则8a =( )(A) 0 (B) 3 (C) 8 (D) 11【答案】B7.某三棱椎的三视图如图所示,该三棱锥的四个面的面积中,最大的是()(A)(B)8(C) (D)8.有编号分别为1,2,3,4,5的5个红球和5个黑球,从中随机取出4个,则取出球的编号互不相同的概率为( )(A )521(B )27 (C )13(D )8219.设1F ,2F 分别为双曲线C :22221x y a b-=(0,0)a b >>的左、右焦点,A 为双曲线的左顶点,以12F F 为直径的圆交双曲线某条渐近线于M 、N 两点,且满足120MAN ∠=︒,则该双曲线的离心率为( )(A)3(B)3(C) 73(D)310.10.若实数,,,a b c d 满足222(3ln )(2)0b a a c d +-+-+=,则22()()a c b d -+-的最小值为( )(A) (B) 2 (C) (D) 8第Ⅱ卷(共100分)二、填空题(每题5分,满分25分,将答案填在答题纸上)11..已知0sin ,a xdx π=⎰则二项式51a x ⎛⎫- ⎪⎝⎭的展开式中3x -的系数为 .二项式51a x ⎛⎫- ⎪⎝⎭的展开式中3x -的系数为()()333510280C a -=⨯-=-考点:1、定积分的求法;2、二项式定理.12.如图所示,第n 个图形是由正2n +边形拓展而来(1,2,n =),则第2n -个图形共有____个顶点.13.若不等式组50,5,02x y y kx x -+≥⎧⎪≥+⎨⎪≤≤⎩表示的平面区域是一个锐角三角形,则实数k 的取值范是 .14.抛物线2(33)y x x =-≤≤绕y 轴旋转一周形成一个如图所示的旋转体,在此旋转体内水平放入一个正方体,该正方体的一个面恰好与旋转体的开口面平齐,则此正方体的棱长是 .15.对于函数()f x ,若存在区间[],M a b =,使得{}|(),y y f x x M M =∈=,则称区间M 为函数()f x 的一个“好区间”.给出下列4个函数:①()sin f x x =;②()21x f x =-;③3()3f x x x =-;④()lg 1f x x =+.其中存在“好区间”的函数是 . (填入所有满足条件函数的序号)三、解答题(本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.)16.(本小题满分12分)已知向量33(sin ,cos ),(,)22m x x n ==,x R ∈,函数(),f x m n =⋅ (Ⅰ)求()f x 的最大值;(Ⅱ)在ABC ∆中,设角A ,B 的对边分别为,a b ,若2B A =,且26b af A π⎛⎫=- ⎪⎝⎭,求角C 的大小.17.(本小题满分12分)等边三角形ABC 的边长为3,点D 、E 分别是边AB 、AC 上的点,且满足AD DB =12CE EA =(如图1).将△ADE 沿DE 折起到△1A DE 的位置,使二面角1A DE B --为直二面角,连结1A B 、1AC (如图2). (Ⅰ)求证:1A D ⊥平面BCED ;(Ⅱ)在线段BC 上是否存在点P ,使直线1PA 与平面1A BD 所成的角为60?若存在,求出PB 的长,若不存在,请说明理由.直线1PA 与平面1A BD 所成的角1PA H ∠,设PB 的长为x ,用x 表示11,,A D A H DH ,在直角∆1A DH 中,Rt △1A DH 中,11A D =,122DH x =- ,由22211A D DH A H +=, 得222111222x x ⎛⎫⎛⎫+-= ⎪ ⎪⎝⎭⎝⎭ ,解得18.(本小题满分12分)设各项均为正数的数列{}n a 的前n 项和为n S ,满足21441,,n n a S n n N *+=++∈且2514,,a a a 恰好是等比数列{}n b 的前三项. (Ⅰ)求数列{}n a 、{}n b 的通项公式;(Ⅱ)记数列{}n b 的前n 项和为n T ,若对任意的*n N ∈,3()362n T k n +≥-恒成立,求实数k 的取值范围.考点:1、等差数列;等比数列的通项公式和前n项和.2、参变量范围的求法.19.(本小题满分12分)生产A,B两种元件,其质量按测试指标划分为:指标大于或等于82为正品,小于82为次品,现随机抽取这两种元件各100件进行检测,检测结果统计如下:(Ⅰ)试分别估计元件A、元件B为正品的概率;(Ⅱ)生产一件元件A,若是正品可盈利50元,若是次品则亏损10元;生产一件元件B,若是正品可盈利100元,若是次品则亏损20元,在(Ⅰ)的前提下;(i)求生产5件元件B所获得的利润不少于300元的概率;(ii)记X为生产1件元件A和1件元件B所得的总利润,求随机变量X的分布列和数学期望.20.(本小题满分13分)已知(),P x y 为函数1ln y x =+图象上一点,O 为坐标原点,记直线OP 的斜率()k f x =. (Ⅰ)若函数()f x 在区间1,3a a ⎛⎫+⎪⎝⎭()0a >上存在极值,求实数a 的取值范围; (Ⅱ)如果对任意的1x ,)22x e ,⎡∈+∞⎣,有121211()()f x f x m x x -≥-,求实数m 的取值范围.递减,故()f x 在1x =处取得极大值. ……………………3分21.(本小题满分14分)在平面直角坐标系xoy 中,已知12,F F 分别是椭圆2222:1(0)x y G a b a b+=>>的左、右焦点,椭圆G 与抛物线24y x =-有一个公共的焦点,且过点(. (Ⅰ)求椭圆G 的方程;(Ⅱ) 设点P 是椭圆G 在第一象限上的任一点,连接12,PF PF ,过P 点作斜率为k 的直线l ,使得l 与椭圆G 有且只有一个公共点,设直线12,PF PF 的斜率分别为1k ,2k ,试证明1211kk kk +为定值,并求出这个定值;(III )在第(Ⅱ)问的条件下,作22F Q F P ⊥,设2F Q 交l 于点Q , 证明:当点P 在椭圆上移动时,点Q 在某定直线上.。

2014年普通高等学校招生全国统一考试(安徽卷)数学试题 (理科)解析版

2014年普通高等学校招生全国统一考试(安徽卷)数学试题 (理科)解析版

坐标系,两种坐标系中取相同的 ⎩2014 年普通高等学校招生全国统一考试(安徽卷)数学(理科)一.选择题:本大题共 10 小题,每小题 5 分,共 50 分. 在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)设i 是虚数单位, z 表示复数 z 的共轭复数. 若 z = 1+ i , 则 z+ i ⋅ z ()iA. - 2B. - 2iC. 2D. 2i解析: z+ i ⋅ z = 1+ i + i ⋅ (1- i ) = i -1+ i +1 = -i +1+ i +1 = 2 故选 C i i -1(2)“ x < 0 ”是“ ln(x +1) < 0”的()A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件解析:必要不充分条件,由ln(x +1) < 0知ln(x +1) < 0 = ln1即 -1 < x < 0 故 x < 0 是-1 < x < 0 的必要不充分条件,选 B(3)如图所示,程序框图(算法流程图)的输出结果是( )A. 34B. 55C. 78D. 89解析:由图运算 7 次得到结果 55,故选 B4.以平面直角坐标系的原点为极点, x 轴的正半轴为极轴,建立极⎧x = t +1 长度单位,已知直线l 的参数方程是 ⎨ y = y - 3,(t 为参数),圆 C 的极坐标方程是ρ= 4cos θ则直14 14 2⎨⎩线l 被圆C 截得的弦长为()A. B. 2 C. D. 2⎧x +y - 2 ≤ 05. x, y 满足约束条件⎪x - 2 y - 2 ≤ 0 ,若z =y -ax 取得最大值的最优解不唯一,则实数a 的值为⎪2x -y + 2 ≥ 0()A,1或-12B.2或12C.2或1D. 2或-1解析:数形结合求解。

考点:1.线性规划求参数的值.2f (5 5 11 17 1 1 1 16.设函数f (x)(x ∈R) 满足f (x +π) =f (x) + sin x.当0 ≤x <π时,f (x) = 0 ,则f (23π=()61 3 1A. B. C.0 D. -2 2 2f (23π17π23π11π11π17π) =f ( ) +sin =f ( ) +sin +sin解析:有题意 6 6 6 6 6 6ππππ=) + sin + sin + sin = 0 +-+=6 6 6 6 2 2 2 27.一个多面体的三视图如图所示,则该多面体的表面积为()A.1+B.8+C.21D.18解析:有题意知所得几何体是有棱长为2 的长方体截掉两个角得到的。

2014年安徽省高考数学试卷(理科)答案与解析

2014年安徽省高考数学试卷(理科)答案与解析

2014年安徽省高考数学试卷(理科)参考答案和试题分析一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.(5分)(2014•安徽)设i是虚数单位,表示复数z的共轭复数.若z=1+i,则+i•=()A.﹣2 B.﹣2i C.2D.2i考点:复数代数形式的乘除运算.专题:数系的扩充和复数.分析:把z及代入+i•,然后直接利用复数代数形式的乘除运算化简求值.解答:解:∵z=1+i,∴,∴+i•==.故选:C.点评:本题考查复数代数形式的乘除运算,是基础的计算题.2.(5分)(2014•安徽)“x<0”是“ln(x+1)<0”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件考点:充要条件.专题:计算题;简易逻辑.分析:根据不等式的性质,利用充分条件和必要条件的定义进行判断即可得到结论.解答:解:∵x<0,∴x+1<1,当x+1>0时,ln(x+1)<0;∵ln(x+1)<0,∴0<x+1<1,∴﹣1<x<0,∴x<0,∴“x<0”是ln(x+1)<0的必要不充分条件.故选:B.点评:本题主要考查充分条件和必要条件的判断,根据不等式的性质是解决本题的关键,比较基础.3.(5分)(2014•安徽)如图所示,程序框图(算法流程图)的输出结果是()A.34 B.55 C.78 D.89考点:程序框图;程序框图的三种基本逻辑结构的使用.专题:算法和程序框图.分析:写出前几次循环的结果,不满足判断框中的条件,退出循环,输出z的值.解答:解:第一次循环得z=2,x=1,y=2;第二次循环得z=3,x=2,y=3;第三次循环得z=5,x=3,y=5;第四次循环得z=8,x=5,y=8;第五次循环得z=13,x=8,y=13;第六次循环得z=21,x=13,y=21;第七次循环得z=34,x=21,y=34;第八次循环得z=55,x=34,y=55;退出循环,输出55,故选B点评:本题考查程序框图中的循环结构,常用的方法是写出前几次循环的结果找规律,属于一道基础题.4.(5分)(2014•安徽)以平面直角坐标系的原点为极点,x轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位.已知直线l的参数方程是(t为参数),圆C的极坐标方程是ρ=4cosθ,则直线l被圆C截得的弦长为()A.B.2C.D.2考点:点的极坐标和直角坐标的互化;直线和圆的位置关系;参数方程化成普通方程.专题:坐标系和参数方程.分析:先求出直线和圆的直角坐标方程,求出半径和弦心距,再利用弦长公式求得弦长.解答:解:直线l的参数方程是(t为参数),化为普通方程为x﹣y﹣4=0;圆C的极坐标方程是ρ=4cosθ,即ρ2=4ρcosθ,化为直角坐标方程为x2+y2=4x,即(x﹣2)2+y2=4,表示以(2,0)为圆心、半径r等于2的圆.弦心距d==<r,∴弦长为2=2=2,故选:D.点评:本题主要考查把参数方程化为普通方程的方法,把极坐标方程化为直角坐标方程的方法,点到直线的距离公式、弦长公式的使用,属于中档题.5.(5分)(2014•安徽)x、y满足约束条件,若z=y﹣ax取得最大值的最优解不唯一,则实数a的值为()A.或﹣1 B.2或C.2或1 D.2或﹣1考点:简单线性规划.专题:不等式的解法及使用.分析:作出不等式组对应的平面区域,利用目标函数的几何意义,得到直线y=ax+z斜率的变化,从而求出a的取值.解答:解:作出不等式组对应的平面区域如图:(阴影部分ABC).由z=y﹣ax得y=ax+z,即直线的截距最大,z也最大.若a=0,此时y=z,此时,目标函数只在A处取得最大值,不满足条件,若a>0,目标函数y=ax+z的斜率k=a>0,要使z=y﹣ax取得最大值的最优解不唯一,则直线y=ax+z和直线2x﹣y+2=0平行,此时a=2,若a<0,目标函数y=ax+z的斜率k=a<0,要使z=y﹣ax取得最大值的最优解不唯一,则直线y=ax+z和直线x+y﹣2=0,平行,此时a=﹣1,综上a=﹣1或a=2,故选:D点评:本题主要考查线性规划的使用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法.注意要对a进行分类讨论,同时需要弄清楚最优解的定义.6.(5分)(2014•安徽)设函数f(x)(x∈R)满足f(x+π)=f(x)+sinx.当0≤x<π时,f (x)=0,则f()=()A.B.C.0D.﹣考点:抽象函数及其使用;函数的值.专题:函数的性质及使用.分析:利用已知条件,逐步求解表达式的值即可.解答:解:∵函数f(x)(x∈R)满足f(x+π)=f(x)+sinx.当0≤x<π时,f(x)=0,∴f()=f()=f()+sin=f()+sin+sin=f()+sin+sin+sin=sin+sin+sin==.故选:A.点评:本题考查抽象函数的使用,函数值的求法,考查计算能力.7.(5分)(2014•安徽)一个多面体的三视图如图所示,则该多面体的表面积为()A.21+B.18+C.21 D.18 考点:由三视图求面积、体积.专题:空间位置关系和距离.分析:判断几何体的形状,结合三视图的数据,求出几何体的表面积.解答:解:由三视图可知,几何体是正方体的棱长为2,截去两个正三棱锥,侧棱互相垂直,侧棱长为1,几何体的表面积为:S正方体﹣2S棱锥侧+2S棱锥底==21+.故选:A.点评:本题考查三视图求解几何体的表面积,解题的关键是判断几何体的形状.8.(5分)(2014•安徽)从正方体六个面的对角线中任取两条作为一对.其中所成的角为60°的共有()A.24对B.30对C.48对D.60对考点:排列、组合及简单计数问题;异面直线及其所成的角.专题:排列组合.分析:利用正方体的面对角线形成的对数,减去不满足题意的对数即可得到结果.解答:解:正方体的面对角线共有12条,两条为一对,共有=66条,同一面上的对角线不满足题意,对面的面对角线也不满足题意,一组平行平面共有6对不满足题意的直线对数,不满足题意的共有:3×6=18.从正方体六个面的对角线中任取两条作为一对.其中所成的角为60°的共有:66﹣18=48.故选:C.点评:本题考查排列组合的综合使用,逆向思维是解题本题的关键.9.(5分)(2014•安徽)若函数f(x)=|x+1|+|2x+a|的最小值为3,则实数a的值为()A.5或8 B.﹣1或5 C.﹣1或﹣4 D.﹣4或8考带绝对值的函数;函数最值的使用.点:选作题;不等式.专题:分类讨论,利用f(x)=|x+1|+|2x+a|的最小值为3,建立方程,即可求出实数a的值.分析:解解:<﹣1时,x<﹣,f(x)=﹣x﹣1﹣2x﹣a=﹣3x﹣a﹣1>﹣1;答:﹣≤x≤﹣1,f(x)=﹣x﹣1+2x+a=x+a﹣1≥﹣1;x>﹣1,f(x)=x+1+2x+a=3x+a+1>a﹣2,∴﹣1=3或a﹣2=3,∴a=8或a=5,a=5时,﹣1<a﹣2,故舍去;≥﹣1时,x<﹣1,f(x)=﹣x﹣1﹣2x﹣a=﹣3x﹣a﹣1>2﹣a;﹣1≤x≤﹣,f(x)=x+1﹣2x﹣a=﹣x﹣a+1≥﹣+1;x>﹣,f(x)=x+1+2x+a=3x+a+1>﹣+1,∴2﹣a=3或﹣+1=3,∴a=﹣1或a=﹣4,a=﹣1时,﹣+1<2﹣a,故舍去;综上,a=﹣4或8.故选:D.本题主要考查了函数的值域问题.解题过程采用了分类讨论的思想,属于中档题.点评:10.(5分)(2014•安徽)在平面直角坐标系xOy中.已知向量、,||=||=1,•=0,点Q满足=(+),曲线C={P|=cosθ+sinθ,0≤θ≤2π},区域Ω={P|0<r≤||≤R,r<R}.若C∩Ω为两段分离的曲线,则()A.1<r<R<3 B.1<r<3≤R C.r≤1<R<3 D.1<r<3<R向量在几何中的使用.考点:平面向量及使用;直线和圆.专题:分不妨令=(1,0),=(0,1),则P点的轨迹为单位圆,Ω={P|(0<r≤||≤R,r<析:R}表示的平面区域为:以Q点为圆心,内径为r,外径为R的圆环,若C∩Ω为两段分离的曲线,则单位圆和圆环的内外圆均相交,进而根据圆圆相交的充要条件得到答案.解答:解:∵平面直角坐标系xOy中.已知向量、,||=||=1,•=0,不妨令=(1,0),=(0,1),则=(+)=(,),=cosθ+sinθ=(cosθ,sinθ),故P点的轨迹为单位圆,Ω={P|(0<r≤||≤R,r<R}表示的平面区域为:以Q点为圆心,内径为r,外径为R的圆环,若C∩Ω为两段分离的曲线,则单位圆和圆环的内外圆均相交,故|OQ|﹣1<r<R<|OQ|+1,∵|OQ|=2,故1<r<R<3,故选:A点评:本题考查的知识点是向量在几何中的使用,其中根据已知分析出P的轨迹及Ω={P|(0<r≤||≤R,r<R}表示的平面区域,是解答的关键.二、填空题:本大题共5小题,每小题5分,共25分.把答案填在答题卡相应位置.11.(5分)(2014•安徽)若将函数f(x)=sin(2x+)的图象向右平移φ个单位,所得图象关于y轴对称,则φ的最小正值是.考点:函数y=Asin(ωx+φ)的图象变换.专题:三角函数的图像和性质.分析:根据函数y=Asin(ωx+φ)的图象变换规律,可得所得图象对应的函数分析式为y=sin (2x+﹣2φ),再根据所得图象关于y轴对称可得﹣2φ=kπ+,k∈z,由此求得φ的最小正值.解答:解:将函数f(x)=sin(2x+)的图象向右平移φ个单位,所得图象对应的函数分析式为y=sin[2(x﹣φ)+]=sin(2x+﹣2φ)关于y轴对称,则﹣2φ=kπ+,k∈z,即φ=﹣﹣,故φ的最小正值为,故答案为:.点评:本题主要考查函数y=Asin(ωx+φ)的图象变换规律,余弦函数的图象的对称性,属于中档题.12.(5分)(2014•安徽)数列{a n}是等差数列,若a1+1,a3+3,a5+5构成公比为q的等比数列,则q=1.考点:等比数列的通项公式.专题:等差数列和等比数列.分析:设出等差数列的公差,由a1+1,a3+3,a5+5构成公比为q的等比数列列式求出公差,则由化简得答案.解答:解:设等差数列{a n}的公差为d,由a1+1,a3+3,a5+5构成等比数列,得:,整理得:,即+5a1+a1+4d.化简得:(d+1)2=0,即d=﹣1.∴q==.故答案为:1.点评:本题考查了等差数列的通项公式,考查了等比数列的性质,是基础的计算题.13.(5分)(2014•安徽)设a≠0,n是大于1的自然数,(1+)n的展开式为a0+a1x+a2x2+…+a n x n.若点A i(i,a i)(i=0,1,2)的位置如图所示,则a=3.考点:二项式定理的使用;二项式系数的性质.专题:二项式定理.分析:求出(1+)n的展开式的通项为,由图知,a0=1,a1=3,a2=4,列出方程组,求出a的值.解答:解:(1+)n的展开式的通项为,由图知,a0=1,a1=3,a2=4,∴,,,,a2﹣3a=0,解得a=3,故答案为:3.点评:本题考查解决二项式的特定项问题,关键是求出展开式的通项,属于一道中档题.14.(5分)(2014•安徽)设F1,F2分别是椭圆E:x2+=1(0<b<1)的左、右焦点,过点F1的直线交椭圆E于A、B两点,若|AF1|=3|F1B|,AF2⊥x轴,则椭圆E的方程为x2+=1.考点:椭圆的标准方程;椭圆的简单性质.专题:圆锥曲线的定义、性质和方程.分析:求出B(﹣c,﹣b2),代入椭圆方程,结合1=b2+c2,即可求出椭圆的方程.解答:解:由题意,F1(﹣c,0),F2(c,0),AF2⊥x轴,∴|AF2|=b2,∴A点坐标为(c,b2),设B(x,y),则∵|AF1|=3|F1B|,∴(﹣c﹣c,﹣b2)=3(x+c,y)∴B(﹣c,﹣b2),代入椭圆方程可得,∵1=b2+c2,∴b2=,c2=,∴x2+=1.故答案为:x2+=1.点评:本题考查椭圆的方程和性质,考查学生的计算能力,属于中档题.15.(5分)(2014•安徽)已知两个不相等的非零向量,,两组向量,,,,和,,,,均由2个和3个排列而成,记S=•+•+•+•+•,S min表示S所有可能取值中的最小值.则下列命题正确的是②④(写出所有正确命题的编号).①S有5个不同的值;②若⊥,则S min和||无关;③若∥,则S min和||无关;④若||>4||,则S min>0;⑤若||=2||,S min=8||2,则和的夹角为.考点:命题的真假判断和使用;平行向量和共线向量.专题:平面向量及使用;简易逻辑.分析:依题意,可求得S有3种结果:S1=++++,S2=+•+•++,S3=•+•+•+•+,可判断①错误;进一步分析有S1﹣S2=S2﹣S3=+﹣2•≥+﹣2||•||=≥0,即S中最小为S3;再对②③④⑤逐一分析即可得答案.解答:解:∵x i,y i(i=1,2,3,4,5)均由2个和3个排列而成,∴S=x i y i可能情况有三种:①S=2+3;②S=+2•+2;③S=4•+.S有3种结果:S1=++++,S2=+•+•++,S3=•+•+•+•+,故①错误;∵S1﹣S2=S2﹣S3=+﹣2•≥+﹣2||•||=≥0,∴S中最小为S3;若⊥,则S min=S3=,和||无关,故②正确;③若∥,则S min=S3=4•+,和||有关,故③错误;④若||>4||,则S min=S3=4||•||cosθ+>﹣4||•||+>﹣+=0,故④正确;⑤若||=2||,S min=S3=8||2cosθ+4=8,∴2cosθ=1,∴θ=,即和的夹角为.综上所述,命题正确的是②④,故答案为:②④.点评:本题考查命题的真假判断和使用,着重考查平面向量的数量积的综合使用,考查推理、分析和运算的综合使用,属于难题.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.解答早答题卡上的指定区域.16.(12分)(2014•安徽)设△ABC的内角为A、B、C所对边的长分别是a、b、c,且b=3,c=1,A=2B.(Ⅰ)求a的值;(Ⅱ)求sin(A+)的值.考点:正弦定理;两角和和差的正弦函数.专题:综合题;三角函数的求值.分析:(Ⅰ)利用正弦定理,可得a=6cosB,再利用余弦定理,即可求a的值;(Ⅱ)求出sinA,cosA,即可求sin(A+)的值.解答:解:(Ⅰ)∵A=2B,,b=3,∴a=6cosB,∴a=6,∴a=2;(Ⅱ)∵a=6cosB,∴cosB=,∴sinB=,∴sinA=sin2B=,cosA=cos2B=2cos2B﹣1=﹣,∴sin(A+)=(sinA+cosA)=.点评:本题考查余弦定理、考查正弦定理,考查二倍角公式,考查学生的计算能力,属于中档题.17.(12分)(2014•安徽)甲乙两人进行围棋比赛,约定先连胜两局者直接赢得比赛,若赛完5局仍未出现连胜,则判定获胜局数多者赢得比赛.假设每局甲获胜的概率为,乙获胜的概率为,各局比赛结果相互独立.(Ⅰ)求甲在4局以内(含4局)赢得比赛的概率;(Ⅱ)记X为比赛决胜出胜负时的总局数,求X的分布列和均值(数学期望).考点:离散型随机变量及其分布列;离散型随机变量的期望和方差.专题:概率和统计.分析:(1)根据概率的乘法公式,求出对应的概率,即可得到结论.(2)利用离散型随机变量分别求出对应的概率,即可求X的分布列;以及均值.解答:解:用A表示甲在4局以内(含4局)赢得比赛的是事件,A k表示第k局甲获胜,B k表示第k局乙获胜,则P(A k)=,P(B k)=,k=1,2,3,4,5(Ⅰ)P(A)=P(A1A2)+P(B1A2A3)+P(A1B2A3A4)=()2+×()2+××()2=.(Ⅱ)X的可能取值为2,3,4,5.P(X=2)=P(A1A2)+P(B1B2)=,P(X=3)=P(B1A2A3)+P(A1B2B3)=,P(X=4)=P(A1B2A3A4)+P(B1A2B3B4)=,P(X=5)=P(A1B2A3B4A5)+P(B1A2B3A4B5)+P(B1A2B3A4A5)+P(A1B2A3B4B5)==,或者P(X=5)=1﹣P(X=2)﹣P(X=3)﹣P(X=4)=,故分布列为:X 2 3 4 5PE(X)=2×+3×+4×+5×=.点评:本题主要考查概率的计算,以及离散型分布列的计算,以及利用期望的计算,考查学生的计算能力.18.(12分)(2014•安徽)设函数f(x)=1+(1+a)x﹣x2﹣x3,其中a>0.(Ⅰ)讨论f(x)在其定义域上的单调性;(Ⅱ)当x∈[0,1]时,求f(x)取得最大值和最小值时的x的值.考点:利用导数求闭区间上函数的最值;利用导数研究函数的单调性.专题:导数的综合使用.分析:(Ⅰ)利用导数判断函数的单调性即可;(Ⅱ)利用(Ⅰ)的结论,讨论两根和1的大小关系,判断函数在[0,1]时的单调性,得出取最值时的x的取值.解答:解:(Ⅰ)f(x)的定义域为(﹣∞,+∞),f′(x)=1+a﹣2x﹣3x2,由f′(x)=0,得x1=,x2=,x1<x2,∴由f′(x)<0得x<,x>;由f′(x)>0得<x<;故f(x)在(﹣∞,)和(,+∞)单调递减,在(,)上单调递增;(Ⅱ)∵a>0,∴x1<0,x2>0,①当a≥4时,x2≥1,由(Ⅰ)知,f(x)在[0,1]上单调递增,∴f(x)在x=0和x=1处分别取得最小值和最大值.②当0<a<4时,x2<1,由(Ⅰ)知,f(x)在[0,x2]单调递增,在[x2,1]上单调递减,因此f(x)在x=x2=处取得最大值,又f(0)=1,f(1)=a,∴当0<a<1时,f(x)在x=1处取得最小值;当a=1时,f(x)在x=0和x=1处取得最小值;当1<a<4时,f(x)在x=0处取得最小值.点评:本题主要考查利用导数研究函数的单调性及最值的知识,考查学生分类讨论思想的运用能力,属中档题.19.(13分)(2014•安徽)如图,已知两条抛物线E1:y2=2p1x(p1>0)和E2:y2=2p2x(p2>0),过原点O的两条直线l1和l2,l1和E1,E2分别交于A1、A2两点,l2和E1、E2分别交于B1、B2两点.(Ⅰ)证明:A1B1∥A2B2;(Ⅱ)过O作直线l(异于l1,l2)和E1、E2分别交于C1、C2两点.记△A1B1C1和△A2B2C2的面积分别为S1和S2,求的值.考点:直线和圆锥曲线的综合问题.专题:向量和圆锥曲线.分析:(Ⅰ)由题意设出直线l1和l2的方程,然后分别和两抛物线联立求得交点坐标,得到的坐标,然后由向量共线得答案;(Ⅱ)结合(Ⅰ)可知△A1B1C1和△A2B2C2的三边平行,进一步得到两三角形相似,由相似三角形的面积比等于相似比的平方得答案.解答:(Ⅰ)证明:由题意可知,l1和l2的斜率存在且不为0,设l1:y=k1x,l2:y=k2x.联立,解得.联立,解得.联立,解得.联立,解得.∴,.,∴A1B1∥A2B2;(Ⅱ)解:由(Ⅰ)知A1B1∥A2B2,同(Ⅰ)可证B1C1∥B2C2,A1C1∥A2C2.∴△A1B1C1∽△A2B2C2,因此,又,∴.故.点评:本题是直线和圆锥曲线的综合题,考查了向量共线的坐标表示,训练了三角形的相似比和面积比的关系,考查了学生的计算能力,是压轴题.20.(13分)(2014•安徽)如图,四棱柱ABCD﹣A1B1C1D1中,A1A⊥底面ABCD,四边形ABCD为梯形,AD∥BC,且AD=2BC,过A1、C、D三点的平面记为α,BB1和α的交点为Q.(Ⅰ)证明:Q为BB1的中点;(Ⅱ)求此四棱柱被平面α所分成上下两部分的体积之比;(Ⅲ)若AA1=4,CD=2,梯形ABCD的面积为6,求平面α和底面ABCD所成二面角的大小.考点:二面角的平面角及求法;棱柱、棱锥、棱台的体积;用空间向量求平面间的夹角.专题:综合题;空间位置关系和距离.分析:(Ⅰ)证明平面QBC∥平面A1D1DA,可得△QBC∽△A1AD,即可证明Q为BB1的中点;(Ⅱ)设BC=a,则AD=2a,则==,V Q﹣ABCD==ahd,利用V棱柱=ahd,即可求出此四棱柱被平面α所分成上、下两部分的体积之比;(Ⅲ)△ADC中,作AE⊥DC,垂足为E,连接A1E,则DE⊥平面AEA1,DE⊥A1E,可得∠AEA1为平面α和底面ABCD所成二面角,求出S△ADC=4,AE=4,可得tan∠AEA1==1,即可求平面α和底面ABCD所成二面角的大小.解答:(Ⅰ)证明:∵四棱柱ABCD﹣A1B1C1D1中,四边形ABCD为梯形,AD∥BC,∴平面QBC∥平面A1D1DA,∴平面A1CD和面QBC、平面A1D1DA的交线平行,∴QC∥A1D∴△QBC∽△A1AD,∴=,∴Q为BB1的中点;(Ⅱ)解:连接QA,QD,设AA1=h,梯形ABCD的高为d,四棱柱被平面α所分成上、下两部分的体积为V1,V2,设BC=a,则AD=2a,∴==,V Q﹣ABCD==ahd,∴V2=,∵V棱柱=ahd,∴V1=ahd,∴四棱柱被平面α所分成上、下两部分的体积之比;(Ⅲ)解:在△ADC中,作AE⊥DC,垂足为E,连接A1E,则DE⊥平面AEA1,∴DE⊥A1E,∴∠AEA1为平面α和底面ABCD所成二面角的平面角,∵BC∥AD,AD=2BC,∴S△ADC=2S△ABC,∵梯形ABCD的面积为6,DC=2,∴S△ADC=4,AE=4,∴tan∠AEA1==1,∴∠AEA1=,∴平面α和底面ABCD所成二面角的大小为.点评:本题考查面面平行的性质,考查体积的计算,考查面面角,考查学生分析解决问题的能力,属于中档题.21.(13分)(2014•安徽)设实数c>0,整数p>1,n∈N*.(Ⅰ)证明:当x>﹣1且x≠0时,(1+x)p>1+px;(Ⅱ)数列{a n}满足a1>,a n+1=a n+a n1﹣p.证明:a n>a n+1>.考点:不等式的证明;数列和不等式的综合;分析法和综合法.专题:函数思想;点列、递归数列和数学归纳法.分析:第(Ⅰ)问中,可构造函数f(x)=(1+x)p﹣(1+px),求导数后利用函数的单调性求解;对第(Ⅱ)问,从a n+1着手,由a n+1=a n+a n1﹣p,将求证式进行等价转化后即可解决,用相同的方式将a n>a n+1进行转换,设法利用已证结论证明.解答:证明:(Ⅰ)令f(x)=(1+x)p﹣(1+px),则f′(x)=p(1+x)p﹣1﹣p=p[(1+x)p ﹣1﹣1].①当﹣1<x<0时,0<1+x<1,由p>1知p﹣1>0,∴(1+x)p﹣1<(1+x)0=1,∴(1+x)p﹣1﹣1<0,即f′(x)<0,∴f(x)在(﹣1,0]上为减函数,∴f(x)>f(0)=(1+0)p﹣(1+p×0)=0,即(1+x)p﹣(1+px)>0,∴(1+x)p>1+px.②当x>0时,有1+x>1,得(1+x)p﹣1>(1+x)0=1,∴f′(x)>0,∴f(x)在[0,+∞)上为增函数,∴f(x)>f(0)=0,∴(1+x)p>1+px.综合①、②知,当x>﹣1且x≠0时,都有(1+x)p>1+px,得证.(Ⅱ)先证a n+1>.∵a n+1=a n+a n1﹣p,∴只需证a n+a n1﹣p>,将写成p﹣1个相加,上式左边=,当且仅当,即时,上式取“=”号,当n=1时,由题设知,∴上式“=”号不成立,∴a n+a n1﹣p>,即a n+1>.再证a n>a n+1.只需证a n>a n+a n1﹣p,化简、整理得a n p>c,只需证a n>c.由前知a n+1>成立,即从数列{a n}的第2项开始成立,又n=1时,由题设知成立,∴对n∈N*成立,∴a n>a n+1.综上知,a n>a n+1>,原不等式得证.点评:本题是一道压轴题,考查的知识众多,涉及到函数、数列、不等式,利用的方法有分析法和综合法等,综合性很强,难度较大.。

2014年安徽高考理科数学试题含答案(Word版)(卷)

2014年安徽高考理科数学试题含答案(Word版)(卷)

2014年普通高等学校招生全国统一考试(安徽卷)数学(理科)本试卷分第Ⅰ卷和第II 卷(非选择题)两部分,第Ⅰ卷第1至第2页,第II 卷第3至第4页。

全卷满分150分,考试时间为120分钟。

参考公式:如果事件A 与B 互斥,那么()()()P A B P A P B +=+如果事件A 与B 相互独立,那么()()()P AB P A P B =第Ⅰ卷(选择题 共50分)一.选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

(1) 设i 是虚数单位,z 表示复数z 的共轭复数,若z=1+I,则iz +i·z = (A )-2 (B )-2i(C )2 (D )2i(2)“x <0”是ln (x+1)<0的(A )充分不必要条件(B )必要不充分条件(C )充分必要条件(D )既不充分也不必要条件(3)如图所示,程序框图(算法流程图)的输出结果是(A )34(B )55(C )78(D )89(4) 以平面直角坐标系的原点为极点,x 轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位。

已知直线l 的参数方程是⎩⎨⎧-=+=3,1t y t x (t 为参数),圆C 的极坐标方程是θρcos 4=,则直线l 被圆C 截得的弦长为(A )14 (B )214(C )2 (D )22(5)x , y 满足约束条件⎪⎩⎪⎨⎧≥+-≤--≤-+.022,022,02y x y x y x 若z=y-ax 取得最大值的最优解不唯一...,则实数a 的值为(A )21 或-1 (B )2或21 (C )2或1 (D )2或-1(6)设函数f(x)(x ∈R )满足f(x+π)=f(x)+sinx.当0≤x≤π时,f(x)=0,则)623(πf = (A )21 (B )23 (C )0 (D )21- (7)一个多面体的三视图如图所示,则该多面体的表面积为(A )321+ (B )318+ (C )21 (D )18(8)从正方体六个面的对角线中任取两条作为一对,其中所成的角为60°的共有(A )24对 (B )30对 (C )48对 (D )60对(9)若函数f(x)=| x+1 |+| 2x+a |的最小值为3,则实数a 的值为(A )5或8 (B )-1或5(C )-1或 -4 (D )-4或8(10)在平面直角坐标系xOy 中,已知向量啊a , b , | a | = | b | = 1 , a ·b = 0,点Q 满足OQ =2( a + b ).曲线C={ P | =a cos θ + b sin θ ,0≤θ<2π},区域Ω={ P | 0 < r ≤| | ≤ R , r < R },若C ⋂Ω为两段分离的曲线,则(A )1 < r < R <3 (B )1 < r < 3 ≤ R(C )r ≤ 1 < R <3 (D )1 < r < 3 < R。

2014年安徽高考理科数学试题附答案(Word版)

2014年安徽高考理科数学试题附答案(Word版)

2014年普通高等学校招生全国统一考试(安徽卷)数学(理科)本试卷分第Ⅰ卷和第II 卷(非选择题)两部分,第Ⅰ卷第1至第2页,第II 卷第3至第4页。

全卷满分150分,考试时间为120分钟。

参考公式:如果事件A 与B 互斥,那么()()()P A B P A P B +=+如果事件A 与B 相互独立,那么()()()P AB P A P B =第Ⅰ卷(选择题 共50分)一.选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

(1) 设i 是虚数单位,z 表示复数z 的共轭复数,若z=1+I,则iz +i·z = (A )-2 (B )-2i(C )2 (D )2i(2)“x <0”是ln (x+1)<0的(A )充分不必要条件(B )必要不充分条件(C )充分必要条件(D )既不充分也不必要条件(3)如图所示,程序框图(算法流程图)的输出结果是(A )34(B )55(C )78(D )89(4) 以平面直角坐标系的原点为极点,x 轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位。

已知直线l 的参数方程是⎩⎨⎧-=+=3,1t y t x (t 为参数),圆C 的极坐标方程是θρcos 4=,则直线l 被圆C 截得的弦长为(A )14 (B )214(C )2 (D )22(5)x , y 满足约束条件⎪⎩⎪⎨⎧≥+-≤--≤-+.022,022,02y x y x y x 若z=y-ax 取得最大值的最优解不唯一...,则实数a 的值为(A )21 或-1 (B )2或21 (C )2或1 (D )2或-1 (6)设函数f(x)(x ∈R )满足f(x+π)=f(x)+sinx.当0≤x≤π时,f(x)=0,则)623(πf = (A )21 (B )23 (C )0 (D )21- (7)一个多面体的三视图如图所示,则该多面体的表面积为(A )321+ (B )318+ (C )21 (D )18(8)从正方体六个面的对角线中任取两条作为一对,其中所成的角为60°的共有(A )24对 (B )30对 (C )48对 (D )60对(9)若函数f(x)=| x+1 |+| 2x+a |的最小值为3,则实数a 的值为(A )5或8 (B )-1或5(C )-1或 -4 (D )-4或8(10)在平面直角坐标系xOy 中,已知向量啊a , b , | a | = | b | = 1 , a ·b = 0,点Q 满足=2( a + b ).曲线C={ P | =a cos θ + b sin θ ,0≤θ<2π},区域Ω={ P | 0 < r ≤| | ≤ R , r < R },若C ⋂Ω为两段分离的曲线,则(A )1 < r < R <3 (B )1 < r < 3 ≤ R(C )r ≤ 1 < R <3 (D )1 < r < 3 < R2014普通高等学校招生全国统一考试(安徽卷)数 学(理科)第Ⅱ卷(非选择题 共100分)考生注意事项:请用0.5毫米黑色墨水签字笔在答题卡上.....作答,在试题卷上答题无效.........。

福建安徽版01期2014届高三名校数学理试题分省分项汇编专题06数列Word版含解析

福建安徽版01期2014届高三名校数学理试题分省分项汇编专题06数列Word版含解析

一.基础题组1.【福建省三明市2013年普通高中5月毕业班质量检查(理)】设等比数列{}n a 的前n 项和为n S ,若11a =,48a =,则5S 等于 ( )A .16 B. 31 C. 32 D.632.【安徽省望江四中2014届高三上学期第一次月考数学(理)】已知{}n a 为等差数列,若π8951=++a a a ,则)cos(73a a +的值为( )A .2B .2-C .12D .12-3.【2013年福州市高中毕业班质量检查数学(理)试卷】已知等比数列{}n a 的公比2=q ,且462,,48a a 成等差数列,则{}n a 的前8项和为( )A.127B.255C.511D.10234.【安徽省池州一中2014届高三第一次月考数学(理)】等差数列{}na 中的1a 、4025a是函数321()4613f x x x x =-+-的极值点,则22013log a =( )A. 2B. 3C. 4D. 55.【安徽省六校教育研究会2014届高三素质测试数学(理)】在正项等比数列{n a }中,1n a +<n a ,28466,5a a a a ∙=+=,则57a a = ( ) A .56 B .65 C .23 D .32【答案】D . 【解析】试题分析:由已知得46466,5,a a a a ⋅=+=又1,n n a a +<5446276133,2,2a a a a a q a ∴==∴===. 考点:等比数列的性质.6.【福建省宁德一中、罗源一中、尚德中学2013届高三下学期第二次联考数学试题(理)】设等比数列{}n a 的公比2q =,前n 项和为n S ,则43S a 的值为( ) A .154 B .152 C .74 D .72二.能力题组1.【安徽省示范高中2014届高三上学期第一次联考数学(理)】已知数列{}n a 的前n 项和2n S n n =-,正项等比数列{}n b 中,23b a =,2314(2,)n n n b b b n n N +-+=≥∈,则2log n b =( )A .1n -B .21n -C .2n -D .n考点:1.等比数列的通项公式;2.对数的计算.2.【安徽省2013年马鞍山三模(理)】数列{}na 的前n 项和为nS,若11a =,*14()n n a S n +=∈N ,则6a =( ) (A )445⨯(B )4451⨯+(C )55(D )551+3.【安徽省望江四中2014届高三上学期第一次月考数学(理)】数列{}n a 的通项公式cos2n n a n π=,其前n 项和为n S ,则2013S = .4.【福建省漳州市四地七校2013届高三6月模拟考数学(理)】(本小题满分13分)已知各项都不相等的等差数列}{n a 的前六项和为60,且2116a a a 和为 的等比中项. (I )求数列}{n a 的通项公式n n S n a 项和及前;(II )若数列}1{,3),(}{11nn n n n b b N n a b b b 求数列且满足=∈=-*+的前n 项和n T .一、由(1)知123n n b b n +-=+ 12(1)3n n b b n --=-+ 122(2)3n n b b n ---=-+……21213b b -=⨯+5.【安徽省六校教育研究会2014届高三素质测试数学(理)】(本小题满分13分)设数列{}n a 的前n 项和为S n ,且1S 22,n n n a n N +*=-∈. (1)求数列{}n a 的通项公式; (2)令11n n n a n b n a +=-+,记数列1n b ⎧⎫⎨⎬⎩⎭的前n 项和为n T .求证:4,3N n T n *<∈. 【答案】(1)(1)2n n a n =+;(2)详见试题解析. 【解析】试题分析:(1)先令1n =求得1a ,再利用1n n n a S S -=-得n a 的递推式1222n n n n a a a -=--,构造等差数列2n n a ⎧⎫⎨⎬⎩⎭求得数列{}n a 的通项公式;(2)在(1)的基础上,先求n b ,根据n b 的结构特征利用放缩法证明43n T <.三.拔高题组1.【2013年福州市高中毕业班质量检查数学(理)试卷】数列}{n a 是由集合t s t s <≤+0|33{,且s ,}Z ∈t 中所有的数从小到大排列成的数列,即41=a ,102=a ,123=a ,284=a ,a 5=30,a 6=36,…,若2013a =n m33+(0m n ≤<,且m ,}n ∈Z ,则n m +的值等于____________.根据前面数据的规则可知,第n 行的数据依次为:2.【福建省漳州市四地七校2013届高三6月模拟考数学(理)】已知数列()1212:,,,0,3n n A a a a a a a n ≤<<<≥具有性质P :对任意(),1i j i j n ≤≤≤,j i a a +与j i a a -两数中至少有一个是该数列中的一项. 现给出以下四个命题:①数列0,1,3具有性质P ; ②数列0,2,4,6具有性质P ; ③若数列A 具有性质P ,则10a =;④若数列()123123,,0a a a a a a ≤<<具有性质P ,则1322a a a +=. 其中真命题有 .④若数列()123123,,0a a a a a a ≤<<具有性质P ,所以31a a +与31a a -至少有一项是该数列中的一项,且10a =,3.【安徽省2013年马鞍山三模(理)】(本小题满分12分)数列{}na 满足13a=,125n n a a n ++=+. (Ⅰ)求2a 、3a 、4a ; (Ⅱ)求n a 的表达式;(Ⅲ)令12233445212221n n n n n T a a a a a a a a a a a a -+=-+-++-,求n T .② 假设*()n k k N =∈时,2k a k =+,则125(2)25(1)2k k a a k k k k +=-++=-+++=++,即1n k =+时猜想成立,4.【安徽省池州一中2014届高三第一次月考数学(理)】(本小题满分13分)数列{}n a 的前n 项和为n S ,2131(*)22n n S a n n n N +=--+∈. (Ⅰ)设n n b a n =+,证明:数列{}n b 是等比数列; (Ⅱ)求数列{}n nb 的前n 项和n T .(Ⅲ)若12n n n c a ⎛⎫=- ⎪⎝⎭,22013211i i i i i c c P c c =++=+∑,求不超过P 的最大的整数值.【答案】(Ⅰ)详见解析;(Ⅱ)n n nn n n T 2222211211+-=--⎪⎭⎫ ⎝⎛-=;(Ⅲ)2013。

安徽省六校教育研究会2014届高三数学2月联考试题 理 新人教A版

安徽省六校教育研究会2014届高三数学2月联考试题 理 新人教A版

安徽省六校教育研究会2014届高三2月联考数学(理科)试题1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分,考试时间120分钟.2.答题前,请考生务必将答题卷左侧密封线内的项目填写清楚.请考生按规定用笔将所有试题的答案涂、写在答题卷上,在试题卷上作答无效.第Ⅰ卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给的四个选项中,只有一项是符合题目要求的。

1.若复数221zi i=++,其中i 是虚数单位,则复数z 的模为( ) (A(B )2(C(D ) 22.已知命题p :“1a =是0ax x x,+2>≥”的充分必要条件”;命题q :“存在0x R ∈,使得20020x x +->”,下列命题正确的是( ) (A)命题“p q ∧”是真命题 (B)命题“()p q ⌝∧”是真命题 (C)命题“()p q ∧⌝”是真命题 (D)命题“()()p q ⌝∧⌝”是真命题3.执行如图所示的程序框图.若输出15S =, 则框图中① 处可以填入( ) (A) 4n >? (B) 8n >? (C) 16n >? (D) 16n <? 4.在极坐标系中,点π(2,)3和圆θρcos 2=的圆心的距离为( )(A) 3(B) 25.在平行四边形ABCD 中,AC 与BD 交于点O E ,是线段OD 的中点,AE 的延长线与CD 交于点F .若AC =a ,BD =b ,则AF =( )(A)1142+a b (B) 1124+a b (C) 2133+a b (D) 1233+a b 6.数列{}n a 的首项为3,{}n b 为等差数列且1()n n n b a a n N +=-∈*, 若32b =-,1012b =,则8a =( )第3题图第7题图(A) 0 (B) 3 (C) 8 (D) 11 7.某三棱椎的三视图如图所示,该三棱锥的四个面的面积中, 最大的是( )(A ) (B ) 8 (C) 8.有编号分别为1,2,3,4,5的5个红球和5个黑球,从中随机取出4个,则取出球的编号互不相同的概率为( )(A )521(B )27(C )13(D )8219.设1F ,2F 分别为双曲线C :22221x y a b-=(0,0)a b >>的左、右焦点,A 为双曲线的左顶点,以12F F 为直径的圆交双曲线某条渐近线于M 、N 两点,且满足120MAN ∠=︒,则该双曲线的离心率为( )(A)3 7310.若实数,,,a b c d 满足222(3ln )(2)0b a a c d +-+-+=,则22()()a c b d -+-的最小值为( )第II 卷(非选择题,共100分)二、填空题:共5小题,每小题5分,共25分。

安徽省六校教育研究会2014届高三数学2月联考试题 理 新人教A版

安徽省六校教育研究会2014届高三数学2月联考试题 理 新人教A版

安徽省六校教育研究会2014届高三2月联考数学〔理科〕试题1.本试卷分第1卷〔选择题〕和第2卷〔非选择题〕两局部.总分为150分,考试时间120分钟.2.答题前,请考生务必将答题卷左侧密封线内的项目填写清楚.请考生按规定用笔将所有试题的答案涂、写在答题卷上,在试题卷上作答无效.第1卷〔选择题 共50分〕一、选择题:本大题共10小题,每一小题5分,共50分.在每一小题给的四个选项中,只有一项为哪一项符合题目要求的。

1.假设复数221zi i=++,其中i 是虚数单位,如此复数z 的模为〔 〕 〔A〔B〕2〔C〔D 〕 22.命题p :“1a =是0ax x x,+2>≥〞的充分必要条件〞;命题q :“存在0x R ∈,使得20020x x +->〞,如下命题正确的答案是〔 〕(A)命题“p q ∧〞是真命题(B)命题“()p q ⌝∧〞是真命题 (C)命题“()p q ∧⌝〞是真命题 (D)命题“()()p q ⌝∧⌝〞是真命题3.执行如下列图的程序框图.假设输出15S =, 如此框图中① 处可以填入〔〕(A)4n >? (B)8n >? (C)16n >? (D)16n <? 4.在极坐标系中,点π(2,)3和圆θρcos 2=的圆心的距离为( )(A)35.在平行四边形ABCD 中,AC 与BD 交于点O E ,是线段OD 的中点,AE 的延长线与第3题图CD 交于点F .假设AC =a ,BD =b ,如此AF =〔 〕(A)1142+a b (B)1124+a b (C)2133+a b (D)1233+a b 6.数列{}n a 的首项为3,{}n b 为等差数列且1()n n n b a a n N +=-∈*, 假设32b =-,1012b =,如此8a =〔 〕(A)0 (B)3 (C)8 (D)11 7.某三棱椎的三视图如下列图,该三棱锥的四个面的面积中, 最大的是〔〕〔A 〕43〔B 〕 8(C)83(D)478.有编号分别为1,2,3,4,5的5个红球和5个黑球,从中随机取出4个,如此取出球的编号互不一样的概率为〔 〕〔A 〕521〔B 〕27〔C 〕13〔D 〕8219.设1F ,2F 分别为双曲线C :22221x y a b-=(0,0)a b >>的左、右焦点,A 为双曲线的左顶点,以12F F 为直径的圆交双曲线某条渐近线于M 、N 两点,且满足120MAN ∠=︒,如此该双曲线的离心率为〔 〕(A)213(B)(C)73(D)733 10.假设实数,,,a b c d 满足222(3ln )(2)0b a a c d,如此22()()ac bd 的最小值为〔 〕(A)2(B) 2 (C) 22(D) 8第II 卷〔非选择题,共100分〕二、填空题:共5小题,每一小题5分,共25分。

安徽省安庆市六校届高三第三次联考数学理试题

安徽省安庆市六校届高三第三次联考数学理试题
1. 复数 化简的结果为
1i
A.1 i
B. 1 i
2.已知向量 a (1, x) , b (1, x) ,若 2a b 与 b 垂直,则| a |
A. 2
B. 3
3.一个几何体的三视图如图所示,则该几何体的体积为
A. 2
B. 1
4.设 a , b 是两条直线, , 是两个平面,则 a b 的一个充分条件是
1
1 x2
e x 1)dx
x
0
3
C.
4
C. 6
C. 22
b 0) 于 A, B 两点,若点 P(2,1) 是 AB 的中
C. 196 种
( )
表示的平面区域上运动,则 z x y 的最大值为

·2·
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,通系电1,力过根保管据护线生高0不产中仅工资2艺料22高试2可中卷以资配解料置决试技吊卷术顶要是层求指配,机置对组不电在规气进范设行高备继中进电资行保料空护试载高卷与中问带资题负料2荷试2,下卷而高总且中体可资配保料置障试时2卷,32调需3各控要类试在管验最路;大习对限题设度到备内位进来。行确在调保管整机路使组敷其高设在中过正资程常料1工试中况卷,下安要与全加过,强度并看工且25作尽52下可22都能护可地1关以缩于正小管常故路工障高作高中;中资对资料于料试继试卷电卷连保破接护坏管进范口行围处整,理核或高对者中定对资值某料,些试审异卷核常弯与高扁校中度对资固图料定纸试盒,卷位编工置写况.复进保杂行护设自层备动防与处腐装理跨置,接高尤地中其线资要弯料避曲试免半卷错径调误标试高方中等案资,,料要编试求写5卷技、重保术电要护交气设装底设备置。备高4动管调、中作线试电资,敷高气料并设中课试3且技资件、卷拒术料中管试绝中试调路验动包卷试敷方作含技设案,线术技以来槽术及避、系免管统不架启必等动要多方高项案中方;资式对料,整试为套卷解启突决动然高过停中程机语中。文高因电中此气资,课料电件试力中卷高管电中壁气资薄设料、备试接进卷口行保不调护严试装等工置问作调题并试,且技合进术理行,利过要用关求管运电线行力敷高保设中护技资装术料置。试做线卷到缆技准敷术确设指灵原导活则。。:对对在于于分调差线试动盒过保处程护,中装当高置不中高同资中电料资压试料回卷试路技卷交术调叉问试时题技,,术应作是采为指用调发金试电属人机隔员一板,变进需压行要器隔在组开事在处前发理掌生;握内同图部一纸故线资障槽料时内、,设需强备要电制进回造行路厂外须家部同出电时具源切高高断中中习资资题料料电试试源卷卷,试切线验除缆报从敷告而设与采完相用毕关高,技中要术资进资料行料试检,卷查并主和且要检了保测解护处现装理场置。设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。

安徽六校教育研究会2014高三素质测试试题解析-数学(文)汇总

安徽六校教育研究会2014高三素质测试试题解析-数学(文)汇总

第Ⅰ卷(共50分)一、选择题:本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项 是符合题目要求的.1.已知集合{}{}2lg 0,4M x x N x x =>=≤,则M N = ( )A 、(1,2)B 、[1,2)C 、(1,2]D 、[1,2]2.设x y 、满足不等式组10102x y x y x -+≥⎧⎪+-≥⎨⎪≤⎩,则22x y +的最小值为 ( )A 、1B 、5 CD 、123.某正三棱柱的三视图如图所示,其中正视图是边长为2的正方形,则该正三棱柱的表面积A 、6 B 、12+ C 、12 D 、24+4.设数列{}n a 的前n 项和为n S ,若3122n n S a =-,则n a = ( )A 、2nB 、3nC 、12n -D 、13n -5.函数3()24x f x x =+-的零点所在区间为( )A 、(1,0)-B 、(0,1)C 、(1,2)D 、(2,3)6.与圆222212:26260,:4240C x y x y C x y x y ++--=+-++=都相切的直线有A 、1条B 、2条C 、3条D 、4条7.将函数sin(2)3y x π=+的图像平移后所得的图像对应的函数为cos 2y x =,则进行的平移是( )A 、向右平移12π个单位B 、向左平移12π个单位C 、向右平移6π个单位D 、向左平移6π个单位8.若命题“[]1,1,1240x x x a ∀∈-++⋅<”是假命题,则实数a 的最小值为 ( )A 、2B 、34- C 、2- D 、6-9.若直线1ax by +=经过点(cos ,sin )M αα,则 ( ) A 、221a b +≥ B 、221a b +≤ C 、1a b +≥ D 、1a b +≤10.函数1()(0)f x b a x a=->-的图像因酷似汉字的“囧”字,而被称为“囧函数”。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

安徽省六校教育研究会2014届高三素质测试数学(理)试题本试卷分第Ⅰ卷和第II卷(非选择题)两部分。

全卷满分150分,考试时间为120分钟。

考生注意事项:1.答题前,务必在试题卷、答题卡规定的地方填写自己的姓名、座位号,并认真核对答题卡上所粘贴的条形码中的姓名、座位号与本人姓名、座位号是否一致。

务必在答题卡背面规定的地方填写姓名和座位号后两位。

2.答第I卷时,每小题选出答案后,用2B铅笔把答题卡上所对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

3.答第II卷时,必须使用0.5毫米的黑色墨水签字笔在答题卡上书写,要求字体工整、笔迹清晰。

作图题可先用铅笔在答题卡的规定的位置绘出,确认后再用0.5毫米的黑色墨水签字笔描清楚。

必须在题号所指示的答题区域作答,超出答题区域书写的答案无效,在试题卷、草稿纸上答题无效。

第Ⅰ卷(选择题共50分)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1. 已知集合A={1,3,错误!未找到引用源。

},错误!未找到引用源。

为虚数单位,B={4},A∪B=A 则复数错误!未找到引用源。

=()A.-2错误!未找到引用源。

B.2错误!未找到引用源。

C.-4错误!未找到引用源。

D.4错误!未找到引用源。

2.“错误!未找到引用源。

”是“向量错误!未找到引用源。

与向量错误!未找到引用源。

共线”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件3. 函数错误!未找到引用源。

在错误!未找到引用源。

上的单增区间是()A.错误!未找到引用源。

B.错误!未找到引用源。

C.错误!未找到引用源。

D.错误!未找到引用源。

4.在正项等比数列{错误!未找到引用源。

}中,错误!未找到引用源。

<错误!未找到引用源。

,错误!未找到引用源。

,则错误!未找到引用源。

=()A.错误!未找到引用源。

B.错误!未找到引用源。

C.错误!未找到引用源。

D.错误!未找到引用源。

5. 某流程图如图所示,现输入如下四个函数,A.错误!未找到引用源。

B.错误!未找到引用源。

C.错误!未找到引用源。

D.错误!未找到引用源。

6. 已知正方形ABCD的边长为2,H是边DA的中点.在正方形ABCD内部随机取一点P,则满足|PH|<2的概率为()A.错误!未找到引用源。

B.错误!未找到引用源。

C.错误!未找到引用源。

D.错误!未找到引用源。

7. 错误!未找到引用源。

分别是自然对数的底和圆周率,则下列不等式不成立的是()A. 错误!未找到引用源。

B. 错误!未找到引用源。

C. 错误!未找到引用源。

D. 错误!未找到引用源。

8.已知双曲线错误!未找到引用源。

的右焦点为F(2,0),设A、B为双曲线上关于原点对称的两点,AF的中点为M,BF的中点为N,若原点O在以线段MN为直径的圆上,直线AB的斜率为错误!未找到引用源。

,则双曲线的离心率为()A.错误!未找到引用源。

B.错误!未找到引用源。

C.2 D.49. 某动点在平面直角坐标系第一象限的整点上运动(含错误!未找到引用源。

正半轴上的整点),其运动规律为错误!未找到引用源。

或错误!未找到引用源。

若该动点从原点出发,经过6步运动到(6,2)点,则有()种不同的运动轨迹。

A.15 B.14 C.9 D.1010. 定义:符合f(x)=x的x称为f(x)的一阶不动点,符合f(f(x))=x的x称为f(x)的二阶不动点。

设函数f(x)=错误!未找到引用源。

+bx+c,若函数f(x)没有一阶不动点,则函数f(x)二阶不动点的个数为()A.四个B.两个C.一个D.零个第II卷(非选择题共100分)二、填空题:本大题共5小题,每小题5分,共25分.11.已知错误!未找到引用源。

的最小值为错误!未找到引用源。

,则二项式错误!未找到引用源。

展开式中错误!未找到引用源。

项的系数为.12. 设函数错误!未找到引用源。

,则方程错误!未找到引用源。

的解集为。

13.若实数x,y满足不等式组错误!未找到引用源。

,则错误!未找到引用源。

的最大值是。

14. 设直线错误!未找到引用源。

与曲线错误!未找到引用源。

有三个不同的交点错误!未找到引用源。

,且错误!未找到引用源。

,则直线错误!未找到引用源。

的方程为_________________。

15. 如图所示,正方体错误!未找到引用源。

的棱长为1, 错误!未找到引用源。

分别是棱错误!未找到引用源。

,错误!未找到引用源。

的中点,过直线错误!未找到引用源。

的平面分别与棱错误!未找到引用源。

、错误!未找到引用源。

交于错误!未找到引用源。

,设错误!未找到引用源。

,错误!未找到引用源。

,给出以下四个命题:①平面错误!未找到引用源。

错误!未找到引用源。

平面错误!未找到②当且仅当x=错误!未找到引用源。

时,四边形MENF的面积最小;③四边形错误!未找到引用源。

周长错误!未找到引用源。

,错误!未找到引用源。

是单调函数;④四棱锥错误!未找到引用源。

的体积错误!未找到引用源。

为常函数;以上命题中真命题...的序号为 。

三、解答题:本大题共6小题,共75分.16.(本小题满分12分)凸四边形PABQ 中,其中A 、B 为定点,AB=错误!未找到引用源。

,P 、Q 为动点,满足AP=PQ=QB=1.(1)写出错误!未找到引用源。

的关系式;(2)设错误!未找到引用源。

的面积分别为S和T,求错误!未找到引用源。

的最大值,以及此时凸四边形PABQ 的面积。

17.(本小题满分12分)小明参加完高考后,某日路过一家电子游戏室,注意到一台电子游戏机的规则是:你可在1,2,3,4,5,6点中选一个,押上赌注a 元。

掷3枚骰子,如果所押的点数出现1次、2次、3次,那么原来的赌注仍还给你,并且你还分别可以收到赌注的1倍、2倍、3倍的奖励。

如果所押的点数不出现,那么赌注就被庄家没收。

(1)求掷3枚骰子,至少出现1枚为1点的概率;(2)如果小明准备尝试一次,请你计算一下他获利的期望值,并给小明一个正确的建议。

18.(本小题满分12分)如图,几何体错误!未找到引用源。

中,四边形错误!未找到引用源。

为菱形,错误!未找到引用源。

,错误!未找到引用源。

,面错误!未找到引用源。

∥面错误!未找到引用源。

,错误!未找到引用源。

、错误!未找到引用源。

、错误!未找到引用源。

都垂直于面错误!未找到引用源。

,且错误!未找到引用源。

,错误!未找到引用源。

为错误!未找到引用源。

的中点,错误!未找到引用源。

为错误!未找到引用源。

的中点.(1)求几何体错误!未找到引用源。

的体积;(2)求证:错误!未找到引用源。

为等腰直角三角形;(3)求二面角错误!未找到引用源。

的大小.19.(本小题满分13分)设数列错误!未找到引用源。

的前n 项和为S n ,且错误!未找到引用源。

.(1)求数列错误!未找到引用源。

的通项公式;(2)令错误!未找到引用源。

,记数列错误!未找到引用源。

的前n 项和为T n .求证:T n <错误!未找到引用源。

,错误!未找到引用源。

20.(本小题满分13分)点P 是椭圆错误!未找到引用源。

外的任意一点,过点P 的直线PA 、PB 分别与椭圆相切于A 、B 两点。

(1)若点P 的坐标为(1,2),求直线AB 的方程。

(2)设椭圆的左焦点为F ,请问:当点P 运动时,错误!未找到引用源。

是否总是相等?若是,请给出证明。

21.(本小题满分13分)设函数错误!未找到引用源。

(其中错误!未找到引用源。

).1(1) 当错误!未找到引用源。

时,求函数错误!未找到引用源。

的单调区间和极值;(2) 当错误!未找到引用源。

时,证明函数错误!未找到引用源。

在R上有且只有一个零点。

参考答案17.(1)错误!未找到引用源。

------------------------ 4分(2)错误!未找到引用源。

所以错误!未找到引用源。

----------------------12分18.(1)错误!未找到引用源。

---------3分(2)连接错误!未找到引用源。

,交错误!未找到引用源。

于错误!未找到引用源。

,因为四边形错误!未找到引用源。

为菱形,错误!未找到引用源。

,所以错误!未找到引用源。

因为错误!未找到引用源。

、错误!未找到引用源。

都垂直于面错误!未找到引用源。

,错误!未找到引用源。

错误!未找到引用源。

,又面错误!未找到引用源。

∥面错误!未找到引用源。

,所以四边形错误!未找到引用源。

为平行四边形,则错误!未找到引用源。

因为错误!未找到引用源。

、错误!未找到引用源。

、错误!未找到引用源。

都垂直于面错误!未找到引用源。

,则错误!未找到引用源。

错误!未找到引用源。

1错误!未找到引用源。

所以错误!未找到引用源。

所以错误!未找到引用源。

为等腰直角三角形-----------------7分(3)取错误!未找到引用源。

的中点错误!未找到引用源。

,因为错误!未找到引用源。

分别为错误!未找到引用源。

的中点,所以错误!未找到引用源。

∥错误!未找到引用源。

以错误!未找到引用源。

分别为错误!未找到引用源。

轴建立坐标系,则错误!未找到引用源。

所以错误!未找到引用源。

错误!未找到引用源。

因为错误!未找到引用源。

-------------------------------------------------------------12分19.(1)由错误!未找到引用源。

得错误!未找到引用源。

错误!未找到引用源。

错误!未找到引用源。

---------------------5分(2当点P运动时,错误!未找到引用源。

总是相等的。

F(-1,0)。

设点P的坐标为(m,n),则由(1)知,错误!未找到引用源。

错误!未找到引用源。

错误!未找到引用源。

错误!未找到引用源。

--------------------13分21.(1)当错误!未找到引用源。

时, 错误!未找到引用源。

,错误!未找到引用源。

令错误!未找到引用源。

,得错误!未找到引用源。

,错误!未找到引用源。

错误!未找到引用源。

-------------------------------------------------------13分。

相关文档
最新文档