1.4 有理数的乘除法

合集下载

1.4有理数的乘除法及混合运算(整理)

1.4有理数的乘除法及混合运算(整理)

化简:
72 (1) ; 9
30 (2) (3) 45
0 75
;
计算:(1) 2 1 (1 1 )
3 6 (2) (56) (1.4) 2 (3) (81) (36) (2 ) 3 (4) ( 1 ) 0 ( 3 ) (1 2 ) 2 5 3
归纳总结

1、同号得正,异号得负,并把绝对值相 乘;任何数同0相乘,都得0.

注意、两个符号不能出现在一起,必须用 括号隔开 。比如:7+-1-2=?
有理数乘法法则的 推广及其应用
多个有理数相乘遵循以下法则: (1)几个不等于0的有理数相乘,积的符号 由负因数的个数决定:当负因数的个数是奇 数时,积是负数;当负因数的个数是偶数时, 积是正数。 (2)几个有理数相乘,如果其中有因数为0, 那么积等于0.
1 1 1 (1) ( ) 6 3 2
练习、观察下面两位的解法正确吗?若不正确,你 能发现下面解法问题出在哪里吗?
1 (2) 3 6 ( ) 6
1 (2) 3 6 ( ) 6 3 (1) 3
这个解法 是错误的
1 ( 2) 3 6 ( ) 6 1 1 3 ( ) 6 6 1 1 3 6 6 这个解法 1 是正确的 12
5 4
有理数的加减乘除混合运算
练习、观察下面两位同学的解法正确吗?若不正确, 你能发现下面解法问题出在哪里吗?
1 1 1 1 1 1 解: (1) ( ) 解: (1) ( ) 6 3 2 6 3 2 1 1 1 1 1 1 6 3 6 2 ( ) 6 6 1 1 3 2 6 6 1 ( 6) 1 1 这个解法 6 这个解法 2 3 是正确的 1 是错误的 1 6

七年级数学上册1、4有理数的乘除法1有理数的乘法第3课时有理数乘法的运算律习题课件新版新

七年级数学上册1、4有理数的乘除法1有理数的乘法第3课时有理数乘法的运算律习题课件新版新

易错点 利用分配律计算时,漏乘或弄错符号
9.计算:|-12|×
1 3
1
3 4
1 12
1
6
.
1
解:原式=12×3
3
+12×(-1)+12×4
+12×
1 12
1
+12×6
=4-12+9-1+2
=2.
10.下列计算(-55)×99+(-44)×99-99正确的是( C ) A.原式=99×(-55-44)=-9801 B.原式=99×(-55-44+1)=-9702 C.原式=99×(-55-44-1)=-9900 D.原式=99×(-55-44-99)=-19 602
解:原式=6.868×(-5-12+17)
=0.
知识点二 有理数乘法运算律的应用 8.建设某场馆时需烧制半径分别为0.24 m,0.37 m,0.39 m的三个圆形钢 筋环,问需要多少钢筋?(π取3.14) 解:需要钢筋2π×0.24+2π×0.37+2π×0.39=2π×(0.24+0.37+0.39)=2π= 6.28(m). 答:需要6.28 m钢筋.
7.用简便方法计算:
(1)
7
6
15
6
71 5; Nhomakorabea解:原式=
7
6
6
7
15
1 5
=1×(-3)
=-3.
(2)
1
3 8
2
1 3
0.75
×(-24);
解:原式= 11 24 7 24 3 24
8
3
4
=-33+56-18
=5.
(3)6.868×(-5)+6.868×(-12)+17×6.868.

新人教版七上1.4《有理数的乘除法》教案

新人教版七上1.4《有理数的乘除法》教案

1.4 有理数的乘除法(7课时)1.4.1有理数的乘法(4课时)课程目标:一、知识与技能目标1、在理解有理数乘法意义的基础上,掌握有有理数乘法法则,并初步了解有理数乘法法则的合理性.2、能够熟练地进行有理数的乘法运算.3、会用计算器进行有理数的乘法运算.4、掌握有理数乘法的运算律,能应用运算律使运算简便,能熟练地进行加、减、乘混合运算.二、过程与方法目标结合在一条直线上运动的实例,归纳有理数乘法法则;接下来归纳出多个有理数相乘积的符号与各因数的符号的关系;最后得出乘法交换律、结合律和乘法对加法的分配律在有理数范围内也使用.用计算器对有理数进行乘法运算的使用.三、情感态度与价值观目标1、鼓励学生积极参与课堂各个教学环节,探究有理数乘法法则,并从中获得成就感,获得学习数学的经验.2、培养学生有创意的想法,鼓励学生独立思考、实践,再与他人交流的学习方法,并从中产生对数学的兴趣和战胜困难的勇气.教学重点:乘法法则中积的符号与各因数的符号关系的推导.教学难点:几个有理数相乘,积的符号的确定和能灵活运用运算律简便运算.设计思路:通过三节课新课的教学,第1课时完成对乘法法则的推导和应用,第2课时则重点在灵活运用乘法的运算律简化运算,第3课时则是分配律的运用(去括号、合并)课时安排:4课时教学准备:投影片、三角板、小黑板、计算器教学过程:第19课时1.4.1有理数的乘法(第1课时)一、创设情境,导入新课师:前面学习了有理数的加减法,接下来就应该学习有理数的乘除法,请看下面问题:1、2×3等于多少?表示什么?答案:2×3=6,表示3个2相加,即2+2+2.2、(-2)+(-2)+(-2)写成乘法算式是什么?答案:(-2)×3师:2×3是小学学过的乘法.(-2)×3如何计算呢?这就是我们这节课要研究的有理数的乘法.板书:1.4.1有理数的乘法.二、师生互动,课堂探究(一)提出问题,引发讨论师:在数轴上,若向右运动2尺记作2尺,向左运动2尺记作什么?生:记作-2尺.师:(1)2×3,其中2看作向右运动,每步为2尺,×3看作沿原方向走3步.用数轴表示:结果怎样呢?(结果向右运动6尺)即2×3=6 (2)(-2)×3,其中-2看作向左运动,每步为2尺,×3看作沿原方向走3步.用数轴表示:结果怎样呢?(结果向在运动6尺)即(-2)×3=-6(3)2×(-3)其中2看作向右运动,每步为2尺,×(-3)看作沿反方向走3步.用数轴表示:结果怎样呢?(结果向左运动6尺)即2×(-3)=-6 (4)(-2)×(-3),其中-2看作向左运动,每步为2尺,×(-3)看作沿反方向走3步.用数轴表示:结果怎样呢?(结果向右运动6尺)即(-2)×(-3)=6师:从上面(1)—(4)通过思考、讨论、探究两个有理数相乘的结果的规律,填空:正数乘正数积为____数,负数乘正数积为___数,正数乘负数积为___数,负数乘负数积为______数,乘积的绝对值等于各乘数绝对值的_____.(二)导入知识,解释疑难1、有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘.任何数同0相乘,都得0. 例:(-5)×(-3)………同号两数相乘 (-7)×4………________(-5)×(-3)=+( )……得正 (-7)×4=-( )……_____ 5×3=15………把绝对值相乘 7×4=28………__________ ∴(-5)×(-3)=15. ∴(-7)×4=-28 2、例题分析:例1:计算:(1)(-3)×9 (2)(-21)×(-2)有理数中仍然有:乘积是1的两个数互为倒数.如(-21)×(-2)=1.注意:0没有倒数.例2:用正负数表示气温的变化量,上升为正,下降为负.登山队攀登一座山峰,每登高1km 气温的变化量为-6℃,攀登3km 后,气温有什么变化?解:(-6)×3=-18 答:气温下降18℃.从乘法法则看出,有理数的乘法,关键是确定积的符号,多个有理数相乘,可以把它们按顺序依次相乘.那么,几个不是0的数相乘.如何确定其符号呢?下列各式的积是正的还是负的?(1)2×3×4×(-5) (2)2×3×(-4)×(-5) (3)2×(-3)×(-4)×(-5) (3)(-2)×(-3)×(-4)×(-5) 根据上式计算,探究下列问题,并填空:几个不是0的数相乘,积的符号与负因数的个数之间有什么关系?几个不是0的有理数相乘,负因数的个数是______时,积是正数;负因数的个数是____时,积是负数.例3:计算:(1)(-3)×65×(-59)×(-41) (2)(-5)×6×(-54)×41 (3)(-5)×8×(-541)×(-1.25) (4)(-125)×158×211×(-31)你能看出下列各式的结果吗?如果能,请说明理由.(1)7.8×(-8.1)×0×(-19.6) (2)2002×(-2003)×(-2004)×0几个数相乘,如果其中有因数为0,积等于_____. (三)、归纳总结,知识回顾1、有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘.任何数同0相乘,都得0.2、几个不是0的有理数相乘,积的符号由负因数的个数决定,负因数的个数是偶数时,积是正数;负因数的个数是奇数时,积是负数.3、几个数相乘,如果其中有因数为0,积等于0.4、有理数乘法运算步骤:(1)先确定积的符号;(2)求出各因数绝对值的积.(四)作业:P40 1,2 (五)板书设计1.4.1有理数的乘法(第1课时)1、有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘.任何数同0相乘,都得0.有理数中仍然有:乘积是1的两个数互为倒数.2、几个不是0的有理数相乘,积的符号由负因数的个数决定,负因数的个数是偶数时,积是正数;负因数的个数是奇数时,积是负数.3、几个数相乘,如果其中有因数为0,积等于0.4、有理数乘法运算步骤:(1)先确定积的符号;(2)求出各因数绝对值的积.第20课时1.4.1 有理数的乘法(第2课时)一、创设情境,导入新课1、有理数的乘法法则是什么?根据乘法法则计算: (1)5×(-6) (-6)× 5(2)[3×(-4)]×(-5) 3×[(-4)×(-5)] 2、小学学过哪些运算律(五种)小学学过的加法交换律、结合律,前面我们在有理数的加法中已知道在有理数的范围内也适用,那么小学学过的乘法交换律、乘法结合律、分配律在有理数的范围内是否仍然适用呢?这就是我们这节课探究的问题.板书:有理数乘法的运算律和用计算器进行乘法运算. 二、师生互动,课堂探究 (一)提出问题,引发讨论 (1)5×(-6)=(-6)× 5(2)[3×(-4)]×(-5)=3×[(-4)×(-5)] 根据上式探究有理数乘法的运算律(二)导入知识,解释疑难 1、乘法交换律:ab =ba 乘法结合律:(ab )c =a (bc )2、分配律在有理数范围内是否仍然适用: 计算 5×[3+(-7)] 5×3+5×(-7) 而5×[3+(-7)] =5×3+5×(-7) 分配律:a (b+c )=ab+ac3、例题分析:例1:用两种方法计算 (41+61-121)×12解法1:(41+61-121)×12=(123+122-121)×12=-121×12=1解法2:(41+61-121)×12=41×12+61×12-121×12=3+2-6=1思考:比较上面两种解法,它们在运算顺序上有什么区别?解法2运用了什么运算律?哪种解法运算量小?例2:计算:19189×(-15)解:19189×(-15)=(10-191)×(-15)=10×(-15)-191×(-15)=-150+1915=-1941494、用计算器进行有理数乘法运算 计算:(-51)×(-14)按键顺序,显示:-51)×-14=714也可以只用计算器算乘积的绝对值,然后再加符号. 例3:写出算式:-5-6×2.5+(-9)的按键顺序. (三)、归纳总结,知识回顾1、本节课主要学习了有理数乘法的交换律、乘法结合律、分配律,在计算过程中,灵活运用运算律可使运算简便.2、用计算器进行有理数的加、减、乘运算,可以为学生掌握有理数的运算服务.(四)作业: 习题1.4 7(3)(4)(五)板书设计1.4.1 有理数的乘法(第2课时)有理数乘法的运算律: 1、乘法交换律:ab =ba乘法结合律:(ab )c =a (bc ) 2、分配律:a (b+c )=ab+ac例1:用两种方法计算 (41+61-121)×12解法1:(41+61-121)×12=(123+122-121)×12=-121×12=1解法2:(41+61-121)×12=41×12+61×12-121×12=3+2-6=1 用计算器进行乘法运算:第21课时1.4.1 有理数的乘法(练习课)教学目的:加强学生对已学乘法运算及运算律的掌握. 教学准备:小黑板、练习资料 教学过程: 练习题: 1、计算:(1)(-3)×(-5) (2)-21×(-31) (3)52×(-0.2)分析:有理数乘法的运算步骤:先确定积的符号,再确定积的绝对值. 2、计算:(1)(-5)×8×(-7)×(-0.25) (2)(-125)×158×21×(-32)(3)(-1)×21×(-20012000)×0×(-1)分析:先根据负因数的个数确定积的符号,然后把绝对值相乘作为积的绝对值;(3)中有一个因数是0,所以积为0.3、简便运算:(1)(-3)×(-57)×(-31)×74(2)(-41+31-125)×(-24) (3)4×(-3)+3×(-3)-2×(-3)+7×(-3) (4)(-1.2)×0.75×(-1.25)分析:运用乘法运算律使计算简便.(1)运用乘法交换律和结合律;(2)应用乘法的分配律;(3)逆用乘法的分配律.(4)先将小数化为分数,再约分相乘,可使计算简便.第22课时1.4.1 有理数的乘法(第4课时)一、创设情境,导入新课师:上节课的练习中有这样一道题:4×(-3)+3×(-3)-2×(-3)+7×(-3),我们如何进行简便计算的呢?生:将乘法分配律反过来利用.4×(-3)+3×(-3)-2×(-3)+7×(-3) =(4+3-2+7)×(-3) =12×(-3) =-36二、师生互动,课堂探究 (一)提出问题,引发讨论 类似地,(-23)×25-6×25+18×25+25,如何进行简便运算呢? (二)导入知识,解释疑难1、我们用字母χ表示任意一个有理数,2与χ的乘积记为2χ,3与χ的乘积记为3χ,则式子2χ+3χ是2χ与3χ的和,2χ与3χ叫做这个式子的项,2与3分别是这两项的系数.含有相同字母因数的这两项可以合并,将分配律反过来利用,可得2χ+3χ=(2+3)χ=5χ得出归纳:P41a χ+b χ=(a+b )χ2、课本例6计算:(1)-2y+0.5y ; (2)-3x+x-21x 分析:式子中含有相同字母因数,合并它们的方法是合并系数,再乘字母因数.练一练:P42 练习 计算: 3、考虑去括号的问题:先考虑一个正数与一个括号相乘,如5乘(x -2y =3),利用分配律,可以将式子中的括号去掉,得5(x -2y =3)=5x+5·(-2y )+5×3=5x-10y+15 再考虑一个负数与一个括号相乘,如-5乘(x -2y =3),利用分配律,可以将式子中的括号去掉,得-5(x -2y =3)=-5x+(-5)·(-2y )+(-5)×3=-5x+10y-15可发现:P43 去括号的规律. 例7 计算:(1)-3(2x-3) (2)3x-(2x-4)+(2x-1) 解:(1)-3(2x-3)=-6x+9 (2)3x-(2x-4)+(2x-1) =3x-2x+4+2x-1 =3x-2x+2x+4-1 =3x +3练一练:P43 练习 计算: (三)、归纳总结,知识回顾本节课主要学习利用乘法分配律进行去括号,合并含相同字母因数的项. (四)作业:P48 9 (五)板书设计1.4.1 有理数的乘法(第4课时)1、合并含有相同字母因数的项:ax+bx =(a+b )x例6计算:(1)-2y+0.5y ; (2)-3x+x-21x2、利用乘法分配律去括号: 例7 计算:(1)-3(2x-3) (2)3x-(2x-4)+(2x-1) 解:(1)-3(2x-3)=-6x+9 (2)原式=3x-2x+4+2x-1 =3x-2x+2x+4-1 =3x +31.4.2 有理数的除法(3课时)课程目标:一、知识与技能目标1、在理解有理数除法意义的基础上,掌握有理数除法法则,并初步了解有理数法则的合理性及倒数的意义.2、能够熟练地进行有理数的乘、除混合运算.3、会用计算器进行有理数的除法运算.4、会解有关除法运算的应用题. 二、过程与方法目标教材通过除法意义计算一个实例,得出法则可以利用乘法来进行的结论,得出除法与乘法类似的法则,最后通过几个例题的教学说明有理数除法的另一种形式,也指出有理数除法与分数互换的关系.三、情感态度与价值观目标1、通过有理数除法法则的导出及运用,让学生体会转化思想.2、通过学习有理数除法法则,感知数学具有普遍联系性,相互转化性.3、通过用计算器进行有理数除法运算,让学生体会类比的数学思想. 教学重点:学习有理数除法法则中学生对商的符号的确定. 教学难点:乘除混合运算中的运算顺序和运算技巧的应用. 设计思路:第1课时通过实例引入导出有理数除法法则,接着实际例题综合应用;第2课时主要在于加减、乘除的混合运算.课时安排:3课时教学准备:投影片、计算器 教学过程:第23课时1.4.2 有理数的除法(第1课时)一、创设情境,导入新课师:在小学,我们学过除法,如8÷4=8×41=2.那么8÷(-4)又会等于多少呢?这就是我们要研究的问题.板书:1.4.2 有理数的除法二、师生互动,课堂探究 (一)提出问题,引发讨论怎样计算8÷(-4)呢?要求一个数,使它与-4相乘得8. ∵(-2)×(-4)=8 ∴8÷(-4)=-2 ①又∵8×(-41)=-2 ②∴8÷(-4)=8×(-41) ③③式表明,一个数除以-4可以转化为乘-41来进行,即一个数除以-4,等于乘-4的倒数-41.(二)导入知识,解释疑难在尝试:(-8)÷(-4)=? (-8)×(-41)=?1、有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数.a ÷b =a ·b1(b ≠0)提出问题:(1)两数相除,商的符号如何确定?商的绝对值呢? (2)0不能做除数,0作被除数时商是多少? 从有理数除法法则得出另一种说法:2、两数相除,同号得正,异号得负,并把绝对值相除. 0除以如何一个不等于0的数,都得0.说明:两数相除,在能整除的情况下,可用法则2,在确定符号后往往采用直接除;在不能整除的情况下,特别是当除数是分数时,可用法则1,把除法转化为乘法比较方便.3、例题分析:例1:计算:(1)(-36)÷9 (2)(-2512)÷(-53)解:(1)用法则2 (2)用法则1 例2:化简下列分数:(1)312 (2)1245--解:(1)312- =(-12)÷3=-4 (2)1245--=(-45)÷(-12)=415例3:计算:(1)(-75125)÷(-5) (2)-2.5÷85×(-41)解:(1)利用乘法分配律 原式=75125×51=125×51+75×51=25+71=7125 (2)原式=25×58×41=1例4:计算(1)(-29)÷3×31 (2)(-43)×(-211)÷(-412)(3)-6÷(-0.25)×1411 (4)(-3)÷[(-52)÷(-41)]解:(1)原式=-29×31×31=-929(2)原式=-43×23×49=-21(三)、归纳总结,知识回顾 1、除法的两种法则的恰当应用.2、乘除混合运算往往先将除法化为乘法,在确定积的符号,最后求出结果. (四)作业:P48 7 (4)(5)(6) (五)板书设计1.4.2 有理数的除法(第1课时)1、有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数.a ÷b =a ·b1(b ≠0)2、两数相除,同号得正,异号得负,并把绝对值相除. 0除以如何一个不等于0的数,都得0.例1:计算:(1)(-36)÷9 (2)(-2512)÷(-53)解:(1)用法则2 (2)用法则1 例2:化简下列分数:(1)312- (2)1245--第24课时1.4.2 有理数的除法(第2课时)一、创设情境,导入新课师:前面学习了有理数的加减、乘除运算,通常情况下,是将减法转化为加法,将除法转化为乘法,然后进行计算.那么混合运算的顺序是怎样的呢?板书:有理数的加减乘除混合运算二、师生互动,课堂探究 (一)提出问题,引发讨论先乘除后加减,如果有括号,先算括号里面的.(运算顺序) (二)导入知识,解释疑难 例1:计算(1)(-7624)÷(-6)-3.5÷87×(-43)(2)1÷(-1)+0÷(-5.6)-(-4.2)×(-1)例2:一天,小江和小利利用温差测量山峰的高度,小江在山顶测得温度是-1℃,小利在山脚测得是5℃.已知该地区高度每增加100米,气温大约降低0.8℃,这个山峰的高度大约是多少米?解:依题意得[5-(-1)]÷0.8×100=750(米) 答:(略)例3:P45 例10例4:用计算器计算(-0.056)÷(-1.4) (三)、归纳总结,知识回顾 1、有理数加减乘除混合运算. 2、有关有理数运算的应用题. 3、使用计算器的方法. (四)作业:(1)-1+5÷(-41)×(-4) (2)-8+4÷(-2)(3)(-7)×(-5)-90÷(-15) (五)板书设计1.4.2 有理数的除法(第2课时)有理数的加减乘除混合运算:先乘除后加减,如果有括号,先算括号里面的.(运算顺序) 例1:计算(1)(-7624)÷(-6)-3.5÷87×(-43)(2)1÷(-1)+0÷(-5.6)-(-4.2)×(-1)例2:一天,小江和小利利用温差测量山峰的高度,小江在山顶测得温度是-1℃,小利在山脚测得是5℃.已知该地区高度每增加100米,气温大约降低0.8℃,这个山峰的高度大约是多少米?解:依题意得[5-(-1)]÷0.8×100=750(米)答:(略)第25课时1.4.2 有理数的除法(练习课)教学目的:巩固有理数除法法则及加减乘除混合运算的方法.教学准备:小黑板,练习资料教学过程:教材内容剖析讲解点1:有理数除法的意义及法则.有理数除法法则:1、有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数.a ÷b =a ·b 1(b ≠0) 2、两数相除,同号得正,异号得负,并把绝对值相除.0除以如何一个不等于0的数,都得0.练习1、计算:(1)(-40)÷8 (2)(+871)÷(-87) (3)(-0.25)÷83 (4)(-125)÷(-25)÷(-6) (5)(-49)÷(312)÷37÷(-3) 分析:一般在不能整除的情况下用第一个法则,如(2)(3)(4)(5);在能整除的情况下用第二个法则.注意小数可化为分数也可不化为分数,但带分数一定要化成假分数,在进行计算.讲解点2:有理数的乘除混合运算.注意:①符号的确定;②运算顺序自左向右依次计算.练习2、计算:(1)(-65)÷(-32)×(-23) (2)(-53)×(-213)÷(-411)÷3(3)(-11936)÷9 分析:按照运算顺序,自左向右.乘除混合运算时,注意乘法不动,将除法转化为乘法.讲解点3:有括号的先算括号内的,无括号先乘除后加减.练习3:计算:(1)3÷2×(-21) (2)1.6+5.9-25.8+12.8-7.4 (3)23×(-5)-(-3)÷1283 (4)511×(31-21)×113÷45 (5)-3-[-5+(1-0.2×53)÷(-2)] (6)(97-65+183)×18-1.45×6+3.95×6 解:(1)3÷2×(-21)=-(3×21×21)=-43 (2)1.6+5.9-25.8+12.8-7.4=(1.6+5.9-7.4)+(-25.8+12.8)=0.1-13=-12.9(3)23×(-5)-(-3)÷1283=-115+3×3128=-115+128=13 (4)511×(31-21)×113÷45=511×(-61)×113×54=-252 (5)-3-[-5+(1-0.2×53)÷(-2)] (6)(97-65+183)×18-1.45×6+3.95×6=(97×18-65×18+183×18)+6×(-1.45+3.95)=(14-15+3)+6×2.5=2+15=17。

人教版七年级上册第一章《有理数》1.4有理数的乘除法(教案)

人教版七年级上册第一章《有理数》1.4有理数的乘除法(教案)
人教版七年级上册第一章《有理数》1.4有理数的乘除法(教案)
一、教学内容
人教版七年级上册第一章《有理数》1.4有理数的乘除法。本节课将围绕以下内容展开:
1.有理数的乘法法则:同号得正,异号得负,并将绝对值相乘。
2.有理数的除法法则:同号得正,异号得负,并将绝对值相除。
3.乘除混合运算的顺序:先乘除后加减,同级从左到右。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《有理数的乘除法》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要分配或分享物品的情况?”(如:分水果、计算购物折扣等)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索有理数乘除法的奥秘。
五、教学反思
在今天的课堂中,我们探讨了有理数的乘除法。我发现学生们在理解乘除法则和应用它们解决实际问题时,普遍存在一些挑战。首先,乘除法则的规律对于一些学生来说还不够清晰,尤其是负数乘以负数得正数的概念。我尝试通过举例和图示来解释这一点,但感觉还需要更多的练习来巩固这个概念。
我注意到,当涉及到混合运算时,学生往往会忽略运算的优先级,导致计算错误。这提醒我,在未来的课程中,需要更多地强调和练习运算顺序,确保学生们能够熟练掌握。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了有理数乘除法的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对有理数乘除法的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。

1.4 有理数的乘除法

1.4 有理数的乘除法

1.4 有理数的乘除法●目标导航1.能运用法则进行有理数乘法和除法运算。

2.探索运用乘法和除法的运算律简化运算。

3.能用乘法和除法解决简单的实际问题。

●名师引领1、有理数乘法:(1)几个不等于零的数相乘,积的符号由负因数的个数决定,当负因数的个数有奇数个时,积为负,当负因数的个数有偶数个时,积为正。

(2)几个不等于零的因数相乘,首先确定积的符号,然后,再把每个因数的绝对值相乘。

这就是多个因数求积的常用方法。

(3)一个数与两个数的和相乘,等于把这个数分别与这两个数相乘,再把积相加。

2、有理数除法:(1)两数相除,当两数同号时,其商得正,当两数异号时,其商得负,并把绝对值相除。

(2)零除以任何一个不等于零的数,其商都得零。

(3)由除法关系可以转化成乘法的关系:a÷b=a×1/b,b#0,所以两个有理数的乘除法,乘法是基础。

(4)在除法法则中必须强调“除数不等于零”。

●师生互动共解难题例题1 计算:时,应首先()。

A.把小数化为分数,或者把分数化为小数B.利用符号法则确定乘积的符号 C.把带分数化为假分数D.考虑怎样使用乘法结合律或者交换律分析:有理数乘法与小学所学乘法的区别在于符号,初学者进行有理数乘法运算最容易出现的错误也在于符号,发生错误的同学往往并不是没记住有理数乘法的运算法则,而在于重视符号的意识不强,所以初学者一定要把确定乘积的符号作为大事,放在首位,也就是说,完成有理数乘法运算要分两步走:先是确定乘积的符号,然后再计算乘积的绝对值。

解选B。

说明:进行两个以上有理数相乘的运算,首先确定乘积的符号,这样做不但有减少运算错误使运算简化的作用,与此同时,也能起到培养良好的学习习惯的作用。

就本题来讲,如果不先确定乘积的符号,可能在运算过程中就必须确定三次符号(头两个因数相乘,积的符号;与第三个因数相乘,积的符号;与第四个因数相乘,积的符号),这样就增加了运算步骤。

例2计算3531(?)??(?)?(?)54 (1)2473(?3.5)??(?)84 (2)(3)7×9÷7×9分析:第(1)、(2)小题是两个以上的有理数的乘除混合运算,应先把除法转化为乘法.然后,再用有理数的乘法法则进行计算;第(3)小题,也是乘除混合运算的形式,但它容易造成错解,结果为1这种错误。

人教版数学七年级上册有理数的除法

人教版数学七年级上册有理数的除法

3
23
= 10 1 3 24
=
10 3 8
= 10 3 8
探究新知
素养考点 2 有理数混合运算的简便计算
例2 计算 ( 1 ) ( 2 1 1 2) .
30 3 10 6 5
解:方法一,
原式=
(
1 30
)
[
2 3
1 6
(1 10
2 5
)]
按常规方 法计算
=
(
1 30
)
[
5 6
1] 2
(2)(-4)
÷
1 2
(3)0÷
3 4
(4)(
7 8
)
÷(
4 7
)
答案:(1)–4 (2)–8 (3)0 (4)49
32
探究新知
素养考点 2 有理数的化简
例2 化简下列各式: (1)312 ;(2)4152 .
解:(1) 12 (12) 3 4 3
(2) 45 (45) (12) 45 12 15
巩固练习
1.计算:Leabharlann (1)[(22 3)
(3
1 3
)]
(4)
9 2

(2 1 ) (6) (1 1 ) (1 1 )
3
2
3
(解2析):先算括号里面的→除法转化.为乘法→计算→结果.
解:(1)原式= (6) (4) 9 2
= (6) ( 1) 9 42
27 =
4
(2)原式= 5 (6) 1 4
探究新知
知识点 1 有理数的除法及分数化简 (1)

(1)若a,b互为相反数,且a ≠ b,则 =________;

人教版七年级数学上册1.4有理数乘除法(包含答案)

人教版七年级数学上册1.4有理数乘除法(包含答案)

1.4有理数乘除法1.乘法交换律:有理数乘法中,两个数相乘,交换因数的位置,积相等.表达式:ab=ba .2.乘法结合律:三个数相乘,先把其中的两个数相乘,积相等.表达式:(ab )c=a (bc ).3.乘法分配律:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加.表达式:a (b+c )=ab+ac .4.有理数的乘法法则:两个数相乘,同号得正,异号得负,并把绝对值相乘;任何数与0相乘,都得0;5.倒数的定义:乘积为1的两个数互为倒数.6.除以一个数等于乘以这个数的倒数.7.两数相除,同号得正,异号得负,并把绝对值相除一、单选题1.下列四组数:①1和-1;①-1和-1;①23-和112;①23-和112-.互为倒数的是( ) A.①①B.①①C.①①D.①① 2.12的倒数的绝对值是( ) A.12 B.-12 C.2 D.-23.下列计算正确的是( )A .(-7)×(-6)=-42B .(-3)×(+5)=15C .(-2)×0=0D .−712×4=(−7+12)×4=−26 1(0)a b a b b÷=⨯≠其中4.下面的说法正确的是()A.0的倒数是0 B.0的倒数是1 C.0没有倒数D.以上说法都不对5.0.24×116×(−514)的结果是()A.1B.−25C.−110D.0.16.已知整数a1,a2,a3,a4…满足下列条件:a1=0,a2=-|a1+1|,a3=-|a2+2|,a4=-|a3+3|,…,以此类推,则a2 019的值为()A.-1 007B.-1 008C.-1 009D.-2 0167.计算12﹣7×(﹣4)+8÷(﹣2)的结果是()A.36B.﹣20C.6D.﹣248.对有理数a,b,规定运算如下:a①b=a+ab,则-2①3的值为()A.-10B.-8C.-6D.-49.在﹣2、3、﹣4、﹣5这四个数中任取两个数相乘,得到的积最大的是()A.20 B.﹣20 C.10 D.810.在数学课上,老师让甲、乙、丙、丁,四位同学分别做了一道有理数运算题,你认为做对的同学是()甲:9﹣32÷8=0÷8=0乙:24﹣(4×32)=24﹣4×6=0丙:(36﹣12)÷32=36×23﹣12×23=16丁:(﹣3)2÷13×3=9÷1=9A.甲B.乙C.丙D.丁二、填空题11.实数6-的倒数是_____12.若a与b互为相反数,c与d互为倒数,则2019a+2018b+bcd=_________.13.计算下列各题:(1)−2+4=___________;(2)(−3)2×59=___________;(3)−4÷12×2=___________;(4)2a−5a=___________;14.计算(﹣4)×11(1)42⎡⎤-+⎢⎥⎣⎦=_____.15.如图,在数轴上,点A表示1,现将点A沿x轴做如下移动,第一次点A向左移动2个单位长度到达点1A,第二次将点1A,向右移动4个单位长度到达点2A,第三次将点2A向左移动6个单位长度到达点3A,按照这种移动规律移动下去,第n次移动到点n A,如果点n A 与原点的距离等于19,那么n的值是________.三、解答题16.计算: (1)()21 3.25÷-; (2)121143⎛⎫⎛⎫-÷- ⎪ ⎪⎝⎭⎝⎭. 17.简便运算:(1)(-2)×(-8.5)×(-5); (2)17211127853⎡⎤⎛⎫⎛⎫⎛⎫-⨯-++- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦. 18.数学老师布置了一道思考题“计算:(-112)÷(13−56)”,小明仔细思考了一番,用了一种不同的方法解决了这个问题. 小明的解法:原式的倒数为(13−56)÷(−112)=(13−56)×(-12)=-4+10=6,所以(-112)÷(13−56)=16. (1)请你判断小明的解答是否正确,并说明理由.(2)请你运用小明的解法解答下面的问题.计算:(-124)÷(13−16+38). 19.随着人们生活水平的提高,家用轿车越来越多地进入家庭,小明家中买了一辆小轿车,他连续记录了7天中每天行驶的路程(如下表),以50km 为标准,多于50km 的记为“+”,不足50km 的记为“﹣”,刚好50km 的记为“0”.(1)请求出这七天中平均每天行驶多少千米?(2)若每天行驶100km需用汽油6升,汽油价7.5元/升,请估计小明家一个月(按30天计)的汽油费用是多少元?20.规定一种新的运算:a①b=a×b-a-b2+1.例如:3①(-4)=3×(-4)-3-(-4)2+1=-30.请用上述规定计算下列各式:(1)2①5;(2)(-2)①(-5)答案1.D2.C3.C4.C5.C6.C7.A8.B9.A 10.C11.1 6 -12.013.2, 5, -16, −3a 14.3.15.18或1916.(1) 原式716757 5551616⎛⎫⎛⎫=÷-=⨯-=-⎪ ⎪⎝⎭⎝⎭.(2) 原式5553343454⎛⎫⎛⎫⎛⎫=-÷-=+⨯=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.17.(1) 原式=[(-2)×(-5)]×(-8.5)=10×(-8.5)=-85.(2) 原式878787883117875735315⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-⨯-+-⨯+-⨯-=-+=⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭.18.解:(1)正确,理由为:一个数的倒数的倒数等于原数;(2)原式的倒数为(13−16+38)÷(-124)= (13−16+38) ×(-24)=-8+4-9= -13,则(-124)÷(13−16+38)= -113.故答案为:(1)正确,理由见详解;(2)-1 13.19.解:(1)50+(﹣6+11﹣15+0﹣13+17+6)÷7=50(千米).答:这七天中平均每天行驶50千米(2)平均每天所需用汽油费用为50×(6÷100)×7.5=22.5(元),估计小明家一个月的汽油费用是22.5×30=675 (元).答:估计小明家一个月的汽油费用是675元.20.解:(1)2①5=2⨯5-2-52+1=-16,(2)(-2)①(-5)= (-2)⨯(-5)- (-2)-(-5)2+1=10+2-25+1=-12。

人教版七年级数学上册 1.4有理数的乘除法 知识点归纳

人教版七年级数学上册 1.4有理数的乘除法 知识点归纳

人教版七年级数学上册1.4有理数的乘除法知识点归纳有理数乘法法则:①正数乘正数,积为正数。

②正数乘负数,积为负数。

③负数乘正数,积为负数。

④负数乘负数,积为正数。

总的来说就是一句话:两数相乘,同号得正,异号得负,并把绝对值相乘。

例1、计算3×(-5)分析:3和-5异号所以结果为负数绝对值相乘:3×5=15所以3×(-5)=-15例2、计算(-4)×(-6)分析:-4和-6同号所以结果为正数绝对值相乘:4×6=24所以(-4)×(-6)=24计算有理数的加减法和乘法都要先定符号,再确定积的绝对值。

任何数与0相乘,都得0 。

要得到一个数的相反数,只要将它乘-1 。

乘积是1的两个数互为倒数。

小学所学的乘法运算定律对有理数的乘法仍然适用。

用字母表示乘数时,“×”号可以写为“·”或省略。

例3、a×b可以写为a·b或ab 。

乘法运算定律:①乘法交换律:两个数相乘,交换因数的位置,积相等。

字母表示:ab=ba②乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。

字母表示:abc=a(bc)③如果一个算式中只有乘法运算,那么乘数的位置可以任意交换,积仍然相等。

④乘法分配律:一个数与两个数的积相乘,等于把这个数分别与这两个数相乘,再把所得的积相加。

字母表示:a(b+c)=ab+ac几个不是0的数相乘,负因数的个数是奇数时,积是负数;负因数的个数是偶数时,积是正数。

简称:奇负偶正。

几个数相乘,如果至少有一个乘数为0,那么积就为0 。

)×0=0例4、(-723)×(-959)×(-11123有理数除法法则:除以一个不为0的数,等于乘这个数的倒数。

字母表示:a÷b=a×1(b≠0)b0不能为除数。

从有理数除法法则可以看出:两数相除,同号得正,异号得负,并把绝对值相除。

人教版七年级数学上册1.4《有理数的乘除法》说课稿

人教版七年级数学上册1.4《有理数的乘除法》说课稿

人教版七年级数学上册1.4《有理数的乘除法》说课稿一. 教材分析《有理数的乘除法》是人教版七年级数学上册第一章第四节的内容。

本节课是在学生已经掌握了有理数的概念、加法和减法的基础上,进一步引导学生学习有理数的乘除法。

教材通过生动的实例和丰富的练习,使学生掌握有理数乘除法的运算方法,理解乘除法之间的关系,以及培养学生的运算能力和逻辑思维能力。

二. 学情分析面对刚进入七年级的学生,他们对有理数的概念、加法和减法已经有一定的了解,但运算能力参差不齐,部分学生对运算规律的掌握不够熟练。

此外,学生的逻辑思维能力和自主学习能力有待提高。

因此,在教学过程中,我将以引导学生理解和掌握有理数的乘除法运算规律为目标,通过实例分析和练习,提高学生的运算能力和逻辑思维能力。

三. 说教学目标1.知识与技能目标:使学生掌握有理数的乘除法运算方法,能够熟练进行有理数的乘除运算。

2.过程与方法目标:通过实例分析、小组讨论和练习,培养学生的运算能力和逻辑思维能力。

3.情感态度与价值观目标:激发学生学习数学的兴趣,培养他们积极思考、合作交流的良好学习习惯。

四. 说教学重难点1.教学重点:有理数的乘除法运算方法。

2.教学难点:理解乘除法之间的关系,以及有理数乘除法运算规律的应用。

五.说教学方法与手段本节课采用情境教学法、启发式教学法和小组合作学习法。

情境教学法通过生动实例引入课题,激发学生的学习兴趣;启发式教学法引导学生思考和发现运算规律,培养学生的逻辑思维能力;小组合作学习法让学生在讨论和交流中共同解决问题,提高自主学习能力。

六.说教学过程1.导入新课:通过一个生活中的实例,如“小明买水果”,引出有理数的乘除法运算。

2.自主学习:让学生阅读教材,了解有理数乘除法的基本运算方法。

3.课堂讲解:讲解有理数乘除法的运算规律,引导学生理解和掌握。

4.实例分析:分析一些有关有理数乘除法的实际问题,让学生运用所学知识解决问题。

5.小组讨论:让学生分组讨论,探索乘除法之间的关系,以及总结有理数乘除法的运算规律。

新人教七年级上册第一单元《1.4 有理数的乘除法》说课稿

新人教七年级上册第一单元《1.4 有理数的乘除法》说课稿

新人教七年级上册第一单元1.4 有理数的乘除法说课稿本次说课我共分成教材分析、教学方法与手段、教学过程分析和几点思考四部分,具体内容如下:一、教材分析:(一)教材的地位和作用:本节课的内容是《新人教版七年级数学》教材中的第一章第四节,“有理数的乘除法”是把“有理数乘法”和“有理数除法”的内容进行整合,在“有理数的加减混合运算”之后的一个学习内容。

在本章教材的编排中,“有理数的乘法”起着承上启下的作用,它既是有理数加减的深入学习,又是有理数除法、有理数乘方的基础,在有理数运算中有很重要的地位。

“有理数的乘法”从具体情境入手,把乘法看做连加,通过类比,让学生进行充分讨论、自主探索与合作交流的形式,自己归纳出有理数乘法法则。

通过这个探索的过程,发展了学生观察、归纳、猜测、验证的能力,使学生在学习的过程中获得成功的体验,增强了自信心。

所以本节课的学习具有一定的现实地位。

(二)学情分析:因为学生在小学的学习里已经接触过正数和0的乘除法,对于两个正数相乘、正数与0相乘、两个正数相除、0与正数相除的情况学生已经掌握。

同时由于前面学习了有理数的加减法运算,学生对负数参与运算有了一定的认识,但仍还有一定的困难。

另外,经过前一阶段的教学,学生对数学问题的研究方法有了一定的了解,课堂上合作交流也做得相对较好。

(三)教学目标分析:基于以上的学情分析,我确定本节课的教学目标如下1、知识目标:让学生经历学习过程,探索归纳得出有理数的乘除法法则,并能熟练运用。

2、能力目标:在课堂学习过程中,使学生经历探索有理数乘除法法则的过程,发展观察、猜想、归纳、验证、运算的能力,同时在探索法则的过程中培养学生分类和归纳的数学思想。

3、情感态度和价值观:在探索过程中尊重学生的学习态度,树立学生学习数学的自信心,培养学生严谨的数学思维习惯。

4、教学重点:会进行有理数的乘除法运算。

5、教学难点:有理数乘除法法则的探索与运用。

确定教学目标的理由依据是:新课标中指出课堂教学中应体现知识与技能、过程与方法、情感态度与价值观的三维目标,同时也基于本节内容的地位与作用。

1.4有理数的乘除法

1.4有理数的乘除法

可归纳出如下结论: 负数乘负数,积为正数. 乘积的绝对值等于各乘 数绝对值的积. 一般地,我们有有理数乘法法则: 两数相乘,同号得正,异号得负,并把绝对值相 乘. 任何数与 0 相乘,都得 0.
例如,(―5)×(―3),…………同号两数相乘 (―5)×(―3)=+( ),………得正 5×3=15,……………… 把绝对值相乘 所以 (―5)×(―3)=15. 又如,(―7)×4,…………… 异号两数相乘 (―7)×4=-( ),………… 得负 7×4=28,……………… 把绝对值相乘 所以 (―7)×4= -28 . 也就是:有理数相乘,可以先确定积的符号,再 确定积的绝对值.
有理数的加减乘除混合运算,如无括号指出先做 什么运算,则按照“先乘除,后加减”的顺序进行.
例8 计算: (1)-8+4÷(-2); (2)(-7)×(-5)-90÷(-15). 解:(1) -8+4÷(-2) =-8+(-2) =-10; (2) (-7)×(-5)-90÷(-15) = 35-(-6) = 35+6
1 (2). (1)(―3)×9;(2)8×(―1);(3) 2
解:(1)(―3)×9=-27;
(2)8×(―1)=-8 ;
1 (3) (2) 1. 2
1 1 上例(3)中, (2) 1,我们说 和 2 2 2
1 1 1 例4 用两种方式计算 12. 4 6 2 1 1 1 解法1: 12 4 6 2 1 3 2 6 12 12 1. 12 12 12 12 1 1 1 解法2: 12 4 6 2 1 1 1 12 12 12 3 2 6 1. 4 6 2
于是有

1.4_有理数的乘除法_辅导资料(含答案)

1.4_有理数的乘除法_辅导资料(含答案)

1.4 有理数的乘除法第四课时本节主要讲了有理数的乘法运算,通过水库水位的变化,引导学生仔细观察一列算式的因数与积的变化规律,使他们自己发现,归纳出有理数的乘法法则。

通过大量的实例,让学生真正的掌握有理数的乘法运算。

乘法与除法互为逆运算,这在有理数范围内仍然适用。

本节给了一些算式,旨在引导学生发现规律。

从商的符号及其绝对值与被除数和除数的关系,可归纳出有理数的除法法则。

然后又给出倒数的定义,进而将有理数的除法运算转化为乘法运算。

一.有理数乘法法则的运用和运用有理数的除法法则进行简单的运算这是本节的重点知识.如【典例引路】中例1,,【当堂检测】中第4题,【课时作业】中第9题。

二.运算中符号的选择,倒数的求法这是本节的难点.如【基础练习】中第4题,【当堂检测】中第4题,【课时作业】中第14题。

三.易错题目易错点仍然是结果的符号问题,需要学生特别注意。

【课时作业】中第19题。

知识点1.有理数的乘法法则两数相乘,同号得正,异号得负,并把绝对值相乘;任何数同0相乘得0.乘积是1的两数互为倒数.两数相乘,交换因数的位置,积不变;乘法交换律:ab=ba;三个数相乘,先把前两个数相乘,或先把后两个数相乘,积不变.乘法结合律:abc=(ab)c=a(bc).一个数同两个数的和相乘,等于这个数分别与这两个数相乘,再把积相加.乘法分配律:a(b+c)=ab+ac;几个不等于0的数相乘,负因数的个数为偶数个时,积为正数; 负因数的个数为奇数个时,积为负数.知识点2.有理数的除法除以一个不为0的数,等于乘这个数的倒数.式子表达为:a ÷b=a ×b1(b 为不等于0的数).两数相除,同号得正,异号得负,并把绝对值相乘.一个数同不为0的数相除,仍得0. 针对性练习:1.填空: (1)-67×76___________; (2)(-1.25)×(-8)=_____________; (3)(-126.8)×0=___________; (4)(-25.9)×(-1)=______________. (5)(-5)×__________=-35; (6)(-73)×____________=73. 【解析】两个有理数相乘,我们根据法则先来确定乘积的符号,再把绝对值相乘.在进行有理数乘法运算时,除了要熟练掌握乘法法则之外,还应当注意以下两点:1.一个数乘以1等于它本身,一个数乘以-1等于它的相反数.2.两个相反数的和与积是完全不同的两个结果,不要混淆.【答案】(1)-1 (2)1 (3)0 (4)25.9 (5)-35(6)73类型之一:巧用运算律简化计算型例1.(1)(-6)×[32+(-21)]=(-6)×32+(-6)×(-21) (2)[29×(-65)]×(-12)=29×[(-65)×(-12)]【解析】本题运用乘法对加法的分配律来计算,过程会比较简单。

七年级数学上册人教版1.4有理数的乘除法教学设计

七年级数学上册人教版1.4有理数的乘除法教学设计
3.创设悬念:教师提出一个与乘除法相关的问题,如“为什么负数乘以负数会得到正数?”激发学生的好奇心和求知欲,为讲授新知做好铺垫。
(二)讲授新知
1.讲解有理数乘法法则:教师以具体例子讲解有理数乘法的运算规律,强调同号得正、异号得负的原则。通过举例说明,让学生理解并掌握乘法运算的规律。
2.讲解有理数除法法则:教师引导学生理解除以一个数等于乘以这个数的倒数,讲解有理数除法的运算规律。同时,强调除数为零的情况,让学生避免在运算中犯错。
-利用直观教具和实际例题,帮助学生形象地理解有理数乘除法的运算规律。
-设计互动式教学活动,如小组合作、角色扮演等,增强学生的参与感和合作意识。
2.教学步骤:
-引入新课:通过生活实例,让学生感受乘除法在实际生活中的应用,激发学习兴趣。
-基本概念:讲解有理数乘除法的定义和性质,让学生通过例题和练习加深理解。
-解题技巧:教授有理数乘除法的运算技巧,如交叉相乘法、倒数法等,提高学生的运算速度和准确性。
-应用拓展:结合实际问题,让学生运用所学乘除法知识解决具体问题,提升学生的数学应用能力。
-归纳总结:引导学生总结有理数乘除法的学习要点,巩固所学知识。
3.教学策略:
-针对不同学生的学习需求,提供分层次的练习题,使每个学生都能在适合自己的难度上得到锻炼和提高。
七年级的学生在数学学习上已经具备了一定的基础,掌握了有理数的加法和减法运算,但对于乘除法运算还相对陌生。在此基础上,学生对于有理数乘除法的概念和运算规律可能存在理解上的困难。此外,学生在解决实际问题时,可能难以将乘除法运算与实际问题结合起来,缺乏运用乘除法解决问题的能力。因此,在教学过程中,应注重以下几点:
3.教师点评:教师针对学生的总结和分享进行点评,鼓励优秀表现,对不足之处给予指导和鼓励。

1.4 有理数的乘除法讲义 学生版

1.4 有理数的乘除法讲义 学生版

第1章有理数1.4 有理数的乘除法学习要求1、会根据有理数的乘法法则进行乘法运算,并运用相关运算律进行简算.2、理解除法与乘法的逆运算关系,会进行有理数除法运算;巩固倒数的概念,能进行简单有理数的加、减、乘、除混合运算.知识点一:有理数的乘法法则例1.计算﹣1×2的结果是()A.1 B.2 C.﹣3 D.﹣2变式1.(﹣15)×7.变式2.(﹣3)×|﹣2|知识点二:倒数例2.的倒数是()A.﹣3 B.C.3 D.变式1.﹣2017的倒数是()A.2017 B.﹣2017 C.D.﹣变式2.已知□×(﹣)=﹣1,则□等于()A.B.2016 C.2017 D.2018变式3.填表:原数﹣2.5相反数 3 ﹣7 倒数绝对值变式4.写出下列各数的倒数:(1)﹣15;(2);(3)﹣0.25;(4)0.13;(5)4;(6)﹣5.知识点三:多个有理数的乘法例3.算式(﹣1)×(﹣3)×之值为何?()A.B.C.D.变式1.(2014秋•宝坻区校级期末)1.6×(﹣1)×(﹣2.5)×(﹣)变式2.计算.(1);(2)(﹣0.1)×1000×(﹣0.01);(3)2.3×4.1×0×(﹣7);(4).知识点四:有理数的乘法运算律例4.计算(1)(﹣2)×4×(﹣3)(2)(+﹣)×12.变式1.用简便方法计算:①;②;③;④﹣989×(﹣9)+989×(﹣19)﹣(﹣989)×10.变式2.计算:(1)(2).变式3.(1);(2);(3);(4)(﹣8)×(﹣12)×(﹣0.125)×(﹣)×(﹣0.1).变式4.计算下列各式:(1)(﹣4)×1.25×(﹣8);(2)×(﹣2.4)×;(3)(﹣14)×(﹣100)×(﹣6)×(0.01);(4)9×15;(5)﹣100×﹣0.125×35.5+14.5×(﹣12.5%);(6)(1﹣2)×(2﹣3)×(3﹣4)×(4﹣5)×…(19﹣20).知识点五:有理数的除法例5.计算(﹣16)÷8的结果等于()A.B.﹣2 C.3 D.﹣1变式1.(2014秋•山西校级月考)(1)两数的积是1,已知一数是﹣2,求另一数;(2)两数的商是﹣3,已知被除数4,求除数.变式2.计算:(1)(﹣36)÷9(2)(﹣)×(﹣3)÷(﹣1)÷3.变式3.计算:(1)﹣5÷(﹣1);(2)(﹣)÷(﹣)÷(﹣1).知识点六:有理数乘除混合运算例6.计算(1)(﹣)×(﹣)×0×(2)(3)(﹣﹣)×(﹣24)(4).知识点七:有理数四则混合运算例7.计算(1)(﹣3)×(﹣9)﹣8×(﹣5)(2)﹣63÷7+45÷(﹣9)(3)(﹣)×1÷(﹣1)(4)(1﹣+)×(﹣48).变式1.计算(1);(2).(3);(4).变式2.怎样算简便就怎样算(1)2÷+3×(2)÷25%﹣÷0.75.变式3.计算:(1)(﹣)÷(﹣﹣);(2)(﹣28+14)÷7.变式4.计算(1)5.02﹣1.37﹣2.63(2)72×(﹣+﹣)(3)×[÷(﹣)](4)[﹣(﹣)÷]÷.变式5.计算(1)﹣20+(﹣14)﹣(﹣18)﹣13 (2)﹣22+|5﹣8|+24÷(﹣3)×.变式6.计算下列各题①(﹣7)+5﹣(﹣3)+(﹣4);②4×(﹣3)﹣|﹣|×(﹣2)+6;③(﹣+)×(﹣42);④﹣1+5÷(﹣)×4.拓展点一:概念、法则的理解问题例8.若a+b<0,ab<0,则()A.a>0,b>0B.a<0,b<0C.a,b两数一正一负,且正数的绝对值大于负数的绝对值D.a,b两数一正一负,且负数的绝对值大于正数的绝对值变式1.若a+b<0,ab<0,则下列说法正确的是()A.a、b同号B.a、b异号且负数的绝对值较大C.a、b异号且正数的绝对值较大D.以上均有可能变式2.下列说法中错误的是()A.一个数同0相乘,仍得0B.一个数同1相乘,仍是原数C.一个数同﹣1相乘得原数的相反数D.互为相反数的积是1变式3.如果两个数的和是正数,这两个数的积是负数,那么这两个数()A.都是正数B.都是负数C.异号的两个数,并且正数的绝对值较大D.异号的两个数,并且负数的绝对值较大变式4.若a、b为两个有理数,且ab<0,a+b<0,则()A.a、b都是正数B.a、b都是负数C.a、b异号,且正数的绝对值大D.a、b异号,且负数的绝对值大变式5.不计算,只判断下列结果的符号:(1)(﹣6)+(﹣4)(2)(+9)+(﹣4)(3)(﹣7)﹣(﹣4)(4)(﹣6)×(+3)×2×(﹣1)拓展点二:学科内知识的综合例9.写出符合下列条件的数:(1)最小的正整数:;(2)绝对值最小的有理数:;(3)绝对值大于3且小于6的所有负整数:;(4)在数轴上,与表示﹣1的点距离为5的所有数:;(5)倒数等于本身的数:;(6)绝对值等于它的相反数的数:.变式1.如图,已知点A在数轴上,从点A出发,沿数轴向右移动3个单位长度到达点C,点B所表示的有理数是5的相反数,按要求完成下列各小题.(1)请在数轴上标出点B和点C;(2)求点B所表示的有理数与点C所表示的有理数的乘积;(3)若将该数轴进行折叠,使得点A和点B重合,则点C和数所表示的点重合.变式2.已知a和b互为相反数,c和d互为倒数,m是绝对值等于2的数,求式子(a+b)+m﹣cd+m.拓展点三:乘除运算中的一些技巧例10.﹣99×36.变式1.用简便方法计算:(1)﹣13×﹣0.34×+×(﹣13)﹣×0.34(2)(﹣﹣+﹣)×(﹣60)变式2.简便计算(1)(﹣48)×0.125+48×(2)()×(﹣36)变式3.用简便算法计算下列各题.(1)(2).拓展点四:有理数乘除法在实际生活中的应用问题例11.小刘、小张两位同学玩数学游戏,小刘说“任意选定一个数,然后按下列步骤进行计算:加上20,乘以2,减去4,除以2,再减去你所选定的数”,小张说“不用算了,无论我选什么数,结果总是18”,小张说得对吗?说明理由.变式1.某班抽查了10名同学的期末成绩,以80分为基准,超出的记为正数,不足的记为负数,记录的结果如下:+8,﹣3,+12,﹣7,﹣10,﹣3,﹣8,+1,0,+10.(1)这10名同学中最高分是多少?最低分是多少?(2)10名同学中,低于80分的所占的百分比是多少?(3)10名同学的平均成绩是多少?变式2.某自行车厂一周计划每日生产400辆自行车,由于人数和操作原因,每日实际生产量分别为405辆、393辆、397辆、410辆、391辆、385辆、405辆.(1)用正负数表示每日实际生产量与计划量的增减情况;(2)该车厂本周实际共生产多少辆自行车?平均每日实际生产多少辆自行车?变式3.已知海拔每升高1 000m,气温下降6℃,某人乘热气球旅行,在地面时测得温度是8℃,当热气球升空后,测得高空温度是﹣1℃.求热气球的高度.变式4.一辆货车从超市出发,向东走3千米到达小李家,继续向东走1.5千米到达小张家,然后又回头向西走9.5千米到达小陈家,最后回到超市.(1)以超市为原点,向东为正,以1个单位长表示1千米,在数轴上表示出上述位置.(2)小陈家距小李家多远?(3)若货车每千米耗油0.5升,这趟路货车共耗油多少升?变式5.东东有5张卡片写着不同的数字的卡片:他想从中取出2张卡片,使这2张卡片上数字乘积最大.你知道应该如何抽取吗?最大的乘积是多少吗?变式6.李老师利用假期带领7名学生到市区社会实践,汽车票每张原价为30元,现在有两种优惠方案:第一种方案是所有成员全部打8折;第二种方案是学生打9折,教师免票.请问李老师他们应该采用哪种方案乘车比较合算?变式7.某粮食加工厂从生产的粮食中抽出20袋检查质量,以每袋50千克为标准,将超过的千克数记为正数,不足的千克数记为负数,结果记录如下:与标准质量的偏差:单位(千克)﹣0.7 ﹣0.5 ﹣0.2 0 +0.4 +0.5 +0.7袋数 1 3 4 5 3 3 1问:这20袋大米共超重或不足多少千克?总质量为多少千克?变式8.某日下午,出租车司机小王在南北走向的南海大道上运营.如果规定向南为正,向北为负,出租车的行车情况记录如下(单位:千米):+15,﹣4,+13,﹣10,﹣12,+3,﹣17.将最后一名乘客送到目的地时,小王距出车地点的距离是多少千米?如果每百公里耗油10升,那么小王下午耗油多少升?拓展点五:作商比较两个有理数的大小例12.比较大小:43-______;87-)32(+-______);43(-+拓展点六:新型题例13.设[x]表示不大于的所有整数中最大的整数,例如:[1.7]=1,[﹣1.7]=﹣2,根据此规定,完成下列运算:(1)[2.3]﹣[6.3](2)[4]﹣[﹣2.5](3)[﹣3.8]×[6.1](4)[0]×[﹣4.5].变式1.对于正整数a 、b ,规定一种新运算﹡,a ﹡b 等于由a 开始的连续b 个正整数的积,例如:2﹡3=2×3×4=24,5﹡2=5×6=30,那么7﹡(1﹡2)的值等于多少?变式2.若定义一种新的运算“*”,规定有理数a*b=4ab ,如2*3=4×2×3=24.(1)求3*(﹣4)的值;(2)求(﹣2)*(6*3)的值.变式3.若“!”表示一种新运算,并且1!=1,2!=2×1,3!=3×2×1,那么100!÷99!的商是多少?变式4.阅读下题解答:计算:.分析:利用倒数的意义,先求出原式的倒数,再得原式的值.解:×(﹣24)=﹣16+18﹣21=﹣19.所以原式=﹣.根据阅读材料提供的方法,完成下面的计算:.易错点一:“加”“乘”运算结果符号确定方法不同,二者莫混例14.计算:(1)﹣5﹣1(2)(﹣20)÷5(3)6﹣[﹣(﹣2)](4)2﹣|﹣0.4|(5)﹣(+20)+(+45)﹣(+80)﹣(﹣35)(6)(﹣24)÷2×(﹣3)÷(﹣6)易错点二:运算顺序应注意例15.计算:(1)(﹣85)×(﹣25)×(﹣4);(2)﹣;(3);(4).易错点三:乘法分配律不适用于除法运算例16.(﹣)÷(﹣+﹣)变式1.计算:(﹣)÷(﹣+﹣).变式2.计算:﹣÷(+﹣).变式3.计算:(﹣45)÷[(﹣)÷(﹣)].变式4.计算:12÷(﹣3﹣+).。

1.4 有理数的乘除法

1.4 有理数的乘除法
(2)有理数四则混合运算法则:如有括号,则按括号的顺序运 算,如无括号,则按照“先乘除,后加减”的顺序进行运算.
例1、计算: (2 1) (3 4).
4
5
解: (2 1) (3 4) 9 19 171.
4
5 4 5 20
易错点提示:不要忽略了符号.
误区警示:本节常见的思维误区是:(1)忽略运算顺序问 题;(2)运算律应用出现错误;(3)相反数与倒数混淆.
知能点7 利用有理数的除法法则进行化简
知能点8 有理数的乘法混合运算(重点)
有理数乘除混合运算往往先将除法转化成乘法,然后按照 乘法法则,确定积的符号,最后求出结果.
知能点9 有理数加减、乘除混合运算(难点) 有理数的四则运算,是有理数运算的顶峰阶段,是有理数加
减、乘除运算的综合运用.在运算时注意按照“先乘除,后加减” 的顺序进行.
题型五:利用乘法运算律进行“拆项”
例7、若a、b互为相反数,c、d互为倒数,m的绝对值是2, 求(a+b+cd)m-cd的值.
题型六、有理数的加减乘除混合运算
题型七:有理数运算的实际应用
例9、根据实际测定:高度每增加1km,气温大约降低6℃,某 登山运动员在攀登某山峰的途中发回信息,报告他所在高度的气温 为-15℃,如果当时地面温度为3℃,登山运动员所在位置的高度 能确定吗?
个数相乘,再把积相加.
4.几个不等于零的数相乘,积的符号由负因数的个数决定,当 负因数有奇数个时,积为负;当负因数有偶数个时,积为正.
(1)有理数除法法则:①除以一个不等于0的数,等于乘这个
数的倒数,即 a b a 1 (b 0). ②两数相除,同号得正、异号得 b
负,并把绝对值相除.零除以任何一个不等于零的数,都得零.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5 9 1 解:(1) 3 6 5 4
多个不是0 的数相乘, 先做哪一步, 再做哪一步?
4 1 5 6 (2)
5 4
5 9 1 3 6 5 4
4 1 5 6 5 4

思考
几个不是0的数相乘,积的符号与负因数的个数之间有什么关系? 负因数的个数为奇数,积为负数,负因数的个数为偶数,奇为正数.
偶数 几个不是0的数相乘,负因数的个数是________ 时,积是正数; 奇数 时,积是负数. 负因数的个数是________
例3
计算
5 9 1 (1) 3 6 5 4 4 1 (2) 5 6 5 4
2、过程与方法:创设有趣情境,激励学生积极探究.
3、情感态度:在探究活动过程中有所发现,获得成功的体验. 教学重点:有理数的乘法法则的探究过程,并能准确运用法则进行计算. 教学难点:对有理数乘法意义的理解.
探究有理数乘法法则
我们已经熟悉了正数及零的乘法运算,引入负数后怎样进行 有理数的乘法运算呢?
计算 5×[3+(-7)]= 5×(-4)= -20
5×3+5×(-7)= 15-35= -20

5×[3+(-7)]= 5×3+5×(-7)
一般地,一个数同两个数的和相乘,等于把这个数分别同 这两个数相乘,再把积相加.
分配律:a(b+c)=________ ab+ac
例5 用两种方法计算
1 1 1 解法1: 12 4 6 2
一般的,在有理数中,两个数相乘交换因数的位置,积相等.
ba 乘法交换律:ab=______
[3×(-4)]×(-5)= 60 3×[(-4)×(-5)] 60 = [3×(-4)]×(-5)=3×[(-4)×(-5)]
三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等 乘法结合律:
a( bc ) (ab)c=______
解法1先做加法运算,再做乘法运算。解法2先做乘法运算,再做 加法运算 解法2用了分配律. 解法2的运算量小,因为解法1先要通分计算三个分数的和.
计算:
(-85)×(-25)×(-4) =(-85)×[(-25)×(-4)] =(-85)×100=-8500
7 1 15 1 8 7 7 8 = 15 8 7
括号外的因数是正数,去括号后式于各项的 符号与括号内式子相应各项的符号相同 括号外的因数是负数,去括号后式于各项的 符号与括号内式子相应各项的符号相反
例7 计 算
3(2 x 3)
3x (2 x 4) (2 x 1)
3x 2 x 4 2 x 1
5 y 3
5x 2 y 3
5x 5 2 y 5 3
5 x 10 y 15
5x 2 y 3
5 x (5) (2 y) (5) 3
5 x 10 y 15
上面这两个题,运用乘法分配律可以将 式子中的括号去掉
0
2
4
6
3分钟蜗牛应在l上点O右边6cm处,这可以表示为 (-2)×(-3)=+6 ④
① (-2)×(+3)=-6 ② (+2)×(-3)=-6 ③ (-2)×(-3)=+6 ④
正数乘正数积为( 正 )数
(+2)×(+3)=+6
负数乘正数积为( 负 )数
正数乘负数积为( 负 )数 负数乘负数的积( 正 )数 积
ax+bx=(a+b)x x a b ax与bx这两
上式中 是字母因数, 与 分别是 项的系数.
例6 计算
2 y 0.5 y
解:
1 3x x x 2
2 y 0.5 y (2 0.5) y 1.5 y
1 1 5 3x x x 3 1 x x 2 2 2
你能把下面这两个式子中的括号去掉吗?
( x 2 y 3) x 2 y 3
( x 2 y 3) x 2 y 3
( x 2 y 3) x 2 y 3
2( x 2 y 3) 2 x 4 y 6
比较上面各式,你能发现去括号时符号变化的规律吗?
7 8 = 15 8 7
9 1 30 10 15
9 1 = 30 30 10 15
=27 2=25
= 115= 15
重点知识
1.乘法的交换律
ab= ba a(b+c)=ab+ac
2.乘法的分配律 3.乘法的结合律
绝对值
相反数
关于原点对称,只有 符号不同的两个数
05 04 03
数轴上的数a与原点 的距离,记作|a|
数轴
三要素:原点、正方 向、单位长度
有理数
整数和分数统 称为有理数
02 01
正数和负数
具有方向性的数
有理数的加法 同号相加,结果的符号不变, 并将绝对值相加
有理数的减法 减去一个数,等于加
异号相加,结果的符号取绝对
的乘积记做3
x,那么你知道2 x+3 x=?
2
将分配律反过来利用,得出:
x+3 x=(2+3)x=5x 即x的2倍与x的3倍合并为x的5倍
你知道 -0.5 =? 将分配律反过来利用,得出:
x
x
x-0.5x=(1-0.5)x=0.5x
一般地,合并有相同字母因数的式子时,只需要它 们的系数合并,所得结果作为系数,再乘字母因数, 即:
=0
小结
重 点 知 识:
1.几个不是0的数相乘,负因数的个数是偶数时,积是正数;负 因数的个是奇数时,积是负数. 2.几个数相乘,如果其中有因数为0,积等于0.
方法规律
先确定积的符号,再把各个乘数的绝对值相乘,作为积的绝对值.
探索
计算 5×(-6)= -30 (-6)×5=-30
5×(-6)=(-6)×5
(ab)c=a(bc )
重要的方法:
运算律很重要关键是在计算过程中,要灵活运用,使计算过程简便
问题1:如何简便地计算下面两个问题?
4×(-3)+3×(-3)-2×(-3)+7×(-3)
解法1:=-12+(-9)-(-6)+(-21)
=-21-(-6)+(-21) =-15+(-21)=-36 解法2:原式=(4+3-2+7)×(-3) =12×(-3)=-36
-8 -6 -4 -2 0
3分钟蜗牛应在l上点O左边6cm处
这可以表示为 (-2)×(+3)=-6

(3)如果蜗牛一直以每分2cm的速度向右爬行,3分钟前它在什么位置?
-8
-6
-4
-2
0
3分钟前蜗牛在l上点O左边6cm处,这可以表示为 (+2)×(-3)=-6

(4)如果蜗牛一直以每分钟2cm的速度向左爬行,3分钟前它在什么位置?
解:(-6)X3=-18
答:气温下降18℃.
练习
1、计算: (1)6X(-9) (3)(-6)X(-1) (2)(-4)X6 (4)(-6)X0
2 9 (5) ( ) 3 4
1 1 (6)( ) 3 4
(异号相乘得负) (异号相乘得负)
解:(1)6X(-9)= -54 (2)(-4)X6= -24 (4)(-6)X0= 0
乘积的绝对值等于各乘数绝对值的(

有理数乘法法则 两数相乘,同号得正,异号得负,并把绝对值相乘 任何数同0相乘,都得0.
例1:计算;
(1)(-3)×9
(3) (-5)X(-3)
(2) (- 1 2
)×(-2)
(4)(-7)X4
(异号相乘得负) (同号相乘得正)
解:(1)(-3)×9= -27
(2)(- 1 )×(-2)= 1 2
比较一下 解法1和解 法2哪种方 法简单? 为什么?
解法2简单,因为逆用了 乘法的分配律(即将分 配律反过来用)
问题2:探讨一下,下面这道题如何做简便:
(-23)×25-6×25+18×25+25
=(-23-6+18+1)×25
=(-10)×25=-250
问题3:字母x表示任意一个有理数,2与x的乘积,记做2 x,3与x,
(3)(-5)X(-3)=15 (4)(-7)X4= -28
(同号相乘得正) (异号相乘得负) 数a(a≠0)的 倒数是什么? 1 __
有理数相乘, 符号 先确定积的___ 再确定积的 _____ 绝对值
a
乘积是1的两个互为倒数
例2 用正负数表示气温的变化量,上升为正,下降为负。 登山队攀登一座山峰,每登高1km气温的变化量为- 6℃,攀登3km后,气温有什么变化?
5 8 1 2 12 15 2 3
(2)
5 8 1 2 12 15 2 3
2 27
5 8 3 2 1 0 1 (3) 4 15 2 3
我们借助数轴来探究有理数的乘法的法则
一只蜗牛沿直线l爬行, 它现在的位置恰在l上的点O
0
l
(1)如果蜗牛一直以每分钟2cm的速度向右爬行,3 分钟后它在什么位置?
0
2
4
6
3分钟蜗牛应在l上点O右边6cm,这可以表示为 (+2)×(+3)=+6 ①
(2)如果蜗牛一直以每分钟2cm的速度向左爬行,3分钟后它在什么位置 ?
相关文档
最新文档