自动控制原理第七章

合集下载

自动控制原理第7章

自动控制原理第7章
而重要关心其时域响应的性质,如:稳定性、自持 振荡。
7.2 描述函数法
一、描述性函数的定义
非线性元件的输入为正弦波时,将其输出的非正弦波的一次谐波(基
波) 与输入正弦波的复数比,定义为非线环节的描述函数。
分析:
设 输入为:
x(t) Asint
则输出:

y(t) A0 (An cos nt Bn sin nt) n1
见图示说明:
但非线性系统则不然,它的稳定性不仅与系 统的结构和参数有关,还与输入信号及初始 条件有关。因此不能笼统地泛指某个非线性 系统是否稳定,而必须指明不同条件下系统 的稳定性。
3.非线性系统的自激振荡
线性系统只在阻尼比为零时,产生周期性的 等幅振荡;而且这样情况极少出现,极易变 化。但是在非线性系统中,常会出现具有一 定频率、一定振幅的稳定的等幅振荡,即自 激振荡。
二、改变非线性特性
1、改变非线性元件的参数
例如,在例7.1中,当线性部分参数不变(k=15)时,改变非线性部分的参 数a或b,可以使负倒描述函数曲线往左移,从而使两特性曲线不相交,即使 原有自持振荡的系统变为稳定。
2、对非线性元件采用某种并联校正
例如,一个饱和非线性元件并入一合适的死区非线性元件后,变成了线性 比例元件。
An

1

2 0
y(t) cosntdt
Bn

1

2 0
y(t ) sin
ntdt
假设输出为对称奇函数,则 A0 0 ;假设具有低通滤波特性,高次谐波
可忽略。
则非线性环节输出可认为
y(t) y1(t) A1 cost B1 sin t
Y1 sin(t 1) Y1e j1

自动控制原理第七章

自动控制原理第七章
2 e e 2 (III)
§7.2
相平面法(10)
区域 运动方程 奇点 特征方程 极点 奇点性质
奇 点 类 型
I e 0
e1
s2 0
s0
II e e - 2 0 e2 2 s2 1 0 s j 中心点
III e e 2 0 e3 -2 s2 1 0 s j 中心点

线性部分
C(s) U(s)

1 s2
s
c c u
1 eh (I) 非线性部分 u e e h ( II )
1 e h (III)
比较点 e r c c
1 c h ( I )
整理
c c u c c h ( II)
1 c h (III)
间隙
继电特性
§7
非线性控制系统分析(2)
§7.1.3 非线性系统运动的特殊性
不满足叠加原理 — 线性系统理论原则上不能运用
稳定性问题
— 不仅与自身结构参数,且与输入,初条件
有关,平衡点可能不惟一 nonlinear1
自振运动
— 非线性系统特有的运动形式 nonlinear6
频率响应的复杂性 — 跳频响应,倍/分频响应,组合振荡 (混沌)

xe1 xe2

0 1

x x

x x

xe1 xe 2

x x

1
线化
x x
0.5x 0.5x
x 0 (x 1)
(x
1)2

0
x 0.5x x 0 x 0.5x x 0
§7.2 相平面法

第七章自动控制原理

第七章自动控制原理

分析方法:频域上有描述函数法和波波夫法;时域 上有相平面法和李亚普诺夫第二法。计算机仿真的 方法也可以分析复杂的非线性系统。
§7.2
二阶线性和非线性系统的相平面分析
一、相平面、相轨迹和平衡点 二阶系统的二阶微分方程可以用两个一阶的微分 方程来表示: 1 (t ) f1 t , x1 (t ), x2 (t ) (7-2-1) x
二、控制系统中非线性特性的分类 非本质非线性:光滑连续可以局部线性化。 本质非线性: 1. 饱和特性
y M -a a -M x
放大器的饱和输出特性 磁饱和 元件的行程限制 功率限制等等。
kx(t ) y (t ) ka sgn x(t ) x(t ) a x(t ) a
当输入信号超出其线性范围后,输出信号不再随输入 信号变化而保持恒定。
说明:相轨迹为一簇抛物线, x1=r为分界线;不同初始状态, 相轨迹是不同的,时间响应呈周 期运动的形式,中心点为(r,0); 相轨迹按顺时针变化。
r
x1
x1<r区
x1>r区
相平面的性质: (1)相平面的对称性 相轨迹的对称性可由对称点上相轨迹的斜率来判断。 (2)相轨迹上的奇点和普通点。
通过该点的相轨迹的斜率是一个定值,通过该点的相轨迹 不可能多于一条,则相轨迹不能相交,该点即为普通点。 若 dx2 f ( x1 , x2 ) 0
R(s) + -
M
-M
1 s2
C(s)
d 2c y 2 dt
非线性部分(理想继电器特性)输入与输出的关系为:
y M sgn e M sgn(r c)
试绘制相轨迹。 , 解:选择状态变量,令 x1 c, x2 c 则系统的相变量方程为

自动控制原理第七章

自动控制原理第七章

7.3 相平面法及其在系统分析中的应用
• 相平面分析(phase plane analysis)
f ( x, x ) 0 x
相平面 相变量 相轨道 相平面图 令系统的状态 x1 x x2 x
dx1 x2 dt
dx2 定极限环
• 不稳定极限环 • 半稳定极限环
相平面法在系统分析设计中的应用
对于一个分段线性化的非线性来说,只要我 们对各线性区域内的相平面能正确绘制,那 么我们根据系统状态连续变化的特点,把各 区域内的相轨迹彼此正确地衔接起来就可以 得到非线性系统的完整相平面图。
☆ 线性系统的相平面图分析 ☆ 非线性系统相平面分析
x(t ) A sin ωt
y(t ) A0 ( An cos nωt Bn sin nωt )
n 1

y(t ) y1 (t ) A1 cosωt B1 sin ωt Y1 sin(ωt φ1 )
1 2π A1 y (t ) cos ωt d (ωt ) π 0
非线性系统的负倒描述函数
包含非线性环节闭环系统的稳定判据
假定 G( jω)的极点都位于复左半平面,在复平面上 分别绘制 G( jω) 的极坐标曲线和 1 / N ( A)曲线,则: (1) G( jω) 曲线不包围 1 / N ( A) 曲线,则闭环系统 是稳定的; (2)G( jω) 曲线包围 1 / N ( A) 曲线,则闭环系统不 稳定; (3)若 G( jω) 曲线与 1 / N ( A) 曲线相交,则系统可 产生自激振荡(极限环),该极限环可能是稳定 的,也可能是不稳定的,取决于 1 / N ( A) 相交点的 情况。
★ 绘制相平面图的解析法 ★ 绘制相平面图的图解法

自动控制原理第七章

自动控制原理第七章

条件下的时间响应曲线如图所示。
四、非线性控制系统的特点
3.稳定性 3.稳定性 从曲线及方程中可以看出, 系统有两个平衡状态,即 x=0和 x=1 。 按稳定性的定义对平衡状 态 x=1来说,系统只要有一 个很小的偏离,就再也不会 回到这一平衡状态上来。 因此,x=1的平衡状态是一个不稳定的平衡状态。
第七章 非线性系统的分析
§7
非线性系统的分析
教学内容:
§7-1 非线性控制系统概述 §7-2 描述函数法 §7-3 相平面法
§7-1 非线性控制系统概述
一、引言 二、研究非线性系统的一般方法 三、典型非线性特性 四、非线性控制系统的特点
一、引言
包含一个或一个以上非线性元件或环节的系统为非线性系 统。 实际上自动控制系统的各个环节不可避免的带有某种程度 的非线性,线性系统只是非线性系统的近似。 非线性系统程度不严重时,在一定范围内或特定条件下, 可采用微偏法进行线性化,这种非线性称为非本质非线性。 如果系统的非线性具有间断点、折断点,称为本质非线性。 这时采用线性系统分析方法去研究会引起很大的误差甚至导 致错误的结论。
四、非线性控制系统的特点
3.稳定性 3.稳定性
线性系统的稳定性取决于系统的结构与参数,与起始 状态无关。 非线性系统的稳定性不仅仅和系统的结构与参数有关, 还和起始状态有直接关系。 一个非线性系统,他的某些平衡状态可能是稳定的, 某些平衡状态可能是不稳定的。因此对于非线性系统, 不存在系统是否稳定的笼统概念,要研究的是非线性系 统平衡状态的稳定性。
2 n
A +B
2 n
An ϕn = arctan Bn
一 描述函数的基本概念
非线性特性为奇对称,则直流分量 A0= 0; 同时,各谐波分量的幅值与基波相比一般都比较小; 因此,可以忽略式中的高次谐波分量,只考虑基波分量, 这种近似也称为谐波线性化。则

自动控制原理第七章

自动控制原理第七章

自持振荡问题 根据以前的分析可知,线性系统可能会 包含二阶振荡环节,但是,由于信号或功率 在传递过程中必然出现损耗,实际工程中绝 对不存在无阻尼情况。但在非线性系统中, 即使没有外部作用,系统也有可能产生一定 频率和振幅的周期运动。并且当系统受到扰 动后,运动仍能保持原来的频率和振幅,因 此这种周期运动具有稳定性。非线性系统出 现的这种周期运动称为自持振荡。
第七章
非线性控制系统的 分析方法
本章目录
第一节 非线性控制系统概念 第二节 描述函数法 第三节 非线性系统的描述函数法分析 第四节 改善非线性系统性能的方法 第五节 相平面分析法 第六节 非线性系统的相平面分析 本章小结
在自动控制系统中,如有一个或一个以 上的环节具有非线性特性时,该自动控制系 统就称为非线性控制系统。 所谓非线性环节就是指环节的输入和输 出之间的静特性不是线性的。 在本章中,我们将讨论非线性控制系统 的分析方法。
稳定性问题 对于线性系统,若它一个平衡状态是稳 定的,可以推出其所有的平衡状态都有是稳 定的。而对于非线性系统,它的某些平衡状 态可能是稳定的,但另外一些平衡状态却可 能是不稳定的。 线性系统的稳定性只与系统的结构形式 和参数有关,而与外作用及初始条件无关。 非线性系统的稳定性不但与系统的结构形式 和参数有关,还与外作用及初始条件有关。
y B
-c
0 c x
-B
图7-05 间隙非线性
三、非线性控制系统的特殊性
叠加原理不能应用于非线性控制系统 对于线性系统,描述其运动的数学模型 是线性微分方程,因此可以应用叠加原理, 进一步还可引入传递函数、频率特性、根轨 迹等概念。由于线性系统的运动特征与输入 的大小及初始状态无关,通常可在典型输入 函数和零初始条件下对系统进行分析。但对 于非线性系统,则不能应用叠加原理,因此 也就不能应用上述概念和方法对其运行状态 进行分析。

自动控制原理第七章

自动控制原理第七章

特点
常见于放大器中,在大信 号作用下,放大倍数小,因而 降低了稳态精度。
a
k
K
0
a
e
4
2、死区特性
0 e(t ) a
x
a
0
k
x
k e (t ) a k e (t ) a
e(t ) > a e (t ) < a
a
e
特点
常见于测量、放大元件中。死区非线性特性导致系 统产生稳态误差,且用提高增益的方法也无法消除。
0 A
a

1 N ( A)
(2)交点 b
外界干扰 外界干扰
G ( j )
A↑ A↓
该交点产生自持振荡
24
总结
G ( j ) 1 N ( A)
A b
Im
Re
1 R e G ( j ) R e N ( A) 1 Im G ( j ) Im N ( A)
G ( j ) 1 N ( A)
1 N ( A) 1 2
Im
1 R e G ( j ) R e N ( A) 1 Im G ( j ) Im 0 N ( A)
Re
A 1
0
28
G ( j )

Im G ( j ) 0
0 .3 K 4 .5

50 rad / s
G(jw)与负实轴 相交处的幅值
R e G ( j )
50
系统临界稳定
0 .3 K c 4 .5

1 2
K c 7 .5

第七章自动控制原理

第七章自动控制原理

采样定理给出了选择采样周期T的依据。
7.2.2 信号复现及零阶保持器
▪ 信号复现 将数字信号转换复原成连续信号的过程称信号复现。该装置称 为保持器或复现滤波器。
▪ 零阶保持器 零阶保持器是最简单也是工程中使用最广泛的保持器。零
阶保持器的输入输出特性可用下图描述。
e*(t)
eh(t)
e*(t) 零阶保持器 eh(t)
n0
n0
采样信号的拉氏变换
E * (s) L[e* (t)] e(nT )e nTS
n0
例 e(t)=eat,试写出e*(t)表达式。
解:e (t ) e anT (t nT ) n0
物理意义:可看成是单位理想脉冲串T (t) 被输入信号e(t)进行
调制的过程,如下图所示
在图中,T(t)为载波信号;e(t)为调制信号; e*(t)为
n0
z z 1
两端对z求导数,得
(n)z n1
n0
1 (z 1)2
两边同乘(-Tz),得单位斜坡信号的z变换
nT z n
Tz
,( z 1)
n0
(z 1)2
(5) 指数函数 e(t)=e-at(a为实常数〕,则
E( Z ) e anT z n n0
1 e aT z 1 e 2aT z 2 e 3aT z 3 (*)
(s ) s o s
1/ Ts Fs ()
o TS
t
s om s
3. 采样定理(香农定理)
如果采样器的输入信号最高角频率为ωmax, 则只有当采样频率ωs≥2ωmax,才可能从采样信号
中无失真地恢复出连续信号。
s 2 max
其中
s
:

自动控制原理第七章

自动控制原理第七章

模拟前置滤波器常常置于传感器和模数转换器之间,它的 作用是抑制来自传感器的模拟信号中的高频噪声分量,以防 止在采样过程中出现混叠现象。
y(nT) y r - 传感器
T
数字控 制器
T
ZOH
对象
数字计算机作为数字控制器方块,它的输入端的采样开 关表示对连续时间信号进行采样,变换为离散时间信号。它 的输出端的采样开关只是一个符号,提醒这里的信号是离散 时间信号。 方块ZOH表示零阶保持器,它把离散时间信号变换为连 续时间信号。 系统的输出一般为连续时间信号,他把整个系统作为离 散时间系统分析时,是当做输出信号经过虚拟的采样开关变 成了离散时间信号来分析的。
a s(s a)
的z变换。
解: E ( s )
a 1 1 e(t ) 1(t ) e at s( s a ) s s a z z z(1 e aT ) E( z) aT z 1 z e ( z 1)(z e aT )
例 求e(t)=sint 的z变换。 解:
E ( s ) Lsint s2 2
1 1 1 E( s) ( ) 2 j s j s j
1 z z E(z) j T j T 2j ze ze 1 z ( e j T e j T ) 2 z z (e jT e jT ) 1) 2j z si nT 2 z 2 z cosT 1
* n 0 k 0 n 0
拉普拉斯变换
Y * ( s) x(nT ) g (kT nT )e kTs
k 0 n 0



令m=k-n,则k=n+m,上式变为

自动控制原理第七章

自动控制原理第七章
基本思想 相轨迹的特点 相轨迹的绘制方法 线性系统的相平面图 非线性系统的相平面图
基本思想
ɺ x
x
相平面分析法是分析非线性系统性能的一种图 示方法。 示方法。而相轨迹和相平面图的绘制为该分析方法的前提 条件。 条件。
x 1 (t), 2 (t) x
相平面定义:由两个线性无关的状态变量 作为坐标的平面称 为相平面。通常采用位移和位移的变化率作为状态变量用于描述一、二 阶系统的运动特性。
ɺɺ = -f(x, x ) ɺ x ⇒ ɺ ɺɺ = d x x = − f(x, x ) ɺ ɺ x dx ⇒ ɺ ɺ dx f(x, x ) = − ɺ dx x
ɺ x
x
相轨迹的绘制方法
解析法
消除变量法 直接积分法
等倾线法绘制相轨迹思 ɺɺ + f(x,ɺ ) = 0 x x 令: ⇒ 路: ɺ dx f(x,ɺ ) x =− ɺ x dx
E 0
Im

Re
死区继电器的负倒描述函数曲线
Im
N(E) N(E)
4M = πE = 0
Δ2 1− E 2 (E ≤ Δ )
(E
≥ Δ)
∆ ∞
E Re

1 N(E)
= − 4M
πE
Δ2 1− E 2
(E
≥ Δ)
拐点参数:
E = 2 Δ 1 − N(E) E =
Y ϕ 非线性环节的描述函数 :N = 1 e j 1 = E
2 2 − A 1 + B 1 jtg 1 B 1 B A = 1+j 1 e E E E
A1
描述函数的自变量为输入正弦信号的幅值
求取描述函数应用举例

自动控制原理第七章

自动控制原理第七章

解:1.将继电特性的参数代入相应公式得到:
4B 12 a 1 N ( A) 1 1 A A A A
2 2
1 πA N(A) 12 1 - 1 2 A
根据
( N (1A) ) ( )
a A
0,求得

1 π 的极值为 6 N ( A)
7.4.2 非线性系统结构的简化
非线性环节串联 若两个非线性环节串联,可将两个环节 的特性归化为一个特性,即以第一个非线性 环节的输入和第二个非线性环节的输出分别 作为归化后非线性特性的输入和输出,从而 作出等效非线性特性。注意,若两个非线性 特性的描述函数分别为 N1 ( A)和 N 2 ( A,等效非 ) 线性的描述函数为 N ( A)绝不等于 N1 ( A和 的 ) ) N2 (A 乘积,并且串联非线性环节的次序不可交换。 对于多个非线性环节串联,其处理方法可以 按照串联的次序,先归化前两个非线性环节, 等效后的非线性特性再与第三个环节进行归 化变换。 非线性环节并联 若两个并联的非线性环节其描述 函数分别为 和 N ( A) ,则并联后的 N 2 ( A) 1 等效非线性环节的描述函 数 。
7.2 典型非线性特性及其对系统的影响
间隙特性
也称回环,机械传动中为保证齿轮转动灵活不卡齿,主动轮、从动 轮齿轮之间必须有适当的间隙存在,使得两者不能同步运转,即从 动轮滞后主动轮。含有间隙特性的系统,其输出相位滞后于输入相 位,从而减小了系统的相稳定裕度,使系统的稳定性变坏,同时增 大了系统的稳差。
7.3 描述函数法
7.3.2 非线性特性的描述函数
非线性特性 描 述 函 数
7.3 描述函数法 描 述 函 数
非线性特性
7.4 用描述函数法分析非线性控制系统

自动控制原理第七章

自动控制原理第七章

饱和特性可以由放大器失去放大能力的饱和现象 来说明,其输入输出关系如图所示。 来说明,其输入输出关系如图所示。
饱和特性
它的数学描述为
+ M , e > +e0 f (e ) = ke,−e0 ≤ e ≤ +e0 − M ,e < 0
在放大器的线性工作区内,叠加原理是适用的。 在放大器的线性工作区内,叠加原理是适用的。但 是输入信号正反向过大时, 是输入信号正反向过大时,放大器的工作进入饱和 工作区,就不满足叠加原理了。从图上可以看到, 工作区,就不满足叠加原理了。从图上可以看到, 在饱和点上,信号虽然是连续的,但是导数不存在。 在饱和点上,信号虽然是连续的,但是导数不存在。 饱和特性在控制系统中普遍地存在。 饱和特性在控制系统中普遍地存在。调节器一般都 是电子器件组成的,输出信号不可能再大时, 是电子器件组成的,输出信号不可能再大时,就形 成饱和输出。有时饱和特性是在执行单元形成的, 成饱和输出。有时饱和特性是在执行单元形成的, 如阀门开度不能再大、电磁关系中的磁路饱和等。 如阀门开度不能再大、电磁关系中的磁路饱和等。
滞环特性
一起, 滞环特性表现为正向行程与反向行程不是重叠 一起,在 输入输出曲线上出现闭合环路因此而得名。 输入输出曲线上出现闭合环路因此而得名。滞环特性又 可以称为换向不灵敏特性。滞环特性与死区特性一样, 可以称为换向不灵敏特性。滞环特性与死区特性一样, 通常也是叠加在其它传输关系上的附加特性, 通常也是叠加在其它传输关系上的附加特性,其输入输 出关系如图所示。 出关系如图所示。
摩擦特性
死区特性
死区又称不灵敏区,在不灵敏区内, 死区又称不灵敏区,在不灵敏区内,控制单元的输入端虽 然有输入信号但是其输出为零。 然有输入信号但是其输出为零。死区特性通常是叠加在其 它传输关系上的附加特性,其输入输出关系如图所示。 它传输关系上的附加特性,其输入输出关系如图所示。

自动控制原理胡寿松--第7章

自动控制原理胡寿松--第7章
离散信号能无失真地恢复到原来的连续信号
采样周期的选取: 原则上采样周期的选取应该保证能够复现系统所能通过 的最高频率的信号,一般需要经过实验确定。对于伺服
系统一般认为频率超过c的信号将被滤除,因而一般选 择采样周期s 10c
信号的复现D/A转换
x (t)
T 2T 3T
解码,将数字信号折算成对应的电压或电流值 x(KT )
1- e-aT a(z - e-aT )
二.线性离散系统的闭环传函
• 在分析离散系统脉冲传递函数时,应注意在 闭环的各个通道以及环节之间是否有采样开关, 因为有、无采样开关所得的闭环脉冲传递函数是 不相同的。
试求右图所示系统的闭环传函
R(s) (s)
-
Y(s)
G1(s)
G2(s)
C* (s)
f () lim f (t) lim(z 1)F(z)
t
z1
(7) 卷积定理
若:Z[ f1(t)] F1(z), Z[ f2 (t)] F2 (z),

则 F1(z) F2 (z) Z[ f1(mT ) f2(kT mT )] m0
4. Z反变换
(1) 幂级数展开法
第七章 线性离散控制系统分析初步
•学习重点
了解线性离散系统的基本概念和基本定理,把握线性连 续系统与线性离散系统的区别与联系;
熟练掌握Z变换、Z变换的性质和Z反变换方法
了解脉冲传递函数的定义,熟练掌握开环与闭环系统脉 冲传递函数的计算方法;
掌握线性离散系统的时域分析方法
7.1 线性离散系统的基本概念
(2) 延迟定理 设t<0时f(t)=0,令Z[f(t)]=F(z),则
Z f (t nT) znF(z)

自动控制原理第七章

自动控制原理第七章
2 1 2 1

0

0
• 这个过程实际上是一个线性化过程,经 过线性化输出的信号与输入信号同频率, 只是在幅值和相位上有差异;
• 经过线性化之后的输入输出关系 Y1 A1 2 2 N ( A) 1 A1 B1 A arctg B1 A Y1 Y1 B1 A1 cos 1 j sin 1 j A A A A • N ( A) 被称为非线性特性的描述函数。 • 一般情况下,描述函数 N ( A) 为入幅值 A 的函数,而与频率无关。当非线性特 性为单值时,相应的描述函数为一实 数,表示输入与输出是同相的。
A1 0
B1
KA sin t 2. 饱和特性 y (t ) Kc
2
0 t
t
4


2
0
1
y (t )sin t d t
0
4

KA sin 2 t d t
2 Kc sin t d t

一.实际系统中的非线性因素
图7-1 一些常见的非线性特性

除上述实际系统中部件的不可避免的非线性因 素外,有时为了改善系统的性能
或者简化系统的结构,人们还常常在系统中引 入非线性部件或者更复杂的非线性控制器。 通常,在自动控制系统中采用的非线性部件, 最简单和最普遍的就是继电器。

图7-2 电磁继电器的工作原理和输入-输出特性
7.3 描述函数法
一、描述函数的基本概念
R


G1
x1
非线性
x2
G2
Y
H
当非线性元件输入一个正弦信号 x A sin t 输出是一个含有高次谐波的周期函数:

自动控制原理 第七章 采样系统理论

自动控制原理 第七章 采样系统理论
2. 幂级数法(综合除法) n -1 -2 由Z变换的定义 E ( z ) e(nT )z e (0) e (T)z e (2T)z
b0 b1 z b2 z bm z m 而 E( z) (m n) c0 c1z-1 c2z-2 1 a 1 z 1 a 2 z 2 a n z n
t 0 z
(7) 终值定理 若e (t)的z变换为E(z),函数序列e(nT)为有限值(n=0,1,2,…), 且极限 lim e ( nT ) 存在,则
n
lim[e( nT )] lim( z 1) E ( z )
n z 1
离散系统的数学模型
脉冲传递函数 脉冲传函定义
第七章
采样系统理论
离散系统的相关概念 离散系统的数学模型 离散系统的稳定性分析 离散系统的稳态误差计算
离散系统的校正
信号的采样与保持
采样过程与采样定理
采样过程
e(t) S e*(t) T e(t) e*(t)

0
t
0

T 2T
t
(a)
(b)
(c)
基本概念:
1)采样周期:采样开关经一定时间T,重复闭合,每次闭合时间为τ, τ<T,T称为采样周期。f=1/T为采样频率。 2)采样角频率:ωs=2π/T rad/s。 3)采样脉冲序列:连续时间函数经采样开关采样后变成重复周期T的时 间序列,称为采样脉冲序列。 4)采样过程:将连续时间函数经过采样开关的采样而变成脉冲序列的 过程,称为采样过程。
R(s) + - T
K s(s 4)
C(s)
K K 1 1 Z G(z) Z s( s 4) 4 s s 4 K z z K 1 e 4T 4T 4 z 1 z e 4 ( z 1)(z e 4T )

精品文档-自动控制原理(王春侠)-第七章

精品文档-自动控制原理(王春侠)-第七章
4
该系统借助于指针、凸轮对连续误差信号e(t)进行采样, 将连续信号转换成了脉冲序列e*τ(t),凸轮就成了采样器(采 样开关),如图7-2(b)所示。有了诸如指针、凸轮这样的元件 后,使得原来的系统至少有一处存在离散信号,这时系统成为 采样控制系统。
在炉温控制过程中,如果采用连续控制方式,则无法解决 控制精度与动态性能之间的矛盾。因为该系统中工业炉是具有 时滞特性的惯性环节,其滞后时间可长达数秒甚至数十秒,时 间常数可长达千秒以上。当增大开环增益以提高系统的控制精 度时,由于系统的灵敏度相应提高,在炉温低于给定值的情况 下,电动机将迅速增加阀门开度,给炉子供应更多的加热气体。
控制计算机的5个输出接口分别为主控输出口、前馈输出 口和3个误差角θe=θi-θo显示口。主控输出口由12位D/A 转换芯片DAC1210等组成,其中包含与系统误差角θe及其一阶 差分Δθe成正比的信号,同时也包含与系统输入角θi的一阶 差分Δθi成正比的复合控制信号,从而构成系统的模拟量主 控信号,通过PWM放大器驱动伺服电机,带动减速器与小口径 高炮,使其输出转角θo跟踪数字指令θi。
数字信号发生器给出的16位数字输入信号θi经两片8255 芯片的口A进入控制计算机,系统输出角θo(模拟量)经 110XFS1/32多极双通道旋转变压器和2×12XSZ741 A/D变换器 及其锁存电路完成绝对式轴角编码的任务,将输出角模拟量 θo转换成二进制数码粗、精各12位,该数码经锁存后,取粗 12位、精11位由芯片8255的口B和口C进入控制计算机。然后 经计算机软件运算,将精、粗合17 并,得到16位数字量的系统输
27
图7-9 数字控ห้องสมุดไป่ตู้系统的典型结构图
28
3. 离散控制系统的特点 采样和数字控制技术在自动控制领域得到越来越广泛
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
作用后,运动仍然保持原来的频率和振幅,即这种周期运动 具有稳定性,这种现象称为自持振荡,这是非线性系统独有 的现象。
2013-12-13
<<自动控制原理>>第七章
9
4、非线性系统不适用叠加原理
在线性系统中,若干个信号作用于系统上,我们可以分 别求单独信号作用的响应,然后再叠加就可以求出总的响应。
这给分析综合线性系统带来了很大方便。通常在典型输入函
<<自动控制原理>>第七章
22
2013-12-13
<<自动控制原理>>第七章
23Leabharlann 二、相平面图的分析 1.线性系统奇点的类型 假设奇点在相平面的原点上, f ( x, x) 是解析函数,可用泰勒 级数将其在原点附近展开:
f ( x, x) f ( x, x) f ( x, x) f ( x, x) x 0 x 0 x x 0 x g ( x, x ) x x x 0 x 0 x 0 其中,g ( x, x) 是包含 x, x 二次以上的项,在原点附近,x, x 都很小,g ( x, x) 可以忽略。注意到在奇点处有

dx d ( x) dx dx
表示在 ( x, x) 点和 ( x, x) 点相轨迹曲线的斜率大小相等,符 号相反,故关于 x 轴对称。
2013-12-13 <<自动控制原理>>第七章 14
若 f ( x, x)是 x 的奇函数,即 f ( x, x) f ( x, x)
2013-12-13
<<自动控制原理>>第七章
17
c.系统的状态沿相轨迹曲线转移的方向
若相轨迹和 x 轴相交,则一般是垂直相交(除了奇点外)。 由于相轨迹与 x 轴相交时, 0,则 x
dx f ( x, x) dx x
若 x 0 ,则 x 将逐渐增大,若 x 0 ,则 x 将逐渐减小。 在相平面图中反映为:相平面的上半部,系统状态将沿相轨迹
kx(t ) x(t ) a y (t ) ka signx(t ) x(t ) a
1 x(t ) 0 signx(t ) 1 x(t ) 0 0 x(t ) 0
2013-12-13
例子:放大器
2
<<自动控制原理>>第七章
2、不灵敏区非线性特性(死区特性) 不灵敏区非线性特性如图所示:
2013-12-13 <<自动控制原理>>第七章 4
4、继电器非线性特性 继电器非线性特性如图所示: 其特性中包含了不灵敏区、饱和 及滞环 数学表达式为
0 x(t ) 0, ma x(t ) a 0 x(t ) 0, a x(t ) ma y (t ) b signx(t ) x(t ) a b x(t ) 0, x(t ) ma b x(t ) 0, x(t ) ma
15
若 f ( x, x)关于原点对称,即 f ( x, x) f ( x, x)
则有
f ( x, x) f ( x, x) f ( x, x) x x x
dx d ( x) dx d ( x)

表示在 ( x, x) 点和 ( x, x)点相轨迹曲线的斜率大小相等, 符号相同,故关于原点对称。
则 故
2013-12-13
<<自动控制原理>>第七章
13
(1)相平面图的性质 a.相平面图的对称性
相平面图可能关于 x 轴,x 轴或坐标原点对称。 若 f ( x, x)是 x 的偶函数,即 f ( x, x) f ( x, x)
则有
f ( x, x) f ( x, x) f ( x , x ) ( ) x x x
则有
f ( x, x) f ( x, x) f ( x, x) x x x
dx dx dx d ( x)

表示在 ( x, x) 点和 ( x, x) 点相轨迹曲线的斜率大小相等,符 号相反,故关于 x 轴对称。
2013-12-13
<<自动控制原理>>第七章
21
等倾斜线是通过原点的直线。
2013-12-13 <<自动控制原理>>第七章
当给定不同的 值,便可得到对应的等倾斜线的斜率。
在相平面作出以上等倾斜线及相应短线,再由初始状态 (0,1) 出发,便可得相轨迹。 为保证作图的精度,一般取相邻两条等倾线之间的夹角为
50 ~ 100
2013-12-13
2013-12-13
<<自动控制原理>>第七章
7
2、不能用纯频率法分析和综合校正系统
在线性系统中,输入为正弦函数时,稳态输出也是频率
相同的正弦函数,两者仅在幅值和相位上有所不同,因而可 以用频率特性法分析和综合校正系统。但对于非线性系统, 如果输入为正弦函数,其输出通常包含有一定数量的高次谐 波的非正弦函数。非线性系统有时可能出现跳跃谐振、倍频
2013-12-13 <<自动控制原理>>第七章 12
2、相平面图的绘制
x f ( x, x) 0

dx dx dx dx x= x dt dx dt dx dx x f ( x, x) 0 dx dx f ( x, x) dx x
理想继电器特性
2013-12-13
<<自动控制原理>>第七章
6
三、非线性控制系统的特殊性
1、稳定性 线性系统的稳定性只由系统本身的结构及参数决定,而 与系统的初始状态无关。然而,非线性系统的稳定性不仅取
决于系统本身的结构和参数,而且还与系统的初始状态有关。
对于同一结构和参数的非线性系统,初始状态位于某一较小 的区域内时系统稳定,但在较大初始值时系统可能不稳定, 有时也可能相反。故对非线性系统,不应笼统地讲系统是否 稳定,要研究的是非线性系统平衡状态的稳定问题。
其数学表达式为
0 x(t ) a y (t ) k[ x(t ) a signx(t )]
2013-12-13
例子:测量元件、执行元件
x(t ) a
3
<<自动控制原理>>第七章
3、间歇非线性特性(回环特性) 间隙非线性特性如图所示:
其数学表达式为
b b b x(t ) 0, a k x(t ) a k k ( x a) x(t ) 0, a b x(t ) a b k k y (t ) b x(t ) 0, a b x(t ) a b k k b b k ( x a) x(t ) 0, a x(t ) a k k
迹曲线。等倾线法中,首先用等倾线来确定相平面中相轨迹
斜率的分布,然后再根据初始条件绘制相轨迹曲线。等倾线
法又称折线法。 令
dx f ( x, x) —— 等倾斜线方程 dx x
若 f ( x, x) 是关于 x 和 x 的线性函数,则等倾斜线是直线 若 f ( x, x) 是关于 x 和 x 的非线性函数,则等倾斜线是曲线
2013-12-13 <<自动控制原理>>第七章 5
几种特殊的继电器特性
带死区的继电器特性 带滞环的继电器特性 b signx(t ) x(t ) a y(t ) b signx(t ) y(t ) b signx(t ) x(t ) a y (t ) b signx(t ) x(t ) a 0 x(t ) a
第七章 非线性控制系统的分析方法
第一节
一、非线性系统的定义 凡是输入和输出信号的特性不是按线性规律变化的环节, 称之为非线性特性环节。 构成系统的环节中有一个或一个以上的非线性特性时,即称 此系统为非线性系统。 一般地,非线性系统的数学模型可以表示为:
d n c(t ) d n 1c(t ) dc(t ) d m r (t ) d m1r (t ) dr (t ) f (t , , , , , c(t )) g (t , , , , , r (t )) n n 1 m m 1 dt dt dt dt dt dt
振荡和分频振荡等现象,所以不能用纯频率法分析和综合校
正系统。
2013-12-13
<<自动控制原理>>第七章
8
3、非线性系统存在自持振荡现象 线性系统的时域响应仅有两种基本形式,即稳定或不稳 定,表现的物理现象为发散或收敛。然而在非线性系统中, 其时域响应除了发散和收敛两种形式外,即使无外部作用,
也可能发生某一固定振幅和频率的振荡,并且,当受到扰动
), ) 其中,f ( g ( 为非线性函数。
2013-12-13 <<自动控制原理>>第七章 1
非线性控制系统概述
二、典型的非线性特性(本质非线性)
1、饱和非线性特性 饱和非线性特性如图所示,图中 x(t ) 为非线性元件的输入信 号, y (t ) 为非线性元件的输出信号。 其数学表达式为:
向右运动;而下半平面,则沿相轨迹向左运动。因此,系统状
态沿相轨迹运动是顺时针的,转移方向用相轨迹上的箭头表示。
2013-12-13
<<自动控制原理>>第七章
18
(2)等倾斜线法
任一曲线都可以用一系列足够短的折线来近似。如果能
用简便的方法求得相平面中任意一点 ( x, x) 处的斜率,则可 作出通过该点相轨迹的切线,并用它来近似该点附近的相轨
相关文档
最新文档