第四章+钢结构的连接
钢结构设计原理 第四章-轴心受力构件
因此,失稳时杆件的整个截面都处于加载的过 程中,应力-应变关系假定遵循同一个切线模量 Et,此时轴心受压杆件的屈曲临界力为:
N cr ,t
2 Et I
2 二、实际的轴心受压构件的受力性能
在钢结构中,实际的轴压杆与理想的直杆受力性能之间差别很大,实 际上,轴心受压杆的屈曲性能受许多因素影响,主要的影响因素有:
一、理想轴压构件的受力性能 理想轴压构件是指满足下列4个条件: o杆件本身绝对直杆; o材料均质且各向同性; o无荷载偏心且在荷载作用之前无初始应力; o杆端为两端铰接。 在轴心压力作用下,理想的压杆可能发生三种形式的屈曲: 弯曲屈曲、扭转屈曲、弯扭屈曲——见教科书P97图4–6 轴心受压构件具体以何种形式失稳,主要取决于截面的形式 和尺寸、杆的长度以及杆端的支撑条件。
l N 2 EI 对一无残余应力仅存在初弯曲的轴压杆,杆件中点截面边缘开始 式中 N l2 NE 屈服的条件为:
0
1
经过简化为:
N N vm v0 v0 fy v m v0 v 1 1 N NE A W N N v0 N E fy A W NE N
An—构件的净截面面积_
N fy r f R An
P94式4-2
(1)当轴力构件采用普通螺栓连接时 螺栓为并列布置:
n1 n2 n3
按最危险的截面Ⅰ-Ⅰ 计算,3个截面净截面面积 相同,但 Ⅰ-Ⅰ截面受力最大。
N n
Ⅰ-Ⅰ:N Ⅱ-Ⅱ:N-Nn1/n Ⅲ-Ⅲ:N-N(n1+n2)/n
Ⅰ Ⅱ Ⅲ
2 2
从上面两式我们可以看出,绕不同轴屈曲时,不仅临界力不同,且残余 应力对临界应力的影响程度也不同。因为k1,所以残余应力对弱轴的 影响比对强轴的影响严重的多。
钢结构—第四章课后答案
P1084.1解: 示意图要画焊缝承受的剪力V=F=270kN ;弯矩M=Fe=270⨯300=81kN.mI x =[0.8⨯(38-2⨯0.8)3]/12+[(15-2)⨯1⨯19.52]⨯2=13102cm 4=腹板A e =0.8⨯(38-2⨯0.8)=29.12 cm 2截面最大正应力σmax =M/W= 81⨯106⨯200/13102⨯104=123.65 N/mm 2≤f t w =185N/mm 2剪力全部由腹板承担τ=V/A w =270⨯103/2912≤=92.72 N/mm 2 =f v w =125N/mm 2腹板边缘处”1”的应力σ1=(M/W)(190/200)=123.65(190/200)=210.19=117.47腹板边缘处的折算应力应满足1.1w zs t f σ=≤=2≤1.1f t w =203.5N/mm 2焊缝连接部位满足要求4.2解:(1) 角钢与节点板的连接焊缝“A ”承受轴力N=420kN连接为不等边角钢长肢相连 题意是两侧焊肢背分配的力N 1=0.65 ⨯420=273 kN肢背分配的力N 2=0.35 ⨯420=147 kNh fmin =1.5(t max )1/2=1.5(10)1/2=4.74mmh fmax =1.2(t min )=1.2(6)=7.2mm取h f =6mm肢背需要的焊缝长度l w1=273⨯103/(2⨯0.7⨯6⨯160)+2⨯6=203.12+12=215.13mm肢尖需要的焊缝长度l w2=147⨯103/(2⨯0.7⨯6⨯160)+2⨯6=109.38+12=121.38mm端部绕角焊2h f 时,应加h f (书中未加)取肢背的焊缝长度l w1=220mm ;肢尖的焊缝长度l w2=125mm 。
l wmax =60h f =360mm ;l wmin =8h f =48mm ;焊缝“A ”满足要求4.3解:节点板与端板间的连接焊缝“B ”承受拉力N 对焊缝“B ”有偏心,焊缝“B ”承受拉力N=(1.5/1.8) ⨯420=350kN ;剪力V=(1/1.8) ⨯420=233.33 kN ;弯矩M=350⨯50=17.5 kN.mh fmin =1.5(t max )1/2=1.5(20)1/2=6.71mmh fmax =1.2(t min )=1.2(10)=12mm焊缝“B ”h f =7mm焊缝“B ”A 点的力最大焊缝“B ”承受的剪应力τ=233.33⨯103/(2⨯0.7⨯7⨯386)=61.68 N/mm 2焊缝“B ”承受的最大正应力σ=N/Ae+M/W=350⨯103/(2⨯0.7⨯7⨯386)+17.5⨯106⨯200/(2⨯0.7⨯7⨯3863/12)=92.52+71.91 =164.43 N/mm 2验算焊缝“B ”的强度=148.19 N/mm 2<f f w 焊缝“B ”满足要求。
钢结构第四章轴心受力构件
虑初弯曲和初偏心的影响,再考虑不同的截面形状和尺寸、不 同的加工条件和残余应力分布及大小及不同的屈曲方向后,采
用数值分析方法来计算构件的Nu值。
令 n/( E/ fy) Nu /(Afy)
绘出~λn曲线(算了200多条),它们形成了相当宽的
三、轴心受力构件的工程应用 平面桁架、空间桁架(包括网架和塔架)
结构、工作平台和其它结构的支柱等。 四、截面选型的原则
用料经济;形状简单,便于制做;便于与 其它构件连接。 五、设计要求
满足强度和刚度要求、轴心受压构件还应 满足整体稳定和局部稳定要求。
★思考问题:强度破坏和整体失稳有何异同??
第二节 轴心受力构件的强度和刚度计算
h ix /1
b iy /2
根据所需A、h、b 并考虑局部稳定要求 和构造要
求(h≥b),初选截面尺寸A、h、b 、t、tw。通常取h0 和b为10mm的倍数。对初选截面进行验算调整。由
于假定的不一定恰当,一般需多次调整才能获得较
满意的截面尺寸。
三、格构式轴心受压构件设计
1. 格构式轴心受压构件的整体稳定承载力 (1) 绕实轴的整体稳定承载力
h0/tw(2 50.5m)ax 23 /fy 5
式中λmax为两方向 长细比的较大值
当构件的承载力有富 裕时,板件的宽厚比可适 当放宽。
第五节 轴心受压构件设计
一、设计原则 1.设计要求 应满足强度、刚度、整体稳定和局部稳定要求。 2.截面选择原则 (1)尽量加大截面轮廓尺寸而减小板厚,以获得
也板称的作局局部部稳与定整计体算等,稳《定规准范则》。采用了σcr板σcr整体的设计准则, σcr板—板的临界应力,主要与板件的宽厚比有关。 《规范》采用限制板件宽厚比的方法来满足局部稳定。根据设 计准则分析并简化后得到的局部稳定计算公式为:
钢结构原理-第4章轴心受力构件
存在,且都是变量,再 加上材料的弹塑性,轴 压构件属于极值点失稳, 其极限承载力Nu很难用 解析法计算,只能借助 计算机采用数值法求解。
《钢结构原理》 第4章 轴心受力构件
缺陷通常只考虑影响最大的残余应力和初弯曲(l/1000)。 采用数值法可以计算出轴压构件在某个方向(绕 x 或 y 轴)的 柱子曲线,如下图,纵坐标为截面平均应力与屈服强度的比值, 横坐标为正则化长细比。
《钢结构原理》 第4章 轴心受力构件
4.1 概述
4.1.1 定义:构件只承受轴心力的作用。 承受轴心压力时称为轴心受压构件。 承受轴心拉力时称为轴心受拉构件。
N
N
N
N
《钢结构原理》 第4章 轴心受力构件
4.1.2 轴心受力构件的应用 平面及空间桁架(钢屋架、管桁架、塔桅、网架等); 工业及民用建筑结构中的一些柱; 支撑系统;等等。
(a) N
(b) N
Hale Waihona Puke (c) NNN
N
《钢结构原理》 第4章 轴心受力构件
4.4.3 理想轴心受压构件的弯曲屈曲 4.4.3.1 弹性弯曲屈曲
取隔离体,建立平衡微分方程
EyIN y0
用数学方法解得:N 的最 小值即分岔屈曲荷载 Ncr,又称 为欧拉荷载 NE 。
Ncr2EI/l2
对应的临界应力为:
《钢结构原理》 第4章 轴心受力构件
4.4 轴心受压构件的整体稳定
概念:在压力作用下,构件的外力必须和内力相平衡。 平衡有稳定、不稳定之分。当为不稳定平衡时,轻微的扰 动就会使构件产生很大的变形而最后丧失承载能力,这种 现象称为丧失稳定性,简称失稳,也称屈曲。 特点:与强度破坏不同,构件整体失稳时会导致完全 丧失承载能力,甚至整体结构倒塌。失稳属于承载能力极 限状态。与混凝土构件相比,钢构件截面尺寸小、构件细 长,稳定问题非常突出。只有受压才有稳定问题。
钢结构第四章
(13)
y l1 i y ;
h 梁高,t 1 受压翼缘的厚度;
b 截面不对称影响系数, 双轴对称时 b 0
单轴对称截面 b 取值见规范。
第四章 单个构件的承载能力—稳定性
B、轧制普通工字形简支梁
b可查表得到。
C、其他截面的稳定系数计算详见规范。
上述稳定系数时按弹性理论得到的,当
整体稳定系数
上述公式都是按照弹性工作阶段导出的。对于钢梁, 当考虑残余应力影响时,可取比例极限fp =0.6fy 。因此, 当cr>0.6 fy ,即当算得的稳定系数b>0.6时,梁已进入了 弹塑性工作阶段,其临界弯矩有明显的降低。此时,应按 下式对稳定系数进行修正:
b =1.07-0.282/b1.0
1 y x y 1 x
y x y x
梁维持其稳定平衡状态所承担的最大荷载或最大弯矩,称为 临界荷载或临界弯矩Mcr。
第四章 单个构件的承载能力—稳定性Biblioteka 二、梁的临界弯矩Mcr建立
1.基本假定 (1)弯矩作用在最大刚度平面,屈曲时钢梁处于弹性
阶段;
(2)梁端为夹支座(只能绕x轴,y轴转动,不能绕z轴
第四章 单个构件的承载能力—稳定性
整体稳定系数
在修订钢结构设计规范时,为了简化计算,引用:
1.25 1 3 It biti 3 At1 3 I
1.25 bi ti3 2 At12
2
1 2 At1 3
I yh 4
式中 A 梁的毛截面面积;
t1 梁受压翼缘板的厚度; h 梁截面的全高度。
单轴对称时:
2 f y W1x y b 1.07 2 b 0.1Ah 14000 235
第4章钢结构的连接-角焊缝
侧面角焊缝应力分布
福建省高校精品课程
第四章
钢结构的连接
B、正面角焊缝-端焊缝 作用力与焊缝方向垂直,焊缝应力复杂,焊缝根 部应力集中严重,易引起开裂破坏。
正面角焊缝应力分布
福建省高校精品课程
第四章
钢结构的连接
2、角焊缝的构造要求 (1)焊缝尺寸 焊脚尺寸hf(焊缝高度)-焊缝直边尺寸,设计标注的尺寸 有效厚度he-焊缝破坏面尺寸(45°垂直面焊缝高度) 焊缝的计算长度lw-有效受力长度,每条连续焊缝取实际 几何长度减去2hf 。
12
第四章 钢结构的连接
解: 采用如图所示的三面围焊
福建省高校精品课程
原lw=100-5 现lw=100-10
1、焊缝有效截面的几何特性 焊缝有效截面的形心位置
福建省高校精品课程
第四章 钢结构的连接
2、焊缝强度验算(A点)
⊥ ∥ ⊥
福建省高校精品课程
第四章 钢结构的连接
工程算例2: 试设计角钢与连接板的连接角焊缝。轴心力设计值N= 830kN(静力荷载)。角钢为2L125×80×10,长肢相连, 连接板厚度t=12mm,钢材Q235,手工焊,焊条E43型。
⎛σ +σ σ zs = ⎜ ⎜ βf ⎝
验算公式:
⎞ T V 2 w ⎟ + (τ Ax + τ Ax ) ≤ f f ⎟ ⎠
2
福建省高校精品课程
第四章 钢结构的连接
工程算例1: 试设计图所示厚度为12mm的支托板和柱搭接接头的角 焊缝。作用力设计值F=100kN(静力荷载),至柱翼缘边 缘的距离为200mm。钢材Q235,焊条E43系列。
T ⋅r τA = J
J=Ix+Iy
钢结构节点连接设计手册
钢结构节点连接设计手册钢结构节点连接设计手册第一章:引言1.1 目的本手册旨在提供钢结构节点连接设计的指导原则和规范,以确保连接的安全性、可靠性和经济性。
1.2 适用范围本手册适用于各类钢结构节点连接设计,包括梁柱节点、梁梁节点、梁板节点等。
1.3 参考标准本手册的设计原则和规范参考以下标准:- GB 50017-2017 《钢结构设计规范》- GB 50018-201X 《钢结构工程质量验收规范》- GB 50019-201X 《钢结构防腐蚀技术规范》- GB 50046-201X 《建筑地震设计规范》第二章:基本原则2.1 安全性连接设计应满足结构强度和稳定性的要求,确保在正常使用和极限状态下的安全性。
2.2 可靠性连接设计应考虑材料的可靠性和制造工艺的可控性,确保连接的可靠性和一致性。
2.3 经济性连接设计应尽可能减少材料的使用量和制造成本,同时保证连接的质量和可靠性。
第三章:节点类型3.1 梁柱节点梁柱节点是钢结构中最常见的连接形式,其设计应满足以下要求:- 满足梁柱节点的强度和刚度要求。
- 考虑梁柱节点的受力特点,选择合适的连接方式。
- 考虑梁柱节点的施工工艺,选择适合的节点类型。
3.2 梁梁节点梁梁节点是连接两根梁的关键部位,其设计应满足以下要求:- 满足梁梁节点的强度和刚度要求。
- 考虑梁梁节点的受力特点,选择合适的连接方式。
- 考虑梁梁节点的施工工艺,选择适合的节点类型。
3.3 梁板节点梁板节点是连接梁与板的关键部位,其设计应满足以下要求:- 满足梁板节点的强度和刚度要求。
- 考虑梁板节点的受力特点,选择合适的连接方式。
- 考虑梁板节点的施工工艺,选择适合的节点类型。
第四章:设计步骤4.1 确定受力情况根据结构荷载和受力特点,确定节点受力情况,并进行力学分析。
4.2 选择连接方式根据受力情况和结构要求,选择合适的连接方式,并进行初步设计。
4.3 进行强度校核根据选定的连接方式,进行强度校核,并根据校核结果进行优化设计。
金属结构的连接汇总
建筑工程机械金属结构最常用的焊接方法主要是电弧 焊。 我国目前常用的电弧焊方法有:手工电弧焊、CO2气 体保护焊和埋弧焊。
焊接材料
1. 手工电弧焊
手工电弧焊焊条应与焊接的金属强度相适应,即等强原则。
Q235钢——E43型系列焊条
Q345钢——E50型系列焊条 Q390钢——E55型系列焊条 注: E表示焊条;43表示焊缝抗拉强度最小值为43kgf/mm2
y
h0
h
x
t
b
面积矩和形心坐标之间的关系:
y
Sx yA S y xA
工焊件串联成整体主要 承担载荷的作用。焊缝一旦断裂,钢结构就立即受到 严重破坏。 联系焊缝(又称非承载焊缝) :焊缝与两个或两个以上 的焊件并联成整体(即连接作用),焊缝不直接承担载荷,
工作中受力很小,焊缝一旦断裂,结构不会立即失效。
焊缝符号标注
2. 螺栓连接
优点:装配便利、迅速,可用于结构安装连接 或可拆卸式结构中。 缺点:是构件截面削弱,易松动。 分类:分为普通螺栓和高强度螺栓连接两种 普通螺栓又分粗制螺栓和精制螺栓。
3. 铆钉连接
优点:塑性和韧性较好,便于质量检查,故经常用于
承受动力载荷的结构中。 缺点:制造费工、用料多,钉孔削弱构件截面,因此 目前在机械制造中已逐步由焊接所取代。
4.销轴连接
能满足两个构件之间的相对运动的需要,或便于结构 件的现场安装。如起重机臂架根部的连接以及拉杆或
撑杆的连接等。
§4-2 焊缝连接
一、焊接接头的型式和焊缝种类
1. 焊接接头的型式主要有四种:对接、搭接、T型接和 角接。
钢结构第4章例题
1 l1 i1 0.7 max
max max 0 x, y
缀板柱的分肢长细比:
1 l01 i1 40且0.5max
max max 0 x, y
当max 50时, 取max 50
例题4.5 试设计一两端铰接的轴心受压格构式柱。
d、柱单肢的稳定性验算
lo1=2a=2×30.98=61.96cm,
λmax=λox=41.2<50, 取λmax=50 λ1=lo1/i1=61.96/2.11=29
<0.7λmax=0.7×50=35, 单肢稳定性满足要求。
e、缀条与柱肢的连接焊缝计算 采用两边侧面角焊缝连接,取hf=4mm.
1、按对实轴的整体稳定确定柱的截面(分肢截面);
2、按等稳定条件确定两分肢间距a,即 λ0x=λy; 双肢缀条柱:
0x
2 x
27
A A1
y
即: x
双肢缀板柱:
2 y
27
A A1
(4 61)
0 x 2x 12 y
即: x 2y 12
b、按柱对虚轴x的稳定性确定两个单肢间距
设缀条布置为单斜式。
试选用最小角钢 45×4作为柱的斜缀条, 查角钢表知:A1x/2 =3.49cm2。
λx=√λy2-27A/A1x =√38.22-27×57.68/(3.49×2)=35.2
ix =lox/λx=600/35.2=17.1cm
由回转半径与截面宽度的近似关系,得
梁
填板
Ⅰ
Ⅱ
柱
柱顶板 垫板 加劲肋
15-20mm
(三)、柱头的计算
钢结构基本原理第4章
第4.1节 概述
本节目录
1. 轴心受力构件的应用 2. 轴心受力构件类型 3. 轴心受力构件的截面形式 4. 轴心受力构件的计算内容
基本要求
了解轴心受力构件的类型、应用及计算内容
4.1.1 轴心受力构件的应用
轴心受力构件是指承受通过截面形心轴线的轴向力 作用的构件。
图4.1.1 桁架
图4.1.2 网架
由于组合截面制作费时费工,其总的成本并 不一定很低,目前只在荷载较大或构件较高时使 用。
4.1.4 轴心受力构件的计算内容
件轴 心 受 力 构
强度 (承载能力极限状态) 轴心受拉构件 刚度 (正常使用极限状态)
强度 (承载能力极限状态) 轴心受压构件 稳定
刚度 (正常使用极限状态)
第4.2节 轴心受力构件的强度和刚度
②理想轴心压杆的弹塑性弯曲屈曲临界力和临界应力
对于长细比λ<λp的轴心压杆发生弯曲屈曲时,构件截 面应力已超过材料的比例极限,并很快进入弹塑性状态, 由于截面应力与应变的非线性关系,这时构件的临界力和 临界应力公式采用切线模量理论计算。
N cr
2Et I
l2
cr
2Et 2
Et ---切线摸量
A
N f
A
N ——轴心压力设计值;
A ——构件毛截面积;
f ——钢材抗压强度设计值;
——
cr
/
f
,称为轴心受压构件整体稳定系数,
y
根据截面分类和构件长细比,由柱子曲线或查表确定。
轴心受压构件的柱子曲线
压杆失稳时临界应力σcr与长细比λ之间的关系曲线 称为柱子曲线。
规范在制定轴心受压构件的柱子曲线时,根据不同 截面形状和尺寸、不同加工条件和相应的残余应力分布 和大小、不同的弯曲屈曲方向以及l/1000的最大初弯曲, 按照最大强度准则,对多种实腹式轴心受压构件弯曲失 稳算出了近200条柱子曲线。
钢结构基础课程教案
钢结构基础课程教案第一章:钢结构的概述1.1 钢结构的基本概念钢结构的定义钢结构的特点钢结构的分类1.2 钢结构的材料钢材的组成和分类钢材的性能钢材的选择和使用1.3 钢结构的应用范围钢结构的常见应用领域钢结构的优势和限制钢结构的未来发展趋势第二章:钢结构的连接2.1 钢结构连接的基本要求连接的目的和重要性连接的类型和特点连接的设计和计算2.2 焊接连接焊接连接的原理和工艺焊接连接的优缺点焊接连接的应用和实例2.3 螺栓连接螺栓连接的原理和类型螺栓连接的设计和计算螺栓连接的应用和实例第三章:钢结构的受力分析3.1 钢结构的基本受力元件杆件的受力特性梁的受力特性柱的受力特性3.2 钢结构的受力分析方法静力平衡法动力平衡法受力图的绘制和分析3.3 钢结构的受力极限状态弹性极限状态塑性极限状态疲劳极限状态第四章:钢结构的设计计算4.1 钢结构设计的基本原则安全性的要求可靠性的要求经济性的要求4.2 钢结构的设计计算方法弹性设计计算方法塑性设计计算方法极限状态设计计算方法4.3 钢结构的设计计算实例杆件的设计计算实例梁的设计计算实例柱的设计计算实例第五章:钢结构施工与验收5.1 钢结构施工的基本要求施工准备和施工方案钢材的加工和制作钢结构的组装和焊接5.2 钢结构施工的注意事项施工安全和管理施工质量控制和验收施工过程中的问题处理5.3 钢结构验收的标准和程序验收标准和规范验收程序和机构验收结果的判定和处理第六章:钢结构的稳定性与变形6.1 钢结构稳定性的概念稳定性的定义和重要性失稳的现象和原因稳定性的分类6.2 钢结构稳定性的计算临界力的计算临界应力的计算稳定性校核的方法6.3 钢结构变形的控制变形的定义和原因变形限值的要求控制变形的方法和措施第七章:钢结构的抗震设计7.1 抗震设计的基本原则抗震安全性的要求抗震可靠性的要求抗震经济性的要求7.2 钢结构抗震设计的计算方法弹性抗震设计计算方法塑性抗震设计计算方法极限状态抗震设计计算方法7.3 钢结构抗震设计的实例杆件的抗震设计实例梁的抗震设计实例柱的抗震设计实例第八章:钢结构的保护与防腐8.1 钢结构腐蚀的原因和类型腐蚀的定义和现象腐蚀的原因和类型腐蚀的影响和危害8.2 钢结构防腐的方法防腐材料的选用防腐涂层的施工防腐措施的维护和管理8.3 钢结构保护的实例防腐涂层的实例防腐涂料的实例防腐措施的实施和检查第九章:钢结构的安全评估与检测9.1 钢结构安全评估的概念和重要性安全评估的定义和目的钢结构安全评估的必要性安全评估的方法和程序9.2 钢结构检测的方法和设备检测方法的分类和原理检测设备的选用和使用检测数据的分析和处理9.3 钢结构安全评估的实例结构检测的实例安全评估报告的编制安全评估结果的处理和改进第十章:钢结构案例分析与实践10.1 钢结构案例分析的目的和方法案例分析的定义和意义案例分析的目的和原则案例分析的方法和步骤10.2 钢结构案例分析的实例案例选取和背景介绍结构分析和设计计算施工和验收过程的解析10.3 钢结构实践活动的建议实践活动的类型和内容实践活动的组织和实施实践活动成果的总结和评价重点和难点解析重点环节1:钢结构的定义和特点钢结构是由钢材构成的结构体系,具有高强度、重载、施工速度快等特点。
钢结构第四章
14.1轴心受力构件的截面形式4.2轴心受力构件的强度和刚度计算4.2.1 轴心受力构件的强度计算4.2.2 轴心受力构件的刚度计算4.3 轴心受压构件的整体稳定4.3.1 轴心受压构件的弹性弯曲屈曲4.3.2 轴心受压构件的弹塑性弯曲屈曲4.3.3初始缺陷对压杆稳定承载力的影响4.3.4 轴心受压构件的整体稳定计算24.4 实腹式轴心受压构件的局部稳定4.4.1 薄板屈曲(1) 薄板的弹性屈曲(2) 薄板的弹塑性屈曲4.4.2 受压构件局部稳定计算4.4.2.1 确定板件宽厚比(高厚比)限值的准则4.4.2.2 板件宽厚比(高厚比)限值4.4.2.3受压构件的腹板不满足高厚比限值时的处理例题-格构柱例题-轴压柱,截面削弱34.5.2 格构式轴压构件的整体稳定计算(1) 格构式构件绕实轴的整体稳定计算(2) 格构式构件绕虚轴的整体稳定计算①换算长细比②格构式构件绕虚轴的整体稳定计算4.5.3 格构式轴心受压构件分肢的稳定(1) 缀条柱(2) 缀板柱4.5.1 格构式轴心受压构件的截面形式与组成4.5 格构式轴压构件44.5.4 格构式轴心受压构件缀材计算(1) 缀材面承担的剪力①单缀条强度设计值的调整②斜缀条承受的轴向力(2) 缀条设计(3) 缀板设计③斜缀条整体稳定计算④缀条与分肢连接焊缝计算⑤缀条与分肢连接形式(4) 横隔设置①缀板受力②缀板与分肢连接③缀板线刚度54.6 轴心受压构件截面设计4.6.1 实腹式轴心受压构件截面设计4.6.2 格构式轴心受压构件截面设计(3) 截面验算(1) 确定截面所需的面积、回转半径、截面高度、截面宽度等(2) 确定型钢号或组合截面各板件尺寸(1) 根据绕实轴的稳定性确定分肢截面尺寸(2) 根据虚轴和实轴的等稳性确定分肢的间距(3) 截面验算(4)缀材设计7轴心受力构件:承受通过构件截面形心轴线的轴向力作用的构件。
(轴心受拉构件和轴心受压构件)截面形式型钢截面组合截面热轧型钢截面冷弯薄壁型钢截面实腹式组合截面格构式组合截面4.1轴心受力构件的截面形式应用:屋架、托架、塔架和网架、工作平台和其它结构的支柱等8实腹式构件:格构式构件:优点:构造简单、制造方便,整体受力和抗剪性能好缺点:截面尺寸大时钢材用量较多。
设计原理复习题
第一章 绪论选择题( )1、大跨度结构应优先选用钢材,其主要原因是A 、钢结构具有良好的装配性;B 、钢材接近均质等向体,力学计算结果与实际最符合;C 、钢材的韧性好;D 、钢材的比重与强度之比小于混凝土等其它材料。
填空题1、钢材有哪些主要特点?结合这些特点,相应有哪些合理的应用范围?2、高效钢材包括哪些种类?第二章 钢结构的材料选择题( )1、钢材在复杂应力状态下的屈服条件是由 等于单向拉伸时的屈服强度决定的。
A 、最大主拉应力1σ;B 、最大剪应力max τ;C 、最大主压应力3σ;D 、折算应力eq σ。
( )2、钢材的设计强度是根据 确定的。
A 、比例极限;B 、弹性极限;C 、屈服强度;D 、极限强度。
( )3、某构件发生了脆性破坏,不经检查可以肯定下列问题中 对该破坏无直接影响。
A 、钢材的屈服点过低;B 、构件的荷载增加速度过快;C 、存在冷加工硬化;D 、构件有构造原因引起的应力集中。
( )4、Q235钢按照质量等级分为A 、B 、C 、D 四级,由A 到D 表示质量由低到高,其分类依据是 。
A 、冲击韧性;B 、冷弯试验;C 、化学成分;D 、伸长率。
( )5、普通碳素钢强化阶段的变形是 。
A 、完全弹性变形;B 、完全塑性变形;C 、弹性成分为主的弹塑性变形;D 、塑性成分为主的弹塑性变形。
( )6、钢材中S 的含量超过规定标准, 。
A 、将提高钢材的伸长率;B 、将提高钢材的抗拉强度;C 、将使钢材在低温工作时变脆;D 、将使钢材在高温工作时变脆。
( )7、钢材屈服点f y 的高低反映了材料 。
A 、受静载时的最大承载能力;B 、受静载时的最大变形能力;C 、受动载时的最大承载能力;D 、受静载、发生塑性变形前的承载能力。
( )8、金属M n 可提高钢材的强度,对钢材的塑性 ,是一种有益的成分。
A 、提高不多;B 、提高较多;C 、降低不多;D 、降低很多。
( )9、钢材内部除含有F e 、C 外,还含有有害元素 。
钢结构第4章课后复习参考材料.规范标准答案
钢结构第4章作业参考答案B4.37解:查表 f 215N mm 2, A 12.28cm 2有孔洞,危险截面是孔洞所在的正截面2 2人 12.28 102 20 5 1028mm此截面能承受的最大轴力为: [N] A n f 1028 215 221.02KN N 270KN不满足要求改用 Q235 2L63X 6,查得 A=14.58cni , i x 1.93cm,i y 2.98cm代 14.58 1022 20 5 1258mm 2长细比:-色155.4 [ ] 350i x 1.93满足要求。
4.2 一块一400X 20的钢板用两块拼接板一400X 12进行拼接。
螺栓孔径为22mn ,排列 如图4.38所示。
钢板轴心受拉,N=1350KN(设计值)。
钢材为Q235钢,解答下列问题:(1) 钢板1-1截面的强度够否?(2) 是否还需要验算2-2截面的强度?假定N 力在13个螺栓中平均分配,2-2截面应 如何验算?(3) 拼接板的强度够否?实际应力f实N A n270 103 1258214.6 N mm 2 215N mm 23002.98100.7 [ ] 3504.1 验算由2L63X 5组成的水平放置的轴心拉杆的强度和长细比。
轴心拉力的设计值为 270KN 只承受静力作用,计算长度为 3m 杆端有一排直径为20mm 勺孔眼(图4.37 ),钢材 为Q235钢。
如截面尺寸不够,应改用什么角钢?注:计算时忽略连接偏心和杆件自重的影响。
21 2JS0J,务80 丄I-甜.38解:查表得 t=20 钢板 f 20 205 N mm 2,t=12 钢板 f ?o 215N mm 2(1) 在1-1截面,20 厚钢板 A n 400 20 3 22 206680mm 24.3 验算图4.39所示和摩擦型高强螺栓连接的钢板净截面强度。
螺栓直径20mm 孔径22mm 钢材为Q235AF 承受轴心拉力 N=600KN (设计值)。
钢结构第四章答案
第四章4.10验算图示焊接工字形截面轴心受压构件的稳定性。
钢材为Q235钢,翼缘为火焰切割边,沿两个主轴平面的支撑条件及截面尺寸如图所示。
已知构件承受的轴心压力为N=1500kN。
解:由支承条件可知0x 12ml=,0y 4ml=x21.8cmi===,y5.6cmi===0xxx12005521.8liλ===,0yyy40071.45.6liλ===,翼缘为火焰切割边的焊接工字钢对两个主轴均为b类截面,故按yλ查表得=0.747ϕ整体稳定验算:3150010200.8MPa215MPa0.74710000NfAϕ⨯==<=⨯,稳定性满足要求。
4.13图示一轴心受压缀条柱,两端铰接,柱高为7m。
承受轴心力设计荷载值N=1300kN,钢材为Q235。
已知截面采用2[28a,单个槽钢的几何性质:A=40cm2,i y=10.9cm,i x1=2.33cm,xI x1=218cm 4,y 0=2.1cm ,缀条采用∟45×5,每个角钢的截面积:A 1=4.29cm 2。
试验算该柱的整体稳定性是否满足?解:柱为两端铰接,因此柱绕x 、y 轴的计算长度为:0x 0y 7m l l == 格构柱截面对两轴均为b 类截面,按长细比较大者验算整体稳定既可。
由0x 65.1λ=,b 类截面,查附表得0.779ϕ=,整体稳定验算:32130010208.6MPa 215MPa 0.77924010N f A ϕ⨯==<=⨯⨯⨯ 所以该轴心受压的格构柱整体稳定性满足要求。
4.15某压弯格构式缀条柱如图所示,两端铰接,柱高为8m 。
承受压力设计荷载值N =600kN ,弯矩100kN m M =⋅,缀条采用∟45×5,倾角为45°,钢材为Q235,试验算该柱的整体稳定性是否满足?已知:I22a A=42cm 2,I x =3400cm 4,I y1=225cm 4; [22a A=31.8cm 2,I x =2394cm 4,I y2=158cm 4; ∟45×5 A 1=4.29cm 2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.焊缝质量等级及选用
《钢结构设计规范》(GB50017--2003)中,对 焊缝质量等级的选用有如下规定:
(1) 需要进行疲劳计算的构件中,垂直于作用力方向 的横向对接焊缝受拉时应为一级,受压时应为二级。
(2) 在不需要进行疲劳计算的构件中,凡要求与母材等 强的受拉对接焊缝应不低于二级;受压时宜为二级。
➢ 对接焊缝可视作焊件的一部分,故其计算方法与构 件强度计算相同。
1、轴心力作用下的对接焊缝计算 N
N
lw
N lwt
f
w t
或f
w c
(3 28)
t
式中:
N—轴心拉力或压力;
A
t—板件较小厚度;T形连接中为腹板厚度;
ftw、fcw —对接焊缝的抗拉和抗压强度设计值。
当不满足上式时,可采用斜对
接焊缝连接如图B。
max2 1
VSw
I3wt12
3 V
21.1l wft
w t
fVw
(3 30)
(3 31)
1.1—考虑最大折算应力只在局部出现的强度增大系数。
2012年3月8日 星期四
§3.3 角焊缝的构造与计算
一、角焊缝的形式和受力分析 1、角焊缝的形式: 直角角焊缝、斜角角焊缝
(1)直角角焊缝
hf hf
§4.3 对接焊缝的构造与计算
一、对接焊缝的构造 1、对接焊缝的坡口形式: 对接焊缝的焊件常做坡口,坡口形式与板厚和施 工条件有关。 (1)当:t<6mm(手工焊),t<10mm(埋弧焊)时可不做 坡 (2口)t=,采7用~2直0m边m缝时; ,宜采用单边V形和双边V形坡 (口3); t>20mm时,宜采用U形、K形、X形坡口。 t--焊件厚度
C、优、缺点
优点:方便,特别在高空和野外作业,小型焊接; 缺点:质量波动大,要求焊工等级高,劳动强度大,效率低。
2.埋弧焊(自动或半自动)
焊丝转盘 熔渣
送丝器
、、 、、、 、
、 、 、
、
、
焊剂
、 、、、、、、、、、 、
焊件
焊剂漏斗
埋弧自动焊
A、焊丝的选择应与焊件等强度。 B、优、缺点:
优点:自动化程度高,焊接速度快,劳动强度低,焊 接质量好。
对接焊缝连接
角焊缝连接
二、铆钉连接
优点:连接刚度大,传力可靠; 缺点:对施工技术要求很高, 劳动强度大,施工条件差, 施 工速度慢。
三、螺栓连接
分为:
N
普通螺栓连接
高强度螺栓连接
§4.2 焊接方法和焊接连接形式
一、钢结构常用焊接方法
1.手工电弧焊
原理:利用电弧产生热量
熔化焊条和母材形
成焊缝。
A、焊条的选择: 焊条应与焊件
l w 60h f
注: 1、当实际长度大于以上值时,计算时不与考虑; 2、当内力沿侧焊缝全长分布时,不受上式限制。
4.侧面角焊缝的最小计算长度 对于焊脚尺寸大而长度小的焊缝,焊件局部加热严 重且起落弧坑相距太近,以及可能产生缺陷,使焊缝 不可靠。故为了使焊缝具有一定的承载力,规范规定:
lw 8hf 且不得小于40mm
缺点:设备投资大,施工位置受限等。
送
机
丝
器
器
3.气体保护焊
优、缺点: 优点:焊接速度快,焊接质量
好。 缺点:施工条件受限制等。
二、焊接连接形式和焊缝形式 1.焊接连接形式
T形连接
对接
搭接 角 部 连 接
2.焊缝形式
(1)对接焊缝焊缝 T型对接焊缝
3. 焊缝位置
三、焊缝缺陷及焊缝质量检查
f
βf—正面角焊缝强度增大系数; 静载时取1.22,动载时取1.0。
对于正面角焊缝,τf=0,由3—5式得:
f
N l w he
f
f
w f
(3 6)
对于侧面角焊缝,σf=0,由3—5式得:
f
N l w he
f
w f
(3 7)
以上各式中:
lhwe—=0角.7焊hff缝f;计2 算长 度2f ,考f虑fw起灭弧缺陷(时3,每5条) 焊缝取其
(3 10) (3 11)
e2 b
第 四 章
2012年3月1日 星期四
大纲要求
1.了解钢结构连接的种类及各自的特点; 2.了解焊接连接的工作性能,掌握焊接连接的计算
方法及构造要求; 3.了解焊接应力和焊接变形产生的原因及其对结构
工作的影响; 4.了解螺栓连接的工作性能,掌握螺栓连接的计算
和构造要求。
§4.1 钢结构的连接方法
一、焊缝连接 优点:不削弱截面,方便施工,连接刚度大; 缺点:材质易脆,存在残余应力,对裂纹敏感。
C=0.5~2mm
(a)
α
p
C=2~3mm
(C)
p
C=3~4mm
(e)
α
C=2~3mm
(b)
p
C=3~4mm
(d)
p
C=3~4mm
(f)
2、V形、U形坡口焊缝单面施焊,但背面需进行补焊;
3、对接焊缝的起、灭弧点易出现缺陷,故一般用引弧 板引出,焊完后将其切去;不能做引弧板时,每条 焊缝的计算长度等于实际长度减去2t1,t1—较薄焊 件厚度;
式中: t1---较薄焊件厚度。 对于板件边缘的角焊缝,尚应满足以下要求:
当 t≤6mm时,hf,max≤t; 当 t>6mm时,hf,max≤t-(1~2)mm;
t hf t1
t
hf
t1
2、最小焊脚尺寸hf,min 为了避免在焊缝金属中由于冷却速度快而产生淬硬组
织,导致母材开裂,hf,min应满足以下要求:
3 V 2 lwt
fVw
lw
V M
t A
(3 29)
(3 30)
στ
式中:Ww—焊缝截面模量; Sw--焊缝截面面积矩; Iw--焊缝截面惯性矩。
(2)工字形截面梁对接连接计算
M V
1 焊缝截面
σ1
σmax
τmax
τ τ1
A、对于焊缝的σmax和τmax应满足式3-29和3-30要求;
B、力对尚于应翼满m缘足ax 与下W腹M式w板要交求6lwM2接t:点f焊tw 缝(1点(3) ,29)其折算应
h f ,min 1.5 t 2
(计算数值只进不舍! )
式中: t2----较厚焊件厚度
另:对于埋弧自动焊hf,min可减去1mm;
对于T型连接单面角焊缝hf,min应加上1mm;
当t2≤4mm时, hf,min=t2
3.侧面角焊缝的最大计算长度 侧面角焊缝在弹性工作阶段沿长度方向受力不均, 两端大而中间小。焊缝长度越长,应力集中系数越大。 如果焊缝长度不是太大,焊缝两端达到屈服强度后, 继续加载,应力会渐趋均匀;当焊缝长度达到一定的 长度后,可能破坏首先发生在焊缝两端,故:
N
Nsinθ
N
N sin
lwt
f
t
w
或f
w c
N cos
lwt
f
w v
另:当tanθ≤1.5时,不用验算!
Ncosθ
θ
t
B
2、M、V共同作用下的对接焊缝计算
(1)板件间对接连接 因焊缝截面为矩形,M、 V共同作用下应力图为: 故其强度计算公式为:
max
M Ww
6M
l
2 w
t
f
w t
max
VSw Iwt
(3)重级工作制和起重量 Q>50t的中级工作 制吊车梁的腹板与上翼缘板之间以及吊车桁架上弦杆 与节点板之间的T形接头焊透的对接与角接组合焊缝, 不应低于二级。
(4)角焊缝质量等级一般为三级,直接承受动力荷 载且需要验算疲劳和起重量Q>50t的中级工作制 吊车梁的角焊缝的外观质量应符合二级。
4.焊缝代号
1.焊缝缺陷
2.焊缝质量检查 外观检查:检查外观缺陷和几何尺寸; 内部无损检验:检验内部缺陷。
内部检验主要采用超声 波,有时还用磁粉检验 荧光检验等辅助检验方 法。还可以采用X射线或 γ射线透照或拍片。
《钢结构工程施工及验收规范》规定: 焊缝按其检验方法和质量要求分为一级、二级
和三级。
一、二级焊缝除外观检查外,尚要求一定数 量的超声波检验并符合相应级别的质量标准。
实际长度减去2hf。
四、各种受力状态下的直角角焊缝连接计算
1、轴心力作用下
(1)轴心力作用下的盖板对接连接:
A、仅采用侧面角焊缝连接:
lw
f
N he l w
f
w f
N
lw’
N
B、采用三面围焊连接:
N
f
f
w f
lw he
f
N N l w he
f
w f
(2)作用力斜向于角焊缝连接
f
lw
2hf b
D. 在搭接连接中,搭接长度不得小于焊件较小厚度 的5倍,且不得小于25mm。
三、直角角焊缝的强度计算公式
1、试验表明,直角角焊缝的破坏常发生在喉部,故 通常将45o截面作为计算截面,作用在该截面上的应
hf
力如下图所示: d
σ┻
τ∥
τ┻
e
h---焊缝厚度、h1—熔深 h2—凸度、d—焊趾、e—焊根
4、当板件厚度或宽度在一侧相差大于4mm时,应做 坡度不大于1:2.5(静载)或1:4(动载)的斜角,以平缓 过度,减小应力集中。
二、对接焊缝的计算
➢ 对接焊缝分为:焊透和部分焊透(自学)两种;
➢ 动荷载作用下部分焊透的对接焊缝不宜用做垂直受