七年级一元一次方程解决实际问题及分析答案(1)

合集下载

七年级数学上册-难点探究:利用一元一次方程解决实际问题压轴题五种模型全攻略(解析版)

七年级数学上册-难点探究:利用一元一次方程解决实际问题压轴题五种模型全攻略(解析版)

专题13难点探究专题:利用一元一次方程解决实际问题压轴题五种模型全攻略【考点导航】目录【典型例题】 (1)【类型一一元一次方程的应用--古代问题】 (1)【类型二一元一次方程的应用--销售问题】 (5)【类型三一元一次方程的应用--方案问题】 (11)【类型四一元一次方程的应用--电费和水费问题】 (18)【类型五一元一次方程的应用--数轴上的行程问题】 (25)【典型例题】【类型一一元一次方程的应用--古代问题】答:大和尚有25人,小和尚有75人.【点睛】本题考查的是一元一次方程的应用,理解题意,确定相等关系是解本题的关键.【变式训练】【类型二一元一次方程的应用--销售问题】【变式训练】【类型三一元一次方程的应用--方案问题】例题:(2023秋·河南省直辖县级单位·七年级校联考期末)按照“双减”政策,为丰富课后托管服务内容,学校准备订购一批篮球和跳绳,经过市场调查后发现篮球每个定价70元,跳绳每条定价10元.某体育用品商店提供A、B两种优惠方案:A 方案:买一个篮球送一条跳绳;B 方案:篮球和跳绳都按定价的90%付款.已知要购买篮球50个,跳绳x 条(50x >)(1)若按A 方案购买,一共需付款_________元(用含x 的代数式表示);若按B 方案购买,一共需付款_________元(用含x 的代数式表示).(2)购买跳绳条数为多少时,两种方案的收费相同?(3)当100x =时,你能设计出一种最省钱的购买方案吗?请写出你的购买方案,并计算需付款多少元?【答案】(1)()300010x +,()31509x +(2)购买150根跳绳时,A 、B 两种方案所需要的钱数一样多(3)按A 方案买50个篮球,剩下的50条跳绳按B 方案购买,付款3950元【分析】(1)由题意按A 方案购买可列式:()50705010x ⨯+-⨯,在按B 方案购买可列式:()5070100.9x ⨯+⨯;(2)由(1)列等式求解即可;(3)先算全按同一种方案进行购买,计算出两种方案所需付款金额,再根据A 方案是买一个篮球送跳绳,B 方案是篮球和跳绳都按定价的90%付款,考虑可以按A 方案买50个篮球,剩下的50条跳绳按B 方案购买,计算出所需付款金额,进行比较即可.【详解】(1)解:A 方案购买可列式:()50705010300010x x ⨯+-⨯=+元;按B 方案购买可列式:()()5070100.931509x x ⨯+⨯=+元;故答案为:()300010x +,()31509x +;(2)由(1)可知,当A 、B 两种方案所需要的钱数一样多时,即30001031509x x+=+解得150x =.答:购买150根跳绳时,A 、B 两种方案所需要的钱数一样多.(3)当100x =时,按A 方案购买需付款:3000103000101004000x +=+⨯=(元);按B 方案购买需付款:31509315091004050x +=+⨯=(元);按A 方案购买50个篮球配送50个跳绳,按B 方案购买50个跳绳合计需付款:5070105090%35004503950⨯+⨯⨯=+=(元);∵395040004050<<,∴省钱的购买方案是:按A方案买50个篮球,剩下的50条跳绳按B方案购买,付款3950元.【点睛】此题考查的是列代数式并求值,也可作为一元一次方程来考查,因此做此类题需要掌握解应用题的能力.【变式训练】方案二:联合购买门票需()5040504500(+⨯=元);方案三:联合购买101张门票需101404040(⨯=元);综上所述:因为540045004040>>.故应该甲乙两单位联合起来选择按40元一次购买101张门票最省钱.【点睛】本题主要考查了列一元一次方程解实际问题的运用,一元一次方程的解法的运用,有理数大小比较的运用,设计方案的运用.解答时建立方程求出各单位人数是关键.2.(2023秋·海南省直辖县级单位·七年级统考期末)某学校计划购买书柜20张和书架x 只(20x >),现从A 、B 两家超市了解到:书柜每张300元,书架每只80元.A 超市的优惠政策为每买一张书柜赠送一只书架;B 超市的优惠政策为所有商品八折.(1)若学校到同一家超市选购所有商品,则到A 超市购买费用是______元(用含x 的式子表示),到B 超市购买费用是_____元(用含x 的式子表示);(2)在(1)的条件下,当购买书架x 多少只时?到A 、B 两家超市购买费用相等.(3)学校要购买20张书柜和60只书架.①若学校到同一家超市选购所有商品,则到A 超市购买费用是______元,到B 超市购买费用是____元;②假如你是本次购买的负责人,且可到两家超市自由选购,请你设计一种购买方案,使购买费用更少,并求出购买费用是多少元?【答案】(1)(804400)(644800)x x ++,(2)25只(3)①9200,8640②8560元【分析】(1)根据两个超市的优惠政策列代数式即可;(2)根据购买费用相等以及(1)题中的代数式列方程求解即可;(3)①将书架数量为60分别代入(1)题中的代数式求解即可;②选择最便宜的方案后再代入计算即可.【详解】(1)解:A 超市:由题意得,在A 超市只需买20张书柜及()20x -只书架,∴A 购买费用为:()()2030080206000801600804400x x x ⨯+-=+-=+元B 超市费用为:()203000.8800.8480064x x ⨯⨯+⨯⨯=+元故答案为:(804400)x +,(644800)x +(2)解:由题意得:804400644800x x +=+某校七年级((3)设主叫时间为t 分钟,直接写出t 满足什么条件时,B 套餐省钱.【答案】(1)40(2)400分或900分(3)400900t <<【分析】(1)根据“A 套餐”“B 套餐”的计费方式,分别求得通话时间200分钟时的计费,再进行比较即可得出结论;(2)设小宇的爸爸7月份的主叫时间为x 分,分别讨论若100500x <≤和500x >,根据“A 套餐”“B 套餐”的计费方式,列出关于x 的一元一次方程,解之即可,(3)根据(2)所求即可得出结论.【详解】(1)根据题意得:∵200100>∴A 套餐需交费:38(200100)0.258+-⨯=(元),∵200500<∴B 套餐需交费98元所以,选用A 套餐比选用B 套餐节省的费用为:985840-=(元)故答案为:40;(2)设小宇的爸爸7月份的主叫时间为x 分,若100500x <≤,根据题意得:()381000.298x +-⨯=,解得:400x =,若500x >,根据题意得:()381000.298+(500)0.25x x +-⨯=-⨯,解得:900x =,综上所述,小宇的爸爸7月份的主叫时间为400分或900分(3)当400900t <<,选择B 套餐省钱【点睛】本题考查了一元一次方程的应用,正确找出等量关系,列出一元一次方程,正确掌握分类讨论思想是解题的关键.【类型四一元一次方程的应用--电费和水费问题】180∴>,x∴-=,0.618126x∴=.x240答:该户12月用电量为240度.【点睛】本题考查了一元一次方程的应用、列代数式以及有理数的混合运算,解题的关键是:(1)根据各数量之间的关系,列式计算;(2)根据各数量之间的关系,用含x的代数式表示出该户12月应交电费;(3)找准等量关系,正确列出一元一次方程.【变式训练】(3)若顾客在该商场第一次购买一件标价x 元()1250x >的商品后,第二次又购买了一件标价为800元的商品,两件商品的优惠额共为768元,则这名顾客第一次购买商品的标价是多少?【答案】(1)购买一件标价为1800元的商品,顾客获得的优惠额460元(2)当0.81500x >时,顾客获得的优惠额是()0.2150x +元,当10000.81500x <<时,顾客获得的优惠额是()0.2100x +元(3)这名顾客第一次购买商品的标价是1990元【分析】(1)根据已知条件列出算式求出结果;(2)①分情况讨论当0.81500x >时,②10000.81500x <<时,列出算式;(3)在(2)的基础上列出方程解出符合条件的数.【详解】(1)∵商场内所有商品按标价的80%出售,∴180080%1440⨯=(元),∵100014001500<<,∴顾客获得的优惠额是100元,打折后优惠额:()1800120%360⨯-=(元),∴购买一件标价为1800元的商品,顾客获得的优惠额是360100460+=(元),答:购买一件标价为1800元的商品,顾客获得的优惠额460元;(2)∵顾客在该商场购买一件标价x 元()1250x >的商品,①当0.81500x >时,顾客获得的优惠额是()0.2150x +元,②当10000.81500x <<时,顾客获得的优惠额是()0.2100x +元,综上所述:当0.81500x >时,顾客获得的优惠额是()0.2150x +元,当10000.81500x <<时,顾客获得的优惠额是()0.2100x +元;(3)①0.81500x >时,0.21508000.260768x ++⨯+=,解得1990x =,②10000.81500x <<时,0.21008000.260768x ++⨯+=,解得2240x =(舍去),综上所述这名顾客第一次购买商品的标价是1990元.【点睛】本题考查一元一次方程应用、列代数式,掌握列代数式的关键条件,分情况讨论是解题关键.【类型五一元一次方程的应用--数轴上的行程问题】例题:(2023秋·全国·七年级课堂例题)[应用意识]如图,数轴上,A B 两点所表示的数分别为5,10,O -为原点,C 为数轴上一动点且表示的数为x .点P 以2个单位长度/秒的速度,点Q 以3个单位长度/秒的速度,分别自,A B 两点同时出发,相向而行,在数轴上运动.设运动时间为t 秒.(1)若点,P Q 在点C 处相遇,求点C 所表示的数x ;(2)若OP OQ =,求t 的值;(3)当5PQ =时,求t 的值;(4)若同时一只宠物鼠以4个单位长度/秒的速度从点B 出发,与点P 相向而行,宠物鼠遇到点P 后立即返回,又遇到点Q 后立即返回,又遇到点P 后立即返回……直到点,P Q 相遇为止.求宠物鼠在整个过程中所经过的路程.【答案】(1)点C 所表示的数是1(2)t 的值是3或5(3)t 的值是2或4(4)12个单位长度【分析】(1)根据相遇时P ,Q 表示同一个数得:52103t t -+=-,解得t 的值,即可得到答案;(2)P 运动后表示的数为52t -+,Q 运动后表示的数为103t -,故52103t t -+=-,或521030t t -++-=,可解得答案;(3)由5PQ =,得()()231055t +=---或()()231055t +=--+,可解得答案;(4)用时间乘以速度即可.【详解】(1)解:依题意,得()32105t t +=--,解得3t =,即点,P Q 运动3秒后相遇.532561-+⨯=-+=.故点C 所表示的数是1.(2)依题意,得52103t t -+=-,解得3t =;或521030t t -++-=,解得5t =.故t 的值是3或5.(3)依题意,得()()231055t +=---,解得2t =;或()()231055t +=--+,解得4t =.故t 的值是2或4.(4)由(1)知,点,P Q 同时出发,相向而行,经过3秒后相遇,即宠物鼠运动的时间为3s .4312⨯=.故宠物鼠在整个过程中所经过的路程是12个单位长度.【点睛】本题考查一元一次方程的应用,解题的关键是读懂题意,表示出P 运动后表示的数为52t -+,Q 运动后表示的数为103t -.【变式训练】1.(2023春·四川自贡·七年级四川省荣县中学校校考阶段练习)如图,数轴上点A 表示的为8,B 是数轴上一点,点B 在点A 左边且点A 点B 的距离14AB =,动点P 、Q 分别从点A 、B 两点同时向左移动,点P 的度为每秒3个单位长度,点Q 的速度为每秒1个单位长度.(1)求出数轴上点B 表示的数;(2)求经过几秒点P 追上点Q ?(3)经过几秒,P 、Q 两点的距离为6个单位长度,并求出此时点P 表示的是多少?【答案】(1)6-(2)7秒(3)经过4秒,P 、Q 两点的距离为6个单位长度,此时点P 表示的数是4-;经过10秒,P 、Q 两点的距离为6个单位长度,此时点P 表示的数是22-【分析】(1)根据数轴上表示数的方法和14AB =求解即可;(2)设经过t 秒以后,点P 追上点Q ,根据题意列出方程求解即可;问题探究:(1)动点P从点A运动至E点需要______秒,此时点Q(2)P,Q两点在点M处相遇,求出相遇点M所对应的数是多少?(3)求当t为何值时,P,B两点在数轴上相距的长度与【点睛】本题考查了动点问题,相遇、相距问题及几何问题的数量关系.5.(2023春·黑龙江哈尔滨·六年级哈尔滨市第四十七中学校考阶段练习)如图,数轴上的点(1)填空;=a______,b=______,当t=______(2)当电子蚂蚁D与C相距20个单位长度时,求(3)在(1)的条件下,电子蚂蚁D与C相遇后,各自分别按原方向、原速度继续运动.若在。

人教版七年级数学导学案3.4实际问题与一元一次方程——销售问题(1)含课后配套作业及答案

人教版七年级数学导学案3.4实际问题与一元一次方程——销售问题(1)含课后配套作业及答案

3.3一元一次方程的应用——销售问题【教学目标】能熟练地找出销售问题中的相等关系列方程解应用题【复习引入】1.一种药品现在售价56.10元,比原来降低了15%,问原售价为__56.10×(1+1 5%)=64.515__元.2.“五一”黄金周期间,为了促销商品,甲、乙两个商店都采取优惠措施,甲店推出八折后再打八折,乙店则一次性六折优惠,若同样价格的商品,下列结论正确的是( B )A.甲比乙优惠B.乙比甲优惠C.两店优惠条件相同D.不能进行比较【知识点梳理】销售问题中常用的关系式:(1)利润=进价×利润率,(2)利润=售价-进价.【应用举例】例1某种商品的进价为100元,若要使利润率达20%,则该商品的销售价格应为多少元?此时每件商品可获利润多少元?分析:若设售价x元,则利润为_20 元或用x表示为x-100元,可列方程为__ x-100 =__20 ,解之得x=_120_.针对性练习某商店出售甲、乙两种成衣,其中甲种成衣卖价120元盈利20%,乙种成衣卖价也是120元但亏损20%,问该商店在本次销售中实际上是盈还是亏,盈或亏多少钱?答案:解:设甲种成衣的进价为x元,乙种成衣的进价为y元。

则由题意的x x-120=20%=-yy120-20%解得x=100 解得y=150甲种成衣盈利=120-100=20元乙种成衣亏损=150-120=30元该次销售实际是亏损=30-20=10元例2某种鲜花进货价为每枝5元,若按标价的八折出售仍可获利3元,问标价为每枝多少元?分析:若设标价为每枝x元,则售价为_80%x__元,利润为_3_元,用x表示为80%x-5元,可列方程为_80%x-5 =3_ _,解之得x=_10__.针对性练习1.某种商品因换季准备打折出售,如果按定价的七五折出售将赔25元,而按定价的九折出售将赚20元,问这种商品的定价是多少?答案:解:设这种商品的定价是x元。

由题意得75%x+25=90%x-20移项合并同类项得,-0.15x=45系数化为1得,x=300答:这种商品的定价为300元。

人教版七年级上册数学3.4一元一次方程利润问题及答案

人教版七年级上册数学3.4一元一次方程利润问题及答案

一元一次方程的应用题(利润问题)1.体育用品商店胡老板到体育商场批发篮球、足球、排球,商场老板对胡老板说:“篮球、足球、排球平均每只36元,篮球比排球每只多10元,排球比足球每只少8元”.(1)请你帮胡老板求解出这三种球每只各多少元?(2)胡老板用1060元批发回这三种球中的任意两种共30只,你认为他可能是买哪两种球各多少只?(3)胡老板通常将每一种球各提价20元后,再进行打折销售,其中排球、足球打八折,篮球打八五折,在(2)的情况下,为了获得最大的利润,他批发回的一定是哪两种球各多少只?请通过计算说明理由.2.某商店在某一时间以每件60元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,卖这两件衣服总的是盈利还是亏损,或是不盈不亏?(提示:商品售价=商品进价+商品利润)3.某商品的售价为每件900元,为了参与市场竞争,商店按售价的9折再让利40元销售,此时仍可获利10%,此商品的进价是多少元?4.小明在商店里看中了一件夹克衫,店家说:“我这儿所有商品都是在进价上加50%的利润再标价的,这件夹克衫我给你按标价打8折,你就付168元,我可只赚了你8元钱啊!”聪明的小明经过思考后觉得店家的说法不可信,请你通过计算,说明店家是否诚信?5.一家商店将某种商品按成本价提高40%后标价,元旦期间,欲打八折销售,以答谢新老顾客对本商厦的光顾,售价为224元,这件商品的成本价是多少元?6.虹远商场原计划以1500元出售甲、乙两种商品,通过调整价格,甲提价20%,乙降价30%后,实际以1600元售出,问甲商品的实际售价是多少元?7.某种商品的进价是215元,标价是258元,现要最低获得14%的利润,这种商品应最低打几折销售?8.一家商店因换季将某种服装打折销售,如果每件服装按标价的5折出售,将亏本20元.如果按标价的8折出售,将盈利40元.求:(1)每件服装的标价是多少元?(2)为保证不亏本,最多能打几折?9.某商店销售一种衬衫,四月份的营业额为5000元.为了扩大销售,在五月份将每件衬衫按原价的8折销售,销售比在四月份增加了40件,营业额比四月份增加了600元.求四月份每件衬衫的售价.10.在商品市场经常可以听到小贩的叫卖声和顾客的讨价还价声:“10元一个的玩具赛车打八折,快来买哪!”“能不能再便宜2元”如果小贩真的让利(便宜)2元卖了,他还能获利20%,根据下列公式求一个玩具赛车进价是多少?(公式=进价×利润率=销售价×打折数﹣让利数﹣进价)11.某商场因换季,将一品牌服装打折销售,每件服装如果按标价的六折出售将亏10元,而按标价的七五折出售将赚50元,问:(1)每件服装的标价是多少元?(2)每件服装的成本是多少元?(3)为保证不亏本,最多能打几折?12.一家商店将某种服装按成本价提高40%标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的成本多少元?13.某商店将某种VCD按进价提高35%,然后打出“九折酬宾,外送50元出租车费”的广告,结果每台仍获利208元,求进价.14.学校准备添置一批课桌椅,原计划订购60套,每套100元.店方表示:如果多购可以优惠.结果校方购了72套,每套减价3元,但商店获得同样多的利润.求每套课桌椅的成本.15.某件商品的标价为1100元,若商店按标价的80%降价销售仍可获利10%,求该商品的进价是多少元?16.甲商店将某种超级VCD按进价提高35%定价,然后打出“九折酬宾,外送50元出租车费”的广告,结果每台超级VCD仍获利208元.(1)求每台VCD的进价;(2)乙商店出售同类产品,按进价提高40%,然后打出“八折酬宾”的广告,若你想买此种产品,将选择哪家商店?17.某电器销售商为促销产品,将某种电器打折销售,如果按标价的六折出售,每件将亏本36元;如果按标价的八折出售,每件将盈利52元,问:(1)这种电器每件的标价是多少元?(2)为保证盈利不低于10%,最多能打几折?18.某商店到苹果产地去收购苹果,收购价为每千克1.2元,从产地到商店的距离是400km,运费为每吨货物每运1km收1.50元,如果在运输及销售过程中的损耗为10%,商店要想获得其成本的25%的利润,零售价应是每千克多少元?19.某商场按定价销售某产品,每件可获利润45元.现在按定价的85%出售8件该产品所获得的利润,与按定价每件减价35元出售12件所获利润一样.那么,该产品每件定价多少元?〔销售利润=(销售单价﹣进货单价)×销售数量〕解:设这一商品,每件定价x元.(1)该商品的进货单价为元;(2)定价的85%出售时销售单价是元,出售8件该产品所能获得的利润是元;(3)按定价每件减价35元出售时销售单价是元,出售12件该产品所获利润是元;(4)现在列方程解应用题.20.某厂生产一种零件,每个成本为40元,销售单价为60元.该厂为鼓励客户购买这种零件,决定当一次购买零件数超过100个时,每多购买一个,全部零件的销售单价均降低0.02元,但不能低于51元.(1)当一次购买多少个零件时,销售单价恰为51元?(2)当客户一次购买1000个零件时,该厂获得的利润是多少?(3)当客户一次购买500个零件时,该厂获得的利润是多少?(利润=售价﹣成本)21.商店里有种皮衣,进价500元/件,现在客户以2800元总价购买了若干件皮衣,而商家仍有12%的利润,问客户买了几件皮衣?22.利民商店购进一批电蚊香,原计划每袋按进价加价40%标价出售.但是,按这种标价卖出这批电蚊香的90%时,夏季即将过去.为加快资金周转,商店以打7折(即按标价的70%)的优惠价,把剩余电蚊香全部卖出.(1)剩余的电蚊香以打7折的优惠价卖出,这部分是亏损还是盈利请说明理由.(2)按规定,不论按什么价格出售,卖完这批电蚊香必须交税费300元(税费与购进蚊香用的钱一起作为成本),若实际所得纯利润比原计划的纯利润少了15%.问利民商店买进这批电蚊香用了多少钱?一元一次方程应用题(利润问题)参考答案1.体育用品商店胡老板到体育商场批发篮球、足球、排球,商场老板对胡老板说:“篮球、足球、排球平均每只36元,篮球比排球每只多10元,排球比足球每只少8元”.(1)请你帮胡老板求解出这三种球每只各多少元?(2)胡老板用1060元批发回这三种球中的任意两种共30只,你认为他可能是买哪两种球各多少只?(3)胡老板通常将每一种球各提价20元后,再进行打折销售,其中排球、足球打八折,篮球打八五折,在(2)的情况下,为了获得最大的利润,他批发回的一定是哪两种球各多少只?请通过计算说明理由.考点:二元一次不定方程的应用;一元一次方程的应用。

《易错题》七年级数学上册第三单元《一元一次方程》-解答题专项经典题(含解析)(1)

《易错题》七年级数学上册第三单元《一元一次方程》-解答题专项经典题(含解析)(1)

一、解答题1.如图,在一条不完整的数轴上从左到右有点A,B,C,其中AB=2BC,设点A,B,C所对应数的和是m.(1)若点C为原点,BC=1,则点A,B所对应的数分别为,,m的值为;(2)若点B为原点,AC=6,求m的值.(3)若原点O到点C的距离为8,且OC=AB,求m的值.解析:(1)﹣3,﹣1,﹣4;(2)﹣2;(3)8或-40.【分析】(1)根据数轴上的点对应的数即可求解;(2)根据数轴上原点的位置确定其它点对应的数即可求解;(3)根据原点在点C的右边先确定点C对应的数,进而确定点B、点A所表示的数即可求解.【详解】解:(1)∵点C为原点,BC=1,∴B所对应的数为﹣1,∵AB=2BC,∴AB=2,∴点A所对应的数为﹣3,∴m=﹣3﹣1+0=﹣4;故答案为:﹣3,﹣1,﹣4;(2)∵点B为原点,AC=6,AB=2BC,AB+BC=AC,∴AB=4,BC=2,∴点A所对应的数为﹣4,点C所对应的数为2,∴m=﹣4+2+0=﹣2;(3)∵原点O到点C的距离为8,∴点C所对应的数为±8,∵OC=AB,∴AB=8,当点C对应的数为8,∵AB=8,AB=2BC,∴BC=4,∴点B所对应的数为4,点A所对应的数为﹣4,∴m=4﹣4+8=8;当点C所对应的数为﹣8,∵AB=8,AB=2BC,∴BC=4,∴点B 所对应的数为﹣12,点A 所对应的数为﹣20,∴m =﹣20﹣12﹣8=﹣40.【点睛】本题考查了数轴,解决本题的关键是数形结合思想的灵活运用.2.已知方程3210x a +-=的解与方程20x a -=的解互为相反数,求a 的值. 解析:14a =- 【分析】先分别求出两个方程的解,再根据解互为相反数列方程计算即可.【详解】3210x a +-=,解得123a x -=; 20x a -=,解得2x a =. 由题意得,12203a a -+=, 解得14a =-. 【点睛】本题考查一元一次方程的解法,解题的关键是根据两个方程的解互为相反数列方程求解. 3.在十一黄金周期间,小明、小华等同学随家长共15人一同到金丝峡游玩,售票员告诉他们:大人门票每张100元,学生门票8折优惠.结果小明他们共花了1400元,那么小明他们一共去了几个家长、几个学生?解析:10个家长,5个学生【分析】设小明他们一共去了x 个家长,则有(15﹣x )个学生,根据“大人门票购买费用+学生门票购买费用=1400”列式求解即可.【详解】解:设小明他们一共去了x 个家长,(15﹣x )个学生,根据题意得:100x +100×0.8(15﹣x )=1400,解得:x =10,15﹣x =5,答:小明他们一共去了10个家长,5个学生.【点睛】本题考查了一元一次方程的应用.4.利用等式的性质解下列方程:(1)x -2=5;(2)-23x =6; (3)3x =x +6.解析:(1)x =7;(2)x =-9;(3)x =3【分析】(1)两边同时加上2即可求解;(2)两边同时乘-32即可求解; (3)两边同时减x ,然后同时除以2即可求解.【详解】解:(1)等式两边加2,得x -2+2=5+2,即x =7.(2)等式两边乘-32,得x =6×(-32), 即x =-9.(3)等式两边减x ,得2x =6.两边除以2,得x =3.【点睛】本题主要考查了等式的基本性质.等式性质:1、等式的两边同时加上或减去同一个数或字母,等式仍成立;2、等式的两边同时乘以或除以同一个不为0数或字母,等式仍成立. 5.解下列方程(1)5m-8m-m=3-11;(2)3x+3=2x+7解析:(1)m=2;(2)x=4【分析】(1)先合并同类项,再化系数为1解一元一次方程即可;(2)先移项,再合并同类项解一元一次方程即可.【详解】(1)合并同类项,得 :﹣4m=﹣8,系数化为1,得: m=2,(2)移项,得:3x ﹣2x=7﹣3,合并同类项,得: x=4.【点睛】本题考查解一元一次方程,熟练掌握一元一次方程的解法及步骤是解答的关键. 6.已知16y x =-,227y x =+,解析下列问题:(1)当122y y =时,求x 的值;(2)当x 取何值时,1y 比2y 小3-.解析:(1)215x =;(2)18x 【分析】(1)根据题意列出等式,然后解一元一次方程即可;(2)根据题意得到213y y -=-,然后代入x ,解一元一次方程即可求解.【详解】(1)由题意得:62(27)x x -=+ 解得215x = 215x ∴=. (2)由题意得:27(6)3x x +--=- 解得18x 18x ∴=. 【点睛】本题考查了解一元一次方程,重点是熟练掌握移项、合并同类项、去括号、去分母的法则,细心求解即可.7.王叔叔十月份的工资为8000元,超过5000元的部分需要交3%的个人所得税。

【七年级数学代数培优竞赛专题】专题17 列一元一次方程解决实际问题【含答案】

【七年级数学代数培优竞赛专题】专题17 列一元一次方程解决实际问题【含答案】

专题17 列一元一次方程解决实际问题知识解读1.行程问题行程问题中的基本关系:路程=速度×时间.顺流、逆流问题中,顺流速度=船在静水中的速度+水速,逆流速度=船在静水中的速度-水速.2.销售问题销售问题中常见的数量关系:标价×折率=售价,售价一进价=利润,进价×利润率=利润。

3.分档问题现实生活中,有许多与费用有关的问题,其费用的计算方法会分成多个不同的档次.解题时要对照档次,认准计算方法,如果不能确定属于哪个档次时,要注意分类讨论.培优学案典例示范1.行程问题例1 甲、乙两列火车从A ,B 两地相向而行,乙车比甲车早出发1小时,甲车比乙车每小时快30千米,甲车发车2小时恰好与乙车相遇.相遇后为了错车,甲车放慢了速度,以它原来速度的倍23行驶,而乙车加快了速度,以它原来速度的倍行驶.结果2小时15分钟后,两车距离又等于A ,B 53两地之间的距离.求两车相遇前的速度及A ,B 两地之间的距离。

【提示】设乙车相遇前的速度为x 千米/小时,则甲车相遇前的速度为(x +30)千米/小时.分别用含x 的式子表示出相遇前两车的总行程和相遇后两车的总行程.【技巧点评】行程问题中基本的关系:路程=速度×时间.当问题较为复杂时,可借助表格来帮助分析:跟踪训练1甲、乙二人在一环形场地上从A点同时同向匀速跑步,甲的速度是乙的2.5倍,4分钟两人首次相遇,此时乙还需要跑300米才跑完第一圈,求甲、乙二人的速度及环形场地的周长.例2一条汽船在一条河上航行,若从A港到B港顺流航行需要3h,从B港到A港逆流航行需要4h,那么一根木棍从A港到B港顺水漂流需要多长时间?【提示】设汽船在静水中的速度为x千米/小时,水流的速度为y千米/小时.根据顺流汽船的行程和逆流汽船的行程都是A,B两港之间的距离可以列出方程,进而求出x与y的关系,而木棍漂流所用的时间等于A,B两港之间的距离除以水流速度。

人教版七年级数学上册第三章实际问题与一元一次方程解答题复习试题一(含答案) (86)

人教版七年级数学上册第三章实际问题与一元一次方程解答题复习试题一(含答案) (86)

人教版七年级数学上册第三章实际问题与一元一次方程解答题复习试题一(含答案)节能灯在城市已经基本普及,某商场计划购进甲、乙两种型号的节能灯共1200只,这两种节能灯的进价、售价如下表:(1)如何进货,进货款恰好为46000元.(2)如何进货,商场销售完节能灯后获利恰好是进货价的30%,此时利润为多少元?【答案】(1)购进甲型节能灯400只,购进乙型节能灯800只,进货款恰好为46000元;(2)购进甲型节能灯450只,购进乙型节能灯750只,销售完节能灯后利润为13500元.【解析】【分析】1200x-只,由题意(1)设商场购进甲型节能灯x只,则购进乙型节能灯()可得等量关系:甲型的进货款+乙型的进货款=46000元,根据等量关系列出方程,再解方程即可;1200a-只,由题意(2)设商场购进甲型节能灯a只,则购进乙型节能灯()可得:甲型的总利润+乙型的总利润=总进货款×30%,根据等量关系列出方程,再解即可.【详解】解:(1)设商场购进甲型节能灯x 只,则购进乙型节能灯()1200x -只 根据题意,得:()2545120046000x x +-=解得:400x =购进乙型节能灯为12001200400800x -=-=答:购进甲型节能灯400只,购进乙型节能灯800只,进货款恰好为46000元;(2)设商场购进甲型节能灯a 只,则购进乙型节能灯()1200a -只,根据题意,得:()()()()3025604512002545120030%a a a a ⎡⎤-+--=+-⨯⎣⎦,解得:450a =,购进乙型节能灯为12001200450750a -=-=,获利:()()()3025604512001800010180001045013500a a a -+--=-=-⨯=, 答:购进甲型节能灯450只,购进乙型节能灯750只,销售完节能灯后利润为13500元.【点睛】此题主要考查了一元一次方程的应用,关键是正确理解题意,找出题目中的等量关系,设出未知数,列出方程.52.某商场计划用900元从生产厂家购进50台计算器,已知该厂家生产三种不同型号的计算器,出厂价分别为A 种每台15元,B 种每台21元,C 种毎台25元.(1)商场同时购进两种不同型号的计算器50台,用去900元.①若同时购进A 、B 两种时,则购进A 、B 两种计算器各多少台?; ②若同时购进A 、C 两种时,则购进A 、C 两种计算器各多少台?;(2)若商场销售一台A种计算器可获利5元,销售一台B种计算器可获利8元,销售一台C种计算器可获利12元,在同时购进两种不同型号的计算器方案中,为了使销售时获利最多,你选择哪种方案?【答案】(1)①购进A种计算器25台,B种计算器25台;②购进A种计算器35台,B种计算器15台.(2)选择购进A、C两种型号的计算器,销售时获利最多.【解析】【分析】(1)①设购进A种计算器x台,则购进B种计算器(50)x-台,根据总钱数=购进A种计算机的钱数+购进B种计算机的钱数即可列出关于x的一元一次方程,解之即可得出结论;50y-台,根据总钱数=购进A种②设购进A种计算器y台,则购进C种计算器()计算机的钱数+购进C种计算机的钱数即可列出关于y的一元一次方程,解之即可得出结论;(2)当只购进B、C两种型号时,设购进B种计算器z台,则购进C种计算器()-台,根据总钱数=购进B种计算机的钱数+购进C种计算机的钱数即可列50z出关于z的一元一次方程,解之即可得出z的值,从而得出此种进货方式不合理;当只购进A、B两种型号时,根据总利润=销售A种计算器的利润+销售B种计算器的利润即可算出选此方案时的利润;当只购进A、C两种型号时,根据总利润=销售A种计算器的利润+销售C种计算器的利润即可算出选此方案时的利润.二者比较后即可得出结论.【详解】(1)①设购进A 种计算器x 台,则购进B 种计算器(50)x -台,根据题意得:1521x +(50)900x -=,解得:255025x x =-=,. 答:购进A 种计算器25台,B 种计算器25台.②设购进A 种计算器y 台,则购进C 种计算器()50y -台,根据题意得:()152550900y y +-=,解得:355015y y =-=,. 答:购进A 种计算器35台,B 种计算器15台.(2)当只购进B 、C 两种型号时,设购进B 种计算器z 台,则购进C 种计算器()50z -台,根据题意得:()212550900z z +-=,解得:87.5z =(不合题意,舍去).当只购进A 、B 两种型号时,利润255258325=⨯+⨯=(元);当只购进A 、C 两种型号时,利润3551512421=⨯+⨯=(元).∵325421<,∴选择购进A 、C 两种型号的计算器,销售时获利最多.【点睛】本题考查了一元一次方程的应用,根据数量关系列出一元一次方程是解题的关键.53.如图,现有两条乡村公路AB 、BC ,AB 长为1200米,BC 长为1600,一个人骑摩托车从A处以20m/s的速度匀速沿公路AB、BC向C处行驶;另一人骑自行车从B处以5m/s的速度从B向C行驶,并且两人同时出发.(1)求经过多少秒摩托车追上自行车?(2)求两人均在行驶途中时,经过多少秒两人在行进路线上相距150米?【答案】(1)80秒;(2)70秒或90秒【解析】【分析】(1)设经过x秒摩托车追上自行车,根据“摩托行驶路程=1200+骑自行车行驶路程”列出方程并解答;(2)需要分两种情况解答:①摩托车还差150米追上自行车;②摩托车超过自行车150米,根据他们行驶路程间的数量关系列出方程并解答.【详解】解:(1)设经过x秒摩托车追上自行车,20x=5x+1200,解得x=80.答:经过80秒摩托车追上自行车.(2)设经过y秒两人相距150米,第一种情况:摩托车还差150米追上自行车时,20y-1200=5y-150解得y=70.第二种情况:摩托车超过自行车150米时,20y=150+5y+1200解得y=90.答:经过70秒或90秒两人在行进路线上相距150米.【点睛】本题考查了一元一次方程的应用.解题的关键是读懂题意,找出题中的等量关系并解答.注意:第(2)题需要分类讨论,以防漏解.54.甲、乙两运动员在长为100m 的直道AB (A ,B 为直道两端点)上进行匀速往返跑训练,两人同时从A 点起跑,到达B 点后,立即转身跑向A 点,到达A 点后,又立即转身跑向B 点…若甲跑步的速度为5m/s ,乙跑步的速度为4m/s ,则起跑后100s 内,求两人相遇的次数【答案】4次【解析】【分析】可设两人相遇的次数为x ,根据每次相遇的时间是2100200549⨯=+,总共时间为100s ,列出方程求解即可.【详解】解:设两人起跑后100s 内,两人相遇的次数为x 次,每次相遇间隔时间为ts ,依题意得:2100200549t ⨯==+ 2001009x ∴= 解得:x=4.5又∵x是正整数,且只能取整,∴x=4所以两人相遇了4次.【点睛】本题考查了一元一次方程解决行程中的相遇问题,突破口就是相遇时间等于每个人走的时间;结合实际问题中x的取值只能取整数,此题与方程的解既有区别又有联系.55.为庆祝元旦,甲、乙两校准备联合文艺汇演,甲、乙两校共92人(其中甲校人数多于乙校人数,且甲校人数不够90人)准备统一购买服装(一人买一套)参加演出,下面是服装厂给出的演出服装的价格表:如果两所学校分别单独购买服装,一共应付5920元.(1)如果甲、乙两校联合起来购买服装,那么比各自购买服装共可以节省多少钱?(2)甲、乙两校各有多少学生准备参加演出?(3)如果甲校有8名同学抽调去参加迎元旦书法比赛不能参加演出,那么你有几种购买方案,通过比较,你该如何购买服装才能最省钱?【答案】(1)1320,(2)甲校有52人,乙校有40人,(3)有3种方案,甲,乙两校联合起来选择按50元一次购买91套服装最省钱.【解析】【分析】(1)联合购买需付费:92×50和5920比较即可;(2)由于甲校人数多于乙校人数,且甲校人数不够90人,所以甲校人数在46﹣90之间.乙校人数在1﹣45之间.等量关系为:甲校付费+乙校付费=5920;(3)方案1为:分别付费;方案2:联合购买92﹣8=84套付费;方案3:联合买91套按50元每套付费.【详解】解:(1)∵甲、乙两校共92人,∵甲、乙两校联合起来购买服装需50×92=4600(元),∵5920﹣4600=1320(元)答:甲、乙两校联合起来购买服装,那么比各自购买服装共可以节省1320元.(2)设甲校人数为x人(依题意可知46<x<90),则乙校人数为(92﹣x)人,依题可得:60x+70(92﹣x)=5920,解得:x=52,∵92﹣x=40.答:甲校有52人,乙校有40人.(3)依题可得:抽调后甲校人数为:52﹣8=44(人),∵方案一:各自购买服装需44×70+40×70=5880(元);方案二:联合购买服装需(44+40)×60=5040(元);方案三:联合购买91套服装需91×50=4550(元);综上所述:因为5880>5040>4550.∵应该甲,乙两校联合起来选择按50元一次购买91套服装最省钱.答:甲,乙两校联合起来选择按50元一次购买91套服装最省钱.【点睛】此题主要考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,仔细分析,找出合适的所求的量的等量关系.56.如图,在数轴上,点A、B对应的数分别为a、b,且a、b满足|a+4|+(b﹣8)2=0.(1)求A、B所表示的数;x﹣8的解.(2)若点C在数轴上对应的数为x,且x是方程2x+1=12①求线段BC的长;②在数轴上是否存在点P,使PA+PB=BC?若存在,求出点P对应的数;若不存在,说明理由.【答案】(1)点A表示的数为﹣4,点B表示的数为8;(2)①14,②存在,﹣5或9.【解析】【分析】(1)由非负性可求解;(2)∵解方程可求点C表示的数,即可求解;∵分三种情况讨论,当点P在点A左侧;当点P在点A,点B之间;当点P 在点B右侧,列出方程可求解.【详解】解:(1)∵|a+4|+(b﹣8)2=0.∵a=﹣4,b=8,∵点A表示的数为﹣4,点B表示的数为8;x﹣8的解(2)∵∵x是方程2x+1=12∵x=﹣6,∵点C表示的数为﹣6,∵BC=8﹣(﹣6)=14,∵线段BC的长为14;∵设点P表示的数为y,当点P在点A左侧,∵PA+PB=BC∵(﹣4﹣y)+(8﹣y)=14,∵y=﹣5,∵点P表示的数为﹣5,当点P在点A,点B之间,∵PA+PB=BC∵(y+4)+(8﹣y)=14,方程无解,即不存在;当点P在点B右侧,∵PA+PB=BC∵(y+4)+(y﹣8)=14,∵y=9,∵点P表示的数为9.【点睛】本题考查了一元一次方程的应用、数轴上两点之间的距离及非负性等知识,列出正确的方程是本题的关键.57.某市出租车的收费标准是:起步价10元(起步价指小于等于3千米行程的出租车价),行程在3千米到5千米(即大于3千米小于等于5千米)时,超过3千米的部分按每千米1.3元收费(不足1千米按1千米计算),当超过5千米时,超过5千米的部分按每千米2.4元收费(不足1千米按1千米计算).(1)若某人乘坐了2千米的路程,则他应支付的费用为___元;若乘坐了4千米的路程,则应支付的费用为___元;若乘坐了8千米的路程,则应支付的费用为元;(2)若某人乘坐了x(x>5且为整数)千米的路程,则应支付的费用为元(用含x的代数式表示);(3)若某人乘车付了15元的车费,且他所乘路程的千米数为整数,那么请你算一算他乘了多少千米的路程?【答案】(1)10;11.3,19.8;(2)2.4x+0.6;(3)此人乘车的路程为6千米【解析】【分析】(1)收费标准应该分:不超过3千米、超过3千米不足5千米、超过5千米三种情况来列式计算;(2)分成三段收费,列出代数式即可;(3)判断付15元的车费所乘路程,再代入相应的代数式计算即可.【详解】(1)由题意可得:某人乘坐了2千米的路程,他应支付的费用为:10元;乘坐了4千米的路程,应支付的费用为:10+(4−3)×1.3=11.3(元),乘坐了8千米的路程,应支付的费用为:10+2×1.3+3×2.4=19.8(元),故答案为:10;11.3,19.8(2)由题意可得:10+1.3×2+2.4(x−5)=2.4x+0.6,故答案为:2.4x+0.6,(3)若走5千米,则应付车费:10+1.3×2=12.6(元),∵12.6<15,∴此人乘车的路程超过5千米,因此,由(2)得:2.4x+0.6=15 ,解得:x=6 ,答:此人乘车的路程为6千米,【点睛】本题考查了一元一次方程的应用,解决问题的关键是读懂题意,找到所求的量的等量关系,进而列出式子.58.如图,已知数轴上有三点A、B、C,若用AB表示A、B两点的距离,AC表示A、C两点的距离,且AB=13AC,点A、点C对应的数是分别是a、c,且|a+40|+|c﹣20|=0.(1)求BC的长.(2)若点P、Q分别从A、C两点同时出发向左运动,速度分别为2个单位长度每秒、5个单位长度每秒,则运动了多少秒时,Q到B的距离与P到B 的距离相等?(3)若点P、Q仍然以(2)中的速度分别从A、C两点同时出发向左运动,2秒后,动点R从A点出发向右运动,点R的速度为1个单位长度每秒,点M为线段PR的中点,点N为线段RQ的中点,点R运动了多少秒时恰好满足MN+AQ=31;并求出此时R点所对应的数.【答案】(1)BC=40;(2)运动了207秒或20秒时,Q到B的距离与P到B的距离相等;(3)点R运动了9213秒或1087秒时恰好满足MN+AQ=31,此时点R所对应的数为﹣42813或﹣1727.【解析】【分析】(1)由绝对值的非负性可求出a,c的值,进而可得出线段AC的长,结合AB= 13AC可求出AB的长,由BC=AC-AB可求出线段BC的长;(2)由AB的长结合点A对应的数可求出点B对应的数,当运动时间为t秒时,点P对应的数为-2t-40,点Q对应的数为-5t+20,由Q到B的距离与P到B 的距离相等,可得出关于t的一元一次方程,解之即可得出结论;(3)当运动时间为t(t>2)秒时,点P对应的数为-2t-40,点Q对应的数为-5t+20,点R对应的数为t-2-40,结合点M为线段PR的中点及点N为线段RQ的中点可得出点M,N对应的数,进而可得出线段MN的长,结合MN+AQ=31可得出关于t的一元一次方程,解之即可得出结论.【详解】(1)∵|a+40|+|c﹣20|=0,∴a+40=0,c﹣20=0,∴a=﹣40,c=20,∴AC=|﹣40﹣20|=60.∵AB=13AC=20,∴BC=AC﹣AB=40.(2)∵AB=20,点A对应的数为﹣40,且点B在点A的右边,∴点B对应的数为﹣20.当运动时间为t秒时,点P对应的数为﹣2t﹣40,点Q对应的数为﹣5t+20,∵Q到B的距离与P到B的距离相等,∴|﹣2t﹣40﹣(﹣20)|=|﹣5t+20﹣(﹣20)|,即2t+20=40﹣5t或2t+20=5t﹣40,解得:t=207或t=20.答:运动了207秒或20秒时,Q到B的距离与P到B的距离相等.(3)当运动时间为t(t>2)秒时,点P对应的数为﹣2t﹣40,点Q对应的数为﹣5t +20,点R 对应的数为t ﹣2﹣40,∵点M 为线段PR 的中点,点N 为线段RQ 的中点,AQ =|﹣40﹣(﹣5t +20)|=|5t ﹣60|,∴点M 对应的数为2402402t t --+--=﹣2t ﹣41,点N 对应的数为5202402t t -++--=﹣2t ﹣11, ∴MN =|﹣2t ﹣41﹣(﹣2t ﹣11)|=|32t ﹣30|. ∵MN +AQ =31,∴|32t ﹣30|+|5t ﹣60|=31. 当2<t <12时,30﹣32t +60﹣5t =31, 解得:t =11813; 当12≤t ≤20时,30﹣32t +5t ﹣60=31, 解得:t =1227; 当t >20时,32t ﹣30+5t ﹣60=31, 解得:t =24213(不合题意,舍去). ∴t ﹣2=﹣9213或﹣1087. 当t =11813时,点R 对应的数为﹣42813;当t =1227时,点R 对应的数为﹣1727. ∴点R 运动了9213秒或1087秒时恰好满足MN +AQ =31,此时点R 所对应的数为﹣42813或﹣1727. 【点睛】本题考查了一元一次方程的应用、数轴、绝对值的非负性以及两点间的距离,找准等量关系,正确列出一元一次方程是解题的关键.59.某商品的定价是每千克5元,元旦期间,该商品推出优惠活动,若一次购买该商品的数量超过2千克,则超过2千克的部分,价格打8折;若一次购买的数量不超过2千克(含2千克),仍按原价付款(1)根据题意,填写下表(2)若一次购买的数量为x 千克,请你写出付款金额y (元)与x (千克)之间的关系式(3)若某顾客一次购买该商品花费了68元,求该顾客购买商品的数量【答案】(1)10,18;(2)当02x ≤≤时,5y x =,当2x >时,42y x =+;(3)16.5千克.【解析】【分析】(1)根据题意给出的付款方式分别计算填写即可;(2)分两种情况:02x ≤≤和2x >时,根据题意分别求出即可;(3)易知该商品花费68元时,购买的数量超过了2千克,将y =38代入(2)题对应的关系式中计算即可.【详解】解:(1)填表如下:故答案为:10,18;(2)当02x ≤≤时,5y x =,当2x >时,()100.82542y x x =+-⨯=+,(3)依题意,得4268x +=,解得16.5x =,答:该顾客购买商品的数量为16.5千克.【点睛】本题考查了列代数式和实际问题中规律性关系式的探求和一元一次方程的解法,属于常考题型,正确理解题意、列出符合题意的关系式是关键.60.张新和李明相约到图书城去买书,请你根据他们对话内容,求出李明上次所买书籍的原价.张新:听说花20元办一张会员卡,买书可享受八折优惠.李明:是的,我上次买了几本书,加上办卡的费用还省了12元.【答案】160【解析】【分析】可设书的原价为x元,据张新和李明的话可得关于应付费用的等量关系:书原价-12=20+书价的八折,据此列出方程求解即可.【详解】解:设书的原价为x元,根据题意得:x﹣12=20+0.8x,解得:x=160(元).答:书的原价为160元.【点睛】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程.。

人教版七年级数学上 册 3.4 实际问题与一元一次方程(含答案)

人教版七年级数学上 册  3.4 实际问题与一元一次方程(含答案)

3.4 实际问题与一元一次方程1.王刚是某校的篮球明星,在一场篮球比赛中,他一人得21分,如果他投进的2分球比3分球多3个,那么他一共投进的2分球有( ) A.2个 B.3个 C.6个 D.7个2.某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套.设安排x 名工人生产螺钉,则下面所列方程正确的是( )A .2×1000(26-x)=800xB .1000(13-x)=800xC .1000(26-x)=2×800xD .1000(26-x)=800x 3.用铁皮做罐头盒,每张铁皮可制作15个盒身或42个盒底,一个盒身与两个盒底配成一套罐头盒.现有108张铁皮,怎样分配材料可以正好制成整套罐头盒?若设用x 张铁皮做盒身,根据题意可列方程( )A .2×15(108-x)=42xB .15x =2×42(108-x)C .15(108-x)=2×42x D.2×15x=42(108-x)4.请你阅读下面的诗句:“栖树一群鸦,鸦树不知数,三只栖一树,五只没去处,五只栖一树,闲了一棵树,请你仔细数,鸦树各几何?”诗句中谈到的鸦 为 只,树为 棵. 5.一件工程甲独做50天可完,乙独做75天可完,现在两个人合作,但是中途乙因事离开几天,从开工后40天把这件工程做完,则乙中途离开了( ) A .10天 B .20天 C .30天 D .25天6.闽北某村原有林地120公顷,旱地60公顷,为适应产业结构调整,需把一部分旱地改造为林地,改造后,旱地面积占林地面积的20%.设把x 公顷旱地改造为林地,则可列方程( ) A .60-x =20%(120+x) B .60+x =20%×120 C .180-x =20%(60+x) D .60-x =20%×1207.我校“春之声”广播室小记者谭艳同学为了及时报道学校参加全市中学生篮球比赛情况,她从领队韦老师那里了解到校队共参加了16场比赛,积分28分.按规定赢一场得2分,输一场得1分.可是小谭忘记了输赢各多少场了,请你根据上面提供的信息分别求出输、赢各多少场.8.整理一批数据,由一人做需80小时完成,现在计划先由一些人做2小时,再增加5人做8小时,完成这项工作的34,应该怎样安排参与整理数据的具体人数?9. 打扫本班清洁区域卫生,1个人打扫需要30 min 完成,生活委员计划由一部分人先打扫5 min ,然后增加2人与他们一起打扫3 min 完成打扫任务.假设同学们打扫清洁区域卫生的效率相同,那么生活委员应先安排多少人打扫?10.现有甲、乙两家商店出售茶瓶和茶杯,茶瓶每只价格为20元,茶杯每只5元.已知甲店制定的优惠方法是买一只茶瓶送一只茶杯;乙店按总价的92%付款.某单位办公室需购茶瓶4只,茶杯若干只(不少于4只).(1)当需购买40只茶杯时,若让你去办这件事,你将打算去哪家商店购买,为什么?(2)当购买茶杯多少只时,两种优惠方法的效果是一样的?11.某工厂现有15 m3木料,准备制作圆桌或方桌(用部分木料制作桌面,其余木料制作桌腿).(1)已知一张圆桌由一个桌面和一条桌腿组成,如果1 m3木料可制作40个桌面或制作20条桌腿.要使制作出的桌面、桌腿恰好配套,直接写出制作桌面的木料为多少立方米.(2)已知一张方桌由一个桌面和四条桌腿组成.根据所给条件,解答下列问题.①如果1 m3木料可制作50个桌面或制作300条桌腿,应怎样计划用料才能使做好的桌面和桌腿恰好配套?②如果3 m3木料可制作20个桌面或制作320条桌腿,应怎样计划用料才能制作尽可能多的桌子?12.某公司新建办公楼需要装修,若由甲工程队单独完成需要18周,由乙工程队单独完成需要12周.现在招标的结果是由甲工程队先做3周,再由甲、乙两队合做,共需装修费40000元.若按两队完成的工作量支付装修费,该如何分配?13.某市为节约用水,制定了如下标准:每月用水量不超过20吨,按每吨1.2元收费;超过20吨,则超出部分按每吨1.5元收费.小明家六月份的水费是平均每吨1.25元,那么小明家六月份应交水费( )A.20元 B.24元 C.30元 D.36元14.北京市居民生活用气阶梯价格制度将正式实施,一般生活用气收费标准如图所示.比如6口以下的家庭年天然气用量在第二档时,其中350立方米按2.28元/米3收费,超过350立方米的部分按2.5元/米3收费.小冬一家有5口人,他想帮父母计算一下实行阶梯价格收费后,家里天然气费的支出情况.(1)如果他家2017年全年使用300立方米天然气,需要交天然气费________元;如果他家2017年全年使用500立方米天然气,需要交天然气费________元.(2)如果他家2017年需要交1563元天然气费,那么他家2017年用了多少立方米天然气?15.某牛奶加工厂现有鲜奶8吨,若直接销售鲜奶,每吨可获取利润500元;若制成酸奶销售,每吨可获取利润1200元;若制成奶片销售,每吨可获取利润2000元.该工厂的生产能力如下:制成酸奶每天可加工3吨;制成奶片每天可加工1吨.受人员制约,两种加工方式不可同时进行;受气温制约,这批鲜奶必须在4天内全部销售或加工完毕.为此,该工厂设计了两种可行方案:方案一:尽可能多地制成奶片,其余直接销售鲜奶;方案二:将一部分制成奶片,其余制成酸奶销售,并恰好4天完成.你认为选择哪种方案获利较多?为什么?答案1. C2. C3.D4. 20 55. D6.A7. 解设球队赢了x场,则输了(16-x)场.由题意,得2x+(16-x)×1=28,解得x=12,答:球队赢了12场,输了4场.8.解:设开始安排x人做.依题意,得2×180x+8×180(x+5)=34.解得x=2.答:应该先安排2人做2小时后,再增加5人做8小时.9.解:设生活委员应先安排x人打扫.根据题意,得130x×5+130×3(x+2)=1,解得x=3.答:生活委员应先安排3人打扫.10. 解(1)当购买40只茶杯时,则甲商店需付:4×20+5(40-4)=260(元). 则乙商店需付:(4×20+5×40)×92%=257.6(元).因此应去乙商店买.(2)设购买茶杯x 只,由题意列方程,得4×20+(x -4)×5=(4×20+5x)×92%, 即5x+60=73.6+4.6x, 解得x=34.所以当购买茶杯34只时,两种优惠方法的效果是一样的.11. 解:(1)设用x m 3木料制作桌面,则用(15-x)m 3木料制作桌腿恰好配套. 由题意,得40x =20(15-x).解得x =5.答:制作桌面的木料为5 m 3.(2)①设用a m 3木料制作桌面,则用(15-a)m 3木料制作桌腿恰好配套.由题意,得4×50a=300(15-a).解得a =9.所以制作桌腿的木料为15-9=6(m 3).答:用9 m 3木料制作桌面,用6 m 3木料制作桌腿恰好配套.②设用y m 3木料制作桌面,则用(15-y) m 3木料制作桌腿能制作尽可能多的桌子.由题意,得4×20×y 3=320×15-y3.解得y =12.所以制作桌腿的木料为15-12=3(m 3).答:用12 m 3木料制作桌面,用3 m 3木料制作桌腿能制作尽可能多的桌子. 12.解:设甲工程队先做3周后还需x 周完成.由题意,得118(x +3)+112x =1,解得x =6.即甲工程队做了9周,乙工程队做了6周,甲工程队的工作量为118×9=12,乙工程队的工作量为112×6=12. 因为两队完成的工作量相同,所以装修费40000元应平分,两队各得20000元.13.C14. 解:(1)如果他家2017年全年使用300立方米天然气,那么需要交天然气费2.28×300=684(元);如果他家2017年全年使用500立方米天然气,那么需要交天然气费 2.28×350+2.5×(500-350)=798+375=1173(元). 故答案为684,1173.(2)设小冬家2017年用了x 立方米天然气.因为1563>1173,所以小冬家2017年所用天然气超过了500立方米. 根据题意,得2.28×350+2.5×(500-350)+3.9(x -500)=1563, 解得x =600.答:小冬家2017年用了600立方米天然气.15.解:选择方案二获利最多.理由:方案一:最多生产4吨奶片,其余的鲜奶直接销售,其利润为4×2000+(8-4)×500=10000(元);方案二:设x 天生产奶片,(4-x)天生产酸奶.根据题意,得x +3(4-x)=8,解得x =2,则4-x =2,所以2天生产酸奶加工的鲜奶是2×3=6(吨),则方案二的利润为2×2000+6×1200=4000+7200=11200(元). 因为11200>10000,所以选择方案二获利较多。

培优二:(答案)七年级上第三章实际问题与一元一次方程(分段计费问题)

培优二:(答案)七年级上第三章实际问题与一元一次方程(分段计费问题)

七年级上第三章实际问题与一元一次方程(分段计费问题)一、例题精讲水费、电费等实行分段计费例1、为鼓励居民节约用电,某省试行阶段电价收费制,具体执行方案如表:例如:一户居民七月份用电420度,则需缴电费420×0.85=357(元).某户居民五、六月份共用电500度,缴电费290.5元.已知该用户六月份用电量大于五月份,且五、六月份的用电量均小于400度.问该户居民五、六月份各月电多少度?解:(1)当5月份用电量为x≤200度时,6月份用电(500﹣x)度由题意得:0.55x+0.6(500﹣x)=290.5,解得:x=190,∴6月份用电500﹣x=310度.(2)当5月份用电量为x>200度时,六月份用电量为(500﹣x)度由题意得:0.6x+0.6(500﹣x)=290.5,300=290.5,原方程无解.∴5月份用电量为190度,6月份用电310度。

商家为促销商品,实行分段计费216元,小明第一次购买苹果____ ____千克,第二次购买____ _______千克。

(2)小强分两次共购买100千克,第二次购买的数量多于第一次购买的数量,且两次购买每千克苹果的单价不相同,共付出432元,请问小强第一次,第二次分别购买苹果多少千克?(列方程解应用题)解:.(1)16,24(2)设第一次购买x千克苹果,,第二次购买(100-x)千克苹果分三种情况考虑:1°:当第一次购买苹果不超过20千克,第二次苹果超过20千克以上但不超过40千克的时候,显然不够100千克,不成立。

2°:当第一次购买苹果不超过20千克,第二次购买苹果超过40千克, 6x+4(100-x)=432解得:x=16100-16=84(千克)3°:第一次苹果20千克以上但不超过40千克,第二次购买的苹果超过40千克5x+4(100-x)=432解得:x=32100-32=68(千克)答:第一次购买16千克苹果,第二次购买84千克苹果或者第一次购买32千克苹果,第二次购买68千克苹果。

七年级数学上册第三单元《一元一次方程》-解答题专项经典题(含解析)

七年级数学上册第三单元《一元一次方程》-解答题专项经典题(含解析)

一、解答题1.某水泥仓库一周7天内进出水泥的吨数如下(“+”表示进库,“-”表示出库):+30,-25,-30,+28,-29,-16,-15.(1)经过这7天,仓库里的水泥是增多还是减少了?增多或减少了多少吨?(2)经过这7天,仓库管理员结算发现库里还存300吨水泥,那么7天前,仓库里存有水泥多少吨?(3)如果进仓库的水泥装卸费是每吨a 元、出仓库的水泥装卸费是每吨b 元,求这7天要付多少元装卸费?解析:(1)经过这7天,仓库里的水泥减少了57吨;(2)7天前仓库里存有水泥357吨;(3)这7天要付(58a+115b )元装卸费.【分析】(1)根据有理数的加法运算,可得答案;(2)根据有理数的减法运算,可得答案;(3)根据装卸都付费,可得总费用.【详解】(1)∵+30-25-30+28-29-16-15=-57;∴经过这7天,仓库里的水泥减少了57吨;(2)∵300+57=357(吨),∴那么7天前,仓库里存有水泥357吨.(3)依题意:进库的装卸费为:[(+30)+(+28)]a=58a ;出库的装卸费为:[|-25|+|-30|+|-29|+|-16|+|-15|]b=115b ,∴这7天要付(58a+115b )元装卸费.【点睛】本题考查了正数和负数及列代数式的知识,(1)有理数的加法是解题关键;(2)剩下的减去多运出的就是原来的,(3)装卸都付费.2.世界读书日,某书店举办“书香”图书展,已知《汉语成语大词典》和《中华上下五千年》两本书的标价总和为150元,《汉语成语大词典》按标价的50%出售,《中华上下五千年》按标价的60%出售,小明花80元买了这两本书,求这两本书的标价各多少元. 解析:《汉语成语大词典》的标价为100元,《中华上下五千年》的标价为50元.【解析】试题分析:首先设《汉语成语大词典》的标价为x 元,则《中华上下五千年》的标价为(150﹣x )元,然后根据两本书的售价总和为80元列出一元一次方程,从而求出x 的值,得出答案.试题设《汉语成语大词典》的标价为x 元,则《中华上下五千年》的标价为(150﹣x )元, 根据题意得:50%x+60%(150﹣x )=80,解得:x=100,150﹣100=50(元). 答:《汉语成语大词典》的标价为100元,《中华上下五千年》的标价为50元. 3.已知方程3210x a +-=的解与方程20x a -=的解互为相反数,求a 的值.4【分析】先分别求出两个方程的解,再根据解互为相反数列方程计算即可.【详解】3210x a +-=,解得123a x -=; 20x a -=,解得2x a =. 由题意得,12203a a -+=, 解得14a =-. 【点睛】本题考查一元一次方程的解法,解题的关键是根据两个方程的解互为相反数列方程求解. 4.一批皮鞋,按成本加5成作为售价,后因季节性原因,按原售价的七五折降低价格出售,降价后的新售价是每双63元,问这批皮鞋每双的成本价是多少元按降价后的新售价每双还可赚多少元?解析:成本价是56元,按降价后的新售价每双还可赚7元.【分析】若设成本价为x 元,则成本加5成后的售价为(1+50%)x 元,再按七五折后的售价为0.75(1+50%)x 元,根据降价后的新售价是每双63元即可得方程0.75(1+50%)x=63,解方程求得x 的值,根据盈利=售价-进价即可求得答案.【详解】设成本价为x 元,则成本加5成后的售价为(1+50%)x 元,再按七五折后的售价为0.75(1+50%)x 元.根据题意得:0.75(1+50%)x=63,解得:x=56,所以成本价是56元,按降价后的新售价每双还可赚7元.【点睛】本题考查了一元一次方程的应用,解决问题时弄清加五成和七五折这些概念.5.某同学在解方程21132y y a -+=-去分母时,方程右边的-1没有乘6,结果求得方程的解为y =2,试求a 的值及此方程的解.解析:y =-3.【分析】根据题意得到去分母结果,把y=2代入求出a 的值,即可确定出方程的解.【详解】根据题意去分母得:4y-2=3y+3a-1,把y=2代入得:6=6+3a-1,3方程为1213132y y +-=-, 去分母得:4y-2=3y+1-6,解得:y=-3.【点睛】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值. 6.已知16y x =-,227y x =+,解析下列问题:(1)当122y y =时,求x 的值;(2)当x 取何值时,1y 比2y 小3-.解析:(1)215x =;(2)18x 【分析】(1)根据题意列出等式,然后解一元一次方程即可;(2)根据题意得到213y y -=-,然后代入x ,解一元一次方程即可求解.【详解】(1)由题意得:62(27)x x -=+解得215x = 215x ∴=. (2)由题意得:27(6)3x x +--=-解得18x 18x ∴=. 【点睛】本题考查了解一元一次方程,重点是熟练掌握移项、合并同类项、去括号、去分母的法则,细心求解即可.7.已知数轴上的A 、B 两点分别对应数字a 、b ,且a 、b 满足|4a-b|+(a-4)2=0(1)a= ,b= ,并在数轴上面出A 、B 两点;(2)若点P 从点A 出发,以每秒3个单位长度向x 轴正半轴运动,求运动时间为多少时,点P 到点A 的距离是点P 到点B 距离的2倍;(3)数轴上还有一点C 的坐标为30,若点P 和点Q 同时从点A 和点B 出发,分别以每秒3个单位长度和每秒1个单位长度的速度向C点运动,P点到达C点后,再立刻以同样的速度返回,运动到终点A.求点P和点Q运动多少秒时,P、Q两点之间的距离为4,并求此时点Q对应的数.解析:(1)4,16.画图见解析;(2)83或8秒;(3)点P和点Q运动4或8或9或11秒时,P,Q两点之间的距离为4.此时点Q表示的数为20,24,25,27.【分析】(1)根据非负数的性质求出a、b的值即可解决问题;(2)构建方程即可解决问题;(3)分四种情形构建方程即可解决问题.【详解】(1)∵a,b满足|4a-b|+(a-4)2≤0,∴a=4,b=16,故答案为4,16.点A、B的位置如图所示.(2)设运动时间为ts.由题意:3t=2(16-4-3t)或3t=2(4+3t-16),解得t=83或8,∴运动时间为83或8秒时,点P到点A的距离是点P到点B的距离的2倍;(3)设运动时间为ts.由题意:12+t-3t=4或3t-(12+t)=4或12+t+4+3t=52或12+t+3t-4=52,解得t=4或8或9或11,∴点P和点Q运动4或8或9或11秒时,P,Q两点之间的距离为4.此时点Q表示的数为20,24,25,27.【点睛】本题考查多项式、数轴、行程问题的应用等知识,具体的关键是学会构建方程解决问题,学会用分类讨论的思想思考问题.8.某同学在解方程21233x x a-+=-时,方程右边的﹣2没有乘以3,其它步骤正确,结果方程的解为x=1.求a的值,并正确地解方程.解析:a=2,x=-3【分析】由题意可知x=1是方程2x-1=x+a-2的解,然后可求得a的值,然后将a的值代入方程求解即可.【详解】解:将x=1代入2x﹣1=x+a﹣2得:1=1+a﹣2.解得:a=2,将a=2代入21233x x a-+=-得:2x﹣1=x+2﹣6.解得:x=﹣3.【点睛】本题主要考查的是一元一次方程的解,明确x=1是方程2(2x-1)=3(x+a)-2的解是解题的关键.9.如图,甲船逆水,静水速度为28海里/时;乙船顺水,静水速度为12海里/时,两船相距60海里.已知水流速度为3海里/时,两船同时相向而行.(1)两船同时航行1小时,求此时两船之间的距离;(2)再(1)的情况下,两船再继续航行1小时,求此时两船之间的距离;(3)求两船从开始航行到两船相距12海里,需要多长时间?解析:(1) 20海里;(2) 20海里;(3) 1.2小时或1.8小时.【分析】(1)根据1h后甲、乙间的距离=两船相距-(甲船行驶的路程+乙船行驶的路程)即可得;(2)根据2h后甲、乙间的距离=甲船行驶的路程-乙船行驶的路程即可得;(3)可分相遇前与相遇后两种情况讨论即可解答.【详解】解:根据题意可知甲船的行驶速度为28-3=25海里/时,乙船的行驶速度为12+3=15海里/时(1)1h后甲、乙间的距离=60-25×1-15×1=20海里;(2)2h后甲、乙间的距离=25×2-15×2=20海里;(3)相遇前,设两船从开始航行到两船相距12海里,需要t小时则12=60-(25+15)t,求得t=1.2小时相遇后,设两船从开始航行到两船相距12海里,需要t1小时则12+60=(25+15)t1,求得t1=1.8小时故两船从开始航行到两船相距12海里,1.2小时或1.8小时.【点睛】本题主要考查列代数式与一元一次方程的实际应用,掌握船顺流航行时的速度与逆流航行的速度公式是解题的关键.10.学校要购入两种记录本,预计花费460元,其中A种记录本每本3元,B种记录本每本2元,且购买A种记录本的数量比B种记录本的2倍还多20本.(1)求购买A和B两种记录本的数量;(2)某商店搞促销活动,A种记录本按8折销售,B种记录本按9折销售,则学校此次可以节省多少钱?解析:(1)购买A种记录本120本,B种记录本50本;(2)学校此次可以节省82元钱.【分析】根据两种记录本一共花费460元即可列出方程【详解】(1)设购买B种记录本x本,则购买A种记录表(2x+20)本,依题意,得:3(2x+20)+2x=460,解得:x=50,∴2x+20=120.答:购买A种记录本120本,B种记录本50本.(2)460﹣3×120×0.8﹣2×50×0.9=82(元).答:学校此次可以节省82元钱.【点睛】根据题意中的等量关系列出方程是解决问题的关键11.小丽用的练习本可以从甲乙两家商店购买,已知两家商店的标价都是每本 2 元,甲商店的优惠条件是:购买十本以上,从第 11 本开始按标价的 70%出售;乙商店的优惠条件是:从第一本起按标价的80%出售。

4七年级上册数学一元一次方程应用题及答案(偏难)

4七年级上册数学一元一次方程应用题及答案(偏难)

七年级上册数学第四单元一元一次方程应用题知识点1:数字问题(1)要搞清楚数的表示方法:一个三位数的百位数字为a,十位数字是b,个位数字为c(其中a、b、c 均为整数,且1≤a≤9,0≤b≤9,0≤c≤9)则这个三位数表示为:100a+10b+c(百位数字a·100+十位数字b·10+个位数字c)。

然后抓住数字间或新数、原数之间的关系找等量关系列方程。

(2)数字问题中一些表示:两个连续整数之间的关系,较大的比较小的大1;偶数用2n 表示,连续的偶数用2n+2或2n—2表示;奇数用2n+1或2n—1表示。

例1.一个三位数,三个数位上的数字之和是17,百位上的数比十位上的数大7,个位上的数是十位上的数的3倍,求这个三位数。

[分析]由已知条件给出了百位、个位与十位上的数的关系,若设十位上的数为x,则百位上的数为x+7,个位上的数是3x,等量关系为三个数位上的数字和为17。

解:设这个三位数十位上的数为X,则百位上的数为x+7,个位上的数是3x x+x+7+3x=17解得x=2x+7=9,3x=6答:这个三位数是926练习:1.一个两位数,个位上的数是十位上的数的2倍,如果把十位与个位上的数对调,那么所得的两位数比原两位数大36,求原来的两位数。

2.有一个两个位数,两个数位上的数字之和是9,如果把个位数字与十位数字对调,那么所得的两位数比原来的两位数大63.求原来的两位数。

知识点2:若干应用问题等量关系的规律(1)和、差、倍、分问题此类题既可表示运算关系,又可表示相等关系,要结合题意特别注意题目中的关键词语的含义,如相等、和差、几倍、几分之几、多、少、快、慢等,它们能指导我们正确地列出代数式或方程式。

增长量=原有量×增长率现在量=原有量+增长量(2)等积变形问题常见几何图形的面积、体积、周长计算公式,依据形虽变,但体积不变.①圆柱体的体积公式V=底面积×高=S·h=πr 2h②长方体的体积V=长×宽×高=abc例1.兄弟两人今年分别为15岁和9岁,多少年后(或前)兄的年龄是弟的年龄的2倍。

202年初中数学七年级上册第二单元一元一次方程06 一元一次方程(6)解决问题1

202年初中数学七年级上册第二单元一元一次方程06 一元一次方程(6)解决问题1

3.4实际问题与一元一次方程(第1课时)1、卓玛种了一株树苗,开始时树苗高为40厘米,栽种后每周树苗长高15厘米,几周后树苗长高到100厘米?解:设x周后树苗长高到100厘米.根据题意,得 .解方程,得 .答:周后树苗长高到100厘米.2、汽车上共有1500千克苹果,卸下 600千克,还有30箱,每箱苹果重多少?解:设每箱苹果重为X,根据题意,得, .3、某数的3倍加上5等于它的4倍减3,求某数.解:设某数为x,根据题意,得, .4、某数减去14等于它的1,求某数.3解:设某数为x,根据题意,得, .5、用一根长24厘米的铁丝围成一个正方形,正方形的边长是多少?解:设正方形的边长为x厘米,根据题意,得, .6、一台计算机已使用1700小时,预计每月再使用150小时,经过多少月这台计算机的使用时间达到规定的检修时间2450小时?解:设经过x个月这台计算机的使用时间达到规定的检修时间2450小时,根据题意,得, .1、某数的34比它的67少1,求某数.解:设某数为x,根据题意,得 .2、扎西家今年底的存款将达到21000元,是去年底的2倍少3000元,求扎西家去年底的存款数.解:设扎西家去年底的存款为x元,根据题意,得 .3、某商店对电脑购买者提供分期付款服务,顾客可以先付3000元,以后每月付1500元.单增叔叔想用分期付款的形式购买价值19500元的电脑,他需要多少个月才能付清全部贷款?解:设他需x个月才能付清全部贷款,根据题意,得 .4、洗衣机厂今年计划生产洗衣机25500台,其中Ⅰ型、Ⅱ型、Ⅲ型三种洗衣机的数量比为1﹕2﹕7,Ⅰ型洗衣机计划生产多少台?解:设Ⅰ型洗衣机计划生产x台,则Ⅱ型洗衣机计划生产台,Ⅲ型洗衣机计划生产台.根据题意,得 .解方程,得 .答:Ⅰ型洗衣机计划生台.5、某工厂加强节能措施,去年下半年与上半年相比,月平均用电量减少2000度,全年用电15万度.这个工厂去年上半年每月平均用电多少度?解:(1)设上半年每月平均用电x度,则下半年每月平均用电度;上半年共用电度,下半年共用电度.(2)根据全年用电15万度,列出方程:.1、在一卷公元前1600年左右遗留下来的古埃及草卷中,记载着一些数学问题.其中一个问题翻译过来是:“啊哈,它的全部,它的1,其和等于19.”你能7求出问题中的“它”吗?解:设问题中的“它”为x,根据题意,列方程得 .2、地球上的海洋面积为陆地面积的2.4倍,地球的表面积为5.1亿平方公里,求地球上的陆地面积.解:设地球上陆地面积为x平方公里,根据题意,列方程得 .3、某中学初一年级,一班人数是全年级人数的1,二班人数50人,两个班级人6数的和是98人.求该校初一年级的人数.解:设该校初一年级的人数为x,根据题意,列方程得 .4、某长方形足球场的周长为310米,长和宽之差为25米,这个足球场的长与宽分别是多少米?(1)解:设这个足球场的长为x米,则宽为米.根据题意,列方程得 .解方程得 .这个足球场的宽==(米)答:这个足球场的长为米,宽为米. (2)解:设这个足球场的宽为x米,则长为米.根据题意,列方程得 .解方程得 .这个足球场的长==(米)答:这个足球场的宽为米,长为米.1、卓玛是4月出生的,卓玛的年龄的2倍加上8,正好是卓玛出生那一月的总天数,求卓玛有多少岁.解:设卓玛有x岁,根据题意,列方程得 .2、蜘蛛有8条腿,蜻蜓有6条腿.现有一些蜘蛛和蜻蜓,它们共有120条腿,并且蜻蜓的只数是蜘蛛的2倍.蜘蛛、蜻蜓各有多少只?解:设蜘蛛有x只,则蜻蜓有只.根据题意,列方程得 .3、某校图书室用172元钱买了两种书,共10本,一种书每本的价格为18元,另一种书每本的价格为10元.每种书各买了多少本?解:设价格为18元的书买了x本,则价格为10元的书买了本.根据题意,列方程得 .4、一家人分一些苹果,每人3个剩3个,每人4个差2个.全家有几口人?共有多少个苹果?(1)解:设全家有x口人.可以用两个式子来表示苹果总数,由此可得方程 .解方程得 .共有苹果个数== .答:全家有口人,共有个苹果.(2)思考题:(供学有余力的同学做)解:设共有x个苹果.可以用两个式子来表示全家的人口数,由此可得方程.解方程得 .全家人口数== .答:共有个苹果,全家有口人.1.一个学生带钱到文具店买笔记本,若买3本就剩下1元,若买4本则差2元.笔记本每本多少元?这个学生共带了多少钱?解:(1)如果设笔记本每本x元,则这个学生所带的钱数可以用两个式子来表示由此可列出方程.解:(2)思考题:如果设这个学生带了x元,则笔记本每本的钱数也可以用两个式子来表示,由此可列出方程.2.卓玛骑自行车从A村到B村,用了0.5小时;扎西走路从A村到B村,用了1.5小时.已知卓玛的速度比扎西的速度每小时快10千米,求扎西走路的速度.(1)设扎西走路的速度为每小时x千米,根据题意,在下面的图中填空:B村A村(2) 解:设扎西走路的速度为每小时x千米,则卓玛骑自行车的速度为每小时千米.根据卓玛骑自行车的路程与扎西走路的路程相等,列方程得.解方程得 .答:扎西走路的速度为每小时千米.3.(1)墙上钉着用一根彩绳围成的梯形的装饰物,如下图实线所示.德吉将梯形下底的钉子去掉,并将这条彩绳钉成一个长方形,如右图虚线所示.德吉所钉长方形的长为多少厘米?解:设德吉所钉长方形的长为x,根据梯形周长与长方形周长相等,列方程得s.6 61010 10104、思考题:如下图,汽车匀速行驶,从A 县城开到C 县城用了3小时;从A 县城开到B 县城用了2小时.已知B 县城距C 县城60千米,A 县城到B 县城有多远?解:设A 县城到B 县城有x 千米,则A 县城到C 县城有 千米.根据:汽车从A 县城开到C 县城的速度=汽车从A 县城开到B 县城的速度 列方程得.5、甲种铅笔每枝0.3元,乙种铅笔每枝0.6元,用9元钱买了两种铅笔共20枝,两种铅笔各买了多少枝?解:(1)如果设甲种铅笔买了x 枝,那么乙种铅笔买了 枝,买甲种铅笔用了 元,买乙种铅笔用了 元.(2)把这道题完整解一遍:解:设甲种铅笔买了x 枝,则乙种铅笔买了 枝.根据题意,列方程得 .解方程得 .乙种铅笔买的枝数= = .答:甲种铅笔买了 枝,乙种铅笔买了 枝.6、按下面的设法解探究题:解:设分配x 名工人生产螺母,则有 名工人生产螺钉.根据螺母数量与螺钉数量关系,列方程得 .解方程得 .生产螺钉的人数= = .答:应分配 名工人生产螺母, 名工人生产螺钉. C 县城B 县城A 县城1、如图,用长为10米,宽为8米的长方形铁丝围成一个正方形,此时正方形的边长是多少米?解:设此时正方形的边长是x米,根据长方形与正方形的周长相等,列方程得.2、思考题:将一个底面直径是10厘米、高为36厘米的“瘦长”形圆柱锻压成底面直径为20厘米的“矮胖”形圆柱,高变成了多少?解:设高变成了x厘米,根据锻压前后的体积相等,列方程得 .(提示:圆柱体积=底面积×高)3、甲组有10人,乙组有14人.现在另增调12人加入到甲组或乙组,要使甲组人数是乙组人数的12,甲组和乙组各应增调多少人?.根据题意填表:(2)根据增调后,甲组人数=乙组人数的12,列方程得.(3)通过上面的思考,将本题完整地解一遍.解:设甲组应增调x人,则乙组应增调人.根据题意,得 .解方程得 .乙组应增调的人数== .答:甲组应增调人,乙组应增调人.x米8米10米1.填空:我们已经学习的三个基本相等关系是:(1)总量=的和;(2)表示的两个不同式子相等;(3)一个量=另一个量的或几分之几.2.根据题意,列出方程:小巴桑今年6岁,他的波啦72岁.几年后,小巴桑的?年龄是他波啦的14解:设x年后,小巴桑的年龄是他波啦年龄的1.根据题意,得4.3.探究题:某车间22名工人生产螺钉和螺母,每人每天平均生产螺钉1200个或螺母2000个,一个螺钉要配两个螺母,为了使每天生产的产品刚好配套,应该分配多少名工人生产螺钉,多少名工人生产螺母?请你默读题目,一直读到可以不看题目说出题目的意思.分析:(1)如果设分配x名工人生产螺钉,则有名工人生产螺母,这个车间每天生产螺钉个,每天生产螺母个.(2)一个螺钉要配两个螺母,为了使这个车间每天的产品刚好配套,应使生产的螺母数量恰好是螺钉数量的,根据这一相等关系,列方程得.(3)这道题完整的解答过程是:解:设分配x名工人生产螺钉,则有名工人生产螺母.根据螺母数量与螺钉数量关系,列方程得 .解方程得 .生产螺母的人数== .答:应分配名工人生产螺钉,名工人生产螺母.1.利用“路程=速度×时间”列整式:(1)扎西骑自行车,每分钟骑500米,x 分钟骑了 米;(2)扎西骑自行车,每分钟骑500米,先骑了3分钟,后又骑了x 分钟,他一共骑了 米;(3)扎西骑自行车,每分钟骑500米,边巴骑摩托车,每分钟骑1000米,x 分钟两人一共骑了 米.2.完成下面的思考和解题过程:扎西家与边巴家相距6000米,扎西要尽快把一件重要的东西交给边巴,扎西先骑自行车从家里出发,3分钟后边巴骑摩托车也从家里出发.扎西每分钟骑500米,边巴每分钟骑1000米.边巴出发几分钟后他们在路上相遇?(1) 如果设边巴出发x 分钟后他们在路上相遇,根据题意,填图.骑了 分钟 骑了 分钟相遇扎西家边巴家(2) 从上图,你发现了什么相等关系,根据这一相等关系,你列出的方程是 .(3)根据上面的审题和分析,请你完成下面的解题过程:解:设边巴出发x 分钟后他们在路上相遇.根据题意,列方程得 .解方程得 .答:边巴出发 分钟后他们在路上相遇.3.某中学发起“献爱心希望工程”捐款活动.该校共有师生2200人,教师每人捐100元,学生每人捐5元,结果学生捐款数只有教师的一半.这个中学师生各有多少人?该校师生共捐了多少钱?1.扎西家与边巴家相距6000米,扎西要尽快把一件重要的东西交给边巴,扎西先骑自行车从家里出发,扎西骑了1500米后边巴骑摩托车也从家出发.扎西每分钟骑500米,边巴每分钟骑1000米.边巴出发几分钟后他们在路上相遇?(1)设边巴出发x 分钟后他们在路上相遇,根据题意填图.骑了 分钟 骑了 分钟相 遇扎西家 边巴 家(2)根据扎西的路程+边巴的路程=全程,你列出的方程是.2.一天早上,扎西以每分钟80米的速度从家里出发上学去,5分钟后,扎西的巴啦发现扎西忘了带藏语书,于是巴啦以每分钟180米的速度去追扎西.巴啦追上扎西用了多长时间?(3) 设巴啦追上扎西用了x 分钟,根据题意填下图.家追上处(2) 解:设巴啦追上扎西用了x 分钟.根据题意,列方程得 .解方程得 .答:巴啦追上扎西用了 分钟.3.思考题:如果扎西家离学校只有700米,巴啦能否在路上追上扎西?为什么?1.填空:(1)加工60个零件,甲单独做20小时完成,甲每小时加工零件个;(2)加工60个零件,甲单独做20小时完成,甲4小时加工零件个;(3)加工60个零件,甲单独做20小时完成,甲x小时加工零件个;(4)一件工作,甲单独做20小时完成,甲每小时完成工作的;(用分数表示)(5) 一件工作,甲单独做20小时完成,甲4小时完成工作的;(6) 一件工作,甲单独做20小时完成,甲x小时完成工作的 .2.完成下面的思考和解题过程:一件工作,甲单独做20小时完成,乙单独做12小时完成.现在先由甲单独做4小时,剩下的部分由甲、乙一起做.剩下的部分需要几小时完成?(1)甲的工作效率=,乙的工作效率= .(2)如果设剩下的部分需要x小时完成,那么乙做了小时,甲共做了小时.(3)根据题意填图:甲工作 小时乙工作 小时(4)根据甲的工作量+乙的工作量=1列出方程 .(5)解:设剩下的部分需要x小时完成.根据题意,列方程得 .解方程得 .答:剩下的部分需要小时完成.1、填空:(1)某厂去年的产值是100万元,今年比去年的产值增长20%,则今年比去年的产值提高万元,今年的产值是万元;(2)某厂去年的产值是200万元,今年比去年的产值增长20%,则今年比去年的产值提高万元,今年的产值是万元;(3)某厂去年的产值是x万元,今年比去年的产值增长20%,则今年比去年的产值提高万元,今年的产值是万元.2、某公司去年的产值是400万元,今年的产值是500万元,则今年比去年增长().(A)20% (B)25% (C)80% (D)125%3、全校学生人数为x,女生占全校学生数的52%,则女生人数是,男生人数是,女生人数比男生人数多;4、一项工作甲独做5天完成,乙独做10天完成,那么甲每天的工作效率是,乙每天的工作效率是,两人合作3天完成的工作量是,此时剩余的工作量是。

人教版数学七年级上册3.4实际问题与一元一次方程1(劳动力调配与工程问题 )

人教版数学七年级上册3.4实际问题与一元一次方程1(劳动力调配与工程问题 )

实际问题与一元一次方程1(配套问题与工程问题)一、要点探究探究点1:产品配套问题填一填:1.某厂欲制作一些方桌和椅子,1张方桌与4把椅子刚好配成一套,为了使桌椅刚好配套,商家应制作椅子的数量是桌子数量的倍. 方桌与椅子的数量之比是.2.一个油桶由两个圆形铁片和一个长方形铁片相配套.某车间有工人42人,每个工人平均每小时可以生产圆形铁片120片或者长方形铁片80片.设安排x名工人生产圆形铁片,可使圆形铁片和长方形铁片刚好配套,请填写下表:人数每小时生产铁片的数量生产的套数生产圆形铁片x生产长方形铁片等量关系:(1)每小时生产的圆形铁片=_____×每小时生产的长方形铁片.(2)生产的套数相等.方法总结:生产调配问题通常从调配后各量之间的倍、分关系寻找相等关系,建立方程.解决配套问题的思路:1.利用配套问题中物品之间具有的数量关系作为列方程的依据;2.利用配套问题中的套数不变作为列方程的依据.典型例题例1:机械厂加工车间有85名工人,平均每人每天加工大齿轮16个或小齿轮10个,已知2个大齿轮与3个小齿轮配成一套,问需分别安排多少名工人加工大、小齿轮,才能使每天加工的大小齿轮刚好配套?针对训练1.某车间有28名工人生产螺栓和螺母,每人每小时平均能生产螺栓12个或螺母18个,应如何分配生产螺栓和螺母的工人,才能使螺栓和螺母正好配套(一个螺栓配两个螺母)?2.包装厂有工人42人,每个工人平均每小时可以生产圆形铁片120片,或长方形铁片80片,将两张圆形铁片与和一张可配套成一个密封圆桶,问如何安排工人生产圆形或长方形铁片能合理地将铁片配套?3.用白铁皮做罐头盒,每张铁皮可制作盒身25个,或40个盒底,一个盒身与两个盒底配成一套盒。

现有36张白铁皮,用多少张制作盒身,多少张制作盒底可以使盒身与盒底正好配套?4.某车间加工机轴和轴承,一个工人每天平均可加工15个机轴或10个轴承。

该车间共有80人,一根机轴和两个轴承配成一套,问应分配多少个工人加工机轴或轴承,才能使每天生产的机轴和轴承正好配套。

人教版七年级数学上册3.4《实际问题与一元一次方程(一)》(提高)知识讲解及解答

人教版七年级数学上册3.4《实际问题与一元一次方程(一)》(提高)知识讲解及解答

实际问题与一元一次方程(一)(提高)知识讲解【学习目标】1.熟练掌握分析解决实际问题的一般方法及步骤;2.熟悉行程,工程,配套及和差倍分问题的解题思路.【要点梳理】要点一、用一元一次方程解决实际问题的一般步骤列方程解应用题的基本思路为:问题−−−→分析抽象方程−−−→求解检验解答.由此可得解决此类 题的一般步骤为:审、设、列、解、检验、答.要点诠释:(1)“审”是指读懂题目,弄清题意,明确哪些是已知量,哪些是未知量,以及它们之间的关系,寻找等量关系;(2)“设”就是设未知数,一般求什么就设什么为x ,但有时也可以间接设未知数;(3)“列”就是列方程,即列代数式表示相等关系中的各个量,列出方程,同时注意方程两边是同一类量,单位要统一;(4)“解”就是解方程,求出未知数的值;(5)“检验”就是指检验方程的解是否符合实际意义,当有不符合的解时,及时指出,舍去即可;(6)“答”就是写出答案,注意单位要写清楚.要点二、常见列方程解应用题的几种类型(待续)1.和、差、倍、分问题(1)基本量及关系:增长量=原有量×增长率,现有量=原有量+增长量,现有量=原有量-降低量.(2)寻找相等关系:抓住关键词列方程,常见的关键词有:多、少、和、差、不足、剩余以及倍,增长率等.2.行程问题(1)三个基本量间的关系: 路程=速度×时间(2)基本类型有:①相遇问题(或相向问题):Ⅰ.基本量及关系:相遇路程=速度和×相遇时间Ⅱ.寻找相等关系:甲走的路程+乙走的路程=两地距离. ②追及问题:Ⅰ.基本量及关系:追及路程=速度差×追及时间Ⅱ.寻找相等关系:第一, 同地不同时出发:前者走的路程=追者走的路程;第二, 第二,同时不同地出发:前者走的路程+两者相距距离=追者走的路程.③航行问题:Ⅰ.基本量及关系:顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度,顺水速度-逆水速度=2×水速;Ⅱ.寻找相等关系:抓住两地之间距离不变、水流速度不变、船在静水中的速度不变来考虑.(3)解此类题的关键是抓住甲、乙两物体的时间关系或所走的路程关系,并且还常常借助画草图来分析.3.工程问题如果题目没有明确指明总工作量,一般把总工作量设为1.基本关系式:(1)总工作量=工作效率×工作时间;(2)总工作量=各单位工作量之和.4.调配问题寻找相等关系的方法:抓住调配后甲处的数量与乙处的数量间的关系去考虑.【典型例题】类型一、和差倍分问题1.旅行社的一辆汽车在第一次旅程中用去油箱里汽油的25%,第二次旅程中用去剩余汽油的40%,这样油箱中剩的汽油比两次所用的汽油少1公斤,求油箱里原有汽油多少公斤?【答案与解析】解:设油箱里原有汽油x 公斤,由题意得:x(1-25%)(1-40%)+1=25%x+(1-25%)x×40%解得:x=10答:油箱里原有汽油10公斤.【点评】等量关系为:油箱中剩余汽油+1=用去的汽油.举一反三:【变式】某班举办了一次集邮展览,展出的邮票若平均每人3张则多24张,若平均每人4张则少26张,这个班有多少学生?一共展出了多少张邮票?【答案】解:设这个班有x 名学生,根据题意得:3x+24=4x -26解得:x =50所以3x+24=3×50+24=174答:这个班有50名学生,一共展出了174张邮票.类型二、行程问题1.车过桥问题2. 某桥长1200m ,现有一列匀速行驶的火车从桥上通过,测得火车从上桥到完全过桥共用了50s ,而整个火车在桥上的时间是30s ,求火车的长度和速度.【思路点拨】正确理解火车“完全过桥”和“完全在桥上”的不同含义.【答案与解析】解:设火车车身长为xm ,根据题意,得:120012005030x x +-=, 解得:x =300,所以12001200300305050x ++==. 答:火车的长度是300m ,车速是30m/s .【点评】火车“完全过桥”和“完全在桥上”是两种不同的情况,借助线段图分析如下(注:A 点表示火车头):(1)火车从上桥到完全过桥如图(1)所示,此时火车走的路程是桥长+车长.(2)火车完全在桥上如图(2)所示,此时火车走的路程是桥长-车长.由于火车是匀速行驶的,所以等量关系是火车从上桥到完全过桥的速度=整个火车在桥上的速度.举一反三:【变式】某要塞有步兵692人,每4人一横排,各排相距1米向前行走,每分钟走86米,通过长86米的桥,从第一排上桥到排尾离桥需要几分钟?【答案】解:设从第一排上桥到排尾离桥需要x 分钟,列方程得:6928611864x ⎛⎫=-⨯+ ⎪⎝⎭, 解得:x =3答:从第一排上桥到排尾离桥需要3分钟.2.相遇问题(相向问题)3.小李骑自行车从A 地到B 地,小明骑自行车从B 地到A 地,两人都匀速前进.已知两人在上午8时同时出发,到上午10时,两人还相距36千米,到中午12点,两人又相距36千米.求A 、B 两地间的路程.【答案与解析】解:设A 、B 两地间的路程为x 千米,由题意得:363624x x -+= 解得:x =108.答:A 、B 两地间的路程为108千米.【点评】根据“匀速前进”可知A 、B 的速度不变,进而A 、B 的速度和不变.利用速度和=小李和小明前进的路程和/时间可得方程.举一反三:【高清课堂:实际问题与一元一次方程(一)388410二次相遇问题】【变式】甲、乙两辆汽车分别从A 、B 两站同时开出,相向而行,途中相遇后继续沿原路线行驶,在分别到达对方车站后立即返回,两车第二次相遇时距A 站34km ,已知甲车的速度是70km/h ,乙车的速度是52km/h ,求A 、B 两站间的距离.【答案】解:设A 、B 两站间的距离为x km ,由题意得:234347052x x -+= 解得:x=122答: A 、B 两站间的距离为122km. 3.追及问题(同向问题)4.一辆卡车从甲地匀速开往乙地,出发2小时后,一辆轿车从甲地去追这辆卡车,轿车的速度比卡车的速度每小时快30千米,但轿车行驶一小时后突遇故障,修理15分钟后,又上路追这辆卡车,但速度减小了13,结果又用两小时才追上这辆卡车,求卡车的速度. 【答案与解析】解:设卡车的速度为x 千米/时,由题意得:1122(30)(1)(30)243x x x x x x +++=++-⨯+⨯ 解得:x=24答:卡车的速度为24千米/时.【点评】采用“线示”分析法,画出示意图.利用轿车行驶的总路程等于卡车行驶的总路程来列方程,理清两车行驶的速度与时间.4.航行问题(顺逆风问题)5.(武昌区联考)盛夏,某校组织长江夜游,在流速为2.5千米/时的航段,从A 地上船,沿江而下至B 地,然后溯江而上到C 地下船,共乘船4小时.已知A 、C 两地相距10千米,船在静水中的速度为7.5千米/时,求A 、B 两地间的距离.【思路点拨】由于C 的位置不确定,要分类讨论:(1)C 地在A 、B 之间;(2)C 地在A 地上游.【答案与解析】解:设A 、B 两地间的距离为x 千米.(1)当C 地在A 、B 两地之间时,依题意得.1047.5 2.57.5 2.5x x -+=+- 解这个方程得:x =20(千米)(2)当C 地在A 地上游时,依题意得:1047.5 2.57.5 2.5x x ++=+- 解这个方程得:203x = 答:A 、B 两地间的距离为20千米或203千米. 【点评】这是航行问题,本题需分类讨论,采用“线示”分析法画出示意图(如下图所示),然后利用“共乘”4小时构建方程求解.5.环形问题6.环城自行车赛,最快的人在开始48分钟后遇到最慢的人,已知最快的人的速度是最慢的人速度的3倍,环城一周是20千米,求两个人的速度.【答案与解析】解;设最慢的人速度为x 千米/时,则最快的人的速度为x 千米/时, 由题意得:x×-x×=20 解得:x=10答:最快的人的速度为35千米/时,最慢的人的速度为10千米/时.【点评】这是环形路上的追及问题,距离差为环城一周20千米.相等关系为:最快的人骑的路程-最慢人骑的路程=20千米.举一反三:【变式】两人沿着边长为90m 的正方形行走,按A →B →C →D →A …方向,甲从A 以65m/min 的速度,乙从B 以72m/min 的速度行走,如图所示,当乙第一次追上甲时,在正方形的哪一条边上?【答案】解:设乙追上甲用了x 分钟,则有:72x -65x =3×902707x =(分) 答:乙第一次追上甲时走了2707227777⨯≈(m ) 此时乙在AD 边上 类型三、工程问题7.一个蓄水池有甲、乙两个进水管和一个丙排水管,单独开甲管6小时可注满水池;单独开乙管8小时可注满水池,单独开丙管9小时可将满池水排空,若先将甲、乙管同时开放2小时,然后打开丙管,问打开丙管后几小时可注满水池?【答案与解析】解:设再过x 小时可把水注满.由题意得:11111()2()168689x +⨯++-= 解得:30421313x ==. 答:打开丙管后4213小时可把水放满. 【点评】相等关系:甲、乙开2h 的工作量+甲、乙、丙水管的工作量=1.举一反三:【变式】收割一块水稻田,若每小时收割4亩,预计若干小时完成,收割23后,改用新式农机,工作效率提高到原来的112倍,因此比预计时间提早1小时完成,求这块水稻田的面积.【答案】解:设这块水稻田的面积为x 亩,由题意得:21331144142x x x =++⨯ 解得:36x =.答:这块水稻田的面积为36亩.类型四、配套问题(比例问题、劳动力调配问题)8.某工程队每天安排120个工人修建水库,平均每天每个工人能挖土5 m 3或运土3 m 3,为了使挖出的土及时被运走,问:应如何安排挖土和运土的工人?【答案与解析】解:设安排x 人挖土,则运土的有(120-x )人,依题意得:5x =3(120-x ),解得x =45.120-45=75(人).答:应安排45人挖土,75人运土.【点评】用参数表示挖土数与运土数,等量关系:挖土与运土的总立方米数应相等.举一反三:【高清课堂:实际问题与一元一次方程(一) 388410 配制问题】【变式】某商店选用A 、B 两种价格分别是每千克28元和每千克20元的糖果混合成杂拌糖果后出售,为使这种杂拌糖果的售价是每千克25元,要配制这种杂拌糖果100千克,问要用这两种糖果各多少千克?【答案】解:设要用A 种糖果x 千克,则B 种糖果用(100-x)千克.依题意,得:28x+20(100-x)=25×100解得:x=62.5.当x=62.5时,100-x=37.5.答:要用A 、B 两种糖果分别为62.5千克和37.5千克.。

2020年初一数学一元一次方程的13种应用题型全解析

2020年初一数学一元一次方程的13种应用题型全解析

一、工程问题列方程解应用题是初中数学的重要内容之一,其核心思想就是将等量关系从情景中剥离出来,把实际问题转化成方程或方程组,从而解决问题。

列方程解应用题的一般步骤(解题思路)(1)审——审题:认真审题,弄清题意,找出能够表示本题含义的相等关系(找出等量关系).(2)设——设出未知数:根据提问,巧设未知数.(3)列——列出方程:设出未知数后,表示出有关的含字母的式子,然后利用已找出的等量关系列出方程.(4)解——解方程:解所列的方程,求出未知数的值.(5)答——检验,写答案:检验所求出的未知数的值是否是方程的解,是否符合实际,检验后写出答案.(注意带上单位)【典例探究】例1 将一批数据输入电脑,甲独做需要50分钟完成,乙独做需要30分钟完成,现在甲独做30分钟,剩下的部分由甲、乙合做,问甲、乙两人合做的时间是多少?解析:首先设甲乙合作的时间是x分钟,根据题意可得等量关系:甲工作(30+x)分钟的工作量+乙工作x分钟的工作量=1,根据等量关系,列出方程,再解方程即可.设甲乙合作的时间是x分钟,由题意得:【方法突破】工程问题是典型的a=bc型数量关系,可以知二求一,三个基本量及其关系为:工作总量=工作效率×工作时间需要注意的是:工作总量往往在题目条件中并不会直接给出,我们可以设工作总量为单位1。

二、比赛计分问题【典例探究】例1某企业对应聘人员进行英语考试,试题由50道选择题组成,评分标准规定:每道题的答案选对得3分,不选得0分,选错倒扣1分。

已知某人有5道题未作,得了103分,则这个人选错了道题。

解:设这个人选对了x道题目,则选错了(45-x)道题,于是3x-(45-x)=1034x=148解得 x=37则 45-x=8答:这个人选错了8道题.例2某校高一年级有12个班.在学校组织的高一年级篮球比赛中,规定每两个班之间只进行一场比赛,每场比赛都要分出胜负,每班胜一场得2分,负一场得1分.某班要想在全部比赛中得18分,那么这个班的胜负场数应分别是多少?因为共有12个班,且规定每两个班之间只进行一场比赛,所以这个班应该比赛11场,设胜了x场,那么负了(11-x)场,根据得分为18分可列方程求解.【解析】设胜了x场,那么负了(11-x)场.2x+1•(11-x)=18x=711-7=4那么这个班的胜负场数应分别是7和4.【方法突破】比赛积分问题的关键是要了解比赛的积分规则,规则不同,积分方式不同,常见的数量关系有:每队的胜场数+负场数+平场数=这个队比赛场次;得分总数+失分总数=总积分;失分常用负数表示,有些时候平场不计分,另外如果设场数或者题数为x,那么x最后的取值必须为正整数。

人教版七年级数学导学案3.4实际问题与一元一次方程——航行问题(1)含课后配套作业及答案

人教版七年级数学导学案3.4实际问题与一元一次方程——航行问题(1)含课后配套作业及答案

3.3一元一次方程的应用——航行问题 【教学目标】1.能熟练地找出航行问题中的相等关系列方程解应用题;2.培养学生分析问题、解决问题的能力.【复习引入】1.已知轮船在静水中的速度为20千米/时,水流的速度为2千米/时, 则(1)轮船顺水航行速度为22千米/时,逆水航行的速度为18千米/时;(2)若两码头之间为100千米,那么,顺水航行要1150小时,逆水航行要950小时 . 2.你能说出轮船在静水中的速度、水流速度、顺水航行速度、逆水航行速度之间的关系吗? 解:水静逆水静顺,V -V V V V V =+= 【要点梳理】行程问题中常用的关系式:路程=速度×时间.一般航行问题包括二种情况:⑴顺水(风)速度=船在静水(风)中速度+水流(风)速度;⑵逆水(风)速度=船在静水(风)中速度—水流(风)速度;【应用举例】例1 轮船从甲地顺流而行9小时到达乙地, 原路返回11小时才能到达甲地,已知水流速 度为2千米/时,求轮船在静水中的速度及 甲、乙两地的距离.解:甲在静水中的速度是x 千米/时 由题意得:9×(x+2)=11×(x-2) 解得:x=20距离S=9×(20+2)=198千米答:甲轮船在静水中的速度是20千米/时,甲乙两地距离198千米例2 轮船从甲地顺流而行9小时到达乙地, 原路返回11小时才能到达甲地,已知水流速 度为2千米/时,求轮船在静水中的速度及甲、乙两地的距离.答案:解设:轮船在静水中的速度为x 千米/时,则甲、乙两地的距离为9(x+2)或11(x-2)由题可知:9(x+2)=11(x-2)解得:x=20 所以:甲、乙两地的距离为9(20+2)=198千米,答:轮船在静水中的速度20千米/时及甲、乙两地的距离198千米。

例3 飞机在两城市间飞行,顺风要3小时,逆风要3.5小时,已知风速为24千米/时,求两城市间距离?答案:解:设逆风的速度是x 千米/时 由题意得:(48+x) ×3=3.5x 解得:x=288两城市距离=3.5×288=1088千米 答:两城市距离是1088千米例4某学生乘船由甲地顺流而下到乙地,然后又逆流而上到丙地,共有3小时,若水流速度为2千米/时,船在静水中的速度为8千米/时,已知甲、丙两地间的距离为2千米,求甲、乙两地间的距离?答案:设甲乙两地距离是x 千米 由题意得:328282x =--++x 解得:x=12.5答:甲乙两地距离=12.5千米 练习:1.船在一段河中行驶,已知顺水速度是逆水速度的2倍,如果该船在静水中的速度为30千米/时.(1)求水流速度;(2)若该船正在逆流而上,突然发现,半小时前一物体落入水中正漂流而下,立即调转方向,问经过多长时间可以追上该物体?答案:(1)设水流速速是x 千米/时 由题意得:30+x=2(30-x) 解得:x=10(2)设经过t 时间可以追上该物体由题意得:10t+(30-10)×0.5=(30+10)t 解得:t=31答:(1)水流速度是10千米/时 (2)经过31小时追上 【课堂操练】1.轮船在静水中的速度为10千米/时水流速度为2千米/时,则轮船顺流航行的速度为 12千米/时,逆流航行的速度 8千米/时 。

七年级数学上册第三单元《一元一次方程》-解答题专项阶段测试(答案解析)(1)

七年级数学上册第三单元《一元一次方程》-解答题专项阶段测试(答案解析)(1)

一、解答题1.数学课上,某班同学用天平和一些物品(如图)探究了等式的基本性质.该班科技创新小组的同学提出问题:仅用一架天平和一个10克的砝码能否测量出乒乓球和一次性纸杯的质量?科技创新小组的同学找来足够多的乒乓球和某种一次性纸杯(假设每个乒乓球的质量相同,每个纸杯的质量也相同),经过多次试验得到以下记录:记录天平左边天平右边状态记录一6个乒乓球,1个10克的砝码14个一次性纸杯平衡记录二8个乒乓球7个一次性纸杯,1个10克的砝码平衡请算一算,一个乒乓球的质量是多少克?一个这种一次性纸杯的质量是多少克?解:(1)设一个乒乓球的质量是x克,则一个这种一次性纸杯的质量是______克;(用含x的代数式表示)(2)列一元一次方程求一个乒乓球的质量,并求出一个这种一次性纸杯的质量.解析:(1)61014x+或8107x-;(2)一个乒乓球的质量是3克,一个这种一次性纸杯的质量是2克.【分析】(1)根据题意即可得出答案;(2)弄清题意,找到合适的等量关系,列出方程,解方程即可.【详解】解:(1)61014x+或8107x-(2)根据题意得,610810 147x x+-=6101620 x x+=-6162010 x x-=--1030x-=-3x =.当3x =时,610631021414x +⨯+==(克). 答:一个乒乓球的质量是3克,一个这种一次性纸杯的质量是2克. 【点睛】本题考查了一元一次方程与实际问题,解题的关键是找到合适的等量关系,列出方程,解方程.2.江南生态食品加工厂收购了一批质量为10000kg 的某种山货,根据市场需求对其进行粗加工和精加工处理,已知精加的这种山货质量比粗加工的质量的3倍还多2000kg ,求粗加工的这种山货的质量. 解析:2000kg . 【详解】解:设粗加工的该种山货质量为x kg , 根据题意,得()3200010000x x ++=, 解得2000x =.答:粗加工的该种山货质量为2000kg . 3.运用等式的性质解下列方程: (1)3x =2x -6; (2)2+x =2x +1; (3)35x -8=-25x +1. 解析:(1)x =-6;(2)x =1;(3)x =9 【分析】(1)根据等式的性质:方程两边都减2x ,可得答案;(2)根据等式的性质:方程两边都减x ,化简后方程的两边都减1,可得答案. (3)根据等式的性质:方程两边都加25x ,化简后方程的两边都加8,可得答案. 【详解】(1)两边减2x ,得3x -2x =2x -6-2x . 所以x =-6.(2)两边减x ,得2+x -x =2x +1-x . 化简,得2=x +1. 两边减1,得2-1=x +1-1 所以x =1. (3)两边加25x , 得35x -8+25x =-25x +1+25x . 化简,得x -8=1.两边加8,得x -8+8=1+8. 所以x =9. 【点睛】本题主要考查了等式的基本性质,等式的两边同时加上(或减去)同一个数(或字母),等式仍成立;等式的两边同时乘以(或除以)同一个不为0数(或字母),等式仍成立. 4.解方程:(1)5(8)6(27)22m m m +--=-+ (2)2(3)7636x x x --+=- 解析:(1)10m =;(2)5x = 【分析】(1)直接去括号、移项、合并同类项、化系数为1即可求解; (2)直接去分母、去括号、移项、合并同类项、化系数为1即可求解. 【详解】解:(1)5(8)6(27)22m m m +--=-+5m 4012m 42m 22+-+=-+6m 60-=- m 10=(2)2(3)7636x x x --+=- ()6x 4x 336(x 7+-=--)6x 4x 1236x 7+-=-+ 11x 55= x 5=【点睛】此题主要考查解一元一次方程,解题的关键是熟练掌握解题步骤. 5.设a ,b ,c ,d 为有理数,现规定一种新的运算:a b ad bc c d=-,那么当35727x -=时,x 的值是多少?解析:x =-2【分析】根据新定义的运算得到关于x 的一元一次方程,解方程即可求解. 【详解】解:由题意得:21 - 2(5 - x )=7 即21-10+2x =7 x =-2.【点睛】本题考查了新定义,解一元一次方程,根据新定义的运算列出方程是解题关键.6.某同学在解方程21233x x a-+=-时,方程右边的﹣2没有乘以3,其它步骤正确,结果方程的解为x =1.求a 的值,并正确地解方程. 解析:a=2,x=-3 【分析】由题意可知x=1是方程2x-1=x+a-2的解,然后可求得a 的值,然后将a 的值代入方程求解即可. 【详解】解:将x =1代入2x ﹣1=x +a ﹣2得:1=1+a ﹣2. 解得:a =2,将a =2代入21233x x a-+=-得:2x ﹣1=x +2﹣6. 解得:x =﹣3. 【点睛】本题主要考查的是一元一次方程的解,明确x=1是方程2(2x-1)=3(x+a )-2的解是解题的关键.7.解方程:()()3x 7x 132x 3--=-+① ;5x 2x 3132---=②. 解析:(1)5;(2)138; 【分析】①方程去括号,移项合并,把x 系数化为1,即可求出解; ②方程去分母,去括号,移项合并,把x 系数化为1,即可求出解. 【详解】①去括号得:3x−7x+7=3−2x−6, 移项合并得:−2x=−10, 解得:x=5;②去分母,去括号得:10−2x−6=6x−9, 移项合并得:8x=13,解得:x=138. 【点睛】此题考查解一元一次方程,解题关键在于掌握方程的解法.8.根据国家发改委实施“阶梯电价”的有关文件要求,某市结合地方实际,决定从2015年5月1日起对居民生活用电试行“阶梯电价”收费,具体收费标准见下表.若2015年5月份,该市居民甲用电100千瓦时,交电费60元.(1)上表中,a=,若居民乙用电200千瓦时,交电费元.(2)若某用户某月用电量超过300千瓦时,设用电量为x千瓦时,请你用含x的代数式表示应交的电费.(3)试行“阶梯电价”收费以后,该市一户居民月用电多少千瓦时时,其当月的平均电价每千瓦时不超过0.62元?解析:(1)0.6;122.5.(2)0.9x﹣82.5.(3)250千瓦.【分析】(1)根据100<150结合应交电费60元即可得出关于a的一元一次方程,解之即可得出a 值;再由150<200<300,结合应交电费=150×0.6+0.65×超出150千瓦时的部分即可求出结论;(2)根据应交电费=150×0.6+(300-150)×0.65+0.9×超出300千瓦时的部分,即可得出结论;(3)设该居民用电x千瓦时,其当月的平均电价每千瓦时为0.62元,分x在第二档及第三档考虑,根据总电费=均价×数量即可得出关于x的一元一次方程,解之即可得出x值,结合实际即可得出结论.【详解】(1)∵100<150,∴100a=60,∴a=0.6,若居民乙用电200千瓦时,应交电费150×0.6+(200-150)×0.65=122.5(元),故答案为0.6;122.5;(2)当x>300时,应交的电费150×0.6+(300-150)×0.65+0.9(x﹣300)=0.9x﹣82.5;(3)设该居民用电x千瓦时,其当月的平均电价每千瓦时为0.62元,当该居民用电处于第二档时,90+0.65(x﹣150)=0.62x,解得:x=250;当该居民用电处于第三档时,0.9x﹣82.5=0.62x,解得:x≈294.6<300(舍去).综上所述该居民用电不超过250千瓦时,其当月的平均电价每千瓦时不超过0.62元.【点睛】本题考查了一元一次方程的应用以及列代数式,解题的关键是:(1)根据数量关系列式计算;(2)根据数量关系列出代数式;(3)根据总电费=均价×数量列出关于x的一元一次方程.9.图1为全体奇数排成的数表,用十字框任意框出5个数,记框内中间这个数为 a(如图2).(1)请用含a的代数式表示框内的其余4个数;(2)框内的5个数之和能等于 2015,2020 吗?若不能,请说明理由;若能,请求出这5个数中最小的一个数,并写出最小的这个数在图1数表中的位置.(自上往下第几行,自左往右的第几个)解析:(1)详见解析;(2)详见解析.【分析】(1)上下相邻的数相差18,左右相邻的数相差是2,所以可用a表示;(2)根据等量关系:框内的5个数之和能等于2015,2020,分别列方程分析求解.【详解】(1)设中间的数是a,则a的上一个数为a−18,下一个数为a+18,前一个数为a−2,后一个数为a+2;(2)设中间的数是a,依题意有5a=2015,a=403,符合题意,这5个数中最小的一个数是a−18=403−18=385,2n−1=385,解得n=193,193÷9=21…4,最小的这个数在图1数表中的位置第22排第4列.5a=2020,a=404,404是偶数,不合题意舍去;即十字框中的五数之和不能等于2020,能等于2015.【点睛】本题考查一元一次方程的应用,关键是看到表格中中间位置的数和四周数的关系,最后可列出方程求解.10.小丽用的练习本可以从甲乙两家商店购买,已知两家商店的标价都是每本 2 元,甲商店的优惠条件是:购买十本以上,从第 11 本开始按标价的 70%出售;乙商店的优惠条件是:从第一本起按标价的80%出售。

小学七年级数学上册解题技巧专题:列一元一次方程解决实际问题(含答案)

小学七年级数学上册解题技巧专题:列一元一次方程解决实际问题(含答案)

小学七年级数学上册解题技巧专题:列一元一次方程解决实际问题——快速有效寻找等量关系◆类型一 利用基本数量关系寻找相等关系(路程,工程,利率,周长,面积,体积等公式)1.(杭州中考)某村原有林地108公顷,旱地54公顷,为保护环境,需把一部分旱地改造为林地,使旱地占林地面积的20%.设把x 公顷旱地改为林地,则可列方程( )A .54-x =20%×108B .54-x =20%×(108+x )C .54+x =20%×162D .108-x =20%(54+x )2.一个长方形的周长为16cm ,长与宽的差是1cm ,那么长与宽分别为( )A .5cm ,3cmB .4.5cm ,3.5cmC .6cm ,4cmD .10cm ,6cm3.某小组每天需生产50个零件才能在规定时间内完成一项生产任务,实际上该小组每天比原计划多生产6个零件,结果比规定时间提前3天并超额生产了120个零件,若设该小组需完成的零件数为x 个,则可列方程为( )A .x +12050-x 50+6=3 B .x 50-x 50+6=3 C .x 50-x +12050+6=3 D .x +12050+6-x 50=3 4.已知小王用2000元买了债券,一年后的本息和为2100元,则小王买的债券的年利率是 %.5.两地相距450千米,甲、乙两车分别从A ,B 两地同时出发,相向而行,已知甲车的速度为120千米/时,乙车的速度为80千米/时,经过多少小时两车相距50千米?6.某药业集团生产的某种药品包装盒的表面展开图如图所示.如果长方体盒子的长比宽多4cm ,求这种药品包装盒的体积.◆类型二 抓住问题中的“关键词”寻找相等关系(“共有”“比……多……”“是……倍”等)7.(简阳校级期中)有两支同样长的蜡烛,一支能点燃4小时,另一支能点燃3小时,一次遇到停电,同时点燃这两支蜡烛,来电后同时吹灭,发现其中的一支是另一支的一半,停电时间为( )A .2小时B .3小时C .125小时D .52小时 8.(淄博中考)把一根长100cm 的木棍锯成两段,使其中一段的长比另一段的2倍少5cm ,则锯出的木棍的长不可能为( )A .70cmB .65cmC .35cmD .35cm 或65cm9.(哈尔滨中考)美术馆举办的一次画展中,展出的油画作品和国画作品共有100幅,其中油画作品数量是国画作品数量的2倍多7幅,则展出的油画作品有 幅.10.如图是一张日历表,涂阴影的8个数字的和是134,则中间的数a 是 .11.某企业为严重缺水的甲、乙两所学校捐赠矿泉水共2000件,已知捐给甲校的矿泉水比捐给乙校件数的2倍少400件,求该企业捐给甲、乙两所学校的矿泉水各多少件?12.(江西中考)情境:试根据图中的信息,解答下列问题:(1)购买6根跳绳需 元,购买12根跳绳需 元.(2)小红比小明多买2根跳绳,付款时小红反而比小明少5元.你认为有这种可能吗?若有,请求出小红购买跳绳的根数;若没有,请说明理由.◆类型三抓住问题中的“用不同方式表示同一个量”寻找相等关系13.某市对城区主干道进行绿化,计划把某一段公路的一侧全部栽上桂花树,要求路的两端各栽一棵,并且每相邻两棵树的间隔相等.如果每隔5米栽1棵,则树苗缺21棵;如果每隔6米栽1棵,则树苗正好用光.设原有树苗x棵,则根据题意列出方程正确的是()A.5(x+21-1)=6(x-1)B.5(x+21)=6(x-1)C.5(x+21-1)=6xD.5(x+21)=6x14.有一种足球是由32块黑色和白色相间的牛皮缝制而成的(如图),黑皮可看作正五边形,白皮可看作正六边形,设白皮有x块,则黑皮有(32-x)块,每块白皮有6条边,共6x条边,因每块白皮有三条边和黑皮连在一起,故黑皮共有3x条边,要求出白皮、黑皮的块数,列出的方程正确的是()A.3x=32-xB.3x=5(32-x)C.5x=3(32-x)D.6x=32-x15.用一个底面是20cm×20cm的正方体容器(已装满水)向一个长、宽、高分别为16cm,10cm和5cm的长方体铁盒内倒水,当铁盒装满水时,正方体容器中水的高度下降cm.16.把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本.这个班有多少名学生?17.有一些相同的房间需要粉刷墙面,一天3名一级技工粉刷8个房间,结果还有50平方米没有刷完;同样时间5名二级技工刷完10个房间外,还多刷了另外的40平方米.已知每名一级技工比二级技工一天多刷10平方米,求每个房间需要粉刷的墙面面积.参考答案与解析1.B 2.B 3.C 4.55.解:设经过x 小时两车相距50千米,依题意有(120+80)x =450-50或(120+80)x =450+50,解得x =2或2.5.答:经过2小时或2.5小时两车相距50千米.6.解:设长方体宽为x cm ,则长为(x +4)cm ,高为12[13-(x +4)]cm ,由题意,得2x +[13-(x +4)]=14,解得x =5,所以x +4=9,12[13-(x +4)]=2,9×5×2=90(cm 3). 答:这种药品包装盒的体积为90cm 3.7.C 8.A 9.69 10.1711.解:设该企业捐给乙校矿泉水x 件,则有x +(2x -400)=2000,解得x =800,所以2000-800=1200.答:该企业捐给甲校矿泉水1200件,捐给乙校矿泉水800件.12.解:(1)150 240 解析:6×25=150(元),12×25×0.8=240(元);(2)有这种可能,设小红购买跳绳x 根,则25×80%x =25(x -2)-5,解得x =11.答:小红购买跳绳11根.13.A 14.B 15.216.解:设这个班有x 名学生,则有3x +20=4x -25,解得x =45.答:这个班共有45名学生.17.解:设每个房间需要粉刷的墙面面积为x 平方米,则有8x -503-10x +405=10,解得x =52.答:每个房间需要粉刷的墙面面积为52平方米.综合滚动练习:一元一次方程的解法及其应用1.B 2.A 3.C 4.B 5.D 6.B 7.D 8.D9.3 10.2 11.50°12.20 解析:设良马x 天可以追上驽马,则(240-150)x =150×12,解得x =20. 13.1.8m 1.2m14.40 解析:因为56>0.50×100=50,所以该居民用电量超过了基本用电量a 度,根据题意,得0.50a +(100-a )×[0.50×(1+20%)]=56,解得a =40.15.解:(1)x =-7;(6分)(2)x =-3.(12分)16.解:设笔的价格为x 元/支,笔记本的价格为3x 元/本.(2分)由题意,得10x +5×3x =30,(6分)解得x =1.2,所以3x =3.6.(9分)答:笔的价格为1.2元/支,笔记本的价格为3.6元/本.(10分)17.解:设正方形纸片的边长为x cm ,(2分)根据题意,得4x =5(x -4),(5分)解得x =20.(7分)所以4x =4×20=80(cm 2).(9分)答:每次剪下的纸条的面积是80cm2.(10分)18.解:(1)设一个水瓶x元,则一个水杯(48-x)元,(2分)根据题意,得3x+4(48-x)=152,(5分)解得x=40,(7分)则48-x=8.(9分)答:一个水瓶40元,一个水杯8元;(10分)(2)甲商场所需费用为(40×5+8×20)×80%=288(元);(14分)乙商场所需费用为5×40+(20-5×2)×8=280(元),(18分)因为288>280,(19分)所以选择乙商场购买更合算.(20分)。

七年级数学一元一次方程:配套问题(有答案)

七年级数学一元一次方程:配套问题(有答案)

七年级数学一元一次方程:配套问题(有答案)1、某车间可以制作甲种零件和乙种零件,每天甲种零件可以制作500只,乙种零件可以制作250只。

一套产品需要一只甲种零件和一只乙种零件。

现在需要在30天内制作尽可能多的成套产品,问甲、乙两种零件各应制作多少天?解:设甲种零件制作x天,那么乙种零件制作(30-x)天。

因为总数量相等,所以有500x=250(30-x),解得x=10,即甲种零件制作10天,乙种零件制作20天。

2、制作一张桌子需要一个桌面和四条桌腿,现在有12立方米的立方木材,1立方米木材可以制作20个桌面或400条桌腿。

问如何计划用料才能制作尽可能多的桌子?解:设用x立方米木材制作桌面,那么用(12-x)立方米木材制作桌腿。

因为总数量相等,所以有20x=400(12-x),解得x=2.4,即用2.4立方米木材制作桌面,用9.6立方米木材制作桌腿。

3、某车间有22名工人,每人每天平均可以生产1200个螺钉或2000个螺母。

一只螺钉需要配两只螺母。

为了使每天的产品刚好配套,问应该分配多少名工人生产螺钉?多少名工人生产螺母?解:设生产螺钉的工人数为x,那么生产螺母的工人数为(22-x)。

因为总数量相等,所以有1200x=2000(22-x),解得x=12,即应该安排12名工人生产螺钉,10名工人生产螺母。

4、一套仪器由一个A部件和三个B部件构成。

现在有6立方米的钢材,1立方米钢材可以制作40个A部件或240个B部件。

问应该用多少钢材制作A、B两种部件,才能恰好配成这种仪器多少套?解:设用x立方米钢材制作A部件,那么用(6-x)立方米钢材制作B部件。

因为总数量相等,所以有40x=240(6-x),解得x=1,即用1立方米钢材制作A部件,用5立方米钢材制作B部件。

因为每套仪器需要一个A部件和三个B部件,所以可以制作1个A部件和15个B部件,即可以制作5套仪器。

5、机械厂加工车间有85名工人,平均每人每天可以加工16个大齿轮或10个小齿轮。

(完整版)最新人教版七年级上册数学一元一次方程应用题及答案

(完整版)最新人教版七年级上册数学一元一次方程应用题及答案

一元一次方程应用题知能点1:市场经济、打折销售问题(1)商品利润=商品售价-商品成本价 (2)商品利润率=商品利润商品成本价×100%(3)商品销售额=商品销售价×商品销售量(4)商品的销售利润=(销售价-成本价)×销售量(5)商品打几折出售,就是按原价的百分之几十出售,如商品打8折出售,即按原价的80%出售.1. 某商店开张,为了吸引顾客,所有商品一律按八折优惠出售,已知某种皮鞋进价60元一双,八折出售后商家获利润率为40%,问这种皮鞋标价是多少元?优惠价是多少元?2。

一家商店将某种服装按进价提高40%后标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的进价是多少?3.一家商店将一种自行车按进价提高45%后标价,又以八折优惠卖出,结果每辆仍获利50元,这种自行车每辆的进价是多少元?若设这种自行车每辆的进价是x元,那么所列方程为( )A.45%×(1+80%)x-x=50B. 80%×(1+45%)x - x = 50C. x—80%×(1+45%)x = 50 D。

80%×(1-45%)x - x = 504.某商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折出售,但要保持利润率不低于5%,则至多打几折.5.一家商店将某种型号的彩电先按原售价提高40%,然后在广告中写上“大酬宾,八折优惠”.经顾客投拆后,拆法部门按已得非法收入的10倍处以每台2700元的罚款,求每台彩电的原售价.知能点2:方案选择问题6.某蔬菜公司的一种绿色蔬菜,若在市场上直接销售,每吨利润为1000元,•经粗加工后销售,每吨利润可达4500元,经精加工后销售,每吨利润涨至7500元,当地一家公司收购这种蔬菜140吨,该公司的加工生产能力是:如果对蔬菜进行粗加工,每天可加工16吨,如果进行精加工,每天可加工6吨,•但两种加工方式不能同时进行,受季度等条件限制,公司必须在15天将这批蔬菜全部销售或加工完毕,为此公司研制了三种可行方案:方案一:将蔬菜全部进行粗加工.方案二:尽可能多地对蔬菜进行粗加工,没来得及进行加工的蔬菜,•在市场上直接销售.7.某市移动通讯公司开设了两种通讯业务:“全球通"使用者先缴50•元月基础费,然后每通话1分钟,再付电话费0.2元;“神州行”不缴月基础费,每通话1•分钟需付话费0.4元(这里均指市内电话).若一个月内通话x分钟,两种通话方式的费用分别为y1元和y2元.(1)写出y1,y2与x之间的函数关系式(即等式).(2)一个月内通话多少分钟,两种通话方式的费用相同?(3)若某人预计一个月内使用话费120元,则应选择哪一种通话方式较合算?8.某地区居民生活用电基本价格为每千瓦时0。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、 列方程解行程问题例1:甲乙两地相距1500千米,两辆汽车同时从两地相向而行,其中吉普车每小时60千米,是另一辆客车的1.5倍。

①几小时后两车相遇?②若吉普车先开40分钟,那客车开出多长时间两车相遇? 分析:若两车同时出发 ,则等量关系为:吉普车的路程+客车的路程=1500 ① 解:设两车x 小时后相遇,根据题意得解得: 15x =答:15小时后两车相遇。

② 分析:吉普车先出发40分钟,则等量关系式为:吉普车先行路程+吉普车后行路程+客车行驶路程=1500,即吉普车行驶路程+客车行驶路程=1500。

解:设客车开出x 小时后两车相遇,根据题意得解得14.6x =答:客车开车14.6小时后两车相遇。

例2、甲乙两名同学练习百米赛跑,甲每秒跑7米,乙每秒跑6.5米,如果甲让乙先跑1秒,那么甲经过几秒可以追上乙?分析:甲让乙先跑1秒,则等量关系为:乙先跑的路程+乙后跑的路程=甲跑到路程,也就是乙跑的路程=甲跑的路程。

解:设甲经过x 秒追上乙,根据题意得解:得13x =答:甲经过13秒后追上乙。

例3、小明、小亮两人相距40km ,小明先出发1.5h ,小亮再出发,小明在后小亮在前,两人同向而行,小明的速度是8km/h ,小亮的速度是6km/h ,小明出发后几小时追上小亮?分析:小明快,小亮慢,两人同向而行,等量关系式为:小明走的路程—小亮走的路程=相距路程 解:设小明出发后x 小时追上小亮,根据题意得解得15.5x =答:小明出发后15.5小时追上小亮例4、一艘船从甲码头到乙码头顺水行驶,用了2小时,从乙码头返回甲码头,逆水行驶,用了2.5小时,已知水流速度是3千米/时,求船在静水中的速度。

分析:水流存在如下相等关系:顺水速度=船在静水中的速度+水流速度,逆水速度=船在静水中的速度-水流速度。

由顺水行程=逆水行程可列方程.解:设船在静水中的速度为x 千米/时,则船在顺水中的速度为(3x + )千米/时,船在逆水中的速度为(3x - )千米/时, 根据题意得解得27x =答:船在静水中的速度为27千米/时。

例5、一轮船在A 、B 两地之间航行,顺水航行用3h ,逆水航行比顺水航行多用30min ,轮船在静水中的速度是26km/h,问水流的速度是多少?分析:分析同例题4,水流存在如下相等关系:顺水速度=船在静水中的速度+水流速度,逆水速度=船在静水中的速度-水流速度。

由顺水行程=逆水行程可列方程.解:设水流的速度是x km/h ,则船在顺水中的速度为(26x +)km/h ,船在逆水中的速度为(26x -)km/h. 根据题意得解得2x =答:水流的速度是2km/h 。

例6、甲乙两人参加环形跑道竞走比赛,跑道一周长400m ,乙的速度是80m/min ,甲的速度是乙的速度的1.25倍,若现在甲在乙前面100m 处,多少分钟后,两人第一次相遇? 分析:甲走的路程—乙走的路程=两人相距的距离 解:设x min 后两人第一次相遇,根据题意得 解得15x =答:15分钟后两人第一次相遇。

2、 列方程解工程问题例1、一件工作,甲做9天可以独立完成,乙做6天可以独立完成,现在甲先做了3天,余下的工作由乙独立完成,乙需要做几天可以完成全部的工作? 分析:如果把总工作量设为1,则甲的工作效率为19 ,乙的工作效率为16,根据工作总量=甲完成的工作量+乙完成的工作量解:设乙需要做x 天可以完成全部的工作, 根据题意得解得4x =答:乙需要做4天可以完成全部的工作。

例2、整理一批图书,由一个人做需要40小时完成,现在计划由一部分人先做4小时,再增加2人和他们一起做8小时,完成这项工作,假设这些人的工作效率完全相同,具体应先安排多少人工作。

分析:把工作总量看成1,则人均效率为140 ,有x 个人先做4小时的工作量为440x ,(2)x + 个人8小时的工作量为8(2)40x + ,由两部分的工作总量为1,可列方程。

解:设具体应先安排x 个人工作, 根据题意得解得2x = 答:具体应先安排2个人工作。

例3、一个蓄水池有甲、乙两个进水管和一个丙排水管,单独开甲管6小时可注满水池;单独开乙管8小时可注满水池,单独开丙管9小时可将满池水排空,若先将甲、乙管同时开放2小时,然后打开丙管,问打开丙管后几小时可注满水池?分析:等量关系为:甲注水量+乙注水量-丙排水量=1 解:设打开丙管后x 小时可注满水池, 由题意知 解得4213x = 答:打开丙管后4213小时可注满水池。

3、 列方程营销问题和,存入银行的时间叫做期数,利息与本金的比叫做利率. 利息=本金×利率×期数 本息和=本金+利息=100%⨯利息利率本金利息税=利息×税率 例1、某商品的售价为每件900元,商店按售价的9折再让利40元销售,此时仍可获利10%,此商品的进价是多少元?分析:题中的等量关系为:商品利润=商品售价—商品进价=商品进价×商品利润率设商品的进价为x 元,商品售价—商品进价=900×90%—40—x =商品进价×商品利润率=10%x 解:设此商品的进价为x 元,根据题意得解得700x =答:设此商品的进价为700元例2、某商场在一段时间里以每件60元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,卖出这两解:设盈利25%的衣服进价为 元,由题意知: 解得48x =设亏损25%的衣服进价为y 元,由题意知: 解得80y =两件衣服的进价是4880128x y +=+= (元)两件衣服的售价是6060120+=(元 ) 1201288-=- (元)答:在这次买卖中商场亏损10元。

例3、某商品月末的进货价比月初的进货价下降8%,而销售价不变,这样利润率月末比月初高10%问月初的利润率是多少?分析:利用售价=进价×(1+利润率),再根据“月初售价=月末售价”列方程。

注意:本题未知月初进货价,可以设一个,也可以看着整体1解:设月初进货价为a 元,月初利润率为x ,则月初的销售价为(1)a x + 元, 月末进货价为(18%)a - 元,月末销售价为(18%)[1(10%)]a x -++ 元,由题意知:解得0.15x =答:月初的利润率为15%。

例4、 例 某商品的进价是2 000元,标价为3 000元,商店要求以利润率不低于5%的售价打折出售,售货员最低可以打几折出售此商品?分析:根据商品利润率=(商品利润÷商品进价)×100%=[(商品售价—商品进价)÷商品进价]×100% 解:设售货员最低可以打x 折出售此商品,则 解得0.7x =答:售货员最低可以打7折出售此商品。

例5、某企业生产一种产品,每件成本价是400元,销售价是510元,本季度销售了m件,为进一步扩大市场,该企业决定在降低售价的同时降低生产成本,经过市场调研,预测下季度这种产品每件销售价降低4%,销售量将提高10%,要使销售利润保持不变,该产品每件的成本价应降低多少元?分析:降价前利润总额=m(降价前的销售价-降价前的成本价)降价后的利润总额=(110%)m+(降价后的销售价-降价后的成本价),根据降价前利润总额=降价后的利润总额可列方程。

解:设该产品每件的成本价应降低x元,则解得10.4x=答:该产品每件的成本价应降低10.4元。

4、列方程解比例问题求原来的男生和女生的人数分析:本题的等量关系为:女生人数—走了的人数=男生人数的一半。

解:设,原来男生的人数为x人,则女生的人数为34x人,由题意知解得48x=答:原来男生的人数为48人,女生的人数为36人。

例2、洗衣厂今年计划生产洗衣机25500台,其中Ⅰ型、Ⅱ型、Ⅲ型三种洗衣机的数量之比为1:2:14,这三种洗衣机计划各生产多少台?分析:全部数量=三种型号的洗衣机型号的数量之和解:设Ⅰ型洗衣机计划生产x台,则Ⅱ型洗衣机计划生产2x台,Ⅲ型洗衣机计划生产14x台,由题意知解得1500x=2215003000x=⨯=台1414150021000x=⨯=台答:Ⅰ型洗衣机计划生产1500台,则Ⅱ型洗衣机计划生产3000台,Ⅲ型洗衣机计划生产21000台。

5、列方程解配套问题解决这类题的基本等量关系是:加工(或生产)的总量成比例。

例1、某车间有100名工人每人平均每天可以加工螺栓18个或螺母24个,要使每天加工螺栓和螺母(一个螺栓配两个螺母)应如何分配加工螺栓和螺母的工人?分析:本题中要求:加工螺母的总个数=2×加工螺栓的个数解:设分配x人加工螺栓,则加工螺母的为(100)x-人,由题意知:解得40x=答:分配40人加工螺栓,60人加工螺母。

例2:机械厂加工车间有85名工人,平均每人每天加工大齿轮16个或小齿轮10个,已知2个大齿轮与3个小齿轮配成一套,问需分别安排多少名工人加工大、小齿轮,才能使每天加工的大小齿轮刚好配套?分析:本题的等量关系为:加工的大齿轮数量÷2=加工的小齿轮数量÷3解:设分配x名工人加工大齿轮,则加工小齿轮的有85-x名工人,由题意知解得25x=答:应分配25名工人加工大齿轮,60名工人加工小齿轮。

6、比赛问题这类问题的等量关系有:比赛总场数=胜场总数 +平场总数+负场总数比赛总积分=胜场总积分+平场总积分+负场总积分例1、在一次有12支球队参加的足球循环赛中(每两队必须比赛一场),规定胜一场得3分,平一场得1分,负一场得0分,某队在这次循环赛中所胜场数比所负场数多2,结果得18分,那么该队胜了多少场?解:设该队胜x 场,则该队负(2)x - 场,该队平的场数为11(x 2)132x x ---=- ,由题意知记得 5x =答:该队胜了5场.例2、某学校七年级8个班进行足球友谊赛,采用胜一场得3分,平一场得1分,负一场得0分的记分制。

某班与其他7个队各赛1场后,以不败的战绩积17分,那么该班共胜了几场比赛? 解:设设该班共胜了x 场比赛,则平了(7)x - 场,由题意知 解得 5x =答:该班共胜了5场比赛。

7、 方案决策问题例1、某商场在2009年元旦期间搞促销活动,一次性购物不超过200元不优惠;超过200元,但不超过500元,按9折优惠,超过500元,超过部分按8折优惠,其中的500元仍按9折优惠。

某人两次购物分别用了134元和466元:① 此人两次购物,若物品不打折,值多少钱? ②此人两次购物共省多少钱?③ 将两次购物的钱合起来,一次购买相同的商品,是否更节省?说明理由。

本题的优惠实质分为两个等级:(1)中首先应判断134元的商品是否给予优惠,466元的商品应该是如何优惠的,(3)中应计算买相同的商品付款数为多少,然后与(133+466)元进行比较。

相关文档
最新文档