二次函数投篮问题(附答案)

合集下载

【武汉2013中考数学】二次函数应用题

【武汉2013中考数学】二次函数应用题

二次函数的实际应用1例题1:一场篮球赛中,小明跳起投篮,已知球出手时离地面高209米,与篮圈中心的水平距离为8米,当球出手后水平距离为4米时到达最大高度4米,设篮球运行的轨迹为抛物线,篮圈中心距离地面3米。

⑴问此球能否投中?⑵在出手角度和力度都不变的情况下,小明的出手高度为多少时能将篮球投入篮圈?例题2:(2012·武汉·五月调考)某跳水运动员进行10米跳台跳水训练时,身体(看成一点)在空中的运动路线是如图所示坐标系下经过原点O 的一条抛物线(图中标出的数据为已知条件).在跳某个规定动作时,正常情况下,该运动员在空中的最高处距水面2103米,入水处距池边的距离为4米,运动员在距水面高度为5米以前,必须完成规定的翻腾动作,并调整好入水姿势,否则就会出现失误.(1)求这条抛物线的解析式;(2)在某次试跳中,测得运动员在空中的运动路线是(1)中的抛物线,且运动员在空中完成规定的翻腾动作并调整好入水姿势时,距池边的水平距离为335米,问此次跳水会不会失误?并通过计算说明理由.O练习1. 如图,小明的父亲在相距2米的两棵树间拴了一根绳子,给他做了一个简易的秋千,拴绳子的地方距地面高都是2.5米,绳子自然下垂呈抛物线状,身高1米的小明距较近的那棵树0.5米时,头部刚好接触到绳子,则绳子的最低点距地面的距离为米.2. 一名男生推铅球,铅球行进高度y(单位:m)与水平距离x(单位:m)之间的关系是21251233y x x=-++则他将铅球推出的距离是m 练习1图3.如图,一单杠高2.2米,两立柱之间的距离为1.6米,将一根绳子的两端栓于立柱与铁杠结合处,绳子自然下垂呈抛物线状。

一身高0.7米的小孩站在离立柱0.4米处,其头部刚好触上绳子,求绳子最低点到地面的距离。

例题3:公园要建造圆形的喷水池,在水池中央垂直于水面外安装一个柱子OA,O恰好在水面中心,OA =1.25米,由柱子顶端A处的喷水头向外喷水,水流在各个方向沿形状相同的抛物线落下,为使水流形状较为漂亮,要求设计成水流在距离为1米处达到距水面最大高度2.25米.(1)如果不计其他因素,那么水池的半径至少要多少米,才能使喷出的水流不至落到池外?(2)如果水流喷出的抛物线开口与(1)相同,水池半径为3.5米,要使水流不落到池外,此时水流的最大高度应达多少米?例题4:(2012·武汉·四月调考)要修建一个圆形喷水池,在池中心竖直安装一根2.25m的水管,在水管的顶端安一个喷水头,使喷出的抛物线形水柱在与池中心的水平距离为1 m处达到最高,高度为3m.(1)建立适当的平面直角坐标系.,使水管顶端的坐标为(0,2.25),水柱的最高点的坐标为(1,3),求出此坐标系中抛物形水柱对应的函数关系式(不要求写取值范围);(2)如图;在水池底面上有一些同心圆轨道,每条轨道上安装排水地漏,相邻轨道之间的宽度为0.3 m,最内轨道的半径为r m,其上每0.3 m的弧长上安装一个地漏,其它轨道上的地漏个数与最内轨道上的个数相同,水柱落地处为最外轨道,其上不安装地漏,求当r为多少时池中安装的地漏的个数最多?练习:1. 爱琴公园的音乐喷泉中的一个旋转喷泉如图所示,水管AB高出水面53米,B处是自转的水喷头,喷出水流呈抛物线状,喷出的水流在与A点的水平距离2米处达到最高点C,点C距离水面3米。

初中数学二次函数应用题型分类——抛物线形物体问题6(附答案)

初中数学二次函数应用题型分类——抛物线形物体问题6(附答案)

初中数学二次函数应用题型分类——抛物线形物体问题6(附答案)1.发射一枚炮弹,经x 秒后的高度为y 公尺,且时间与高度关系为y=ax 2+bx ,若此炮弹在第7秒与第14秒时的高度相等,则在下列哪一个时间的高度是最高的?( ) A .第8秒B .第10秒C .第12秒D .第15秒2.定点投篮是同学们喜爱的体育项目之一,某位同学投出篮球的飞行路线可以看作是抛物线的一部分,篮球飞行的竖直高度y (单位:m )与水平距离x (单位:m )近似满足函数关系2y ax bx c =++(a≠0).下表记录了该同学将篮球投出后的x 与y 的三组数据,根据上述函数模型和数据,可推断出篮球飞行到最高点时,水平距离为( ) x (单位:m) 024y (单位:m) 2.253.453.05 A .1.5mB .2mC .2.5mD .3m3.向空中发射一枚炮弹,第x 秒时的高度为y 米,且高度与时间的关系为2(0)y ax bx c a =++≠,若此炮弹在第6秒与第17秒时的高度相等,则在下列时间中炮弹所在高度最高的是( ) A .第8秒B .第10秒C .第12秒D .第15秒4.在学校运动会上,一位运动员掷铅球,铅球的高()ym 与水平距离()x m 之间的函数关系式为20.2 1.6 1.8y x x =-++,则此运动员的成绩是( ) A .10mB .4mC .5mD .9m5.一小球被抛出后,距离地面的高度h (米)和飞行时间t (秒)满足下面函数关系式:h =-5(t -1)2+6,则小球距离地面的最大高度是( ) A .1米B .5米C .6米D .7米6.如图,铅球的出手点C 距地面1米,出手后的运动路线是抛物线,出手后4秒钟达到最大高度3米,则铅球运行路线的解析式为( )A .h=﹣316t 2B .y=﹣316t 2+t C .h=﹣18t 2+t+1 D .h=-13t 2+2t+1 7.教练对小明推铅球的录像进行技术分析,发现某次铅球行进高度y(m)与水平距离x(m)之间的关系为y=-112(x-4)2+3,由此可知小明这次的推铅球成绩是( )A .3mB .4mC .8mD .10m8.从地面竖直向上抛出一小球,小球的高度y(米)与小球运动的时间x(秒)之间的关系式为()2y ax bx c a 0.=++≠若小球在第7秒与第14秒时的高度相同,则在下列时间中小球所在高度最高的是( ) A .第8秒B .第10秒C .第12秒D .第15秒9.如图所示的是跳水运动员10m 跳台跳水的运动轨迹,运动员从10m 高A 处的跳台上跳出,运动轨迹成抛物线状(抛物线所在平面与跳台墙面垂直).若运动员的最高点M 离墙1m ,离水面403m ,则运动员落水点B 离墙的距离OB 是( )A .2mB .3mC .4mD .5m10.为了响应“足球进校国”的目标,兴义市某学校开展了多场足球比赛在某场比赛中,一个足球被从地面向上踢出,它距地面的高度h (m )可以用公式h =﹣5t 2+v 0t 表示,其中t (s )表示足球被踢出后经过的时间,v 0(m /s )是足球被踢出时的速度,如果要求足球的最大高度达到20m ,那么足球被踢出时的速度应该达到( ) A .5m /sB .10m /sC .20m /sD .40m /s11.黄冈中学是百年名校,百年校庆上的焰火晚会令很多人记忆犹新.有一种焰火升高高度为h (m )与飞行时间t (s )的关系式是252012h t t =-++,若这种焰火在点燃升空后到最高处引爆,则从点火到引爆所需时间为__________s . 12.小明推铅球,铅球行进高度y (m )与水平距离x (m )之间的关系为y=﹣21(4)12x -+3,则小明推铅球的成绩是 m .13.一名男生推铅球,铅球行进高度y (单位:m )与水平距离x (单位:m )之间的关系是21251233y x x =-++,则铅球推出的距离是______.此时铅球行进高度是______.14.对于向上抛的物体,在没有空气阻力的条件下,有这样的关系式:h =vt ﹣12gt 2,其中h 是上升高度,v 是初速,g 是重力加速度(为方便起见,本题目中g 取10m /s 2),t 是抛出后所经历的时间.如果将物体以v =25m /s 的速度向上抛,当t =_____s 时,物体上升到距离最高点11.25m 处?15.从地面竖直向上抛出一小球,小球的高度h (米)与小球的运动时间t (秒)之间的关系式是()230506h t tt =-≤≤,若抛出小球1秒钟后再抛出同样的第二个小球.则第二个小球抛出______秒时,两个小球在空中的高度相同.16.一运动员推铅球,铅球经过的路线为如图所示的抛物线,点(4,3)为该抛物线的顶点,则该抛物线所对应的函数式为_____.17.足球从地面踢出后,在空中飞行时离地面的高度()h m 与运动时间()t s 的关系可近似地表示为29.8h t t =-+,则该足球在空中飞行的时间为__________s .18.从地面竖直向上抛出一小球,小球的高度h (米)与小球运动时间t (秒)的关系式是h =30t ﹣5t 2,小球运动中的最大高度是_____米. 19.校运会上,一名男生推铅球,出手点A 距地面53m ,出手后的运动路线是抛物线,当铅球运行的水平距离是4m 时,达到最大高度3m ,那么该名男生推铅球的成绩是_____m .20.烟花厂为国庆70周年庆祝晚会特别设计制作一种新型礼炮,这种礼炮的升空高h (m )与飞行时间t (s )的关系式是252012h t t =++,若这种礼炮在点火升空到最高点处引爆,则从点火升空到引爆需要时间为________.21.在一场足球比赛中,一球员从球门正前方10米处起脚射门,当球飞行的水平距离为6米时达到最高点,此时球高为3米.(1)如图建立直角坐标系,当球飞行的路线为一抛物线时,求此抛物线的解析式. (2)已知球门高为2.44米,问此球能否射中球门(不计其它情况).22.某广场有一个小型喷泉,水流从垂直于地面的水管OA 喷出,OA 长为1.5米.水流在各个方向上沿形状相同的抛物线路径落到地面上,某方向上抛物线路径的形状如图所示,落点B 到O 的距离为3米.建立平面直角坐标系,水流喷出的高度y (米)与水平距离x (米)之间近似满足函数关系20)y ax x c a =++≠((1)求y 与x 之间的函数关系式; (2)求水流喷出的最大高度.23.在某场足球比赛中,球员甲在球门正前方点O 处起脚射门,在不受阻挡的情况下,足球沿如图所示的抛物线飞向球门中心线,当足球飞行的水平距离为2 m 时,高度为5m 3,落地点A 距O 点12 m .已知点O 距球门9 m ,球门的横梁高为2.44 m . (1)飞行的足球能否射入球门?通过计算说明理由;(2)若守门员乙站在球门正前方2 m 处,他跳起时能摸到的最大高度为2.52 m ,他能阻止此次射门吗?并写明理由.24.从地面竖直向上抛出一小球,小球的高度h (单位:m )与小球的运动时间t (单位:s )之间的关系式是2305h t t =-(06t ≤≤).求小球运动时间是多少时,小球最高?小球运动中的最大高度是多少?25.如图,一位篮球运动员在离篮圈水平距离4m 处跳起投篮,球运行的高度y (m )与运行的水平距离x (m )满足解析式2y ax x c =++,当球运行的水平距离为1.5m 时,球离地面高度为3.3m ,球在空中达到最大高度后,准确落入篮圈内.已知篮圈中心离地面距离为3.05m .(1)当球运行的水平距离为多少时,达到最大高度?最大高度为多少?(2)若该运动员身高1.8m ,这次跳投时,球在他头顶上方0.25m 处出手,问球出手时,他跳离地面多高?26.如图所示,以40/m s 的速度将小球沿与地面成30°角的方向击出时,球的飞行路线将是一条抛物线.如果不考虑空气阻力,球的飞行高度h (单位:m )与飞行时间t (单位:s )之间具有关系式.2205h t t =-(0)t ≥解答以下问题:(1)球的飞行高度能否达到15m ?如能,需要飞行多少时间? (2)球飞行到最高点时的高度是多少m ?27.一球从地面抛出的运动路线呈抛物线,如图.当球离抛出地的水平距离为30m 时,达到最大高度10m .(1)问:球被抛出多远?并求出该抛物线的解析式. (2)当球的高度为509m 时,球离抛出地的水平距离是多少?28.某次足球比赛,队员甲在前场给队友乙掷界外球.如图所示:已知两人相距8米,足球出手时的高度为2.4米,运行的路线是抛物线,当足球运行的水平距离为2米时,足球达到最大高度4米.请你根据图中所建坐标系,求出抛物线的表达式.29.小明将小球沿与地面成一定角度的方向击出,在不考虑空气阻力的条件下,小球的飞行高度y(m)与它的飞行时间x(s)满足二次函数关系,y 与x 的几组对应值如下表所示:x(s) 0 0.5 1 1.5 2 …y(m) 0 8.75 15 18.75 20 …(Ⅰ)求y关于x的函数解析式(不要求写x的取值范围);(Ⅱ)问:小球的飞行高度能否达到22m?请说明理由.30.运动员将小球沿与地面成一定角度的方向击出,在不考虑空气阻力的条件下,小球的飞行高度h(m)与它的飞行时间t(s)满足二次函数关系,t与h的几组对应值如下表所示.t(s)0 0.5 1 1.5 2 …h(m)0 8.75 15 18.75 20 …(1)求h与t之间的函数关系式(不要求写t的取值范围);(2)求小球飞行3s时的高度;(3)问:小球的飞行高度能否达到22m?请说明理由.参考答案1.B 【解析】 【分析】根据题意,x=7时与x=14时y 值相等,因此得出关于a 与b 的关系式,最后代入到2bx a=-中求出x 的值进一步判断即可. 【详解】 由题意得:当x=7时,y=49a +7b , 当x=14时,y=196a +14b , ∵高度相等, ∴49a +7b=196a +14b , ∴b=-21a ,∵抛物线对称轴为:2b x a=-, 即:10.5x =,根据抛物线的对称性以及开口方向, ∴当10.5x =时,y 最大, ∵10与10.5相差最小, ∴四个选项中,第10秒最高, 故选:B. 【点睛】本题主要考查了抛物线的性质,熟练掌握相关概念是解题关键. 2.C 【解析】 【分析】用待定系数法可求二次函数的表达式,从而可得出答案. 【详解】将(0,2.25),(2,3.45),(4,3.05)代入2y ax bx c =++中得2.25423.45164 3.05c a b c a b c =⎧⎪++=⎨⎪++=⎩ 解得 2.250.21c a b =⎧⎪=-⎨⎪=⎩∴220.2 2.250.25( 2.5) 3.5y xx x =-++=--+∵0.250-< ∴当 2.5x =时,max 3.5y =故选C 【点睛】本题主要考查待定系数法求二次函数的解析式及二次函数的最大值,掌握二次函数的图象和性质是解题的关键. 3.C 【解析】 【分析】根据二次函数图像的对称性,求出对称轴,即可得到答案. 【详解】解:根据题意,炮弹在第6秒与第17秒时的高度相等, ∴抛物线的对称轴为:61711.52x +==秒, ∵第12秒距离对称轴最近,∴上述时间中,第12秒时炮弹高度最高; 故选:C. 【点睛】本题考查了二次函数的性质和对称性,解题的关键是掌握二次函数的对称性进行解题. 4.D 【解析】 【分析】根据铅球落地时,高度y =0,把实际问题可理解为当y =0时,即20.2 1.6 1.80y x x =-++=,求x 的值即可.在实际问题中,注意负值舍去.【详解】解:由题意知,当y =0时,20.2 1.6 1.80x x -++=, 整理,得:2890x x --=, 解得:1219x x =-=,,由于负值不符合题意,故该运动员的成绩是9m , 故答案选:D . 【点睛】本题考查二次函数的实际应用,搞清楚铅球落地时,即y =0,测量运动员成绩,也就是求x 的值,借助二次函数解决实际问题. 5.C 【解析】试题解析:∵高度h 和飞行时间t 满足函数关系式:h=-5(t-1)2+6, ∴当t=1时,小球距离地面高度最大, ∴h=-5×(1-1)2+6=6米, 故选C .考点:二次函数的应用. 6.C 【解析】 【分析】根据题意,抛物线的顶点坐标是(4,3),把抛物线经过的点(0,1),代入二次函数的顶点坐标式列出方程,解出系数则可. 【详解】根据题意,设二次函数的表达式为()243h a t =-+,抛物线过(0,1),即代入二次函数解得18a =-,这个二次函数的表达式为()221143188h t t t =--+=-++,故C 选项是正确答案. 【点睛】本题考查了用待定系数法利用顶点坐标式求函数的方法,掌握方程的解法等知识是解决本题的关键. 7.D【解析】 【分析】求出铅球落地时的水平距离,将y=0代入函数关系式,求出x 的值即可得到成绩. 【详解】由题意得,当y=0时,21(4)3=012--+x , 解得:110x =,22x =-(舍去) 故选D. 【点睛】本题考查二次函数的应用,理解当铅球高度为0时,x 的值即为铅球飞行的距离,是解决本题的关键. 8.B 【解析】 【分析】根据题意可以求得该函数的对称轴,然后根据二次函数具有对称性,离对称轴越近,对应的y 值越大,即可解答本题. 【详解】由题意可得:当x 7142+==10.5时,y 取得最大值. ∵二次函数具有对称性,离对称轴越近,对应的y 值越大,∴ t =10时,y 取得最大值. 故选B . 【点睛】本题考查了二次函数的应用,解答本题的关键是明确题意,利用二次函数的性质解答. 9.B 【解析】 【分析】由题意可得到抛物线的顶点坐标(1,403),因此可设抛物线顶点式()24013=-+y a x ,抛物线与y 轴的交点为A (0,10),代入顶点式可求出抛物线,再求出抛物线与x 轴的交点,即可求出OB.解:由题意,设抛物线解析式为()24013=-+y a x ,代入A (0,10)得, 10=()240013-+a ,解得10=3-a , 所以抛物线解析式为()21040133=--+y x , 当y=0时,()210401=033--+x , 解得1=1-x ,2=3x .因为B 点在x 轴正半轴,故B 点坐标为(3,0)所以OB=3,选B.【点睛】本题考查了待定系数法求二次函数解析式,并运用抛物线的性质解决实际问题,根据题意设出合适的解析式是解题的关键.10.C【解析】【分析】因为-5<0,抛物线开口向下,有最大值,根据顶点坐标公式表示函数的最大值,根据题目对最大值的要求,求待定系数v 0.【详解】解:h=-5t 2+v 0•t ,其对称轴为t=010V , 当t=010V 时,h 最大=-5×(010V )2+v 0•010V =20, 解得:v 0=20,v 0=-20(不合题意舍去),故选C .【点睛】本题考查的是二次函数的应用,关键是利用当对称轴为t=-010V 时h 将取到最大值. 11.4根据关系式可知焰火的运行轨迹是一个开口向下的抛物线,已知焰火在升到最高时引爆,即到达抛物线的顶点时引爆,顶点横坐标就是从点火到引爆所需时间.则t=1205-⨯-=4s , 故答案为4.12.10【解析】【分析】根据铅球落地时,高度y=0,把实际问题可理解为当y=0时,求x 的值即可.【详解】解:令函数式y=﹣21(4)12x -+3中,y=0, 0=﹣21(4)12x -+3, 解得x 1=10,x 2=﹣2(舍去).即铅球推出的距离是10m .故答案为10.考点:二次函数的应用.13.10m 0m【解析】【分析】铅球落地时,高度y=0,把实际问题可理解为当y=0时,求x 的值.【详解】 解:令函数式21251233y x x =-++中,y=0, 即212501233x x -++=, 解得x 1=10,x 2=−2(舍去),即铅球推出的距离是10m,此时铅球行进高度是0m.故答案为10m;0m..【点睛】本题考查了二次函数的应用以及函数式中自变量与函数表达的实际意义,需要结合题意取函数值为0,进而得出自变量的值是解题关键.14.0.5或4.5 【解析】【分析】根据关系式:h=vt﹣12gt2,列出一元二次方程求解.【详解】解:根据题意,可得出的方程为:11.25=25t﹣5t2,∴t2﹣5t+2.25=0.解得:t1=0.5,t2=4.5.故答案为:0.5或4.5.【点睛】本题考查的知识点是一元二次方程的实际应用,根据所给关系式直接代入数据,解方程即可,此题属于基础题目,易于掌握.15.2.5【解析】【分析】根据题意和二次函数的性质,可以得到第二个小球抛出多少秒时,两个小球在空中的高度相同.【详解】解:∵h=30t-5t2=-5(t-3)2+45,∴该函数的对称轴是直线t=3,∵抛出小球1秒钟后再抛出同样的第二个小球,两个小球在空中的高度相同,∴第二个小球抛出3-0.5=2.5秒时,两个小球在空中的高度相同,故答案为:2.5.【点睛】本题考查二次函数的应用,解答本题的关键是明确题意,利用二次函数的性质解答.16.y=-132(x﹣4)2+3【解析】【分析】根据二次函数的顶点式即可求出抛物线的解析式.解:根据题意,得设抛物线对应的函数式为y =a (x ﹣4)2+3把点(0,52)代入得: 16a+3=52解得a =﹣132, ∴抛物线对应的函数式为y =﹣132(x ﹣4)2+3 故答案为:y =﹣132(x ﹣4)2+3. 【点睛】 本题考查了用待定系数法利用顶点坐标式求函数的方法,同时还考查了方程的解法等知识,难度不大.17.9.8【解析】【分析】求当t=0时函数值,即与x 轴的两个交点,两个交点之间的距离即足球在空中飞行的时间.【详解】解:当t=0时,29.80t t -+=(9.8)0t t --=解得:120;9.8t t ==∴足球在空中的飞行时间为9.8s故答案为:9.8【点睛】本题考查二次函数的实际应用,利用数形结合思想球解题,求抛物线与x 轴的交点是本题的解题关键18.45【解析】首先理解题意,先把实际问题转化成数学问题后,知道解此题就是求出h =30t ﹣5t 2的顶点坐标即可.【详解】解:h =﹣5t 2+30t=﹣5(t 2﹣6t +9)+45=﹣5(t ﹣3)2+45,∵a =﹣5<0,∴图象的开口向下,有最大值,当t =3时,h 最大值=45.故答案为:45.【点睛】本题考查了二次函数的应用,解此题的关键是把实际问题转化成数学问题,利用二次函数的性质就能求出结果.19.10【解析】【分析】把(0,53)代入y=a (x-4)2+3,求出a 的值即可,再求出抛物线与x 轴的交点即可解决问题;【详解】设二次函数的解析式为y=a (x-4)2+3,把(0,53)代入y=a (x-4)2+3, 解得,a=-112, 则二次函数的解析式为:y=-112(x-4)2+3=-22531312x x ++; 令y=0得到:-22531312x x ++=0, 解得,x 1=-2(舍去),x 2=10,则铅球推出的距离为10m .故答案为10.【点睛】此题考查二次函数的实际应用,熟练掌握待定系数法求函数解析式是解题关键.20.4s【解析】【分析】把二次函数的一般式写成顶点式,找出顶点坐标,即可知道多长时间后得到最高点.【详解】 解:252012h t t =++ =52-(t-4)2+41, ∵52-<0, ∴这个二次函数图象开口向下,∴当t=4时,升到最高点,∴从点火升空到引爆需要的时间为4s .故答案为:4s .【点睛】本题考查了二次函数解析式的相互转化,以及二次函数的性质,二次函数的表达式有三种形式,一般式,顶点式,交点式.要求最高(低)点,或者最大(小)值,需要先写成顶点式.烟花厂为国庆70周年庆祝晚会特别设计制作一种新型礼炮,这种礼炮的升空高h (m )与飞行时间t (s )的关系式是h=t2+20t+1252012h t t =++,若这种礼炮在点火升空到最高点处引爆,则从点火升空到引爆需要时间为21.(1)y =﹣112(x ﹣4)2+3;(2)能射中球门. 【解析】【分析】(1)根据条件可以得到抛物线的顶点坐标是(4,3),利用待定系数法即可求得函数的解析式;(2)求出当x =0时,抛物线的函数值,与2.44米进行比较即可判断.【详解】(1)抛物线的顶点坐标是(4,3),设抛物线的解析式是:y =a (x ﹣4)2+3,把(10,0)代入得36a+3=0,解得a =-112, 则抛物线是y =﹣112(x ﹣4)2+3; (2)当x =0时,y =-112×16+3=3﹣43=53<2.44米. 故能射中球门.【点睛】本题考查了待定系数法求二次函数的解析式,以及二次函数的应用,正确求得解析式是关键.22.(1)213.22y x x =-++(2)水流喷出的最大高度为2米 【解析】【分析】(1)建立平面直角坐标系,待定系数法解题,(2)求出顶点坐标即可.【详解】解:(1)由题意可得,抛物线经过(0,1.5)和(3,0), 1.5930c a c =⎧⎨⨯++=⎩解得:a=-0.5,c=1.5,即函数表达式为y=21322x x -++. (2)解:221311+2.222y x x x =-++=--() ∴当x=1时,y 取得最大值,此时y=2.答:水流喷出的最大高度为2米.本题考查了二次函数的解析式的求法,顶点坐标的应用,中等难度,建立平面直角坐标系是解题关键.23.(1)能射入球门.理由见解析;(2)不能阻止.理由见解析.【解析】【分析】(1)设抛物线解析式为()20y ax bx c a =++≠,将()5212,03⎛⎫ ⎪⎝⎭,,代入求解析式,再将9x =代入即可判断;(2)根据“守门员乙站在球门正前方2m 处”可知此时x=7,将其代入解析式即可判断.【详解】解:(1)能射入球门.设抛物线解析式为()20y ax bx c a =++≠ 将()5212,03⎛⎫ ⎪⎝⎭,,代入求解可得: 抛物线解析式为2112y x x =-+ 当9x =时,2712y =- ∵27 2.4412<, ∴能射入球门.(2)不能阻止.∵守门员乙站在球门正前方2 m 处,∴7x =当7x =时,3512y =∵35 2.5212>, ∴不能阻止.【点睛】本题考查的是待定系数法求二次函数解析式,能够求出抛物线解析式是解题的关键. 24.小球运动3秒时,最大高度是45m .【分析】首先将二次函数转换成顶点式,然后即可求出自变量和函数值的最大值.【详解】2305h t t =-25(3)45t =--+06t ≤≤∴当3t =时,h 最大45=.答:小球运动3秒时,小球最高,最大高度是45m .【点睛】此题主要考查二次函数的性质,熟练掌握,即可解题.25.(1)当球运行的水平距离为2.5m 时,达到最大高度为3.5m ;(2)球出手时,他跳离地面0.2m .【解析】【分析】(1)根据待定系数法,即可求解;(2)令0x =时,则 2.25y =,进而即可求出答案.【详解】(1)依题意得:抛物线2y ax x c =++经过点(1.5,3.3)和(4,3.05),∴221.5 1.5 3.344 3.05a c a c ⎧⨯++=⎨⨯++=⎩,解得:0.22.25a c =-⎧⎨=⎩, ∴220.2 2.250.2( 2.5) 3.5y x x x =-++=--+,∴当球运行的水平距离为2.5m 时,达到最大高度为3.5m ;(2)∵0x =时, 2.25y =,∴2.250.25 1.80.2--=m ,即球出手时,他跳离地面0.2m .【点睛】本题主要考查二次函数的实际应用,掌握二次函数的图象和性质,是解题的关键.26.(1)能,1或3;(2)20m【解析】【分析】(1)当h=15米时,15=20t-5t 2,解方程即可解答;(2)求出当2205h t t =-的最大值即可.【详解】解;(1)解方程:215205t t =-2430t t -+=,解得:121,3t t ==,需要飞行1s 或3s ;(2)222055(t 2)20h t t =-=--+,当2t =时,h 取最大值20,∴球飞行的最大高度是20m .【点睛】本题主要考查了二次函数与一元二次方程的关系,根据题意建立方程是解决问题的关键. 27.(1)球被抛出60m ,该抛物线的解析式为y =﹣190x 2+23x ;(2)球离抛出地的水平距离是10m 或50m .【解析】【分析】(1)根据已知条件设抛物线顶点式解析式即可求解;(2)根据(1)中求得的解析式,把球的高度为509m 代入,即可求出球离抛出地的水平距离.【详解】解:(1)根据题意,得设抛物线的解析式为2(30)10y a x =-+,把(0,0)代入得190a =-.所以抛物线解析式为22112(30)1090903y x x x =--+=+. 当0y =时,10x =,260x =.或者:因为抛物线对称轴为30x =,所以抛物线与x 轴的交点为(0,0),(60,0)答:球被抛出60m .该抛物线的解析式为212903y x x =-+. (2)当509y =时,2501(30)10990x =--+,解得150x =,210x =. 答:球离抛出地的水平距离是10m 或50m .【点睛】本题考查了二次函数的应用,要恰当地把实际问题中的数据落实到平面直角坐标系中的抛物线上,从而确定抛物线的解析式,通过解析式可解决问题.28.y = -0.4x 2+4【解析】【分析】根据题意设抛物线的表达式为y=ax 2+4 (0a ≠),代入(-2,2.4),即可求出a .【详解】解:设y=ax 2+4 (0a ≠)∵ 图象经过(-2,2.4)∴ 4a+4=2.4a= -0.4∴ 表达式为y= -0.4x 2+4【点睛】本题考查了二次函数的应用,解题的关键是从实际问题中抽象出二次函数模型.29.(Ⅰ) y =﹣5x 2+20x ;(Ⅱ)小球的飞行高度不能达到22m ,理由见解析.【解析】【分析】(Ⅰ)设y 与x 之间的函数关系式为y =ax 2+bx(a≠0),然后再根据表格代入x =1时,y =15;x =2时,y =20可得关于a 、b 的方程组,再解即可得到a 、b 的值,进而可得函数解析式; (Ⅱ)把函数解析式写成顶点式的形式可得小球飞行的最大高度,进而可得答案.【详解】(Ⅰ)∵x=0时,y=0,∴设y与x之间的函数关系式为y=ax2+bx(a≠0),∵x=1时,y=15;x=2时,y=20,∴15 4220 a ba b+=⎧⎨+=⎩,解得520ab=-⎧⎨=⎩,∴y与x之间的函数关系式为y=﹣5x2+20x;(Ⅱ)由(Ⅰ)得:y=﹣5x2+20x=﹣5(x﹣2)2+20,∴小球飞行的最大高度为20m,∵22>20,∴小球的飞行高度不能达到22m.【点睛】本题主要考查了二次函数的实际应用,熟练掌握相关方法是解题关键.30.(1)h=﹣5t2+20t;(2)小球飞行3s时的高度为15米;(3)小球的飞行高度不能达到22m.【解析】【分析】(1)设h与t之间的函数关系式为h=at2+bt(a≠0),然后再根据表格代入t=1时,h=15;t=2时,h=20可得关于a、b的方程组,再解即可得到a、b的值,进而可得函数解析式;(2)根据函数解析式,代入t=3可得h的值;(3)把函数解析式写成顶点式的形式可得小球飞行的最大高度,进而可得答案.【详解】解:(1)∵t=0时,h=0,∴设h与t之间的函数关系式为h=at2+bt(a≠0),∵t=1时,h=15;t=2时,h=20,∴a15{4220ba b+=+=,解得5 {20ab=-=,∴h与t之间的函数关系式为h=﹣5t2+20t;(2)小球飞行3秒时,t=3(s),此时h=﹣5×32+20×3=15(m).答:小球飞行3s时的高度为15米;(3)∵h=﹣5t2+20t=﹣5(t﹣2)2+20,∴小球飞行的最大高度为20m,∵22>20,∴小球的飞行高度不能达到22m.【点睛】此题主要考查了二次函数的应用,关键是掌握待定系数法求函数解析式,掌握配方法化顶点解析式.。

初中数学二次函数的应用培优练习题2(附答案详解)

初中数学二次函数的应用培优练习题2(附答案详解)

初中数学二次函数的应用培优练习题2(附答案详解)1.一位篮球运动员在距离篮圈中心水平距离4m 处起跳投篮,球沿一条抛物线运动,当球运动的水平距离为2.5m 时,达到最大高度3.5m ,然后准确落入篮框内.已知篮圈中心距离地面高度为3.05m ,在如图所示的平面直角坐标系中,下列说法正确的是( )A .此抛物线的解析式是y=﹣15x 2+3.5B .篮圈中心的坐标是(4,3.05)C .此抛物线的顶点坐标是(3.5,0)D .篮球出手时离地面的高度是2m2.如图,在平面直角坐标系中,抛物线y =ax 2+6与y 轴交于点A ,过点A 与x 轴平行的直线交抛物线y =2x 2于B 、C 两点,则BC 的长为( )A .2B .3C .22D .233.一学生推铅球,铅球行进的高度()y m 与水平距离()x m 之间的关系为21251233y x x =-++,则学生推铅球的距离为( ) A .35m B .3m C .10m D .12m 4.直线5y x 22=-与抛物线21y x x 2=-的交点个数是( ) A .0个 B .1个 C .2个 D .互相重合的两个 5.如图,隧道的截面是抛物线,可以用y= 21416x -+表示,该隧道内设双行道,限高为3m ,那么每条行道宽是( )6.某超市将进货单价为l8元的商品按每件20元销售时,每日可销售100件,如果每件提价1元,日销售就要减少10件,那么把商品的售出价定为多少元时,才能使每天获得的利润最大?( )A .22元B .24元C .26元D .28元7.函数2y ax bx c =++与y kx =的图象如图所示,有以下结论:①240b ac ->;②10a b c +++>;③9360a b c +++>;④当13x <<时,2()0ax b k x c +-+<.其中正确的结论有( )A .1个B .2个C .3个D .4个8.某商人将单价为8元的商品按每件10元出售,每天可销售100件,已知这种商品每提高2元,其销量就要减少10件,为了使每天所赚利润最多,该商人应将销售价(为偶数)提高( )A .8元或10元B .12元C .8元D .10元9.如图,在一个直角三角形的内部作一个矩形ABCD ,其中AB 和AD 分别在两直角边上,C 点在斜边上.设矩形的一边AB =x m ,矩形的面积为y m 2,则y 的最大值为________.10.某建筑物的窗户如图所示,它的上半部分是半圆,下半部分是矩形,•制造窗框的材料的总长为15m ,若AB=xm ,BC=ym ,则y 与x 的函数解析式为______,窗户的面积S 与x 的函数解析式为_____,当x≈______时,S 最大≈_____,此时通过的光线最多(结果精确到0.01m )11.如图,已知等腰直角△ABC 的直角边长与正方形MNPQ 的边长均为20厘米,AC 与MN 在同一直线上,开始时点A 与点N 重合,让△ABC 以每秒2厘米的速度向左运动,最终点A 与点M 重合,则重叠部分面积y (厘米2)与时间t (秒)之间的函数关系式为____12.农贸市场拟建两间长方形储藏室,储藏室的一面靠墙(墙长30m),中间用一面墙隔开,如图所示,已知建筑材料可建墙的长度为42m,则这两间长方形储藏室的总占地面积的最大值为_______m 2.13.已知,二次函数y=x 2+bx ﹣2017的图象与x 轴交于点A (x 1,0)、B (x 2,0)两点,则当x=x 1+x 2时,则y 的值为___________.14.若函数y=ax 2+3x-1的图像与x 轴有交点,则a 的取值范围是________.15.从地面竖直向上抛出一小球,小球的高度h (单位:米)与小球运动时间t (单位:秒)的函数关系式是h=9.8t ﹣4.9t 2.若小球的高度为4.9米,则小球的运动时间为_____.16.如图,在正方形ABCD 中,O 是对角线AC 与BD 的交点,M 是BC 边上的动点(点M 不与B ,C 重合),过点C 作CN 垂直DM 交AB 于点N ,连结OM ,ON ,MN .下列五个结论:①CNB DMC ∆≅∆;②ON OM =;③ON OM ⊥;④若2AB =,则OMN S ∆的最小值是1;⑤222AN CM MN +=.其中正确结论是_________.(只填序号)17.江汉路一服装店销售一种进价为50元/件的衬衣,生产厂家规定每件定价为60~150元.当定价为60元/件时,每星期可卖出70件,每件每涨价10元,一星期少卖出5件.(1)当每件衬衣定价为多少元时(定价为10元的正整数倍),服装店每星期的利润最大?最大利润为多少元?(2)请分析每件衬衣的定价在哪个范围内时,每星期的销售利润不低于2 700元. 18.某单位为响应政府发出的全民健身的号召,打算在长和宽分别为20 m 和11 m 的矩形大厅内修建一个60 m 2的矩形健身房ABCD .该健身房的四面墙壁中有两侧沿用大厅的旧墙壁(如图为平面示意图),已知装修旧墙壁的费用为20元/m 2,新建(含装修)墙壁的费用为80元/m 2.设健身房的高为3 m ,一面旧墙壁AB 的长为x m ,修建健身房墙壁的总投入为y 元.(1)求y 与x 的函数关系式;(2)为了合理利用大厅,要求自变量x 必须满足条件:8≤x≤12,当投入的资金为4800元时,问利用旧墙壁的总长度为多少.19.某大学生利用业余时间参与了一家网店经营,销售一种成本为30元/件的文化衫,根据以往的销售经验,他整理出这种文化衫的售价y 1(元/件),销量y 2(件)与第x(1≤x<90)天的函数图象如图所示(销售利润=(售价-成本)×销量).(1)求y 1与y 2的函数解析式.(2)求每天的销售利润W 与x 的函数解析式.(3)销售这种文化衫的第多少天,销售利润最大,最大利润是多少?20.如图,抛物线y=﹣212x 2x +2与x 轴相交于A ,B 两点,(点A 在B 点左侧)与y 轴交于点C . (1)求A ,B 两点坐标.(2)连结AC ,若点P 在第一象限的抛物线上,P 的横坐标为t ,四边形ABPC 的面积为S .试用含t 的式子表示S ,并求t 为何值时,S 最大.(3)在(2)的基础上,在整条抛物线上和对称轴上是否分别存在点G和点H,使以A,G,H,P四点构成的四边形为平行四边形?若存在,请直接写出G,H的坐标;若不存在,请说明理由.21.如图,抛物线y=ax2+bx+3经过点B(﹣1,0),C(2,3),抛物线与y轴的焦点A,与x轴的另一个焦点为D,点M为线段AD上的一动点,设点M的横坐标为t.(1)求抛物线的表达式;(2)过点M作y轴的平行线,交抛物线于点P,设线段PM的长为1,当t为何值时,1的长最大,并求最大值;(先根据题目画图,再计算)(3)在(2)的条件下,当t为何值时,△PAD的面积最大?并求最大值;(4)在(2)的条件下,是否存在点P,使△PAD为直角三角形?若存在,直接写出t 的值;若不存在,说明理由.22.如图:在平面直角坐标系中,直线l:y=13x﹣43与x轴交于点A,经过点A的抛物线y=ax2﹣3x+c的对称轴是x=32.(1)求抛物线的解析式;(2)平移直线l经过原点O,得到直线m,点P是直线m上任意一点,PB⊥x轴于点B,PC⊥y轴于点C,若点E在线段OB上,点F在线段OC的延长线上,连接PE,PF,且PE=3PF,求证:PE⊥PF;(3)若(2)中的点P坐标为(6,2),点E是x轴上的点,点F是y轴上的点,当PE⊥PF 时,抛物线上是否存在点Q,使四边形PEQF是矩形?如果存在,请求出点Q的坐标,如果不存在,请说明理由.23.如图,Rt △ABC 中,90C ∠=︒,AC =BC ,AB =4cm .动点D 沿着A →C →B 的方向从A 点运动到B 点.DE ⊥AB ,垂足为E .设AE 长为x cm ,BD 长为y cm (当D 与A 重合时,y =4;当D 与B 重合时y =0).小云根据学习函数的经验,对函数y 随自变量x 的变化而变化的规律进行了探究. 下面是小云的探究过程,请补充完整:(1)通过取点、画图、测量,得到了x 与y 的几组值,如下表:补全上面表格,要求结果保留一位小数.则t ≈__________.(2)在下面的网格中建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象.(3)结合画出的函数图象,解决问题:当DB =AE 时,AE 的长度约为 cm .24.如图,在△ABC 中,∠C=90°,AC=4,BC=3.点E 从点A 出发,以每秒4个单位长度的速度沿折线AC-CB运动,到点B停止.当点E不与△ABC的顶点重合时,过点E作其所在直角边的垂线交AB于点F,将△AEF绕点F沿逆时针方向旋转得到△NMF,使点A的对应点N落在射线FE上.设点E的运动时间为t(秒).(1)用含t的代数式表示线段CE的长.(2)求点M落到边BC上时t的值.(3)当点E在边AC上运动时,设△NMF与△ABC重叠部分图形为四边形时,四边形的面积为S(平方单位),求S与t之间的函数关系式.(4)直接写出点M到AC、BC所在直线的距离相等时t的值.参考答案1.A【解析】【分析】A、设抛物线的表达式为y=ax2+3.5,依题意可知图象经过的坐标,由此可得a的值;B、根据函数图象判断;C、根据函数图象判断;D、设这次跳投时,球出手处离地面hm,因为(1)中求得y=﹣0.2x2+3.5,当x=﹣2.5时,即可求得结论.【详解】解:A、∵抛物线的顶点坐标为(0,3.5),∴可设抛物线的函数关系式为y=ax2+3.5.∵篮圈中心(1.5,3.05)在抛物线上,将它的坐标代入上式,得 3.05=a×1.52+3.5,∴a=﹣15,∴y=﹣15x2+3.5.故本选项正确;B、由图示知,篮圈中心的坐标是(1.5,3.05),故本选项错误;C、由图示知,此抛物线的顶点坐标是(0,3.5),故本选项错误;D、设这次跳投时,球出手处离地面hm,因为(1)中求得y=﹣0.2x2+3.5,∴当x=﹣2.5时,h=﹣0.2×(﹣2.5)2+3.5=2.25m.∴这次跳投时,球出手处离地面2.25m.故本选项错误.故选A.【点睛】本题考查了二次函数的应用,解题的关键是从实际问题中抽象出二次函数模型,体现了数学建模的数学思想,难度不大,能够结合题意利用二次函数不同的表达形式求得解析式是解答本题的关键.2.D【解析】∵抛物线y=ax 2+6与y 轴交于点A ,∴A(0,6),∵当y=6时,2x 2=6,∴x=∴B 点坐标(6),C 6),-(,故选D.【点睛】本题考查了二次函数图象上点的坐标特征,两函数交点坐标的求法,平行于x 轴的直线上两点间的距离等,解题的关键是先确定出点A 的坐标.3.C【解析】【分析】铅球落地时,高度y=0,把实际问题可理解为当y=0时,求x 的值.【详解】 令函数式21251233y x x =-++中,y =0, 即21251233x x -++=0, 解得1210,2x x ==- (舍去),即铅球推出的距离是10m.故选C.【点睛】考查二次函数的应用以及函数式中自变量与函数表达式的实际意义,需要结合题意. 4.C【解析】【分析】 抛物线212y x x =-与直线522y x =-交点函数值为同时满足两个解析式的点的函数值,即满足方程212x x -=522x -,解出方程的根即可求交点个数.解:抛物线212y x x =-与直线522y x =-相交, ∴212x x -=522x -,,即:2320x x -+=,解得:11x =,22x =. ∴抛物线212y x x =-与直线522y x =-的交点个数是2个. 故答案为C.【点睛】抛物线与直线的交点问题实质是一元二次方程的性质问题,联立直线与抛物线方程,可以求一元二次方程的根,也可以通过判别式判断:(1)当0,抛物线与直线有两个交点;(2)当=0,抛物线与直线有一个交点;(3)当0时抛物线与直线有无交点. 5.A【解析】把y =3代入y = 21416x -+中得: x =4,x = -4(舍去).∴每条行道宽应不大于4m .故选A .点睛;本题考查二次函数的实际应用.此题为数学建模题,借助二次函数解决实际问题.由题意可知,直接把y=3代入解析式求解即可.6.B【解析】【分析】设利润为y ,售价定为每件x 元,根据:利润=每件利润×销售量,列方程求解,然后利用配方法求二次函数取最大值时x 的值即可.【详解】设利润为y ,售价定为每件x 元,由题意得,y=(x-18)×[100-10(x-20)], 整理得:y=-10x 2+480x-5400=-10(x-24)2+360,∴开口向下,故当x=24时,y有最大值.故选B.【点睛】本题考查了二次函数的应用,难度适中,解答本题的关键是根据题意列出二次函数,要求同学们掌握求二次函数最大值的方法.7.C【解析】【分析】由函数y=x2+bx+c与x轴无交点,可得b2-4c<0;当x=1时,y=1+b+c=1;当x=3时,y=9+3b+c=3;当1<x<3时,二次函数值小于一次函数值,可得x2+bx+c<x,继而可求得答案.【详解】①由图象可知:抛物线与x轴无交点,即△<0,∴△=b2-4ac<0,故此选项错误;②由图象可知:抛物线过点(1,1)即当x=1时,y=a+b+c=1,a+b+c+1=2>0,故此选项正确;③由点(3,3)在抛物线上,得到9a+3b+c=3,∴9a+3b+c+3=6>0,正确;④由图象可知,当1<x<3时,抛物线在直线y=kx的下方,即当1<x<3时,x2+bx+c<kx,∴x2+(b-k)x+c<0,故此选项正确.故选C.【点睛】主要考查了二次函数与一元二次方程的关系,二次函数图像上点的坐标特征,利用函数图像解不等式.此题难度适中,注意掌握数形结合思想的应用.8.A【解析】【分析】每件利润为(x-8)元,销售量为(100-10×102x),根据利润=每件利润×销售量,得出销售利润y (元)与售单价x (元)之间的函数关系;再根据函数关系式,利用二次函数的性质求最大利润.【详解】解:(1)依题意,得y=(x-8)•(100-10×102x -)=-5x 2+190x-1200=-5(x-19)2+605, -5<0,∴抛物线开口向下,函数有最大值,即当x=19时,y 的最大值为605,∵售价为偶数,∴x 为18或20,当x=18时,y=600,当x=20时,y=600,∴x 为18或20时y 的值相同,∴商品提高了18-10=8(元)或20-10=10(元)故选A .【点睛】本题考查了二次函数的应用.此题为数学建模题,借助二次函数解决实际问题.9.300【解析】由题意可得:DC ∥AF ,则△EDC ∽△EAF , 故30,3040ED DC AD x AE AF -==则, 解得12034x AD -=, 故S=AD•AB=22120333•30(20)300444x x x x x -=-+=--+, 所以当x=20时,即y 的最大值为300m 2.故答案是:300m 2.10.y=1574x x π-- S=-3.5x 2+7.5x 1.07 4.02 【解析】因为半圆的半径AB =x m,矩形的宽BC =y m,材料的总长为15m,所以4y +7x +πx =15,所以1574x x y π--=, 所以窗户的面积2215712 3.57.542x x S x r x x ππ--=⨯+=-+, 所以当7.5152 3.514x =-=⨯≈1.07时,()()27.5 4.024 3.5S -=≈⨯-最大, 故答案为:1574x x y π--=,2 3.57.5S x x =-+, 1.07, 4.02. 11.y=12(20-2t )2 【解析】A M =20-2t ,则重叠部分面积y =12×AM 2= 12(20-2t )2 12.147【解析】分析:设中间隔开的墙EF 的长为xm,建成的储藏室总占地面积为sm²,根据题意可知AD 的长度等于BC 的长度,列出式子AD-2+3X=28,得出用x 的代数式表示AD 的长,再根据矩形的面积=AD·AB 得出S 关于x 的解析式,再利用二次函数的性质即可求解. 详解:设中间隔开的墙EF 的长为xm,建成的储藏室总占地面积为sm²,根据题意得AD+3x=42,解得AD=42-3x,则S=x(42-3x)= -3x²+42x=-3(x-7)²+147,故这两间长方形储藏室的总占地面积的最大值为:147m²,故答案为147. 点睛:本题考查了二次函数的应用,配方法,矩形的面积,有一定的难度,解答本题的关键是得到建成的储藏室的总占地面积的解析式.13.−2017.【解析】【分析】因为二次函数y=x 2+bx-2017的图象与x 轴交于点A (x 1,0)、B (x 2,0)两点,所以x 1+x 2=-b ,当x =x 1+x 2=−b 时,y =(−b )2+b ⋅(−b )−2017=−2017,由此即可解决问题.【详解】∵二次函数y =x 2+bx −2017的图象与x 轴交于点A (x 1,0)、B (x 2,0)两点,∴x 1+x 2=−b ,∴当x =x 1+x 2=−b 时,y =(−b )2+b ⋅(−b )−2017=−2017.故答案为:−2017.【点睛】考查二次函与x轴的交点问题,熟练掌握根与系数的关系是解题的关键.14.a≥-【解析】【分析】二次函数与x轴的交点个数,即令y=0时,方程的解个数即为与x轴的交点个数;当有交点时,则方程的判别式≥0,代入相应的数据求解即可.【详解】令y=0,则ax2+3x-1=0,因为函数y=ax2+3x-1的图像与x轴有交点,所以=9+4a≥0,解得a≥-.故答案为:a≥-.【点睛】本题考查了二次函数图像与x轴的交点问题,熟知二次函数图像与x轴的交点与的关系是解决本题的关键.15.1s.【解析】小球的高度h与小球运动时间t的函数关系式是:h=9.8t﹣4.9t2.把h=4.9代入得4.9=9.8t﹣4.9t2,解得t=1s,故答案为1s.16.①②③⑤【解析】分析:根据正方形的性质,依次判定△CNB≌△DMC,△OCM≌△OBN,△CON≌△DOM,根据全等三角形的性质以及勾股定理进行计算即可得出结论.详解:∵正方形ABCD中,CD=BC,∠BCD=90°,∴∠BCN+∠DCN=90°,又∵CN⊥DM,∴∠CDM+∠DCN=90°,∴∠BCN=∠CDM,又∵∠CBN=∠DCM=90°,∴△CNB≌△DMC(ASA),故①正确;根据△CNB≌△DMC,可得CM=BN,又∵∠OCM=∠OBN=45°,OC=OB,∴△OCM≌△OBN(SAS),∴OM=ON,故②正确;∵△OCM≌△OBN∴∠COM=∠BON∴∠COM+∠BOM=∠BON+∠BOM=90°∴ON⊥OM故③正确;∵△OCM≌△OBN,∴四边形BMON的面积=△BOC的面积=1,即四边形BMON的面积是定值1,∴当△MNB的面积最大时,△MNO的面积最小,设BN=x=CM,则BM=2-x,∴△MNB的面积=12x(2-x)=-12x2+x,∴当x=1时,△MNB的面积有最大值12,此时S△OMN的最小值是1-12=12,故④不正确;∵AB=BC,CM=BN,∴BM=AN,又∵Rt△BMN中,BM2+BN2=MN2,∴AN2+CM2=MN2,故⑤正确;点睛:本题属于四边形综合题,主要考查了正方形的性质、全等三角形的判定与性质,相似三角形的判定以及勾股定理的综合应用,解题时注意二次函数的最值的运用.17.(1)当每件衬衣定价为120元或130元时,服装店每星期的利润最大,最大利润为2 800元.(2)每件衬衣的定价在110~140元之间时(定价为10元的正整数倍),每星期的销售利润不低于2 700元.【解析】试题分析:(1)设每件衬衣定价为x元,服装店每星期的利润为W元,利用每一件的利润乘卖出的件数列出二次函数,利用二次函数的性质即可解决问题;(2)根据(2)中求出的二次函数,建立一元二次方程求出方程的解,确定出涨价最少时的x的值,根据二次函数的性质即可求得x的取值范围.试题解析:(1)设每件衬衣定价为x元,服装店每星期的利润为W元.由题意得,W=(x-50)=-x2+125x-5 000=-(x-125)2+2 812.5.∵60≤x≤150,且x是10的正整数倍,∴当x取120或130时,W有最大值2 800.因此,当每件衬衣定价为120元或130元时,服装店每星期的利润最大,最大利润为2 800元.(2)令W=2 700,即-x2+125x-5 000=2 700,解得x1=110,x2=140.∴每件衬衣的定价在110~140元之间时(定价为10元的正整数倍),每星期的销售利润不低于2 700元.18.(1)y=30060xx⎛⎫+⎪⎝⎭,(0<x≤20);(2)利用旧墙壁的总长度为16 m.【解析】【分析】(1)根据题意可得AB=x,AB·BC=60,所以BC=60x.求得y与x的函数解析式;(2)把y=4800代入函数解析式整理,可解得x的值.【详解】解:(1)根据题意,AB=x,AB·BC=60,所以BC=60x,y=20×360xx⎛⎫+⎪⎝⎭+80×360xx⎛⎫+⎪⎝⎭,即y=30060xx⎛⎫+⎪⎝⎭(0<x≤20)(2)把y=4800代入y=30060xx⎛⎫+⎪⎝⎭,得4800=30060xx⎛⎫+⎪⎝⎭,整理得x2-16x+60=0,解得x1=6,x2=10经检验x1=6,x2=10都是原方程的根.由8≤x≤12,只取x=10所以利用旧墙壁的总长度10+6010=16 m.【点睛】本题考查的是二次函数的实际应用, 同时也考查了矩形的面积计算公式, 关键是熟练掌握二次函数的性质和公式,并能用其解决一些基本的有关二次函数的题目.19.(1)y2与x的函数关系式为y2=-2x+200(1≤x<90);(2)W=22x180x2?000(1x50),120?x12?000(50x90).⎧-++≤<⎨-+≤<⎩(3)销售这种文化衫的第45天,销售利润最大,最大利润是6050元.【解析】【分析】(1)待定系数法分别求解可得;(2)根据:销售利润=(售价-成本)×销量,分1≤x<50、50≤x<90两种情况分别列函数关系式可得;(3)当1≤x<50时,将二次函数关系式配方后依据二次函数性质可得此时最值情况,当50≤x<90时,依据一次函数性质可得最值情况,比较后可得答案.【详解】(1)当1≤x<50时,设y1=kx+b,将(1,41),(50,90)代入,得k b41,50k b90,+=⎧⎨+=⎩解得k1,b40,=⎧⎨=⎩∴y1=x+40,当50≤x<90时,y1=90,故y1与x的函数解析式为y1=x40(1x50), 90(50x90);+≤<⎧⎨≤<⎩ 设y2与x的函数解析式为y2=mx+n(1≤x<90),将(50,100),(90,20)代入,得50m n100,90m n20,+=⎧⎨+=⎩解得:m2,n200,=-⎧⎨=⎩故y 2与x 的函数关系式为y 2=-2x+200(1≤x<90).(2)由(1)知,当1≤x<50时,W=(x+40-30)(-2x+200)=-2x 2+180x+2000;当50≤x<90时,W=(90-30)(-2x+200)=-120x+12000;综上,W=22x 180x 2?000(1x 50),120?x 12?000(50x 90).⎧-++≤<⎨-+≤<⎩ (3)当1≤x<50时,∵W=-2x 2+180x+2000=-2(x-45)2+6050,∴当x=45时,W 取得最大值,最大值为6050元;当50≤x<90时,W=-120x+12000,∵-120<0,W 随x 的增大而减小,∴当x=50时,W 取得最大值,最大值为6000元;综上,当x=45时,W 取得最大值6050元.答:销售这种文化衫的第45天,销售利润最大,最大利润是6050元.20.(1)A,0),B (,0);(2)当时,S 最大;(3)满足条件的点P 的坐标为G(﹣2,﹣14),H(2,﹣14)或G(2,﹣154),H(2,﹣154)或G(﹣2,14),H(2,14). 【解析】【分析】(1)令y=0,则2120,2x x -+=解得x =x =A ,B 两点坐标.(2)点P 作PQ ⊥x 轴于Q ,P 的横坐标为t ,设P (t ,p ),则21222p t =-++,PQ p BQ t OQ t ===,,, 根据S=S △AOC +S 梯形OCPQ +S △PQB 列出S 与t 的函数关系式,根据二次函数的性质t 为何值时,S 最大.(3)抛物线的对称轴为:2,x =分别画出示意图,根据平行四边形的性质即可求出G ,H 的坐标.【详解】解:(1)针对于抛物线212222y x x =-++, 令y=0,则21220,22x x -++= 解得2x =-或22x =∴()()20220A B -,,,; (2)针对于抛物线212222y x x =-++令x=0,∴y=2,∴C (0,2),如图1,点P 作PQ ⊥x 轴于Q ,∵P 的横坐标为t ,∴设P (t ,p ),∴21222p t =-++,22PQ p BQ t OQ t ===,,, ∴S=S △AOC +S 梯形OCPQ +S △PQB()()11122222222p t t p =++⨯+⨯⨯,11,22t pt pt =+-t =++21222t t t ⎫=-++++⎪⎪⎭2t =-+(0t <<,∴当t =时,S 最大=(3)满足条件的点的坐标为G ,﹣14),H 14)或G 154),H 154)或G ,14),H ,14). 【点睛】属于二次函数的综合题,会求二次函数与x 轴的交点坐标,二次函数的最值,以及平行四边形的性质,综合性比较强,难度较大.21.(1)y=﹣x 2+2x+3;(2)当t=32时,l 有最大值,l 最大=94;(3)t=32时,△PAD 的面积的最大值为278;(4)t=12+. 【解析】 试题分析:(1)利用待定系数法即可解决问题;(2)易知直线AD 解析式为y=-x+3,设M 点横坐标为m ,则P (t ,-t 2+2t+3),M (t ,-t+3),可得l=-t 2+2t+3-(-t+3)=-t 2+3t=-(t-32)2+94,利用二次函数的性质即可解决问题; (3)由S △PAD =12×PM×(x D -x A )=32PM ,推出PM 的值最大时,△PAD 的面积最大; (4)如图设AD 的中点为K ,设P (t ,-t 2+2t+3).由△PAD 是直角三角形,推出PK=12AD ,可得(t-32)2+(-t 2+2t+3-32)2=14×18,解方程即可解决问题; 试题解析:(1)把点 B (﹣1,0),C (2,3)代入y=ax 2+bx+3,则有304233a b a b -+=⎧⎨++=⎩,解得12ab=-⎧⎨=⎩,∴抛物线的解析式为y=﹣x2+2x+3.(2)在y=﹣x2+2x+3中,令y=0可得0=﹣x2+2x+3,解得x=﹣1或x=3,∴D(3,0),且A(0,3),∴直线AD解析式为y=﹣x+3,设M点横坐标为m,则P(t,﹣t2+2t+3),M(t,﹣t+3),∵0<t<3,∴点M在第一象限内,∴l=﹣t2+2t+3﹣(﹣t+3)=﹣t2+3t=﹣(t﹣32)2+94,∴当t=32时,l有最大值,l最大=94;(3)∵S△PAD=12×PM×(x D﹣x A)=32PM,∴PM的值最大时,△PAD的面积中点,最大值=32×94=278.∴t=32时,△PAD的面积的最大值为278.(4)如图设AD的中点为K,设P(t,﹣t2+2t+3).∵△PAD 是直角三角形,∴PK=12AD , ∴(t ﹣32)2+(﹣t 2+2t+3﹣32)2=14×18, 整理得t (t ﹣3)(t 2﹣t ﹣1)=0,解得t=0或3, ∵点P 在第一象限,∴22.(1)抛物线的解析式为y=x 2﹣3x ﹣4;(2)证明见解析;(3)点Q 的坐标为(﹣2,6)或(2,﹣6).【解析】【分析】(1)先求得点A 的坐标,然后依据抛物线过点A ,对称轴是x=32列出关于a 、c 的方程组求解即可;(2)设P (3a ,a ),则PC=3a ,PB=a ,然后再证明∠FPC=∠EPB ,最后通过等量代换进行证明即可;(3)设E (a ,0),然后用含a 的式子表示BE 的长,从而可得到CF 的长,于是可得到点F 的坐标,然后依据中点坐标公式可得到22x x x x Q P F E ++=,22y y y y Q P F E ++=,从而可求得点Q 的坐标(用含a 的式子表示),最后,将点Q 的坐标代入抛物线的解析式求得a 的值即可.【详解】(1)当y=0时,14033x -=,解得x=4,即A (4,0),抛物线过点A ,对称轴是x=32,得161203322a c a -+=⎧⎪-⎨-=⎪⎩, 解得14a c =⎧⎨=-⎩,抛物线的解析式为y=x 2﹣3x ﹣4;(2)∵平移直线l 经过原点O ,得到直线m ,∴直线m 的解析式为y=13x . ∵点P 是直线1上任意一点,∴设P (3a ,a ),则PC=3a ,PB=a .又∵PE=3PF ,∴PC PB PF PE=. ∴∠FPC=∠EPB .∵∠CPE+∠EPB=90°, ∴∠FPC+∠CPE=90°, ∴FP ⊥PE .(3)如图所示,点E 在点B 的左侧时,设E (a ,0),则BE=6﹣a .∵CF=3BE=18﹣3a ,∴OF=20﹣3a .∴F (0,20﹣3a ).∵PEQF 为矩形,∴22x x x x Q P F E ++=,22y y y y Q P F E ++=, ∴Q x +6=0+a ,Q y +2=20﹣3a+0,∴Q x =a ﹣6,Q y =18﹣3a .将点Q 的坐标代入抛物线的解析式得:18﹣3a=(a ﹣6)2﹣3(a ﹣6)﹣4,解得:a=4或a=8(舍去).∴Q (﹣2,6).如下图所示:当点E 在点B 的右侧时,设E (a ,0),则BE=a ﹣6.∵CF=3BE=3a ﹣18,∴OF=3a ﹣20.∴F (0,20﹣3a ).∵PEQF 为矩形, ∴22x x x x Q P F E ++=,22y y y y Q P F E ++=, ∴Q x +6=0+a ,Q y +2=20﹣3a+0,∴Q x =a ﹣6,Q y =18﹣3a .将点Q 的坐标代入抛物线的解析式得:18﹣3a=(a ﹣6)2﹣3(a ﹣6)﹣4,解得:a=8或a=4(舍去).∴Q (2,﹣6).综上所述,点Q 的坐标为(﹣2,6)或(2,﹣6).【点睛】本题主要考查的是二次函数的综合应用,解答本题主要应用了矩形的性质、待定系数法求二次函数的解析式、中点坐标公式,用含a 的式子表示点Q 的坐标是解题的关键. 23.(1)2.9;(2)答案见解析;(3)2.3.【解析】试题分析:(1)通过取点、画图、测量,可得到结果;(2)通过描点,连线即可作出函数的图象;(3)根据题意可得当DB=AE 时,AE 的长度约为2.3cm .试题解析:(1)2.9(2)如图所示:(3)2.3 24.(1)当点E 在边AC 上时,44CE t =-,当点E 在边BC 上时,44CE t =-;(2)t 的值为58;(3)当508t <≤时,292S t =,当8111t ≤<时,218246S t t =-+-;(4)1019t =或1013t =或1913t =. 【解析】分析:(1)分当点E 在边AC 上时和当点E 在边BC 上时两种情况进行讨论.(2)当点M 落在边BC 上时,画出示意图,4AE t =,3FE MF t ==.根据,FMB B ∠=∠ 3BF MF t ==.根据BF AF AB +=,列出方程求解即可.(3)分当508t <≤时和当8111t ≤<时两种情况进行讨论. 详解:(1)当点E 在边AC 上时,44CE t =-.当点E 在边BC 上时,44CE t =-.(2)如图①,当点M 落在边BC 上时,3BF MF t ==.∵BF AF AB +=,∴355t t +=.∴58t =. ∴点M 落到边BC 上时t 的值为58.(3)当508t <≤时,如图②.2113934222242S t t t t t =⋅⋅-⋅⋅⋅=. 当8111t ≤<时,如图③.()()2163344182462S t t t t t =-+-=-+-. 点睛:属于图形的运动题,涉及知识点较多,综合性比较强,难度较大,注意分类讨论思想在数学中的应用.。

2022年中考数学专题复习:实际问题与二次函数之投球问题

2022年中考数学专题复习:实际问题与二次函数之投球问题

2022年中考数学专题复习:实际问题与二次函数之投球问题1.我国铅球运动员巩立姣在2021年8月1日东京奥运会铅球比赛中以20.53米的成绩力压群雄夺得冠军.如图是在她的一次赛前训练中,铅球行进高度y (米)与水平距离x (米)之间存在的函数关系式是2119512123y x x =-++.求:(1)这次训练中,巩立姣推铅球的成绩是多少米;(2)这次训练中,铅球距离地面的最大高度为多少米.2.如图1,足球场上守门员李伟在O 处抛出一高球,球从离地面1m 处的点A 飞出,其飞行的最大高度是4m ,最高处距离飞出点的水平距离是6m ,且飞行的路线是抛物线的一部分.以点O 为坐标原点,竖直向上的方向为y 轴的正方向,球飞行的水平方向为x轴的正方向建立坐标系,并把球看成一个点(参考数据:取7,5≈)(1)求足球的飞行高度(m)y 与飞行水平距离(m)x 之间的函数关系式;(2)在没有队员干扰的情况下,球飞行的最远水平距离是多少?(3)若对方一名1.7m 的队员在距落点3m C 的点H 处,跃起0.3m 进行拦截,则这名队员能拦到球吗?(4)如图2,在(2)的情况下,若球落地后又一次弹起,据实验测算,足球在草坪上弹起后的抛物线与原来的抛物线形状相同,最大高度减少到原来最大高度的一半,那么足球弹起后,会弹出多远?3.如图,在某中学的一场篮球赛中,小明在距离篮圈中心7.3m(水平距离)远处跳起投篮,已知球出手时离地面209m,当篮球运行的水平距离为4m时达到离地面的最大高度4m.已知篮球在空中的运行路线为一条抛物线,篮圈中心距地面3m.(1)建立如图的平面直角坐标系,求篮球运行路线所在抛物线的函数表达式;(2)场边看球的小丽认为:小明投出的此球不能命中篮圈中心.①请通过计算说明小丽判断的正确性;②若球出手的角度和力度都不变,小明应该向前走或向后退多少米才能命中篮圈中心?(3)在球出手后,未达到最高点时,被防守队员拦截下来称为盖帽,但球到达最高点后,处于下落过程时,防守队员再出手拦截,属于犯规.在(1)的条件下,防守方球员小亮前来盖帽,已知小亮的最大摸球高度为3.19m,则他应在小明前面多少米范围处跳起拦截才能盖帽成功?4.如图1所示的某种发石车是古代一种远程攻击的武器,发射出去的石块的运动轨迹是抛物线的一部分,且距离发射点20米时达到最大高度10米.将发石车置于山坡底部O处,山坡上有一点A,点A与点O的水平距离为30米,与地面的竖直距离为3米,AB是高度为3米的防御墙.若以点O为原点,建立如图2所示的平面直角坐标系.(1)求石块运动轨迹所在抛物线的解析式;(2)试通过计算说明石块能否飞越防御墙AB ;(3)在竖直方向上,试求石块飞行时与坡面OA 的最大距离.5.科研人员为了研究弹射器的某项性能,利用无人机测量小钢球竖直向上运动的相关数据.在地面用弹射器(高度不计)竖直向上弹射一个小钢球(忽略空气阻力).其中,无人机离地面高度1y (m )与小钢球运动时间x (s )之间的函数关系式为1530y x =+;小钢球离地面高度2y (m )与它的运动时间x (s )之间的函数关系如图中抛物线所示.在1s 时,它们距离地面都是35m ,在6s 时,它们距离地面的高度也相同.(1)求2y 与x 之间的函数关系式;(2)当16x ≤≤时,求小钢球和无人机的高度差的最大值.6.高尔夫球运动员将一个小球沿与地面成一定角度的方向击出,在不考虑空气阻力的条件下,小球的飞行高度y (m )与它的飞行时间x (s )之间关系的部分数据如下表:(1)根据表格信息,下列三个函数关系式:①25522y x =+,②15y x=,③2520y x x =-+中,刻画y 与x 的关系最准确的是______.(填序号)(2)请利用(1)中选取的函数关系式分析,经过多少秒小球落回地面?7.高尔夫球场各球洞因地形变化而出现不等的距离,因此每次击球受地形的变化影响很大.如图,OA表示坡度为1:5山坡,山坡上点A距O点的水平距离OE为40米,在A处安装4米高的隔离网AB.在一次击球训练时,击出的球运行的路线呈抛物线,小球距离击球点30米时达到最大高度10米,现将击球点置于山坡底部O处,建立如图所示的平面直角坐标系(O、A、B及球运行的路线在同一平面内).(1)求本次击球,小球运行路线的函数关系式;(不要求写出自变量x的取值范围)(2)通过计算说明本次击球小球能否越过隔离网AB?(3)小球运行时与坡面OA之间的最大高度是多少?8.“福虎迎冬奥”明溪喜迎冬奥篮球赛火热开启,运动员你攻我守,分秒必争,篮球运动员小明站在点O处长抛球,球从离地面1米的A处扔出,篮球在距O点6米的B处达到最高点,最高点C距地面4米,又一次弹起,落到点E处,EF之间的距离为2米,据试验,篮球在场地上第二次弹起后划出的抛物线与第一次划出的抛物线形状相同,但最大高度减少到原来最大高度的一半,以小明站立处O为坐标原点,建立平面直角坐标≈2.5)系如图所示.(1)求抛物线ACD的函数表达式;(2)篮球第二次落地点E 距O 点的距离;(3)若小明需要在第一次抛球时投中篮筐,他应该向前走多远?9.如图,一名垒球运动员进行投球训练,站在点O 开始投球,球出手的高度是2米,球运动的轨迹是抛物线,当球达到最高点E 时,水平距离EG =20米,与地面的高度EF =6米,掷出的球恰好落在训练墙AB 上B 点的位置,AB =3米.(1)求抛物线的函数关系式;(2)求点O 到训练墙AB 的距离OA 的长度.10.2022年北京冬奥会即将召开,敢起了人们对冰雪运动的极大热情.如图是某跳台滑雪训练场的横截面示意图,取某一位置的水平线为x 轴,过跳台终点A 作水平线的垂线为y 轴建立平而直角坐标系,图中的抛物线2117:1126C y x x =-++近似表示滑雪场地上的一座小山坡,某运动员从点О正上方3米处的A 点滑出,滑出后沿一段抛物线221:8C y x bx c =-++运动.(1)当运动员运动到离A 处的水平距离为4米时离水平线的高度为7米.求抛物线2C 的函数表达式(不要求写出自变量工的取值范围);(2)在(1)的条件下.当运动员运动的水平距离为多少米时,运动员恰好落在小山坡的B处?11.如图,一高尔夫球从山坡下的点O处打出一球,球向山坡上的球洞点A处飞去,球的飞行路线为抛物线.如果不考虑空气阻力,当球达到最大高度12m时,球移动的水平距离为9m.已知山坡OA与水平方向OC的夹角为30°,O、A两点间的距离为.(1)建立适当的直角坐标系,求这个球的飞行路线所在抛物线的函数表达式.(2)这一杆能否把高尔夫球从点O处直接打入点A处球洞?12.如图,足球场上守门员在O处开出一高球,球从离地面1米的A处飞出(A在y轴上),运动员乙在距O点6米的B处发现球在自己头的正上方达到最高点M,距地面约5米高,球落地后又一次弹起,根据实验,足球在草坪上弹起后的抛物线与原来的抛物线形状相同,最大高度减少到原来最大高度的一半.(1)求足球开始飞出到第一次落地时,该抛物线的表达式;(2)足球第一次落地点C距守门员多少米?(3)运动员乙要抢到足球第二个落点D,他应从B处再向前跑多少米?13.NBA的一场骑士对勇士的篮球比赛中,骑士球员詹姆斯正在投篮,已知球出手时离地面高209m,与篮圈中心的水平距离7m.当球出手后水平距离为4m时到达最大高度4m,设篮球运行的轨迹为抛物线,假设篮圈距地面3m.(1)建立如图的平面直角坐标系,求出此轨迹所在抛物线的解析式.(2)问此球能否准确投中?(3)此时,若勇士球员杜兰特在詹姆斯前面2m处跳起拦截,已知杜兰特这次起跳的最大摸高为3.1m,那么他能否拦截成功?为什么?14.如图,将小球从地面击出,小球的飞行路线是一条抛物线.如果不考虑空气阻力,小球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有函数关系:2205h t t=-.(1)小球的飞行高度能否达到15m?如果能,需要多少飞行时间?(2)直接写出小球从飞出到落地需要的时间;(3)小球的飞行高度能否达到205m.?为什么?15.足球比赛中,某运动员将在地面上的足球对着球门踢出,图中的抛物线是足球的飞行高度y(m)关于飞行时间x(s)的函数图象(不考虑空气的阻力),已知足球飞出1s时,足球的飞行高度是2.44m,足球从飞出到落地共用3s.(1)求y关于x的函数关系式;(2)足球的飞行高度能否达到4.88米?请说明理由;(3)假设没有拦挡,足球将擦着球门左上角射入球门,球门的高为2.44m(如图所示,足球的大小忽略不计).如果为了能及时将足球扑出,那么足球被踢出时,离球门左边框12m 处的守门员至少要以多大的平均速度到球门的左边框?16.在刚刚结束的校运动会的实心球比赛中,小宇在决赛中,实心球所经过的路线是如图所示的抛物线的一部分.已知实心球出手处A 距离地面的高度是95米,当实心球运行的水平距离为4米时,达到最大高度5米的B 处.小宇此次投掷的成绩是多少米?17.一身高1.8m 的篮球运动员在距篮板4m 处跳起投篮,球在运动员头顶上方0.25m 处出手.按如图所示的直角坐标系,球在空中运行的路线可以用20.2 3.5y x =-+来描述,那么:(1)球能达到的最大高度是多少?(2)球出手时,运动员跳离地面的高度是多少?18.如图,在一次足球比赛中,守门员在地面O处将球踢出,一运动员在离守门员8米的A处发现球在自己头上的正上方4米处达到最高点M,球落地后又一次弹起.据实验测算,足球在空中运行的路线是一条抛物线,在草坪上弹起后的抛物线与原来的抛物线形状相同,最大高度减少到原来最大高度的一半.(1)求足球第一次落地之前的运动路线的函数表达式及第一次落地点B和守门员(点O)的距离;(2)运动员(点A)要抢到第二个落点C,他应再向前跑多少米?(假设点O、A、B、C在同一条直线上,结果保留根号)19.小明为了能在4月份的体育加试中取得好成绩,每天进行掷实心球训练:当投掷实心球时会产生竖直向上的速度和水平向前的速度,研究表明:当这两个速度相等时,投掷距离最远.实心球在投掷的过程中的高度y与实心球出手后的时间t满足:y=-5t2+bt+2,水平距离x=at,a是出手后实心球水平向前的速度,b为出手后竖直向上的速度.(1)当/==时,a b s①写出x与t的函数表达式为,y与t的函数表达式为;②结合所给的平面直角坐标系,求出y与x的函数表达式及此时投掷距离.(2)当a=b时,点O为投掷点,实心球落在圆心角为45°的∠AOB区域内时成绩有效,以实心球的落地点与投掷点O的距离为学生的投掷距离,已知落地点P在∠AOB区域内且到边界的距离PM,PN=6m,求出小明投掷的距离及实心球在此次投掷中的最高高度.20.如图,在水平地面点A 处有一网球发射器向空中发射网球,网球飞行路线是一条抛物线,在地面上落点为B ,有人在直线AB 上点C (靠点B 一侧)竖直向上摆放无盖的圆柱形桶,试图让网球落入桶内.已知4AB =米,3AC =米,网球飞行最大高度4OM =米,每个圆柱形桶的直径为0.5米,高为0.4米(网球的体积和圆柱形桶的厚度忽略不计).(1)建立适当的直角坐标系,求网球飞行路线的抛物线解析式;(2)若竖直摆放4个圆柱形桶时,则网球能落入桶内吗?说明理由;(3)若要网球能落入桶内,求竖直摆放的圆柱形桶的个数.参考答案:1.(1)20米 (2)14716米 2.(1)21(6)412y x =--+ (2)13m(3)这名队员不能拦到球(4)足球弹起后,会弹出10m3.(1)21(4)49y x =--+ (2)①小丽的判断是正确的;②小明应向前走0.3m 才能命中篮圈中心(3)1.3米4.(1)y =﹣140x 2+x (0≤x ≤40) (2)能飞越 (3)8.1米5.(1)22540y x x =-+ (2)1254米 6.(1)③;(2)经过4秒小球落回地面.7.(1)21(30)1090y x =--+ (2)小球不能飞越隔离网AB(3)小球运行时与坡面OA 之间的最大高度是4.9米8.(1)y =112-(x -6)2+4 (2)23m(3)16m9.(1)抛物线的关系式为y =-0.01(x -20)2+6;(2)点O 到训练墙AB 的距离OA 的长度为( 10.(1)213382y x x =-++ (2)运动员运动的水平距离为12米时,运动员恰好落在小山坡的B 处11y =−427x 2+83x (2)不能12.(1)y =-19(x -6)2+5(2)足球第一次落地点C 距守门员(6+米(3)运动员乙要抢到足球第二个落点D ,他应再向前跑(米13.(1)()21449y x =--+;(2)此球能准确投中;(3)不能拦截成功,理由见解析 14.(1)能,当飞行时间为1s 和3s 时,小球的飞行高度能达到15m ;(2)小球从飞出到落地需要的时间为4s ;(3)不能15.(1)y =﹣1.22x 2+3.66x ;(2)不能,;(3)平均速度至少为6m/s .16.9米.17.(1)3.5m ;(2)0.2m .18.(1)21(8)416y x =--+,16米;(2)(8+米19.(1)①x =,252y t =-++;②252(08)32y x x x =-++<<,8m ;(2)投掷距离为10m ,2.006m20.(1)24y x =-+;(2)不能,(3)5个或6个或7个。

“球类”运动中的二次函数

“球类”运动中的二次函数

“球类”运动中的二次函数数学和生活息息相关,数学就在你的身边.“新课程标准”要求学生初步学会运用数学的思维方式去观察、分析现实社会,解决日常生活中与其他学科中遇到的数学问题,增强数学的应用意识.体育运动项目中的篮球、铅球、羽毛球、足球等是学生特别熟悉而又喜爱的运动方式,球类运动的曲线与我们学过的抛物线很投缘,其中涉及到不少的二次函数的相关知识,二次函数是刻画现实世界变量之间关系的一种常见的数学模型,许多实际问题,可以通过分析题目中变量之间的关系,建立二次函数模型,从而利用二次函数的图像和性质加以解决.下面根据背景不同分情况探究如下.一、跳绳运动中的二次函数例1你知道吗?平时我们在跳大绳时,绳甩到最高处的形状可近似地看为抛物线.如图1所示,正在甩绳的甲、乙两名学生拿绳的手间距为4m,距地面均为1m,学生丙、丁分别站在距甲拿绳的手水平距离1m、2.5m处.绳子在甩到最高处时刚好通过他们的头顶.已知学生丙的身高是1.5m,则学生丁的身高为(建立的平面直角坐标系如图所示)()A.1.5m B.1.625m C.1.66m D.1.67m分析:本题考查阅读理解、数据处理及建立二次函数模型的能力.由于绳子甩到最高处时的形状可近似地看为抛物线,因此,根据条件中的数据得到抛物线上3个点的坐标后,再利用一般式即可求出函数表达式;而求丁的身高,转化为数学问题就是求抛物线上横坐标为1.5时对应点的纵坐标.解:设函数表达式为y=Ax2+Bx+C,易知图像经过点(—1,1),(0,1.5),(3,1),可得A—B+C=1,A= —1/6,C=1.5,解得B=1/3,9A+3B+C=1.C=1.5.所以函数表达式为y= —61x2+31x+23.当x=1.5时,y=1.625.答案:B.二、以投掷“铅球”为背景渗透的二次函数问题例2、(济南)小明代表班级参加校运动会的铅球项目,他想:“怎样才能将铅球推得更远呢?”于是找来小刚作了如下探索:小明手持铅球在控制每次推出时用力相同的条件下,分别沿与水平线成30°,45°,60°方向推了三次.铅球推出后沿抛物线形运动,如图,小明推铅球时的出手点距离地面2m,以铅球出手点所在竖直方向为y轴,以地平线为x轴建(2)请根据以上数据,对如何将铅球推得更远提出你的建议.分析:本题以“体育活动中铅球投掷的远近”为课题,为学生设置了一个探究的数学广场.试题设计起点较低,题目已将实际问题(建立了平面直角坐标系)抽象成了二次函数的数学模型,而且已有二次函数的解析式的雏形,只要用待定系数法且发现出手点(0,2)在抛物线上,问题便迎刃而解.至于求铅球落点到小明站立处的水平距离只需令所求抛物线的解析式中的y2=0,求得到抛物线与x轴交点的横坐标即可.(1)观察表格提供的信息有与水平成30°、60°的方向投掷铅球轨迹(抛物线)的解析式及铅球投掷的最高点和最远点的距离,让考生探究沿45°方向投掷时行走的轨迹(抛物线)的解析式及铅球投掷的最大水平距离.我们可设“推铅球的方向与水平线成45°”时形成的抛物线的解析式为y2=a(x-4)2+3.6又出手点(0,2)在抛物线上,故有16a+3.6=2,解之,得a=-0.1,欲求铅球落点到小明站立处的水平距离,即求当y2=0时与x轴交点的横坐标.因而有-0.1(x-4)2+3.6=0,解之得x1=-2,(舍去)x2=10,所以铅球落点到小明站立处的水平距离为10米.例3一男生在校运会的比赛中推铅球,铅球的行进高度y(m)与水平距离x(m)之间的关系用如图2所示的二次函数图象表示.(铅球从A点被推出,实线部分表示铅球所经过的路线)⑴由已知图象上的三点,求y与x之间的函数关系式.⑵求出铅球被推出的距离.⑶若铅球到达的最大高度的位置为点,落地点为,求四边形的面积.分析:本题考查从图象中获取信息能力.观察图象可得到抛物线上的三个点的坐标,从而求出函数表达式;在此基础上,利用二次函数与一元二次方程的关系可求出抛物线与x轴的交点坐标,得铅球被推出的距离;最后通过配方法将函数式化成顶点式,得到顶点坐标,用分割法求得四边形的面积.解:⑴设y =Ax 2+Bx +C ,已知图象经过(—2,0),(0,35),(2,38)三点,由此可求得A = —121,B =32,C =35,所以y = —121x 2+32x +35. ⑵令y =0,即—121x 2+32x +35=0,解得x 1=10,x 2= —2(不合题意,舍去).所以铅球被推出的距离是10米.⑶作BD ⊥OC ,D 为垂足.因为y = —121(x 2—8x —20)= —121(x —4)2+3,所以B (4,3);由⑵得C (10,0).所以S 四边形OABC = S 梯形OABD +S △BDC =21×(35+3)×4+21×6×3=1831.三、篮球比赛中的二次函数例4某学校初三年级的一场篮球比赛中,队员甲正在投篮,已知球出手时离地面高920米,与篮圈中心的水平距离为7米,当球出手后水平距离为4米时到达最大高度4米,设篮球运行轨迹为抛物线,篮圈距地面3米.⑴建立如图2的平面直角坐标系,问此球能否准确投中?⑵此时,若对方队员乙在甲面前1米处跳起盖帽拦截,已知乙的最大摸高为3.1米,那么他能否获得成功?(3)若该队员身高1.7米,球出手时距头顶0.3米,那么他需要跳起多高才能投中?(结果保留一位有效数字)分析:这是一个有趣的、、和篮圈的坐标,再由出手点、顶点的坐标可求出函数表达式;判断此球能否准确投中的问题就是判断代表篮圈的点是否在抛物线上;判断盖帽拦截能否获得成功,就是比较当x =1时函数y 的值与最大摸高3.1米的大小.解:⑴由条件可得到球出手点、最高点、和篮圈的坐标分别为A (0,920),B (4,4),C (7,3),其中B 是抛物线的顶点.设二次函数解析式为y =A (x —h )2+k ,将点A 、B 的坐标代入,可得y = —91(x —4)2+4.将点C 的坐标代入上式,得左边=右边,即点C 在抛物线上.所以此球一定能投中. ⑵将x =1代入函数式,得y =3.因为3.1>3,所以盖帽能获得成功.四.铅球与二次函数例5某同学推铅球时,铅球行进的路线是抛物线.已知铅球出手时距离地面的高度是1.4米,铅球行进1.5米后到达最高点,此时距离地面2米,问铅球从出手到落地行进的距离是多少米?(结果保留根号)解:依题意,铅球行进的路线是如图3所示的抛物线A -B -C 这一部分(A 为铅球出手时位置,B 为铅球行进中的最高点,C 为铅球落地时的位置).以地面为x 轴,过点A 垂直于x 轴的直线为y 轴建立直角坐标系,则抛物线经过点A (0,1.4),顶点为(1.5,2),其解析式为y =a (x -1.5)2+2. 把x =0,y =1.4代入得,1.4=2.2a +2.解得a =-415.故y =-415(x -1.5)2+2.由y =0,得x.所以C,0).OC). 2、(07年连云港市)丁丁推铅球的出手高度为1.6m ,铅球飞行的线路符合抛物线20.1() 2.5y x k =--+,在如图所示的直角坐标系中,求铅球的落点与丁丁的距离.解:由题意知,点(016),在抛物线20.1() 2.5y x k =--+上,所以21.60.1(0)2.5k =--+.解这个方程,得3k =或3k =-(舍去). 所以,该抛物线的解析式为20.1(3) 2.5y x =--+.当0y =时,有20.1(3) 2.50x --+=,解得18x =,22x =-(舍去). 所以,铅球的落点与丁丁的距离为8m .五、以“足球”为背景二次函数应用问题 例6、(08吉林省长春市、新疆建设兵团)如图,足球场上守门员在O 处开一高球,球从离地面1米的A 处飞出(A 在y 轴上),运动员乙在距O 点6米的B 出发现球在自己头的正上方达到最高点M ,距地面4米高,球落地后又一次弹起.据实验,足球在草坪上弹起后的抛物线与原来的抛物线形状相同,最大高度减少到图3 Bx(第2题图)原来最大高度的一半.(1)求足球开始飞出到第一次落地时,该抛物线的表达式; (2)足球第一次落地点C 距守门员多少米?(取34=7)(3)运动员乙要抢到第二个落点D ,他应再向前跑多少米?(取62=5)分析:(1)由题意知足球开始飞出到第一次落地抛物线顶点坐标为(6,4),故可设相应抛物线的解析式为y=a(x -6)2+4,又开出点A (0,1)在抛物线上,故有36a+4=1,解之,得a=-121,故抛物线的解析式为y=-121x 2+x+1, (2)欲求足球落地点到守门员C 的水平距离,即求当y=0时与x 轴交点的横坐标.因而有-121x 2+x+1=0,解之得x 1=6-43,(舍去)x 2=6+43,所以足球第一次落地点C 距守门员6+43≈13米.(3)因为足球在草坪上弹起后的抛物线与原来的抛物线形状相同,故可设抛物线的解析式为y=-121(x -k)2+2又点(6+43,0)在抛物线上,所以k=6+43+26,根据抛物线的对称性,运动员乙要抢到第二个落点D ,他应再向前跑CD=2×(6+43+26-6-43)=46≈10米.例7 为了备战世界杯,中国足球队在某次训练中,一队员距离门12米处挑射,正好射中了 2.4米高的球门横梁,若足球运动的路线是抛物线y =ax 2+bx +c ,如图所示,则下列结论⑴a <-160;⑵-160<a <0;⑶a -b +c >0;⑷0<b <-12a ,其中正确的是( )A .⑴⑶B .⑴⑷C .⑵⑶D .⑵⑷ 解:把点(0,2.4)、(12,0)代入解析式得c =2.4,b =-12a -0.2. 故b <-12a .又抛物线开口向下,故a <0.且对称轴x =-2ba>0,故b >0.即0<b <-12a ,因此⑷正确.又因144a +12b =-2.4且b >0,故144a <-2.4.因此a <-160,因此⑴正确.因此,应选B .六、以“羽毛球”为背景二次函数应用问题 例8、(山西省)甲、乙两人进行羽毛球比赛,甲发出一枚十分关键的球,出手点为P ,羽毛球飞行的水平距离s(米)与其地面高度h(米)之间的关系式为h=2121s -+s 32+23如图,已知球网AB 距原点5米,乙(用线段CD 表示)扣球的最大高度为49米,设乙的起跳点C 的横坐标为m ,若乙原地起跳,因球的高度高于乙球扣球的最大高度而导致接球失误,则m 的取值范围是_____.分析:此题是以“羽毛球”为载体创设的二次函数的应用问题,本题已告诉了羽毛球飞行的水平距离s(米)与其地面高度h(米)之间的关系式为h=2121s -+s 32+23,我们不妨先求出当乙扣球的最大高度为49米刚刚触及羽毛球时,乙对应的横坐标值. 列方程得2121m -+m 32+23=49,解得m 1=74-,m 2=74+,根据二次函数h=2121m -+m 32+23在对称轴m=4的右侧h 随m 得增大而减小,又“球的高度高于乙球扣球的最大高度” 所以m<74+,另一方面乙站在球网的右则因而m> 5故m 的取值范围为5<m<74+点评:数学和生活息息相关,数学就在你的身边,数学与日常生活、自然、社会、和科学技术有着密切的联系,数学在现实生活中有着广泛的应用,就连大家平时喜爱的体育运动都蕴含着许多数学道理.练习1.某跳水运动员进行10米跳台跳水训练时,身体(看成一点)在空中的运动路线是经过原点O 的一条抛物线。

人教版九年级数学上册实际问题与二次函数 投球问题训练

人教版九年级数学上册实际问题与二次函数  投球问题训练

人教版九年级数学上册 实际问题与二次函数-投球问题训练一、单选题1.小敏在某次投篮中,篮球的运动路线是抛物线215y x =-+3.5的一部分(如图),若命中篮圈中心,则他与篮底的水平距离l 是( )A .3.5mB .3.8mC .4mD .4.5m2.地面上一个小球被推开后笔直滑行,滑行的距离s 与时间t 的函数关系如图中的部分抛物线所示(其中P 是该抛物线的顶点),则下列说法正确的是( )A .小球滑行12秒停止B .小球滑行6秒停止C .小球滑行6秒回到起点D .小球滑行12秒回到起点3.地面竖直向上抛出一小球,小球的高度(h 单位:)m 与小球运动时间(t 单位:)s 之间的函数关系如图所示.下列结论:①小球抛出3秒时速度为0;②小球在空中经过的路程是40m ;③小球的高度30h m =时, 1.5t s =;④小球抛出3秒后,速度越来越快.其中正确的是( )试卷第2页,共6页A .①②B .①④C .①②④D .②③4.如图,铅球的出手点C 距地面1米,出手后的运动路线是抛物线,出手后4秒钟达到最大高度3米,则铅球运行路线的解析式为( )A .2316h t =- B .2316h t t =-+ C .()21438h t =--+ D .()21433h t =--+ 5.向空中发射一枚炮弹,第x 秒时的高度为y 米,且高度与时间的关系为y =ax 2+bx +c (a ≠0).若此炮弹在第6秒与第18秒时的高度相等,则在下列时间中炮弹所在高度最高的是( ) A .第8秒B .第10秒C .第12秒D .第15秒6.对于向上抛出的物体,在没有空气阻力的条件下,满足这样的关系式:h =vt ﹣12gt 2,其中h 是上升高度,v 是初始速度,g 为重力加速度(g ≈10m /s 2),t 为抛出后的时间.若v =20m /s ,则下列说法正确的是( ) A .当h =20m 时,对应两个不同的时刻点 B .当h =25m 时,对应一个时刻点 C .当h =15m 时,对应两个不同的时刻点 D .h 取任意值,均对应两个不同的时刻点二、填空题7.如图,一小孩将一只皮球从A 处抛出去,它所经过的路线是某个二次函数图象的一部分,如果他的出手处A 距地面的距离OA 为1 m ,当球飞越的水平距离为8米时,球到达最高点B 处,离地面高度为9米,则这个二次函数的表达式为_____.8.足球被从地面上踢起,它距地面的高度h(m)可用公式h=-4.9t2+19.6t来表示,其中t(s)表示足球被踢出后经过的时间,则球在______s后落地.9.如图是足球守门员在O处开出一记手抛高球后足球在空中运动到落地的过程,它是一条经过A、M、C三点的抛物线.其中A点离地面1.4米,M点是足球运动过程中的最高点,离地面3.2米,离守门员的水平距离为6米,点C是球落地时的第一点.那么足球第一次落地点C距守门员的水平距离为___米.10.为了在校运会中取得更好的成绩,小丁积极训练,在某次试投中铅球所经过的路线是如图所示的抛物线的一部分.已知铅球出手处A距离地面的高度是1.68米,当铅球运行的水平距离为2米时,达到最大高度2米的B处,则小丁此次投掷的成绩是_____米.11.从地面上竖直向上抛出一小球,小球的高度h(米)与小球的运动时间t(秒)之间的关系式是2305h t t=-(06)t≤≤,则小球从抛出___________秒后离地面25米.12.小明在某次投篮中,球的运动路线是抛物线y=-15x2+3.5的一部分(如图所示),若命中篮圈中心,则他与篮底的距离l是_____m.三、解答题试卷第4页,共6页13.某高尔夫球手在如图的场地上向正东方向击出一个高尔夫球,球的高度h (m )和经过的水平距离d (m )可用公式h =d ﹣0.01d 2来估计. (1)球上升的最大高度是多少?(2)若在击球点A 正东方向101米处有一球洞B ,判断此高尔夫球手这一杆能否把球从A 点直接打入球洞B 点,并说明理由.14.一身高1.8m 的篮球运动员在距篮板4m 处跳起投篮,球在运动员头顶上方0.25m 处出手.按如图所示的直角坐标系,球在空中运行的路线可以用20.2 3.5y x =-+来描述,那么:(1)球能达到的最大高度是多少?(2)球出手时,运动员跳离地面的高度是多少?15.如图,在水平地面点A 处有一网球发射器向空中发射网球,网球飞行路线是一条抛物线,在地面上落点为B ,有人在直线AB 上点C (靠点B 一侧)竖直向上摆放无盖的圆柱形桶,试图让网球落入桶内.已知4AB =米,3AC =米,网球飞行最大高度4OM =米,每个圆柱形桶的直径为0.5米,高为0.4米(网球的体积和圆柱形桶的厚度忽略不计).(1)建立适当的直角坐标系,求网球飞行路线的抛物线解析式; (2)若竖直摆放4个圆柱形桶时,则网球能落入桶内吗?说明理由; (3)若要网球能落入桶内,求竖直摆放的圆柱形桶的个数.16.在一次篮球比赛中,如图,队员甲正在投篮.已知球出手时离地面20m 9,与篮圈中心的水平距离为7m ,球出手后水平距离为4m 时达到最大高度4m ,设篮球运行轨迹为抛物线,篮圈距地面3m .(1)建立如图所示的平面直角坐标系,求此抛物线的解析式; (2)此时球能否准确投中?(3)此时,对方队员乙在甲面前1m 处跳起盖帽拦截,已知乙的最大摸高为3.1m ,那么他能否获得成功?17.一名男生推铅球,铅球行进高度y (单位:m )与水平距离x (单位:m )之间的函数关系是21(4)312y x =--+.如图,A ,B 是该函数图象上的两点. (1)画出该函数的大致图象;(2)请判断铅球推出的距离能否达到11m ,并说明理由.18.如图,有一款电脑屏幕弹球游戏,球每次运行在同一平面内,从O处发射小球,球将投入“篮筐”—正方形区域DABC边CD,AB为入口和出口,三个顶点为A(2,2)、B(3,2)、D(2,3),小球按照抛物线y=-x2+bx+c飞行,小球落地点P坐标(n,0).(1)点C坐标为;(2)求出小球飞行中最高点N的坐标(用含有n的代数式表示);(3)随着n的变化,抛物线的顶点在二次函数的图象上运动;(4)若小球发射之后能够直接入篮,球没有接触“篮筐”AD、BC,请求出n的取值范围.试卷第6页,共6页答案第1页,共1页参考答案1.C 2.B 3.B 4.C 5.C 6.C7.21(8)98y x =--+8.4 9.14 10.7 11.1或5 12.413.(1)25(m );(2)不能 14.(1)3.5m ;(2)0.2m . 15.(1)24y x =-+;(2)不能;(3)5个或6个或7个 16.(1)21(4)49y x =--+;(2)能投中;(3)能拦截成功 17.不能18.(1)点C 坐标为(3,3);(2)2(,)24n nN ;(3)2y x ;(4)71123n <<。

生活中的二次函数(篮球问题)

生活中的二次函数(篮球问题)
答:此抛物线的关系式为
解:如图,建立平面 直角坐标系
因为抛物线的顶点为(4,4) , 因此可设此抛物线的关系式为
y ax 4 4
2
1 2 y x 4 4 9
y
20 9
(4,4)
3米 2.解法二:∵抛物线的关 系式为: 1 2
y
9
x 4
4
8 2.解法一:∵抛物线的关系 式为:
-2
x
• 4.在出手角度、力度及高度都不变的情况下,则他朝 着篮球架再向前平移多少米后跳起投篮也能将篮球投 入篮圈? 6 y
(4,4) (5,4)
4
A (7,3)
20 0, 9
2

B(8,3)
0
1
2
3
4
5 5
6
7
8
9
10
-2
X 答:向前平移1米后跳起投篮也能 将篮球投入篮圈
用抛物线的知识解决运动场上或者生活中 的一些实际问题的一般步骤:
1.(建)恰当建立直角坐标系 2.(找)将已知条件转化为点的坐标 3.(设)合理设出所求函数关系式 4.(求)代入点的坐标,求出关系式 5.(解)利用关系式求解实际问题
课本p31页
如图,一位篮球运动员在离篮 圈水平距离4米处跳起投篮, 球沿一条抛物线运行,当球运 行的水平距离为2.5米时,达 A 到最大高度3.5米,然后准确 落入篮框内。已知篮圈中心离 地面高度为3.05米。 (1)建立图中所示的直角坐标系, 求抛物线所对应的函数关系式。
0
4
x
所以:当y 3时 1 2 3 x 4 4 9 解得:x 7或1
∵篮圈在8米处∴不能投中
1 2 y x 4 4 9

专题20 二次函数与实际问题:投球问题(解析版)2021年中考数学二轮复习之难点突破热点解题方法

专题20 二次函数与实际问题:投球问题(解析版)2021年中考数学二轮复习之难点突破热点解题方法

专题20 二次函数与实际问题:投球问题一、单选题1.如图,若被击打的小球飞行高度h (单位:)m 与飞行时间t (单位:)s 具有函数关系为2205h t t =-,则小球从飞出到落地的所用时间为( )A .3sB .4sC .5sD .6s【答案】B【分析】 根据二次函数的图象与性质解题.【详解】解:依题意,令0h =得20205t t =-,得(205)0t t -=,解得0t =(舍去)或4t =,即小球从飞出到落地所用的时间为4s ,故选:B .【点睛】本题考查二次函数的应用,熟练掌握二次函数的图象与性质是解题关键.2.烟花厂某种礼炮的升空高度h(m)与飞行时间t(s)的关系式是22201h t t =-++,若这种礼炮在点火升空到最高点处引爆,则从点火升空到引爆需要的时间为( )A .4sB .5sC .6sD .10s【答案】B【分析】把22201h t t =-++化成顶点式,进而问题可求解.【详解】解:由题意得:()2222012551h t t t =-++=--+,∴当t=5s 时,礼炮达到最高点;故选B .【点睛】本题主要考查二次函数的应用,熟练掌握二次函数的性质是解题的关键.3.在羽毛球比赛中,某次羽毛球的运动路线可以看作是抛物线y =-x 2+bx +c 的一部分(如图),其中出球点B 离地面O 点的距离是1m ,球落地点A 到O 点的距离是3m ,那么这条抛物线的解析式是( )A .y =-x 2+83x +1B .y =-x 2+83x -1 C .y =-x 2-83x +1 D .y =-x 2-83x -1 【答案】A【分析】根据已知得出B 点的坐标为:(0,1),A 点坐标为(3,0),代入解析式即可求出b ,c 的值,即可得出答案.【详解】解:∵出球点B 离地面O 点的距离是1m ,球落地点A 到O 点的距离是3m ,∴B 点的坐标为:(0,1),A 点坐标为(3,0),将两点代入解析式得:1930c b c =⎧⎨-++=⎩,解得:841b c ⎧=⎪⎨⎪=⎩, ∴这条抛物线的解析式是:y =-x 2+83x +1, 故选:A .【点睛】此题主要考查了二次函数的应用,根据已知得出B ,A 两点的坐标是解决问题的关键.4.如图,排球运动员站在点O 处练习发球,将球从O 点正上方2m 的A 处发出,把球看成点,其运行的高度y (m )与运行的水平距离x (m )满足关系式y =a (x ﹣k )2+h .已知球与D 点的水平距离为6m 时,达到最高2.6m ,球网与D 点的水平距离为9m .高度为2.43m ,球场的边界距O 点的水平距离为18m ,则下列判断正确的是( )A .球不会过网B .球会过球网但不会出界C .球会过球网并会出界D .无法确定【答案】C【解析】分析:(1)将点A (0,2)代入2(6) 2.6y a x =-+求出a 的值;分别求出x =9和x =18时的函数值,再分别与2.43(0比较大小可得.详解:根据题意,将点A (0,2)代入2(6) 2.6y a x =-+,得:36a +2.6=2( 解得:160a ,=- ∴y 与x 的关系式为21(6) 2.660y x =--+; 当x =9时,()2196 2.6 2.45 2.4360y =--+=>, ∴球能过球网,当x =18时,()21186 2.60.2060y =--+=>, ∴球会出界.故选C.点睛:考查二次函数的应用题,求范围的问题,可以利用临界点法求出自变量的值,根据题意确定范围. 5.竖直向上的小球离地面的高度h (米)与时间t (秒)的关系函数关系式为h=-2t 2+mt+258,若小球经过74秒落地,则小球在上抛过程中,第( )秒离地面最高. A .37 B .47 C .34 D .43【答案】A【分析】首先根据题意得出m 的值,进而求出t =2b a-的值即可求得答案. 【详解】∵竖直上抛的小球离地面的高度h (米)与时间t (秒)的函数关系式为h =﹣2t 2+mt +258,小球经过74秒落地, ∴t =74时,h =0, 则0=﹣2×(74)2+74m +258, 解得:m =127, 当t =2b a -=()12722-⨯-=37时,h 最大, 故答案为:37. 【点睛】本题考查了二次函数的应用,正确得出m 的值是解题关键.6.教练对小明推铅球的录像进行技术分析,发现某次铅球行进高度y(m)与水平距离x(m)之间的关系为y=-112(x -4)2+3,由此可知小明这次的推铅球成绩是( ) A .3mB .4mC .8mD .10m【答案】D【分析】求出铅球落地时的水平距离,将y=0代入函数关系式,求出x 的值即可得到成绩.【详解】由题意得,当y=0时, 21(4)3=012--+x , 解得:110x =,22x =-(舍去)故选D.【点睛】本题考查二次函数的应用,理解当铅球高度为0时,x 的值即为铅球飞行的距离,是解决本题的关键.二、填空题7.竖直上抛物体时,物休离地而的高度()h m 与运运动时间()t s 之间的关系可以近似地用公式2005h t v t h =-++表示,其中()0h m 是物体抛出时高地面的高度,()0m /s v 是物体抛出时的速度.某人将一个小球从距地面1.5m 的高处以20m/s 的速度竖直向上抛出,小球达到的离地面的最大高度为___m .【答案】21.5【分析】根据题意可得到h 关于t 的函数关系式,再将其化为顶点式,按照二次函数的性质可得答案.【详解】解:由题意得:h =﹣5t 2+20t +1.5=﹣5(t ﹣2)2+21.5,∵a =﹣5<0,∴当t =2时,h 取得最大值,此时h =21.5.故答案为:21.5.【点睛】本题考查了二次函数在实际问题中的应用,明确题意并熟练掌握二次函数的性质是解题的关键. 8.教练对小明推铅球的录像进行技术分析,发现铅球行进高度()y m 与水平距离()x m 之间的关系为21(4)312y x =--+,由此可知铅球推出的距离是______m . 【答案】10【分析】根据铅球落地时,高度为y=0,把实际问题可理解为当y=0时,求x 的值即可.【详解】 解:令21(4)312y x =--+中,y=0, 21(4)3012x --+=, 解得12102x x ==-,(舍去),即铅球推出的距离是10m .故答案为:10.【点睛】本题考查了二次函数的应用中函数式自变量与函数表达的实际意义,需要结合题意,取函数或自变量的特殊值列方程求解是解题的关键.9.一个小球被抛出后,如果距离地面高度h (米)和运行时间t (秒)的函数解析式为25101h t t =-++,那么小球达到最高点时距离地面高度是______米.【答案】6【分析】直接利用配方法将一般式转化为顶点式,进而求得二次函数最大值即可得解.【详解】解:∵()225101516h t t t =-++=--+∴小球达到最高点时距离地面高度是6米.故答案是:6【点睛】本题考查了二次函数的实际应用,正确利用配方法将一般式转化为顶点式是解题的关键.10.向空中发射一枚炮弹,第x 秒时的高度为y 米,且高度与时间的关系为y =ax 2+bx+c (a≠0),若此炮弹在第6秒与第16秒时的高度相等,则炮弹所在高度最高的是第_____秒.【答案】11【分析】先根据题意求出抛物线的对称轴,即可得出顶点的横坐标,从而得出炮弹所在高度最高时x 的值.【详解】∵此炮弹在第6秒与第16秒时的高度相等, ∴抛物线的对称轴是:616112x +==, ∴炮弹所在高度最高时,时间是第11秒.故答案为:11.【点睛】本题主要考查了二次函数的应用,在解题时要能根据题意求出抛物线的对称轴是解题的关键. 11.一中学生在练习投掷铅球时,通过对自己某次铅球训练的录像进行分析,发现铅球的飞行高度h (米)与水平距离x (米)之间满足关系式221618252525=-++h x x ,则该中学生铅球投掷的成绩是______米. 【答案】9【分析】根据题意当h=0时,代入求解即可.【详解】解:由题意得:当h=0时,则有2216180252525x x =-++, 解得:121,9x x =-=,∴该中学生铅球投掷的成绩是9米;故答案为9.【点睛】本题主要考查二次函数的应用,熟练掌握二次函数的性质是解题的关键.12.如图,排球运动员站在点O 处练习发球,将球从O 点正上方2m 的A 处发出,把球看成点,其运行的高度()m y 与运行的水平距离()m x 满足关系式()26y a x h =-+.已知球网与O 点的水平距离为9m ,高度为2.24m ,球场的边界距O 点的水平距离为18m .若球一定能越过球网,又不出边界(可落在边界),则h 的取值范围是_________.【答案】83h ≥ 【分析】根据当球正好过点(9,2.24)时,抛物线y=a (x -6)2+h 还过点(0,2),以及当球刚能过网,此时函数解析式过(18,0),抛物线y=a (x -6)2+h 还过点(0,2)时分别得出h 的取值范围,或根据不等式即可得出答案.【详解】解:当球过球网时y=a (x -6)2+h 过(0,2)和(9,2.24),3629 2.24a h a h +=⎧⎨+=⎩,解得: 66752.32a h ⎧=-⎪⎨⎪=⎩, ()266 2.32675y x ∴=--+, 当y=0时,()266 2.320675x --+=,解得,16x =(舍去),2618x =,∴球过网时,球出界;∴ 2.32h >当球到界时y=a (x -6)2+h 过(0,2)和(18,0),3621440a h a h +=⎧⎨+=⎩,解得: 15483a h ⎧=-⎪⎪⎨⎪=⎪⎩, ()2186543y x ∴=--+, 83h ∴≥ , ∴球一定能越过球网,又不出边界(可落在边界),则h 的取值范围是83h ≥. 故答案为:83h ≥ 【点睛】此题主要考查了二次函数的应用题,求范围的问题,可以利用临界点法求出自变量的值,再根据题意确定范围.13.一名男生推铅球,铅球行进的高度y (单位:m )与水平距离x (单位:m )之间的关系212123y x x =-+53+,则这个男生这次推铅球的成绩是_______. 【答案】10【分析】铅球落地时,高度0y =,把实际问题可理解为当0y =时,求x 的值.【详解】当0y =时,212123x x -+53+0=, 解得:12102x x ==-,(不合题意,舍去),所以推铅球的距离是10米.故答案为:10.【点睛】本题主要考查了二次函数的应用,此题把函数问题转化为方程问题来解,渗透了函数与方程相结合的解题思想方法.14.小明推铅球,铅球行进高度y ()m 与水平距离x ()m 之间的关系为21(4)312y x =--+,则小明推球的成绩是______m .【答案】10【分析】根据铅球落地时,高度y=0,把实际问题可理解为当y=0时,求x 的值即可.【详解】 解:令函数式21(4)312y x =--+中y=0,得210(4)312x =--+, 解得x 1=10,x 2=-2(舍去).即铅球推出的距离是10m .故答案为:10.【点睛】本题考查了二次函数的应用中函数式中自变量与函数表达的实际意义,需要结合题意,取函数或自变量的特殊值列方程求解是解题关键.15.小明在某次投篮中,球的运动路线是抛物线y =-15x 2+3.5的一部分(如图所示),若命中篮圈中心,则他与篮底的距离l 是_____m.【答案】4【分析】根据题意可以求得当y=3.05时,抛物线y((15x 2(3.5中对应的x 的值,从而可以解答本题. 【详解】将y=3.05代入y((15x 2(3.5,得 3.05=(15x 2+3.5( 解得,x=−1.5(舍去)或x=1.5((若命中篮圈中心,则他与篮底的距离l 是:2.5+1.5=4(m)(故答案为(4.【点睛】本题考查二次函数的应用.16.竖直上抛的小球离地高度是它运动时间的二次函数,小军相隔1秒依次竖直向上抛出两个小球,假设两个小球离手时离地高度相同,在各自抛出后1.1秒时到达相同的最大离地高度,第一个小球抛出后t 秒时在空中与第二个小球的离地高度相同,则t= .【答案】1.6.【解析】设各自抛出后1.1秒时到达相同的最大离地高度为h ,这个最大高度为h ,则小球的高度y =a (t −1.1)2+h ,由题意a (t −1.1)2+h =a (t −1−1.1)2+h ,解得t =1.6.故第一个小球抛出后1.6秒时在空中与第二个小球的离地高度相同.故答案为1.6.三、解答题17.甲、乙两人进行羽毛球比赛,羽毛球飞行的路线为抛物线的一部分,如图,甲在O 点正上方1m 的P 处发出一球,羽毛球飞行的高度y (m )与水平距离x (m )之间满足函数表达式 ()24y a x h =++ ,已知点O 与球网的水平距离为5m ,球网的高度为1.55m .(1)当a=- 124时,①求h 的值;②通过计算判断此球能否过网.(2)若甲发球过网后,羽毛球飞行到与点O 的水平距离为7m ,离地面的高度为125m 的Q 处时,乙扣球成功,求a 的值. 【答案】(1)①h= 53;②此球能过网,理由见解析;(2)a=- 15. 【分析】(1)①将点P (0,1)代入y=-124(x -4)2+h 即可求得h ;②求出x=5时,y 的值,与1.55比较即可得出判断; (2)将(0,1)、(7,125)代入y=a(x -4)2+h 代入即可求得a 、h . 【详解】(1)解:(当a=-124 时,y=-124(x -4)2+h , 将点P(0,1)代入,得:-124×16+h=1, 解得:h=53; (把x=5代入y=-124(x -4)2+53 ,得:y=-124×(5-4)2+53 =1.625, (1.625>1.55,(此球能过网; (2)把(0,1)、(7,125)代入y=a(x -4)2+h ,得: 1611295a h a h +=⎧⎪⎨+=⎪⎩,解得:15215a h ⎧=-⎪⎪⎨⎪=⎪⎩, (a=-15. 【点睛】本题主要考查二次函数的应用,熟练掌握待定系数法求函数解析式是解题的关键.18.张强在一次投掷铅球时,铅球划过的路径刚好是一段抛物线,如图所示.已知张强刚出手时铅球离地面的高度为53m ,铅球运行的水平距离为4m 时达到最高,高度为3m . (1)求抛物线的函数关系式;(2)张强这次的投掷成绩大约是多少?【答案】(1)21251233y x x =-++;(2)10m . 【分析】(1)已知给出顶点坐标与y 轴的交点坐标,利用抛物线的顶点式即可求出,然后化为一般式即可; (2)张强这次的投掷成绩就是y=0,解一元二次方程求出x ,再进行取舍即可.【详解】(1)∵铅球运行的水平距离为4m 时达到最高,高度为3m .∴抛物线的顶点坐标为(4,3), ∵出手时铅球离地面的高度为53m , ∴A 503⎛⎫ ⎪⎝⎭,, 设抛物线的顶点式为()243y a x =-+,∵抛物线过点A , ∴()250433a =-+, 解得112a =-, ()214312y x =--+, 21251233y x x =-++; (2)当 y=0时,()2143=012x --+, 46x -=±,=10x 或=2x -(不合题意舍去), 张强这次的投掷成绩大约是10m .【点睛】本题考查二次函数解析式的求法,以及二次函数与一元二次方程的关系问题,掌握用待定系数法求二次函数解析式与解一元二次方程是解题关键.19.愤怒的小鸟——为了打击偷走鸟蛋的捣蛋猪,鸟儿以自己的身体为武器,在空中画出完美的抛物线,像炮弹一样去攻击捣蛋猪的堡垒.而捣蛋猪为了躲避打击,将自己藏在各种障碍物后面,自此,双方展开了一番斗智斗勇的较量.(1)如图1,愤怒的小鸟调整好位置后,恰好可以越过2m 高的箱子(箱子宽度不计),射中6m 外的捣蛋猪,最高点距离地面3m ,问出发时小鸟与箱子的距离?(2)如图2,箱子的长宽不断发生变化,愤怒的小鸟按照原弹射轨迹(射中6m 外的捣蛋猪,最高点距离地面3m),当轨迹恰好经过B 、C 两点时,则AB+BC+CD 的最大值是多少?【答案】(1)出发时小鸟与箱子的距离为(3+) m ;(2)AB BC CD ++的最大值为152m . 【分析】(1)根据题意知顶点坐标为(3,3),且经过原点,利用待定系数法可求得抛物线的解析式,再求得当2y =时,x 的值,结合题意可得答案;(2)设B 点坐标为(x ,2123x x -+),则C 点坐标为(6x -,2123x x -+),根据题意得到AB+BC+CD 的二次函数,根据二次函数的性质即可求解.【详解】(1)根据题意知顶点坐标为(3,3),且经过原点,设抛物线的解析式为:()233y a x =-+,把(0,0)代入得:()20330a -+=, 解得:13a =-,∴抛物线的解析式为()221133233y x x x =--+=-+, 令2y =,则()213323x --+=,即()233x -=,解得:1233x x ==不合题意,舍去),答:出发时小鸟与箱子的距离为(3+) m ;(2)设B 点坐标为(x ,2123x x -+),则C 点坐标为(6x -,2123x x -+), ∵B 点、C 点都在第一象限, ∴21AB CD 23x x ==-+,BC 662x x x =--=-, ∴21AB BC CD 22623x x x ⎛⎫++=-++- ⎪⎝⎭ 22263x x =-++ 22315322x ⎛⎫=--+ ⎪⎝⎭, ∴当32x =时,AB BC CD ++的最大值为152m . 【点睛】本题考查了二次函数的实际应用,解此类题的关键是通过题意,确定出二次函数的解析式,实际问题中自变量x 的取值要使实际问题有意义.20.在篮球比赛中,东东投出的球在点A 处反弹,反弹后球运动的路线为抛物线的一部分(如图所示建立直角坐标系),抛物线顶点为点B .(1)求该抛物线的函数表达式;(2)当球运动到点C 时被东东抢到,CD ⊥x 轴于点D ,CD =2.6m .求OD 的长.【答案】(1)22(0.4) 3.32y x =--+;(2)OD =1m .【分析】(1)设2(0.4) 3.32y a x =-+(0a ≠),将A (0,3)代入求解即可得出答案;(2)把 2.6y =代入(1)所求得的解析式中,解方程求出x ,即可得出OD 的长.【详解】(1)设2(0.4) 3.32y a x =-+(0a ≠), 把A (0,3)代入得,23(0.4) 3.32a x =-+,解得2a =-,∴抛物线的函数表达式为22(0.4) 3.32y x =--+; (2)(把 2.6y =代入22(0.4) 3.32y x =--+, 化简得2(0.4)0.36x -=, 解得10.2x =-(舍去),21x =,∴1OD m =.【点睛】 本题主要考查了二次函数的应用,待定系数法,二次函数图象上点的坐标特征,二次函数的性质,解题的关键是熟练掌握待定系数法求函数解析式及能将实际问题转化为二次函数问题求解.21.为了在体育中考中取得更好地成绩,小明积极训练.在某次试投中,实心球经过的路线是如图所示的抛物线的一部份.已知实心球出手处A 距离地面的高度是169米,当实心球运行的水平距离为3米时,达到最大高度259米的B 处,实心球的落地点为C . (1)如图,已知AD CD ⊥于D ,以D 为原点,CD 所在直线为x 轴建立平面直角坐标系,在图中画出坐标系,点B 的坐标为________;(2)小明此次投掷的成绩是多少米?【答案】(1)253,9B ⎛⎫ ⎪⎝⎭;(2)8米 【分析】(1)根据题意直接写出坐标即可;(2)求出二次函数表达式,求C 点横坐标即可;【详解】(1)坐标系253,9B ⎛⎫ ⎪⎝⎭(2)设抛物线的表达式为225(3)(0)9y a x a =-+≠ 由抛物线经过点160,9A ⎛⎫ ⎪⎝⎭得21625(3)99a =-+解得19a =- 2125(3)99y x =--+ 0y =时,18x =,22x =-(舍)答:小明此次投掷的成绩是8米【点睛】此题考查利用二次函数解决实际问题,理解函数定义是关键22.九年级的一名男生在体育课上测试推实心球成绩,已知实心球所经过的路线是某二次函数图象的一部分,如图所示,若这个男生出手处A 点的坐标为(0,2),实心球路线的最高处B 点的坐标为(6,5)B .(1)求这个二次函数的表达式;(2)问该男生把实心球推出去多远?(结果保留根号)【答案】(1)21(6)512y x =--+;(2)(6m + 【分析】(1)根据抛物线的顶点坐标,设其顶点式,由A 坐标可得答案;(2)令0y =,解方程求得x 的值即可.【详解】解:(1)设抛物线解析式为2(6)5(0)y a x a =-+≠,(0,2)A 在抛物线上,∴代入得112a =-, ∴抛物线的解析式为21(6)512y x =--+. (2)令0y =,即21(6)5012x --+=,解得16x =-,26x =+6OC ∴=+答:该同学把实心球扔出(6m +.【点睛】本题考查的是二次函数的应用,熟知利用待定系数法求二次函数的解析式是解答此题的关键.23.某乒乓球馆使用发球机进行辅助训练,假设发球机每次发出的乒乓球的运动路线是固定不变的,在乒乓球运行时,设乒乓球与发球机的水平距离为x (米),与桌面的高度为y (米),经多次测试后,得到如下数据:(1)把上表中x ,y 的各组对应值作为点的坐标,在平面直角坐标系中描出相应的点,猜想y 与x 的函数解析式,并求出函数关系式;(2)乒乓球经发球机发出后,最高点离地面多少米?(3)当球拍触球时,球离地面的高度为58米.(此时发球机与球的水平距离;(现将发球机向后平移了0.4米,为确保球拍在原位置接到,发球机需调高多少米?【答案】(1)y=﹣18x2+14x+1;(2)98米;(3)(3米;(0.22米【分析】(1)利用待定系数法求二次函数的解析式;(2)运用对称性或配方法计算二次函数的顶点坐标的纵坐标即可;(3)①球离地面的高度为58米时发球机与球的水平距离,就是当y=58时,对应的x的值,代入解方程即可;(先设发球机需调高m米,发球机向后平移了0.4米,就是相当于将抛物线向左平移了0.4米,表示出新的抛物线的解析式,将(3,58)代入即可求出m的值.【详解】解:(1)描点如下:观察图形发现是二次函数,设y=ax2+bx+c,把(0,1)、(1,1.125)、(2,1)代入得:11.125 421ca b ca b c=⎧⎪++=⎨⎪++=⎩,解得:18141abc⎧=-⎪-⎪⎪=⎨⎪=⎪⎪⎩,则解析式为:y=﹣18x2+14x+1;(2)由图表得:当x=0或2时,y=1,对称轴为:直线x=022+=1,当x=1时,y=98,∵a=﹣18<0,y有最大值,是98,∴乒乓球经发球机发出后,最高点离地面98米;(3)(当y=58时,﹣18(x﹣1)2+98=58,(x﹣1)2﹣9=﹣5,(x﹣1)2=4,x﹣1=±2,x1=3,x2=﹣1(舍去),则此时发球机与球的水平距离为3米;(设发球机需调高m米,y=﹣18x2+14x+1=﹣18(x﹣1)2+98,平移后得:y=﹣18(x﹣1+0.4)2+98+m,由题意得(3,58)仍在平移后的抛物线上,所以把(3,58)代入得:﹣18(3﹣1+0.4)2+98+m=58,解得m=0.22,答:发球机需调高0.22米.【点睛】本题考查了二次函数的实际应用,二次函数的图像和性质,求出函数解析式是解题关键.24.在一次羽毛球赛中,甲运动员在离地面43米的P点处发球,球的运动轨迹PAN看作一个抛物线的一部分,当球运动到最高点A时,离甲运动员站立地点O的水平距离为5米,其高度为3米,球网BC离点O 的水平距离为6米,以点O为原点建立如图所示的平面直角坐标系,乙运动员站立地点M的坐标为(,0)m.(1)求抛物线的表达式(不要求写自变量的取值范围).(2)乙原地起跳后可接球的最大高度为2.4米,若乙因为接球高度不够而失球,求m的取值范围【答案】(1)21(5)315y x =--+;(2)68m << 【分析】(1)设抛物线解析式为y =a (x−5)2+3,将点(0,43)代入可得出a 的值,继而得出抛物线解析式; (2)先计算出刚好接到球时m 的值,从而结合所给图形可得出运动员接球高度不够m 的取值范围.【详解】解答:解:(1)设抛物线解析式为y =a (x−5)2+3,将点(0,43)代入可得:43=a (0−5)2+3, 解得:a =−115, 故抛物线的解析式为:21(5)315y x =--+. (2)若运动员乙原地起跳到最大高度时刚好接到球,此时−115(m−5)2+3=2.4, 解得:m 1=2,m 2=8,∵运动员接球高度不够,∴2<m <8,∵OC =6,乙运动员接球时不能触网,∴m 的取值范围为:6<m <8.【点睛】本题考查了二次函数的应用,涉及了利用待定系数法求二次函数解析式的知识,解答本题的关键是建立直角坐标系,将实际问题转化为数学模型,难度一般.25.足球比赛中,某运动员将在地面上的足球对着球门踢出,图中的抛物线是足球的飞行高度y (m )关于飞行时间x (s )的函数图象(不考虑空气的阻力),已知足球飞出1s 时,足球的飞行高度是2.44m ,足球从飞出到落地共用3s .(1)求y 关于x 的函数关系式;(2)假设没有拦挡,足球将擦着球门左上角射入球门,球门的高为2.44m (如图所示,足球的大小忽略不计).如果为了能及时将足球扑出,那么足球被踢出时......,离球门左边框12m 处的守门员至少要以多大的平均速度到球门的左边框?【答案】(1)21.22 3.66y x x =-+;(2)6m /s【分析】(1)设y 关于x 的函数关系式为2y ax bx =+,依题可知:当1x =时, 2.44y;当3x =时,0y =,解得a 、b ,即可得到y 关于x 的函数关系式;(2)令 2.44y,解得x ,然后求速度. 【详解】解:(1)设y 关于x 的函数关系式为2y ax bx =+,依题可知:当1x =时, 2.44y ; 当3x =时,0y =.∴ 2.44930ab a b ,∴1.223.66ab,21.22 3.66y x x.(2) 2.44y,22.44 1.223.66x x,2320x x∴-+=,11x∴=,22x=.当11x=时,球刚好踢出,还没到达球门处,不符合题意,舍去,∴平均速度至少为126(/)2m s.【点睛】本题考查的是二次函数在实际生活中的应用,熟悉相关性质是解题的关键.26.小明推铅球的出手高度为1.6m,如图所示的直角坐标系中,铅球的运行路线近似为抛物线y=﹣0.1(x ﹣k)2+2.5.(1)求铅球的落点与小明的距离;(2)一个身高为1.5m的小朋友跑到离原点O的水平距离为7米的地方(如图),他会受到伤害吗?【答案】(1)((((((((((((8m;(2)会受到伤害【分析】(1)将点(0,1.6)代入y=﹣0.1(x﹣k)2+2.5,解得k的值并根据题意作出取舍,从而可得抛物线的解析式,然后令y=0,解得x的值并作出取舍即可;(2)将x=7代入(1)中的抛物线解析式,求得y值,再与1.5比较即可得出结论.【详解】(1)由题意知,点(0,1.6)在抛物线y=﹣0.1(x﹣k)2+2.5上,∴1.6=﹣0.1(0﹣k)2+2.5,解得:k=3或k=﹣3(舍去),∴抛物线的解析式为y=﹣0.1(x﹣3)2+2.5,当y=0时,﹣0.1(x﹣3)2+2.5=0,解得x1=8,x2=﹣2(舍去),∴铅球的落点与小明的距离为8m;(2)∵抛物线的解析式为y=﹣0.1(x﹣3)2+2.5,∴当x=7时,y=﹣0.1(7﹣3)2+2.5=0.9,∵0.9<1.5,∴一个身高为1.5m的小朋友会受到伤害.【点睛】本题考查了二次函数的应用,数形结合并熟练掌握二次函数解析式的求法、二次函数与一元二次方程的关系及求二次函数的值等知识点是解题的关键.27.小亮推铅球时,铅球行进高度y(m)与水平距离x(m)之间的关系如图所示(二次函数图象的一部分).(1)求y 与x 之间的函数关系式;(2)求小亮推出铅球的水平距离.【答案】(1)21(4)312y x =--+;(2)小亮推出铅球的水平距离是10m . 【分析】(1)设y 与x 之间的函数关系式为:2(4)3y a x =-+,将5(0,)3代入解析式中即可求出结论; (2)将y=0代入解析式中,结合实际意义即可得出结论.【详解】解:(1)设y 与x 之间的函数关系式为:2(4)3y a x =-+, ∵点5(0,)3在2(4)3y a x =-+的图象上, ∴25(04)33a =-+ 解得,112a =-, ∴y 与x 之间的函数关系式是:21(4)312y x =--+; (2)将0y =代入21(4)312y x =--+,得210(4)312x =--+, 解得12x =-,210x =由图可知,小亮推出的距离为正值,12x =-,不符合题意,舍去,故小亮推出铅球的水平距离是10m ,答:小亮推出铅球的水平距离是10m .【点睛】此题考查的是二次函数的应用,掌握利用待定系数法求二次函数解析式和实际意义是解题关键. 28.如图,有一款电脑屏幕弹球游戏,球每次运行在同一平面内,从O 处发射小球,球将投入“篮筐”—正方形区域DABC 边CD ,AB 为入口和出口,三个顶点为A (2,2)、B (3,2)、D (2,3),小球按照抛物线y=-x 2+bx+c 飞行,小球落地点P 坐标(n ,0).(1)点C 坐标为 ;(2)求出小球飞行中最高点N 的坐标(用含有n 的代数式表示);(3)随着n 的变化,抛物线的顶点在二次函数 的图象上运动;(4)若小球发射之后能够直接入篮,球没有接触“篮筐”AD 、BC ,请求出n 的取值范围.【答案】(1)点C 坐标为(3,3);(2)2(,)24n n N ;(3)2y x ;(4)71123n << 【分析】 (1)由正方形的性质及A 、B 、D 三点的坐标求得AD=BC=1即可得;(2)把(0,0)(n ,0)代入y=-x 2+bx+c 求得b=n 、c=0,据此可得函数解析式,配方成顶点式即可得出答案;(3)由抛物线的解析式可得抛物线顶点坐标为(2n ,24n ),在y=x 2中,当x=2n 时,y=24n ,即可得出答案;(4)根据“小球发射之后能够直接入篮,球没有接触篮筐”知:当x=2时y >3,当x=3时y <2,据此列出关于n 的不等式组,解之可得.【详解】解:(1)∵A (2,2),B (3,2),D (2,3),∴AD=BC=1,则点C (3,3),故答案为:(3,3);(2)把(0,0)(n ,0)代入y=-x 2+bx+c 得:200c n bn c =⎧⎨-++=⎩, 解得:0b n c =⎧⎨=⎩, ∴抛物线解析式为y=-x 2+nx=-(x -2n )2+24n , ∴顶点N 坐标为(2n ,24n ); (3)抛物线解析式为y=-x 2+nx=-(x -2n )2+24n , ∴抛物线顶点坐标为(2n ,24n ), 在y=x 2中,当x=2n 时,y=24n ,∴抛物线的顶点在函数y=x 2的图象上运动;(4)根据题意,得:当x=2时y >3,当x=3时y <2,即423932n n -+>⎧⎨-+<⎩, 解得:71123n <<. 【点睛】本题考查了二次函数的应用,解题的关键是掌握待定系数法求函数解析式、二次函数的性质及将实际问题转化为二次函数的问题能力.29.王老师对小明推铅球的录像进行技术分析,发现铅球行进的高度(m)y 与水平距离(m)x 之间的关系可以表示为2+112243y x x =-+,铅球从出手到落地的路线如图所示.(1)求铅球出手点的离地面的高度OA 是多少米?铅球推出的水平距离OB 是多少米?(2)求铅球推出的水平距离是多少米时铅球到达最高点?【答案】(1)铅球出手点离地面的高度是2米,铅球推出的水平距离DB 是12米;(2)铅球推出水平距离是4米时到达最高点,最高点是83米 【分析】(1)要求OA ,只需求A 点坐标,由点Azaiy 轴上,x=0,可求;铅球推出的水平距离OB ,求B 点坐标,点B 在x 轴上,让y=0解之即可,(2)把给的抛物线解析式配方变为顶点式即可.【详解】解:(1)当0x =时,2y =,∴铅球出手点离地面的高度是2米.令0y =,即21120243x x -++=, 解得112x =,24x =-(不合题意,舍去),∴铅球推出的水平距离DB 是12米.(2)2112243y x x =-++, ()2184243x =--+, ∴最高点坐标为84,3⎛⎫ ⎪⎝⎭,答:铅球推出水平距离是4米时到达最高点,最高点是83米. 【点睛】本题考查二次函数的实际问题,关键熟悉二次函数的知识,求轴上点的坐标方法,对称轴,顶点式,即顶点式中各代数式表示的意义.30.弹球游戏规则:弹球抛出后与地面接触一次,弹起降落,若落入筐中,则游戏成功.弹球着地前后的运动轨迹可近似看成形状相同的两条抛物线.如图,甲站在原点处,从离地面高度为1m 的点A 处抛出弹球,当弹球运动到最高处,即距离地面2m 时,弹球与甲的水平距离为2m .弹球在B 处着地后弹起,此次弹起的最大高度为原来最大高度的一半,再落至点C 处.。

初中数学二次函数应用题型分类——抛物线形物体问题5(附答案)

初中数学二次函数应用题型分类——抛物线形物体问题5(附答案)

初中数学二次函数应用题型分类——抛物线形物体问题5(附答案)1.一同学推铅球,铅球高度y(m)关于时间x(s)的函数表达式为y=ax 2+bx(a≠0).若铅球在第7秒与第14秒时的高度相等,则在第m 秒时铅球最高,则m 的值为( ) A .7B .8C .10.5D .212.一位篮球运动员在距离篮圈中心水平距离4m 处起跳投篮,球沿一条抛物线运动,当球运动的水平距离为2.5m 时,达到最大高度3.5m ,然后准确落入篮筐内.已知篮圈中心距离地面高度为3.05m ,在如图所示的平面直角坐标系中,下列说法正确的是( )A .篮圈中心的坐标是()4,3.05B .此抛物线的解析式是21 3.55y x =-+ C .此抛物线的顶点坐标是()3.5,0 D .篮球出手时离地面的高度是2m3.如图,以40m/s 的速度将小球沿与地面成30°角的方向击出时,小球的飞行路线将是一条抛物线.如果不考虑空气阻力,小球的飞行高度h (单位:m )与飞行时间t (单位:s )之间具有函数关系h =20t ﹣5t 2.下列叙述正确的是( )A .小球的飞行高度不能达到15mB .小球的飞行高度可以达到25mC .小球从飞出到落地要用时4sD .小球飞出1s 时的飞行高度为10m4.一学生推铅球,铅球行进的高度()y m 与水平距离()x m 之间的关系为21251233y x x =-++,则学生推铅球的距离为( ) A .35m B .3mC .10mD .12m飞行的高度()h m 与发球后球飞行的时间()t s 满足关系式22 1.5h t t =-++,则该运动员发球后1s 时,羽毛球飞行的高度为( ) A .1.5mB .2mC .2.5mD .3m6.铅球运动员掷铅球的高度y(m)与水平距离x(m)之间的函数关系式为y =-112x 2+23x +53.则该运动员此次掷铅球的成绩是( ) A .6 mB .12 mC .8 mD .10 m7.从地面竖直向上先后抛出两个小球,小球的高度h (单位:)m 与小球运动时间t (单位:)s 之间的函数关系式为240(3)409h t =--+,若后抛出的小球经过2.5s 比先抛出的小球高103m ,则抛出两个小球的间隔时间是( )s A .1 B .1.5 C .2 D .2.58.一个运动员打高尔夫球,若球的飞行高度y (m )与水平距离x (m )之间的函数表达式为:y 150=-(x ﹣25)2+12,则高尔夫球在飞行过程中的最大高度为( )m . A .12B .25C .13D .149.如图,排球运动员站在点O 处练习发球,将球从O 点正上方2m 的A 处发出,把球看成点,其运行的高度y (m )与运行的水平距离x (m )满足关系式y =a (x ﹣k )2+h .已知球与D 点的水平距离为6m 时,达到最高2.6m ,球网与D 点的水平距离为9m .高度为2.43m ,球场的边界距O 点的水平距离为18m ,则下列判断正确的是( )A .球不会过网B .球会过球网但不会出界C .球会过球网并会出界D .无法确定10.如图,一位运动员推铅球,铅球行进高度y(m)与水平距离x(m)之间的关系是y =﹣22531312x x ++,则此运动员把铅球推出多远( )11.教练对小明推铅球的录像进行技术分析,发现铅球行进高度y (m )与水平距离x (m )之间的关系为21(4)312y x =--+,由此可知铅球推出的距离是______m .12.如图,是一学生掷铅球时,铅球行进高度()y cm 的函数图象,点B 为抛物线的最高点,则该同学的投掷成绩为________米.13.如图,一名男生推铅球,铅球行进高度y (单位:m )与水平距离x (单位:m )之间的关系是21251233y x x =-++,则他将铅球推出的距离是__________m .14.校运会上,小明参加铅球比赛,若某次试掷,铅球飞行的高度()y m 与水平距离(m)x 之间的函数关系式为21251233y x x =-++,小明这次试掷的成绩是__________.15.从地面竖直向上抛出一小球,小球离地面的高度h (米)与小球运动时间t (秒)之间关系是h=30t ﹣5t 2(0≤t≤6),则小球从抛出后运动4秒共运动的路径长是______米. 16.如图,池中心竖直水管的顶端安一个喷水头,使喷出的抛物线形水柱在与池中心的水平距离为1m 处达到最高,高度为3m ,水柱落地处离池中心3m ,水管的长为_____.17.广场上喷水池中的喷头微露水面,喷出的水线呈一条抛物线,水线上水珠的高度y (米)关于水珠与喷头的水平距离x (米)的函数解析式是()2510042y x x x =-+≤≤.水珠可以达到的最大高度是________(米).18.某运动员对自己某次实心球训练的录像进行分析,发现实心球飞行高度y (米)与水平距离x (米)之间的关系为21251233y x x =-++,由此可知该运动员此次实心球训练的成绩为____米.19.如图,一小球沿与地面成一定角度的方向飞出,小球的飞行路线是一条抛物线,如果不考虑空气阻力,小球的飞行高度y (单位:m )与飞行时间x (单位:s )之间具有函数关系y =﹣5x 2+20x ,在飞行过程中,当小球的行高度为15m 时,则飞行时间是_____.20.如图,铅球运动员掷铅球的高度y (m )与水平距离x (m )之间的函数关系式是y=﹣112x 2+23x+53,则该运动员此次掷铅球的成绩是_____ m .21.一个斜抛物体的水平运动距离为x (m ),对应的高度记为h (m ),且满足h =ax 2+bx ﹣2a (其中a≠0).已知当x =0时,h =2;当x =10时,h =2. (1)求h 关于x 的函数表达式;(2)求斜抛物体的最大高度和达到最大高度时的水平距离.22.如图是甲、乙两人进行羽毛球练习赛时的一个瞬间,羽毛球飞行的高度y (m )与水平距离x (m )的路线为抛物线的一部分,如图,甲在O 点正上方1m 的P 处发出一球,已知点O 与球网的水平距离为5m ,球网的高度为1.55m .羽毛球沿水平方向运动4m 时,达到羽毛球距离地面最大高度是53m . (1)求羽毛球经过的路线对应的函数关系式; (2)通过计算判断此球能否过网;(3)若甲发球过网后,羽毛球飞行到离地面的高度为3124m 的Q 处时,乙扣球成功求此时乙与球网的水平距离.23.杂技团进行杂技表演,演员从跷跷板右端A 处弹跳到人梯顶端椅子B 处,其身体(看成一点)的路线是抛物线23315y x x =-++的一部分,如图所示. ()1求演员弹跳离地面的最大高度;()2已知人梯高 3.4BC =米,在一次表演中,人梯到起跳点A 的水平距离是4米,问这次表演是否成功?请说明理由.24.小明跳起投篮,球出手时离地面m ,球出手后在空中沿抛物线路径运动,并在距出手点水平距离4m 处达到最高度4m .已知篮筐中心距地面3m ,与球出手时的水平距离为8m ,建立如图所示的平面直角坐标系. (1)求此抛物线对应的函数关系式;(2)此次投篮,球能否直接命中篮筐中心?若能,请说明理由;若不能,在出手的角度和力度都不变的情况下,球出手时距离地面多少米可使球直接命中篮筐中心?25.在一次篮球比赛中,如图队员甲正在投篮.已知球出手时离地面209m ,与篮圈中心的水平距离为7 m ,球出手后水平距离为4 m 时达到最大高度4 m ,设篮球运行轨迹为抛物线,篮圈距地面3 m.(1)建立如图所示的平面直角坐标系,问此球能否准确投中?(2)此时,对方队员乙在甲面前1 m 处跳起盖帽拦截,已知乙的最大摸高为3.1 m ,那么他能否获得成功?26.某乒乓球馆使用发球机进行辅助训练,出球口在桌面中线端点A处的正上方,如果每次发出的乒乓球的运动路线固定不变,且落在中线上,在乒乓球从发射出到第一次落在桌面的运行过程中,设乒乓球与端点A的水平距离为x(米),距桌面的高度为y (米),运行时间为t(秒),经多次测试后,得到如下部分数据:t(秒)0 0.16 0.2 0.4 0.6 0.64 0.8 …x(米)0 0.4 0.5 1 1.5 1.6 2 …y(米)0.25 0.378 0.4 0.45 0.4 0.378 0.25 …(1)如果y是t的函数,①如图,在平面直角坐标系tOy中,描出了上表中y与t各对对应值为坐标的点.请你根据描出的点,画出该函数的图象;②当t为何值时,乒乓球达到最大高度?(2)如果y是关于x的二次函数,那么乒乓球第一次落在桌面时,与端点A的水平距离是多少?27.在一场篮球比赛中,一名球员在关键时刻投出一球,已知球出手时离地面高2米,与篮圈中心的水平距离为7米,当球出手后水平距离为4米时到达最大高度4米,已知篮球运行的轨迹为抛物线,篮圈中心距离地面3.19米.(1)以地面为x轴,篮球出手时垂直地面所在直线为y轴建立平面直角坐标系,求篮球运行的抛物线轨迹的解析式;(2)通过计算,判断这个球员能否投中?28.如图,在某场足球比赛中,球员甲从球门底部中心点O的正前方10m处起脚射门,足球沿抛物线飞向球门中心线;当足球飞离地面高度为3m时达到最高点,此时足球飞行的水平距离为6m.已知球门的横梁高OA为2.44m.()1在如图所示的平面直角坐标系中,问此飞行足球能否进球门?(不计其它情况)()2守门员乙站在距离球门2m处,他跳起时手的最大摸高为2.52m,他能阻止球员甲的此次射门吗?如果不能,他至少后退多远才能阻止球员甲的射门?29.初三年级的一场篮球比赛中,如图队员甲正在投篮,已知球出手时离地面高209m,与篮圈中心的水平距离为7m,当球出手后水平距离为4m时到达最大高度4m,设篮球运行的轨迹为抛物线,篮圈距地面3m.(1)建立如图所示的平面直角坐标系,求抛物线的解析式并判断此球能否准确投中?(2)此时,若对方队员乙在甲前面1m处跳起盖帽拦截,已知乙的最大摸高为3.1m,那么他能否获得成功?30.如图,某足球运动员站在点O处练习射门.将足球从离地面0.5m的A处正对球门踢出(点A在y轴上),足球的飞行高度y(单位:m)与飞行时间t(单位:s)之间满足函数关系y=at2+5t+c,己知足球飞行0.8s时,离地面的高度为3.5m.(1)a=,c=;(2)当足球飞行的时间为多少时,足球离地面最高?最大高度是多少?(3)若足球飞行的水平距离x(单位:m)与飞行时间t(单位:s)之间具有函数关系x=10t,已知球门的高度为2.44m,如果该运动员正对球门射门时,离球门的水平距离为28m,他能否将球直接射入球门?参考答案1.C 【解析】 【分析】由由第7秒和第14秒的高度相同,知道这两个点是关于抛物线的对称轴对称的,从而求出抛物线的对称轴,知道顶点的横坐标,得到答案. 【详解】解:由第7秒和第14秒的高度相同,知道抛物线的对称轴为7142122x +==, 所以顶点的横坐标为212,即函数取得最大值,铅球最高时的时间,所以10.5m =. 故选C . 【点睛】本题考查的是抛物线的性质,掌握抛物线上纵坐标相等的两个点是关于抛物线对称轴对称的是关键. 2.A 【解析】 【分析】设抛物线的表达式为y=ax 2+3.5,依题意可知图象经过的坐标,由此可得a 的值,可判断A ;根据函数图象可判断B 、C ;设这次跳投时,球出手处离地面hm ,因为求得21 3.55y x =-+,当x=-2,5时,即可判断D . 【详解】解:A 、∵抛物线的顶点坐标为(0,3.5), ∴可设抛物线的函数关系式为y=ax 2+3.5.∵篮圈中心(1.5,3.05)在抛物线上,将它的坐标代入上式,得 3.05=a×1.52+3.5, ∴a=15-, ∴21 3.55y x =-+,故本选项正确; B 、由图示知,篮圈中心的坐标是(1.5,3.05),故本选项错误; C 、由图示知,此抛物线的顶点坐标是(0,3.5),故本选项错误; D 、设这次跳投时,球出手处离地面hm ,因为(1)中求得y=-0.2x2+3.5,∴当x=-2.5时,h=-0.2×(-2.5)2+3.5=2.25m.∴这次跳投时,球出手处离地面2.25m,故本选项错误.故选:A.【点睛】本题考查了二次函数的应用,解题的关键是从实际问题中抽象出二次函数模型,体现了数学建模的数学思想,难度不大,能够结合题意利用二次函数不同的表达形式求得解析式是解答本题的关键.3.C【解析】【分析】直接利用h=15以及结合配方法求出二次函数最值分别分析得出答案.【详解】A、当h=15时,15=20t﹣5t2,解得:t1=1,t2=3,故小球的飞行高度能达到15m,故此选项错误;B、h=20t﹣5t2=﹣5(t﹣2)2+20,故t=2时,小球的飞行高度最大为:20m,故此选项错误;C、∵h=0时,0=20t﹣5t2,解得:t1=0,t2=4,∴小球从飞出到落地要用时4s,故此选项正确;D、当t=1时,h=15,故小球飞出1s时的飞行高度为15m,故此选项错误;故选C.此题主要考查了二次函数的应用,灵活运用所学知识是解题关键.4.C【解析】【分析】铅球落地时,高度y=0,把实际问题可理解为当y=0时,求x 的值.【详解】 令函数式21251233y x x =-++中,y =0, 即21251233x x -++=0, 解得1210,2x x ==- (舍去),即铅球推出的距离是10m.故选C.【点睛】考查二次函数的应用以及函数式中自变量与函数表达式的实际意义,需要结合题意. 5.C【解析】【分析】根据函数关系式,求出t=1时的h 的值即可.【详解】22 1.5h t t =-++∴t=1s 时,h=-1+2+1.5=2.5故选C.【点睛】本题考查了二次函数的应用,知道t=1时满足函数关系式是解题的关键.6.D【解析】【分析】依题意,该二次函数与x 轴的交点的x 值为所求.即在抛物线解析式中.令y=0,求x 的正【详解】把y=0代入y=-112x 2+23x+53得: -112x 2+23x+=0, 解之得:x 1=10,x 2=-2.又x >0,解得x=10.故选D .7.B【解析】【分析】把t=2.5代入240(3)409h t =--+,求得3509h =,当35010320939h =-=时,解方程即可得出结论.【详解】解:把t=2.5代入240(3)409h t =--+,得3509h =, 当35010320939h =-=时,即240320(3)4099t --+=, 解得 t=4或t=-2(不合题意,舍去)∴抛出两个小球间隔的时间是4-2.5=1.5.故选B.【点睛】本题主要考查了二次函数的应用,正确理解题意是解题的关键.8.A【解析】【分析】直接根据二次函数的图象及性质即可得出答案.【详解】解:∵y 150=-(x ﹣25)2+12, 顶点坐标为(25,12), ∵150-<0, ∴当x =25时,y 有最大值,最大值为12.故选:A .【点睛】本题主要考查二次函数的最大值,掌握二次函数的图象和性质是解题的关键.9.C【解析】分析:(1)将点A (0,2)代入2(6) 2.6y a x =-+求出a 的值;分别求出x =9和x =18时的函数值,再分别与2.43、0比较大小可得.详解:根据题意,将点A (0,2)代入2(6) 2.6y a x =-+,得:36a +2.6=2, 解得:160a ,=- ∴y 与x 的关系式为21(6) 2.660y x =--+; 当x =9时,()2196 2.6 2.45 2.4360y =--+=>, ∴球能过球网, 当x =18时,()21186 2.60.2060y =--+=>, ∴球会出界.故选C.点睛:考查二次函数的应用题,求范围的问题,可以利用临界点法求出自变量的值,根据题意确定范围.10.B【解析】【分析】令y =﹣22531312x x ++=0,解得符合题意的x 值,则该值为此运动员把铅球推出的距离,据此可解.【详解】解:令y =﹣22531312x x ++=0 则:x 2﹣8x ﹣20=0∴(x+2)(x ﹣10)=0∴x 1=﹣2(舍),x 2=10由题意可知当x =10时,符合题意故选:B.【点睛】本题考查二次函数的实际应用,利用数形结合思想解题是本题的关键.11.10【解析】【分析】要求铅球推出的距离,实际上是求铅球的落脚点与坐标原点的距离,故可直接令0y =,求出x 的值,x 的正值即为所求.【详解】 在函数式21(4)312y x =--+中,令0y =,得 21(4)3012x --+=,解得110x =,22x =-(舍去), ∴铅球推出的距离是10m.【点睛】 本题是二次函数的实际应用题,需要注意的是21(4)312y x =--+中3代表的含义是铅球在起始位置距离地面的高度;当0y =时,x 的正值代表的是铅球最终离原点的距离.12.(4+【解析】【分析】根据函数的顶点B 的坐标设解析式为y =a (x −4)2+3,把(0,2)代入得出2=a (0−4)2+3,求出a ,得出函数的解析式是21(4)316y x =--+,把y =0代入解析式,求出方程的解即可. 【详解】∵函数的图象的最高点是B ,B 的坐标是(4,3),∴设函数的解析式是y =a (x −4)2+3,∵图象过(0,2)点,∴代入得:2=a (0−4)2+3, 解得:116a =-, ∴函数的解析式是21(4)316y x =--+, 把y =0代入解析式得:210(4)316x =--+,解得:1244x x =+=-∴(4A +,故答案为(4+【点睛】考查二次函数在实际问题中的应用,掌握待定系数法求二次函数解析式是解题的关键.. 13.10【解析】【分析】令y=0时求出x 的值,保留正值,即为该男生将铅球推出的距离.【详解】解:当y=0时,2125=01233x x -++, 解方程得,x 1=10,x 2=-2(负值舍去),∴该男生把铅球推出的水平距离是10 m .故答案为:10.【点睛】本题考查了二次函数在实际问题中的应用,可以用配方法写成顶点式求得;同时本题还考查了二次函数与一元二次方程的关系及解一元二次方程,本题属于中档题.14.10米【解析】【分析】根据题意,将y=0代入解析式中,求出x 的值即可.【详解】解:将y=0代入21251233y x x =-++中,得 212501233x x -++= 解得:1210,2x x ==-(不符合实际,舍去)∴小明这次试掷的成绩是10米故答案为:10米.【点睛】此题考查的是二次函数的应用,掌握x 和y 的实际意义和一元二次方程的解法是解决此题的关键.15.50【解析】【分析】根据题目中的函数解析式可以求得h 的最大值,从而可以求得小球从抛出后运动4秒共运动的路径长.【详解】解:∵h =30t−5t 2=−5(t−3)2+45(0≤t≤6),∴当t =3时,h 取得最大值,此时h =45,∴小球从抛出后运动4秒共运动的路径长是:45+[45−(30×4−5×42)]=50(米), 故答案为:50.【点睛】本题考查二次函数的应用,解答本题的关键是明确题意,求出相应的路径的长.16.2.25m .【解析】【分析】设抛物线的解析式为:y =a (x ﹣1)2+3(0≤x ≤3),将(3,0)代入求得a 值,则x=0时得y 值即为水管的长.【详解】解:由于在距池中心的水平距离为1m 时达到最高,高度为3m ,则设抛物线的解析式为:y =a (x ﹣1)2+3(0≤x ≤3),代入(3,0)求得:a =34-, 将a 值代入得到抛物线的解析式为:y =34-(x ﹣1)2+3(0≤x ≤3), 令x =0,则y =94=2.25. 则水管长为2.25m .故答案为:2.25m .【点睛】本题主要考查了二次函数的应用,掌握二次函数的应用是解题的关键.17.10【解析】【分析】将一般式转化为顶点式,依据自变量的变化范围求解即可.【详解】 解:()()222555104210222y x x x x x =-+=--=--+,当x=2时,y 有最大值10, 故答案为:10.【点睛】利用配方法将一般式转化为顶点式,再利用顶点式去求解函数的最大值.18.10【解析】【分析】根据铅球落地时,高度y=0,把实际问题可理解为当y=0时,求x 的值即可.【详解】当y=0时,212501233x x -++= 解得,x=-2(舍去),x=10.故答案为:10.【点睛】本题考查了二次函数的应用中函数式中自变量与函数表达的实际意义,需要结合题意,取函数或自变量的特殊值列方程求解是解题关键.19.1s 或3s【解析】【分析】根据题意可以得到15=﹣5x 2+20x ,然后求出x 的值,即可解答本题.【详解】∵y=﹣5x 2+20x ,∴当y=15时,15=﹣5x 2+20x ,得x 1=1,x 2=3,故答案为1s 或3s .【点睛】本题考查二次函数的应用、一元二次方程的应用,解答本题的关键是明确题意,利用二次函数的性质和一元二次方程的知识解答.20.10【解析】【分析】根据铅球落地时,高度y=0,把实际问题可理解为当y=0时,求x 的值即可.【详解】 解:在21251233y x x =-++中,当y=0时, 212501233x x -++= 整理得:x 2-8x-20=0,(x-10)(x+2)=0,解得x 1=10,x 2=-2(舍去),即该运动员此次掷铅球的成绩是10m .故答案为:10.【点睛】本题考查了二次函数的应用中函数式中自变量与函数表达的实际意义,需要结合题意,取函数或自变量的特殊值列方程求解是解题关键.21.(1)h =﹣x 2+10x+2;(2)斜抛物体的最大高度为27,达到最大高度时的水平距离为5.【解析】【分析】(1)将当x =0时,h =2;当x =10时,h =2,代入解析式,可求解;(2)由h =−x 2+10x +2=−(x−5)2+27,即可求解.【详解】(1)∵当x =0时,h =2;当x =10时,h =2.∴222100102a a b a =-⎧⎨=+-⎩解得:110a b =-⎧⎨=⎩ ∴h 关于x 的函数表达式为:h =﹣x 2+10x+2;(2)∵h =﹣x 2+10x+2=﹣(x ﹣5)2+27,∴斜抛物体的最大高度为27,达到最大高度时的水平距离为5.【点睛】本题考查了二次函数的应用,求出二次函数的解析式是本题的关键.22.(1)215(4)243y x =--+;(2)此球能过网,见解析;(3)2m 【解析】【分析】(1)依题意,函数图象的顶点坐标为(4,53),则可设函数的解析式为:25(4)3y a x =-+,再由点(0,1)在抛物线上,代入求得a 即可(2)将x =5代入所求的函数解析式,求得y 即可判断;(3)将y =3124代入函数解析式求得x ,即可求出乙与球网的水平距离. 【详解】解(1)依题意,函数图象的顶点坐标为54,3⎛⎫ ⎪⎝⎭, 故设函数的解析式为:25(4)3y a x =-+,∵点(0,1)在抛物线上,∴代入得251(04)3a =-+, 解得124a =-, 则羽毛球经过的路线对应的函数关系式为:215(4)243y x =--+; (2)由(1)知羽毛球经过的路线对应的函数关系式为215(4)243y x =--+, 则当5x =时,21513(54) 1.6252438y =-⨯-+==, ∵1.625 1.55>,∴此球能过网;(3)由(1)知羽毛球经过的路线对应的函数关系式为215(4)243y x =--+, 当3124y =时,有23115(4)24243x =--+, 解得11x =(舍去),27x =,∴此时乙与球网的水平距离为:752m -=.【点睛】本题考查了二次函数在实际生活中的应用,利用待定系数法求出羽毛球经过的路线对应的函数关系式是解题的关键.23.(1) 194;(2)能成功;理由见解析. 【解析】【分析】(1)将抛物线解析式整理成顶点式,可得最大值,即为最大高度;(2)将x=4代入抛物线解析式,计算函数值是否等于3.4进行判断.【详解】 (1)y=-35x 2+3x+1=-35252x ⎛⎫- ⎪⎝⎭+194 ∵-35<0,∴函数的最大值是194.答:演员弹跳的最大高度是194米.(2)当x=4时,y=-35×42+3×4+1=3.4=BC,所以这次表演成功.【点睛】此题将用待定系数法求二次函数解析式、动点问题和最小值问题相结合,有较大的维跳跃,考查了同学们的应变能力和综合思维能力,是一道好题.24.(1)y=;(2)不能正中篮筐中心;3米.【解析】试题分析:(1)根据顶点坐标(4,4),设抛物线的解析式为:y=,由球出手时离地面m,可知抛物线与y轴交点为(0,),代入可求出a的值,写出解析式;(2)先计算当x=8时,y的值是否等于3,把x=8代入得:y=,所以要想球经过(8,3),则抛物线得向上平移3﹣=个单位,即球出手时距离地面3米可使球直接命中篮筐中心.试题解析:(1)设抛物线为y=,将(0,)代入,得=,解得a=,∴所求的解析式为y=;(2)令x=8,得y==≠3,∴抛物线不过点(8,3),故不能正中篮筐中心;∵抛物线过点(8,),∴要使抛物线过点(8,3),可将其向上平移个单位长度,故小明需向上多跳m再投篮(即球出手时距离地面3米)方可使球正中篮筐中心.考点:二次函数的应用.25.(1)能准确投中(2)能获得成功【解析】【分析】(1)根据条件先确定抛物线的解析式,然后令x=7,求出y的值,与3m比较即可作出判断;(2)将x=1代入抛物线的解析式,求出y的值与3.1比较大小即可.【详解】解:(1)由题意可得抛物线的顶点为(4,4),出手点为(0,209),设2()y a x h k=-+,则h=4,k=4,然后把点(0,209)代入解析式得19a=-,所以()21449y x=--+,当x=7时,y=3,所以此球能准确投中.(2)当x=1时,y=3<3.1,他能获得成功.考点:二次函数的应用26.(1)①见解析;②t=0.4(秒),乒乓球达到最大高度;(2)52 m.【解析】【分析】(1)①根据描出了上表中y与t各对对应值为坐标的点,画出该函数的图象即可;②利用网格中数据直接得出乒乓球达到最大高度时的时间;(2)首先求出函数解析式,进而求出乒乓球落在桌面时,与端点A的水平距离.【详解】解:(1)①如图所示,②由表格中数据可得,t=0.4(秒),乒乓球达到最大高度;(2)由表格中数据,可设y=a(x﹣1)2+0.45,将(0,0.25)代入,可得:a=﹣15,则y=﹣15(x﹣1)2+0.45,当y=0时,0=﹣15(x﹣1)2+0.45,解得:x1=52,x2=﹣12(舍去),即乒乓球与端点A 的水平距离是52m .【点睛】考点:二次函数的应用.27.(1)21(4)48y x =-+;(2)不能投中 【解析】【分析】(1)根据题意可得抛物线的顶点,设函数的顶点式,再将(0,2)代入,求得二次项系数,从而可得抛物线的解析式;(2)判断当x =7时,函数值是否等于3.19即可.【详解】(1)依题意得抛物线顶点为(4,4),则设抛物线的解析式为y =a (x ﹣4)2+4依题意得抛物线经过点(0,2)∴a (0﹣4)2+4=2解得18a =- ∴抛物线的解析式为21(4)48y x =-+ (2)当x =7时,21(4)48y x =-+=23 3.198≠ ∴这个球员不能投中.【点睛】本题考查了二次函数解析式的求法以及实际应用,关键是求得函数的解析式,借助二次函数解决实际问题.28.(1)能射中球门;(2)他至少后退0.4m,才能阻止球员甲的射门.【解析】【分析】(1)、根据条件可以得到抛物线的顶点坐标是(4,3),利用待定系数法即可求得函数的解析式;(2)、求出当x=2时,抛物线的函数值,与2.52米进行比较即可判断,再利用y=2.52求出x的值即可得出答案.【详解】(1)、抛物线的顶点坐标是(4,3),设抛物线的解析式是:y=a(x-4)2+3,把(10,0)代入得36a+3=0,解得a=-112,则抛物线是y=-112(x-4)2+3,当x=0时,y=-112×16+3=3-43=53<2.44米,故能射中球门;(2)当x=2时,y=-112(2-4)2+3=83>2.52,∴守门员乙不能阻止球员甲的此次射门,当y=2.52时,y=-112(x-4)2+3=2.52,解得:x1=1.6,x2=6.4(舍去),∴2-1.6=0.4(m),答:他至少后退0.4m,才能阻止球员甲的射门.【点睛】本题主要考查了待定系数法求二次函数的解析式,以及二次函数的应用,属于中等难度的题型.根据题意得出函数的顶点坐标,求得函数解析式是解题的关键.29.(1)y=−19(x−4)2+4;能够投中;(2)能够盖帽拦截成功.【解析】【分析】(1)根据题意可知:抛物线经过(0,209),顶点坐标是(4,4),然后设出抛物线的顶点式,将(0,209)代入,即可求出抛物线的解析式,然后判断篮圈的坐标是否满足解析式即可;(2)当1x 时,求出此时的函数值,再与3.1m比较大小即可判断. 【详解】解:由题意可知,抛物线经过(0,209),顶点坐标是(4,4).设抛物线的解析式是()244y a x =-+, 将(0,209)代入,得()2200449a =-+ 解得19a =-, 所以抛物线的解析式是()21449y x =--+; 篮圈的坐标是(7,3),代入解析式得()2174439y =--+=, ∴这个点在抛物线上,∴能够投中 答:能够投中.(2)当1x =时,()2114439y =--+=<3.1, 所以能够盖帽拦截成功.答:能够盖帽拦截成功.【点睛】此题考查的是二次函数的应用,掌握二次函数的顶点式和利用二次函数解析式解决实际问题是解决此题的关键.30.(1)2516-,12;(2)当足球飞行的时间85s 时,足球离地面最高,最大高度是4.5m ;(3)能.【解析】【分析】(1)由题意得:函数y =at 2+5t +c 的图象经过(0,0.5)(0.8,3.5),代入函数的表达式即可求出a ,c 的值;(2)利用配方法即可求出足球飞行的时间以及足球离地面的最大高度;(3)把x =28代入x =10t 得t =2.8,把t =2.8代入解析式求出y 的值和2.44m 比较大小即可得到结论.【详解】(1)由题意得:函数y =at 2+5t +c 的图象经过(0,0.5)(0.8,3.5),∴20.53.50.850.8c a c =⎧⎨=+⨯+⎩, 解得:251612a c ⎧=-⎪⎪⎨⎪=⎪⎩, ∴抛物线的解析式为:y =﹣2516t 2+5t +12, 故答案为:﹣2516,12; (2)∵y =﹣2516t 2+5t +12, ∴y =﹣2516(t ﹣85)2+92, ∴当t =85时,y 最大=4.5, ∴当足球飞行的时间85s 时,足球离地面最高,最大高度是4.5m ; (3)把x =28代入x =10t 得t =2.8,∴当t =2.8时,y =﹣2516×2.82+5×2.8+12=2.25<2.44, ∴他能将球直接射入球门.【点睛】本题考查了待定系数法求二次函数的解析式,以及二次函数的应用,正确求得解析式是解题的关键.。

初中数学二次函数应用题型分类——抛物线形物体问题8(附答案)

初中数学二次函数应用题型分类——抛物线形物体问题8(附答案)
A.0.71sB.0.70sC.0.63sD.0.36s
4.教练对小明推铅球的录像进行技术分析,发现铅球行进高度y(m)与水平距离x(m)间的关系为 ,由此可知铅球推出的距离是()
A.2mB.8mC.10mD.12
5.如图,小明在某次投篮中,球的运动路线是抛物线y=﹣0.2x2+3.5的一部分,若命中篮圈中心,则他与篮圈底的距离l是()
13.体育测试时,初三一名学生推铅球,已知铅球所经过的路线为抛物线 的一部分,该同学的成绩是________.
14.铅球行进高度y(m)与水平距离x(m)之间的关系为y=﹣ x2+ x+ ,铅球推出后最大高度是_____m,铅球落地时的水平距离是______m.
15.从地面竖直向上抛出一小球,小球的高度h(单位:m)与小球的运动时间t(单位:s)之间的关系式是 ,则小球从抛出到落地所用的时间是______ s.
(2)网球在斜坡的落点 的垂直高度.
参考答案
1.B
【解析】
【分析】
礼炮到最高点爆炸,那么所需时间为t= ,代入相应数据才能正确解答.
【详解】
解:当礼炮到达最高点时,即为抛物线的顶点,此时t= ,故选:B.
【点睛】
考查二次函数的应用;判断出所求时间为二次函数的顶点坐标的横坐标的值是解决本题的关键.
2.A
(1)小球飞行时间是多少时,小球最高?最大高度是多少?
(2)小球飞行时间t在什么范围时,飞行高度不低于15m?
26.以40m/s的速度将小球沿与地面成约45°角的方向击出,小球的飞行路线是一条抛物线,我们不考虑空气阻力,小球的飞行高度h(单位:米)与飞行时间t(单位:s)之间具有函数关系h=20t-5t2.
3.D

二次函数投球问题

二次函数投球问题

二次函数投球问题(期末22)
1在一次篮球比赛中,运动员小涛在距篮下4米处跳起投篮,如图所示,球运行3的路线是抛物线,当球运行的水平距离为2.5米时,达到最大高度3.5米,然后准确落入篮圈已知篮圈中心到地面的距离为3.05米
(1)建立如图所示的直角坐标系,求抛物线的表达式;
(2)运动员小涛的身高是1.8米,在这次跳投中,球在头顶上方0.25米处出手问:球出手时,小涛跳离地面的高度是多少?
2某校初三年级的一场篮球比赛中,如图队员甲正在投篮,已知球出手时离地面209m,与篮圈中心的水平距离为7m,当球出手后水平距离为4m 时到达最大高度4m,设篮球运行的轨迹为抛物线,篮圈距地3m
(1)建立如图的平面直角坐标系,问此球能否准确投中
(2)此时,若对方队员乙在甲前面1m 处跳起盖帽拦截,已知乙的最大摸高为3.1m,那么他能否获得成功?
3小明在一次羽毛球比赛中,羽毛球飞行的路线为如图所示抛物线的一部分,小明在O 点正上方1m 的P 处发出一球,羽毛球飞行的高度y(m)与水平距离x(m)
之间满足函数表达式y=−1
24(x-4)2+h (1)直接写出h 的值
(2)求羽毛球落地点与O 点的水平距离;
(3)若距离点O 的水平距离为5m 的点B 处,有一球网BC,且高度为1.55m 通过计算请你判断此球能否过网?
4如图,某排球运动员站在点O处练习发球,将球从O点正上方2m的A处发出,把球看成点,其运行的高度y(m)与运行的水平距离x(m)满足关系式y=a(x-6)2+2.6.已知网球与O点的水平距离为9m,高度为2.43m,球场的边界距O点的水平距离为18m
(1)求y与x的关系式;
(2)球能否越过球网?球会不会出界?请说明理由。

中考数学第一阶段复习考点过关练习:二次函数的实际应用

中考数学第一阶段复习考点过关练习:二次函数的实际应用

精品基础教育教学资料,仅供参考,需要可下载使用!中考数学第一阶段复习考点过关练习:二次函数的实际应用考点1:应用二次函数解决抛物线型实际问题1.(2018年四川省巴中市)一位篮球运动员在距离篮圈中心水平距离4m处起跳投篮,球沿一条抛物线运动,当球运动的水平距离为2.5m时,达到最大高度3.5m,然后准确落入篮框内.已知篮圈中心距离地面高度为3.05m,在如图所示的平面直角坐标系中,下列说法正确的是()A.此抛物线的解析式是y=﹣x2+3.5B.篮圈中心的坐标是(4,3.05)C.此抛物线的顶点坐标是(3.5,0)D.篮球出手时离地面的高度是2m2.(2018年江苏省连云港市)已知学校航模组设计制作的火箭的升空高度h(m)与飞行时间t(s)满足函数表达式h=﹣t2+24t+1.则下列说法中正确的是()A.点火后9s和点火后13s的升空高度相同B.点火后24s火箭落于地面C.点火后10s的升空高度为139mD.火箭升空的最大高度为145m3.(2018年四川省绵阳市)如图是抛物线型拱桥,当拱顶离水面2m时,水面宽4m,水面下降2m,水面宽度增加m.4.(2018年浙江省衢州市)某游乐园有一个直径为16米的圆形喷水池,喷水池的周边有一圈喷水头,喷出的水柱为抛物线,在距水池中心3米处达到最高,高度为5米,且各方向喷出的水柱恰好在喷水池中心的装饰物处汇合.如图所示,以水平方向为x轴,喷水池中心为原点建立直角坐标系.(1)求水柱所在抛物线(第一象限部分)的函数表达式;(2)王师傅在喷水池内维修设备期间,喷水管意外喷水,为了不被淋湿,身高1.8米的王师傅站立时必须在离水池中心多少米以内?(3)经检修评估,游乐园决定对喷水设施做如下设计改进:在喷出水柱的形状不变的前提下,把水池的直径扩大到32米,各方向喷出的水柱仍在喷水池中心保留的原装饰物(高度不变)处汇合,请探究扩建改造后喷水池水柱的最大高度.5.(2018年山东省滨州市)如图,一小球沿与地面成一定角度的方向飞出,小球的飞行路线是一条抛物线,如果不考虑空气阻力,小球的飞行高度y(单位:m)与飞行时间x(单位:s)之间具有函数关系y=﹣5x2+20x,请根据要求解答下列问题:(1)在飞行过程中,当小球的飞行高度为15m时,飞行时间是多少?(2)在飞行过程中,小球从飞出到落地所用时间是多少?(3)在飞行过程中,小球飞行高度何时最大?最大高度是多少?考点2:应用二次函数解决利润最大问题6.(2018年广西贺州市)某种商品每件进价为20元,调查表明:在某段时间内若以每件x元(20≤x≤30,且x为整数)出售,可卖出(30﹣x)件,若使利润最大,则每件商品的售价应为元.7.(2018年河南省)某公司推出一款产品,经市场调查发现,该产品的日销售量y(个)与销售单价x(元)之间满足一次函数关系关于销售单价,日销售量,日销售利润的几组对应值如表:(注:日销售利润=日销售量×(销售单价﹣成本单价))(1)求y关于x的函数解析式(不要求写出x的取值范围)及m的值;(2)根据以上信息,填空:该产品的成本单价是元,当销售单价x= 元时,日销售利润w最大,最大值是元;(3)公司计划开展科技创新,以降低该产品的成本,预计在今后的销售中,日销售量与销售单价仍存在(1)中的关系.若想实现销售单价为90元时,日销售利润不低于3750元的销售目标,该产品的成本单价应不超过多少元?8.(2018年甘肃省兰州市(a卷))某商家销售一款商品,进价每件80元,售价每件145元,每天销售40件,每销售一件需支付给商场管理费5元,未来一个月(按30天计算),这款商品将开展“每天降价1元”的促销活动,即从第一天开始每天的单价均比前一天降低1元,通过市场调查发现,该商品单价每降1元,每天销售量增加2件,设第x天(1≤x≤30且x为整数)的销售量为y件.(1)直接写出y与x的函数关系式;(2)设第x天的利润为w元,试求出w与x之间的函数关系式,并求出哪一天的利润最大?最大利润是多少元?9.(2018年湖北省天门、仙桃、潜江、江汉油田市)绿色生态农场生产并销售某种有机产品,假设生产出的产品能全部售出.如图,线段EF、折线ABCD分别表示该有机产品每千克的销售价y1(元)、生产成本y2(元)与产量x(kg)之间的函数关系.(1)求该产品销售价y1(元)与产量x(kg)之间的函数关系式;(2)直接写出生产成本y2(元)与产量x(kg)之间的函数关系式;(3)当产量为多少时,这种产品获得的利润最大?最大利润为多少?10.(2018年浙江省温州市)温州某企业安排65名工人生产甲、乙两种产品,每人每天生产2件甲或1件乙,甲产品每件可获利15元.根据市场需求和生产经验,乙产品每天产量不少于5件,当每天生产5件时,每件可获利120元,每增加1件,当天平均每件利润减少2元.设每天安排x人生产乙产品.(1)根据信息填表:产品种类每天工人数(人)每天产量(件)每件产品可获利润(元)甲15乙x x(2)若每天生产甲产品可获得的利润比生产乙产品可获得的利润多550元,求每件乙产品可获得的利润.(3)该企业在不增加工人的情况下,增加生产丙产品,要求每天甲、丙两种产品的产量相等.已知每人每天可生产1件丙(每人每天只能生产一件产品),丙产品每件可获利30元,求每天生产三种产品可获得的总利润W(元)的最大值及相应的x值.11.(2018年浙江省台州市)某药厂销售部门根据市场调研结果,对该厂生产的一种新型原料药未来两年的销售进行预测,井建立如下模型:设第t个月该原料药的月销售量为P(单位:吨),P 与t之间存在如图所示的函数关系,其图象是函数P=(0<t≤8)的图象与线段AB的组合;设第t个月销售该原料药每吨的毛利润为Q(单位:万元),Q与t之间满足如下关系:Q=(1)当8<t≤24时,求P关于t的函数解析式;(2)设第t个月销售该原料药的月毛利润为w(单位:万元)①求w关于t的函数解析式;②该药厂销售部门分析认为,336≤w≤513是最有利于该原料药可持续生产和销售的月毛利润范围,求此范围所对应的月销售量P的最小值和最大值.12.(2018年贵州省黔南州、黔东南州、黔西南州)某种蔬菜的销售单价y1与销售月份x之间的关系如图1所示,成本y2与销售月份x之间的关系如图2所示(图1的图象是线段,图2的图象是抛物线)(1)已知6月份这种蔬菜的成本最低,此时出售每千克的收益是多少元?(收益=售价﹣成本)(2)哪个月出售这种蔬菜,每千克的收益最大?简单说明理由.(3)已知市场部销售该种蔬菜4、5两个月的总收益为22万元,且5月份的销售量比4月份的销售量多2万千克,求4、5两个月的销售量分别是多少万千克?13.(2018年四川省甘孜州)某商场将每件进价为80元的A商品按每件100元出售,一天可售出128件.经过市场调查,发现这种商品的销售单价每降低1元,其日销量可增加8件.设该商品每件降价x元,商场一天可通过A商品获利润y元.(1)求y与x之间的函数解析式(不必写出自变量x的取值范围)(2)A商品销售单价为多少时,该商场每天通过A商品所获的利润最大?14.(2018年四川省眉山市)传统的端午节即将来临,某企业接到一批粽子生产任务,约定这批粽子的出厂价为每只4元,按要求在20天内完成.为了按时完成任务,该企业招收了新工人,设新工人李明第x天生产的粽子数量为y只,y与x满足如下关系:y=(1)李明第几天生产的粽子数量为280只?(2)如图,设第x天生产的每只粽子的成本是p元,p与x之间的关系可用图中的函数图象来刻画.若李明第x天创造的利润为w元,求w与x之间的函数表达式,并求出第几天的利润最大?最大利润是多少元?(利润=出厂价﹣成本)15.(2018年湖北省荆门市)随着龙虾节的火热举办,某龙虾养殖大户为了发挥技术优势,一次性收购了10000kg小龙虾,计划养殖一段时间后再出售.已知每天养殖龙虾的成本相同,放养10天的总成本为166000,放养30天的总成本为178000元.设这批小龙虾放养t天后的质量为akg,销售单价为y元/kg,根据往年的行情预测,a与t的函数关系为a=,y与t的函数关系如图所示.(1)设每天的养殖成本为m元,收购成本为n元,求m与n的值;(2)求y与t的函数关系式;(3)如果将这批小龙虾放养t天后一次性出售所得利润为W元.问该龙虾养殖大户将这批小龙虾放养多少天后一次性出售所得利润最大?最大利润是多少?(总成本=放养总费用+收购成本;利润=销售总额﹣总成本)考点3:应用二次函数解决面积最大问题16.(2018年辽宁省沈阳市)如图,一块矩形土地ABCD由篱笆围着,并且由一条与CD边平行的篱笆EF分开.已知篱笆的总长为900m(篱笆的厚度忽略不计),当AB= m时,矩形土地ABCD的面积最大.17.(2018年福建省(A卷))如图,在足够大的空地上有一段长为a米的旧墙MN,某人利用旧墙和木栏围成一个矩形菜园ABCD,其中AD≤MN,已知矩形菜园的一边靠墙,另三边一共用了100米木栏.(1)若a=20,所围成的矩形菜园的面积为450平方米,求所利用旧墙AD的长;(2)求矩形菜园ABCD面积的最大值.18.(2018年湖北省荆州市)为响应荆州市“创建全国文明城市”号召,某单位不断美化环境,拟在一块矩形空地上修建绿色植物园,其中一边靠墙,可利用的墙长不超过18m,另外三边由36m 长的栅栏围成.设矩形ABCD空地中,垂直于墙的边AB=xm,面积为ym2(如图).(1)求y与x之间的函数关系式,并写出自变量x的取值范围;(2)若矩形空地的面积为160m2,求x的值;(3)若该单位用8600元购买了甲、乙、丙三种绿色植物共400棵(每种植物的单价和每棵栽种的合理用地面积如下表).问丙种植物最多可以购买多少棵?此时,这批植物可以全部栽种到这块空地上吗?请说明理由.甲乙丙单价(元/棵)14 16 28合理用地(m2/棵)0.4 1 0.419.(2018年内蒙古呼和浩特市)某市计划在十二年内通过公租房建设,解决低收入人群的住房问题.已知前7年,每年竣工投入使用的公租房面积y(单位:百万平方米),与时间x(第x年)的关系构成一次函数,(1≤x≤7且x为整数),且第一和第三年竣工投入使的公租房面积分别为和百万平方米;后5年每年竣工投入使用的公租房面积y(单位:百万平方米),与时间x(第x年)的关系是y=﹣x+(7<x≤12且x为整数).(1)已知第6年竣工投入使用的公租房面积可解决20万人的住房问题,如果人均住房面积,最后一年要比第6年提高20%,那么最后一年竣工投入使用的公租房面积可解决多少万人的住房问题?(2)受物价上涨等因素的影响,已知这12年中,每年竣工投入使用的公租房的租金各不相同,且第一年,一年38元/m2,第二年,一年40元/m2,第三年,一年42元/m2,第四年,一年44元/m2……以此类推,分析说明每平方米的年租金和时间能否构成函数,如果能,直接写出函数解析式;(3)在(2)的条件下,假设每年的公租房当年全部出租完,写出这12年中每年竣工投入使用的公租房的年租金W关于时间x的函数解析式,并求出W的最大值(单位:亿元).如果在W取得最大值的这一年,老张租用了58m2的房子,计算老张这一年应交付的租金.答案解析1.【考点】二次函数的应用【分析】A、设抛物线的表达式为y=ax2+3.5,依题意可知图象经过的坐标,由此可得a的值;B、根据函数图象判断;C、根据函数图象判断;D、设这次跳投时,球出手处离地面hm,因为(1)中求得y=﹣0.2x2+3.5,当x=﹣2,5时,即可求得结论.解:A、∵抛物线的顶点坐标为(0,3.5),∴可设抛物线的函数关系式为y=ax2+3.5.∵篮圈中心(1.5,3.05)在抛物线上,将它的坐标代入上式,得3.05=a×1.52+3.5,∴a=﹣,∴y=﹣x2+3.5.故本选项正确;B、由图示知,篮圈中心的坐标是(1.5,3.05),故本选项错误;C、由图示知,此抛物线的顶点坐标是(0,3.5),故本选项错误;D、设这次跳投时,球出手处离地面hm,因为(1)中求得y=﹣0.2x2+3.5,∴当x=﹣2.5时,h=﹣0.2×(﹣2.5)2+3.5=2.25m.∴这次跳投时,球出手处离地面2.25m.故本选项错误.故选:A.【点评】本题考查了二次函数的应用,解题的关键是从实际问题中抽象出二次函数模型,体现了数学建模的数学思想,难度不大,能够结合题意利用二次函数不同的表达形式求得解析式是解答本题的关键.2.【考点】二次函数的应用【分析】分别求出t=9、13、24、10时h的值可判断A、B、C三个选项,将解析式配方成顶点式可判断D选项.解:A、当t=9时,h=136;当t=13时,h=144;所以点火后9s和点火后13s的升空高度不相同,此选项错误;B、当t=24时h=1≠0,所以点火后24s火箭离地面的高度为1m,此选项错误;C、当t=10时h=141m,此选项错误;D、由h=﹣t2+24t+1=﹣(t﹣12)2+145知火箭升空的最大高度为145m,此选项正确;故选:D.【点评】本题主要考查二次函数的应用,解题的关键是熟练掌握二次函数的性质.3.【考点】二次函数的应用【分析】根据已知建立平面直角坐标系,进而求出二次函数解析式,再通过把y=﹣2代入抛物线解析式得出水面宽度,即可得出答案.解:建立平面直角坐标系,设横轴x通过AB,纵轴y通过AB中点O且通过C点,则通过画图可得知O为原点,抛物线以y轴为对称轴,且经过A,B两点,OA和OB可求出为AB的一半2米,抛物线顶点C坐标为(0,2),通过以上条件可设顶点式y=ax2+2,其中a可通过代入A点坐标(﹣2,0),到抛物线解析式得出:a=﹣0.5,所以抛物线解析式为y=﹣0.5x2+2,当水面下降1米,通过抛物线在图上的观察可转化为:当y=﹣2时,对应的抛物线上两点之间的距离,也就是直线y=﹣2与抛物线相交的两点之间的距离,可以通过把y=﹣2代入抛物线解析式得出:﹣2=﹣0.5x2+2,解得:x=±2,所以水面宽度增加到4米,比原先的宽度当然是增加了(4﹣4)米,故答案为:4﹣4.【点评】此题主要考查了二次函数的应用,根据已知建立坐标系从而得出二次函数解析式是解决问题的关键.4.【考点】二次函数的应用.【分析】(1)根据顶点坐标可设二次函数的顶点式,代入点(8,0),求出a值,此题得解;(2)利用二次函数图象上点的坐标特征,求出当y=1.8时x的值,由此即可得出结论;(3)利用二次函数图象上点的坐标特征可求出抛物线与y轴的交点坐标,由抛物线的形状不变可设改造后水柱所在抛物线(第一象限部分)的函数表达式为y=﹣x2+bx+,代入点(16,0)可求出b值,再利用配方法将二次函数表达式变形为顶点式,即可得出结论.解:(1)设水柱所在抛物线(第一象限部分)的函数表达式为y=a(x﹣3)2+5(a≠0),将(8,0)代入y=a(x﹣3)2+5,得:25a+5=0,解得:a=﹣,∴水柱所在抛物线(第一象限部分)的函数表达式为y=﹣(x﹣3)2+5(0<x<8).(2)当y=1.8时,有﹣(x﹣3)2+5=1.8,解得:x1=﹣1,x2=7,∴为了不被淋湿,身高1.8米的王师傅站立时必须在离水池中心7米以内.(3)当x=0时,y=﹣(x﹣3)2+5=.设改造后水柱所在抛物线(第一象限部分)的函数表达式为y=﹣x2+bx+,∵该函数图象过点(16,0),∴0=﹣×162+16b+,解得:b=3,∴改造后水柱所在抛物线(第一象限部分)的函数表达式为y=﹣x2+3x+=﹣(x﹣)2+.∴扩建改造后喷水池水柱的最大高度为米.【点评】本题考查了待定系数法求二次函数解析式以及二次函数图象上点的坐标特征,解题的关键是:(1)根据点的坐标,利用待定系数法求出二次函数表达式;(2)利用二次函数图象上点的坐标特征求出当y=1.8时x的值;(3)根据点的坐标,利用待定系数法求出二次函数表达式.5.【考点】二次函数的应用【分析】(1)根据题目中的函数解析式,令y=15即可解答本题;(2)令y=0,代入题目中的函数解析式即可解答本题;(3)将题目中的函数解析式化为顶点式即可解答本题.解:(1)当y=15时,15=﹣5x2+20x,解得,x1=1,x2=3,答:在飞行过程中,当小球的飞行高度为15m时,飞行时间是1s或3s;(2)当y=0时,0═﹣5x2+20x,解得,x3=0,x2=4,∵4﹣0=4,∴在飞行过程中,小球从飞出到落地所用时间是4s;(3)y=﹣5x2+20x=﹣5(x﹣2)2+20,∴当x=2时,y取得最大值,此时,y=20,答:在飞行过程中,小球飞行高度第2s时最大,最大高度是20m.【点评】本题考查二次函数的应用,解答本题的关键是明确题意,利用二次函数的性质解答.6.【考点】二次函数的应用【分析】本题是营销问题,基本等量关系:利润=每件利润×销售量,每件利润=每件售价﹣每件进价.再根据所列二次函数求最大值.解:设利润为w元,则w=(x﹣20)(30﹣x)=﹣(x﹣25)2+25,∵20≤x≤30,∴当x=25时,二次函数有最大值25,故答案是:25.【点评】本题考查了把实际问题转化为二次函数,再利用二次函数的性质进行实际应用.此题为数学建模题,借助二次函数解决实际问题.7.【考点】二次函数的应用,一元二次方程的应用,一元一次不等式的应用【分析】(1)根据题意和表格中的数据可以求得y关于x的函数解析式;(2)根据题意可以列出相应的方程,从而可以求得生产成本和w的最大值;(3)根据题意可以列出相应的不等式,从而可以取得科技创新后的成本.解;(1)设y关于x的函数解析式为y=kx+b,,得,即y关于x的函数解析式是y=﹣5x+600,当x=115时,y=﹣5×115+600=25,即m的值是25;(2)设成本为a元/个,当x=85时,875=175×(85﹣a),得a=80,w=(﹣5x+600)(x﹣80)=﹣5x2+1000x﹣48000=﹣5(x﹣100)2+2000,∴当x=100时,w取得最大值,此时w=2000,故答案为:80,100,2000;(3)设科技创新后成本为b元,当x=90时,(﹣5×90+600)(90﹣b)≥3750,解得,b≤65,答:该产品的成本单价应不超过65元.【点评】本题考查二次函数的应用、一元二次方程的应用、不等式的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用函数和数形结合的思想解答.8.【考点】二次函数的应用【分析】(1)根据销量=原价的销量+增加的销量即可得到y与x的函数关系式;(2)根据每天售出的件数×每件盈利=利润即可得到的W与x之间的函数关系式,即可得出结论.解:(1)由题意可知y=2x+40;(2)根据题意可得:w=(145﹣x﹣80﹣5)(2x+40),=﹣2x2+80x+2400,=﹣2(x﹣20)2+3200,∵a=﹣2<0,∴函数有最大值,∴当x=20时,w有最大值为3200元,∴第20天的利润最大,最大利润是3200元.【点评】此题主要考查了二次函数的应用,此题找到关键描述语,找到等量关系准确的列出方程或函数关系式是解决问题的关键.9.【考点】二次函数的应用【分析】(1)根据线段EF经过的两点的坐标利用待定系数法确定一次函数的表达式即可;(2)显然,当0≤x≤50时,y2=70;当130≤x≤180时,y2=54;当50<x<130时,设y2与x之间的函数关系式为y2=mx+n,利用待定系数法确定一次函数的表达式即可;(3)利用:总利润=每千克利润×产量,根据x的取值范围列出有关x的二次函数,求得最值比较可得.解:(1)设y1与x之间的函数关系式为y1=kx+b,∵经过点(0,168)与(180,60),∴,解得:,∴产品销售价y1(元)与产量x(kg)之间的函数关系式为y1=﹣x+168(0≤x≤180);(2)由题意,可得当0≤x≤50时,y2=70;当130≤x≤180时,y2=54;当50<x<130时,设y2与x之间的函数关系式为y2=mx+n,∵直线y2=mx+n经过点(50,70)与(130,54),∴,解得,∴当50<x<130时,y2=﹣x+80.综上所述,生产成本y2(元)与产量x(kg)之间的函数关系式为y2=;(3)设产量为xkg时,获得的利润为W元,①当0≤x≤50时,W=x(﹣x+168﹣70)=﹣(x﹣)2+,∴当x=50时,W的值最大,最大值为3400;②当50<x<130时,W=x[(﹣x+168)﹣(﹣x+80)]=﹣(x﹣110)2+4840,∴当x=110时,W的值最大,最大值为4840;③当130≤x≤180时,W=x(﹣x+168﹣54)=﹣(x﹣95)2+5415,∴当x=130时,W的值最大,最大值为4680.因此当该产品产量为110kg时,获得的利润最大,最大值为4840元.【点评】本题考查了二次函数的应用,待定系数法求二次函数的解析式,解题的关键是从实际问题中抽象出二次函数模型.10.【考点】一元二次方程的应用;二次函数的应用【分析】(1)根据题意列代数式即可;(2)根据(1)中数据表示每天生产甲乙产品获得利润根据题意构造方程即可;(3)根据每天甲、丙两种产品的产量相等得到m与x之间的关系式,用x表示总利润利用二次函数性质讨论最值.解:(1)由已知,每天安排x人生产乙产品时,生产甲产品的有(65﹣x)人,共生产甲产品2(65﹣x)130﹣2x件.在乙每件120元获利的基础上,增加x人,利润减少2x元每件,则乙产品的每件利润为120﹣2(x﹣5)=130﹣2x.故答案为:65﹣x;130﹣2x;130﹣2x(2)由题意15×2(65﹣x)=x(130﹣2x)+550∴x2﹣80x+700=0解得x1=10,x2=70(不合题意,舍去)∴130﹣2x=110(元)答:每件乙产品可获得的利润是110元.(3)设生产甲产品m人W=x(130﹣2x)+15×2m+30(65﹣x﹣m)=﹣2(x﹣25)2+3200∵2m=65﹣x﹣m∴m=∵x、m都是非负数∴取x=26时,m=13,65﹣x﹣m=26即当x=26时,W最大值=3198答:安排26人生产乙产品时,可获得的最大利润为3198元.【点评】本题以盈利问题为背景,考查一元二次方程和二次函数的实际应用,解答时注意利用未知量表示相关未知量.11.【考点】二次函数的应用【分析】(1)设8<t≤24时,P=kt+b,将A(8,10)、B(24,26)代入求解可得P=t+2;(2)①分0<t≤8、8<t≤12和12<t≤24三种情况,根据月毛利润=月销量×每吨的毛利润可得函数解析式;②求出8<t≤12和12<t≤24时,月毛利润w在满足336≤w≤513条件下t的取值范围,再根据一次函数的性质可得P的最大值与最小值,二者综合可得答案.解:(1)设8<t≤24时,P=kt+b,将A(8,10)、B(24,26)代入,得:,解得:,∴P=t+2;(2)①当0<t≤8时,w=(2t+8)×=240;当8<t≤12时,w=(2t+8)(t+2)=2t2+12t+16;当12<t≤24时,w=(﹣t+44)(t+2)=﹣t2+42t+88;②当8<t≤12时,w=2t2+12t+16=2(t+3)2﹣2,∴8<t≤12时,w随t的增大而增大,当2(t+3)2﹣2=336时,解题t=10或t=﹣16(舍),当t=12时,w取得最大值,最大值为448,此时月销量P=t+2在t=10时取得最小值12,在t=12时取得最大值14;当12<t≤24时,w=﹣t2+42t+88=﹣(t﹣21)2+529,当t=12时,w取得最小值448,由﹣(t﹣21)2+529=513得t=17或t=25,∴当12<t≤17时,448<w≤513,此时P=t+2的最小值为14,最大值为19;综上,此范围所对应的月销售量P的最小值为12吨,最大值为19吨.【点评】本题主要考查二次函数的应用,掌握待定系数法求函数解析式及根据相等关系列出分段函数的解析式是解题的前提,利用二次函数的性质求得336≤w≤513所对应的t的取值范围是解题的关键.12.【考点】二次函数的应用【分析】(1)找出当x=6时,y1、y2的值,二者做差即可得出结论;(2)观察图象找出点的坐标,利用待定系数法即可求出y1、y2关于x的函数关系式,二者做差后利用二次函数的性质即可解决最值问题;(3)求出当x=4时,y1﹣y2的值,设4月份的销售量为t万千克,则5月份的销售量为(t+2)万千克,根据总利润=每千克利润×销售数量,即可得出关于t的一元一次方程,解之即可得出结论.解:(1)当x=6时,y1=3,y2=1,∵y1﹣y2=3﹣1=2,∴6月份出售这种蔬菜每千克的收益是2元.(2)设y1=mx+n,y2=a(x﹣6)2+1.将(3,5)、(6,3)代入y1=mx+n,,解得:,∴y1=﹣x+7;将(3,4)代入y2=a(x﹣6)2+1,4=a(3﹣6)2+1,解得:a=,∴y2=(x﹣6)2+1=x2﹣4x+13.∴y1﹣y2=﹣x+7﹣(x2﹣4x+13)=﹣x2+x﹣6=﹣(x﹣5)2+.∵﹣<0,∴当x=5时,y1﹣y2取最大值,最大值为,即5月份出售这种蔬菜,每千克的收益最大.(3)当t=4时,y1﹣y2=﹣x2+x﹣6=2.设4月份的销售量为t万千克,则5月份的销售量为(t+2)万千克,根据题意得:2t+(t+2)=22,解得:t=4,∴t+2=6.答:4月份的销售量为4万千克,5月份的销售量为6万千克.【点评】本题考查了待定系数法求一次(二次)函数解析式、二次函数的性质以及一元一次方程的应用,解题的关键是:(1)观察函数图象,找出当x=6时y1﹣y2的值;(2)根据点的坐标,利用待定系数法求出y1、y2关于x的函数关系式;(3)找准等量关系,正确列出一元一次方程.13.【考点】二次函数的应用【分析】(1)根据题意可以得到y与x的函数关系式;(2)根据(1)中的函数关系式,然后化为顶点式即可解答本题.解:(1)由题意得,商品每件降价x元时单价为(100﹣x)元,销售量为(128+8x)件,则y=(128+8x)(100﹣x﹣80)=﹣8x2+32x+2560,即y与x之间的函数解析式是y=﹣8x2+32x+2560;(2)∵y=﹣8x2+32x+2560=﹣8(x﹣2)2+2592,∴当x=2时,y取得最大值,此时y=2592,∴销售单价为:100﹣2=98(元),答:A商品销售单价为98元时,该商场每天通过A商品所获的利润最大.【点评】本题考查二次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用二次函数的性质解答.14.【考点】二次函数的应用【分析】(1)把y=280代入y=20x+80,解方程即可求得;(2)根据图象求得成本p与x之间的关系,然后根据利润等于订购价减去成本价,然后整理即可得到W与x的关系式,再根据一次函数的增减性和二次函数的增减性解答;解:(1)设李明第x天生产的粽子数量为280只,由题意可知:20x+80=280,解得x=10.答:第10天生产的粽子数量为420只.(2)由图象得,当0≤x<10时,p=2;当10≤x≤20时,设P=kx+b,把点(10,2),(20,3)代入得,,解得,∴p=0.1x+1,①0≤x≤6时,w=(4﹣2)×34x=68x,当x=6时,w最大=408(元);②6<x≤10时,w=(4﹣2)×(20x+80)=40x+160,∵x是整数,∴当x=10时,w最大=560(元);③10<x≤20时,w=(4﹣0.1x﹣1)×(20x+80)=﹣2x2+52x+240,∵a=﹣2<0,∴当x=﹣=13时,w最大=578(元);综上,当x=13时,w有最大值,最大值为578.【点评】本题考查的是二次函数在实际生活中的应用,主要是利用二次函数的增减性求最值问题,利用一次函数的增减性求最值,难点在于读懂题目信息,列出相关的函数关系式.15.【考点】二次函数的应用【分析】(1)根据题意列出方程组,求出方程组的解得到m与n的值即可;(2)根据图象,分类讨论利用待定系数法求出y与P的解析式即可;(3)根据W=ya﹣mt﹣n,表示出W与t的函数解析式,利用一次函数与二次函数的性质求出所求即可.解:(1)依题意得,解得:;(2)当0≤t≤20时,设y=k1t+b1,由图象得:,解得:。

人教版九年级上册数学22.3二次函数与一元二次方程---投球问题专题训练(word、含简单答案)

人教版九年级上册数学22.3二次函数与一元二次方程---投球问题专题训练(word、含简单答案)

人教版九年级上册数学22.3二次函数与一元二次方程---投球问题专题训练一、单选题1.一个小球被抛出后,距离地面的高度h (米)和飞行时间t (秒)满足下面函数关系式:()2516h t =--+,则小球距离地面的最大高度是( ).A .1米B .5米C .6米D .-5米 2.为了响应“足球进校国”的目标,兴义市某学校开展了多场足球比赛在某场比赛中,一个足球被从地面向上踢出,它距地面的高度h (m )可以用公式h =﹣5t 2+v 0t 表示,其中t (s )表示足球被踢出后经过的时间,v 0(m /s )是足球被踢出时的速度,如果要求足球的最大高度达到20m ,那么足球被踢出时的速度应该达到( ) A .5m /s B .10m /s C .20m /s D .40m /s 3.一名男同学推铅球时,铅球行进中离地的高度()y m 与水平距离之间的关系是21251233y x x =-++,那么铅球推出后落地时距出手地的距离是( ) A .5 3米 B . 4米 C . 8米 D .1?0米 4.一小球被抛出后,距离地面的高度h (米)和飞行时间t (秒)满足下面函数关系式:h=﹣6(t ﹣2)2+7,则小球距离地面的最大高度是( )A .2米B .5米C .6米D .7米 5.把一个小球以30米/秒的速度竖直向上弹出,它在空中的高度h (米)与时间t (秒)的函数关系为2305h t t =-,当小球达到最高点时,小球的运动时间为( ) A .2秒 B .3秒 C .6秒 D .45秒 6.从地面竖直上抛一小球,小球的高度h 米与时间t 秒的关系式是:()230506h t t t =-≤≤,当2t =秒时,h 的值是( )A .40米B .30米C .60米D .100米 7.竖直向上发射的小球的高度()h m 关于运动时间()t s 的函数表达式为2h at bt =+,其图象如图所示.若小球在发射后第2s 与第6s 时的高度相等,则下列时刻中小球的高度最高的是第( )A .3sB .3.5sC .4sD .6.5s8.林书豪身高1.91m ,在某次投篮中,球的运动路线是抛物线21 3.55y x =-+的一部分(如图),若命中篮圈中心,则他与篮底的距离约为( )A .3.2mB .4mC .4.5mD .4.6m二、填空题9.如图,一位篮球运动员投篮,球沿抛物线20.2 2.25y x x =-++运行,然后准确落入篮筐内,已知篮筐的中心离地面的高度为3.05m ,则他距篮筐中心的水平距离OH 是_________m .10.如图,以40m/s 的速度将小球沿与地面成30°角的方向击出时,小球的飞行路线是一条抛物线. 若不考虑空气阻力,小球的飞行高度h (单位:m )与飞行时间t (单位:s )之间具有函数关系h =20t -5t 2,则小球飞出______s 时,达到最大高度.11.铅球运行高度y (单位:m )与水平距离x (单位:m )之间的函数关系满足2143123y x x =-++,此运动员能把铅球推出__________m . 12.教练对小明推铅球的录像进行技术分析,发现铅球行进高度()m y 与水平距离()m x 之间的关系为()215312y x =--+,由此可知铅球推出的距离是______m .13.从地面上竖直向上抛出一小球,小球的高度h (米)与小球的运动时间t (秒)之间的关系式是2305h t t =-(06)t ≤≤,则小球从抛出___________秒后离地面25米. 14.烟花厂为国庆70周年庆祝晚会特别设计制作一种新型礼炮,这种礼炮的升空高h(m )与飞行时间t (s )的关系式是252012h t t =-++,若这种礼炮在点火升空到最高点处引爆,则从点火升空到引爆需要时间为________.15.从地面竖直向上抛出一小球,小球的高度h (米)与小球的运动时间t (秒)之间的关系式是()230506h t t t =-≤≤,若抛出小球1秒钟后再抛出同样的第二个小球.则第二个小球抛出______秒时,两个小球在空中的高度相同.16.铅球行进高度y(m)与水平距离x(m)之间的关系为y =﹣112x 2+23x+53,铅球推出后最大高度是_____m ,铅球落地时的水平距离是______m.三、解答题17.从地面竖直向上抛出一个小球,小球的高度h (单位:m )与小球的运动时间t (单位:s )之间的关系式是2305h t t =-.(1)小球从抛出到落地经过了多少秒?(2)当小球的运动时间是多少时,小球最高?小球运动中的最大高度是多少?18.如图,以60米/秒的速度将小球沿与地面成30°角的方向击出时,小球的飞行路线将是一条抛物线.若不考虑空气阻力,小球的飞行高度h (单位:米)与飞行时间t (单位:秒)之间有下列函数关系:h =30t ﹣5t 2.依据所给信息,解决下列问题: (1)小球的飞行高度是否能达到25米?如果能,需要飞行的时间是多少?(2)小球的飞行高度是否能达到45米?如果能,需要飞行的时间是多少?请直接写出答案: .(3)小球从飞出到落地要用多少时间(设地面是水平的)?19.小明进行铅球训练,他尝试利用数学模型来研究铅球的运动情况.他以水平方向为x 轴方向,1m 为单位长度,建立了如图所示的平面直角坐标系,铅球从y 轴上的A 点出手,运动路径可看作抛物线,在B 点处达到最高位置,落在x 轴上的点C 处.小明某次试投时的数据如图所示.(1)在图中画出铅球运动路径的示意图;(2)根据图中信息,求出铅球路径所在抛物线的表达式;(3)若铅球投掷距离(铅球落地点C 与出手点A 的水平距离OC 的长度)不小于10m ,成绩为优秀.请通过计算,判断小明此次试投的成绩是否能达到优秀.20.一身高1.8m 的篮球运动员在距篮板4m 处跳起投篮,球在运动员头顶上方0.25m 处出手.按如图所示的直角坐标系,球在空中运行的路线可以用20.2 3.5y x =-+来描述,那么:(1)球能达到的最大高度是多少?(2)球出手时,运动员跳离地面的高度是多少?参考答案:1.C2.C3.D4.D5.B6.A7.C8.B9.410.211.1812.1113.1或514.4s15.2.516. 3 1017.(1)6秒(2)3s ;45m18.(1)小球的飞行高度能达到25米,飞行的时间为1s 或5s ;(2)3s ;(3)6s 19.(1)见解析;(2)()214316y x =--+;(3)达到优秀 20.(1)3.5m ;(2)0.2m .。

中考二次函数应用题(附答案解析)

中考二次函数应用题(附答案解析)

中考二次函数应用题(附答案解析)二次函数应用题1.如图,有一位同学在兴趣小组实验中,设计了一个模拟滑雪场地截面图,平台AB (水平)与x 轴的距离为6,与y 轴交于B 点,与滑道AM :y =k x 交于A ,且AB =2,MN ⊥x 轴,测得MN =1,P 到x 轴的距离为3,设ON=b .(1)k 的值为_______,点P 的坐标是________,b =_________;(2)当一号球落到P 点后立即弹起,弹起后沿另外一条抛物线G 运动,若它的最高点Q 的坐标为(8,5)①求G 的解析式,并说明抛物线G 与滑道AM 是否还能相交;②在x 轴上有线段NC =1,若一号球恰好能倍NC 接住,则NC 向上平移距离d 的最大值和最小值各是多少?2.如图1,足球场上守门员李伟在O 处抛出一高球,球从离地面1m 处的点A 飞出,其飞行的最大高度是4m ,最高处距离飞出点的水平距离是6m ,且飞行的路线是抛物线的一部分.以点O 为坐标原点,竖直向上的方向为y 轴的正方向,球飞行的水平方向为x 轴的正方向建立坐标系,并把球看成一个点(参考数据:取437≈,265≈)(1)求足球的飞行高度(m)y 与飞行水平距离(m)x 之间的函数关系式;(2)在没有队员干扰的情况下,球飞行的最远水平距离是多少?(3)若对方一名1.7m 的队员在距落点3m C 的点H 处,跃起0.3m 进行拦截,则这名队员能拦到球吗?(4)如图2,在(2)的情况下,若球落地后又一次弹起,据实验测算,足球在草坪上弹起后的抛物线与原来的抛物线形状相同,最大高度减少到原来最大高度的一半,那么足球弹起后,会弹出多远?3.据统计,某景区仅有A ,B 两个景点,售票处出示的三种购票方式如表所示: 购票方式 甲 乙 丙可游玩景点 A B A 和B 门票价格 100元/人 80元/人 160元/人据预测,六月份选择甲、乙、丙三种购票方式的人数分别有2万、3万和2万.并且当甲、乙两种门票价格不变时,丙种门票价格每下降1元,将有600人原计划购买甲种门票的游客和400人原计划购买乙种门票的游客改为购买丙种门票.(1)若丙种门票价格下降10元,求景区六月份的门票总收入;(2)问:将丙种门票价格下降多少元时,景区六月份的门票总收入有最大值?最大值是多少万元?4.跳台滑雪是北京冬奥会的项目之一.某跳台滑雪训练场的横截面示意图如图并建立平面直角坐标系.抛物线2117:1126C y x x =-++近似表示滑雪场地上的一座小山坡,某运动员从点O 正上方4米处的A 点滑出(即A 点坐标为(0,4)),滑出后沿一段抛物线221:8C y x bx c =-++运动.(1)当运动员运动到距A 处的水平距离为4米时,距图中水平线的高度为8米(即经过点(4,8)),求抛物线C 2的函数解析式(不要求写出自变量的取值范围);(2)在(1)的条件下,当运动员运动的水平距离为多少米时,运动员与小山坡的竖直距离为1米?5.某商场经营某种品牌的玩具,购进时的单价是30元,根据市场调查,在一段时间内,销售单价是40元,销售量是600件,而销售单价每涨1元,就会少售出10件玩具.(1)不妨设该种品牌玩具的销售单价为x 元(40x >),请你分别用x 的代数式来表示销售量y 件和销售该品牌玩具获得利润ω元.(2)在(1)问条件下,若玩具厂规定该品牌玩具销售单价不低于44元,且商场要完成不少于540件的销售任务,求商场销售该品牌玩具获得的最大利润是多少?6.嘉琪第一期培植盆景与花卉各40盆,售后统计,盆景的平均每盆利润是120元,花卉的平均每盆利润是15元,调研发现:①盆景每增加1盆,盆景的平均每盆利润减少2元;每减少1盆,盆景的平均每盆利润增加2元;②花卉的平均每盆利润始终不变.嘉琪计划第二期培植盆景与花卉共100盆,设培植的盆景比第一期增加x 盆,第二期盆景与花卉售完后的利润分别为1W ,2W (单位:元).(1)第二期盆景的数量为_________盆,花卉的数量为_________盆;(2)用含x 的代数式分别表示1W ,2W ;(3)当x 取何值时,第二期培植的盆景与花卉售完后获得的总利润W 最大,最大总利润是多少?7.两段相互垂直的墙AB 和AC 的长分别为12m 和3m ,用一段长为23m 的篱笆成一个矩形菜园(篱笆全部使用完),如图所示,矩形菜园的一边AD 由墙AC 和一节篱笆CD 构成,一边AF 靠在墙AB 上,一边EF 上有一个2m 的门.假设篱笆CD 的长为xm ,矩形菜园的面积为2m (0)S S >,回答下面的问题:(1)用含x 的式子表示篱笆DE 的长为________m ,x 的取值范围是________;(2)菜园的最大面积是多少2m ?求出此时x 的值是多少?8.星光公司投资150万元引进一台新设备,若不计维修保养费用,投入生产后每月可创收33万元,投入生产后从第一个月到第x 月的维修保养费用累计为y (万元),且2y ax bx =+,若将创收扣除投资和维修保养费用,成为该新设备的纯收益w (万元),w 也是关于x 的二次函数.(1)若维修保养费用第1个月为2万元,第2个月为4万元,求y 与x 的解析式;(2)求纯收益w 关于x 的解析式;(3)问新设备投入生产第几个月后,纯收益达到最大?几个月后,能收回投资?9.蔗糖是决定杨梅果实中糖度的主要成分,某果农种植东魁杨梅,5月26日检测到杨梅果实中的蔗糖含量为2%,从5月27日开始到6月1日,测量出蔗糖含量数据,并根据这些数据建立蔗糖含量变化率y (蔗糖含量变化率=当天的蔗糖含量-上一天的蔗糖含量/上一天的蔗糖含量100%⨯)与生长天数(0x x = 表示5月26日)的函数关系是:20.00210.0630.21y x x =-+-. 根据这一函数模型解决下列问题:(1)这种杨梅果实中蔗糖含量增长最快的是哪一天?请说明理由.(2)求出这种杨梅果实中蔗糖含量在哪一天最高;(3)当蔗糖含量最高时,杨梅口感最好,计划用6天时间采摘完这批杨梅,请给这位果农提出采摘日期的合理化建议.10.如图,一个圆形喷水池的中央竖直安装了一个柱形喷水装置OA ,A 处的喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下,按如图所示的直角坐标系,水流喷出的高度y (m )与水平距离x (m )之间的关系式是2724y x x =-++(x >0).(1)柱子OA 的高度是______米;(2)若不计其他因素,水池的半径至少为多少米,才能使喷出的水流不至于落在池外?【参考答案】二次函数应用题1.(1)12,(4,3),12 (2)21(8)58y x =--+,不能相交,理由见解析;d 的最大值是3,最小值是158 【解析】【分析】(1)由题意写出点A 的坐标,代入k y x =即可求出k 值,得到12y x =,将点P 、点M 的纵坐标分别代入12y x=求出点P 和点M 的横坐标,即可求解; (2)①由抛物线G 的最高点Q 的坐标写出抛物线的顶点式2(8)5y a x =-+,将点A 坐标代入求出a 值,即可得到抛物线的解析式;求出抛物线上12x =时对应的y 值,判断此点在点M 的上方还是下方,即可得出抛物线与AM 是否相交.②当线段NC 平移后的线段11N C 的1N 点在抛物线上,即1N 点与D 重合时,平移距离最大,当线段NC 平移后的线段22N C 的2C 点在抛物线上时,平移距离最小,求出相应坐标即可求解.(1) 解:平台AB (水平)与x 轴的距离为6,AB =2,∴点A 、点B 的坐标为(2,6)A ,(0,6)B .将(2,6)A 代入k y x =得,62k =, 解得12k =, ∴滑道AM 所在图象的函数解析式为:12y x = 点P 到x 轴的距离为3,∴点P 的纵坐标为3P y =,将3P y =代入到12y x =得,1243P x ==, ∴点P 的坐标为(4,3),MN ⊥x 轴,测得MN =1,∴点M 的纵坐标为1=M y ,将1=M y 代入到12y x =得,12121M x ==, ∴点M 的坐标为(12,1),12ON ∴=,故答案依次为:12,(4,3),12;(2)解:①由题意抛物线G 的最高点Q 的坐标为(8,5),∴设抛物线G 的函数解析式为:2(8)5y a x =-+,将点P 坐标代入2(8)5y a x =-+得23(48)5a =-+,解得18a =-, ∴设抛物线G 的函数解析式为:21(8)58y x =--+, 点M 的纵坐标(12,1),设12x =时抛物线G 上对应点为点D ,则点D 的坐标(12,)D y ,将12x =代入到21(8)58y x =--+,解得3D y =, D M y y >,∴一号球可以飞行到点M 的正上方,∴抛物线G 与滑道AM 不能相交;②将线段NC 向上平移,平移后线段与抛物线有交点时,说明可以接到一号球,如图所示,当线段NC 平移后的线段11N C 的1N 点与D 重合时,平移距离最大,∴最大平移距离为303D N y y -=-=;当线段NC 平移后的线段22N C 的2C 点在抛物线上时,平移距离最小,1NC =,12ON =,∴点C 的坐标为(13,0),∴点2C 的横坐标为13,将213C x =代入到21(8)58y x =--+,解得2158C y = ∴最小平移距离为21515088C C y y -=-=; ∴平移距离d 的最大值是3,最小值是158. 【点睛】本题考查反比例函数、二次函数的实际应用,熟练掌握待定系数法求反比例函数解析式、二次函数顶点式,通过点的坐标判断函数图像是否相交等是解题的关键.2.(1)21(6)412y x =--+ (2)13m(3)这名队员不能拦到球(4)足球弹起后,会弹出10m【解析】【分析】(1)根据其飞行的最大高度是4m ,最高处距离飞出点的水平距离是6m ,设顶点式()264y a x =-+,将()0,1A 代入,待定系数法求解析式即可; (2)令0y =,求得与x 轴的交点坐标即可求解;(3)将10x =代入求得y 的值,进而比较即可求解(4)根据题意求得新抛物线的解析式,根据题意即求元抛物线与2y =的所截线段长即可,解一元二次方程求解即可(1)①当最大高度4y =时,6x =,∴设y 与x 之间的函数关系式为()264y a x =-+,又()0,1A ,∴()21064a =-+, ∴112a =-, ∴21(6)412y x =--+; (2)令0y =,则210(6)412x =--+,解得1613x =≈,26x =-(负值舍去),∴球飞行的最远水平距离是13m ;(3)当13310x =-=时,8 1.70.323y =>+=, ∴这名队员不能拦到球;(4))如图,足球第二次弹出后的距离为CD ,根据题意知CD EF =(即相当于将抛物线AEMFC 向下平移了2个单位长度),∴21(6)4212x --+=, 解得1626x =-,2626x =+,∴214610m CD x x =-=≈.答:足球弹起后,会弹出10m .【点睛】本题考查了二次函数的应用,掌握二次函数的平移,二次函数与坐标轴的交点问题,二次函数图像与性质,掌握二次函数图像与性质是解题的关键.3.(1)798万元(2)当丙种门票价格下降2元时,景区六月份的门票总收入有最大值,最大值是817.6万元【解析】【分析】(1)根据题意丙种门票价格下降10元,列式:100×(2-10×0.06)+80×(3-10×0.04)+(160-10)×(2+10×0.06+10×0.04)计算,即可求景区六月份的门票总收入;(2)设丙种门票价格降低m 元,景区六月份的门票总收入为W 万元,由题意可得:W =100(2-0.06m )+80(3-0.04m )+(160-m )(2+0.06m +0.04m ),化简得W =-0.1(m -24)²+817.6,然后根据二次函数的性质即可得结果.(1)解:由题意,得:100×(2-10×0.06)+80×(3-10×0.04)+(160-10)×(2+10×0.06+10×0.04)=798(万元)答:景区六月份的门票总收入为798万元.(2)解:设丙种门票价格降低m 元,景区六月份的门票总收入为W 万元,由题意,得:W =100(2-0.06m )+80(3-0.04m )+(160-m )(2+0.06m +0.04m )化简,得w =-0.1(m -24)²+817.6,当m =24时,w 取最大值,为817.6万元.答:当丙种门票价格下降2元时,景区六月份的门票总收入有最大值,最大值是817.6万元.【点睛】本题考查了二次函数的应用,解题的关键是弄清题意,得出二次函数关系,会应用二次函数的性质.4.(1)213482y x x =-++ (2)运动员运动的水平距离为12米时,运动员与小山坡的竖直距离为1米.【解析】【分析】(1)根据题意将点(0,4)和(4,8)代入C 2:y =-18x 2+bx +c 求出b 、c 的值即可写出C 2的函数解析式;(2)设运动员运动的水平距离为m 米时,运动员与小山坡的竖直距离为1米,依题意得:﹣18m 2+32m +4﹣(﹣112m 2+76m +1)=1,解出m 即可. (1)由题意可知抛物线C 2:y =﹣18x 2+bx +c 过点(0,4)和(4,8),将其代入得: 2414488c b c =⎧⎪⎨-⨯++=⎪⎩, 解得:324b c ⎧=⎪⎨⎪=⎩, ∴抛物线C 2的函数解析式为:213482y x x =-++; (2)设运动员运动的水平距离为m 米时,运动员与小山坡的竖直距离为1米,依题意得: ﹣18m 2+32m +4﹣(﹣112m 2+76m +1)=1, 整理得:(m ﹣12)(m +4)=0,解得:m 1=12,m 2=﹣4(舍去),故运动员运动的水平距离为12米时,运动员与小山坡的竖直距离为1米.【点睛】本题考查了二次函数的基本性质及其应用,熟练掌握二次函数的基本性质,并能将实际问题与二次函数模型相结合是解决本题的关键.5.(1)y=1000−10x ,w =−10x 2+1300x −30000;(2)商场销售该品牌玩具获得的最大利润为8640元.【分析】(1)由销售单价每涨1元,就会少售出10件玩具,得y =600−(x −40)×10=1000−10x ,利润w =(1000−10x )(x −30)=−10x 2+1300x −30000;(2)首先求出x 的取值范围,然后把w =−10x 2+1300x −30000转化成y =−10(x −65)2+12250,结合x 的取值范围,求出最大利润.(1)解:由题意得:销售量y=600−(x −40)×10=1000−10x ,销售玩具获得利润w =(1000−10x )(x −30)=−10x 2+1300x −30000;(2)解:根据题意得10001054045x x -≥⎧⎨≥⎩, 解之得:45≤x ≤46,w =−10x 2+1300x −30000=−10(x −65)2+12250,∵a =−10<0,对称轴是直线x =65,∴当45≤x ≤46时,w 随x 增大而增大.∴当x =46时,w 最大值=8640(元).答:商场销售该品牌玩具获得的最大利润为8640元.【点睛】本题主要考查了二次函数的应用的知识点,解答本题的关键熟练掌握二次函数的性质以及二次函数最大值的求解,此题难度不大.6.(1)40x +,60x -(2)212404800W x x =-++,215900W x =-+(3)6x =时,W 最大,最大利润为5778元【解析】【分析】(1)根据第二期培植盆景与花卉共100盆,培植的盆景比第一期增加x 盆列式即可; (2)根据利润=平均利润×销售数量列式计算即可;(3)表示出总利润W ,根据二次函数的性质求出最大值即可.(1)解:由题意得:第二期盆景的数量为()40x +盆,则花卉的数量为()()1004060x x -+=-盆,故答案为:40x +,60x -;(2)解:由题意得:21(40)(1202)2404800W x x x x =+-=-++,()2156015900W x x =-=-+;(3)解:由题意得:22122404800159002255700W W W x x x x x -++--+=++=+=,∵对称轴为254x =,而x 为正整数, ∴当6x =时,5778W =,当7x =时,5777W =,∵57785777>,∴6x =时,W 最大,最大利润为5778元.【点睛】本题主要考查了二次函数的应用,找到合适的数量关系列出算式是解题的关键. 7.(1)22-2x 5≤x <11(2)菜园的最大面积是296m ,此时x =5【解析】【分析】(1)根据矩形的性质,由EF = AD = 3+x ,再根据EF 上有一个2m 的门,DE = 23- CD - EF + 2得出DE ,并根据0< 22- 2x ≤12,求出自变量x 的取值范围;(2)根据矩形的面积公式写出函数解析式,再根据函数的性质,在自变量范围内求最值.(1)解:∵AC =3,CD =x ,∴ EF = AC + CD = 3+x ,∴DE = 23- CD - EF +2= 23- x -(3+x )+2= 23-x -3-x +2= 22-2x ,∵0< 22- 2x ≤12,∴5≤x < 11;(2)由题意,得:S = (3+x )(22- 2x )= -2x 2+ 16x +66= - 2(x -4)2 + 98,∵-2 <0,∴当x >4时,S 随x 的增大而减小,∵5≤x < 11,∴当x = 5时,S 有最大值,最大值= -2×(5-4)2+ 98 = 96.【点睛】本题考查了二次函数的应用,解题关键是根据题意正确表示出矩形的边长.8.(1)2y x x =+(2)232150w x x =-+-(3)投入生产第6个月后,纯收益达到最大w 最大值106=;投入生产第6个月后,能收回投资.【解析】【分析】(1)将x ,y 的两组对应值代入即可求a 、b 的值,继而即可求y 的函数关系式;(2)根据纯收益w =投入后每月可创收33万元×月数x ﹣投资150万元﹣从第1个月到第x 个月的维修保养费用累计y ,列出函数关系式;(3)求函数最大值,及w >0时,x 的值,可确定回收投资的月份.(1)由题意,得:当1x =时,2y =;当2x =时,246y =+=,将上述两组数据代入2y ax bx =+,得:2642a b a b=+⎧⎨=+⎩ , 解得:11a b =⎧⎨=⎩, ∴y 与x 的解析式为:2y x x =+;(2)由题意得:()233150w x x x =--+ 233150x x x =---232150x x =-+-∴纯收益w 关于x 的解析式为:232150w x x =-+-;(3)∵()223215016106w x x x =-+-=--+,∴当16x =时,w 最大值106=,即投入生产第6个月后,纯收益达到最大,又∵当016x <≤,w 随x 的增大而增大,当05x <≤时,0w <;当6x ≥时,0w >,∴投入生产第6个月后,能收回投资.【点睛】本题考查了用待定系数法求二次函数解析式及二次函数的实际应用.此题为数学建模题,借助二次函数解决实际问题.9.(1)6月10日,蔗糖增加速度最快,理由见解析;(2)6月21日;(3)见解析【解析】【分析】(1)求出顶点横坐标即可得答案;(2)求出y =0时x 的值,即可得答案;(3)在杨梅果实中蔗糖含量最高的6天采摘,而当x >26时,含糖量降低的速度比x =23时上升的速度快,解可得到答案.(1)∵y =−0.0021x 2+0.063x −0.21=−0.0021(x −15)2+0.2625,∴在第15天,即6月10日,这种杨梅果实中蔗糖含量增长最快;(2)当蔗糖含量比前一天增加时,y >0,当蔗糖含量比前一天减少时,y <0。

九年级数学二次函数应用题-含答案

九年级数学二次函数应用题-含答案

九年级数学专题二次函数的应用题一、解答题1.一位运动员在距篮下4米处跳起投篮,球运行的路线是抛物线,当球运行的水平距离为2. 5米时,达到最大高度3.5米,然后准确落入篮圈。

已知篮圈中心到地面的距离为3.05米。

(1)建立如图所示的直角坐标系,求抛物线的解析式;(2)该运动员身高1.8米,在这次跳投中,球在头顶上方0.25米处出手,问:球出手时,他跳离地面的高度是多少?2.某商场购进一批单价为16元的日用品,经试验发现,若按每件20元的价格销售时,每月能卖360件,若按每件25元的价格销售时,每月能卖210件,假定每月销售件数y(件)是价格x(元/件)的一次函数.(1)试求y与x之间的关系式;(2)在商品不积压,且不考虑其他因素的条件下,问销售价格定为多少时,才能使每月获得最大利润?每月的最大利润是多少?3.在体育测试时,初三的一名高个子男同学推铅球,已知铅球所经过的路线是某个二次函数图像的一部分,如图所示,如果这个男同学的出手处A点的坐标(0,2),铅球路线的最高处B点的坐标为(6,5)(1)求这个二次函数的解析式;(2)该男同学把铅球推出去多远?(精确到0.01米,)4.某商场以每件42元的价钱购进一种服装,根据试销得知:这种服装每天的销售量(件),与每件的销售价(元/件)可看成是一次函数关系:1.写出商场卖这种服装每天的销售利润与每件的销售价之间的函数关系式(每天的销售利润是指所卖出服装的销售价与购进价的差);2.通过对所得函数关系式进行配方,指出:商场要想每天获得最大的销售利润,每件的销售价定为多少最为合适;最大销售利润为多少?5.某跳水运动员进行10米跳台跳水训练时,身体(看成一点)在空中的运动路线是如图所示坐标系下经过原点O的一条抛物线(图中标出的数据为已知条件),在跳某个规定动作时,正常情况下,该运动员在空中的最高处距水面10米,入水处距池边的距离为4米,运动员在距水面高度为5米以前,必须完成规定的翻腾动作,并调整好入水姿势,否则就会出现失误。

二次函数投篮问题

二次函数投篮问题
如图,一运动员身高1.8m,在距篮下4m处跳起投篮,球运行的轨迹为 抛物线。当球运行的水平距离为2.5m时, 到达最大高度3.5m,然后 准确落入篮圈,已知篮圈中心距离地面3.05米。
(1)求抛物线的解析式。
(2)在这次投跳中,球在头顶上方0.25m处出手,球出手时,他跳离 地面的高度是多少?
y
0.25米
1.8米
3.5米
3.05米
﹖ 2.5米
0
x
4米
一场篮球赛中,小明跳起投篮,已知球出手时离地 面高 29米0 ,与篮圈中心的水平距离为8米,当球出 手后水平距离为4米时到达最大高度4米,设篮球 运行的轨迹为抛物线,篮圈中心距离地面3米。
问此球能否投中?
y
4米
20
9
4米
0
8米
3米
x
若假设出手的角度和力度 都不变,则如何才能使此 球命中?
6y
4
0,
20 9
2
(4,4)
(8,3)
8,
20 9
01 2
-2
3 4 55 6 7 8 9 10
x
6y
4
0,
20 9
2
(4,4)
(7,3) ● (8,3)
01
2
3
4
55
6
7
8
9
10
X
-2
若假设出手的角度和力度都不变, 则小明如何改进才能使此球命中?
(1)跳得高一点 (2)向前平移一点
1.在一场足球赛中,一球员从球门正前方10 米处将球踢起射向球门,当球飞行的水平距离 是6米时,球到达最高点,此时球高3米,已知 球门高2.44米,问能否射中球门?
3米Байду номын сангаас

二次函数课后练习(题型全归纳)

二次函数课后练习(题型全归纳)

课后练习1.下列函数关系中,是二次函数的是()A.在弹性限度内,弹簧的长度y与所挂物体质量x之间的关系B.当距离一定时,火车行驶的时间t与速度v之间的关系C.等边三角形的周长C与边长a之间的关系D.半圆面积S与半径R之间的关系2.若y=(m+1)x是关于x的二次函数,则m的值为()A.﹣2B.1C.﹣2或1D.2或1 3.下列函数表达式中,一定是二次函数的是()A.y=3x﹣1B.y=ax2+bx+c C.y=3x2﹣2x+1D.y=x2+ 4.下列函数中,y关于x的二次函数的是()A.y=x3+2x2+3B.y=C.y=﹣x2+x D.y=ax2+bx+c 5.函数y=(m﹣5)x2+x是二次函数的条件为()A.m为常数,且m≠0B.m为常数,且m≠5C.m为常数,且m=0D.m可以为任何数6.二次函数y=ax2与一次函数y=ax+a在同一坐标系中的大致图象可能是()A.B.C.D.7.已知a,b是非零实数,|a|>|b|,在同一平面直角坐标系中,二次函数y1=ax2+bx与一次函数y2=ax+b的大致图象不可能是()A.B.C.D.8.在同一直角坐标系中,一次函数y=ax﹣b和二次函数y=﹣ax2﹣b的大致图象是()A.B.C.D.9.已知函数y=(x﹣a)(x﹣b)(其中a>b)的图象如图所示,则函数y=ax+b的图象大致是()A.B.C.D.10.在同一平面直角坐标系中,一次函数y=kx﹣2k和二次函数y=﹣kx2+2x﹣4(k是常数且k≠0)的图象可能是()A.B.C.D.11.已知函数,则使y=k成立的x值恰好有4个,则k的值可能为()A.﹣2B.﹣1C.2D.312.在平面直角坐标系xOy中,四条抛物线如图所示,其解析式中的二次项系数一定小于1的是()A.y1B.y2C.y3D.y413.如图,一次函数y1=2x与二次函数y2=ax2+bx+c图象相交于P、Q两点,则函数y=ax2+(b﹣2)x+c的图象可能是()A.B.C.D.14.已知两点A(﹣6,y1),B(2,y2)均在抛物线y=ax2+bx+c(a≠0)上,点C(x0,y0)是该抛物线的顶点,若y0≥y1>y2,则x0的取值范围是()A.x0<﹣6B.x0<﹣2C.﹣6<x0<﹣2D.﹣2<x0<215.抛物线y=﹣3x2﹣4的开口方向和顶点坐标分别是()A.向下,(0,﹣4)B.向下,(0,4)C.向上,(0,4)D.向上,(0,﹣4)16.已知抛物线C:y=(x﹣1)2﹣1,顶点为D,将C沿水平方向向右(或向左)平移m个单位,得到抛物线C1,顶点为D1,C与C1相交于点Q,若∠DQD1=60°,则m等于()A.±4B.±2C.﹣2或2D.﹣4或417.已知抛物线y=x2+2mx﹣3m(m是常数),且无论m取何值,该抛物线都经过某定点H,则点H的坐标为()A.(﹣,1)B.(﹣,﹣1)C.(,)D.(﹣,)18.点A(2,6)与点B(4,6)均在抛物线y=ax2+bx+c(a≠0)上,则下列说法正确的是()A.a>0B.a<0C.6a+b=0D.a+6b=019.已知二次函数y=﹣(x﹣1)2+2,当t<x<5时,y随x的增大而减小,则实数t的取值范围是()A.t≤0B.0<t≤1C.1≤t<5D.t≥520.如图,P是抛物线y=x2﹣x﹣4在第四象限的一点,过点P分别向x轴和y轴作垂线,垂足分别为A、B,则四边形OAPB周长的最大值为()A.10B.8C.7.5D.521.如图,二次函数y=ax2﹣bx的图象开口向下,且经过第三象限的点P.若点P的横坐标为﹣1,则一次函数y=(a﹣b)x+(a+b)的图象大致是()A.B.C.D.22.已知二次函数y=﹣3x2+2x+1的图象经过点A(a,y1),B(b,y2),C(c,y3),其中a,b,c均大于0.记点A,B,C到该二次函数的对称轴的距离分别为d A,d B,d C.若d A<<d B<d C,则下列结论正确的是()A.当a≤x≤b时,y随着x的增大而增大B.当a≤x≤c时,y随着x的增大而增大C.当b≤x≤c时,y随着x的增大而减小D.当a≤x≤c时,y随着x的增大而减小23.二次函数y=ax2+bx+c的图象如图所示,它的对称轴是经过(﹣1,0)且平行于y轴的直线,当m取任意实数时,am2+bm与a﹣b的大小关系是()A.am2+bm>a﹣b B.am2+bm<a﹣b C.am2+bm≥a﹣b D.am2+bm≤a﹣b24.二次函数y=ax2+bx+c图象经过(0,0)、(﹣1,﹣1)、(1,9)三点,下列性质错误的是()A.开口向上B.对称轴在y轴左侧C.经过第四象限D.当x>0,y随x增大而增大25.抛物线y=ax2+bx+c(a≠0)过(0,4)和(﹣6,4)两点,则此抛物线的对称轴为()A.直线x=4B.直线x=0C.直线x=﹣3D.直线x=﹣626.下列二次函数所对应的抛物线中,开口程度与其它不一样的是()A.y=x2+2x﹣7B.C.D.27.抛物线y=2(x+4)2+3的顶点坐标是()A.(0,1)B.(1,5)C.(4,3)D.(﹣4,3)28.已知函数y=2x m﹣1+3的图象是一条抛物线,则m=.29.若y=(m+2)x+mx+1是关于自变量x的二次函数,则m=.30.若函数y=(k﹣2)x是关于x的二次函数,则k=.31.在平面直角坐标系中,画出函数y=﹣3x2+6x+1的图象,并求出它的最值.32.若a>b>0,且a+b+c=0,画出抛物线y=ax2+bx+c的大致图象.33.如图,在边长为1的网格中有一个平面直角坐标系.(1)若点B是A为顶点的抛物线上一点,试在图中画中抛物线的对称轴,并写出点B在抛物线上的对称点的坐标;(2)试在图中画出这条抛物线;(3)若x1<x2<x3<1,试确定它们对应的函数值y1,y2,y3的大小,并用“<”号连接;(4)写出抛物线的表达式.34.在如图所示网格内建立恰当直角坐标系后,画出函数y=2x2和y=﹣x2的图象,并根据图象回答下列问题(设小方格的边长为1).(1)说出这两个函数图象的开口方向,对称轴和顶点坐标;(2)抛物线y=2x2,当x时,抛物线上的点都在x轴的上方,它的顶点是图象的最点;(3)函数y=﹣x2,对于一切x的值,总有函数y0,当x时,y有最值是.35.在同一坐标系中画出下列函数的图象:(1)y=﹣x2;(2)y=﹣(x+2)2(3)y=﹣(x﹣1)2x…﹣4﹣3﹣2﹣101234…y=﹣x2……y=﹣(x+2)2……y=﹣(x﹣1)2……36.已知二次函数y=x2﹣x﹣2.(1)在图中画出此二次函数的图象.并标出图象与x轴的公共点的横坐标;(2)观察图象,写出当x在什么范围内取值时,y>0.37.二次函数y=(x﹣m)2的图象如图所示.且OA=OC,求该函数的解析式.38.已知函数y=﹣(x﹣m)(x﹣n)(其中m<n)的图象如图所示,请判断m+n的符号.39.在同一坐标系中画出函数y1=,y2=和y3=的图象,并说明y2、y3的图象与y=的图象的关系.40.作出下列函数的图象:(1)y=x2﹣4x+3;(2)y=x2﹣4|x|+3;(3)y=|x2﹣4|x|+3|.交点和平移1.抛物线y=x2﹣2x+1与y轴的交点坐标为()A.(1,0)B.(0,1)C.(0,0)D.(0,2)2.在抛物线y=x2﹣4x+m的图象上有三个点(﹣3,y1),(1,y2),(4,y3),则y1,y2,y3的大小关系为()A.y2<y3<y1B.y1<y2=y3C.y1<y2<y3D.y3<y2<y13.已知抛物线y=﹣x2+bx+4经过(﹣2,n)和(4,n)两点,则n的值为()A.﹣2B.﹣4C.2D.44.若当x=1和x=3时,代数式ax2+bx+5的值相等,则当x=4时,代数式ax2+bx+5的值是()A.5B.﹣5C.0D.25.若二次函数y=|a|x2+bx+c的图象经过A(m,n)、B(0,y1)、C(3﹣m,n)、D(,y2)、E(2,y3),则y1、y2、y3的大小关系是()A.y1<y2<y3B.y1<y3<y2C.y3<y2<y1D.y2<y3<y16.在抛物线y=a(x﹣m﹣1)2+c(a≠0)和直线y=﹣x的图象上有三点(x1,m)、(x2,m)、(x3,m),则x1+x2+x3的结果是()A.B.0C.1D.27.二次函数y=ax2+bx+c图象上部分点的坐标满足下表:x…﹣3﹣2﹣101…y…﹣3﹣2﹣3﹣6﹣11…则该函数图象上的点(﹣6,y1),(m2+2m+3,y2)则下列选项正确的是()A.y1>y2B.y1≥y2C.y1<y2D.y1≤y28.下列抛物线中,与y轴交点坐标为(0,3)的是()A.y=(x﹣3)2B.y=x2﹣3C.y=2x2﹣3x D.y=x2﹣2x+39.若抛物线y=ax2+2ax+4a(a>0)上有三点,则y1、y2、y3的大小关系为()A.y1<y2<y3B.y1<y3<y2C.y3<y1<y2D.y2<y3<y110.已知(1,y1),(﹣2,y2),(﹣4,y3)是抛物线y=﹣x2﹣4x+m上的点,则()A.y1<y2<y3B.y3<y2<y1C.y3<y1<y2D.y1<y3<y211.已知二次函数y=x2﹣4x+n(n是常数),若对于抛物线上任意两点A(x1,y1),B(x2,y2)均有y1>y2,则x1,x2应满足的关系式是()A.x1﹣2>x2﹣2B.x1﹣2<x2﹣2C.|x1﹣2|>|x2﹣2|D.|x1﹣2|<|x2﹣2|12.点A(﹣3,y1),B(0,y2),C(3,y3)是二次函数y=﹣(x+2)2+m图象上的两点,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y1=y3<y2C.y3<y2<y1D.y1<y3<y213.已知二次函数y=4x2+4x﹣1,当自变量x取两个不同的值x1,x2时,函数值相等,则当x取时的函数值为()A.﹣1B.﹣2C.2D.114.若点A(m﹣1,y1),B(m,y2)都在二次函数y=ax2+4ax+3(a>0)的图象上,且y1<y2则m的取值范围是()A.m B.m<﹣C.m>﹣D.m>﹣15.抛物线y=(x+1)2+1上有点A(x1,y1)点B(x2,y2)且x1<x2<﹣1,则y1与y2的大小关系是()A.y1<y2B.y1>y2C.y1=y2D.不能确定16.把函数y=﹣x2的图象,经过怎样的平移变换以后,可以得到函数y=﹣(x﹣1)2+1的图象()A.向左平移1个单位,再向下平移1个单位B.向左平移1个单位,再向上平移1个单位C.向右平移1个单位,再向上平移1个单位D.向右平移1个单位,再向下平移1个单位17.将抛物线y=(x﹣2)2+1向左平移2个单位,得到的新抛物线顶点坐标是()A.(4,1)B.(0,1)C.(2,3)D.(2,﹣1)18.将抛物线y=x2+1先向左平移2个单位,再向下平移3个单位.得到的新抛物线的表达式为()A.y=(x+2)2+4B.y=(x﹣2)2﹣2C.y=(x﹣2)2+4D.y=(x+2)2﹣219.在平面直角坐标系中,对于二次函数y=(x﹣2)2+1,下列说法中错误的是()A.y的最小值为1B.图象顶点坐标为(2,1),对称轴为直线x=2C.当x<2时,y的值随x值的增大而增大,当x≥2时,y的值随x值的增大而减小D.它的图象可以由y=x2的图象向右平移2个单位长度,再向上平移1个单位长度得到20.在同一平面直角坐标系中,若抛物线y=x2+(2m﹣1)x+2m﹣4与y=x2﹣(3m+n)x+n关于y轴对称,则符合条件的m,n的值为()A.m=,n=﹣B.m=5,n=﹣6C.m=﹣1,n=6D.m=1,n=﹣221.抛物线y=x2+6x+7可由抛物线y=x2如何平移得到的()A.先向左平移3个单位,再向下平移2个单位B.先向左平移6个单位,再向上平移7个单位C.先向上平移2个单位,再向左平移3个单位D.先回右平移3个单位,再向上平移2个单位22.已知,二次函数y=(x+h)2+k向左平移1个单位,再向下平移3个单位,得到二次函数y=(x﹣1)2+1,则原函数的顶点坐标为()A.(2,﹣4)B.(1,﹣4)C.(1,4)D.(2,4)23.将抛物线y=2x2向上平移3个单位长度,再向右平移2个单位长度,所得到的抛物线为()A.y=2(x+2)2+3B.y=2(x﹣2)2+3C.y=2(x﹣2)2﹣3D.y=2(x+2)2﹣324.如图是函数y=x2﹣2x﹣3(0≤x≤4)的图象,直线l∥x轴且过点(0,m),将该函数在直线l上方的图象沿直线l向下翻折,在直线1下方的图象保持不变,得到一个新图象.若新图象对应的函数的最大值与最小值之差不大于5,则m的取值范围是()A.m≥1B.m≤0C.0≤m≤1D.m≥1或m≤025.在平面直角坐标系中,抛物线y=(x+5)(x﹣3)经变换后得到抛物线y=(x+3)(x﹣5),则这个变换可以是()A.向左平移2个单位B.向右平移2个单位C.向左平移8个单位D.向右平移8个单位26.如果将抛物线y=x2+2向左平移1个单位,那么所得新抛物线的表达式是()A.y=x2+1B.y=x2+3C.y=(x﹣1)2+2D.y=(x+1)2+227.将抛物线y=2x2﹣1沿直线y=2x方向向右上方平移个单位,得到新抛物线的解析式为()A.y=2(x+2)2+3B.C.D.y=2(x﹣2)2+328.如图,将抛物线y=﹣x2+x+5的图象x轴上方的部分沿x轴折到x轴下方,图象的其余部分不变,得到一个新图象.则新图象与直线y=﹣5的交点个数为()A.1B.2C.3D.429.如图,点A(m,5),B(n,2)是抛物线C1:y=x2﹣2x+3上的两点,将抛物线C1向左平移,得到抛物线C2,点A,B的对应点分别为点A',B'.若曲线段AB扫过的面积为9(图中的阴影部分),则抛物线C2的解析式是()A.y=(x﹣5)2+1B.y=(x﹣2)2+4C.y=(x+1)2+1D.y=(x+2)2﹣230.把抛物线y=x2+1先向右平移3个单位长度,再向下平移5个单位长度后,所得函数的表达式为()A.y=(x+3)2﹣5B.y=(x+3)2﹣4C.y=(x﹣3)2+6D.y=(x﹣3)2﹣431.已知二次函数y=﹣(x﹣k+2)(x+k)+m,其中k,m为常数.下列说法正确的是()A.若k≠1,m≠0,则二次函数y的最大值小于0B.若k<1,m>0,则二次函数y的最大值大于0C.若k=1,m≠0,则二次函数y的最大值小于0D.若k>1,m<0,则二次函数y的最大值大于032.对于题目“当﹣2≤x≤1时,二次函数y=﹣(x﹣m)2+m2+1有最大值4,求实数m的值.”:甲的结果是2或,乙的结果是﹣或﹣,则()A.甲的结果正确B.乙的结果正确C.甲、乙的结果合在一起才正确D.甲、乙的结果合在一起也不正确33.已知二次函数y=(x﹣m)2+2m(m为常数),在自变量x的值满足1≤x≤3的情况下,与其对应的函数值y 的最小值为4,则m的值为()A.2B.2或C.2或﹣D.2或或﹣34.已知二次函数y=(x﹣h)2+1(h为常数),在自变量x的值满足1≤x≤3的情况下,与其对对应的函数值y 的最小值为10,则h的值为()A.﹣2或4B.0或6C.1或3D.﹣2或635.四边形的两条对角线AC、BD所成的锐角为45°,当AC+BD=9时,四边形ABCD的面积最大值是()A.B.C.19D.2136.已知二次函数y=x2+mx+n的图象经过点(﹣1,﹣3),则代数式mn+1有()A.最小值﹣3B.最小值3C.最大值﹣3D.最大值337.已知抛物线y=x2﹣4x+3,当0≤x≤m时,y的最小值为﹣1,最大值为3,则m的取值范围为()A.m≥2B.0≤m≤2C.2≤m≤4D.m≤438.对某一个函数给出如下定义:如果存在常数M,对于任意的函数值y,都满足y≤M,那么称这个函数是有上界函数;在所有满足条件的M中,其最小值称为这个函数的上确界.例如,函数y=﹣(x+1)2+2,y≤2,因此是有上界函数,其上确界是2,如果函数y=﹣2x+1(m≤x≤n,m<n)的上确界是n,且这个函数的最小值不超过2m,则m的取值范围是()A.m≤B.m C.D.m39.已知二次函数y=ax2+bx+c(a<0)的图象如图,当﹣5≤x≤0时,下列说法正确的是()A.有最小值﹣5、最大值0B.有最小值﹣3、最大值6C.有最小值0、最大值6D.有最小值2、最大值640.已知实数a,b满足a2+b2=1,则a4+ab+b4的最小值为()A.B.0C.1D.解析式的求解最值面积最值1.抛物线y=2x2﹣4x+c经过点(2,﹣3),则c的值为()A.﹣1B.2C.﹣3D.﹣22.已知二次函数y=ax2﹣1的图象经过点(1,﹣2),那么a的值为()A.a=﹣2B.a=2C.a=1D.a=﹣13.已知二次函数y=ax2+4x+c,当x等于﹣2时,函数值是﹣1;当x=1时,函数值是5.则此二次函数的表达式为()A.y=2x2+4x﹣1B.y=x2+4x﹣2C.y=﹣2x2+4x+1D.y=2x2+4x+14.二次函数的部分图象如图所示,对称轴是x=﹣1,则这个二次函数的表达式为()A.y=﹣x2+2x+3B.y=x2+2x+3C.y=﹣x2+2x﹣3D.y=﹣x2﹣2x+35.顶点在点M(﹣2,1),且图象经过原点的二次函数解析式是()A.y=(x﹣2)2+1B.y=﹣(x+2)2+1C.y=(x+2)2+1D.y=(x﹣2)2+16.如图,在正方形ABCD中,E、F分别是AB、CD的中点,EG⊥AF,FH⊥CE,垂足分别为G,H,设AG=x,图中阴影部分面积为y,则y与x之间的函数关系式是()A.y=3x2B.y=4x2C.y=8x2D.y=9x2二.填空题(共5小题)7.阅读:我们约定,在平面直角坐标系中,经过某点且平行于坐标轴或平行于两坐标轴夹角角平分线的直线,叫该点的“特征线”.例如,点M(1,3)的特征线有:x=1,y=3,y=x+2,y=﹣x+4.如图所示,在平面直角坐标系中有正方形OABC,点B在第一象限,A、C分别在x轴和y轴上,抛物线y=(x﹣a)2+b经过B、C两点,顶点D在正方形内部.(1)写出点M(2,3)任意两条特征线为;(2)若点D有一条特征线是y=x+1,则此抛物线的解析式为.8.已知抛物线经过点A(﹣2,0)、C(0,﹣3),则该抛物线的解析式为.9.过(﹣1,0)、(3,0)、(1,2)三点的抛物线的解析式是.10.请写出一个开口向上,并且与y轴交点在y轴负半轴的抛物线的表达式:.11.写出经过点(0,0),(﹣2,0)的一个二次函数的解析式(写一个即可)三.解答题(共29小题)12.如图一,抛物线y=ax2+bx+c过A(﹣1,0)B(3.0)、C(0,)三点(1)求该抛物线的解析式;(2)P(x1,y1)、Q(4,y2)两点均在该抛物线上,若y1≤y2,求P点横坐标x1的取值范围;(3)如图二,过点C作x轴的平行线交抛物线于点E,该抛物线的对称轴与x轴交于点D,连结CD、CB,点F为线段CB的中点,点M、N分别为直线CD和CE上的动点,求△FMN周长的最小值.13.如图,已知抛物线经过两点A(﹣3,0),B(0,3),且其对称轴为直线x=﹣1.(1)求此抛物线的解析式;(2)若点P是抛物线上点A与点B之间的动点(不包括点A,点B),求△PAB的面积的最大值,并求出此时点P的坐标.14.如图,直线y=﹣x+4与x轴,y轴分别交于点B,C,点A在x轴负半轴上,且OA=OB,抛物线y=ax2+bx+4经过A,B,C三点.(1)求抛物线的解析式;(2)点P是第一象限内抛物线上的动点,设点P的横坐标为m,过点P作PD⊥BC,垂足为D,用含m的代数式表示线段PD的长,并求出线段PD的最大值.15.已知抛物线y=ax2+bx经过点A(﹣4,﹣4)和点B(m,0),且m≠0.(1)若该抛物线的对称轴经过点A,如图,请根据观察图象说明此时y的最小值及m的值;(2)若m=4,求抛物线的解析式(也称关系式),并判断抛物线的开口方向.16.在平面直角坐标系中,O为原点,抛物线(a≠0)经过点A(,﹣3),对称轴为直线l,点O关于直线l的对称点为点B.过点A作直线AC∥x轴,交y轴于点C.(Ⅰ)求该抛物线的解析式及对称轴;(Ⅱ)点P在y轴上,当PA+PB的值最小时,求点P的坐标;=S△AOQ?若存在,求出点Q的坐标;若不存在,请说明理由.(Ⅲ)抛物线上是否存在点Q,使得S△AOC17.如图,抛物线y=﹣x2+bx+c经过A(﹣1,0),B(3,0)两点,且与y轴交于点C,点D是抛物线的顶点,抛物线对称轴DE交x轴于点E,连接BD.(1)求经过A,B,C三点的抛物线的函数表达式;(2)点P是线段BD上一点,当PE=PC时,求点P的坐标.18.已知二次函数的图象经过点A(﹣2,0)、B(1,3)和点C.(1)点C的坐标可以是下列选项中的.(只填序号)①(﹣2,2);②(1,﹣1);③(2,4);④(3,﹣4)(2)若点C坐标为(2,0),求该二次函数的表达式;(3)若点C坐标为(2,m),二次函数的图象开口向下且对称轴在y轴右侧,结合函数图象,直接写出m的取值范围.19.如图,直线y=﹣x+c与x轴交于点B(3,0),与y轴交于点C,抛物线y=x2+bx+c经过点A、B、C.(1)求点A的坐标和抛物线的解析式;(2)当点P在抛物线上(不与点A重合),且△PBC的面积和△ABC的面积相等时,求出点P的横坐标.20.如图,抛物线y=﹣x2+bx+c经过点B(0,3)和点A(3,0).(1)求抛物线的函数表达式和直线的函数表达式;(2)若点P是抛物线落在第一象限,连接PA,PB,求△PAB的面积S的最大值及此时点P的坐标.21.如图,抛物线y=ax2+bx+3经过点A(﹣1,0)、B(4,0).E是线段OB上一动点(点E不与O、B重合),过点E作x轴的垂线交抛物线于点D,交线段BC于点G、过点D作DF⊥BC,垂足为点F.(1)求该抛物线的解析式;(2)试求线段DF的长h关于点E的横坐标x的函数解析式,并求出h的最大值.22.如图,已知点A(﹣2,0),B(4,0),抛物线y=ax2+bx﹣1过A,B两点并与过点A的直线y=﹣﹣1交于y轴上的点C.(1)求抛物线解析式及对称轴;(2)在抛物线的对称轴上是否存在一点P使四边形ACPO的周长最小?若存在求出点P的坐标若不存在请说明理由.23.如图,在平面直角坐标系中,一直线y=m(m>0)分别与x轴、y轴交于A、B两点,点A、点D关于原点对称,过点A的抛物线y=﹣mx m2与射线AB交于另一点C,若将△ACO沿着CO所在的直线翻折得到△A′CO,△A′CO与△COD重叠部分的面积为△COD的.(1)求B、D两点的坐标(用m的代数式表示).(2)当A′落在抛物线上时,求二次函数的解析式.24.二次函数y=ax2+bx﹣1中的x、y满足如表:x…﹣1012…y…0﹣1m9…(1)求这个二次函数的表达式;(2)求m的值.25.抛物线y=﹣x2+bx+c经过点A(4,0)和点B(0,2),且抛物线的对称轴为直线l,顶点为C.(1)求抛物线的解析式;(2)连接AC、BC、BO,求四边形AOBC的面积.26.设二次函数y1=ax2+bx+a﹣5(a,b为常数,a≠0),且2a+b=3.(1)若该二次函数的图象过点(﹣1,4),求该二次函数的表达式;(2)y1的图象始终经过一个定点,若一次函数y2=kx+b(k为常数,k≠0)的图象也经过这个定点,探究实数k,a满足的关系式;(3)已知点P(x0,m)和Q(1,n)都在函数y1的图象上,若x0<1,且m>n,求x0的取值范围(用含a 的代数式表示).27.已知一抛物线y=ax2+bx和抛物线y=﹣2x2的形状及开口方向完全相同,且经过点(1,6)(1)求此抛物线解析式;(2)用配方法求此抛物线的顶点坐标.28.一次函数y=﹣x的图象如图所示,它与二次函数y=ax2+2ax+c的图象交于A、B两点(其中点A在点B 的左侧),与这个二次函数图象的对称轴交于点C.(1)求点C的坐标;(2)设二次函数图象的顶点为D.若点D与点C关于x轴对称,且△ACD的面积等于,求此二次函数的关系式.29.已知二次函数y=2x2+bx+1的图象过点(2,3).(1)求该二次函数的表达式;(2)若点P(m,m2+1)也在该二次函数的图象上,求点P的坐标.30.已知:二次函数y=ax2+bx+c(a≠0)中的x和y满足下表:x…﹣10123…y…30﹣10m…(1)观察上表可求得m的值为;(2)试求出这个二次函数的解析式;(3)若点A(n+2,y1),B(n,y2)在该抛物线上,且y1>y2,请直接写出n的取值范围.31.已知二次函数y=ax2+bx﹣3(a≠0),且a+b=3.(1)若其图象经过点(﹣3,0),求此二次函数的表达式.(2)若(m,n)为(1)中二次函数图象在第三象限内的点,请分别求m,n的取值范围.(3)点P(x1,y1),Q(x2,y2)是函数图象上两个点,满足x1+x2=2且x1<x2,试比较y1和y2的大小关系.32.在平面直角坐标系xOy中,抛物线y=﹣2x2+mx+n经过点A(0,2),B(3,﹣4).(1)求该抛物线的函数表达式及对称轴;(2)设点B关于原点的对称点为C,点D是抛物线对称轴上一动点,记抛物线在A,B之间的部分为图象G (包含A,B两点),如果直线CD与图象G有两个公共点,结合函数的图象,直接写出点D纵坐标t的取值范围.33.二次函数y=ax2﹣2ax﹣3(a≠0)的图象经过点A.(1)求二次函数的对称轴;(2)当A(﹣1,0)时,①求此时二次函数的表达式;②把y=ax2﹣2ax﹣3化为y=a(x﹣h)2+k的形式,并写出顶点坐标;③画出函数的图象.34.已知抛物线y=﹣x2+bx+c与直线y=﹣x+m相交于第一象限内不同的两点A(4,n),B(1,4),(1)求此抛物线的解析式.(2)抛物线上是否存点P,使直线OP将线段AB平分?若存在直接求出P点坐标;若不存在说明理由.35.如图所示,抛物线y=ax2+bx+c经过A(﹣2,0)、B(4,0)、C(0,4)三点,抛物线对称轴与x轴交于点D.(1)求该抛物线的解析式;(2)若点E为对称轴上一点,将线段ED绕点E顺时针方向旋转90°得到线段EF,若点F恰好在该抛物线上,求线段DE的长.36.在平面直角坐标系中,抛物线y=ax2+bx+3经过点A(3,0)和点B(4,3).(1)求这条抛物线所对应的二次函数的表达式.(2)直接写出该抛物线开口方向和顶点坐标.(3)直接在所给坐标平面内画出这条抛物线.37.已知,抛物线y=ax2+bx+c(a≠0)的顶点为A(s,t)(其中s≠0).(1)若抛物线经过(2,2)和(﹣3,37)两点,且s=3.①求抛物线的解析式;②若n>3,设点M(n,y1),N(n+1,y2)在抛物线上,比较y1,y2的大小关系,并说明理由;(2)若a=2,c=﹣2,直线y=2x+m与抛物线y=ax2+bx+c的交于点P和点Q,点P的横坐标为h,点Q的横坐标为h+3,求出b和h的函数关系式;(3)若点A在抛物线y=x2﹣5x+c上,且2≤s<3时,求a的取值范围.38.如图,▱ABCD与抛物线y=﹣x2+bx+c相交于点A,B,D,点C在抛物线的对称轴上,已知点B(﹣1,0),BC=4.(1)求抛物线的解析式;(2)求BD的函数表达式.39.如图,抛物线y=ax2+bx+c的图象经过点A(﹣2,0),点B(4,0),点D(2,4),与y轴交于点C,作直线BC,连接AC、CD.(1)求抛物线的函数表达式;(2)E是抛物线上的点,求满足∠ECD=∠ACO的点E的坐标.40.已知二次函数的图象以A(﹣1,4)为顶点,且过点B(2,﹣5).(1)求该函数的关系式;(2)求该函数图象与坐标轴的交点坐标;(3)将该函数图象向右平移,当图象经过原点时,A、B两点随图象移至A′、B′,求△OA′B′的面积.综合及实际应用估值1.探究课上,老师给出一个问题“利用二次函数y=2x2与一次函数y=x+2的图象,求一元二次方程2x2=x+2的近似根”小华利用计算机绘制出如图所示的图象,通过观察可知该方程的两近似根x1和x2满足﹣1<x1<0,1<x2<2.小华的上述方法体现的数学思想是()A.公理化B.分类讨论C.数形结合D.由特殊到一般2.下表是一组二次函数y=x2+3x﹣5的自变量x与函数值y的对应值:x1 1.1 1.2 1.3 1.4y﹣1﹣0.49a0.59 1.16已知方程x2+3x﹣5=0的一个近似根是1.2,则a可能值范围为()A.a=﹣1B.﹣1<a<0.49C.|a|<0.49D.1.16≥a≥0.593.如表给出了二次函数y=x2+2x﹣10中x,y的一些对应值,则可以估计一元二次方程x2+2x﹣10=0的一个近似解为()x… 2.1 2.2 2.3 2.4 2.5…y…﹣1.39﹣0.76﹣0.110.56 1.25…A.2.2B.2.3C.2.4D.2.54.二次函数y=﹣x2+mx的图象如图,对称轴为直线x=2,若关于x的一元二次方程﹣x2+mx﹣t=0(t为实数)在1<x<5的范围内有解,则t的取值范围是()A.t>﹣5B.﹣5<t<3C.3<t≤4D.﹣5<t≤45.如图,点A(2.18,﹣0.51),B(2.68,0.54),在二次函数y=ax2+bx+c(a≠0)的图象上,则方程ax2+bx+c =0的一个近似值可能是()A.2.18B.2.68C.﹣0.51D.2.456.已知二次函数y=ax2+bx+c中,y与x的部分对应值如下:x 1.1 1.2 1.3 1.4 1.5 1.6y﹣1.59﹣1.16﹣0.71﹣0.240.250.76则一元二次方程ax2+bx+c=0的一个解x满足条件()A.1.2<x<1.3B.1.3<x<1.4C.1.4<x<1.5D.1.5<x<1.67.已知二次函数y=ax2+bx+c中,函数y与自变量x的部分对应值如表,则方程ax2+bx+c=0的一个解的范围是()x 6.17 6.18 6.19 6.20y﹣0.03﹣0.010.020.04A.﹣0.01<x<0.02B.6.17<x<6.18C.6.18<x<6.19D.6.19<x<6.208.二次函数y =ax 2+bx +c 中,函数y 与自变量x 的部分对应值如下表,则方程ax 2+bx +c =0的一个解的范围是()x 6.17 6.18 6.19y﹣0.03﹣0.010.02A .﹣0.03<x <﹣0.01B .﹣0.01<x <0.02C .6.18<x <6.19D .6.17<x <6.189.代数式ax 2+bx +c (a ≠0,a ,b,c 是常数)中,x与ax 2+bx +c 的对应值如下表:x﹣1﹣0123ax 2+bx +c﹣2﹣121﹣﹣2请判断一元二次方程ax 2+bx +c =0(a ≠0,a ,b ,c 是常数)的两个根x 1,x 2的取值范围是下列选项中的()A .﹣<x 1<0,<x 2<2B .﹣1<x 1<﹣,2<x 2<C .﹣<x 1<0,2<x 2<D .﹣1<x 1<﹣,<x 2<210.观察下列表格,一元二次方程x 2﹣x ﹣1.1=0的最精确的一个近似解是()x 1.11.21.31.41.51.61.7 1.8 1.9x 2﹣x ﹣1.1﹣0.99﹣0.86﹣0.71﹣0.54﹣0.35﹣0.140.090.340.61A .0.09B .1.1C .1.6D .1.711.如图,在△ABC 中,AB=AC ,BC =6,E 为AC 边上的点且AE=2EC ,点D 在BC 边上且满足BD =DE ,设BD =y ,S △ABC =x ,则y 与x 的函数关系式为()A .y =x 2+B .y =x 2+C .y =x 2+2D .y =x 2+212.如图,抛物线y=x+2交x轴于点A,B,交y轴于点C,当△ABC纸片上的点C沿着此抛物线运动时,则△ABC纸片随之也跟着水平移动,设纸片上BC的中点M坐标为(m,n),在此运动过程中,n与m 的关系式是()A.n=(m﹣)2﹣B.n=(m﹣)2C.n=(m﹣)2﹣D.n=(m﹣)2﹣13.如图的一座拱桥,当水面宽AB为12m时,桥洞顶部离水面4m.已知桥洞的拱形是抛物线,以水平方向为x轴,建立平面直角坐标系,若选取点A为坐标原点时的抛物线表达式是y=﹣(x﹣6)2+4.则选取点B为坐标原点时的抛物线表达式是()A.y=(x+6)2+4B.y=﹣(x+6)2+4C.y=(x+6)2﹣4D.y=﹣(x+6)2﹣414.某工厂2015年产品的产量为100吨,该产品产量的年平均增长率为x(x>0),设2015,2016,2017这三年该产品的总产量为y吨,则y关于x的函数关系式为()A.y=100(1﹣x)2B.y=100(1+x)C.y=D.y=100+100(1+x)+100(1+x)215.滑雪者从山坡上滑下,其滑行距离S(单位:m)与滑行时间t(单位:s)之间的关系可以近似地用二次函数刻画,其图象如图所示,根据图象,当滑行时间为4s时,滑行距离为()A.40m B.48m C.56m D.72m16.从地面竖直向上抛出一小球,小球的高度h(单位:m)与小球运动时间t(单位:s)之间的函数关系如图所示.下列结论:①小球在空中经过的路程是40m;②小球抛出3秒后,速度越来越快;③小球抛出3秒时速度为0;④小球的高度h=30m时,t=1.5s.其中正确的是()A.①④B.①②C.②③④D.②③17.使用家用燃气灶烧开同一壶水所需的燃气量y(单位:m3)与旋钮的旋转角度x(单位:度)(0°<x≤90°)近似满足函数关系y=ax2+bx+c(a≠0).如图记录了某种家用燃气灶烧开同一壶水的旋钮角度x与燃气量y 的三组数据,根据上述函数模型和数据,可推断出此燃气灶烧开一壶水最节省燃气的旋钮角度约为()A.18°B.36°C.41°D.58°18.某汽车刹车后行驶的距离y(单位:m)与行驶的时间t(单位:s)之间近似满足函数关系y=at2+bt(a<0).如图记录了y与t的两组数据,根据上述函数模型和数据,可推断出该汽车刹车后到停下来所用的时间为()A.2.25s B.1.25s C.0.75s D.0.25s19.一辆汽车刹车后行驶的距离s(单位:米)关于行驶时间t(单位:秒)的函数解析式是s=15t﹣6t2,那么距离s与行驶时间t的函数图象大致是()A.B.C.D.20.点A,B的坐标分别为(﹣2,3)和(1,3),抛物线y=ax2+bx+c(a<0)的顶点在线段AB上运动时,形状保持不变,且与x轴交于C,D两点(C在D的左侧),给出下列结论:①c<3;②当x<﹣3时,y随x 的增大而增大;③若点D的横坐标最大值为5,则点C的横坐标最小值为﹣5;④当四边形ACDB为平行四边形时,.其中正确的是()A.②④B.②③C.①③④D.①②④21.已知抛物线y=ax2+bx+3在坐标系中的位置如图所示,它与x,y轴的交点分别为A,B,P是其对称轴x=1上的动点,根据图中提供的信息,给出以下结论:①2a+b=0,②x=3是ax2+bx+3=0的一个根,③△PAB周长的最小值是+3.其中正确的是()A.①②③B.仅有①②C.仅有①③D.仅有②③二.填空题(共8小题)22.在平面直角坐标系中,抛物线y=ax2+bx+c(a,b,c是常数,a>0)的部分图象如图所示,直线x=1是它的对称轴.若一元二次方程ax2+bx+c=0的一个根x1的取值范围是2<x1<3,则它的另一个根x2的取值范围是.23.二次函数y=ax2+bx+c的部分对应值如下表:x…﹣3﹣20135…y…70﹣8﹣9﹣57…①抛物线的顶点坐标为(1,﹣9);②与y轴的交点坐标为(0,﹣8);③与x轴的交点坐标为(﹣2,0)和(2,0);④当x=﹣1时,对应的函数值y为﹣5.以上结论正确的是.24.某种商品每件进价为10元,调查表明:在某段时间内若以每件x元(10≤x≤20且x为整数)出售,可卖出(20﹣x)件,若使利润最大,则每件商品的售价应为元.25.如图,在喷水池的中心A处竖直安装一个水管AB,水管的顶端安有一个喷水池,使喷出的抛物线形水柱在与池中心A的水平距离为1m处达到最高点C,高度为3m,水柱落地点D离池中心A处3m,以水平方向为x 轴,建立平面直角坐标系,若选取A点为坐标原点时的抛物线的表达式为y=﹣,则选取点D为坐标原点时的抛物线表达式为,水管AB的长为m.26.某一房间内A、B两点之间设有探测报警装置,小车(不计大小)在房间内运动,当小车从AB之间经过时,将触发报警.现将A、B两点放置于平面直角坐标系xOy中(如图)已知点A,B的坐标分别为(0,4),(5,4),小车沿抛物线y=ax2﹣2ax﹣3a运动.若小车在运动过程中只触发一次报警,则a的取值范围是27.已知抛物线y=ax2﹣2ax+c(a<0)的图象过点A(3,m).(1)当a=﹣1,m=0时,求抛物线的顶点坐标;(2)如图,直线l:y=kx+c(k<0)交抛物线于B,C两点,点Q(x,y)是抛物线上点B,C之间的一个动点,作QD⊥x轴交直线l于点D,作QE⊥y轴于点E,连接DE.设∠QED=β,当2≤x≤4时,β恰好满足30°≤β≤60°,a=.28.如图,在平面直角坐标系xOy中,已知抛物线y=﹣3与x轴交于点A、B(A在B左侧),与y轴交于点C,经过点A的射线AF与y轴正半轴相交于点E,与抛物线的另一个交点为F,,点D是点C 关于抛物线对称轴的对称点,点P是y轴上一点,且∠AFP=∠DAB,则点P的坐标是.29.如图,已知点A(4,0),O为坐标原点,P是线段OA上任意一点(不含端点O、A),过P、O两点的二次函数y1和过P、A两点的二次函数y2的图象开口均向下,它们的顶点分别为B、C,射线OB与AC相交于点D.当OD=AD=3时,这两个二次函数的最大值之和等于.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次函数投篮问题
1.在一场篮比赛中,甲球员在距篮4米处跳投,球运行的路线是抛物线,当球运行的水平距离为2.5米时,达到最大高度3.75米,然后球准确落入篮圈.已知篮圈中心到地面的距离为3.05米.
(1)建立如图所示的平面直角坐标系,求抛物线的解析式;
(2)乙球员身高为1.91米,跳起能摸到的高度为3.15米,此时他上前封盖,在离投篮甲球员2米处时起跳,问能否成功封盖住此次投篮?
(3)在(2)条件下若乙球员想要成功封盖甲球员的这次投篮,他离甲球员的距离至多要多少米?


×
时,﹣x
2.如图,一位运动员在距篮下4.5米处跳起投篮,篮球运行的路线是抛物线,当球运行的水平距离为2.5米时,达到最高度3.5米,篮筐中心到地面距离为3.05米,建立坐标系如图.该运动员身高1.8米,在这次跳投中,球在头顶上方0.25米处出手,他跳离地面的高度为0.2米,问这次投篮是否命中,为什么?若不命中,他应向前(或向后)移动几米才能使球准确命中?

则该抛物线解析式为,
时,
时,+3.5=3.05
,即
3.(2011•宝山区一模)如图1,小杰在一个智能化篮球场的罚球区附近练习投篮,球出手前,他测得篮框A的仰角为16.7°、篮球架底端B的俯角为24.2°,又已知篮框距离地面约3米.
(1)请在答题纸上把示意图及其相关信息补全,并求小杰投篮时与篮框的水平距离;(2)已知球出手后的运动路线是抛物线的一部分,若球出手时离地面约2.2米,球在空中运行的水平距离为2.5米时,达到距离地面的最大高度为3.45米,试通过计算说明球能否准确落入篮框.
(注:篮球架看作是一条与地面垂直的线段,篮框看作是一个点;投篮时球、眼睛看作是在一条与地面垂直的直线上.备用数据:sin16.7°=0.29,cos16.7°=0.96,tan16.7°=0.30;
sin24.2°=0.41,cos24.2°=0.91,tan24.2°=0.45;)


4..一名跳水运动员进行10m跳台跳水训练,在正常情况下,运动员必须在距水面5m以前完成规定的动作,并且调整好入水姿势,否则就容易出现失误,根据经验,运动员起跳后的时间t(s)与运动员距离水面的高度h(m)满足关系式:h=10+2.5t﹣5t2,那么运动员最多有多长时间完成规定动作?

=
5.(2013•婺城区一模)某跳水运动员进行10米跳台跳水训练时,身体(看成一点)在空中的运动路线是如图所示坐标系下经过原点O的一条抛物线(图中标出的数据为已知条件).在
跳某个规定动作时,正常情况下,该运动员在空中的最高处距水面10米,入水处距池边的
距离为4米,运动员在距水面高度为5米以前,必须完成规定的翻腾动作,并调整好入水姿势,否则就会出现失误.
(1)求这条抛物线的解析式;
(2)在某次试跳中,测得运动员在空中的运动路线是(1)中的抛物线,且运动员在空中调整好入水姿势时,距池边的水平距离为3.6米,问此次跳水会不会失误?




,,
x
))×=,
=
6.某跳水运动员在一次跳水训练时的跳水曲线为如图所示的抛物线一段,已知跳水板AB 长为2m,跳水板距水面CD的高BC为3m,CE=5m,CF=6m,为安全和空中姿态优美,训练时跳水曲线应在离起跳点hm(h≥1)到达距水面最大高度4m,规定:以CD为横轴,CB 为纵轴建立坐标系.
(1)当h=1时,求跳水曲线所在的抛物线方程;
(2)若跳水运动员在区域EF内如水时才能达到压水花的训练要求,求达到压水花的训练要求时h的取值范围.
[x
﹣(

]
7.某跳水运动员在一次跳水训练时的跳水曲线为如图所示的抛物线一段.已知跳水板AB 长为2m,跳水板距水面CD的高BC为3m.为安全和空中姿态优美,训练时跳水曲线应在离起跳点A处水平距hm(h≥1)时达到距水面最大高度4m.规定:以CD为横轴,BC为纵轴建立直角坐标系.
(1)当h=1时,求跳水曲线所在的抛物线方程;
(2)若跳水运动员在区域EF内入水时才能达到比较好的训练效果,求此时h的取值范围.
[x
﹣(≤
]。

相关文档
最新文档