专题三 实践与应用型问题(二)
四年级奥数培优专题第五章 实践与应用2
四年级奥数培优专题第五章实践与应用(二)第一讲行程问题(一)【专题导引】我们把研究路程、速度、时间这三者之间关系的问题称为行程问题。
行程问题主要包括相遇问题和追及问题。
这一周我们来学习一些常用的、基本的行程问题。
解答行程问题时,要理清路程、时间和速度之间的关系,紧扣基本数量关系:“路程=速度×时间”来思考,对具体问题要作仔细分析,弄清出发地点、时间和运动结果。
【典型例题】【例1】轮船每小时行驶19千米,经过8小时后,轮船行驶了多少千米?【试一试】1、东东在一条长198米的环行跑道上跑步,每秒6米,以这样的速度要跑多少秒他才能跑完两圈?2、甲、乙两辆火车同时出发,甲车3小时行驶了270千米,乙车5小时行驶了300千米,谁的速度快一些?【例2】小明以每分钟40米的速度从家步行上学,5分钟后,他想起作业还未完成,加快速度以每分钟50米的速度去学校,又走了7分钟到达学校,小明家到学校多少米?【试一试】1、一艘轮船从一港口出发,以每小时19千米的速度向青岛行驶,中途停下来2小时装卸货物,到达青岛总共用了8小时,这一港口到青岛的水路长多少千米?2、妈妈去公司上班,每分钟走60米,在路上她遇到王阿姨聊了8分钟,共计26分钟后妈妈到达公司,问:从家里到公司有多少米?米,乙每小时走4千米。
两人几小时后相遇?【试一试】1、甲乙两艘轮船分别从A、B两港同时出发相向而行,甲船每小时行驶18千米,乙船每小时行驶15千米,经过6小时两艘轮船途中相遇。
两地间的水路长多少千米?2、甲乙两车分别从相距480千米的A、B两城同时出发相向而行,已知甲车从A 城到B城需要6小时,乙车从B城到A城需要12小时,两车出发后多少小时相遇?米,陆亮每分钟行90米,如果一只狗与王欣同时同向而行,每分钟行500米,遇到陆亮后,立即回头向王欣跑去,遇到王欣再向陆亮跑去。
这样不断来回,直到王欣和陆亮相遇为止,狗共行了多少米?【试一试】1、甲乙两队学生从相隔18千米的两地同时出发,相向而行。
2021年九年级数学中考复习——方程专题:不等式与不等式组实际应用(二)
2021年九年级数学中考复习——方程专题:不等式与不等式组实际应用(二)1.列方程组或不等式解决实际问题某汽车专卖店销售A,B两种型号的新能源汽车,上周和本周的销售情况如下表:A型B型销售额时间型号上周1辆2辆70万元本周3辆1辆80万元(1)每辆A型车和B型车的售价各为多少万元?(2)甲公司拟向该店购买A,B两种型号的新能源汽车共7辆,且A型号车不少于2辆,购车费不少于154万元,则有哪几种购车方案?2.某网店销售甲、乙两种书包,已知甲种书包每个售价比乙种书包每个售价2倍少30元,网购2个甲种书包和3个乙种书包共花费255元(免运费).请解答下列问题:(1)该网店甲、乙两种书包每个售价各是多少元?(列方程组解答此问)(2)根据消费者需求,该网店决定用不超过8900元购进甲、乙两种书包共200个,且甲种书包的数量超过87个,已知甲种书包每个进价为50元,乙种书包每个进价为40元,该网店有哪几种进货方案;(3)在(2)条件下,若该网店推出促销活动:一次性购买同一种书包超过10个,赠送1个相同的书包,该网店这次所购进书包全部售出,共赠送了4个书包,获利1250元,直接写出该网店甲、乙两种书包各赠送几个.3.北流市某初中为了改善教师办公条件,计划采购A、B两种型号空调,已知采购2台A 型空调和1台B型空调需要费用24000元,3台A型空调比4台B型空调的费用多3000元.(1)求A型空调和B型空调每台各需多少元?(2)若学校计划采购A、B两种型号空调共30台,B型空调的台数不多于A型空调台数的2倍,两型号空调的采购总费用不超过218000元,该校共有哪几种采购方案?(3)在(2)的条件下,采用哪一种采购方案可使总费用最低,最低费用是多少元?4.养牛场的李大叔分三次购进若干头大牛和小牛,其中有一次购买大牛和小牛的价格同时打折,其余两次均按原价购买,三次购买的数量和总价如表:大牛(头)小牛(头)总价(元)第一次439900第二次269000第三次678550(1)李大叔以折扣价购买大牛和小牛是第次;(2)每头大牛和小牛的原价分别为多少元?(3)如果李大叔第四次购买大牛和小牛共10头(其中小牛至少一头),仍按之前的折扣(大牛和小牛的折扣相同),且总价不低于8100元,那么他共有哪几种购买方案?5.在新冠肺炎疫情期间,为保证孩子们的身心健康发展,各级各类学校都进行了“停课不停学”活动,某校七年级开展了网上教学,并对学生的学习情况进行了调查.经过统计,我们发现:大约有二分之一的孩子是通过电脑进行学习,约四分之一的孩子是利用手机进行学习,约六分之一的孩子是利用P AD等其他电子设备进行学习,而在受访班级中,平均每个班都有不超过4名同学没有进行线上学习;若该校七年级每个班的学生总数都超过了40人,请你分析一下,该所学校七年级每个班学生人数的范围.6.便利店老板从厂家购进A、B两种香醋,A种香醋每瓶进价为5元,B种香醋每瓶进价为6元,共购进70瓶,花了390元,且该店A种香醋售价7元,B种香醋售价9元.(1)该店购进A、B两种香醋各多少瓶?(2)将购进的70瓶香醋全部售完可获利多少元?(3)老板计划再以原来的进价购进A、B两种香醋共150瓶,且投资不超过850元,仍以原来的售价将这150瓶香醋售完,且确保获利不少于398元,请问有哪几种购货方案?7.近日来,长江中下游连降特大暴雨.沿江两岸的群众受灾很严重.“一方有难、八方支援”我校某班准备捐赠一批帐篷和食品包共360个,其中帐篷比食品包多120个.(1)求帐篷和食品包各有多少个?(2)现计划租用甲、乙两种型号的货车共8辆.一次性将这批帐篷和食品包运往受灾地区,已知每辆甲种货车最多可装帐篷40个和食品包10个,每辆乙种货车最多可装帐篷30个和食品包20个.运输部门安排甲、乙两种型号的货车时,有几种方案?请你帮助设计出来.(3)在(2)的条件下.如果甲种型号的货车每辆需付运费1000元,乙种型号的货车每辆需付运费900元.假设你是决策者,应选择哪种方案可使运费最少?最少运费是多少元?8.在六一儿童节到来之际,某校特举行书画大赛活动,准备购买甲、乙两种文具作为奖品,奖励在活动中获得优秀的同学.已知购买2个甲种文具、3个乙种文具共需花费45元;购买3个甲种文具、1个乙种文具共需花费50元.(1)问:购买一个甲种文具、一个乙种文具各需多少元?(2)若学校计划购买这两种文具共100个,投入资金不少于995元又不多于1050元,设购买甲种文具x个,则有多少种购买方案?(3)设学校投入资金w元,在(2)的条件下,哪种购买方案需要的资金最少?最少是多少元?9.随着新能源汽车的发展,某公交公司将用新能源公交车淘汰某一条线路上“冒黑烟”较严重的燃油公交车,计划购买A型和B型新能源公交车共10辆,若购买A型公交车1辆,B型公交车2辆,共需280万元;若购买A型公交车2辆,B型公交车1辆,共需260万元,(1)求购买A型和B型公交车每辆各需多少万元?(2)预计在该条线路上A型和B型公交车每辆车的年均载客量分别为60万人次和80万人次.若该公司购买A型和B型公交车的总费用不超过900万元,且确保这10辆公交车在该线路的年均载客量总和不少于670万人次,则该公司有哪几种购车方案?哪种购车方案总费用最少?最少总费用是多少?10.基金会计划购买A、B两种纪念册共50册,已知B种纪念册的单价比A种的单价少10元,买3册A种纪念册与买4册B种纪念册的总费用310元.(1)求A、B两种纪念册的单价分别是多少元?(2)如果购买的A种纪念册的数量要大于B种纪念册数量的,但又不大于B种纪念册数量的,设购买A种纪念册m册.①有多少种不同的购买方案?②购买时A种纪念册每册降价a元(12≤a≤15),B种纪念册每册降价b元.若满足条件的购买方案所需的总费用一样,求总费用的最小值.参考答案1.解:(1)设每辆A型车的售价为x万元,B型车的售价为y万元,依题意,得:,解得:.答:每辆A型车的售价为18万元,B型车的售价为26万元.(2)设购进A型车m辆,则购进B型车(7﹣m)辆,依题意,得,解得:2≤m≤3.5,∵m为整数,∴m=2或3.∴有两种购车方案:购进A型车2辆,则购进B型车5辆;购进A型车3辆,则购进B型车4辆.答:有两种购车方案:购进A型车2辆,则购进B型车5辆;购进A型车3辆,则购进B型车4辆.2.解:(1)设甲种书包每个售价x元,乙种书包每个售价y元.根据题意得.解得.答:该网店甲种书包每个售价60元,乙种书包每个售价45元;(2)设购进甲种书包m个,则购进乙种书包(200﹣m)个,根据题意可得50m+40(200﹣m)≤8900.解得m≤90.∵m>87,∴87<m≤90.∵m为整数,∴m=88、89、90,200﹣m=112,111,110.∴该网店有3种进货方案:方案一、购进甲种书包88个,乙种书包112个;方案二、购进甲种书包89个,乙种书包111个;方案三、购进甲种书包90个,乙种书包110个;(3)分三种情况:①购进甲种书包88个,乙种书包112个时:设该网店甲书包赠送了m个,则乙书包赠送了(4﹣m)个,根据题意得,88×(60﹣50)﹣m×50+112×(45﹣40)﹣(4﹣m)×40=1250,解得,m=3,4﹣m=1,故甲书包赠送3个,乙书包赠送1个;②购进甲种书包89个,乙种书包111个时;设该网店甲书包赠送了m个,则乙书包赠送了(4﹣m)个,根据题意得,89×(60﹣50)﹣m×50+111×(45﹣40)﹣(4﹣m)×40=1250,解得,m=3.5,∵m是整数,故此种情况不成立;③购进甲种书包90个,乙种书包110个时;设该网店甲书包赠送了m个,则乙书包赠送了(4﹣m)个,根据题意得,90×(60﹣50)﹣m×50+110×(45﹣40)﹣(4﹣m)×40=1250,解得,m=4,4﹣m=0,故甲书包赠送4个,乙书包赠送0个.3.解:(1)设A型空调每台需x元,B型空调每台需y元,依题意,得:,解得:.答:A型空调每台需9000元,B型空调每台需6000元.(2)设购买A型空调m台,则购买B型空调(30﹣m)台,依题意,得:,解得:10≤m≤12.∵a为正整数,∴a可以取10,11,12,∴共有三种采购方案,方案1:采购A型空调10台,B型空调20台;方案2:采购A型空调11台,B型空调19台;方案3:采购A型空调12台,B型空调18台.(3)方案1所需费用为:9000×10+6000×20=210000(元);方案2所需费用为:9000×11+6000×19=213000(元);方案3所需费用为:9000×12+6000×18=216000(元).∵210000<213000<216000,∴采用方案1,采购A型空调10台,B型空调20台可使总费用最低,最低费用是210000元.4.解:(1)第三次购买大牛和小牛的数量较多,但花费较少,所以李大叔以折扣价购买大牛和小牛是第三次;13230÷(9900+9000)=13230÷18900=0.7.故是打七折.故答案为:三.(2)设大牛的单价为x元,小牛单价为y元.根据题意得:,解得.故大牛的单价为1800元,小牛单价为900元.(3)设大牛买m头,小牛买(10﹣m)头.根据题意得:900m+450(10﹣m)≥8100,解得:m≥8.所以m=8或9.当m=8时,10﹣m=2;当m=9时,10﹣m=1;所以他共有两种购买方案.方案一:大牛买8头,小牛买2头;方案二:大牛买9头,小牛买1头.5.解:设该所学校七年级每个班学生人数为x,依题意,得:,解得:40<x≤48.答:该所学校七年级每个班学生人数的范围为40<x≤48.6.解:(1)设该店购进A种香醋X瓶,购进B种香醋Y瓶,根据题意得…..(1分)…………..(2分)解得.答:该店购进A种香醋30瓶,购进B种香醋40瓶;(2)(7﹣5)×30+(9﹣6)×40=60+120=180(元).答:70瓶香醋全部售完可获利180元;(3)设该店购进A种香醋a瓶,购进B种香醋(150﹣a)瓶,根据题意得,解得:50≤a≤52,因为a取正整数,所以a取50、51、52.购货方案为:(1)A种香醋购进50瓶,B种香醋购进100瓶.(2)A种香醋购进51瓶,B种香醋购进99瓶.(3)A种香醋购进52瓶,B种香醋购进98瓶.7.解:(1)设帐篷有x个,食品包有y个,依题意,得:,解得:.答:帐篷有240个,食品包有120个.(2)设安排甲种货车m辆,则安排乙种货车(8﹣m)辆,依题意,得:,解得:0≤m≤4.又∵m为非负整数,∴m可以取0,1,2,3,4,相对应的8﹣m为8,7,6,5,4,∴共有5种运输方案,方案1:安排8辆乙种货车;方案2:安排1辆甲种货车,7辆乙种货车;方案2:安排1辆甲种货车,7辆乙种货车;方案3:安排2辆甲种货车,6辆乙种货车;方案4:安排3辆甲种货车,5辆乙种货车;方案5:安排4辆甲种货车,4辆乙种货车.(3)设总运费为w元,则w=1000m+900(8﹣m)=100m+7200,∵k=100>0,∴w随m的增大而增大,∴当m=0时,w取得最小值,最小值=100×0+7200=7200.∴选择方案1,可使运费最少,最少运费是7200元.8.解:(1)设购买一个甲种文具a元,一个乙种文具b元,由题意得:,解得.答:购买一个甲种文具需15元,一个乙种文具需5元;(2)根据题意得:995≤15x+5(100﹣x)≤1050,解得49.5≤x≤55,∵x是整数,∴x=50,51,52,53,54,55,∴有6种购买方案;(3)w=15x+5(100﹣x)=10x+500,∵10>0,∴W随x的增大而增大,当x=50时,W=10×50+500=1000(元),最小∴100﹣50=50.答:购买甲种文具50个,乙种文具50个时需要的资金最少,最少是1000元.9.解:(1)设购买A型新能源公交车每辆需x万元,购买B型新能源公交车每辆需y万元,由题意得:,解得,答:购买A型新能源公交车每辆需80万元,购买B型新能源公交车每辆需100万元.(2)设购买A型公交车a辆,则B型公交车(10﹣a)辆,由题意得,解得:5≤a≤6.5,因为a是整数,所以a=5,6;则共有两种购买方案:①购买A型公交车5辆,则B型公交车5辆:80×5+100×5=900(万元);②购买A型公交车4辆,则B型公交车6辆:80×4+100×6=920(万元);购买A型公交车5辆,则B型公交车5辆费用最少,最少总费用为900万元.10.解:(1)设A种纪念册的单价为x元,B种纪念册的单价为y元,依题意,得:,解得:.答:A种纪念册的单价为50元,B种纪念册的单价为40元.(2)①设购买A种纪念册m册,则购买B种纪念册(50﹣m)册,依题意,得:,解得:<m≤.又∵m为正整数,∴m可取15,16,17,18,∴共有4种不同的购买方案.②设总费用为w元,则w=(50﹣a)m+(40﹣b)(50﹣m)=(10﹣a+b)m+2000﹣50b.∵满足条件的购买方案所需的总费用一样,∴10﹣a+b=0,∴b=a﹣10.∵12≤a≤15,∴2≤b≤5.∵﹣50<0,∴w随b的增大而减小,∴当b=5时,w取得最小值,最小值=2000﹣50×5=1750,即总费用的最小值为1750元.。
人教版2022-2023学年七年级下册数学期末复习专题:二元一次方程组的应用(方案问题) (2)
人教版2022-2023学年七年级下册数学期末复习专题二元一次方程组的应用(方案问题)原计划两班都以班为单位分别购票,则一共应付1106元.请回答下列问题:(1)初一(2)班有多少人?(2)你作为组织者如何购票最省钱?比原计划省多少钱?4.某制药厂制造一批药品,如用旧工艺,则废水排量要比环保限制的最大量还多200吨,如用新工艺,则废水排量比环保限制的最大量少100吨,新、旧工艺的废水量之比为2:5,两种工艺的废水量各是多少?5.列二元一次方程组解应用题:学校计划为“我和我的祖国”演讲比赛购买奖品.已知购买3个A奖品和2个B奖品共需120元,购买5个A奖品和4个B奖品共需210元.求A B,两种奖品的单价.6.某同学在A,B两家网店发现他看中的随身听的单价相同,书包单价也相同.随身听和书包单价之和是492元,且随身听的单价比书包单价的3倍少108元.(1)求该同学看中的随身听和书包的单价各是多少元.(2)某一天恰好赶上商家促销,网店A所有商品打八折销售,网店B全场每购满100元减25元销售,怎样购买更省钱?写出必要的理由过程.7.已知:用2辆A型车和1辆B型车装满货物一次可运货10吨;用1辆A型车和2辆B型车装满货物一次可运货11吨.某物流公司现有36吨货物,计划同时租用A型车a辆,B型车b辆,一次运完,且恰好每辆车都装满货物.根据以上信息,解答下列问题:(1)1辆A型车和1辆B型车都装满货物一次可分别运货多少吨?(2)请你帮该物流公司设计租车方案.8.抗击新冠肺炎疫情期间,全国上下万众一心为武汉捐赠物资.某物流公司运送捐赠物资,已知用2辆A型车和1辆B型车装满货物一次可运货10吨;用1辆A型车和2辆B型车装满货物一次可运货11吨.(1)求1辆A型车和1辆B型车都装满货物一次可分别运货多少吨?(2)该物流公司现有31吨货物需要运送,计划同时租用A型车a辆,B型车b辆,一次运完,且恰好每辆车都装满货物.若A型车每辆需租金100元/次,B型车每辆需租金120元/次,请你设计出所有租车方案并选出最省钱的租车方案,求出此时最少租车费.9.随着“低碳生活,绿色出行”理念的普及,新能源汽车正逐渐成为人们喜爱的交通工具.某汽车销售公司计划购进一批新能源汽车尝试进行销售,据了解2辆A 型汽车、3辆B型汽车的进价共计80万元;3辆A型汽车、2辆B型汽车的进价共计95万元(1)求A B、两种型号的汽车每辆进价分别为多少万元?(2)若该公司计划正好用200万元购进以上两种型号的新能源汽车(两种型号的汽车均购买),请你帮助该公司设计购买方案;(3)若该汽车销售公司销售1辆A型汽车可获利8000元,销售1辆B型汽车可获利5000元,在(2)中的购买方案中,假如这些新能源汽车全部售出,哪种方案获利最大?最大利润是多少元?10.某运输公司有A、B两种货车,3辆A货车与2辆B货车一次可以运货90吨,5辆A货车与4辆B货车一次可以运货160吨.(1)请问1辆A货车和1辆B货车一次可以分别运货多少吨?(2)目前有190吨货物需要运输,该运输公司计划安排A、B两种货车将全部货物一次运完(A、B两种货车均满载),其中每辆A货车一次运货花费500元,每辆B货车一次运货花费400元.请你列出所有运输方案并指出哪种运输方案费用最少.11.某汽车制造厂开发了一款新式电动汽车计划一年生产安装240辆,由于抽调不出足够的熟练工来完成新式电动汽车的安装,工厂决定招聘一些新工人;他们经过培训后上岗,也能独立进行电动汽车的安装.生产开始后,调研部门发现:1名熟练工和2名新工人每月可安装8辆电动汽车;2名熟练工和3名新工人每月可安装14辆电动汽车.(1)每名熟练工和新工人每月分别可以安装多少辆电动汽车?(2)如果工厂抽调熟练工m名,再招聘()<<名新工人,使得招聘的新工人和n n010抽调的熟练工刚好能完成一年的安装任务,那么工厂有哪几种新工人的招聘方案? 12.我校组织一批学生开展社会实践活动,原计划租用45座客车若干辆,但有15人没有座位;若租用同样数量的60座客车,则多出一辆车,且其余客车恰好坐满.已知45座客车租金为每辆220元,60座客车租金为每辆300元.(1)这批学生的人数是多少?原计划租用45座客车多少辆?(2)若租用同一种客车,要使每位学生都有座位,应该怎样租用合算?13.小志从甲、乙两超市分别购买了10瓶和6瓶cc饮料,共花费51元;小云从甲、乙两超市分别购买了8瓶和12瓶cc饮料,且小云在乙超市比在甲超市多花18元,在小志和小云购买cc饮料时,甲、乙两超市cc饮料价格不一样,若只考虑价格因素,到哪家超市购买这种cc饮料便宜?请说明理由.14.有大、小两种货车,2辆大车与3辆小车一次可以运货15.5吨;5辆大车与6辆小车一次可以运货35吨.求3辆大车与5辆小车一次可以运货多少吨?15.某学校现有若干间学生宿舍,准备安排给若干名学生住宿.原计划每间住8人,则有10间宿舍无人居住.由于疫情防控需要,每间宿舍只能住5人,则有10人无法入住.问该校现有多少间学生宿舍?16.鹏程中学拟组织七年级部分师生赴滁州市琅琊山进行文学采风活动.下面是活动负责人李老师和小芳同学、小明同学有关租车问题的对话:李老师:“平安客运公司有60座和45座两种型号的客车可供租用,60座客车每辆每天的租金比45座的贵200元.”(1)全部物资一次性运送可用甲型车8辆,乙型车5辆,丙型车辆.(2)若全部物资仅用甲、乙两种车型一次性运完,需运费9600元,求甲、乙两种车型各需多少辆?(3)若该公司打算用甲、乙、丙三种车型同时参与运送,已知车辆总数为14辆,(1)甲、乙两种货车每辆可装多少吨货物?(2)若某货主共有20吨货物,计划租用该公司的货车,正好(每辆货车都满载)把这批货物运完,则该货主有________种租车方案?(3)王先生要租用该公可的甲、乙两种货车送一批货,如果租用甲种货车数量比乙种货车数量多1辆,而乙种货车每辆的运费是甲种货车的1.4倍,结果甲种货车共付运费800元,乙种货车共付运费980元,试求此次甲、乙两种货车每辆各需运费多少元?答案1.(1)每辆甲种货车能装货4吨,每辆乙种货车能装货3吨(2)方案1:租用3辆甲种货车、11辆乙种货车;方案2:租用6辆甲种货车、7辆乙种货车;方案3:租用9辆甲种货车、3辆乙种货车2.(1)A种产品4件,B种产品3件;(2)利润是12万元.3.(1)初一(2)班共有53人或59人;(2)两个一起买票更省钱,比原计划节省298元或290元4.新、旧工艺的废水排量分别为200吨和500吨5.A奖品单价30元,B奖品单价15元.6.(1)随身听单价为342元,书包单价为150元(2)在A购买书包,在B购买随身听更省钱,费用为387元7.(1)1辆A型车和1辆B型车都装满货物一次可分别运货3吨,4吨;(2)故共有四种租车方案,分别为:①A型车0辆,B型车9辆;②A型车4辆,B 型车6辆;③A型车8辆,B型车3辆;④A型车12辆,B型车0辆.8.(1)1辆A型车装满货物一次可运3吨,1辆B型车装满货物一次可运4吨;(2)共有3种租车方案:方案一,A型车9辆,B型车1辆;方案二,A型车5辆,B型车4辆;方案三,A型车1辆,B型车7辆,最省钱的租车方案是A型车1辆,B型车7辆,最少租车费为940元9.(1)A型汽车每辆的进价为25万元,B型汽车每辆的进价为10万元;(2)方案一:购进A型车6辆,B型车5辆;方案二:购进A型车4辆,B型车10辆;方案三:购进A型车2辆,B型车15辆;(3)购进A型车2辆,B型车15辆获利最大,最大利润是91000元10.(1)1辆A货车和1辆B货车一次可以分别运货20吨和15吨;(2)共有3种租车方案,方案1:租用A型车8辆,B型车2辆;方案2:租用A型车5辆,B型车6辆;方案3:租用A型车2辆,B型车10辆;租用A型车8辆,B 型车2辆最少.11.(1)每名熟练工每月可以安装4辆电动汽车,新工人每月分别安装2辆电动汽车;(2)12.(1)240人,原计划租用45座客车5辆;(2)租4辆60座客车划算.13.到甲超市购买这种cc饮料便宜.14.24.5吨15.该校现有30间学生宿舍16.(1)平安客运公司60座和45座的客车每辆每天的租金分别是1000元,800元.(2)按小明提出的租车方案,七年级师生到该公司租车一天,共需租金6000元.(3)租用5辆60座和1辆45座的客车,此时租车费为5800元.17.(1)建设一个A类美丽村庄需120万元,建设一个B类美丽村庄需180万元;(2)共需资金1080万元.18.(1)4;(2)甲种车型需8辆,乙种车型需10辆;(3)甲车2辆,乙车5辆,丙车7辆,此时的总运费为8800元.19.(1)1辆A型车满载时一次可运柑橘3吨,1辆B型车满载时一次可运柑橘2吨;(2)①共有4种租车方案,方案1:租用1辆A型车,9辆B型车;方案2:租用3辆A型车,6辆B型车;方案3:租用5辆A型车,3辆B型车;方案4:租用7辆A型车;②最省钱的租车方案是租用7辆A型车,最少租车费是840元20.(1)甲种货车每辆可装2吨货物,乙种货车每辆可装3吨货物;(2)4种租车方案;(3)甲种货车每辆需运费100元,乙种货车每辆需运费140元。
二年级奥数培训与习题
二年级奥数培训与习题目录第一章:算一算第一讲巧填竖式(二)第二讲简便运算(一)第三讲简便运算(二)第四讲简单数的分解用第五讲数的读写单元练习(一)(另附)第二章:实践与应用(一)第一讲应用题(一)第二讲应用题(二)第三讲应用题(三)单元练习(二)(另附)第三章:合理推算第一讲简单推理(一)第二讲简单推理(二)第三讲简单推理(三)第四讲合理安排单元练习(三)(另附)第四章:趣味数学与游戏第一讲巧填数第二讲数学游戏第三讲杂题单元练习(四)(另附)第五章:实践与应用(二)第一讲余数的妙用(二)第二讲年龄问题第三讲间隔趣谈(三)第四讲画画凑凑第五讲排队问题单元练习(五)(另附)第六章:认识时间第一讲时钟问题(一)第二讲时钟问题(二)单元练习(六)(另附)综合练习(一)(另附)综合练习(二)(另附)第一章算一算第一讲巧填竖式(二)【专题导引】“算式谜”是一种常见的猜谜游戏。
通常是给出一个式子,但式子中却含有一些用汉字、字母等表示的特定的数字。
要求我们根据一定的法则和逻辑推理的方法,找到要填的数字。
解答这类题目,要分析算式的特点,运用加、减的运算法则来安排每一个数。
一个算式中填几个数时,要选好先填什么,再填什么,选准“突破口”,其他就好填了。
【典型例题】【例1】在下面竖式中的空白处填入适当的数,使算式成立。
□4+79□【试一试】在下面竖式中的空白处填入适当的数,使算式成立。
8□+4□0□3+□90【例2】在下面竖式中的空白处填入适当的数,使算式成立。
6□-9□25□-7□1□7-□49□□+□□【试一试】191+□□1492、在下边的算式里,空格里的四个数字总和是()。
□□+□□175【例4】在下面算式的空格里填上数字,使竖式成立。
□81+□5□□94□【试一试】在□里填上适当的数,使算式成立。
【例5】请计算下面竖式中的字母各代表多少?【试一试】下面竖式中的汉字和字母各代表多少?车卒马兵卒马=()车=()卒=()【例6】下面竖式中的□、○、△各代表一个数字,你能求出来吗?【试一试】下面各竖式中的图形和字母分别代表什么数字?【※例7】请你猜一猜,每个算式中的汉字各表示几?【※试一试】下面竖式中的汉字各代表多少?课外作业□3+□902、□4-□773、请猜一猜,竖式中的汉字各代表几?学生+生学6 64、在下面竖式中的空白处填入适当的数,使算式成立。
浙教版中考实际应用性问题(含知识要点,例题及练习参考答案)
专题一 实际应用性问题实际应用性问题是指有实际背景或实际意义的数学问题.这些问题充分表达了贴近学生生活、关注社会热点、形式多样等特点,注重考查学生思维的灵活性和深刻性,要求解题者具有较丰富的生活常识和较强的阅读水平以及数学建模水平.实际应用性问题涉及的背景有商品买卖、存款和贷款,最优方案、行程问题、交通运输、图案设计、农业生产和生物繁殖等.实际应用性问题在各地的试卷中成为必考内容,表达了素质教育的要求和新课程标准的理念,由于它们来自生活和生产实践,所以参考条件较多,思维也有一定的深度,解答方法灵活多样.【典型例题】例1. 某饮料厂为了开发新的产品,用A 、B 两种果汁原料各19千克、17.2千克,试制甲、〔1〕假设甲种饮料需配制x 千克.请你写出满足题意的不等式组,并求出其解.〔2〕设甲种饮料每千克本钱为4元,乙种饮料每千克本钱为3元.这两种饮料的本钱总额为y 元,请写出y 与x 的函数表达式.并根据〔1〕的运算结果,确定当甲种饮料配制多少千克时,甲、乙两种的本钱总额最低.分析:根据表格的信息和其他条件知甲种原料用量不大于19千克,乙种原料用量不大于17.2千克,可得出〔1〕的不等式组.〔2〕由“本钱总额=甲种饮料本钱+乙种饮料本钱〞这个关系式,可列出函数表达式.再运用函数的性质,可确定最低总本钱.解:〔1〕由条件得05025019030450172..()..().x x x x +-≤+-≤⎧⎨⎩ 解得2830≤≤x 〔2〕依题意得y x x x x =+-=+≤≤43501502830()()由一次函数性质知:k =1>0,y 随x 的增大而增大.∴当x =28时,甲、乙两种饮料的本钱总额最少.即y =28+150=178〔元〕.例2. 高为12.6米的教学楼ED 前有一棵大树AB 〔如图甲〕.〔1〕某一时刻测得大树AB,教学楼ED在阳光下的投影长分别是BC=2.4米,DF=7.2米,求大树AB的高度.〔2〕用皮尺、高为h米的测角仪,请你设计另一种测量大树AB高度的方案.要求:a. 在图乙上画出你设计的测量方案示意图,并将应测数据标记在图上.〔长度用字母m、n…表示,角度用希腊字母α、β…表示〕b. 根据你所画的示意图和标注的数据,计算大树AB高度.〔用字母表示〕分析:〔1〕可用同一时刻物高与影长成正比获得大树高度.〔2〕中的设计方案,要求同学们能根据平时的学习体验及解直角三角形的有关知识获得测量大树的方案.注意的是不要无视了测角仪的高度.解:〔1〕连AC、EF∵太阳光线是平行线,∴AC∥EF∴∠ACB=∠EFD∵∠ABC=∠EDF=90°∴△ABC∽△EDF∴ABEDBCDF=∴AB1262472 ...=∴AB=4.2答:大树AB的高是4.2米.〔2〕如图测角仪高度为h米,用皮尺可测得测角仪离树距离为m米,用测角仪测得树顶仰角为α, 即BN=GM=m在Rt△AMG中,AG=m·tanα∴AB=〔m·tanα+h〕米例3. 甲、乙两同学开展“投球进筐〞比赛,双方约定:①比赛分6局进行,每局在指定区域内将球投向筐中,只要投进一次后该局便结束.②假设一次未进可再投第二次,以此类推,但每局最多只能投8次,假设8次投球都未进,该局也结束;③计分规那么如下:a. 得分为正数或0;b. 假设8次都未投进,该局得分为0;c. 投球:次数越多,得分越低;d. 6局比赛的总分高者获胜.〔1〕设某局比赛第n 〔n =1,2,3,4,5,6,7,8〕次将球投进,请你按上述约定,用公式、表格或语言表达等方式,为甲、乙两位同学制定一个把n 换算为得分M 的计分方案.〔2〕假设两人6局比赛的投球情况如下.〔其中的数字表示该局比赛进球时的投球次数,“×〞表示该局比赛8次投球都未进〕.第一局 第二局 第三局 第四局 第五局 第六局 甲 5 × 4 8 1 3 乙 8 2 4 2 6 × 根据上述计分规那么和你制定的计分方案,确定两人谁在这次比赛中获胜.分析:将实际问题中的计分与投球次数之间进行量化的设计方案,只要满足计分规那么的要求即可.因而可获得不同方案.解:〔1〕方案一,如下表:n 〔次〕 1 2 3 4 5 6 7 8 M 〔分〕 8 7 6 5 4 3 2 1 〔未进球计0分〕,显然上述方案符合计分规那么要求.方案二:将球投进筐的次数n 〔次〕与得分M 〔分〕之间用关系式表示为:次未进时计分为M n12080() 显然这一计分方案也符合计分规那么的要求.〔2〕由方案一:可算得甲的得分为:4+0+5+1+8+6=24〔分〕乙的得分为:1+7+5+7+3=23〔分〕由此可知,在这次比赛中甲获胜.由方案二:甲的每局得分分别为:24分、0分、30分、15分、120分、40分;乙的每局得分分别为:15分、60分、30分、60分、20分、0分.∴甲的总得分为229分;乙的总得分为185分.由此知:甲在这次比赛中获胜.例4. 光华农机租赁公司共有50台联合收割机,其中甲型20台,乙型30台,现将这50台联合收割机派往A 、B 两地区收割小麦;其中30台派往A 地区,20台派往B 地区. 两地区与该农机租赁公司商定的每天的租赁价格见下表:每台甲型收割机的租金 每台乙型收割机的租金 A 地区 1800元 1600元B 地区 1600元 1200元〔1〕设派往A 地区x 台乙型联合收割机,租赁公司这50台联合收割机一天获得的租金为y 〔元〕,求y 与x 间的函数关系式.并写出x 的取值范围.〔2〕假设使农机租赁公司这50台联合收割机一天获得的租金总额不低于79600元,说明有多少种分派方案,并将各种方案设计出来.〔3〕如果要使这50台联合收割机每天获得的租金最高,请你为光华农机租赁公司提出一条合理的建议.分析:在〔1〕中,由派往A 地乙型收割机为x 台.能够正确地用代数式表示往A 地的甲型收割机,派往B 地的甲、乙型收割机是问题的关键.根据条件可得相应的租赁费用和调运方案.解:〔1〕假设派往A地区的乙型收割机为x台.那么派往A地区的甲型收割机为〔30-x〕台派往B地区的乙型收割机为〔30-x〕台派往B地区的甲型收割机为[20-〔30-x〕]=〔x-10〕台∴y=1600x+1800(30-x)+1200(30-x)+1600(x-10) =200x+74000.由实际问题情境,必有xxx≥-≥-≥⎧⎨⎪⎩⎪0 300100∴1030≤≤x即x的取值范围是:10≤x≤30〔x是正整数〕〔2〕由题意得:200x+74000≥79600解得:x≥28由于10≤x≤30∴x取28、29、30这三个值.∴有3种不同分配方案.①当x=28时,即派往A地区甲型收割机2台,乙型收割机28台,派往B地区甲型收割机18台,乙型收割机2台.②当x=29时,即派往A地区甲型收割机1台,乙型收割机29台,派往B地区甲型收割机19台,乙型收割机1台.③当x=30时,即30台乙型收割机全部派往A地区;20台甲型收割机全部派往B地区.〔3〕由于一次函数y=200x+74000的性质知:y随着x的增大而增大.∴当x=30时,y取得最大值.如果要使农机租赁公司这50台联合收割机每天获得租金最高,只需x=30,此时y=6000+74000=80000.建议农机租赁公司将30台乙型收割机全部派往A地区,20台甲型收割机全部派往B地区,可使公司获得的租金最高.例5. 如图〔1〕,一个无盖的正方体盒子的棱长为10cm,顶点C1处有一只昆虫甲,在盒子的内部顶点A处有一只昆虫乙,〔盒壁厚度忽略不计〕〔1〕假设昆虫甲在顶点C1处静止不动,如图〔1〕,在盒子的内部我们先取棱BB1的中点E,再连结AE、EC1,昆虫乙如果沿路径A→E→C1爬行,那么可以在最短的时间内捕捉到昆虫甲,仔细体会其中的道理,并在图〔1〕中画出另一条路径,使昆虫乙从顶点A沿这条路径爬行,同样可以在最短的时间内捕捉到昆虫甲.〔请简要说明画法〕.〔2〕如图〔2〕假设昆虫甲从顶点C1以1cm/s的速度在盒子的内部沿棱C1C向下爬行.同时昆虫乙从顶点A以2cm/s的速度在盒壁上爬行,那么昆虫乙至少需要多长时间才能捕捉到昆虫甲?〔精确到1s〕.分析:此题难点是两个点是动点,且昆虫乙的路径不惟一,因而确定昆虫乙的几种可能路径是关键;这就必须了解正方体的平面展开图.在〔1〕中,类似地在DD 1、CD 、A 1B 1、A 1D 1或BC 的中点与A,C 1连结的线段上找到由A →C 1的最短路径;在〔2〕中可利用直角三角形的知识获得结论.解:〔1〕略.〔2〕由〔1〕知:当昆虫甲从顶点C 1沿棱C 1C 向顶点C 爬行的同时,昆虫乙可以沿以下四种路径中的任意一种爬行.可以看出,图〔3〕、〔4〕的路径相等,图〔5〕、〔6〕的路径相等.①设昆虫甲从顶点C 1沿棱C 1C 向顶点C 爬行的同时,昆虫乙从顶点A 按路径A →E →F 爬行捕捉到昆虫甲需x 秒钟.由图〔3〕在Rt △ACF 中()()21020222x x =-+解得x =10设昆虫甲从顶点C 1沿棱C 1C 向顶点C 爬行的同时,昆虫乙从顶点A 按路径A →E 3→F 爬行捕捉昆虫甲需y 秒钟.由图〔5〕,在Rt △ADF 中()()22010222y y =-+解得y ≈8∴昆虫乙从顶点A 爬行捕捉昆虫甲至少需8s.数学应用与实践包含实际问题中的方案设计问题以及依据数学特征进行的活动,操作和用数学知识解决实际问题等,解这类问题时应注重于对生活中的实际问题进行恰当的分析,从中能够找出与之相关的数学模型,并借助数学知识予以解决,其中所涉及的分类讨论思想、实际问题模型化的思想以及转化的思想方法十分重要,是解决这类问题的关键.【模拟试题】〔做题时间:45分钟〕一、填空.1. 一商店把某件商品按九折出售仍可获得20%的利润率,假设该商品的进价是每价30元,那么该件商品的标价是_____________.2. 小明家粉刷房间,雇了5个工人,干了10天完成,用去涂料费为4800元,粉刷的面积为150m2,最后结算工钱时,有以下三种方案:〔1〕按工算,每人每天工资30元;〔2〕按涂料费用算,涂料费用的30%作为工钱.〔3〕按粉面积算,每平方米付工钱12元.请你帮小明家出主意,选择方案_____________付钱最合算.3. 某公司今年5月份的纯利是a万元,如果每个月纯利润的增长率都是x,那么预计7月份的纯利润将到达_____________万元.4. 有一旅客携带了30kg行李从南京国际机场乘飞机去天津,按民航规定,旅客最多可免费携带20kg行李,超过局部每公斤按飞机票价的1.5%购置行李票,现该旅客购置了120元的行李票,那么他的飞机票价格应是_____________.5. 某兴趣小组决定去市场购置A、B、C三种仪器,其单价分别为3元,5元,7元,购置这批仪器需花费62元,后经过讨价还价,最后以每种各下降1元成交,结果只花了50元就买下了这批仪器,那么A种仪器最多可买_____________件.6. 某市近年来经济开展迅速,据统计,该市国内生产总值1990年为8.6亿元,1995年为10.4亿元,2000年为12.9亿元,经论证,上述数据适合一个二次函数关系,请你根据这个函数关系,预测2022年该市国内生产总值将到达_____________亿元.7. 如图1,某公园入口原有三级台阶,每级台阶高为20cm,宽为30cm,为方便残疾人士,拟将台阶改为斜坡,设台阶的起点为A,斜坡的起点为C,现在斜坡的坡度∠BCA设计为12°,求AC的长度为_____________.图18. 居民楼的采光是人们关心的一个重要问题,冬至是一年中太阳光与地面所成夹角最小的时期,此时只要太阳光在如图2,两楼之间不互相挡住阳光,那么一年四季均不为互相挡住阳光了,设此时太阳光与地面的夹角为30°,两楼高均为30米,问两楼之间的水平距离L至少为_____________米时两楼之间才能不互相挡住阳光照射.图2二、选择题.9. 某商品价格为a 元,降价10%后,又降价10%,销售猛增,商店决定再提价20%,提价后这种商品的价格为〔 〕A. a 元B. 1.08a 元C. 0.972a 元D. 0.96a 元10. 小李买了20本练习本,店主给他八折优惠,结果廉价了32元,那么每本练习本的标价是〔 〕A. 2元B. 4元C. 8元D. 6元11. 小王在一次野外活动中捡到一块矿石,回家后,他使用一把刻度尺,一只圆柱形的玻璃杯和足量的水,就测量出这块石头的体积,如果他量出玻璃杯的内直径d,把矿石完全浸在水中,测出杯中水面上升了的高度为h,那么小王的这块石头的体积是〔 〕A. π42d h B. π22d h C. πd h 2 D. 42πd h 12. 如图3,边长为12m 的正方形塘的周围是草地,池塘边A 、B 、C 、D 处各有一棵树,且AB =BC =CD =3m,现在用长为4m 的绳子将一头羊拴在其中的一棵树上,为了使羊在草地上活动区域的面积最大,应将绳子拴在〔 〕图3A. A 处B. B 处C. C 处D. D 处13. 如图4,在正方形铁片上剪下一个圆形和扇形,使之恰好围成一个圆锥模型,设圆的半径为r,扇形的半径为R,那么圆形的半径与扇形半径之间的关系是〔 〕图4A. R r =2B. R r =94C. R r =3D. R r =414. 如图5在一个房间内,有一个梯子斜靠在墙上,梯子顶端距地面的垂直距离MA 为a m,此时梯子的倾斜角为75°,如果梯子底端不动,顶端靠在对面的墙上,此时梯子顶端距离地面的距离NB 为b m,梯子的倾斜为45°,这间房间的宽AB 一定是〔 〕A. a b m +2B. a b m -2C. b mD. a m图5三、15. 某下岗工人在再就业中央的扶持下,创办了“润扬〞报刊零售点,对经营的某种晚报,该工人提供了如下信息:①买进每份0.2元,卖出每份0.3元;②一个月内〔以30天计〕,有20天每天可以卖出200份,其中10天每天只能卖出120份;③一个月内,每天从报社买进的报纸份数必须相同,当天卖不掉的报纸,以每份0.1元退回给报社.〔〔2〕设每天从报社买进该晚报x 份〔120200≤≤x 〕时,月利润为y 元,试求出y 与x 的函数关系式,并求月利润的最大值.16. 足球比赛的记分规那么为:胜一场得3分,平一场得1分,输一场得0分,一支球队在某个赛季中共需比赛14场中,现已比赛了8场,输了1场,得17分.请问:〔1〕前8场球比赛中,这支球队共胜了多少场?〔2〕这支球队打满14场赛,最高能得多少分?〔3〕通过比赛情况的分析,这支球队打满14场比赛得分不低于29分,就可以到达预期目标,请你分析一下,在后面的六场赛中这支球队至少要胜几场,才能到达预期目标.17. 某农场为防风沙在一山坡上种植一片树苗,并安装了自动喷灌设备,一瞬间,喷出的水流呈抛物线.如图6所示,建立直角坐标系,喷水头B 高出地面1.5米,喷水管与山坡所成的夹角∠BOA 约为63°,水流最高点C 的坐标为〔2,3.5〕.图6〔1〕求此水流抛物线的解析式;〔2〕求山坡所在的直线OA 的解析式〔解析式中的系数精确到0.1〕;〔3〕计算水喷出后落在山坡上的最远距离OA 〔精确到0.1米〕18. 某生活小区的居民筹集资金1600元,方案一块上、下两底分别为10m 、20m 的梯形空地上种植花木〔如图7〕.图7〔1〕他们在△AMD 和△BMC 地带上种植太阳花,单价为8元/m 2,当△AMD 地带种满花后,〔图7中阴影局部〕共花了160元,请计算种满△BMC 地带所需的费用.〔2〕假设其余地带要种的有玫瑰和茉莉花两种花木可供选择,单价分别为12元/m 2和10元/m 2,应选择种哪种花木,刚好用完所筹集的资金?19. 我市某中学要印制本校高中招生的录取通知书,有两个印刷厂前来联系制作业务,甲厂的优惠条件是:按每份定价1.5元的八折收费,另收900元制版费;乙厂的优惠条件是:每份定价1.5元的价格不变,而制版费900元那么六折优惠,且甲乙两厂都规定:一次印刷的数量至少是500份.〔1〕分别求两个印刷厂的收费y〔元〕与印刷数量x〔份〕的函数关系,并指出自变量x的取值范围.〔2〕如何根据印刷的数量选择比拟合算的方案?如果这个中学要印制2000份录取通知书,那么应中选择哪一个厂?需要多少费用?请做完之后,再看答案【试题答案】一、填空:1. 402. 应选方案〔2〕3. a x ()12+4. 8005. 56. 16.11亿元7. 约222cm8. 303米≈52米二、选择:9. C 10. C 11. A12. B 13. D 14. D三、解做题:15. 〔1〕300 390〔2〕y x x =+≤≤240120200() 当x =200时,y 最大值为440元16. 〔1〕答:前8场比赛中,这个球队共胜了5场〔2〕最高能得17+〔14-8〕×3=35分〔3〕由题意得:以后的6场比赛中,只要得分不低于12分即可,故胜不少于4场一定能到达目标,而胜3场平3场,正好到达预期目标,所以在以后的比赛中这个球队至少要胜3场17. 〔1〕设y a x n k =-+()2, 由题意得:y a x =-+().2352将B 〔0,1.5〕代入得a =-12∴抛物线的解析式为y x =--+122722() 或y x x =-++122322 〔2〕∠AOX =27°,设坡面所在直线上一点坐标为〔x,y 〕那么tan tan 2727°,°==y xy x 即坡面OA 所在直线方程为y x =12〔3〕由y x y x x ==-++⎧⎨⎪⎪⎩⎪⎪12122322 解得x y ==⎧⎨⎩3819..,∴OA =+381922..≈4.2米 答:略.18. 解:〔1〕∵四边形ABCD 是梯形,∴AD ∥BC,∴△AMD ∽△CMB∴S S AD BC AMDCMB △△==()214∵种植△AMD 地带花费160元,∴1608202=()m ∴S cm CMB △=802, △BMC 地带的花费为80×8=640〔元〕 〔2〕解设△AMD,△BMC 的高分别为h 1,h 2,梯形ABCD 的高为h, ∵S h AMD △==1210201,∴h 14=, 又h h h 122128==,∴ ∴S AD BC h ABCD 梯形××=+==12123012180() ∴S S AMB DMC △△°-+=-=180208080 ∴160+640+80×12=1760〔元〕 160+640+80×10=1600〔元〕∴应种植茉莉花刚好用完所筹资金.19. 解:〔1〕y x 甲×=+1580%900. =+≥12900500.()x x 且为自然数y x 乙×=+1590060%. =+15540.x〔2〕由〔1〕得:y y x 甲乙-=-36003. 当360030-=.x即x =1200时,费用相同当x >1200时,甲廉价,当x <1200时,乙廉价. 那么当x =2000时,应选甲要:1220009003300.×+=〔元〕。
综合与实践的分类
“综合与实践”内容的分类通过对人教版小学数学实践活动和综合应用内容的具体分析,其实可以将人教版小学数学“综合与实践”的26个专题分为七大类型:一、游戏型(3个课题)游戏是小学生喜闻乐见的一种实践形式,他们在游戏中可轻松自如地学会数学,是使学生热爱数学的一个良好途径。
如一上“数学乐园”二下“有多重”三上“掷一掷”。
二、操作型(7个)操作型活动就是学生通过自己动手操作的方法巩固所学知识,理解知识的实际意义。
如一下“摆一摆想一想”、二上“我长高了”“看一看摆一摆”二下“剪一剪”三下“作年历”“设计校园”五上“铺一铺”。
三、调查型(2个)调查型活动就是学生在教师指导下,有目的地进行调查、访问等社会活动,在实践中获取某些信息,进行探究和反思。
如六下“合理存款”和“节约用水”四、体验型(1个)体验型活动就是让学生对数学中某些抽象的不容易理解的东西进行亲身实践,在生活中体验,在体验中感悟和理解数学。
如四上“1亿有多大?”五、收集型(3个)生活中有许多与数学有关的东西,通过收集和整理,能让学生从中体会到数学与生活的密切关系,以及与其他学科的密切联系。
比如三上“填一填说一说”四上“你寄过贺卡吗?”四下“小管家”六、实验型(3个)有的数学知识可以通过生活中的一些实验来说明其中的道理,有的生活问题可以通过实验来体现数学知识。
如五上“量一量找规律”五下“打电话”六下“有趣的平衡”。
七、应用型(7个)这类题往往是我们在生活中碰到的不经意的事情且有一定的代表性,所含内容十分丰富,思考和解决这类问题,可以真正提高学生应用数学解决问题的能力。
如一下“小小商店”四下“营养午餐”五下“粉刷围墙”六上“确定起跑线”“自行车里的数学”“计运动场”“邮票中的数学”。
土木工程施工实习专题(3篇)
第1篇一、实习背景土木工程施工实习是土木工程专业学生进行专业实践教育的重要环节,旨在让学生将所学理论知识与实际工程相结合,提高学生的实际操作能力和工程管理能力。
通过实习,学生可以了解工程项目的全流程,掌握施工现场的施工工艺和施工技术,为今后的就业和职业生涯打下坚实基础。
二、实习目的1. 使学生了解土木工程施工的基本流程,熟悉施工现场的组织和管理。
2. 培养学生的实际操作能力,提高学生的工程管理水平和团队协作能力。
3. 让学生掌握施工现场的安全规范和操作规程,提高安全意识。
4. 拓宽学生的专业知识领域,增强学生的就业竞争力。
三、实习内容1. 施工现场实地考察:参观施工现场,了解工程项目的整体布局、施工进度、施工工艺等。
2. 施工图纸阅读:学习阅读施工图纸,了解工程项目的结构、构造、材料等。
3. 施工工艺学习:学习掌握各种施工工艺,如土方工程、地基基础工程、主体结构工程等。
4. 施工现场安全管理:学习施工现场的安全规范和操作规程,提高安全意识。
5. 施工现场管理:参与施工现场的管理工作,了解施工项目经理部的组织结构、职责分工等。
6. 施工现场技术交流:参加技术交流会,了解新技术、新工艺、新材料等。
四、实习方法1. 实地考察:通过实地考察,让学生亲身感受施工现场的氛围,了解工程项目的实际情况。
2. 施工图纸学习:组织学生进行施工图纸阅读,培养学生的图纸阅读能力。
3. 实操培训:邀请经验丰富的工程师进行实操培训,让学生掌握实际操作技能。
4. 安全教育:进行施工现场安全教育,提高学生的安全意识。
5. 技术交流:组织技术交流活动,让学生了解行业动态,拓宽知识面。
五、实习成果1. 学生掌握了土木工程施工的基本流程和施工工艺。
2. 学生的实际操作能力和工程管理能力得到提高。
3. 学生的安全意识得到增强。
4. 学生的就业竞争力得到提升。
六、总结土木工程施工实习是土木工程专业学生的重要实践环节,通过实习,学生可以将所学理论知识与实际工程相结合,提高自己的实际操作能力和工程管理能力。
2024成都中考数学第一轮专题复习 重难题型分类题型 综合与实践
2024成都中考数学第一轮专题复习重难题型分类题型综合与实践1. (2022河南)综合与实践课上,老师让同学们以“矩形的折叠”为主题开展数学活动.(1)操作判断操作一:对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展平;操作二:在AD上选一点P,沿BP折叠,使点A落在矩形内部点M处,把纸片展平,连接PM,BM.根据以上操作,当点M在EF上时,写出图①中一个30°的角:______________________________________;(2)迁移探究小华将矩形纸片换成正方形纸片,继续探究,过程如下:将正方形纸片ABCD按照(1)中的方式操作,并延长PM交CD于点Q,连接BQ.①如图②,当点M在EF上时,∠MBQ=______°,∠CBQ=______°;②改变点P在AD上的位置(点P不与点A,D重合),如图③,判断∠MBQ与∠CBQ的数量关系,并说明理由;(3)拓展应用在(2)的探究中,已知正方形纸片ABCD的边长为8 cm,当FQ=1 cm时,直接写出AP的长.第1题图2. (2022齐齐哈尔)数学是以数量关系和空间形式为主要研究对象的科学.数学实践活动有利于我们在图形运动变化的过程中去发现其中的位置关系和数量关系,让我们在学习与探索中发现数学的美,体会数学实践活动带给我们的乐趣.转一转:如图①,在矩形ABCD中,点E,F,G分别为边BC,AB,AD的中点,连接EF,DF,H为DF的中点,连接GH .将△BEF 绕点B 旋转,线段DF ,GH 和CE 的位置和长度也随之变化.当△BEF 绕点B 顺时针旋转90°时,请解决下列问题:(1)图②中,AB =BC ,此时点E 落在AB 的延长线上,点F 落在线段BC 上,连接AF ,猜想GH 与CE 之间的数量关系,并证明你的猜想;(2)图③中,AB =2,BC =3,则GH CE=________; (3)当AB =m ,BC =n 时,GH CE=________;第2题图剪一剪、折一折:(4)在(2)的条件下,连接图③中矩形的对角线AC ,并沿对角线AC 剪开,得△ABC (如图④).点M ,N 分别在AC ,BC 上,连接MN ,将△CMN 沿MN 翻折,使点C 的对应点P 落在AB 的延长线上,若PM 平分∠APN ,则CM 长为________.第2题图④类型二 探究迁移型试题3. (2022乐山)以下是华师版八年级下册数学教材第121页习题19.3第2小题及参考答案.如图①,在正方形ABCD 中,CE ⊥DF .求证:CE =DF .证明:设CE 与DF 交于点O ,∵四边形ABCD 是正方形,∴∠B =∠DCB =90°,BC =C D.∴∠BCE +∠DCE =90°.∵CE ⊥DF ,∴∠COD =90°.∴∠CDF +∠DCE =90°.∴∠CDF =∠BCE .∴△CBE ≌△DCF .∴CE =DF .第3题图①某数学兴趣小组在完成了以上解答后,决定对该问题进一步探究.【问题探究】如图②,在正方形ABCD 中,点E ,F ,G ,H 分别在线段AB ,BC ,CD ,DA 上,且EG ⊥FH .试猜想EG FH的值,并证明你的猜想;【知识迁移】如图③,在矩形ABCD 中,AB =m ,BC =n ,点E ,F ,G ,H 分别在线段AB ,BC ,CD ,DA 上,且EG ⊥FH ,则EG FH=________; 【拓展应用】如图④,在四边形ABCD 中,∠DAB =90°,∠ABC =60°,AB =BC ,点E ,F 分别在线段AB ,AD 上,且CE ⊥BF .求CE BF的值.图②图③图④第3题图4. (2022江西)综合与实践问题提出某兴趣小组在一次综合与实践活动中提出这样一个问题:将足够大的直角三角板PEF(∠P=90°,∠F=60°)的一个顶点放在正方形中心O处,并绕点O逆时针旋转,探究直角三角板PEF与正方形ABCD重叠部分的面积变化情况(已知正方形边长为2).操作发现(1)如图①,若将三角板的顶点P放在点O处,在旋转过程中,当OF与OB重合时,重叠部分的面积为________;当OF与BC垂直时,重叠部分的面积为________;一般地,若正方形面积为S,在旋转过程中,重叠部分的面积S1与S的关系为________;类比探究(2)若将三角板的顶点F放在点O处,在旋转过程中,OE,OP分别与正方形的边相交于点M,N.①如图②,当BM=CN时,试判断重叠部分△OMN的形状,并说明理由;②如图③,当CM=CN时,求重叠部分四边形OMCN的面积(结果保留根号);拓展应用(3)若将任意一个锐角的顶点放在正方形中心O处,该锐角记为∠GOH(设∠GOH=α),将∠GOH绕点O逆时针旋转,在旋转过程中,∠GOH的两边与正方形ABCD的边所围成的图形的面积为S2,请直接写出S2的最小值与最大值(分别用含α的式子表示).(参考数据:sin 15°=6-24,cos 15°=6+24,tan 15°=2-3)第4题图源自北师九上P25第4题类型三综合应用型试题5. (2022自贡)某数学兴趣小组自制测角仪到公园进行实地测量,活动过程如下:(1)探究原理制作测角仪时,将细线一端固定在量角器圆心O处,另一端系小重物G.测量时,使支杆OM、量角器90°刻度线ON与铅垂线OG相互重合(如图①),绕点O转动量角器,使观测目标P与直径两端点A,B共线(如图②),此时目标P的仰角∠POC=∠GON.请说明这两个角相等的理由;第5题图(2)实地测量如图③,公园广场上有一棵树,为测树高,同学们在观测点K处测得树顶端P的仰角∠POQ=60°,观测点与树的距离KH为5米,点O到地面的距离OK为1.5米,求树高PH;(3≈1.73,结果精确到0.1米) (3)拓展探究公园高台上有一凉亭,为测量凉亭顶端P距地面的高度PH(如图④),同学们经过讨论,决定先在水平地面上选取观测点E,F(E,F,H在同一直线上),分别测得点P的仰角α,β,再测得E,F间的距离m,点O1,O2到地面的距离O1E,O2F均为1.5米.求PH(用α,β,m表示).图③图④第5题图源自北师九下P22活动课题6. (2022陕西)问题提出(1)如图①,AD是等边△ABC的中线,点P在AD的延长线上,且AP=AC,则∠APC的度数为________;问题探究(2)如图②,在△ABC中,CA=CB=6,∠C=120°.过点A作AP∥BC,且AP=BC,过点P作直线l⊥BC,分别交AB,BC于点O,E,求四边形OECA的面积;问题解决(3)如图③,现有一块△ABC型板材,∠ACB为钝角,∠BAC=45°.工人师傅想用这块板材裁出一个△ABP 型部件,并要求∠BAP=15°,AP=A C.工人师傅在这块板材上的作法如下:①以点C为圆心,以CA长为半径画弧,交AB于点D,连接CD;②作CD的垂直平分线l,与CD交于点E;③以点A为圆心,以AC长为半径画弧,交直线l于点P,连接AP,BP,得△ABP.请问,若按上述作法,裁得的△ABP型部件是否符合要求?请证明你的结论.第6题图。
2020年江西省中考数学第二轮专题复习练习:专题三 实际应用题
专题三实际应用题类型一几何实际应用题命题角度❶以三角形为背景(2019·江西)图①是一台实物投影仪,图②是它的示意图,折线B-A-O 表示固定支架,AO垂直水平桌面OE于点O,点B为旋转点,BC可转动,当BC 绕点B顺时针旋转时,投影探头CD始终垂直于水平桌面OE,经测量:AO=6.8 cm,CD=8 cm,AB=30 cm,BC=35 cm.(结果精确到0.1)(1)如图②,∠ABC=70°,BC∥OE.①填空:∠BAO=°;②求投影探头的端点D到桌面OE的距离.(2)如图③,将(1)中的BC向下旋转,当投影探头的端点D到桌面OE的距离为6 cm时,求∠ABC的大小.(参考数据:sin 70°≈0.94,cos 20°≈0.94,sin 36.8°≈0.60,cos 53.2°≈0.60)【分析】(1)①要求∠BAO的度数,由BC∥OE,知过点A作OE的平行线,利用平行线性质求解;②要求探头D到桌面OE的距离,可先在Rt△ABG中求出AG,进而利用线段间的数量关系求解;(2)要求∠ABC的大小,可先过点B作OE的平行线,利用锐角三角函数求出∠HBC的度数,即可得解.【自主解答】命题角度❷ 以四边形为背景如图①,研究发现,科学使用电脑时,望向荧光屏幕画面的“视线角”α约为20°,而当手指接触键盘时,肘部形成的“手肘角”β约为100°,图②是其侧面简化示意图,其中视线AB 水平,且与屏幕BC 垂直.(1)若屏幕上下宽BC =20 cm ,科学使用电脑时,求眼睛与屏幕的最短距离AB 的长;(2)若肩膀到水平地面的距离DG =100 cm ,上臂DE =30 cm ,下臂EF 水平放置在键盘上,其到地面的距离FH =72 cm.请判断此时β是否符合科学要求的100°?(参考数据:sin 69°≈1415,cos 21°≈1415,tan 20°≈411,tan 43°≈1415,所有结果精确到个位)【分析】 (1)在Rt△ABC中,用∠A的正切直接求解;(2)判断β是否符合科学要求的100°,主要是求∠β,可在Rt△DME中求∠DEM 即可.【自主解答】命题角度❸以圆为背景(2019·安徽)筒车是我国古代发明的一种水利灌溉工具.如图①,明朝科学家徐光启在《农政全书》中用图画描绘了筒车的工作原理.如图②,筒车盛水桶的运行轨迹是以轴心O为圆心的圆.已知圆心在水面上方,且圆被水面截得的弦AB长为6米,∠OAB=41.3°.若点C为运行轨道的最高点(C,O的连线垂直于AB),求点C到弦AB所在直线的距离.(参考数据:sin 41.3°≈0.66,cos 41.3°≈0.75,tan 41.3°≈0.88)【分析】求点C到弦AB的距离,可通过圆的性质,连接CO并延长交AB于D,利用垂径定理在Rt△OAD中求出OD即可.【自主解答】1.为“方便交通,绿色出行”,人们常选择以共享单车作为代步工具.图①所示的是一辆自行车的实物图.图②是这辆自行车的部分几何示意图,其中车架档AC与CD的长分别为45 cm和60 cm,且它们互相垂直,座杆CE的长为20 cm,点A、C、E在同一条直线上,且∠CAB=75°.(1)求车架档AD的长;(2)求车座点E到车架档AB的距离(结果精确到1 cm).(参考数据:sin 75°≈0.966,cos 75°≈0.259,tan 75°≈3.732)2.(2019·台州改编)如图①是一辆在平地上滑行的滑板车,图②是其示意图,已知车杆AB长92 cm,车杆与脚踏板所成的角∠ABC=70°,前后轮子的半径均为6 cm,B,C为前后两个轮子所在圆的圆心.(1)判定BC与水平地面的位置关系,并说明理由;(2)求车把手A距离地面的高度.(结果精确到0.1cm,参考数据:sin 70°≈0.94,cos 70°≈0.34,tan 70°≈2.75)3.(2019·绍兴)如图①为放置在水平桌面l上的台灯,底座的高AB为5 cm,长度均为20 cm的连杆BC,CD与AB始终在同一平面上.(1)转动连杆BC,CD,使∠BCD成平角,∠ABC=150°,如图②,求连杆端点D 离桌面l的高度DE;(2)将(1)中的连杆CD再绕点C逆时针旋转,使∠BCD=165°,如图③,问此时连杆端点D离桌面l的高度是增加还是减少?增加或减少了多少?(精确到0.1 cm,参考数据:2≈1.41,3≈1.73)4.(2019·舟山)某挖掘机的底座高AB=0.8米,动臂BC=1.2米,CD=1.5米,BC与CD的固定夹角∠BCD=140°,初始位置如图①,斗杆顶点D与铲斗顶点E 所在直线DE垂直地面AM于点E,测得∠CDE=70°(示意图②).工作时如图③,动臂BC会绕点B转动,当A,B,C在同一直线上时,斗杆顶点D升至最高点(示意图④).(1)求挖掘机在初始位置时动臂BC与AB的夹角∠ABC的度数;(2)问斗杆顶点D的最高点比初始位置高了多少米?(精确到0.1米)(参考数据:sin 50°≈0.77,cos 50°≈0.64,sin 70°≈0.94,cos 70°≈0.34)5.(2019·常德改编)如图①是一种淋浴喷头,图②是图①的示意图,若用支架把喷头固定在点A处,手柄长AB=25 cm,AB与墙壁DD′的夹角∠D′AB=37°,喷出的水流BC与AB形成的夹角∠ABC=72°.(1)BC与竖直方向所成的夹角(锐角)的度数为;(2)若住户要求:当人站在E处淋浴时,水流正好喷洒在人体的C处,且使得DE =50 cm,CE=130 cm,求安装师傅应将支架固定在离地面多高的位置上.(参考数据:sin 37°≈0.60,cos 37°≈0.80,tan 37°≈0.75,sin 72°≈0.95,cos 72°≈0.31,tan 72°≈3.08,sin 35°≈0.57,cos 35°≈0.82,tan 35°≈0.70)6.(2019·泰州)某体育看台侧面的示意图如图所示,观众区AC的坡度i为1∶2,顶端C离水平地面AB的高度为10 m,从顶棚的D处看E处的仰角α=18°30′,竖直的立杆上C,D两点间的距离为4 m,E处到观众区底端A处的水平距离AF为3 m,求:(1)观众区底端水平宽度AB;(2)顶棚的E处离地面的高度EF.(sin 18°30′≈0.32,tan 18°30′≈0.33,结果精确到0.1 m)7.(2019·九江二模)将一盒足量的牛奶按如图①所示倒入一个水平放置的长方体容器中,当容器中的牛奶刚好接触到点P时停止倒入,图②是它的平面示意图,请根据图中的信息解答下列问题:(1)填空:AP= cm,PF= cm;(2)求出容器中牛奶的高度CF.8.(2019·南昌二模)如图所示的是一个地球仪及它的平面图,在平面图中,点A、B分别为地球仪的南、北极点,直线AB与放置地球仪的平面交于点D,所夹的角度约为67°,半径OC所在的直线与放置它的平面垂直,垂足为点E,DE=15 cm,AD=14 cm.(1)求半径OA的长.(结果精确到0.1 cm,参考数据:sin 67°≈0.92,cos67°≈0.39,tan 67°≈2.36)(2)求扇形BOC 的面积.(π取3.14,结果精确到1 cm)9.如图①是校园内的一种铁制乒乓球桌,其侧面简化结构如图②所示.直线型支架的上端A ,B 与台面下方相连,与圆弧形底座支架EF 在C ,D 处相连接,支架AC 与BD 所在的直线过EF ︵的圆心.若AB =200 cm ,∠CAB=∠DBA=60°,EC ︵=FD ︵,AB 平行于地面EF ,EF ︵最顶端与AB 的距离为2 cm. (1)求EF ︵的半径;(2)若台面AB 与地面EF 之间的距离为72 cm ,求E ,F 两点之间的距离.(精确到1 cm,参考数据:3≈1.7,1682-982≈137)10.为了应对人口老龄化问题,国家大力发展养老事业.某养老机构定制轮椅供行动不便的老人使用.图①是一种型号的手动轮椅实物图,图②为其侧面示意图,该轮椅前后长度为120 cm,后轮半径为24 cm,CB=CD=24 cm,踏板CB 与CD垂直,横档AD、踏板CB与地面所成的角分别为15°、30°.求:(1)横档AD的长;(2)点C离地面的高度.(sin 15°≈0.26,cos 15°≈0.97,精确到1 cm)类型二方程、不等式的实际应用题如图是一根可伸缩的鱼竿,鱼竿是用10节大小不同的空心套管连接而成.闲置时鱼竿可收缩,完全收缩后,鱼竿长度即为第1节套管的长度(如图①所示).使用时,可将鱼竿的每一节套管都完全拉伸(如图②所示).图③是这根鱼竿所有套管都处于完全拉伸状态下的平面示意图.已知第1节套管长50 cm,第2节套管长46 cm,以此类推,每一节套管均比前一节套管少4 cm.完全拉伸时,为了使相邻两节套管连接并固定,每相邻两节套管间均有相同长度的重叠,设其长度为x cm.(1)请直接写出第5节套管的长度;(2)当这根鱼竿完全拉伸时,其长度为311 cm,求x的值.【分析】 (1)根据“第n节套管的长度=第1节套管的长度-4×(n-1)”代入数据即可;(2)同(1)的方法求第10节套管重叠的长度,再根据“完全拉伸时长度为311 cm”列方程即可.【自主解答】1.(2019·福建)某工厂为了贯彻落实“绿水青山就是金山银山”的发展理念,投资组建了日废水处理量为m吨的废水处理车间,对该厂工业废水进行无害化处理.但随着工厂生产规模的扩大,该车间经常无法完成当天工业废水的处理任务,需要将超出日废水处理量的废水交给第三方企业处理.已知该车间处理废水,每天固定成本30元,并且每处理1吨废水还需其他费用8元,将废水交给第三方企业处理,每吨需支付12元,根据记录,5月21日,该厂生产工业废水35吨,共花费废水处理费370元.(1)求该车间的日废水处理量m;(2)为实现可持续发展,走绿色发展之路,工厂合理控制了生产规模,使得每天废水处理的平均费用不超过10元/吨,试计算该厂一天产生的工业废水量的范围.2.(2019·聊城)某商场的运动服装专柜,对A,B两种品牌的运动服分两次采购试销后,效益可观,计划继续采购进行销售.已知这两种服装过去两次的进货情况如下表:(1)问A,B两种品牌运动服的进货单价各是多少元?(2)由于B品牌运动服的销量明显好于A 品牌,商家决定采购B 品牌的件数比A 品牌件数的32倍多5件,在采购总价不超过21 300元的情况下,最多能购进多少件B 品牌运动服?3.某商店购买60件A 商品和30件B 商品共用了1 080元,购买50件A 商品和20件B 商品共用了880元.(1)A ,B 两种商品的单价分别是多少元;(2)已知该商店购买B 商品的件数比购买A 商品的件数的2倍少4件,如果需要购买A ,B 两种商品的总件数不少于32件,且该商店购买的A ,B 两种商品的总费用不超过296元,那么该商店有哪几种购买方案.4.书籍是人类进步的阶梯!为爱护书一般都将书本用封皮包好.问题1:现有精装词典长、宽、厚尺寸如图①所示(单位:cm),若按图②的包书方式,将封面和封底各折进去3 cm.试用含a、b、c的代数式分别表示词典封皮(包书纸)的长AB是 (2b+c+6) cm,宽BC是 a cm;问题2:在如图④的矩形包书纸示意图中,虚线为折痕,阴影是裁剪掉的部分,四角均为大小相同的正方形,正方形的边长即为折叠进去的宽度.(1)若有一数学课本长为26 cm、宽为18.5 cm、厚为1 cm,小海宝用一张面积为1 260 cm2的矩形纸包好了这本数学书,封皮展开后如图④所示.若设正方形的边长(即折叠的宽度)为x cm,则包书纸长EF为 38+2xcm,宽FG为 26+2xcm(用含x的代数式表示);(2)请帮小海宝列方程,求出第(1)题中小正方形的边长x cm.类型三函数实际应用题(2019·江西样卷一)今年某水果加工公司分两次采购一批桃子,第一次费用为25万元,第二次费用为30万元.已知第一次采购时每吨桃子的价格比去年的平均价格上涨了0.1万元,第二次采购时每吨桃子的价格比去年的平均价格下降了0.1万元,第二次采购的数量是第一次采购数量的2倍.(1)求去年每吨桃子的平均价格是多少万元,两次采购的总数量是多少吨;(2)该公司可将桃子加工成桃脯或桃汁,每天只能加工其中一种.若单独加工成桃脯,每天可加工3吨桃子,每吨可获利0.7万元;若单独加工成桃汁,每天可加工9吨桃子,每吨可获利0.2万元.为出口需要,所有采购的桃子必须在30天内加工完毕.①根据该公司的生产能力,加工桃脯的时间不能超过多少天;②在这次加工生产过程中,应将多少吨桃子加工成桃脯才能获取最大利润?最大利润为多少.【分析】 (1)由第一次采购价格比去年平均价格上涨0.1万元,第二次采购价格比去年平均价格下降0.1万元,可分别表示两次采购桃子的数量,然后利用第二次采购桃子的数量是第一次采购的2倍列分式方程求解;(2)①由所有桃子必须在30天内加工完毕,可设加工桃脯的天数为x天,从而表示出加工桃汁的天数,再列出不等式求解;②列出利润关于加工桃脯天数的一次函数关系式,再根据函数性质确定最值即可.【自主解答】1.(2019·陕西)根据记录,从地面向上11 km以内,每升高1 km气温降低6 ℃;又知在距离地面11 km以上高空,气温几乎不变,若地面气温为m(℃),设距离地面的高度为x(km)处的气温为y(℃).(1)写出距离地面的高度在11 km以内的y与x之间的函数表达式;(2)上周日,小敏在乘飞机从上海飞回西安途中,某一时刻,她从机舱内屏幕显示的相关数据得知,飞机外气温为-26 ℃,飞机距离地面的高度为7 km,求当时这架飞机下方地面的气温;小敏想,假如飞机当时在距离地面12 km的高空,飞机外的气温是多少度呢?请求出假如当时飞机距离地面12 km时,飞机外的气温.2.某商店以8元/个的价格收购1 600个文具盒进行销售,为了得到日销售量y(个)与销售价格x(元/个)之间的关系,经过市场调查获得部分数据如表:(1)请你根据表中的数据,用所学知识确定y与x之间的函数表达式;(2)该商店应该如何确定这批文具盒的销售价格,才能使日销售利润最大;(3)根据(2)中获得最大利润的方式进行销售,判断一个月能否销售完这批文具盒,并说明理由.3为拓宽学生视野,我市某中学决定组织部分师生去庐山西海开展研学旅行活动,在参加此次活动的师生中,若每位老师带17名学生,还剩12名学生没人带;若每位老师带18名学生,就有一位老师少带4名学生.为了安全,既要保证所有师生都有车坐,又要保证每辆客车上至少要有2名老师.现有甲、乙两种大客车,它们的载客量和租金如表所示.(1)参加此次研学旅行活动的老师和学生各有多少人?租用客车总数为多少辆?(2)设租用x辆乙种客车,租车总费用为w元,请写出w与x之间的函数关系式;(3)在(2)的条件下,学校计划此次研学旅行活动的租车总费用不超过3 100元,租用乙种客车不少于5辆,你能得出哪几种不同的租车方案?其中哪种租车方案最省钱?请说明理由.4.某游乐园有一个直径为16米的圆形喷水池,喷水池的周边有一圈喷水头,喷出的水柱为抛物线,在距水池中心3米处达到最高,高度为5米,且各方向喷出的水柱恰好在喷水池中心的装饰物处汇合.如图所示,以水平方向为x轴,喷水池中心为原点建立直角坐标系.(1)求水柱所在抛物线(第一象限部分)的函数表达式;(2)王师傅在喷水池内维修设备期间,喷水管意外喷水,为了不被淋湿,身高1.8米的王师傅站立时必须在离水池中心多少米以内?(3)经检修评估,游乐园决定对喷水设施做如下设计改进:在喷出水柱的形状不变的前提下,把水池的直径扩大到32米,各方向喷出的水柱仍在喷水池中心保留的原装饰物(高度不变)处汇合,请探究扩建改造后喷水池水柱的最大高度.参考答案【例1】 解:(1)①如解图①,过点A 作AF∥BC,则∠BAO=∠BAF+∠OAF=∠ABC+∠AOE=160°.②如解图②,过点A 作AG⊥BC ,交BC 于点G ,∵AB=30,OA =6.8,∠ABC=70°, ∴AG=30sin 70°=28.2,∴OG=OA +AG =35, ∴OG-CD =27,即点D 到桌面OE 的距离是27 cm.(2)如解图③,延长CD 交OE 于M ,过点B 作BH⊥CD,交DC 的延长线于H. ∵CD⊥OE,OE∥BH,∴∠ABH=70°, 由题意,得 CM =14,由(1)得HM =35,∴CH=21.在Rt△BCH 中,sin∠CBH=CH BC =2135=0.60,∴∠CBH=36.8°,∴∠ABC=∠ABH-∠CBH=33.2°.【例2】 解:(1)由已知,得BC =20 cm ,在Rt△ABC 中,tan α=BCAB ,∴AB=BC tan α=BC tan 20°≈20411=55(cm). (2)由已知得DG =100 cm ,DE =30 cm ,FH =72 cm , 如解图,作EM⊥DG 于M ,则MG =FH =72 cm , ∴DM=DG -MG =28 cm , ∴sin∠DEM=DM DE =2830=1415.∵sin 69°≈1415,∴∠DEM≈69°.∵∠DEM+∠DEF=180°, ∴β=∠DEF=111°, ∴不符合科学要求的100°.【例3】 解:如解图,连接CO 并延长,与AB 交于点D , ∵OD⊥AB,∴AD=BD =12AB =3(米),在Rt △OAD 中,∠OAB=41.3°,cos 41.3°=ADAO ,∴AO=3cos 41.3°≈30.75=4.∵tan 41.3°=ODAD,∴OD=AD·tan 41.3°≈3×0.88=2.64(米),∴CD=OC+OD=AO+OD=4+2.64=6.64米.答:点C到弦AB所在直线的距离是6.64米.跟踪训练1.解:(1)∵在Rt△ACD中,AC=45 cm,DC=60 cm,∴AD=452+602=75(cm).∴车架档AD的长是75 cm.(2)如解图,过点E作EF⊥AB,垂足为F,∵AE=AC+CE=(45+20) cm,∴EF=AEsin 75°=(45+20)·sin 75°≈62.79≈63(cm),∴车座点E到车架档AB的距离约是63 cm.2.解:(1)BC与水平地面平行.理由:如解图,分别过点B,C作水平地面的垂线,垂足记为G,H,∴BG∥CH.∵前后轮子的半径均为6 cm,∴BG=CH=6 cm,∴四边形BGHC是平行四边形,∴BC∥GH,即BC与水平地面平行.(2)如解图,过点A作AD⊥BC于点D,延长AD交地面于点E,∵sin∠ABD=ADAB ,∴AD=ABsin∠ABD=92sin 70°≈92×0.94=86.48 cm.∵DE=BG =6 cm.∴AE=AD +DE =92.48 cm≈92.5 cm. 答:车把手A 离地面的高度约为92.5 cm.3.解:(1)如解图①中,作BO⊥DE 于O.∵∠OEA=∠BOE=∠BAE=90°,∴四边形ABOE 是矩形,∴∠OBA=90°, ∴∠DBO =150°-90°=60°,∴OD=BD·sin 60°=203(cm), ∴DE=OD +OE =OD +AB =203+5≈39.6(cm).(2)如解图②,作DF⊥l 于F ,CP⊥DF 于P ,BG⊥DF 于G ,CH⊥BG 于H ,则四边形PCHG 是矩形,∵∠CBH=60°,∠CHB=90°,∴∠BCH=30°. ∵∠BCD=165°,∴∠DCP=45°,∴CH=BCsin 60°=103(cm),DP =CDsin 45°=102(cm), ∴DF=DP +PG +GF =DP +CH +AB =(102+103+5)(cm),∴下降高度:DE -DF =203+5-102-103-5=103-102=3.2(cm). 4.解:(1)过点C 作CG⊥AM 于点G ,如解图①所示. ∵AB⊥AM,DE⊥AM,∴AB∥CG∥DE,∴∠DCG=180°-∠CDE=110°, ∴∠BCG=∠BC D -∠GCD=30°, ∴∠ABC=180°-∠BCG=150°.(2)过点C 作CP⊥DE 于点P ,过点B 作BQ⊥DE 于点Q ,交CG 于点N ,如解图①所示,在Rt△CPD 中,DP =CDcos 70°≈0.51米, 在Rt△BCN 中,CN =BC cos30°≈1.04米, ∴DE=DP +PQ +QE =2.35米.如解图②所示,过点D 作DH⊥AM 于点H ,过点C 作CK⊥DH 于点K. ∵∠BCD=140°,∠BCK=90°,∴∠DCK=50°. 在Rt△CKD 中,DK =CDsin 50°≈1.16米, ∴DH=DK +KH =3.16米, ∴DH-DE =0.8米.答:斗杆顶点D 的最高点比初始位置高了0.8米.5.解:(1)35°.(2)如解图,过点B 作BG⊥D′D 于点G ,延长EC ,GB 交于点F , ∴sin 37°=GB AB ,cos 37°=GAAB,∴GB=ABsin 37°≈25×0.60=15 cm ,GA =ABcos 37° ≈25×0.80=20 cm ,∴BF=GF -GB =DE -GB =50-15=35 cm. 由(1)可知,∠BCF=35°,∴tan 35°=BFCF ,∴CF=BF tan 35°≈350.70=50 cm ,∴FE=FC +CE =180 cm , ∴AD=GD -GA =FE -GA =160 cm.答:安装师傅应将支架固定在离地面160 cm 的位置. 6.解:(1)观众区AC 的坡度i 为1∶2,顶端C 离水平地面AB 的高度为10 m , ∴AB=2BC =20 m.答:观众区的水平宽度AB 为20 m.(2)如解图,作CM⊥EF 于M ,DN⊥EF 于N ,则四边形MFBC 与四边形MCDN 都为矩形,∴MF=BC =10,MN =CD =4,DN =MC =BF =23. 在Rt△END 中,tan∠EDN=ENDN ,则EN =DNtan∠EDN≈7.59米,∴EF=EN +MN +MF =7.59+4+10≈21.6米. 答:顶棚的E 处离地面的高度EF 约为21.6 m.7.解:(1)在Rt△ABP 中,∵∠APB=90°,∠ABP=30°,AB =10 cm ,∴AP=12AB =5 cm ,∠BAP=60°. ∴∠EAP=30°,∴EP =12AP =52cm ,∴PF=10-52=152(cm);故答案为:5,152.(2)∵EF∥AB,∴∠BPF=∠ABP=30°. 又∵∠BFP=90°,∴tan 30°=BFPF ,∴BF=152×33=532(cm),∴CF=BC -BF =(12-532)(cm).即容器中牛奶的高度CF 为(12-532) cm.8.解:(1)在Rt△ODE 中,DE =15 cm ,∠ODE=67°. ∵cos∠ODE=DEOD ,∴OD≈150.39≈38.46( cm),∴OA=OD -AD =38.46-14≈24.5( cm). 答:半径OA 的长约为24.5 cm. (2)∵∠ODE=67°,∴∠BOC=157°,∴扇形BOC 的面积≈157×3.14×24.52360≈822( cm 2).答:扇形BOC 的面积约为822 cm 2.9.解:(1)如解图延长AC ,BD 相交于O ,则点O 是EF ︵的圆心,过点O 作OH⊥AB 于H ,交EF ︵于G.∵∠OAB=∠OBA=60°, ∴△AOB 是等边三角形 ∴AH=BH =100 cm , ∴OH=3AH≈170 cm. ∵GH=2 cm ,∴EF ︵的半径为170-2=168 cm. (2)连接EF 交OH 于P ,连接OE.在Rt△OEP 中,OP =OH -HP =98 cm ,OE =168 cm , 由勾股定理,得EP =EO 2-OP 2≈137 cm. ∴EF=2EP =274 cm. 10.解: (1)如解图所示.在Rt△DFC 中,FC =DCsin 30°=24×12=12 cm ,DF =DCcos 30°=24×32=12 3 cm. 在Rt△BCG 中,CG =BCcos 30°=24×32=12 3 cm.∴AE=120-12-24-123≈63.2(cm).在Rt△ADE中,AD=AEcos 15°≈63.20.97≈65(cm).因此,横档AD的长为65 cm.(2)在Rt△ADE中,DE=ADsin 15°≈65×0.26=16.9 cm,∴点C离地面的高度为DE+24-DF=16.9+24-123≈20(cm).因此,点C离地面的高度为20 cm.【例4】解:(1)第5节套管的长度为:50-4×(5-1)=34(cm).(2)第10节套管的长度为:50-4×(10-1)=14(cm).∵每相邻两节套管间重叠的长度为x cm,根据题意,得(50+46+42+…+14)-(10-1)x=311,即320-9x=311.解得x=1.答:每相邻两节套管间重叠的长度为1 cm.跟踪训练1.解:(1)∵35×8+30=310,310<350,∴m<35,由题意,得30+8m+12(35-m)=370,解得m=20.答:该车间的日废水处理量为20吨.(2)设一天产生工业废水x吨,当0<x≤20时,8x+30≤10x,解得15≤x≤20,当x>20时,12(x-20)+8×20+30≤10x,解得20<x≤25,综上所述,该厂一天产生的工业废水量的范围是15≤x≤25.2.解:(1)设A ,B 两种品牌运动服的进货单价各是x 元y 元,根据题意可得: ⎩⎪⎨⎪⎧20x +30y =10 200,30x +40y =14 400,解得⎩⎪⎨⎪⎧x =240,y =180,答:A ,B 两种品牌运动服的进货单价各是240元和180元.(2)设购进A 品牌运动服m 件,则购进B 品牌运动服(32m +5)件, 则240m +180(32m +5)≤21 300, 解得m≤40,∴32m +5≤32×40+5=65. 答:最多能购进65件B 品牌运动服.3.解:(1)设A 商品的单价为x 元,B 商品的单价为y 元,根据题意,得⎩⎪⎨⎪⎧60x +30y =1 080,50x +20y =880,解得⎩⎪⎨⎪⎧x =16,y =4,答:A 商品的单价为16元,B 商品的单价为4元.(2)设购买A 商品a 件,则购买B 商品(2a -4)件,∵购买A ,B 两种商品的总件数不少于32件,∴a+(2a -4)≥32,解得a≥12. ∵购买A ,B 两种商品的总费用不超过296元,∴16a +4(2a -4)≤296.解得a≤13,∴a 的取值范围是12≤a≤13.∵a 为整数,∴a=12或a =13.∴共有两种购买方案,方案一:购买A 商品12件,B 商品20件;方案二:购买A 商品13件,B 商品22件.4.解: 问题1:a 2b +c +6问题2:(1)38+2x 26+2x(2)∵折进去的宽度为x cm ,列方程得:(38+2x)(26+2x)=1 260,988+128x +4x 2=1 260,x 2+32x -68=0,x 1=2,x 2=-34(舍去),∴折进去的宽度为2 cm.答:小正方形的边长为2 cm.【例5】 解:(1)设去年每吨桃子的平均价格是a 万元,依题意得2×25a +0.1=30a -0.1,解得a =0.4, 经检验,a =0.4是原方程的解,25a +0.1+30a -0.1=250.4+0.1+300.4-0.1=150吨. 答:去年每吨桃子的平均价格是0.4万元,两次采购的总数量为150吨.(2)①设该公司加工桃脯用x 天,则x +150-3x 9≤30,解得x≤20, ∴加工桃脯的时间不能超过20天;②设该公司加工桃脯x 天,获得最大利润为w 万元,依题意得w =0.7·3x+0.2×(150-3x)=1.5x +30,∵k=1.5>0,∴w 随x 的增大而增大.∵x≤20,∴当x =20时w 最大,最大值为1.5×20+30=60万元,3×20=60吨,答:将60吨桃子加工成桃脯才能获取最大利润,最大利润为60万元. 跟踪训练1.解:(1)y =-6x +m ;(2)将x =7,y =-26代入得,-6×7+m =-26,解得m =16,∴当时地面气温为16 ℃.∵x=12>11,∴y=16-6×11=-50(℃).答:假如当时飞机距离地面12 km ,则飞机外的气温为-50 ℃.2.解:(1)设函数表达式为y =kx +b ,则⎩⎪⎨⎪⎧18k +b =30,16k +b =40,解得⎩⎪⎨⎪⎧k =-5,b =120, ∴y=-5x +120,∴所求的函数表达式为y =-5x +120.(2)设利润为w ,根据题意,得w =(x -8)(-5x +120)=-5x 2+160x -960,整理,得w =-5(x -16)2+320,∴当售价为16元时,可使日销售利润最大为320元.(3)一个月不能销售完这批文具盒.理由:由(2)得最大利润时,售价为16元,则由(1)可知,日销售量为40个, ∵1 600÷40=40天,∴一个月不能销售完这批文具盒.3.解:(1)设老师有x 名,学生有y 名.依题意,列方程组为⎩⎪⎨⎪⎧17x =y -12,18x =y +4,解得⎩⎪⎨⎪⎧x =16,y =284.∵每辆客车上至少要有2名老师,∴汽车总数不能大于8辆;又要保证300名师生都有车坐,汽车总数不能小于30042=507(取整为8)辆, ∴汽车总数为8辆.(2)设租用x 辆乙种客车,则租用甲种客车(8-x)辆,w =400x +300(8-x)=100x +2 400.(3)∵租车总费用不超过3 100元,∴400x+300(8-x)≤3 100, 解得x≤7.∵x≥5,∴5≤x≤7(x 为整数),∴共有3种租车方案:方案一:租用甲种客车3辆,乙种客车5辆,租车费用为2 900元; 方案二:租用甲种客车2辆,乙种客车6辆,租车费用为3 000元; 方案三:租用甲种客车1辆,乙种客车7辆,租车费用为3 100元; 故最节省费用的租车方案是:租用甲种客车3辆,乙种客车5辆.4.解: (1)设水柱所在抛物线(第一象限部分)的函数表达式为y =a(x -3)2+5(a≠0),将(8,0)代入y =a(x -3)2+5,得:25a +5=0,解得a =-15, ∴水柱所在抛物线(第一象限部分)的函数表达式为y =-15(x -3)2+5(0<x <8).(2)当y =1.8时,-15(x -3)2+5=1.8, 解得x 1=-1,x 2=7,∴为了不被淋湿,身高1.8米的王师傅站立时必须在离水池中心7米以内.(3)当x =0时,y =-15(x -3)2+5=165. 设改造后水柱所在抛物线(第一象限部分)的函数表达式为y =-15x 2+bx +165. ∵该函数图象过点(16,0),∴0=-15×162+16b +165, 解得b =3,∴改造后水柱所在抛物线(第一象限部分)的函数表达式为y =-15x 2+3x +165=-15(x -152)2+28920, ∴扩建改造后喷水池水柱的最大高度为28920米.。
专题三 第2讲 数列求和及其综合应用
2 考点二 数列的综合问题
PART TWO
核心提炼
数列与函数、不等式的综合问题是高考命题的一个方向,此类问题突破 的关键在于通过函数关系寻找数列的递推关系,求出数列的通项或前 n项和,再利用数列或数列对应的函数解决最值、范围问题,通过放缩 进行不等式的证明.
(2)(2021·长春模拟)已知等比数列{an}满足:a1+a2=20,a2+a3=80.数
列{bn}满足bn=log2an,其前n项和为Sn,若 6
Sn+bn11≤λ恒成立,则λ的最小
值为__2_3__.
解析 设等比数列{an}的公比为 q,由题意可得aa11+q+a1aq1=q2=208,0, 解得a1=4,q=4, 故{an}的通项公式为an=4n,n∈N*. bn=log2an=log24n=2n, Sn=2n+12n(n-1)·2=n2+n,
例4 (1)(2021·淄博模拟)已知在等比数列{an}中,首项a1=2,公比q>1,
a2,a3是函数f(x)=13 x3-6x2+32x的两个极值点,则数列{an}的前9项和 是__1_0_2_2__.
解析 由 f(x)=13x3-6x2+32x,得 f′(x)=x2-12x+32, 又因为 a2,a3 是函数 f(x)=13x3-6x2+32x 的两个极值点, 所以a2,a3是函数f′(x)=x2-12x+32的两个零点, 故aa22+ ·a3a=3=321,2,
专题三 数 列
考情分析
KAO QING FEN XI
1.数列求和重点考查分组转化、错位相减、裂项相消三种求和方法. 2.数列的综合问题,一般以等差数列、等比数列为背景,与函数、不
二元一次方程(组)应用题专题讲解及练习(附答案)
实际问题与二元一次方程组(一) 要点一.常见的一些等量关系 1.和差倍分问题:增长量=原有量×增长率 较大量=较小量+多余量,总量=倍数×倍量. 2.产品配套问题:解这类问题的基本等量关系是:加工总量成比例.3.工程问题:工作量=工作效率×工作时间,各部分劳动量之和=总量.4.利润问题:商品利润=商品售价-商品进价,=100% 利润利润率进价. 要点二.实际问题与二元一次方程组 1.列方程组解应用题的基本思想列方程组解应用题,是把“未知”转换成“已知”的重要方法,它的关键是把已知量和未知量联系起来,找出题目中的等量关系.一般来说,有几个未知量就必须列出几个方程,所列方程必须满足:①方程两边表示的是同类量:②同类量的单位要统一;③方程两边的数要相等.2.列二元一次方程组解应用题的一般步骤: 设:用两个字母表示问题中的两个未知数; 列:列出方程组(分析题意,找出两个等量关系,根据等量关系列出方程组); 解:解方程组,求出未知数的值; 验:检验求得的值是否正确和符合实际情形; 答:写出答案.例题讲解题型一.和差倍分问题例1.电子商务的快速发展逐步改变了人们的生活方式,网购已悄然进入千家万户.李阿姨在淘宝网上花220元买了1个茶壶和10个茶杯,已知茶壶的单价比茶杯的单价的4倍还多10元.请问茶壶和茶杯的单价分别是多少元?【跟踪训练】根据如图提供的信息,可知一个热水瓶的价格是( )A .7元B .35元C .45元D .50元题型二.配套问题例2. 某服装厂生产一批某种款式的秋装,已知每2米的某种布料可做上衣的衣身3个或衣袖5只. 现计划用132米这种布料生产这批秋装(不考虑布料的损耗),应分别用多少布料才能使做的衣身和衣袖恰好配套?【跟踪训练】某家具厂生产一种方桌,设计时13m的木材可做50个桌面或300条桌腿.现有103m的木材,怎样分配桌面和桌腿使用的木材,才能使桌面和桌腿刚好配套,并指出可生产多少张方桌?(提示:一张方桌有一个桌面,4条桌腿). 题型三.工程问题例3.一批机器零件共840个,如果甲先做4天,乙加入合做,那么再做8天才能完成;如果乙先做4天,甲加入合做,那么再做9天才能完成,问:两人每天各做多少个零件?题型4.利润问题例4.某商场投入13800元资金购进甲、乙两种矿泉水共500箱,矿泉水的成本价和销售价如表所示:类别/单价成本价销售价(元/箱)甲24 36乙33 48(1)该商场购进甲、乙两种矿泉水各多少箱?(2)全部售完500箱矿泉水,该商场共获得利润多少元?【跟踪训练】王师傅下岗后开了一家小商店,上周他购进甲乙两种商品共50件,甲种商品的进价是每件35元,利润率是20%,乙种商品的进价是每件20元,利润率是15%,共获利278元,你知道王师傅分别购进甲乙两种商品各多少件吗专题练习(一)一、选择题1.有一些苹果箱,若每只装苹果25 kg,则剩余40 kg无处装;若每只装30 kg,则还有20个空箱,这些苹果箱有( ) .A.12只 B.6只 C.112只 D.128只2.幸福中学七年级学生到礼堂开会,若每条长椅坐5人,则少10条长椅,若每条长椅坐6人,则又多余2条长椅,设学生有x人,长椅有y条,依题意得方程组 ( ) .A.5105662x yx y=+⨯⎧⎨=-⨯⎩B.51062x yx y=-⎧⎨=+⎩C.5105662x yx y=-⨯⎧⎨=+⨯⎩D.51062x yx y=+⎧⎨=-⎩3.十一旅游黄金周期间,某景点举办优惠活动,成人票和儿童票均有较大折扣,王明家去了3个大人和4个小孩,共花了400元,李娜家去了4个大人和2个小孩,共花了400元,王斌家计划去3个大人和2个小孩,请你帮助他算一下,需要准备多少门票钱?()A.300元 B.310元 C.320元 D.330元4.王力在一天内以每件80元的价格卖了两件上衣,其中一件赢利20%,一件赔了20%,则在这次买卖中他( ) .A.赔了10元 B.赚了10元C.赔了约7元 D.赚了约7元5.某车间有90名工人,每人每天平均能生产螺栓15个或螺帽24个,已知一个螺栓配套两螺帽,应该如何分配工人才能使生产的螺栓和螺帽刚好配套?则生产螺帽和生产螺栓的数分别为()A.50人,40人 B.30人,60人C.40人,50人 D.60人,30人6.某校七年级(2)班40名同学为四川地震灾区捐款,共捐了100元,捐款情况如下表:表格中捐款2元和3元的人数不小心被墨水污染已经看不清楚,若设捐款2元的有x名同学,捐款3元的有y名同学,根据题意,可列方程组( ) .A.272366x yx y+=⎧⎨+=⎩B.2723100x yx y+=⎧⎨+=⎩C.273266x yx y+=⎧⎨+=⎩D.2732100x yx y+=⎧⎨+=⎩二、填空题7.端午节时,王老师用72元钱买了荷包和五彩绳共20个.其中荷包每个4元,五彩绳每个3元,设王老师购买荷包x个,五彩绳y个,根据题意,列出的方程组是________.8.根据图中所给的信息,每件T恤和每瓶矿泉水的价格分别是元和元.9.一张试卷有25道题,做对一道得4分,做错一道扣1分,小明做了全部试题共得70分,则他做对了______道题.10.已知甲数的2倍比乙数大30,乙数的3倍比甲数的4倍少20,求甲、乙两数,若设甲、乙两数分别为x、y,可得方程组________,这两数分别为________.11.如图,3个纸杯整齐地叠放在一起,总高度约为9cm,8个纸杯整齐地叠放在一起,总高度约为14cm,则100个这样的纸杯整齐叠放在一起时,它的高度约是________ cm.12.“六一”儿童节,某动物园的成人门票每张8元,儿童门票半价(即每张4元),全天共售出门票3000张,共收入15600元,则这一天售出了成人票张儿童票张。
二元一次方程组小专题三二元一次方程组的实际应用测试题
小专题(三) 二元一次方程组的实际应用专题1 和、差、倍、分问题1.(北京中考)《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架.它的代数成就主要包括开方术、正负术和方程术.其中,方程术是《九章算术》最高的数学成就.《九章算术》中记载:“今有牛五、羊二,直金十两;牛二、羊五,直金八两.问牛、羊各直金几何?”译文:“假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两.问:每头牛、每只羊各值金多少两?”设每头牛值金x 两,每只羊值金y 两,可列方程组为⎩⎪⎨⎪⎧5x +2y =102x +5y =8.2.(湘潭中考)湘潭盘龙大观园开园啦!其中杜鹃园的门票售价为:成人票每张50元,儿童票每张30元.如果某日杜鹃园售出门票100张,门票收入共4 000元,那么当日售出成人票50张.3.有甲、乙两个牧童,甲对乙说:“把你的羊给我1只,我的羊数就是你的羊数的2倍.”乙回答说:“最好还是把你的羊给我1只,我们的羊数就一样了.”两个牧童各有多少只羊?解:设两个牧童分别有x 只羊,y 只羊.根据题意,得⎩⎪⎨⎪⎧x +1=2(y -1),x -1=y +1.解得⎩⎪⎨⎪⎧x =7,y =5. 答:两个牧童各有7只、5只羊.4.(济南中考)学生在素质教育基地进行社会实践活动,帮助农民伯伯采摘了黄瓜和茄子共40 kg ,了解到这些蔬菜的种植成本共42元,还了解到如下信息:(1)请问采摘的黄瓜和茄子各多少千克? (2)这些采摘的黄瓜和茄子可赚多少元?解:(1)设采摘黄瓜x 千克,茄子y 千克.根据题意,得⎩⎪⎨⎪⎧x +y =40,x +1.2y =42.解得⎩⎪⎨⎪⎧x =30,y =10.答:采摘的黄瓜和茄子各30千克、10千克.(2)30×(1.5-1)+10×(2-1.2)=23(元). 答:这些采摘的黄瓜和茄子可赚23元.5.2016年某市“奥博园丁杯”篮球赛前四强积分榜如下:队名 比赛场次胜 负 积分 坏小子 7 7 0 14 后街男孩 7 6 1 13 极速75212(1)某队的负场总积分能等于它的胜场总积分的2倍吗? (2)某队的胜场总积分能等于它的负场总积分的5倍吗? 解:(1)从表中可知胜一场得2分,负一场得1分.设一个队胜的场次为x 场,负的场次为y 场,由题意,得⎩⎪⎨⎪⎧x +y =7,y =2×2x.解得⎩⎪⎨⎪⎧x =75,y =285.因为胜的场次不可能为分数,所以某队的负场总积分不能等于它的胜场总积分的2倍.(2)设一个队胜的场次为a 场,负的场次为b 场,由题意得⎩⎪⎨⎪⎧a +b =7,2a =5b.解得⎩⎪⎨⎪⎧a =5,b =2. 答:某队的胜场总积分能等于它的负场总积分的5倍.专题2 按比例分配、原料的混合与配套问题1.(曲靖中考)某种仪器由1个A 部件和1个B 部件配套构成,每个工人每天可以加工A 部件1 000个或者加工B 部件600个,现有工人16名,应怎样安排人力,才能使每天生产的A 部件和B 部件配套?解:设安排生产A 部件和B 部件的工人分别为x 人,y 人.根据题意,得⎩⎪⎨⎪⎧x +y =16,1 000x =600y.解得⎩⎪⎨⎪⎧x =6,y =10. 答:安排生产A 部件和B 部件的工人分别为6人,10人.2.把浓度分别为90%和60%的甲、乙两种酒精溶液,配制成浓度是75%消毒酒精溶液500克,求甲、乙两种酒精溶液各多少克?解:设甲种酒精溶液x 克,乙种酒精y 克,可得方程组⎩⎪⎨⎪⎧x +y =500,90%x +60%y =75%×500.解得⎩⎪⎨⎪⎧x =250,y =250.答:甲种酒精溶液250克,乙种酒精250克.3.为迎接新年,某工艺厂准备生产A 、B 两种礼盒.这两种礼盒主要用甲、乙两种原料,已知生产一套A 礼盒需要甲原料和乙原料分别为4盒和3盒;生产一套B 礼盒需要甲原料和乙原料分别为5盒和10盒.该厂购进甲、乙原料的量分别为20 000盒和30 000盒,如果所进原料全部用完,求该厂能生产A 、B 两种礼盒各多少套?解:设生产A 礼盒x 套,生产B 礼盒y 套,则⎩⎪⎨⎪⎧4x +5y =20 000,3x +10y =30 000.解得⎩⎪⎨⎪⎧x =2 000,y =2 400. 答:该厂能生产A 礼盒2 000套,B 礼盒2 400套.4.在“某地大地震”灾民安置工作中,某企业捐助了一批板材24 000 m 2,某灾民安置点用该企业捐助的这批板材全部搭建成A ,B 两种型号的板房,供2 300名灾民临时居住.已知建一间A 型板房和一间B 型板房所需板材及能安置的人数如下表所示:问:该灾民安置点搭建A 解:设该灾民安置点搭建A 型板房x 间,B 型板房y 间.由题意得,⎩⎪⎨⎪⎧5x +8y =2 300,54x +78y =24 000.解得⎩⎪⎨⎪⎧x =300,y =100. 答:该灾民安置点搭建A 型板房300间,B 型板房100间.5.已知甲、乙两种食物的维生素A 、B 的含量如下表:现有50万单位的维生素A 和 解:设能制成甲、乙两种食物分别为x 千克和y 千克.则⎩⎪⎨⎪⎧600x +700y =500 000,800x +400y =400 000.解得⎩⎪⎨⎪⎧x =250,y =500. 答:制成甲、乙两种食物分别为250千克和500千克.专题3 行程问题与顺逆流(风)问题1.甲、乙两码头相距60千米,某船往返两地,顺流时用3小时,逆流时用4小时,求船在静水中的航速及水流速度.解:船在静水中的速度是x 千米/时,水流速度为y 千米/时,则⎩⎪⎨⎪⎧3(x +y )=60,4(x -y )=60.解得⎩⎪⎨⎪⎧x =17.5,y =2.5. 答:船在静水中的速度是17.5千米/时,水流速度为2.5千米/时.2.甲、乙两人在400米的环形跑道上练习赛跑.如果两人同时同地反向跑,经过25秒第一次相遇;如果两人同时同地同向跑,经过250秒甲第一次追上乙.求甲、乙两人的平均速度.解:甲、乙每秒分别跑x 米,y 米,则根据题意,得⎩⎪⎨⎪⎧25(x +y )=400,250(x -y )=400.解得⎩⎪⎨⎪⎧x =8.8,y =7.2. 答:甲、乙每秒分别跑8.8米、7.2米.3.(张家界中考)小华从家里到学校的路是一段平路和一段下坡路,假设他始终保持平路每分钟走60 m ,下坡路每分钟走80 m ,上坡路每分钟走40 m ,则他从家里到学校需10 min ,从学校到家里需15 min .问:从小华家到学校的平路和下坡路各有多远?解:设平路有x m ,下坡路有y m ,则 ⎩⎪⎨⎪⎧x 60+y80=10,x 60+y 40=15.解得⎩⎪⎨⎪⎧x =300,y =400.答:小华家到学校的平路和下坡路各为300 m ,400 m .4.A 、B 两地相距176 km ,其间一处因山体滑坡导致连接这两地的公路受阻.甲、乙两个工程队接到指令,要求于早上8时,分别从A ,B 两地同时出发赶往滑坡点疏通公路.10时,甲队赶到,半小时后乙队赶到.若滑坡受损公路长1 km ,甲队行进的速度是乙队的32倍多5 km ,求甲、乙两队赶路的速度.解:设甲队的速度为x 千米/时,则乙队为y 千米/时.由题意得⎩⎪⎨⎪⎧x =32y +5,2x +2.5y =176-1.解得⎩⎪⎨⎪⎧x =50,y =30. 答:甲队赶路的速度为50 km /h ,乙队赶路的速度为30 km /h .5.一辆汽车从A 地驶往B 地,前13路段为普通公路,其余路段为高速公路.已知汽车在普通公路上行驶的速度为60km /h ,在高速公路上行驶的速度为100 km /h ,汽车从A 地到B 地一共行驶了2.2 h .请你根据以上信息,就该汽车行驶的“路程”或“时间”,提出一个用二元一次方程组解决的问题,并写出解答过程.解:答案不唯一,问题:普通公路和高速公路各为多少千米?解:设普通公路长为x km ,高速公路长为y km .根据题意,得⎩⎪⎨⎪⎧2x =y ,x 60+y100=2.2.解得⎩⎪⎨⎪⎧x =60,y =120. 答:普通公路长为60 km ,高速公路长为120 km .问题:汽车在普通公路和高速公路上各行驶了多少小时?解:设汽车在普通公路上行驶了x h ,高速公路上行驶了y h .根据题意,得⎩⎪⎨⎪⎧x +y =2.2,60x ×2=100y.解得⎩⎪⎨⎪⎧x =1,y =1.2. 答:汽车在普通公路上行驶了1 h ,高速公路上行驶了1.2 h .专题4 几何问题1.(广元中考)一副三角板按如图方式摆放,且∠1比∠2大50°,若设∠1=x °,∠2=y °,则可得到的方程组为(D )A .⎩⎪⎨⎪⎧x =y -50x +y =180B .⎩⎪⎨⎪⎧x =y +50x +y =180C .⎩⎪⎨⎪⎧x =y -50x +y =90D .⎩⎪⎨⎪⎧x =y +50x +y =902.(漳州中考)如图,10块相同的小长方形墙砖拼成一个长方形,设小长方形墙砖的长和宽分别为x 厘米和y 厘米,则依题意列方程正确的是(B )A .⎩⎪⎨⎪⎧x +2y =75y =3xB .⎩⎪⎨⎪⎧x +2y =75x =3y C .⎩⎪⎨⎪⎧2x +y =75y =3xD .⎩⎪⎨⎪⎧2x +y =75x =3y3.如图1,在边长为a 的大正方形中剪去一个边长为b 的小正方形,再将图中的阴影剪拼成一个长方形,如图2,这个拼成的长方形的长为30,宽为20,则图2中Ⅱ部分的面积是100.4.(吉林中考)根据图中的信息,求梅花鹿和长颈鹿现在的高度.解:设梅花鹿现在的高度为x m ,长颈鹿现在的高度为y m .根据题意,得⎩⎪⎨⎪⎧y -x =4,y =3x +1.解得⎩⎪⎨⎪⎧x =1.5,y =5.5. 答:梅花鹿现在的高度为1.5 m ,长颈鹿现在的高度为5.5 m .5.(凉山中考)根据图中给出的信息,解答下列问题:(1)放入一个小球水面升高2cm ,放入一个大球水面升高3cm ; (2)如果要使水面上升到50 cm ,应放入大球、小球各多少个?解:设应放入x 个大球,y 个小球.由题意得⎩⎪⎨⎪⎧3x +2y =50-26,x +y =10.解得⎩⎪⎨⎪⎧x =4,y =6. 答:应放入4个大球,6个小球.6.一个长方形的养鸡场的长边靠墙,墙长14米,其他三边用竹篱笆围成,现有长为35米的竹篱笆,小王打算用它围成一个鸡场,其中长比宽多5米;小赵也打算用它围成一个鸡场,其中长比宽多2米,谁的设计符合实际,按照他的设计,鸡场的面积多大?解:根据小王的设计可以设垂直于墙的一边长为x 米,平行于墙的一边长为y 米.根据题意得⎩⎪⎨⎪⎧2x +y =35,y -x =5.解得⎩⎪⎨⎪⎧x =10,y =15. 又因为墙的长度只有14米,所以小王的设计不符合实际.根据小赵的设计可以设垂直于墙的一边长为a 米,平行于墙的一边长为b 米.根据题意得⎩⎪⎨⎪⎧2a +b =35,b -a =2.解得⎩⎪⎨⎪⎧a =11,b =13. 又因为墙的长度有14米,显然小赵的设计符合要求. 此时鸡场的面积为11×13=143(平方米).答:小赵的设计符合实际,按照他的设计,鸡场的面积为143平方米.人教版七年级上册期末测试卷一、选择题(每题3分,共30分)1.某天的最高气温是8℃,最低气温是-3℃,那么这天的温差是( ) A .-3℃ B .8℃ C .-8℃D .11℃2.下列立体图形中,从上面看能得到正方形的是( )3.下列方程是一元一次方程的是( ) A .x -y =6 B .x -2=x C .x 2+3x =1D .1+x =34.今年某市约有108 000名应届初中毕业生参加中考,108 000用科学记数法表示为( )A .0.108×106B .10.8×104C .1.08×106D .1.08×1055.下列计算正确的是( ) A .3x 2-x 2=3 B .3a 2+2a 3=5a 5 C .3+x =3xD .-0.25ab +14ba =06.已知ax =ay ,下列各式中一定成立的是( ) A .x =yB .ax +1=ay -1C .ax =-ayD .3-ax =3-ay7.某商品每件标价为150元,若按标价打8折后,再降价10元销售,仍获利10%,则该商品每件的进价为( ) A .100元 B .105元 C .110元D .120元8.如果一个角的余角是50°,那么这个角的补角的度数是( ) A .130° B .40° C .90°D .140°9.如图,C ,D 是线段AB 上的两点,点E 是AC 的中点,点F 是BD 的中点,EF =m ,CD =n ,则AB 的长是( )A .m -nB .m +nC .2m -nD .2m +n10.下列结论:①若a +b +c =0,且abc ≠0,则a +c 2b =-12;②若a +b +c =0,且a ≠0,则x =1一定是方程ax +b +c =0的解; ③若a +b +c =0,且abc ≠0,则abc >0; ④若|a |>|b |,则a -ba +b>0. 其中正确的结论是( ) A .①②③ B .①②④ C .②③④D .①②③④二、填空题(每题3分,共24分)11.-⎪⎪⎪⎪⎪⎪-23的相反数是________,-15的倒数的绝对值是________.12.若-13xy3与2x m-2y n+5是同类项,则n m=________.13.若关于x的方程2x+a=1与方程3x-1=2x+2的解相同,则a的值为________.14.一个角的余角为70°28′47″,那么这个角等于____________.15.下列说法:①两点确定一条直线;②两点之间,线段最短;③若∠AOC=12∠AOB,则射线OC是∠AOB的平分线;④连接两点之间的线段叫做这两点间的距离;⑤学校在小明家南偏东25°方向上,则小明家在学校北偏西25°方向上,其中正确的有________个.16.在某月的月历上,用一个正方形圈出2×2个数,若所圈4个数的和为44,则这4个日期中左上角的日期数值为________.17.规定一种新运算:a△b=a·b-2a-b+1,如3△4=3×4-2×3-4+1=3.请比较大小:(-3)△4________4△(-3)(填“>”“=”或“<”).18.如图是小明用火柴棒搭的1条“金鱼”、2条“金鱼”、3条“金鱼”……则搭n条“金鱼”需要火柴棒__________根.三、解答题(19,20题每题8分,21~23题每题6分,26题12分,其余每题10分,共66分) 19.计算:(1)-4+2×|-3|-(-5);(2)-3×(-4)+(-2)3÷(-2)2-(-1)2 018.20.解方程:(1)4-3(2-x)=5x;(2)x-22-1=x+13-x+86.21.先化简,再求值:2(x2y+xy)-3(x2y-xy)-4x2y,其中x=1,y=-1.22.有理数b在数轴上对应点的位置如图所示,试化简|1-3b|+2|2+b|-|3b-2|.23.如图①是一些小正方体所搭立体图形从上面看得到的图形,方格中的数字表示该位置的小正方体的个数.请在如图②所示的方格纸中分别画出这个立体图形从正面看和从左面看得到的图形.24.已知点O是直线AB上的一点,∠COE=90°,OF是∠AOE的平分线.(1)当点C,E,F在直线AB的同侧时(如图①所示),试说明∠BOE=2∠COF.(2)当点C与点E,F在直线AB的两侧时(如图②所示),(1)中的结论是否仍然成立?请给出你的结论,并说明理由.25.为鼓励居民节约用电,某市电力公司规定了电费分段计算的方法:每月用电不超过100度,按每度电0.50元计算;每月用电超过100度,超出部分按每度电0.65元计算.设每月用电x度.(1)当0≤x≤100时,电费为________元;当x>100时,电费为____________元.(用含x的整式表示)(2)某用户为了解日用电量,记录了9月前几天的电表读数.该用户9月的电费约为多少元?(3)该用户采取了节电措施后,10月平均每度电费0.55元,那么该用户10月用电多少度?26.如图,O为数轴的原点,A,B为数轴上的两点,点A表示的数为-30,点B表示的数为100.(1)A,B两点间的距离是________.(2)若点C也是数轴上的点,点C到点B的距离是点C到原点O的距离的3倍,求点C表示的数.(3)若电子蚂蚁P从点B出发,以6个单位长度/s的速度向左运动,同时另一只电子蚂蚁Q恰好从点A出发,以4个单位长度/s的速度向左运动,设两只电子蚂蚁同时运动到了数轴上的点D,那么点D表示的数是多少?(4)若电子蚂蚁P从点B出发,以8个单位长度/s的速度向右运动,同时另一只电子蚂蚁Q恰好从点A出发,以4个单位长度/s的速度向右运动.设数轴上的点N到原点O的距离等于点P到原点O 的距离的一半(点N在原点右侧),有下面两个结论:①ON+AQ的值不变;②ON-AQ的值不变,请判断哪个结论正确,并求出正确结论的值.(第26题)答案一、1.D 2.A 3.D 4.D 5.D 6.D7.A8.D9.C10.B二、11.23;512.-813.-514.19°31′13″15.316.717.>18.(6n+2)三、19.解:(1)原式=-4+2×3+5=-4+6+5=7;(2)原式=12+(-8)÷4-1=12-2-1=9.20.解:(1)去括号,得4-6+3x=5x.移项、合并同类项,得-2x=2.系数化为1,得x=-1.(2)去分母,得3(x-2)-6=2(x+1)-(x+8).去括号,得3x-6-6=2x+2-x-8.移项、合并同类项,得2x=6.系数化为1,得x=3.21.解:原式=2x2y+2xy-3x2y+3xy-4x2y=(2x2y-3x2y-4x2y)+(2xy+3xy)=-5x2y+5xy.当x=1,y=-1时,原式=-5x2y+5xy=-5×12×(-1)+5×1×(-1)=5-5=0.22.解:由题图可知-3<b<-2.所以1-3b>0,2+b<0,3b-2<0.所以原式=1-3b-2(2+b)+(3b-2)=1-3b-4-2b+3b-2=-2b-5.23.解:如图所示.24.解:(1)设∠COF=α,则∠EOF=90°-α.因为OF是∠AOE的平分线,所以∠AOE=2∠EOF=2(90°-α)=180°-2α.所以∠BOE=180°-∠AOE=180°-(180°-2α)=2α.所以∠BOE =2∠COF .(2)∠BOE =2∠COF 仍成立.理由:设∠AOC =β,则∠AOE =90°-β,又因为OF 是∠AOE 的平分线,所以∠AOF =90°-β2.所以∠BOE =180°-∠AOE =180°-(90°-β)=90°+β,∠COF =∠AOF +∠AOC =90°-β2+β=12(90°+β).所以∠BOE =2∠COF .25.解:(1)0.5x ;(0.65x -15)(2)(165-123)÷6×30=210(度),210×0.65-15=121.5(元).答:该用户9月的电费约为121.5元.(3)设10月的用电量为a 度.根据题意,得0.65a -15=0.55a ,解得a =150.答:该用户10月用电150度.26.解:(1)130(2)若点C 在原点右边,则点C 表示的数为100÷(3+1)=25;若点C 在原点左边,则点C 表示的数为-[100÷(3-1)]=-50.故点C 表示的数为-50或25.(3)设从出发到同时运动到点D 经过的时间为t s ,则6t -4t =130,解得t =65.65×4=260,260+30=290,所以点D 表示的数为-290.(4)ON -AQ 的值不变.设运动时间为m s ,则PO =100+8m ,AQ =4m .由题意知N 为PO 的中点,得ON =12PO =50+4m ,所以ON +AQ =50+4m +4m =50+8m ,ON -AQ =50+4m -4m =50.故ON-AQ的值不变,这个值为50.。
2020年小升初数学专题复习训练—拓展与提高:典型应用题(2)(知识点总结+同步测试) 通用版
2020年小升初数学专题复习训练—拓展与提高典型应用题(2)知识点复习一.植树问题【知识点归纳】为使其更直观,用图示法来说明.树用点来表示,植树的沿线用线来表示,这样就把植树问题转化为一条非封闭或封闭的线上的“点数”与相邻两点间的线的段数之间的关系问题.一、在线段上的植树问题可以分为以下三种情形.1、如果植树线路的两端都要植树,那么植树的棵数应比要分的段数多1,即:棵数=间隔数+1.2、如果植树线路只有一端要植树,那么植树的棵数和要分的段数相等,即:棵数=间隔数.3、如果植树线路的两端都不植树,那么植树的棵数比要分的段数少1,即:棵数=间隔数-1.4、如果植树路线的两边与两端都植树,那么植树的棵数应比要分的段数多1,再乘二,即:棵树=段数+1再乘二.二、在封闭线路上植树,棵数与段数相等,即:棵数=间隔数.三、在正方形线路上植树,如果每个顶点都要植树.则棵数=(每边的棵数-1)×边数.1 非封闭线路上的植树问题主要可分为以下三种情形:(1)如果在非封闭线路的两端都要植树,那么:株数=段数+1=全长÷株距+1全长=株距×(株数-1)株距=全长÷(株数-1)(2)如果在非封闭线路的一端要植树,另一端不要植树,那么:株数=段数=全长÷株距全长=株距×株数株距=全长÷株数.【命题方向】例1:杨老师从一楼办公室到教室上课,每走一层楼有24级台阶,一共走了72级台阶,杨老分析:把楼层与楼层之间的24个台阶看做1个间隔;先求得一共走过了几个间隔:72÷24=3,一楼没有台阶,所以杨老师走到了1+3=4楼.解:72÷24+1=3+1=4(楼)答:杨老师去4楼上课.故答案为:4.点评:因为1楼没有台阶,所以楼层数=1+间隔数.例2:有48辆彩车排成一列.每辆彩车长4米,彩车之间相隔6米.这列彩车共长多少米?分析:根据题意,可以求出车与车的间隔数是48-1=47(个),那么所有的彩车之间的距离和是:47×6=282(米),因为每辆彩车长4米,所有的车长度和是:4×48=192(米),把这两个数加起来就是这列彩车的长度.解:车与车的间隔数是:48-1=47(个),彩车之间的距离和是:47×6=282(米),所有的车长度和是:4×48=192(米),这列彩车共长:282+192=474(米).答:这列彩车共长474米.点评:根据题意,按照植树问题求出彩车的长,因为每辆彩车还有车长,还要加上所有彩车的车身长,才是这列彩车的总长.二.方阵问题【知识点归纳】将若干人或物依一定条件排成正方形(简称方阵),根据已知条件求总人数或总物数,这类问题就叫做方阵问题.数量关系:(1)方阵每边人数与四周人数的关系:四周人数=(每边人数-1)×4每边人数=四周人数÷4+1(2)方阵总人数的求法:实心方阵:总人数=每边人数×每边人数空心方阵:总人数=(外边人数)2-(内边人数)2内边人数=外边人数-层数×2(3)若将空心方阵分成四个相等的矩形计算,则:总人数=(每边人数-层数)×层数×4.【命题方向】例1:四年级共选49位同学参加校运会开幕式,他们排成一个方阵.这个方阵的最外层一共有多少人?分析:先根据方阵总人数=每边人数×每边人数,求出这个方阵的每边人数,再利用方阵最外层四周人数=每边人数×4-4计算出最外层四周人数即可.解:因为7×7=49,所以49人组成的方阵的每边人数是7人,7×4-4,=28-4,=24(人);答:这个方阵的最外层有24人.点评:此题考查了方阵问题中:总点数=每边点数×每边点数;最外层四周点数=每边点数×4-4的灵活应用.三.年龄问题【知识点归纳】年龄问题的三个基本特征:①两个人的年龄差是不变的;②两个人的年龄是同时增加或者同时减少的;③两个人的年龄的倍数是发生变化的;解题规律:抓住年龄差是个不变的数(常数),而倍数却是每年都在变化的这个关键.解答年龄问题的一般方法是:几年后年龄=大小年龄差÷倍数差-小年龄几年前年龄=小年龄-大小年龄差÷倍数差.【命题方向】例1:儿子今年6岁,父亲10年前的年龄等于儿子20年后的年龄.当父亲的年龄恰好是儿子年龄的2倍时是在公元哪一年?分析:根据题意,可知儿子20年后是6+20=26岁,父亲今年26+10=36岁.根据年龄增长是一样的,找出等量关系列出方程解答即可.解:儿子20年后是6+20=26岁,父亲今年26+10=36岁.设x年后,父亲的年龄恰好是儿子年龄的2倍.由题意得36+x=2(x+6)36+x=2x+12x=24由今年是公元2011年,则2011+24=2035,故当父亲的年龄恰好是儿子年龄的2倍时是公元2035年.点评:本题主要是考查年龄问题,首先要把题意弄清,再根据等量关系列出方程解答即可.四.鸡兔同笼【知识点归纳】方法:假设法,方程法,抬腿法,列表法公式1:(兔的脚数×总只数-总脚数)÷(兔的脚数-鸡的脚数)=鸡的只数;总只数-鸡的只数=兔的只数公式2:(总脚数-鸡的脚数×总只数)÷(兔的脚数-鸡的脚数)=兔的只数;总只数-兔的只数=鸡的只数公式3:总脚数÷2-总头数=兔的只数;总只数-兔的只数=鸡的只数公式4:鸡的只数=(4×鸡兔总只数-鸡兔总脚数)÷2;兔的只数=鸡兔总只数-鸡的只数公式5:兔总只数=(鸡兔总脚数-2×鸡兔总只数)÷2;鸡的只数=鸡兔总只数-兔总只数公式6:(头数x4-实际脚数)÷2=鸡公式7:4×+2(总数-x)=总脚数(x=兔,总数-x=鸡数,用于方程)公式8:鸡的只数:兔的只数=兔的脚数-(总脚数÷总只数):(总脚数÷总只数)-鸡的脚数.【命题方向】例1:鸡兔同笼,鸡兔共35个头,94只脚,问鸡兔各有多少只?分析:假设全部是兔子,有35×4=140只脚,已知比假设少了:140-94=46只,一只鸡比一只兔子少(4-2)只脚,所以鸡有:46÷(4-2)=23只;兔子有:35-23=12只.解:鸡:(35×4-94)÷(4-2),=46÷2,=23(只);兔子:35-23=12(只);答:鸡有23只,兔子有12只.点评:此题属于典型的鸡兔同笼问题,解答此类题的关键是用假设设法进行分析比较,进而得出结论;也可以用方程,设其中的一个数为未知数,另一个数也用未知数表示,列出方程解答即可.例2:班主任王老师,在期末用50元买了2.5元和1.5元的水笔共30支,准备作为优秀作业的奖品.那么2.5元和1.5元的水彩笔各多少支?分析:假设30支全是2.5元的水笔,则用30×2.5=75元,这样就多75-50=25元;用25÷(2.5-1.5)=25支得出1.5元的水笔支数,进而得出2.5元的水笔数量.解:1.5元的水笔数量:25÷(2.5-1.5)=25÷1=25(支),30-25=5(支),答:2.5元的水彩笔5支,1.5元的水彩笔25支.点评:此题属于鸡兔同笼问题,解这类题的关键是用假设法进行分析,进而得出结论;也可以用方程进行解答.同步测试一.选择题(共8小题)1.刘强今年x岁,李红比刘强大5岁,再过三年刘强比李红小()岁.A.(x﹣3)岁B.5岁C.2岁D.(x+3)岁2.元旦节,学校举行诗歌朗诵比赛.五(2)班学生排成一个方阵,最外层每边站7名学生,最外层一共有()名学生.A.28B.32C.243.(北京市第一实验小学学业考)鸡兔同笼,有10个头,28只脚,鸡、兔各有()只.A.5和5B.4和6C.6和44.五年级举行安全知识竞赛,共有20道试题.做对一道得5分,做错或没做一道都要扣3分.笑笑得了60分,那么她做对了()道题.A.5B.15C.165.一段公路长2400米,在公路的两旁每隔40米放置一个垃圾桶,两端都放,共需要垃圾桶()个.A.60B.120C.61D.1226.观察下面3个图形的规律,按这样的规律排列,第8个图形有()个.A.24B.28C.327.母亲的年龄比儿子大26岁,今年母亲的年龄恰好是儿子的3倍,儿子今年是多少岁?解:设儿子今年是x岁,依题意列方程,正确的是()A.3x﹣26﹣x B.3x=26C.3x﹣x=26D.3x+x=268.“湖边春色分外娇,一棵柳树二棵桃.平湖周围三千米,五米一棵都栽到.漫步湖畔赏美景,可知桃树有多少?”根据这首诗,可以求出桃树有()棵.A.399B.400C.401D.600二.填空题(共8小题)9.妈妈今年的年龄是小丽的3倍,妈妈比小丽大22岁,小丽今年岁.10.沿一个周长为140米的圆形水池边插彩旗,每隔10米插一面,需要面彩旗.11.某公园新辟一条小道,长120米,从头到尾在小道一旁等距离做了7个长12米的花坛,那么,每两个花坛之间的间隔是米.12.五年级同学排成方阵做操,最外层每边站了10人,最外层一共有名同学,整个方阵一共有名学生.13.有28盆花,平均放在会议室前、后、左、右四周,要求四个角都要放一盆,每边放的花的盆数相同,每边各有盆花.14.小小今年15岁,小小的妈妈今年43岁,年前小小妈妈的年龄是小小的5倍.15.一个大人一餐吃2个面包,两个小孩一餐吃1个面包,现在有大人和小孩子共99人,一餐刚好一共吃了99个面包.小孩有人.16.10元钱刚好买面值8角和4角的邮票17张,买了8角的邮票张,4角的邮票张.三.判断题(共5小题)17.今年小飞5岁,妈妈35岁,妈妈的年龄是小飞的7倍,明年妈妈的年龄小飞的6倍.(判断对错)18.围棋盘的最外层每边能放19个棋子.最外层一共可以摆放76个棋子..(判断对错)19.把一根木料锯成3段要3.6分钟,锯成5段要6分钟.(判断对错)20.今有鸡兔同笼,头有27个,脚有74只,则鸡有16只,兔有11只.(判断对错)21.小明今年a岁,哥哥比他大b岁,c年后,哥哥比他大b岁..(判断对错)四.应用题(共8小题)22.小红用1元的硬币摆了一个正方形方阵,最外层每边都有6枚硬币.最外层一共有多少枚硬币?23.小区花园是一个长20米、宽16米的长方形.现在要在花园四周种树,四个角上都要栽,每相邻两棵树间隔4米.一共要栽多少棵树?24.张亮的爸爸比妈妈大6岁,张亮爸爸、妈妈今年的岁数和是72.张亮的爸爸、妈妈今年各几岁?25.今年爸爸的年龄是小刚的4倍,5年后爸爸和小刚的年龄和是70岁,今年爸爸和小刚各是多少岁?26.鸡兔同笼,上有14个头,下有38只脚,问鸡免各有多少只?27.3路公交车行驶路线原来共有10个站牌,每两个站牌之间的距离是2km.现在为了市民出行方便,一共设了19个站牌,现在平均每两个站牌之间的距离为多少千米?28.(北京市第一实验小学学业考)小区物业摆了一个正方形花坛(如图).最外一层摆的是兰花,里面摆的都是月季花,兰花和月季花各摆了多少盆?29.某停车场,停了小轿车和共享自行车一共32辆,这些车一共108个轮子.其中小轿车有多少辆?用你喜欢的方式表达想法.参考答案与试题解析一.选择题(共8小题)1.【分析】李红比刘强大5岁,即刘强比李红小5岁,由于年龄差不随时间的变化而改变,所以再过3年,他们相差的岁数不变,由此求解.【解答】解:李红比刘强大5岁,即刘强比李红小5岁,再过三年刘强还是比李红小5岁.故选:B.【点评】理解年龄差不随时间的变化而改变是解答此题的关键.2.【分析】最外层人数=每边人数×4﹣4;代入数据即可解答.【解答】解:7×4﹣4=28﹣4=24(人)答:最外层一共有24名学生.故选:C.【点评】此题考查了方阵问题中:最外层点数=每边点数×4﹣4的灵活应用.3.【分析】此类问题可以利用假设法,假设全是鸡,那么就有10×2=20条腿,这比已知28条腿少了28﹣20=8条腿,1只兔比1只鸡多4﹣2=2条腿,由此即可得出兔有:8÷2=4只,则鸡有:10﹣4=6只,由此即可解答.【解答】解:假设全是鸡,那么兔有:(28﹣10×2)÷(4﹣2)=8÷2=4(只),则鸡有:10﹣4=6(只);答:鸡有6只,兔有4只.故选:C.【点评】此题属于典型的鸡兔同笼问题,解答此类题的关键是用假设法,也可以用方程进行解答.4.【分析】假设20题全做对,则应得20×5=100,实际比假设少得了100﹣60=40分,这是因没做或做错一题不仅不得5分,还要扣3分,就是少做或做错一题少得3+5=8分.据此可求出做错的题数.求出做错的题数,再用20减,就是做对的题数.【解答】解:假设20题全做对,则做错了:(20×5﹣60)÷(3+5)=(100﹣60)÷8=40÷8=5(题)做对的题数是:20﹣5=15(题)答:他做对了15题.故选:B.【点评】本题属于鸡兔同笼问题,此类题目一般用假设法来进行解答,也可用方程进行解答.5.【分析】根据题意,用2400÷40求出间隔数,因为两端都放置一个垃圾桶,用间隔数加上1,就是一旁放置垃圾桶的个数,然后再乘上2即可.【解答】解:(2400÷40+1)×2=61×2=122(个)答:共需要垃圾桶122个.故选:D.【点评】本题考查了两旁植树问题,先根据两端植树,用路长除以间隔距离加上1,求出一旁的个数,再乘上2即可.6.【分析】每边圆圈的个数=图形顺序+1;再利用方阵最外层四周点数=每边点数×4﹣4计算出最外层四周圆圈数即可.【解答】解:(8+1)×4﹣4=36﹣4=32(人)答:第8个图形有32个.故选:C.【点评】此题考查了方阵问题中:总点数=每边点数×每边点数;最外层四周点数=每边点数×4﹣4的灵活应用.7.【分析】根据题意可得等量关系式,今年母亲的年龄﹣儿子的年龄=26岁,设儿子今年是x岁,那么今年母亲的年龄是3x岁,然后列方程解答即可.【解答】解:设儿子今年是x岁,那么今年母亲的年龄是3x岁,3x﹣x=262x=26x=13答:儿子今年是13岁.故选:C.【点评】此题考查列方程解应用题,关键是根据题意找出基本数量关系,设未知数为x,由此列方程解决问题.8.【分析】根据题意可得,是在平湖(封闭图形)一圈栽树,平湖的周长是3000米,每5米栽一棵树,用3000除以间距5米可以求出桃树和柳树的总棵数,又因为一棵柳树二棵桃树,即桃树的棵数是柳树的2倍;然后根据和倍公式,用总棵数再除以2+1=3求出柳树的棵数,再乘2即可.【解答】解:3000÷5=600(棵)600÷(1+2)×2=200×2=400(棵)答:桃树有400棵.故选:B.【点评】在封闭图形中植树,植树棵数等于植树的路程除以间隔距离即可.二.填空题(共8小题)9.【分析】根据题意,可知妈妈与小丽的年龄差是22岁,又知妈妈的年龄是小丽年龄的3倍,倍数差是3﹣1=2,再根据差倍公式差÷(倍数﹣1)=较小数进行解答即可.【解答】解:根据题意,小丽的年龄:22÷(3﹣1)=22÷2=11(岁)答:小丽今年11岁.故答案为:11.【点评】本题考查了年龄问题与差倍问题的综合应用,关键是找到数量差与它对应的倍数差,从而求出一倍的量.10.【分析】根据题干可知圆形水池的周长是140米,围成一个封闭的图形插彩旗时,彩旗的面数=间隔数,据此求出间隔数即可解决问题.【解答】解:140÷10=14(面)答:需要14面彩旗.故答案为:14.【点评】此题问题原型是:植树问题中,围成封闭图形植树时,植树棵数=间隔数.11.【分析】7个长12米的花坛,花坛的总长是:7×12=84(米),那么还剩下:120﹣84=36(米),从头到尾在小道一旁等距离做了7个花坛,那么间隔数是7﹣1=6(个),然后用36除以间隔数就是间距.【解答】解:7×12=84(米)120﹣84=36(米)36÷(7﹣1)=36÷6=6(米)答:每两个花坛之间的间隔是6米.故答案为:6.【点评】如果植树线路的两端都要植树,那么植树的棵数应比要分的段数多1,即:棵数=间隔数+1.本题关键是求出除去花坛的总长,剩下的长度.12.【分析】最外层人数=每边人数×4﹣4;实心方阵中总人数=每边人数×每边人数;代入数据即可解答.【解答】解:10×4﹣4=36(名),10×10=100(名),答:最外层一共有36名同学,整个方阵一共有100名学.故答案为:36,100.【点评】此题考查了方阵问题:最外层点数=每边点数×4﹣4;实心方阵中总点数=每边点数×每边点数的灵活应用.13.【分析】根据方阵最外层四周点数=每边点数×4﹣4可得:每边点数=四周点数÷4+1,然后代入数据解答即可.【解答】解:28÷4+1=7+1=8(盆)答:每边各有8盆花.故答案为:8.【点评】此题考查了方阵问题中:最外层四周点数=每边点数×4﹣4的灵活应用.14.【分析】设x年前妈妈的年龄是小小的年龄的5倍,那么小小的年龄就是(15﹣x)岁,妈妈的年龄是(43﹣x)岁,用小小的年龄乘上5,就是妈妈的年龄,由此求解.【解答】解:设x年前妈妈的年龄是小小的年龄的5倍,由题意得:(15﹣x)×5=43﹣x75﹣5x=43﹣x4x=32x=8答:8年前小小妈妈的年龄是小小的5倍.故答案为:8.【点评】解决本题设出未知数,表示出小小和妈妈的年龄,再根据倍数关系列出方程求解.15.【分析】假设都是大人,一共需要99×2=198个面包,比实际多了198﹣99=99个,因为每个大人比小孩多吃2﹣1÷2=1.5个面包,那么小孩有99÷1.5=66;据此解答即可.【解答】解:(99×2﹣99)÷(2﹣1÷2)=99÷1.5=66(人)答:小孩有66人.故答案为:66.【点评】此题属于典型的鸡兔同笼问题,解答此类题的关键是用假设法进行分析比较,进而得出结论;也可以用方程,设其中的一个数为未知数,另一个数也用未知数表示,列出方程解答即可.16.【分析】假设全部为0.8元的,共有0.8×17=13.6元,比实际的10元多:13.6﹣10=3.6元,因为我们把0.4元的当成了0.8元的,每张多算了0.8﹣0.4=0.4元,所以可以算出4角的张数,列式为:3.6÷0.4=9(张),那么0.8元的就有:17﹣9=8(张);据此解答.【解答】解:假设全是8角的,4角=0.4元,8角=0.8元4角:(0.8×17﹣10)÷(0.8﹣0.4)=3.6÷0.4=9(张)8角:17﹣9=8(张)答:买了8角的邮票8张,4角的邮票9张.故答案为:8,9.【点评】解决鸡兔同笼问题往往用假设法解答,有些应用题中有两个或两个以上的未知量,思考问题时,可以假设要求的两个或两个以上的未知量相等,或假设它们为同一种量,然后按照题中的已知条件进行推算,如果数量上出现矛盾,可适当调整,以求出正确的结果.三.判断题(共5小题)17.【分析】明年小飞(5+1)岁,妈妈(35+1)岁,求明年妈妈的年龄是小飞的几倍,根据求一个数是另一个数的几倍,用除法解答;然后再和6倍比较即可.【解答】解:(35+1)÷(5+1)=36÷6=6即今年妈妈的年龄是小飞的7倍,明年妈妈的年龄是小飞的6倍,所以原题说法正确.故答案为:√.【点评】此题应根据求一个数是另一数的几倍,用除法解答.解题规律:抓住年龄差是个不变的数(常数),而倍数却是每年都在变化的这个关键.18.【分析】利用空心方阵最外层总点数=每边点数×4﹣4,即可计算得出这个围棋盘最外层一共可以摆放的棋子数,据此即可判断.【解答】解:19×4﹣4,=76﹣4,=72(个);答:最外层一共可以摆放72个棋子.故答案为:×.【点评】此题主要考查空心方阵最外层总点数的计算方法的灵活应用,熟记公式即可解答.19.【分析】一根木料锯成3段,锯了:3﹣1=2次,共用了3.6分钟,那么锯一次用:3.6÷2=1.8(分);锯成5段,锯了:5﹣1=4次,要用:1.8×4=7.2(分钟);据此解答.【解答】解:3.6÷(3﹣1)×(5﹣1)=1.8×4=7.2(分钟)即:把它锯成5段要用7.2分钟;所以原题说法错误.故答案为:×.【点评】本题考查了植树问题,知识点是:锯木次数=段数﹣1.20.【分析】假设全都是鸡,则应用2×27=54只脚,实际有74只,实际就比假设多了74﹣54=20只脚,这是因为每只兔子比每只鸡多了4﹣2只脚.据此可求出兔子的只数,再用27减兔子的只数,就是鸡的只数.据此解答.【解答】解:(74﹣2×27)÷(4﹣2)=20÷2=10(只)27﹣10=17(只)即有鸡17只,兔子10只,所以原题说法错误.故答案为:×.【点评】此题属于典型的鸡兔同笼问题,解答此类题的关键是用假设设法进行分析比较,进而得出结论;也可以用方程,设其中的一个数为未知数,另一个数也用未知数表示,列出方程解答即可.21.【分析】根据“小明今年a岁,哥哥比他大b岁,”可以求出今年哥哥的年龄;再分别求出c年后小明和哥哥的年龄,那哥哥比小明大的年龄即可求出.【解答】解:哥哥今年的年龄是:a+b岁,c年后小明的年龄是:a+c岁,c年后哥哥的年龄是:a+b+c岁,c年后哥哥比小明大的岁数是:a+b+c﹣(a+c)=a+b+c﹣a﹣c=b(岁)答:c年后哥哥比他大b岁,故答案为:√.【点评】此题主要是通过计算推导出两人的年龄差是不会随着年龄的变化而改变的,在推导计算时,把所给出的字母当作已知数,找出对应的量,根据基本的数量关系解决问题.四.应用题(共8小题)22.【分析】最外层每边都有6枚硬币,要求最外层一共有多少枚硬币,根据最外层点数=每边点数×4﹣4;代入数据即可解答.【解答】解:6×4﹣4=24﹣4=20(枚)答:最外层一共有20枚硬币.【点评】此题考查了方阵问题中:最外层点数=每边点数×4﹣4的灵活应用.23.【分析】长方形是一个封闭图形,封闭图形的周长除以间隔距离就是植树棵数.根据长方形的周长公式:C=(a+b)×2,求出它的周长,再除以它的间隔距离4米即可.据此解答.【解答】解:花园的周长是:(16+20)×2=36×2=72(米)四周可以栽树:72÷4=18(棵)答:一共要栽18棵树.【点评】在封闭线路上植树,棵数与段数相等,即:棵数=间隔数.24.【分析】设张亮的爸爸x岁,则妈妈的年龄是(x﹣6)岁,根据等量关系“爸爸、妈妈今年的岁数和是72”,列方程解答即可.【解答】解:设张亮的爸爸x岁,则妈妈的年龄是(x﹣6)岁,x+x﹣6=722x=78x=3939﹣6=33(岁)答:张亮的爸爸、妈妈今年分别是39岁、33岁.【点评】本题主要是考查年龄问题,首先要把题意弄清,再根据等量关系列出方程解答即可.25.【分析】5年后爸爸和小刚的年龄和是70岁,那么今年爸爸和小刚的年龄和是70﹣5﹣5=60岁,相当于小刚年龄的4+1=5倍,然后根据和÷(倍数+1)=1倍数求出小刚的年龄,再进一步解答即可.【解答】解:小刚:(70﹣5﹣5)×(4+1)=60÷5=12(岁)爸爸:12×4=48(岁)答:今年爸爸48岁,小刚12岁.【点评】本题考查了年龄问题与和倍问题的综合应用,关键是找到数量和与它对应的倍数和,从而求出一倍的量.26.【分析】假设全部为兔子,共有脚4×14=56只,比实际的38只多:56﹣38=18只,因为我们把鸡当成了兔子,每只多算了4﹣2=2只脚,所以可以算出鸡的只数,列式为:18÷2=9(只),那么兔子就有:14﹣9=5(只);据此解答.【解答】解:假设全是兔,鸡:(4×14﹣38)÷(4﹣2)=18÷2=9(只)兔:14﹣9=5(只)答:鸡有9只,兔有5只.【点评】解答此类题目一般都用假设法,可以先假设都是鸡,也可以假设都是兔.如果先假设都是鸡,然后以兔换鸡;如果先假设都是兔,然后以鸡换兔.这类问题也叫置换问题.通过先假设,再置换,使问题得到解决.27.【分析】此题属于两端都植树问题,公式为间隔数=树的棵数﹣1,在原来停靠点的间隔数就是10﹣1=9(个),间隔距离为2千米,从而可求出从起点到终点的距离,再除以现在的间隔数是19﹣1=18据此解答即可.【解答】解:2×(10﹣1)÷(19﹣1)=18÷18=1(千米)答:现在平均每两个站牌之间的距离为1千米.【点评】本题属于两端都栽的植树问题,解答依据是植树棵数=间隔数+1.28.【分析】(1)最外一层摆的是兰花,每边有8盆,然后根据“最外层四周点数=每边点数×4﹣4”,代入数据解答即可;(2)里面摆的都是月季花,每边有6盆,然后根据“总点数=每边点数×每边点数”,代入数据解答即可.【解答】解:(1)8×4﹣4=32﹣4=28(盆)答:兰花摆了28盆.(2)6×6=36(盆)答:月季花各摆了36盆.【点评】此题考查了方阵问题中:总点数=每边点数×每边点数;最外层四周点数=每边点数×4﹣4的灵活应用.29.【分析】假设全是小轿车,则一共有轮子32×4=128个,这比已知的108个轮子多了128﹣108=20个,因为小轿车比共享自行车多4﹣2=2个轮子,所以共享自行车有:20÷2=10辆,则小轿车有32﹣10=22辆.【解答】解:假设全是小轿车,则共享自行车有:(32×4﹣108)÷(4﹣2)=20÷2=10(辆)则小轿车有:32﹣10=22(辆)答:小轿车有22辆.【点评】此题属于鸡兔同笼问题,采用假设法即可解答.。
专题03 二次函数与实际应用(销售利润问题)-2022年中考数学二次函数重点题型(全国通用版)原卷版
专题03 二次函数与实际应用(销售利润问题)1.(2021·辽宁丹东·中考真题)某超市销售一种商品,每件成本为50元,销售人员经调查发现,销售单价为100元时,每月的销售量为50件,而销售单价每降低2元,则每月可多售出10件,且要求销售单价不得低于成本.(1)求该商品每月的销售量y(件)与销售单价x(元)之间的函数关系式;(不需要求自变量取值范围)(2)若使该商品每月的销售利润为4000元,并使顾客获得更多的实惠,销售单价应定为多少元?(3)超市的销售人员发现:当该商品每月销售量超过某一数量时,会出现所获利润反而减小的情况,为了每月所获利润最大,该商品销售单价应定为多少元?2.(2021·辽宁锦州·中考真题)某公司计划购进一批原料加工销售,已知该原料的进价为6.2万元/t,加工过程中原料的质量有20%的损耗,加工费m(万元)与原料的质量x(t)之间的关系为m=50+0.2x,销售价y(万元/t)与原料的质量x(t)之间的关系如图所示.(1)求y与x之间的函数关系式;(2)设销售收入为P(万元),求P与x之间的函数关系式;(3)原料的质量x为多少吨时,所获销售利润最大,最大销售利润是多少万元?(销售利润=销售收入﹣总支出).3.(2021·辽宁盘锦·中考真题)某工厂生产并销售A,B两种型号车床共14台,生产并销售1台A型车床可以获利10万元;如果生产并销售不超过4台B型车床,则每台B 型车床可以获利17万元,如果超出4台B型车床,则每超出1台,每台B型车床获利将均减少1万元.设生产并销售B型车床x台.x>时,完成以下两个问题:(1)当4①请补全下面的表格:70万元,问:生产并销售B 型车床多少台?(2)当0<x≤14时,设生产并销售A,B两种型号车床获得的总利润为W万元,如何分配生产并销售A,B两种车床的数量,使获得的总利润W最大?并求出最大利润.4.(2021·湖北荆门·中考真题)某公司电商平台,在2021年五一长假期间,举行了商品打折促销活动,经市场调查发现,某种商品的周销售量y(件)是关于售价x(元/件)的一次函数,下表仅列出了该商品的售价x,周销售量y,周销售利润W(元)的三组对应值数据.(1)求y;(2)若该商品进价a(元/件),售价x为多少时,周销售利润W最大?并求出此时的最大利润;m>),公司为回馈消费者,规定该商(3)因疫情期间,该商品进价提高了m(元/件)(0品售价x不得超过55(元/件),且该商品在今后的销售中,周销售量与售价仍满足(1)中的函数关系,若周销售最大利润是4050元,求m的值.5.(2021·四川南充·中考真题)超市购进某种苹果,如果进价增加2元/千克要用300元;如果进价减少2元/千克,同样数量的苹果只用200元.(1)求苹果的进价.(2)如果购进这种苹果不超过100千克,就按原价购进;如果购进苹果超过100千克,超过部分购进价格减少2元/千克.写出购进苹果的支出y(元)与购进数量x(千克)之间的函数关系式.(3)超市一天购进苹果数量不超过300千克,且购进苹果当天全部销售完.据统计,销售单价z(元/千克)与一天销售数量x(千克)的关系为112100z x=-+.在(2)的条件下,要使超市销售苹果利润w(元)最大,求一天购进苹果数量.(利润=销售收入-购进支出)6.(2021·湖北黄冈·中考真题)红星公司销售一种成本为40元/件的产品,若月销售单价不高于50元/件.一个月可售出5万件;月销售单价每涨价1元,月销售量就减少0.1万件.其中月销售单价不低于成本.设月销售单价为x(单位:元/件),月销售量为y(单位:万件).(1)直接写出y与x之间的函数关系式,并写出自变量x的取值范围;(2)当月销售单价是多少元/件时,月销售利润最大,最大利润是多少万元?(3)为响应国家“乡村振兴”政策,该公司决定在某月每销售1件产品便向大别山区捐款a 元.已知该公司捐款当月的月销售单价不高于70元/件,月销售最大利润是78万元,求a的值.7.(2021·浙江·中考真题)今年以来,我市接待的游客人数逐月增加,据统计,游玩某景区的游客人数三月份为4万人,五月份为5.76万人.(1)求四月和五月这两个月中,该景区游客人数平均每月增长百分之几;(2)若该景区仅有,A B两个景点,售票处出示的三种购票方式如表所示:据预测,六月份选择甲、乙、丙三种购票方式的人数分别有2万、3万和2万.并且当甲、乙两种门票价格不变时,丙种门票价格每下降1元,将有600人原计划购买甲种门票的游客和400人原计划购买乙种门票的游客改为购买丙种门票.①若丙种门票价格下降10元,求景区六月份的门票总收入;②问:将丙种门票价格下降多少元时,景区六月份的门票总收入有最大值?最大值是多少万元?8.(2021·湖北武汉·中考真题)在“乡村振兴”行动中,某村办企业以A,B两种农作物为原料开发了一种有机产品,A原料的单价是B原料单价的1.5倍,若用900元收购A原料会比用900元收购B原料少100kg.生产该产品每盒需要A原料2kg和B原料4kg,每盒还需其他成本9元.市场调查发现:该产品每盒的售价是60元时,每天可以销售500盒;每涨价1元,每天少销售10盒.(1)求每盒产品的成本(成本=原料费+其他成本);(2)设每盒产品的售价是x元(x是整数),每天的利润是w元,求w关于x的函数解析式(不需要写出自变量的取值范围);(3)若每盒产品的售价不超过a元(a是大于60的常数,且是整数),直接写出每天的最大利润.9.(2021—2022湖北黄石八中九年级期中)在“乡村振兴”行动中,某村办企业以A,B两种农作物为原料,开发了一种有机产品.A原料的单价是B原料单价的1.5倍.若用900元收购A原料会比用900元收购B原料少100kg,生产该产品每盒需要A原料2kg和B 原料4kg,每盒还需其它成本9元.市场调查发现:该产品售价为每盒40元时,每天可卖出150盒.如果每盒的售价每涨1元(售价每盒不能高于45元),那么每天少卖10盒.设每盒涨价x元(x为非负整数),每天销售y盒.(1)求该产品每盒的成本(成本=原料费+其它成本); (2)求y 与x 的函数关系式及自变量x 的取值范围;(3)如何定价才能使每天的利润最大且每天销量较大?每天的最大利润是多少?10.(2021—2022湖北谷城九年级期中)为了落实国务院“三农”优惠政策,最近,市委市政府出台了一系列优惠措施,使农民收入大幅度增加.某农户生产经销一种农副产品,已知这种产品的成本价为20元/千克.市场调查发现,该产品每天的销售量w (千克)与销售价x (元/千克)有如下关系:280w x =-+.设这种产品每天的销售利润为y (元). (1)求y 与x 之间的函数关系式.(2)当销售价定为多少元时,每天的销售利润最大?最大利润是多少?(3)如果物价部门规定这种产品的销售价不得高于28元/千克,该农户想要每天获得150元的销售利润,销售价应定为多少元?11.(2021·湖南郴州·中考真题)某商店从厂家以每件2元的价格购进一批商品,在市场试销中发现,此商品的月销售量y (单位:万件)与销售单价x (单位:元)之间有如下表所示关系:(1)根据表中的数据,在图中描出实数对(,)x y 所对应的点,并画出y 关于x 的函数图象; (2)根据画出的函数图象,求出y 关于x 的函数表达式; (3)设经营此商品的月销售利润为P (单位:万元). ①写出P 关于x 的函数表达式;②该商店计划从这批商品获得的月销售利润为10万元(不计其它成本),若物价局限定商品的销售单价不得超过....进价的200%,则此时的销售单价应定为多少元?12.(2021·湖北天门·中考真题)去年“抗疫”期间,某生产消毒液厂家响应政府号召,将成本价为6元/件的简装消毒液低价销售.为此当地政府决定给予其销售的这种消毒液按a 元/件进行补贴,设某月销售价为x 元/件,a 与x 之间满足关系式:()20%10a x =-,下表是某4个月的销售记录.每月销售量y (万件)与该月销售价x (元/件)之间成一次函数关系(69)x ≤<.(2)当销售价为8元/件时,政府该月应付给厂家补贴多少万元?(3)当销售价x 定为多少时,该月纯收入最大?(纯收入=销售总金额-成本+政府当月补贴)12.(2021—2022安徽合肥市九年级月考)合肥市某水产养殖户进行小龙虾养殖.已知每千克小龙虾养殖成本为6元,在整个销售旺季的80天里,销售单价p (元/千克)与时间第t (天)之间的函数关系为:()()116140,41464180,2t t t p t t t ⎧+≤≤⎪⎪=⎨⎪-+≤≤⎪⎩且为整数且为整数,日销售量y (千克)与时间第t (天)之间的函数关系如图所示:(1)哪一天的日销售利润最大?最大利润是多少? (2)该养殖户有多少天日销售利润不低于2400元?(3)在实际销售的前40天中,该养殖户决定每销售1千克小龙虾,就捐赠()7m m <元给村里的特困户.在这前40天中,每天扣除捐赠后的日销售利润随时间t 的增大而增大,求m 的取值范围.13.(2021·江苏扬州·中考真题)甲、乙两汽车出租公司均有50辆汽车对外出租,下面是两公司经理的一段对话:..②月利润=月租车费-月维护费;③两公司月利润差=月利润较高公司的利润-月利润较低公司的利润.在两公司租出的汽车数量相等的条件下,根据上述信息,解决下列问题:(1)当每个公司租出的汽车为10辆时,甲公司的月利润是_______元;当每个公司租出的汽车为_______辆时,两公司的月利润相等;(2)求两公司月利润差的最大值;a>给慈善机构,如果捐款后甲公(3)甲公司热心公益事业,每租出1辆汽车捐出a元()0司剩余的月利润仍高于乙公司月利润,且当两公司租出的汽车均为17辆时,甲公司剩余的月利润与乙公司月利润之差最大,求a的取值范围.。
研究教学社会实践报告书(3篇)
第1篇一、前言随着我国教育事业的不断发展,实践教学在社会人才培养中的重要性日益凸显。
为了提高学生的综合素质,培养适应社会需求的应用型人才,我校组织开展了为期一个月的教学社会实践。
本次实践旨在让学生深入基层,了解社会,将所学理论知识与实践相结合,提高学生的实际操作能力和团队协作精神。
以下是本次教学社会实践的报告。
二、实践背景与目的1. 实践背景随着我国经济的快速发展,社会对高素质、应用型人才的需求日益增加。
然而,传统的教育模式往往过于注重理论知识的学习,忽视了实践能力的培养。
为了改变这一现状,我国教育部提出了“深化教育教学改革,提高人才培养质量”的号召。
在这样的背景下,开展教学社会实践显得尤为重要。
2. 实践目的(1)让学生将所学理论知识与实践相结合,提高实际操作能力。
(2)培养学生的团队协作精神和社会责任感。
(3)拓宽学生的视野,了解社会,增强学生的就业竞争力。
三、实践内容与过程1. 实践内容本次教学社会实践主要包括以下内容:(1)参观企业:组织学生参观知名企业,了解企业文化、生产流程和管理模式。
(2)实地调研:分组进行实地调研,了解行业发展趋势、市场需求和就业前景。
(3)实习实训:在指导老师的带领下,进行实习实训,提高学生的实际操作能力。
(4)座谈会:邀请企业代表、行业专家与学生进行座谈会,交流心得体会。
2. 实践过程(1)前期准备:确定实践主题,制定详细实践计划,联系实践单位。
(2)实践实施:按照实践计划,组织学生进行参观、调研、实习实训和座谈会等活动。
(3)总结反思:实践结束后,组织学生进行总结反思,撰写实践报告。
四、实践成果与体会1. 实践成果(1)学生通过参观企业,了解了企业的文化、生产流程和管理模式,拓宽了视野。
(2)学生在实地调研中,掌握了行业发展趋势、市场需求和就业前景,为今后的就业奠定了基础。
(3)学生在实习实训中,提高了实际操作能力,增强了团队协作精神。
(4)学生通过座谈会,与企业代表、行业专家进行了深入交流,了解了行业动态和发展趋势。
音乐教研形式(3篇)
第1篇一、引言音乐教育在我国教育体系中占有重要地位,对于培养全面发展的人才具有重要意义。
随着教育改革的不断深入,音乐教研形式也在不断创新与发展。
本文将从音乐教研的内涵、现状、创新与发展等方面进行探讨,以期为我国音乐教育的发展提供有益的借鉴。
二、音乐教研的内涵1. 音乐教研的定义音乐教研是指音乐教育工作者在教育教学过程中,通过研究、探讨、实践等方式,不断提高音乐教育教学质量,促进音乐教育事业的健康发展。
2. 音乐教研的内涵(1)研究性:音乐教研强调以问题为导向,通过调查研究、分析讨论等方法,对音乐教育中的各种问题进行深入研究。
(2)实践性:音乐教研注重将研究成果应用于实际教学中,以检验和改进教育教学方法。
(3)创新性:音乐教研鼓励教育工作者勇于探索,不断创新教育教学模式,提高教育教学质量。
三、音乐教研的现状1. 音乐教研的组织形式(1)学校内部教研:以学校为单位,组织教师开展集体备课、教学观摩、教学研讨等活动。
(2)地区性教研:以地区为单位,组织教师开展教学交流、学术研讨等活动。
(3)全国性教研:以全国为单位,组织教师参加各类音乐教育学术会议、研讨会等活动。
2. 音乐教研的内容(1)教育教学理论:研究音乐教育的基本理论、教学方法、教学评价等。
(2)教材教法研究:探讨教材的选用、教法的创新、教学资源的整合等。
(3)音乐教育实践:关注音乐教育实践中的问题,寻求解决方案。
四、音乐教研的创新与发展1. 创新教研组织形式(1)网络教研:利用互联网技术,开展在线教学研讨、资源共享等活动。
(2)跨学科教研:打破学科界限,开展音乐与其他学科的融合研究。
2. 创新教研内容(1)关注音乐教育热点问题:针对音乐教育中的热点问题,如音乐教育评价、音乐教育信息化等,进行深入研究。
(2)探索音乐教育新模式:结合教育改革,探索音乐教育的新模式,如项目式学习、翻转课堂等。
3. 强化教研队伍建设(1)提高教师教研能力:加强教师培训,提高教师的教育教学研究能力。
综合实践教学项目书(3篇)
第1篇一、项目背景随着我国教育改革的不断深入,实践教学在高等教育中的地位日益凸显。
综合实践教学项目旨在通过理论与实践相结合的方式,提高学生的综合素质、创新能力和实践能力。
本项目以培养学生的专业技能为核心,以实际应用为导向,通过一系列实践活动,使学生能够在实践中发现问题、分析问题、解决问题,从而提升学生的综合素质。
二、项目目标1. 培养学生的专业技能:通过项目实践,使学生掌握本专业的基本理论、基本知识和基本技能。
2. 提高学生的创新能力:鼓励学生在实践中进行创新思考,培养学生的创新意识和创新能力。
3. 增强学生的实践能力:通过项目实践,使学生能够在实际工作中运用所学知识,提高解决实际问题的能力。
4. 培养学生的团队协作精神:通过项目实践,使学生学会与他人合作,提高团队协作能力。
5. 增强学生的社会责任感:通过项目实践,使学生了解社会需求,增强社会责任感。
三、项目内容(一)项目主题本项目主题为“XX专业综合实践教学”,具体包括以下内容:1. 专业基础知识巩固与深化2. 实践技能训练3. 创新设计与实践4. 社会实践与志愿服务5. 项目管理与团队协作(二)项目实施步骤1. 前期准备阶段- 确定项目主题和目标- 组建项目团队,明确分工- 制定详细的项目实施方案- 搜集相关资料,准备实践所需设备2. 实践实施阶段- 进行专业基础知识巩固与深化,包括课堂讲授、案例分析、小组讨论等- 开展实践技能训练,如实验操作、工艺流程模拟等- 进行创新设计与实践,鼓励学生提出创新方案并付诸实施- 组织社会实践与志愿服务活动,让学生了解社会需求,服务社会- 进行项目管理与团队协作训练,提高学生的组织协调能力3. 总结与评价阶段- 对项目实施过程进行总结,分析存在的问题和不足- 对学生进行评价,包括专业技能、创新能力、实践能力、团队协作精神等方面- 提出改进措施,为今后的项目实践提供参考四、项目实施方法1. 课堂讲授法:邀请专家学者进行专题讲座,帮助学生巩固和深化专业知识。
五年级上册数学应用题解答问题专题练习(含答案)(2)
五年级上册数学应用题解答问题专题练习(含答案)(2)一、五年级数学上册应用题解答题1.把15千克汽油分别装进三只重量相等的桶里。
已知第一桶连桶重3.25千克,第二桶连桶重5.75千克,第三桶装了汽油的一半,第一、第二桶各装汽油多少千克?2.为鼓励居民节约用水,许昌市自来水公司制定下列收费办法:每户每月用水12吨以内(含12吨),每吨收费3.4吨。
超出12吨部分,按4.6元/吨收取。
(1)小明家十月份用水14吨,该交费多少元?(2)兰兰家十月份交水费73元,她家十月份用水多少吨?3.可可和乐乐同时从甲地出发去乙地。
可可每秒跑6米,乐乐每秒跑5.5米,可可到达乙地后立即原路返回,结果在离乙地20米处与乐乐相遇。
从他们出发到相遇经过了多少时间?甲乙两地之间的路程是多少米?(可以画图帮助思考)4.在一家快递公司邮寄物品时,不超过1千克的物品需要付8元,以后每增加1千克(不足1千克按1千克计算)需要增加邮寄费6.5元。
张叔叔邮寄一些物品,一共付费79.5 元,他邮寄的物品最多重多少千克?5.下表是周叔叔所在地区电费的收费标准,上个月周叔叔收到短信提醒,告知缴纳的电费是113.80元。
周叔叔家上个月用电量是多少度?6.李叔叔到外地办事,全程共252千米。
他的车现有18升汽油,如果每升汽油可行驶5.6千米,李叔叔至少需要加多少升汽油才能行完全程?7.一群人在两片草地上割草,大的一片草地比小的正好大1倍。
他们先全体在大草地上干了半天,下午留下一半人在大草地上继续干,收工时正好把草割完;另一半人到小草地上干,收工时还余一块,这块再用1人经1天也可割完。
问:这群干活的人共有多少人?8.文钟在计算4.68除以一个数时,由于商的小数点向左多点了一位,结果得0.36.这道题的除数是多少?9.为了鼓励居民节约用水,自来水公司规定:每户每月用水10吨以内(含10吨),按每吨2.5元收费;超过10吨的,其超出的部分按每吨5.5元收费。
二年级举一反三(含答案)第21讲应用题(二)
应用题(一)举一反三.专题简析这一讲我们继续讨论两步计算应用题。
记住:一定要弄清楚题中条件与条件、条件和问题之间的关系,才能找出解题的方法。
解答这组题时,要分析题中各部分之间的关系,如果求几个几是多少或求几的倍数是多少,就用乘法。
如果把一个数平均分成几份,求每份是多少或求一个数里有几个几就用除法来计算。
当求几的几倍是多少后,再求总数或差时,就不止一种解题方法。
小朋友要学会选择最佳解法。
.例题1妈妈买回一些梨,平均放在6个盘子里,每个盘子里放4个,还余2个,妈妈一共买了多少个梨?【思路导航】根据“平均放在6个盘子里,每个盘子里放4个”,可以知道盘子里一共有梨4×6 = 24(个),再根据“盘子里24个,还余2个”,就可以求出妈妈一共买梨的个数。
列式如下:4×6+2 = 24+2 = 26(个)答:妈妈一共买了26个梨。
.练习一1.老师把一些铅笔平均分给7个小朋友,每个小朋友分7枝,结果还剩1枝,老师手里一共有多少枝铅笔?2.图书室把新到的一批书平均分给10个班,每个班分到15本,最后还剩15本,图书室新到多少本书?3.小刚有50张纸订草稿本,每9张订1本,要订6本,还缺几张?.例题2田田练了8天的字,前7天,每天练4张纸,最后一天练了5张纸。
田田8天一共练写了多少张纸?【思路导航】因为8天中,有7天每天练4张纸,所以,我们可以用4×7 = 28(张)求出前7天练写的总张数。
最后一天练了5张,再用28+5 = 33(张),就是8天一共练写的纸的张纸。
列式如下:4×7 = 28(张)28+5 = 33(张)答:田田8天一共练写了33张纸。
.练习二1.小明看一本故事书,前5天每天看12页,最后一天看了20页正好看完,这本故事书一共多少页?2.张师傅生产一批零件,前4天每天生产25个,后3天共生产60个,张师傅一周共生产多少个零件?3.同学计划5天装订本子300本,结果前3天装订了160本,后2听装订后还剩20本没完成,同学们在后2天共装订了多少本?.例题3二(6)班有55个同学去野外植树,他们每5人一组,每组种4棵,求二(6)班同学这次一共能种多少棵树?【思路导航】由“全班55人每5人一组”这两个已知条件,就能算出全班一共有55÷5 =11(个)小组。
【三年级上册数学】 应用题解答问题专题练习(及答案)(2)
【三年级上册数学】应用题解答问题专题练习(及答案)(2)一、三年级数学上册应用题解答题1.笑笑的爸爸是出租车司机,最近几天晚上回家时的里程表读数如下。
(单位:千米)星期一星期二星期三星期四星期五530649649773890(1)星期二与星期三里程表的读数相同,说明了什么?(2)星期四,笑笑的爸爸开车行驶了多少千米?(3)最近几天,笑笑的爸爸星期几开车行驶的里程最多?2.丽丽家和亮亮家与学校在同一条街上,丽丽家距学校530米,亮亮家距学校460米,丽丽家距亮亮家有多少米?3.小明家、小红家和书店都在振兴路上,小明家离书店420米,小红家离书店170米。
小明家可能距小红家多少米?4.16个女同学旅游住旅店,有双人间和三人间,怎样安排能刚好住下?5.马小虎计算40加一个数时,不小心把这个数末尾的“0”丢了,算出的得数是43,正确的得数应该是多少?6.李老师家、芳芳家和学校在同一条街上,李老师家距学校570米,芳芳家距学校390米.请问芳芳家到李老师家有多远?7.现有15吨花生,可用下面的两辆车来运。
车型载质量租金3吨200元/次6吨350元/次的方案列出来。
方案载质量为3吨的车载质量为6吨的车运花生总吨数①()次()次15吨②()次()次15吨③()次()次15吨8.妈妈带980元钱去超市购物。
买食品花24元,买衣服花480元。
现在妈妈还剩多少元?方法一:先求(),再求()列式:答:方法二:先求(),再求()列式:答:9.李芳家、学校和刘文家在人民路的一旁,李芳家离学校245米,刘文家离学校788米。
李芳家距刘文家多远?10.商场里的数学。
(1)书包的价格是墨水的几倍?(2)爸爸买了两件商品,付给收银员550元,找回来14元。
爸爸买了哪两件商品?11.学校举办“小小才艺”绘画作品展览。
共有304幅作品参与展览,其中共有三个展区,分别为“地球家园”区、“科技在身边”区和“神奇动物”区。
三个展区分别有多少幅作品?12.聪聪和妈妈一起做了一个大蛋糕,聪聪吃了整个蛋糕的,妈妈吃了整个蛋糕的,他们两人吃了整个蛋糕的几分之几?13.水果糖的块数是巧克力糖的3倍,如果小红每天吃2块水果糖、1块巧克力糖,若干天后,水果糖还剩下7块,巧克力糖正好吃完。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
训练10 实践与应用型问题(二)1.(2011,陕西)一商场对某款羊毛衫进行换季打折销售.若这款羊毛衫每件按原销售价的8折(即按原销售价的80%)销售,售价为120元,则这款羊毛衫每件的原销售价为_______元.2.(2011,山西)小明与小亮玩游戏,他们将牌面数字分别是2,3,4的三张扑克牌充分洗匀后,背面朝上放在桌面上.规定游戏规则如下:先从中随机抽出一张牌,将牌面数字作为十位上的数字,然后将该牌放回并重新洗匀,再从中随机抽出一张牌,将牌面数字作为个位上的数字,如果组成的两位数恰好是2的倍数,则小明胜;如果组成的两位数恰好是3的倍数,则小亮胜.你认为这个游戏规则对双方公平吗?请用画树状图或列表的方法说明理由.3.(2011,河南)如图所示,中原福塔(河南广播电视塔)是世界第一高钢塔.小明所在的课外活动小组在距地面268米高的室外观光层的点D处,测得地面上点B的俯角a 为45°,点D到AO的距离DG为10米;从地面上的点B沿BO方向走50米到达点C处,测得塔尖A的仰角β为60°.请你根据以上数据计算塔高AO,并求出计算结果与实际塔高388米之间的误差. 1.732 1.414.结果精确到0.1米)4.(2011,山东临沂)某中学为了解学生的课外阅读情况,就“我最喜爱的课外读物”从文学、艺术、科普和其他四个类别进行了抽样调查(每位同学仅选一类),并根据调查结果制作了尚不完整的频数分布表:(1)表中m=_______,n=_______;(2)在这次抽样调查中,最喜爱阅读哪类读物的学生最多?最喜爱阅读哪类读物的学生最少?(3)根据以上调查,试估计该校120)名学生中最喜爱阅读科普类读物的学生有多少人?5.(2011,山西)如图,某校综合实践活动小组的同学欲测量公园内一棵树DE的高度,他们在这棵树正前方一座楼亭前的台阶上A点处测得树顶端D的仰角为30°,朝着这棵树的方向走到台阶下的点C处,测得树顶端D的仰角为60°.已知A点的高度AB为2米,台阶AC的坡度为1AB:BC=1,且B,C,E三点在同一条直线上.请根据以上条件求出树DE的高度(测倾器的高度忽略不计).6.(2011,陕西)一天,某校数学课外活动小组的同学们,带着皮尺去测量某河道因挖沙形成的“圆锥形坑”的深度,来评估这些深坑对河道的影响.如图是同学们选择(确保测量过程中无安全隐患)的测量对象,测量方案如下:①先测量出沙坑坑沿圆周的周长约为34.54米;②甲同学直立于沙坑坑沿圆周所在平面上,经过适当调整自己所处的位置,当他位于点B时,恰好他的视线经过沙坑坑沿圆周上的一点A看到坑底S(甲同学的视线起点C与点A、点S三点共线).经测量:AB=1.2米,BC=1.6米.根据以上测量数据,求“圆锥形坑”的深度(圆锥的高).(π取3.14,结果精确到0.1米)7.(2011,宁波)阅读下面的情景对话,然后解答问题:(1)根据“奇异三角形”的定义,请你判断小华提出的命题:“等边三角形一定是奇异三角形”是真命题还是假命题?(2)在Rt△ABC中,∠ACB=90°,AB=c,AC=b,BC=a,且b>a,若Rt△ABC是奇异三角形,求a:b:c;(3)如图,AB是⊙O的直径,C是⊙O上一点(不与点A,B重合),D是半圆 ADB的中点,C,D在直径AB的两侧,若在⊙O内存在点E,使得AE=AD,CB=CE.①求证:△ACE是奇异三角形;②当△ACE是直角三角形时,求∠AOC的度数.8.(2011,重庆)某企业为重庆计算机产业基地提供电脑配件.受美元走低的影响,从去年1至9月,该配件的原材料价格一路攀升,每件配件的原材料价格y1(元)与月份x (1≤x≤9,且x取整数)之间的函数关系如下表:随着国家调控措施的出台,原材料价格的涨势趋缓,10至12月每件配件的原材料价格y2(元)与月份x(10≤x≤12,且x取整数)之间存在如图所示的变化趋势:(1)请观察题中的表格,用所学过的一次函数、反比例函数或二次函数的有关知识,直接写出y1与x之间的函数关系式,根据如图所示的变化趋势,直接写出y2与x之间满足的一次函数关系式;(2)若去年该配件每件的售价为1 000元,生产每件配件的人力成本为50元,其他成本30元,该配件在1至9月的销售量p1(万件)与月份x满足函数关系式p1=0.1x+1.1(1≤x≤9,且x取整数),10至12月的销售量p2(万件)与月份x满足函数关系式p2=-0.1x+2.9(10≤x≤12,且x取整数).求去年哪个月销售该配件的利润最大,并求出这个最大利润;(3)今年1至5月,每件配件的原材料价格均比去年12月上涨60元,人力成本比去年增加20%,其他成本没有变化,该企业将每件配件的售价在去年的基础上提高a%,与此同时每月销售量均在去年12月的基础上减少0.10%.这样,在保证每月上万件配件销量的前提下,完成了1至5月的总利润1700万元的任务,请你参考以下数据,估算出a的整数值.(参考数据:992=9801,982=9604,972=9409,962=9216,952=9025)9.(2010,杭州)如图,在平面直角坐标系x O y中,点A(0,8),点B(6,8).(1)只用直尺(没有刻度)和圆规,求作一个点P,使点P同时满足下列两个条件(要求保留作图痕迹,不必写出作法):1)点P到A,B两点的距离相等;2)点P到∠x O y的两边的距离相等;(2)在(1)作出点P后,写出点P的坐标.10.(2010,南京)甲车从A地出发以60 km/h的速度沿公路匀速行驶,0.5 h后,乙车也从A地出发,以80 km/h的速度沿该公路与甲车同向匀速行驶,求乙车出发后几小时追上甲车.请建立一次函数关系解决上述问题.11.(2010,安徽)春节期间某水库养殖场为适应市场需求,连续用20天时间,采用每天降低水位以减少捕捞成本的办法,对水库中某种鲜鱼进行捕捞、销售.九(1)班数学建模兴趣小组根据调查,整理出第x天(1≤x≤20且x为整数)的捕捞与销售的相关信息如下:(1)在此期间该养殖场每天的捕捞量与前一天的捕捞量相比是如何变化的?(2)假定该养殖场每天捕捞和销售的鲜鱼没有损失,且能在当天全部售出,求第x天的收入y(元)与x(天)之间的函数关系式;(当天收入=日销售额-日捕捞成本)(3)试说明(2)中的函数y随x的变化情况,并指出在第几天y取得最大值,最大值是多少?12.(2010,南昌)图1所示的遮阳伞,伞柄垂直于水平地面,其示意图如图2.当伞收紧时,点P 与点A 重合;当伞慢慢撑开时,动点P 由A 向B 移动;当点P 到达点B 时,伞张得最开.已知伞在撑开的过程中,总有P =PN =CM =CN =6.0分米,CE =CF =18.0分米,BC =2.0分米.(1)求AP 长的取值范围;(2)当∠CPN =60°时,求AP 的值;(3)在阳光垂直照射下,伞张得最开时,求伞下的阴影(假定为圆面)面积S(结果保留π).13.(2010,长春)如图,梯形ABCD 中,AB ∥DC ,∠ABC =90°,∠A =45°,AB =30,BC =x ,其中15<x <30.作DE ⊥AB 于点E ,将△ADE 沿直线DE 折叠,点A 落在F 处,DF 交BC 于点G .(1)用含有x 的代数式表示BF 的长;(2)设四边形DEBG 的面积为S ,求S 与x 的函数关系式;(3)当x 为何值时,S 有最大值,并求出这个最大值,参考公式:二次函数y =ax 2+bx +c 图象的顶点坐标为(-2b a ,244ac b a )14.(2010,河南)(1)操作发现如图,矩形ABCD 中,E 是AD 的中点,将△ABE 沿BE 折叠后得到△GBE ,且点G 在矩形ABCD 内部.小明将BC 延长交DC 于点F ,认为GF =DF ,你同意吗?说明理由.(2)问题解决保持(1)中的条件不变,若DC =2DF ,求AD AB 的值. (3)类比探究保持(1)中的条件不变,若DC =n ·DF ,求AD AB的值.15.(2010,衡阳)在一次课外实践活动中,同学们要测湘江河的宽度.如图1所示,小明先在河西岸选定建筑物A,并在河东岸的B处观察,此时,视线B与河岸BE所成的夹角∠ABE=32°,小明沿河岸BE走了400米到C处,再观察A,此时视线CA 与河岸所成的夹角∠ACE=64°.(1)请你根据以上数据,帮助小明计算出湘江河的宽度(结果精确到0.1米);(2)求出湘江河宽之后,小明突发奇想,欲求B的正对岸建筑物的高度MN(如图2所示),现测得小明的眼睛与地面的距离(FB)是1.6 m,看建筑物顶部M的仰角(∠MFG)是8°,BN为湘江河宽,求建筑物的高度MN(结果精确到0.1米).(提示:河的两岸互相平行)(参考数值:sin32°≈0.530;cos32°≈0.848;t a n32°≈0.625;sin64°≈0.900;cos64°≈0.438;t a n64°≈2.050;sin8°≈0.139;cos8°≈0.990;t a n8°≈0.141)16.(2009,贵阳)如图,有长为30 m的篱笆,一面利用墙(墙的最大可用长度为10 m),围成中间隔有一道篱笆(平行于AB)的矩形花圃,设花圃一边AB的长为x m,面积为y m2.(1)求y与x的函数关系式;(2)如果要围成面积为63m2的花圃,AB的长是多少?(3)能围成面积比63m2更大的花圃吗?如果能,请求出最大面积;如果不能,请说明理由.参考答案1.1502.这个游戏规则对双方不公平.3.6.9米4.(1)84,0.33. (2)喜爱阅读文学类的学生最多(84人),喜爱阅读艺术类的学生最少(22人). (3) 396(人).5.6米6.7.3米7.(1)真命题 (2)a :b :c =1 (3)60°或120°8. (1)y 1=540+20x (1≤x ≤9,且x 取整数) y 2=630+10x (10≤x ≤12,且x 取整数).(2)去年4月销售该配件的利润最大,最大利润为450万元. (3)a 的整数值为109.(1)作图如下,点P 即为所求作的点. (2)P(3,3)10.乙车出发后1.5 h 追上甲车.11.(1)该养殖场每天的捕捞量与前一天的捕捞量相比每天减少了10 kg(2)y =-2x 2+40x +14250. (3)第10天,y 取得最大值,最大值为14450元.12.(1)0≤AP≤10 (2)AP =6分米 (3)四边形BNCM 为菱形315 (平方分米)13.(1)BF =2x -30.(2)S =-32x 2+60x -450 (3)当x =20时,S 有最大值,最大值为150.14.(1)同意15.(1)359.5米 (2)52.1米16.(1)y =-3x 2+30x (2)当AB 的长为7m 时,花圃的面积为63m 2.(3)能 当x =6m 时面积最大,最大面积为66m 2。