专题八 立体几何 第二十二讲 空间几何体的三视图、表面积和体积

合集下载

§8.1 空间几何体的三视图、表面积和体积(讲解部分)

§8.1 空间几何体的三视图、表面积和体积(讲解部分)

解析 由题意可知该几何体是一个直四棱柱, ∵它的俯视图的直观图是矩形O1A1B1C1,且O1A1=6,O1C1=2, ∴它的俯视图是边长为6的菱形,∵棱柱的高为4, ∴该几何体的侧面积为4×6×4=96,故选C.
答案 C
栏目索引
栏目索引
考向基础
考点二 空间几何体的表面积
1.多面体的表面积
多面体的表面积就是各个面的面积之和,也就是表面展开图的面积.
AB,则SE=
SA2 -AE2 =
25-
25 4
=
5
3 2
.∴S侧=4S△SAB=4×
1 2
×AB×SE=2×5×
5
3 2
=
25 3.∴S表=S侧+S底面=25 3+25=25( 3+1).
答案 25( 3 +1)
栏目索引
考向二 已知几何体的三视图求表面积 例5 (2016课标全国Ⅰ,7,5分)如图,某几何体的三视图是三个半径相等的 圆及每个圆中两条互相垂直的半径.若该几何体的体积是 28π ,则它的表面
由题意得, = + = V V V C1-B1EDF
B1 -C1EF
D -C1EF
1·S
3
C1EF ·(h1+h2)=
1a3.
6
答案 1 a3
6
栏目索引
考向二 已知几何体的三视图求体积 例7 (2017浙江,3,5分)某几何体的三视图如图所示(单位:cm),则该几何体 的体积(单位:cm3)是 ( )
系为r= R2 -d 2 . 二、空间几何体的三视图与直观图 1.三视图是从一个几何体的正前方、正左方、正上方三个不同的方向看 这个几何体,描绘出的图形分别称为正视图(主视图)、侧视图(左视图)、 俯视图.

2010-2019年高考文科数学汇总专题八立体几何第二十二讲空间几何体的三视图、表面积和体积

2010-2019年高考文科数学汇总专题八立体几何第二十二讲空间几何体的三视图、表面积和体积

专题八 立体几何第二十二讲 空间几何体的三视图、表面积和体积2019年1.(2019全国II 文16)中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有________个面,其棱长为_________.(本题第一空2分,第二空3分.)2.(2019全国II 文17)如图,长方体ABCD –A 1B 1C 1D 1的底面ABCD 是正方形,点E 在棱AA 1上,BE ⊥EC 1.(1)证明:BE ⊥平面EB 1C 1;(2)若AE =A 1E ,AB =3,求四棱锥11E BB C C -的体积.3.(2019全国III 文16)学生到工厂劳动实践,利用3D 打印技术制作模型.如图,该模型为长方体1111ABCD A B C D -挖去四棱锥O −EFGH 后所得的几何体,其中O 为长方体的中心,E ,F ,G ,H 分别为所在棱的中点,16cm 4cm AB =BC =, AA =,3D 打印所用原料密度为0.9 g/cm 3,不考虑打印损耗,制作该模型所需原料的质量为___________g.4.(2019江苏9)如图,长方体1111ABCD A B C D 的体积是120,E 为1CC 的中点,则三棱锥E -BCD 的体积是 .5.(2019天津文12)的正方形,若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该圆柱的体积为__________.6.(2019北京文12)某几何体是由一个正方体去掉一个四棱柱所得,其三视图如图所示.如果网格纸上小正方形的边长为1,那么该几何体的体积为__________.7.(2019浙江4)祖暅是我国南北朝时代的伟大科学家.他提出的“幂势既同,则积不容异”称为祖暅原理,利用该原理可以得到柱体体积公式V 柱体=Sh ,其中S 是柱体的底面积,h 是柱体的高.若某柱体的三视图如图所示,则该柱体的体积是A.158 B.162C.182 D.322010-2018年一、选择题1.(2018全国卷Ⅰ)已知圆柱的上、下底面的中心分别为1O,2O,过直线12O O的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为A.B.12πC.D.10π2.(2018全国卷Ⅰ)某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为BAA.B.C.3D.23.(2018全国卷Ⅰ)在长方体1111ABCD A B C D-中,2AB BC==,1AC与平面11BB C C所成的角为30︒,则该长方体的体积为A.8B.C.D.4.(2018全国卷Ⅲ)中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是5.(2018全国卷Ⅲ)设A ,B ,C ,D 是同一个半径为4的球的球面上四点,ABC △为等边三角形且其面积为,则三棱锥D ABC 体积的最大值为 A.B.C.D.6.(2018浙江)某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:3cm )是俯视图正视图A .2B .4C .6D .87.(2018北京)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为俯视图侧(左)视图正(主)视图A.1 B.2 C.3 D.48.(2017新课标Ⅲ)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为A.πB.34πC.2πD.4π9.(2017北京)某三棱锥的三视图如图所示,则该三棱锥的体积为A.60 B.30 C.20 D.1010.(2017浙江)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:3cm)是俯视图A .12π+ B .32π+ C .312π+ D . 332π+ 11.(2017新课标Ⅱ)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为A .90πB .63πC .42πD .36π12.(2016年山东)一个由半球和四棱锥组成的几何体,其三视图如图所示.则该几何体的体积为A .1233π+ B .13+ C .13+ D .1+ 13.(2016年全国I )如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径,若该几何体的体积是28π3,则它的表面积是A .17πB .18πC .20πD .28π 14.(2016年全国II )如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为A .20πB .24πC .28πD .32π15.(2016年全国III )如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为A .18+B .54+C .90D .81 16.(2015浙江)某几何体的三视图如图所示(单位:cm ),则该几何体的体积是A .38cm B .312cm C .3323cm D .3403cm 17.(2015陕西)一个几何体的三视图如图所示,则该几何体的表面积为A .3πB .4πC .24π+D .34π+ 18.(2015重庆)某几何体的三视图如图所示,则该几何体的体积为A .13π+ B .23π+ C .123π+ D .223π+ 19.(2015新课标)一个正方体被一个平面截去一部分后,剩余部分的三视图如图,则截去部分体积与剩余部分体积的比值为A .81 B .71 C .61 D .51 20.(2015安徽)一个四面体的三视图如图所示,则该四面体的表面积是A .1B .2C .1+D .21.(2015湖南)某工件的三视图如图3所示,现将该工件通过切割,加工成一个体积尽可能大的长方体新工件,并使新工件的一个面落在原工件的一个面内,则原工件材料的利用率为(材料利用率=新工件的体积原工件的体积)A .89πB .169πC .31)πD .31)π22.(2015新课标1)圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体三视图中的正视图和俯视图如图所示。

高中数学《空间几何体的三视图、表面积和体积》课件

高中数学《空间几何体的三视图、表面积和体积》课件
学家,他提出的“幂势既同,则积不容异”称为祖暅原理, 利用该原理可以得到柱体的体积公式V柱体=Sh,其中S是柱 体的底面积,h是柱体的高.若某柱体的三视图如图所示(单 位:cm),则该柱体的体积(单位:cm3)是( )
A.158 C.182
B.162 D.324
27
(2)(2019·天津卷)已知四棱锥的底面是边长为 2的正方形,侧棱长均为 5.若圆柱的一个 底面的圆周经过四棱锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该 圆柱的体积为________. 解析 (1)由三视图可知,该柱体是一个直五棱柱,如图,棱柱 的高为6,底面可以看作由两个直角梯形组合而成,其中一个 上底为4,下底为6,高为3,另一个的上底为2,下底为6,高 为3.
6
所以 PA⊥PC,即 PA,PB,PC 两两垂直,以 PA,PB,PC 为从同一顶点出发的三条棱 补成正方体.因为 AB=2,所以该正方体的棱长为 2,所以该正方体的体对角线长为 6, 故三棱锥 P-ABC 的外接球的半径 R= 26,所以球 O 的体积 V=43πR3=43π 263= 6π, 故选 D.
答案
(1)40
1 (2)3
34
热点三 多面体与球的切、接问题
【例3】 (1)在封闭的直三棱柱ABC-A1B1C1内有一个体积为V的球.若AB⊥BC,AB=6,
BC=8,AA1=3,则V的最大值是( )
A.4π
B.92π
C.6π
D.323π
(2)(多填题)(2019·湖南师大附中调研)在《九章算术》中,将底面为矩形且有一条侧棱与
(2)因为正视图和侧视图都为三角形,可知几何体为锥体,又因为俯视图为三角形,故 该几何体为三棱锥.故选A. 答案 (1)C (2)A

8.1 空间几何体的三视图、表面积和体积(讲解部分)

8.1 空间几何体的三视图、表面积和体积(讲解部分)
栏目索引
考点清单
考点一 简单几何体的结构特征、三视图和直观图
考向基础
1.多面体的结构特征
名称
棱柱
棱锥
棱台
结构 特征
侧棱
侧面形状
有两个面平行且全等,其余各个 有一个面(底面)是多边
面都是四边形;每相邻两个四边 形,其余各面是有一个
形的公共边都互相平行
公共顶点的三角形
有两个面平行且相似, 其余各面都是梯形
栏目索引
例2 (2018浙江新高考调研卷一(诸暨中学),3)如图所示,半径为2,圆心角 为 2π 的扇形是一个圆锥的侧面展开图,则该圆锥的体积是 ( )
3
A.16 2 π
27
解题导引
B.16 2 π
81
C. 4 π
3
D. 4 2 π
3
栏目索引
解析 圆锥的底面圆周长等于扇形的弧长 4π ,所以圆锥的底面半径为 2 ,高
柱体 锥体
台体

V柱体=Sh,V圆柱=πr2h
1
V锥体= 3Sh,V圆锥= 1πr2h
3
1
V台体= 3(S+
SS'
+S')h,V圆台=
1π(r2+rr'+r'2)h
3
4
V球= 3πR3(R为球半径)
注意 (1)求一些不规则几何体的体积常用割补的方法将几何体转化成已 知体积公式的几何体进行解决. (2)求与三视图有关的体积问题注意几何体和数据还原的准确性.
例1 (2019浙江高考信息优化卷(四),11)某四棱锥的三视图如图所示,在此
四棱锥的四个侧面中,直角三角形的个数为
,体积是
.

高考数学 8.1 空间几何体的三视图、表面积和体积

高考数学 8.1 空间几何体的三视图、表面积和体积

的高、侧棱和侧棱在底面内的射影也组成一个直角三角形.
3.圆柱、圆锥、圆台的特征 分别以⑤ 矩形一边 、⑥ 直角三角形一直角边 、
⑦ 直角梯形中垂直于底边的腰 所在的直线为旋转轴,其余各边旋转一 周而形成的面所围成的几何体分别叫做圆柱、圆锥、圆台.其中,旋转轴叫 做所围成的几何体的轴;垂直于轴的边旋转而成的圆面叫做这个几何体的 底面;不垂直于轴的边旋转而成的曲面叫做这个几何体的侧面,无论旋转 到什么位置,这条边都叫做侧面的⑧ 母线 . 4.棱台、圆台的定义 用平行于底面的平面分别去截棱锥、圆锥,⑨ 截面与底面间 的部分 分别叫做棱台、圆台.
5.球
(1)一个半圆围绕着它的直径所在的直线旋转一周所形成的曲面叫做球 面,球面所围成的几何体叫做球.
形成球的半圆的圆心叫做球心;连接球面上一点和球心的线段叫做球的 半径;连接球面上两点且通过球心的线段叫做球的直径. (2)球面被不经过球心的平面截得的圆叫做球的小圆,被经过球心的平 面截得的圆叫做球的大圆. 球的截面性质:r=⑩
1 2 3 πr h
,棱锥的体积公式为V= Sh.圆锥和
1 3
棱锥的体积公式可以统一为V锥=
,其中S为底面面积,h为高.
1 3 Sh
1 1 6.圆台的体积公式为V= π(r'2+r'r+r2)h,棱台的体积公式为V= (S'+ SS ' + 3 3 1 S)h.圆台和棱台的体积公式可以统一为V台= (S'+ S ' S +S)h,其中S'、S分 3
( B
)
A.6 2 B.6 C.4 2 D.4
解析 由多面体的三视图可知该几何体的直观图为一个三棱锥,如图所 示.其中面ABC⊥面BCD,△ABC为等腰直角三角形,AB=BC=4,取BC的中

高中复习文数:第八章 第一节 空间几何体的三视图、直观图、表面积与体积

高中复习文数:第八章 第一节 空间几何体的三视图、直观图、表面积与体积

4. [考点三] 用斜二测画法画出的某平面图形的直观图如图,边
AB平行于y轴,BC,AD平行于x轴.已知四边形ABCD的面
积为2 2 cm2,则原平面图形的面积为
()
A.4 cm2 C.8 cm2
B.4 2 cm2 D.8 2 cm2
解析:依题意可知∠BAD=45°,则原平面图形为直角梯形,上
下底面的长与BC,AD相等,高为梯形ABCD的高的2 2 倍,所 以原平面图形的面积为8 cm2. 答案:C
自学区 抓牢双基· 完成情况
[基本知识]
1.圆柱、圆锥、圆台的侧面展开图及侧面积公式
圆柱
圆锥
圆台
侧面 展开图
侧面 S圆柱侧=_2_π_rl___ S圆锥侧=_π_r_l S圆台侧=_π_(_r_+__r′__)_l
积公式
圆柱、圆锥、圆台侧面积间的关系: S圆柱侧=2πrl― r′―=→rS圆台侧=π(r+r′)lr―′―=→0S圆锥侧=πrl.
[答案] A
[方法技巧]
解决与空间几何体结构特征有关问题的技巧 (1)把握几何体的结构特征,要多观察实物,提高空 间想象能力; (2)紧扣结构特征是判断的关键,熟悉空间几何体的 结构特征,依据条件构建几何模型,如例1中的命题②④ 易判断失误; (3)通过反例对结构特征进行辨析.
空间几何体的三视图
[基本知识]
1.空间几何体的结构特征 (1)多面体的结构特征
多面体
结构特征
棱柱
有两个面_平__行__,其余各面都是四边形且每相邻 两个面的交线都_平__行__且__相__等____
棱锥
有一个面是多边形,而其余各面都是有一个 公__共__顶__点___的三角形
棱台
棱锥被平行于_底__面___的平面所截,截面和底面 之间的部分叫做棱台

高中数学复习精讲 空间几何体的三视图、表面积和体积

高中数学复习精讲  空间几何体的三视图、表面积和体积

空间几何体的三视图、表面积和体积1.以三视图为载体,考查空间几何体面积、体积的计算.2.考查空间几何体的侧面展开图及简单的组合体问题.热点一 三视图与直观图 1.一个物体的三视图的排列规则俯视图放在正(主)视图的下面,长度与正(主)视图的长度一样,侧(左)视图放在正(主)视图的右面,高度与正(主)视图的高度一样,宽度与俯视图的宽度一样.即“长对正、高平齐、宽相等”. 2.由三视图还原几何体的步骤一般先依据俯视图确定底面再利用正(主)视图与侧(左)视图确定几何体.例1 (1)将长方体截去一个四棱锥,得到的几何体如图所示,则该几何体的侧(左)视图为( )答案 D解析 所得几何体的轮廓线中,除长方体原有的棱外,有两条是原长方体的面对角线,它们在侧(左)视图中落在矩形的两条边上,另一条是原长方体的体对角线,在侧(左)视图中体现为矩形的自左下至右上的一条对角线,因不可见,故用虚线表示,由以上分析可知,故选D.(2)有一块多边形的菜地,它的水平放置的平面图形的斜二测直观图是直角梯形(如图所示),∠ABC =45°,AB =AD =1,DC ⊥BC ,则这块菜地的面积为________. 答案 2+22解析 如图,在直观图中,过点A 作AE ⊥BC ,垂足为点E ,则在Rt △ABE 中,AB =1,∠ABE =45°,∴BE =22.而四边形AECD 为矩形,AD =1, ∴EC =AD =1,∴BC =BE +EC =22+1. 由此可还原原图形如图所示.在原图形中,A ′D ′=1,A ′B ′=2,B ′C ′=22+1, 且A ′D ′∥B ′C ′,A ′B ′⊥B ′C ′, ∴这块菜地的面积为S =12(A ′D ′+B ′C ′)·A ′B ′ =12×⎝⎛⎭⎫1+1+22×2=2+22. 思维升华 空间几何体的三视图是从空间几何体的正面、左面、上面用平行投影的方法得到的三个平面投影图,因此在分析空间几何体的三视图问题时,先根据俯视图确定几何体的底面,然后根据正(主)视图或侧(左)视图确定几何体的侧棱与侧面的特征,调整实线和虚线所对应的棱、面的位置,再确定几何体的形状,即可得到结果.在还原空间几何体实际形状时,一般是以正(主)视图和俯视图为主,结合侧(左)视图进行综合考虑.跟踪演练1 (1)(2017·河北省武邑中学模拟)已知某锥体的正(主)视图和侧(左)视图如图,则该锥体的俯视图不可能是( )答案 D解析 A 项,该锥体是底面边长为2,高为3的正四棱锥. B 项,该锥体为底面半径为1,高为3的圆锥.C 项,该锥体是底面为等腰直角三角形,高为3的三棱锥.D 项,由于该图形不满足三视图原则“宽相等”,所以不可能是该锥体的俯视图,故D 项不符合题意. 故选D.(2)(2017·衡阳联考)如图所示,三棱锥V -ABC 的底面是以B 为直角顶点的等腰直角三角形,侧面VAC 与底面ABC 垂直,若以垂直于平面VAC 的方向作为正(主)视图的方向,垂直于平面ABC 的方向为俯视图的方向,已知其正(主)视图的面积为23,则其侧(左)视图的面积是( ) A.32B. 3 C .2 3 D .3 答案 B解析 设三棱锥的高为h ,AB =BC =2a ,则AC =2a ,S 正(主)视图=12×2a ×h =23⇒h =23a ,S 侧(左)视图=12ah =a 2×23a = 3.故选B.热点二 几何体的表面积与体积空间几何体的表面积和体积计算是高考中常见的一个考点,解决这类问题,首先要熟练掌握各类空间几何体的表面积和体积计算公式,其次要掌握一定的技巧,如把不规则几何体分割成几个规则几何体的技巧,把一个空间几何体纳入一个更大的几何体中的补形技巧.例2 (1)下图画出的是某几何体的三视图,网格纸上小正方形的边长为1,则该几何体的体积为( )A .48-πB .96-πC .48-2πD .96-2π 答案 D解析 由已知中的三视图可知,该几何体是一个长方体挖掉两个圆锥所得的组合体,所以几何体的体积为4×4×6-2×13×π×12×3=96-2π,故选D.(2)(2017·山东)由一个长方体和两个14圆柱构成的几何体的三视图如图,则该几何体的体积为________.答案 2+π2解析 该几何体由一个长、宽、高分别为2,1,1的长方体和两个半径为1,高为1的14圆柱体构成,∴V =2×1×1+2×14×π×12×1=2+π2.思维升华 (1)求多面体的表面积的基本方法就是逐个计算各个面的面积,然后求和.(2)求简单几何体的体积时若所给的几何体为柱体、锥体或台体,则可直接利用公式求解;求组合体的体积时若所给定的几何体是组合体,不能直接利用公式求解,则常用转换法、分割法、补形法等进行求解;求以三视图为背景的几何体的体积时应先根据三视图得到几何体的直观图,然后根据条件求解.跟踪演练2 (1)(2016·山东)一个由半球和四棱锥组成的几何体,其三视图如图所示,则该几何体的体积为( )A.13+23π B.13+23π C.13+26π D .1+26π 答案 C解析 由三视图知,半球的半径R =22,四棱锥为底面边长为1,高为1的正四棱锥,所以几何体的体积V =13×1×1×1+12×43π×⎝⎛⎭⎫223=13+26π,故选C.(2)(2017届云南省师范大学附属中学月考)如图,是某组合体的三视图,则外部几何体的表面积为( )A .4πB .12πC .24πD .36π答案 D解析 组合体为轴截面为等边三角形的圆锥和它的内切球,球的半径为r =2,圆锥的高为3r =6,圆锥底面半径为3r =23,圆锥母线长为23r =43,所以S 圆锥表=π()232+12()2π·23·43=36π,故选D.热点三 多面体与球与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图.如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径.球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.球与旋转体的组合,通常作它们的轴截面解题,球与多面体的组合,通过多面体的一条侧棱和球心(或“切点”“接点”)作出截面图.例3 (1)一个三棱锥的三视图如图所示,则该棱锥的外接球的体积为( )A .1 0002πB .1252πC.1 0002π3D.1252π3答案 D解析 由三视图可知该三棱锥为棱长为5,4,3的长方体切去四个小棱锥得到的几何体,∴该三棱锥的外接球和长方体的外接球相同. 设该三棱锥的外接球半径为R , ∴2R =52+42+32=5 2.∴R =522,∴外接球的体积为V =43πR 3=1252π3,故选D.(2)(2017届咸阳二模)已知一个三棱锥的所有棱长均为2,则该三棱锥的内切球的体积为____________. 答案354π解析 由题意可知,该三棱锥为正四面体,如图所示. AE =AB ·sin60°=62,AO =23AE =63, DO =AD 2-AO 2=233,三棱锥的体积V D -ABC =13S △ABC ·DO =13,设内切球的半径为r ,则V D -ABC =13r ()S △ABC +S △ABD +S △BCD +S △ACD =13,r =36,V 内切球=43πr 3=354π.思维升华 三棱锥P -ABC 可通过补形为长方体求解外接球问题的两种情形 (1)点P 可作为长方体上底面的一个顶点,点A ,B ,C 可作为下底面的三个顶点. (2)P -ABC 为正四面体,则正四面体的棱都可作为一个正方体的面对角线.跟踪演练3 (1)若在三棱锥P -ABC 中, AB =AC =1,AB ⊥AC ,P A ⊥平面ABC ,且直线P A 与平面PBC 所成角的正切值为12,则三棱锥P -ABC 的外接球的表面积为( )A .4πB .8πC .16πD .32π答案 A解析 如图,取BC 的中点D ,连接AD ,PD, ∵AB =AC ,∴AD ⊥BC ,又∵P A ⊥平面ABC ,∴BC ⊥P A ,又P A ,AD ⊂平面P AD ,P A ∩AD =A ,∴BC ⊥平面P AD ,过A 作AH ⊥PD 于点H ,易知AH ⊥平面PBC , ∴∠APD 是直线P A 与平面PBC 所成的角,∴tan ∠APD =AD AP =12,∵AD =12BC =22,∴AP =2,∵AB ,AC ,AP 相互垂直, ∴以AB ,AC ,AP 为棱的长方体的外接球就是三棱锥P -ABC 的外接球,∴三棱锥P -ABC 的外接球的半径为12+12+()222=1,三棱锥P -ABC 的外接球的表面积为4π,故选A.(2)(2017届石家庄质检)四棱锥P -ABCD 的底面ABCD 是边长为6的正方形,且P A =PB =PC =PD ,若一个半径为1的球与此四棱锥所有面都相切,则该四棱锥的高是( ) A .6 B .5 C.92 D.94答案 D解析 由题意知,四棱锥P -ABCD 是正四棱锥,球的球心O 在四棱锥的高PH 上,过正四棱锥的高作组合体的轴截面如图,其中PE ,PF 是斜高,G 为球面与侧面的切点.设PH =h ,易知Rt △PGO ∽Rt △PHF ,所以OG FH =POPF ,即13=h -1h 2+32,解得h =94,故选D.真题体验1.(2017·北京改编)某三棱锥的三视图如图所示,则该三棱锥的体积为________.答案 10解析 由三视图画出如图所示的三棱锥P -ACD ,过点P 作PB ⊥平面ACD 于点B ,连接BA ,BD ,BC ,根据三视图可知,底面ABCD 是矩形,AD =5,CD =3,PB =4,所以V 三棱锥P ACD =13×12×3×5×4=10.2.(2017·全国Ⅱ)长方体的长、宽、高分别为3,2,1,其顶点都在球O 的球面上,则球O 的表面积为________. 答案 14π解析 ∵长方体的顶点都在球O 的球面上, ∴长方体的体对角线的长度就是其外接球的直径. 设球的半径为R , 则2R =32+22+12=14. ∴球O 的表面积为S =4πR 2=4π×⎝⎛⎭⎫1422=14π. 3.(2017·全国Ⅰ)已知三棱锥S —ABC 的所有顶点都在球O 的球面上,SC 是球O 的直径.若平面SCA ⊥平面SCB ,SA =AC ,SB =BC ,三棱锥S —ABC 的体积为9,则球O 的表面积为________. 答案 36π解析 如图,连接OA ,OB .由SA =AC ,SB =BC ,SC 为球O 的直径知,OA ⊥SC ,OB ⊥SC .由平面SCA ⊥平面SCB ,平面SCA ∩平面SCB =SC ,OA ⊥SC 知,OA ⊥平面SCB . 设球O 的半径为r ,则 OA =OB =r ,SC =2r , ∴三棱锥S -ABC 的体积 V =13×12×SC ×OB ×OA =r 33,即r 33=9,∴r =3,∴S 球表=4πr 2=36π.4.(2017·江苏)如图,在圆柱O 1O 2内有一个球O ,该球与圆柱的上、下面及母线均相切.记圆柱O 1O 2的体积为V 1,球O 的体积为V 2,则V 1V 2的值是________.答案 32解析 设球O 的半径为R ,∵球O 与圆柱O 1O 2的上、下底面及母线均相切, ∴圆柱O 1O 2的高为2R ,底面半径为R . ∴V 1V 2=πR 2·2R 43πR 3=32. 押题预测1.一个几何体的三视图及其尺寸如图所示,则该几何体的表面积为( )A .16B .82+8C .22+26+8D .42+46+8押题依据 求空间几何体的表面积或体积是立体几何的重要内容之一,也是高考命题的热点.此类题常以三视图为载体,给出几何体的特征,求几何体的表面积或体积. 答案 D解析 由三视图知,该几何体是底面边长为22+22=22的正方形,高PD =2的四棱锥P -ABCD ,因为PD ⊥平面ABCD ,且四边形ABCD 是正方形, 易得BC ⊥PC ,BA ⊥P A ,又PC =PD 2+CD 2=22+(22)2=23, 所以S △PCD =S △P AD =12×2×22=22,S △P AB =S △PBC =12×22×23=2 6.所以几何体的表面积为46+42+8.2.在正三棱锥S -ABC 中,点M 是SC 的中点,且AM ⊥SB ,底面边长AB =22,则正三棱锥S -ABC 的外接球的表面积为( ) A .6π B .12π C .32πD .36π押题依据 灵活运用正三棱锥中线与线之间的位置关系来解决外接球的相关问题,是高考的热点. 答案 B解析 因为三棱锥S -ABC 为正三棱锥,所以SB ⊥AC ,又AM ⊥SB ,AC ∩AM =A ,所以SB ⊥平面SAC ,所以SB ⊥SA ,SB ⊥SC ,同理SA ⊥SC ,即SA ,SB ,SC 三线两两垂直,且AB =22,所以SA =SB =SC =2,所以(2R )2=3×22=12, 所以球的表面积S =4πR 2=12π,故选B.3.已知半径为1的球O 中内接一个圆柱,当圆柱的侧面积最大时,球的体积与圆柱的体积的比值为________.押题依据 求空间几何体的体积是立体几何的重要内容之一,也是高考的热点问题之一,主要是求柱体、锥体、球体或简单组合体的体积.本题通过球的内接圆柱,来考查球与圆柱的体积计算,设问角度新颖,值得关注. 答案423解析 如图所示,设圆柱的底面半径为r ,则圆柱的侧面积为S =2πr ×21-r 2=4πr 1-r 2≤4π×r 2+(1-r 2)2=2π(当且仅当r 2=1-r 2,即r =22时取等号).所以当r =22时,V 球V 圆柱=4π3×13π⎝⎛⎭⎫222×2=423.A组专题通关1.一几何体的直观图如图,下列给出的四个俯视图中正确的是()答案 B解析由直观图可知,该几何体是由一个长方体和一个截角三棱柱组合而成.从上往下看,外层轮廓线是一个矩形,矩形内部有一条线段连接着两个三角形.2.(2017届太原模拟)某几何体的三视图如图所示,则该几何体中最长的棱长为()A.3 3 B.2 6C.21 D.2 5答案 B解析如图所示,在长、宽、高分别为3,4,2的长方体中,三视图表示的是如图所示的四棱锥P-ABCD,其最长的棱为BP=22+22+42=2 6 .故选B.3.(2017·日照模拟)某几何体的三视图如图所示,则该几何体的体积为()A.9+36πB.6+36πC.3+36πD.12+36π答案 A解析 根据三视图可知,原几何体表示上部为底面圆半径为1,高为3的圆锥的12,下部为底面圆半径为1,高为2的圆柱的34,故该几何体的体积为V =V 1+V 2=12×13πr 2h 1+34×πr 2h 2=3π6+3π2=3+96π.4.(2017届四川省泸州市四诊)某几何体的正(主)视图和侧(左)视图如图(1)所示,它的俯视图的直观图是A ′B ′C ′,如图(2)所示,其中O ′A ′=O ′B ′=2,O ′C ′=3,则该几何体的表面积为( )A .36+12 3B .24+8 3C .24+12 3D .36+8 3 答案 C解析 由图(2)可知,该几何体的俯视图是一个底面边长为4,高为23的等腰三角形,即该三角形为等边三角形,在如图所示的长方体中,长、宽、高分别为4,23,6,三视图还原为几何体是图中的三棱锥P -ABC ,且S △P AB =S △PBC =12×4×6=12, S △ABC =12×4×23=43,△P AC 是腰长为52,底面边长为4的等腰三角形, S △P AC =8 3.综上可知,该几何体的表面积为2×12+43+83=24+12 3.故选C.5.(2017届玉林、贵港质检)网络用语“车珠子”,通常是指将一块原料木头通过加工打磨,变成球状珠子的过程.某同学有一圆锥状的木块,想把它“车成珠子”,经测量,该圆锥状木块的底面直径为12 cm ,体积为96π cm 3,假设条件理想,他能成功,则该珠子的体积最大值是( ) A .36π cm 3B .12π cm 3C .9π cm 3D .72π cm 3 答案 A解析 由题可令圆锥的高为x cm ,可得13π·62·x =96π,则x =8,由底面直径为12,得母线长为10,可设轴截面的内切圆半径为r ,由12×12×8=12×()10+10+12r ,可得r =3.那么珠子的体积最大值为43π·33=36π(cm)3.故选A.6.(2017·哈尔滨师范大学附属中学模拟)已知三棱锥P —ABC 的四个顶点均在同一个球面上,底面△ABC 满足BA =BC =6, ∠ABC =π2,若该三棱锥体积的最大值为3,则其外接球的体积为( )A .8πB .16π C.16π3 D.32π3 答案 D解析 因为△ABC 是等腰直角三角形,所以外接圆的半径是r =12×12=3,设外接球的半径是R ,球心O 到该底面的距离为d ,如图,则S △ABC =12×6=3,BD =3,由题设V =13S △ABC ·h =13×3h =3,最大体积对应的高为PD =h =3,故R 2=d 2+3,即R 2=()3-R 2+3,解得R =2,所以外接球的体积是43πR 3=32π3,故选D.7.(2017届石家庄模拟)三棱锥S -ABC 中,侧棱SA ⊥底面ABC, AB =5, BC =8, ∠B =60°, SA =25,则该三棱锥的外接球的表面积为( ) A.643π B.2563π C.4363π D .2 048327π 答案 B解析 由题意知,侧棱SA ⊥底面ABC, AB =5,BC =8,∠B =60°,则根据余弦定理可得 AC =52+82-2×5×8×12=7,△ABC 的外接圆圆心2r =AC sin B =732∴r =73,三棱锥的外接球的球心到平面ABC 的距离d =12SA =5,则外接球的半径R =⎝⎛⎭⎫732+()52=643,则该三棱锥的外接球的表面积为S =4πR 2=2563π. 8.如图所示,图中阴影部分绕AB 旋转一周所形成的几何体的体积为________.答案140π3解析 由题意知,旋转一周后形成的几何体是一圆台去掉一个半球,其中圆台的体积为V =13×(π×22+π×22×π×52+π×52)×4=156π3,半球的体积V =12×43×π×23=16π3,则所求体积为156π3-16π3=140π3.9.体积为163的正四棱锥S —ABCD 的底面中心为O ,SO 与侧面所成角的正切值为22,那么过S —ABCD的各顶点的球的表面积为________. 答案 16π解析 如图,取AB 的中点为F ,连接SF ,过点O 作OG ⊥SF ,则∠OSG 为SO 与侧面所成的角,且tan ∠OSG =OF SO =22.设AB =2a ,则SO =2a ,所以13×4a 2×2a =163,得a = 2.延长SO 交外接球于E ,则EB ⊥SB ,由OB 2=SO ·OE ,得4=2·(2R -2), 所以R =2,S =4π×22=16π.10.(2017·天津市第一中学月考)某几何体的三视图如图所示(单位: cm),则该几何体的体积为________ cm 3.答案 6+32π解析 由三视图还原几何体如图所示,该几何体是一个半圆柱与一个直三棱柱的组合体,半圆柱的底面半径为1,高为3;直三棱柱底面是等腰直角三角形,直角边为2,高为3. 所以V =12×2×2×3+12×π×12×3=6+32π.11.如图,已知正方体ABCD -A 1B 1C 1D 1的棱长为2,点E 为线段A 1B 1的中点,点F ,G 分别是线段A 1D 与BC 1上的动点,当三棱锥E -FGC 的俯视图的面积最大时,该三棱锥的正(主)视图的面积是________. 答案 2解析 由题意知,E 点在底面的射影E ′为AB 的中点,F 点在底面的射影F ′在AD 上,G 点在底面的射影G ′在BC 上,三棱锥E -FGC 的俯视图的面积是以E ′C 为底边,F ′,G ′到E ′C 的距离和为高的三角形的面积,又E ′C 为定值,所以当F 点与D 点重合,G 点与B 点重合时面积最大,此时正(主)视图的面积为12×2×2=2.12.已知三棱锥P -ABC 的三条侧棱两两垂直,且AB =5,BC =7,AC =2,则此三棱锥外接球的表面积是______. 答案 8π解析 如图P A, PB, PC 两两垂直,设PC =h , 则PB =BC 2-PC 2 =7-h 2,P A =AC 2-PC 2=4-h 2, ∵P A 2+PB 2=AB 2, ∴4-h 2+7-h 2=5,解得h =3,在三棱锥P -ABC 中, P A, PB, PC 两两垂直,且P A =1, PB =2,PC =3, ∴以P A, PB, PC 为棱构造一个长方体,则这个长方体的外接球就是三棱锥P -ABC 的外接球, ∴由题意可知,这个长方体的中心是三棱锥的外接球的球心,三棱锥的外接球的半径为R =1+4+32=2, ∴外接球的表面积为S =4πR 2=4π×()22=8π.B 组 能力提高13.四棱锥P -ABCD 的三视图如图所示,则该四棱锥的外接球的表面积为( )A.81π5B.81π20C.101π5 D .101π20答案 C解析 根据三视图还原几何体为一个四棱锥P -ABCD ,平面P AD ⊥平面ABCD ,由于△P AD 为等腰三角形,P A =PD =3,AD =4,四边形ABCD 为矩形,CD =2,过△P AD 的外心F 作平面P AD 的垂线,过矩形ABCD 的中心H 作平面ABCD 的垂线,两条垂线交于一点O ,O 为四棱锥外接球的球心,在三角形P AD 中,cos ∠APD =32+32-422×3×3=19,则sin ∠APD =459 ,2PF =AD sin ∠APD =4459=955 ,PF =9510 ,PE =9-4= 5 ,OH =EF =5-9510=510, BH =1216+4=5,OB =OH 2+BH 2=5100+5=50510, S =4π×505100=101π5.故选C.14.如图是某组合体的三视图,则内部几何体的体积的最大值为( )A.52()2-1π B.254()3-22π C .25()3-22π D.1256()52-7π 答案 D解析 内部几何体是底面为直角三角形的直三棱柱的内切球,内切球的半径即为底面直角三角形内切圆的半径,由等面积法易得r =ab a +b +5,且a 2+b 2=25.由基本不等式,知r =ab a +b +5≤ab 2ab +5, 0<ab ≤a 2+b 22=252,即0<ab ≤522,当且仅当a =b =522时,等号成立.令t =ab ,则r ≤t 22t +5, f ()t =t 22t +5=15t 2+2t =15⎝⎛⎭⎫1t +152-15⎝⎛⎭⎫0<t ≤522是增函数,或f ′(t )=2t ()t +5()2t +52>0, 0<t ≤522,所以f ()t =t 22t +5在⎝⎛⎦⎤0,522上是增函数,所以r max =f ()t max =f ⎝⎛⎭⎫522=52()2-1,所以内切球的体积的最大值为43π()r max 3=1256()52-7π,故选D.15.(2017·上海市黄浦区模拟)三棱锥P -ABC 满足: AB ⊥AC, AB ⊥AP , AB =2, AP +AC =4,则该三棱锥的体积V 的取值范围是____________. 答案 ⎝⎛⎦⎤0,43 解析 由于AB ⊥AP ,AB ⊥AC ,AC ∩AP =A ,∴AB ⊥平面APC, V =13S △APC ·AB =23S △APC ,在△APC 中,AP +AC =4,所以AP ·AC ≤⎝⎛⎭⎫AP +AC 22=4,所以S △APC =12·AP ·AC ·sin ∠P AC ≤2sin ∠P AC ,要使△APC 面积最大,只需AP =AC ,∠P AC =90°, S △APC 的最大值为12×2×2=2, V 的最大值为13×2×2=43,该三棱锥的体积V 的取值范围是⎝⎛⎦⎤0,43. 16.如图所示,三棱锥P -ABC 中,△ABC 是边长为3的等边三角形, D 是线=32,PB =段AB 的中点, DE ∩PB =E ,且DE ⊥AB ,若∠EDC =120°,P A 332,则三棱锥P -ABC 的外接球的表面积为________. 答案 13π解析 在三棱锥P -ABC 中, △ABC 是边长为3的等边三角形,设△ABC 的外心为O 1,外接圆的半径O 1A =32sin60°=3,在△P AB 中, P A =32,PB =332,AB =3,满足P A 2+PB 2=AB 2,所以△P AB 为直角三角形,△P AB 的外接圆的圆心为D ,由于CD ⊥AB ,ED ⊥AB, ∠EDC =120°为二面角P -AB -C 的平面角,分别过两个三角形的外心O 1,D 作两个半平面的垂线交于点O ,则O 为三棱锥P -ABC 的外接球的球心, 在Rt △OO 1D 中, ∠ODO 1=30°,DO 1=32, 则cos30°=O 1D OD =32OD ,OD =1,连接OA ,设OA =R ,则R 2=AD 2+OD 2=⎝⎛⎭⎫322+12=134, S 球=4πR 2=4π×134=13π.空间几何体的三视图、表面积与体积A组基础题组1.如图所示是一个物体的三视图,则此三视图所描述物体的直观图是( )2.将长方体截去一个四棱锥,得到的几何体如图所示,则该几何体的侧视图是( )3.某几何体的三视图如图所示,且该几何体的体积是3,则正视图中的x的值是( )A.2B.C.D.34.“牟合方盖”是我国古代数学家刘徽在研究球的体积的过程中构造的一个和谐优美的几何体.它由完全相同的四个曲面构成,相对的两个曲面在同一个圆柱的侧面上,好似两个扣合(牟合)在一起的方形伞(方盖).其直观图如图,图中四边形是为体现其直观性所作的辅助线.当其正视图和侧视图完全相同时,它的俯视图可能是( )5.(2017新疆第二次适应性检测)球的体积为4π,平面α截球O的球面所得圆的半径为1,则球心O到平面α的距离为( )A.1B.C.D.6.(2017合肥第一次教学质量检测)一个几何体的三视图如图所示(其中正视图的弧线为四分之一圆周),则该几何体的表面积为( )A.72+6πB.72+4πC.48+6πD.48+4π7.(2017石家庄教学质量检测(二))某几何体的三视图如图所示,则该几何体的体积是( )A.16B.20C.52D.608.(2016贵州贵阳监测考试)甲、乙两个几何体的正视图和侧视图相同,俯视图不同,如图所示,记甲的体积为V甲,乙的体积为V乙,则( )A.V甲<V乙B.V甲=V乙C.V甲>V乙D.V甲、V乙大小不能确定9.(2017浙江,3,5分)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是( )A.+1B.+3C.+1D.+310.在棱长为3的正方体ABCD-A1B1C1D1中,P在线段BD1上,且=,M为线段B1C1上的动点,则三棱锥M-PBC 的体积为( )A.1B.C. D.与M点的位置有关11.若正三棱锥A-BCD中,AB⊥AC,且BC=1,则三棱锥A-BCD的高为( )A. B. C. D.12.一个几何体的三视图如图所示,其中正视图是一个正三角形,则这个几何体的外接球的表面积为( )A. B. C.4π D.π13.已知某组合体的正视图与侧视图相同(其中AB=AC,四边形BCDE为矩形),则该组合体的俯视图可以是(把正确的图的序号都填上).14.如图,正方体ABCD-A1B1C1D1的棱长为1,E,F分别为线段AA1,B1C上的点,则三棱锥D1-EDF的体积为.15.(2017广西三市第一次联考)已知长方体ABCD-A1B1C1D1内接于球O,底面ABCD是边长为2的正方形,E为AA1的中点,OA⊥平面BDE,则球O的表面积为.16.(2017山东,13,5分)由一个长方体和两个圆柱体构成的几何体的三视图如图,则该几何体的体积为.B组提升题组1.(2017郑州第一次质量预测)某几何体的三视图如图所示,则其体积为( )A.207B.216-C.216-36πD.216-18π2.某几何体的三视图如图所示(网格线中每个小正方形的边长为1),则该几何体的表面积为( )A.48B.54C.64D.603.(2017石家庄第一次模拟)祖暅是南北朝时期的伟大数学家,5世纪末提出体积计算原理,即祖暅原理:“幂势既同,则积不容异”.意思是:夹在两个平行平面之间的两个几何体,被平行于这两个平面的任何一个平面所截,如果截面面积都相等,那么这两个几何体的体积一定相等.现有以下四个几何体:图①是从圆柱中挖去一个圆锥所得的几何体,图②、图③、图④分别是圆锥、圆台和半球,则满足祖暅原理的两个几何体为( )A.①②B.①③C.②④D.①④4.(2017郑州第二次质量预测)将一个底面半径为1,高为2的圆锥形工件切割成一个圆柱体,能切割出的圆柱的最大体积为( )A. B. C. D.5.(2017兰州高考实战模拟)某几何体的三视图如图所示,则下列说法正确的是( )①该几何体的体积为;②该几何体为正三棱锥;③该几何体的表面积为+;④该几何体外接球的表面积为3π.A.①②③B.①②④C.①③④D.②③④6.(2017洛阳第一次统一考试)已知三棱锥P-ABC的四个顶点均在某球面上,PC为该球的直径,△ABC是边长为4的等边三角形,三棱锥P-ABC的体积为,则此三棱锥的外接球的表面积为( )A. B. C. D.7.某几何体的三视图如图所示,当xy取得最大值时,该几何体的体积是.8.(2017合肥第二次教学质量检测)某几何体的三视图如图所示,其中俯视图是边长为1的等边三角形,则此几何体的体积为.9.(2017长春普通高中质量检测(二))已知四棱锥P-ABCD的底面为矩形,平面PBC⊥平面ABCD,PE⊥BC于点E,EC=1,AB=,BC=3,PE=2,则四棱锥P-ABCD的外接球半径为.10.(2017课标全国Ⅰ,16,5分)如图,圆形纸片的圆心为O,半径为5 cm,该纸片上的等边三角形ABC的中心为O.D,E,F为圆O上的点,△DBC,△ECA,△FAB分别是以BC,CA,AB为底边的等腰三角形.沿虚线剪开后,分别以BC,CA,AB为折痕折起△DBC,△ECA,△FAB,使得D,E,F重合,得到三棱锥.当△ABC的边长变化时,所得三棱锥体积(单位:cm3)的最大值为.答案精解精析A组基础题组1.D 先观察俯视图,由俯视图可知选项B和D中的一个正确,再由正视图和侧视图可知选项D正确,故选D.2.D 由几何体可以看出,侧视图应为一个矩形外加一条从右上到左下的对角线,故选D.3.D 由三视图知,该几何体是四棱锥,底面是一个直角梯形,底面积为×(1+2)×2=3,四棱锥的高为x,因为该几何体的体积为3,所以×3x=3,解得x=3,故选D.4.B 根据直观图以及题图中的辅助四边形分析可知,当正视图和侧视图完全相同时,俯视图为B,故选B.5.B 依题意,设该球的半径为R,则有R3=4π,解得R=,因此球心O到平面α的距离d==,选B.6.A 由三视图知,该几何体由一个正方体的四分之三与一个圆柱的四分之一组合而成(如图所示),表面积为16×2+(16-4+π)×2+4×(2+2+π)=72+6π,故选A.7.B 由三视图知,该几何体由直三棱柱(底面是直角边长分别为3,4的直角三角形,高为6)截去两个相同的四棱锥所得,且四棱锥的底面是长、宽分别为4,2的矩形,高是3,所以该几何体的体积V=×3×4×6-2××2×4×3=20,故选B.8.C 由三视图知,甲几何体是一个以俯视图为底面的四棱锥,乙几何体是在甲几何体的基础上去掉一个角,即去掉一个三个面是直角三角形的三棱锥后得到的一个三棱锥,所以V甲>V乙,故选C.9.A 由三视图可知该几何体是由底面半径为1,高为3的半个圆锥和三棱锥S-ABC组成的,如图,三棱锥的高为3,底面△ABC中,AB=2,OC=1,AB⊥OC.故其体积V=××π×12×3+××2×1×3=+1.故选A.10.B ∵=,∴点P到平面BC1的距离是D1到平面BC1距离的,即为=1.∵M为线段B1C1上的点,∴S△MBC=×3×3=,∴V M-PBC=V P-MBC=××1=.11.A 设三棱锥A-BCD的高为h,依题意得AB,AC,AD两两垂直,且AB=AC=AD=BC=,△BCD的面积为×12=.由V A-BCD=V B-ACD得S△BCD·h=S△ACD·AB,即××h=×××,解得h=,即三棱锥A-BCD的高h=,故选A.12.A 由三视图可知,该几何体为一个三棱锥,设其为三棱锥A-BCD,由俯视图可知,底面BCD是一个等腰直角三角形,∠BCD为直角,平面ABD⊥平面BCD,易知外接球的球心O为△ABD的中心,则球O的半径R=,外接球的表面积等于4πR2=4π×=.13.答案①②③④解析该组合体由四棱锥与四棱柱组成时,得①正确;该组合体由四棱锥与圆柱组成时,得②正确;该组合体由圆锥与圆柱组成时,得③正确;该组合体由圆锥与四棱柱组成时,得④正确.14.答案解析=,=,点F到平面D1ED的距离为1,∴==××1=.15.答案16π解析取BD的中点为O1,连接OO1,OE,O1E,O1A,则四边形OO1AE为矩形,∵OA⊥平面BDE,∴OA⊥EO1,即四边形OO1AE为正方形,则球O的半径R=OA=2,∴球O的表面积S=4π×22=16π.16.答案2+解析由三视图得该几何体的直观图(如图).其中,长方体的长、宽、高分别为2,1,1,圆柱体的底面半径为1,高为1.所以该几何体的体积V=2×1×1+×π×12×1=2+.B组提升题组1.B 由三视图知,该几何体是由一个棱长为6的正方体挖去一个底面半径为3,高为6的圆锥而得到的,所以该几何体的体积V=63-××π×32×6=216-,故选B.2.D 根据三视图还原直观图,如图所示,则该几何体的表面积S=6×3+×6×4+2××3×5+×6×5=60,故选D.3.D 设截面与底面的距离为h,则①中截面内圆的半径为h,则截面圆环的面积为π(R2-h2);。

空间几何体的三视图、表面积及体积

空间几何体的三视图、表面积及体积

2022年高考数学总复习:空间几何体的三视图、表面积及体积1.柱体、锥体、台体、球的表面积与体积(1)空间几何体的三视图三视图的正视图、侧视图、俯视图分别是从物体的正前方、正左方、正上方看到的物体轮廓线的正投影围成的平面图形,三视图的画法规则为“长对正、高平齐、宽相等”.画三视图的基本要求:正(主)俯一样长,俯侧(左)一样宽,正(主)侧(左)一样高.三视图排列规则:俯视图放在正(主)视图的下面;侧(左)视图放在正(主)视图的右面.(2)空间几何体的直观图空间几何体直观图的画法常采用斜二测画法.用斜二测画法画平面图形的直观图规则为“轴夹角45°(或135°),平行长不变,垂直长减半”.Y易错警示i cuo jing shi1.未注意三视图中实、虚线的区别在画三视图时应注意看到的轮廓线画成实线,看不到的轮廓线画成虚线.2.不能准确分析组合体的结构致误对简单组合体表面积与体积的计算要注意其构成几何体的面积、体积是和还是差.3.台体可以看成是由锥体截得的,此时截面一定与底面平行.4.空间几何放置的方式不同时,对三视图可能会有影响.1.(2018·全国卷Ⅲ,3)中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是( A )[解析]选A.由直观图可知选A.2.(文)(2018·全国卷Ⅰ,5)已知圆柱的上、下底面的中心分别为O1,O2,过直线O1O2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为( B ) A.122π B.12πC.82π D.10π[解析]截面面积为8,所以高h=22,底面半径r=2,所以该圆柱表面积S=π·(2)2·2+2π·2·22=12π.(理)(2018·全国卷Ⅰ,7)某圆柱的高为2,底面周长为16,其三视图如图所示,圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在侧视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为( B )A.217 B.25C.3 D.2[解析]选B.将三视图还原为圆柱,M,N的位置如图1所示,将侧面展开,最短路径为M,N连线的距离,所以MN=42+22=2 5.3.(2018·浙江卷,3)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm 3)是( C )A .2B .4C .6D .8[解析] 选C . 由三视图可知,该几何体是底面为直角梯形的直四棱柱,底面面积S =(1+2)×22=3,高h =2,所以V =Sh =6.4.(2018·北京卷,5)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为( C )A .1B .2C .3D .4[解析] 选C .将四棱锥三视图转化为直观图,如图,侧面共有4个三角形,即△P AB ,△PBC ,△PCD ,△P AD , 由已知,PD ⊥平面ABCD ,又AD ⊂平面ABCD ,所以PD ⊥AD ,同理PD ⊥CD ,PD ⊥AB , 所以△PCD ,△P AD 是直角三角形.因为AB ⊥AD ,PD ⊥AB ,PD ,AD ⊂平面P AD ,PD ∩AD =D , 所以AB ⊥平面P AD ,又P A ⊂平面P AD , 所以AB ⊥P A ,△P AB 是直角三角形. 因为AB =1,CD =2,AD =2,PD =2,所以P A =PD 2+AD 2=22,PC =PD 2+CD 2=22, PB =P A 2+AB 2=3,在梯形ABCD 中,易知BC =5,△PBC 三条边长为22,3,5,△PBC 不是直角三角形. 综上,侧面中直角三角形个数为3.5.(文)(2018·全国卷Ⅰ,10)在长方体ABCD ­A 1B 1C 1D 1中,AB =BC =2,AC 1与平面BB 1C 1C 所成的角为30°,则该长方体的体积为( C )A .8B .6 2C .8 2D .83[解析]选C .如图,连接AC 1和BC 1,因为AB ⊥平面BB 1C 1C ,AC 1与平面BB 1C 1C 所成角为30°,所以∠AC 1B =30°, 所以AB BC 1=tan30°,BC 1=23,所以CC 1=22,所以V =2×2×22=8 2.(理)(2018·全国卷Ⅲ,10)设A ,B ,C ,D 是同一个半径为4的球的球面上四点,△ABC 为等边三角形且其面积为93,则三棱锥D ­ABC 体积的最大值为( B )A .12 3B .18 3C .24 3D .543[解析] 设△ABC 的边长为a ,则S △ABC =12a 2sin C =34a 2=93,解得a =6,如图所示,当点D 在底面上的射影为三角形ABC 的中心H 时,三棱锥D ­ABC 的体积最大,设球心为O ,则在直角三角形AHO 中,AH =23×32×6=23,OA =R =4,则OH=OA 2-AH 2=16-12=2,所以DH =2+4=6,所以三棱锥D ­ABC 的体积最大值为V =13S △ABC ×DH =13×93×6=18 3. 6.(文)(2018·天津卷,11)如图,已知正方体ABCD ­A 1B 1C 1D 1的棱长为1,则四棱锥A 1­BB 1D 1D 的体积为13.[解析] 连接A 1C 1,交B 1D 1于O 1点,依题意得A 1O 1⊥平面BB 1D 1D ,即A 1O 1为四棱锥A 1­BB 1D 1D 的高,且A 1O 1=22,而四棱锥A 1­BB 1D 1D 的底面为矩形,其面积为2,所以四棱锥A 1­BB 1D 1D 的体积V =13Sh =13×2×22=13.(理)(2018·天津卷,11)已知正方体ABCD ­A 1B 1C 1D 1的棱长为1,除面ABCD 外,该正方体其余各面的中心分别为点E ,F ,G ,H ,M (如图),则四棱锥M ­EFGH 的体积为112.[解析] 依题意得:该四棱锥M ­EFGH 为正四棱锥,其高为正方体棱长的一半,即为12,正方形EFGH 的边长为22,其面积为12,所以四棱锥M ­EFGH 的体积V M ­EFGH =13Sh =13×12×12=112. 7.(2018·全国卷Ⅱ,16)已知圆锥的顶点为S ,母线SA ,SB 所成角的余弦值为78,SA 与圆锥底面所成角为45°,若△SAB 的面积为515,则该圆锥的侧面积为402π.[解析] 如图:设SA =SB =l ,底面圆半径为r ,因为SA 与圆锥底面所成角为45°,所以l =2r ,在△SAB 中,AB 2=SA 2+SB 2-2SA ·SB ·cos ∠ASB =12r 2,AB =22r ,AB 边上的高为(2r )2-⎝⎛⎭⎫24r 2=304r ,△SAB 的面积为515, 所以12·22r ·304r =515,解得r =210,所以该圆锥的侧面积为πrl =π2r 2=402π.8.(2017·全国卷Ⅰ,16)已知三棱锥S -ABC 的所有顶点都在球O 的球面上,SC 是球O 的直径.若平面SCA ⊥平面SCB ,SA =AC ,SB =BC ,三棱锥S -ABC 的体积为9,则球O 的表面积为36π.[解析] 如图,连接OA ,OB .由SA =AC ,SB =BC ,SC 为球O 的直径,知OA ⊥SC ,OB ⊥SC .由平面SCA ⊥平面SCB ,平面SCA ∩平面SCB =SC ,OA ⊥SC ,知OA ⊥平面SCB . 设球O 的半径为r ,则OA =OB =r ,SC =2r , ∴三棱锥S -ABC 的体积V =13×(12SC ·OB )·OA =r 33,即r 33=9, ∴r =3,∴S 球表=4πr 2=36π.。

§8.1 空间几何体的三视图、表面积与体积(讲解部分)

§8.1 空间几何体的三视图、表面积与体积(讲解部分)

在已知图形中过点O作z轴垂直于平面xOy,在直观图中画出对应的z'轴,垂 直于平面x'O'y',已知图形中平行于z轴的线段,在直观图中平行于z'轴且 ⑩ 长度不变 .
考点二 空间几何体的体积
名称
体积
柱体 锥体
V=Sh
1
V= 3Sh
台体
1
V= 3(S+S'+ SS' )h
球体
4
V=3 πR3
考点三 空间几何体的表面积
112.5.
(2)包装盒子的体积V=(a-2x)(b-2x)x=x[ab-2(a+b)x+4x2],x∈
0,
b 2
,b≤60,V=x
[ab-2(a+b)x+4x2]≤x(ab-4 ab x+4x2)=x(3 600-240x+4x2)=4x3-240x2+3 600x.当
且仅当a=b=60时等号成立,设f(x)=4x3-240x2+3 600x,x∈(0,30),则f '(x)=12(x-
②半径:r= a2 b2 c2 (a,b,c为长方体的长、宽、高).
2
(2)正方体的外接球、内切球及与各条棱都相切的球:
①外接球:球心是正方体的中心,半径r= 3 a(a为正方体的棱长);
2
②内切球:球心是正方体的中心,半径r= a (a为正方体的棱长);
2
③与各条棱都相切的球:球心是正方体的中心,半径r= 2 a(a为正方体的棱
考点清单
考点一 三视图与直观图
1.多面体的结构特征
名称
棱柱
棱锥
棱台
图形
结构特征 (1)有两个面互相平行,其余各个 有一个面(即底面)是多边 用一个平行于棱锥底面

§8.1 空间几何体的三视图、表面积和体积

§8.1 空间几何体的三视图、表面积和体积

答案 C
10
考向三 空间几何体的直观图
例3 如图,矩形O'A'B'C'是水平放置的一个平面图形的直观图,其中O'A'
=6,O'C'=2,则原图形OABC的面积为
.
11
解析 由题意知原图形OABC是平行四边形,且OA=BC=6,设平行四边
形OABC的高为OE,则OE× 1 × 2 =O'C', 22
考向基础 1.柱体、锥体、台体、球体的体积
名称 柱体 锥体 台体
球体
体积
V=Sh
1
V= 3 Sh
1
① V= 3 (S+S'+ SS' )h
4
② V= 3 πR3
18
2.柱体、锥体、台体的体积公式之间的关系
3.关于空间几何体体积的常用结论 (1)相同的几何体的体积相同; (2)一个组合体的体积等于它的各部分体积之和; (3)等底面面积且等高的两个同类几何体的体积③ 相等 .
8
考向二 空间几何体的三视图 例2 (2017河北衡水中学七调,5)正方体ABCD-A1B1C1D1中,E为棱BB1的 中点(如图),用过点A,E,C1的平面截去该正方体的上半部分,则剩余几何 体的左视图为 ( )
9
解析 过点A,E,C1的截面为AEC1F(其中F为DD1的中点),如图,则剩余几 何体的左视图为选项C中的图形.故选C.
28
例2 (2018天津,11,5分)如图,已知正方体ABCD-A1B1C1D1的棱长为1,则
四棱锥A1-BB1D1D的体积为
.
解题导引
29
解析 四棱锥的底面BB1D1D为矩形,其面积为1× 2 = 2 ,

§8.1空间几何体的三视图 表面积和体积

§8.1空间几何体的三视图 表面积和体积

第八章立体几何§8.1空间几何体的三视图、表面积和体积考纲解读分析解读 1.三视图与直观图的识别及二者的相互转化是高考考查的热点,考查几何体的展开图、几何体的三视图的画法.2.考查柱、锥、台、球的结构特征,以性质为载体,通过选择题、填空题的形式呈现.3.考查柱、锥、台、球的表面积与体积的计算,主要是与三视图相结合,也可与柱、锥、球的接切问题相结合,不规则几何体的表面积与体积的计算也有可能考查.4.预计2019年高考试题中,对三视图与直观图的识别以及求由三视图所得几何体的表面积和体积的考查是必不可少的.柱、锥、台、球的结构特征可能以选择题、填空题的形式出现,它们的表面积与体积的计算还是会与三视图相结合,或以组合体的形式出现,复习时应引起重视.五年高考考点一三视图和直观图1.(2017浙江,3,4分)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是()A.π+1B.π+3C.3π2+1 D.3π2+3答案A2.(2017北京文,6,5分)某三棱锥的三视图如图所示,则该三棱锥的体积为()A.60B.30C.20D.10答案D3.(2017课标全国Ⅱ理,4,5分)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为()A.90πB.63πC.42πD.36π答案B4.(2017课标全国Ⅰ理,7,5分)某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为()A.10B.12C.14D.16答案B5.(2017北京理,7,5分)某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为()A.3B.2C.2D.2答案B6.(2016课标全国Ⅱ,6,5分)下图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为()A.20πB.24πC.28πD.32π答案C7.(2015课标Ⅱ,6,5分)一个正方体被一个平面截去一部分后,剩余部分的三视图如图所示,则截去部分体积与剩余部分体积的比值为()A.18B.17C.16D.15答案D8.(2015重庆,5,5分)某几何体的三视图如图所示,则该几何体的体积为()A.13+πB.23+π C.13+2π D.23+2π答案 A9.(2015安徽,7,5分)一个四面体的三视图如图所示,则该四面体的表面积是( )A.1+ 3B.2+ 3C.1+2 2D.2 2 答案 B10.(2014江西,5,5分)一几何体的直观图如图,下列给出的四个俯视图中正确的是( )答案 B11.(2013湖南,7,5分)已知棱长为1的正方体的俯视图是一个面积为1的正方形,则该正方体的正视图的面积不可能...等于( ) A.1B. 2C.2-12D.2+12答案 C12.(2013浙江,12,4分)若某几何体的三视图(单位:cm)如图所示,则此几何体的体积等于 cm 3.答案2413.(2017山东理,13,5分)由一个长方体和两个1圆柱体构成的几何体的三视图如下图,则该几何体的体积为.答案2+π2教师用书专用(14—23)14.(2014湖北,5,5分)在如图所示的空间直角坐标系O-xyz中,一个四面体的顶点坐标分别是(0,0,2),(2,2,0),(1,2,1),(2,2,2).给出编号为①、②、③、④的四个图,则该四面体的正视图和俯视图分别为()A.①和②B.③和①C.④和③D.④和②答案D15.(2014北京,7,5分)在空间直角坐标系O-xyz中,已知A(2,0,0),B(2,2,0),C(0,2,0),D(1,1,2).若S1,S2,S3分别是三棱锥D-ABC在xOy,yOz,zOx坐标平面上的正投影图形的面积,则()A.S1=S2=S3B.S2=S1且S2≠S3C.S3=S1且S3≠S2D.S3=S2且S3≠S1答案D16.(2015陕西,5,5分)一个几何体的三视图如图所示,则该几何体的表面积为()A.3πB.4πC.2π+4D.3π+4答案D17.(2014福建,2,5分)某空间几何体的正视图是三角形,则该几何体不可能是()A.圆柱B.圆锥C.四面体D.三棱柱答案A18.(2014辽宁,7,5分)某几何体三视图如图所示,则该几何体的体积为()A.8-2πB.8-πC.8-π2D.8-π4答案B19.(2013课标全国Ⅱ,7,5分)一个四面体的顶点在空间直角坐标系O-xyz中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx平面为投影面,则得到的正视图可以为()答案A20.(2013广东,5,5分)某四棱台的三视图如图所示,则该四棱台的体积是()A.4B.143C.163D.6答案B21.(2013重庆,5,5分)某几何体的三视图如图所示,则该几何体的体积为()A.5603B.5803C.200D.240答案C22.(2013陕西,12,5分)某几何体的三视图如图所示,则其体积为.答案π323.(2013辽宁,13,5分)某几何体的三视图如图所示,则该几何体的体积是.答案16π-16考点二空间几何体的表面积1.(2014浙江,3,5分)某几何体的三视图(单位:cm)如图所示,则此几何体的表面积是()A.90cm2B.129cm2C.132cm2D.138cm2答案D2.(2016课标全国Ⅲ,9,5分)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为()A.18+365B.54+185C.90D.81答案B, 3.(2016课标全国Ⅰ,6,5分)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.若该几何体的体积是28π3则它的表面积是()A.17πB.18πC.20πD.28π答案A4.(2015课标Ⅰ,11,5分)圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r=()A.1B.2C.4D.8答案B5.(2015课标Ⅱ,9,5分)已知A,B是球O的球面上两点,∠AOB=90°,C为该球面上的动点.若三棱锥O-ABC体积的最大值为36,则球O 的表面积为()A.36πB.64πC.144πD.256π答案C6.(2017课标全国Ⅱ文,15,5分)长方体的长,宽,高分别为3,2,1,其顶点都在球O的球面上,则球O的表面积为.答案14π7.(2017课标全国Ⅰ文,16,5分)已知三棱锥S-ABC的所有顶点都在球O的球面上,SC是球O的直径.若平面SCA⊥平面SCB,SA=AC,SB=BC,三棱锥S-ABC的体积为9,则球O的表面积为.答案36π教师用书专用(8—11)8.(2014重庆,7,5分)某几何体的三视图如图所示,则该几何体的表面积为()A.54B.60C.66D.72答案B9.(2015北京,5,5分)某三棱锥的三视图如图所示,则该三棱锥的表面积是()A.2+5B.4+5C.2+25D.5答案C10.(2014安徽,7,5分)一个多面体的三视图如图所示,则该多面体的表面积为()A.21+B.18+C.21D.18答案A11.(2013福建,12,4分)已知某一多面体内接于球构成一个简单组合体,如果该组合体的正视图、侧视图、俯视图均如图所示,且图中的四边形是边长为2的正方形,则该球的表面积是.答案12π考点三空间几何体的体积1.(2015浙江,2,5分)某几何体的三视图如图所示(单位:cm),则该几何体的体积是()A.8cm3B.12cm3C.32cm3D.40cm3答案C2.(2017课标全国Ⅲ理,8,5分)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为()A.πB.3π4C.π2D.π4答案B3.(2016北京,6,5分)某三棱锥的三视图如图所示,则该三棱锥的体积为()A.16B.13C.12D.1答案A4.(2016课标全国Ⅲ,10,5分)在封闭的直三棱柱ABC-A1B1C1内有一个体积为V的球.若AB⊥BC,AB=6,BC=8,AA1=3,则V的最大值是()A.4πB.9π2C.6π D.32π3答案B5.(2015课标Ⅰ,6,5分)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有()A.14斛B.22斛C.36斛D.66斛 答案 B6.(2015湖南,10,5分)某工件的三视图如图所示,现将该工件通过切削,加工成一个体积尽可能大的长方体新工件,并使新工件的一个面落在原工件的一个面内,则原工件材料的利用率为材料利用率=新工件的体积原工件的体积( )A.89πB.169πC.4( 2-1)3 D .12( 2-1)3答案 A7.(2015山东,7,5分)在梯形ABCD 中,∠ABC=π2,AD ∥BC,BC=2AD=2AB=2.将梯形ABCD 绕AD 所在的直线旋转一周而形成的曲面所围成的几何体的体积为( )A.2πB.4πC.5πD.2π答案 C8.(2014课标Ⅱ,6,5分)如图,网格纸上正方形小格的边长为1(表示1cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm,高为6cm 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为( )A.17B.5C.10D.1答案 C9.(2014湖北,8,5分)《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求“囷盖”的术:置如其周,令相乘也.又以高乘之,三十六成一.该术相当于给出了由圆锥的底面周长L 与高h,计算其体积V 的近似公式V≈136L2h.它实际上是将圆锥体积公式中的圆周率π近似取为3.那么,近似公式V≈275L2h相当于将圆锥体积公式中的π近似取为()A.227B.258C.15750D.355113答案B10.(2016浙江,14,4分)如图,在△ABC中,AB=BC=2,∠ABC=120°.若平面ABC外的点P和线段AC上的点D,满足PD=DA,PB=BA,则四面体PBCD的体积的最大值是.答案111.(2017课标全国Ⅰ理,16,5分)如图,圆形纸片的圆心为O,半径为5cm,该纸片上的等边三角形ABC的中心为O.D,E,F为圆O上的点,△DBC,△ECA,△FAB分别是以BC,CA,AB为底边的等腰三角形.沿虚线剪开后,分别以BC,CA,AB为折痕折起△DBC,△ECA,△FAB,使得D,E,F重合,得到三棱锥.当△ABC的边长变化时,所得三棱锥体积(单位:cm3)的最大值为.答案41512.(2017天津理,10,5分)已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为.答案92π13.(2015天津,10,5分)一个几何体的三视图如图所示(单位:m),则该几何体的体积为m3.答案8π14.(2015江苏,9,5分)现有橡皮泥制作的底面半径为5、高为4的圆锥和底面半径为2、高为8的圆柱各一个.若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥和圆柱各一个,则新的底面半径为.答案715.(2017课标全国Ⅱ文,18,12分)如图,四棱锥P-ABCD中,侧面PAD为等边三角形且垂直于底面AD,∠BAD=∠ABC=90°.ABCD,AB=BC=12(1)证明:直线BC∥平面PAD;(2)若△PCD的面积为27,求四棱锥P-ABCD的体积.解析本题考查线面平行的判定和体积的计算.(1)证明:在平面ABCD内,因为∠BAD=∠ABC=90°,所以BC∥AD.又BC⊄平面PAD,AD⊂平面PAD,故BC∥平面PAD.(2)取AD的中点M,连接PM,CM.由AB=BC=1AD及BC∥AD,∠ABC=90°得四边形ABCM为正方形,则CM⊥AD.因为侧面PAD为等边三角形且垂直于底面ABCD,平面PAD∩平面ABCD=AD,所以PM⊥AD,PM⊥底面ABCD.因为CM⊂底面ABCD,所以PM⊥CM.设BC=x,则CM=x,CD=2x,PM=3x,PC=PD=2x.取CD的中点N,连接PN,则PN⊥CD,所以PN=14x.2因为△PCD的面积为27,所以1×2x×14x=27,解得x=-2(舍去)或x=2.于是AB=BC=2,AD=4,PM=23.所以四棱锥P-ABCD的体积V=1×2×(2+4)×216.(2016江苏,17,14分)现需要设计一个仓库,它由上下两部分组成,上部的形状是正四棱锥P-A 1B 1C 1D 1,下部的形状是正四棱柱ABCD-A 1B 1C 1D 1(如图所示),并要求正四棱柱的高O 1O 是正四棱锥的高PO 1的4倍.(1)若AB=6m,PO 1=2m,则仓库的容积是多少?(2)若正四棱锥的侧棱长为6m,则当PO 1为多少时,仓库的容积最大?解析 (1)由PO 1=2m 知O 1O=4PO 1=8m. 因为A 1B 1=AB=6m,所以正四棱锥P-A 1B 1C 1D 1的体积V 锥=1·A 1B 12·PO 1=1×62×2=24(m 3);正四棱柱ABCD-A 1B 1C 1D 1的体积 V 柱=AB 2·O 1O=62×8=288(m 3).所以仓库的容积V=V 锥+V 柱=24+288=312(m 3).(2)设A 1B 1=a(m),PO 1=h(m),则0<h<6,O 1O=4h(m).连接O 1B 1.因为在Rt △PO 1B 1中,O 1B 12+P O 12=P B 12,所以2a2+h 2=36,即a 2=2(36-h 2).于是仓库的容积V=V 柱+V 锥=a 2·4h+13a 2·h=133a 2h=26(36h-h 3),0<h<6, 从而V'=26(36-3h 2)=26(12-h 2). 令V'=0,得h=2 3或h=-2 3(舍).当0<h<2 3时,V'>0,V 是单调增函数; 当2 3<h<6时,V'<0,V 是单调减函数. 故h=2 3时,V 取得极大值,也是最大值. 因此,当PO 1=2 3m 时,仓库的容积最大.教师用书专用(17—23)17.(2016山东,5,5分)一个由半球和四棱锥组成的几何体,其三视图如图所示.则该几何体的体积为( )A.13+23π B.13+ 23π C.13+ 26π D.1+ 26π答案 C18.(2014陕西,5,5分)已知底面边长为1,侧棱长为 2的正四棱柱的各顶点均在同一个球面上,则该球的体积为( )A.32π3B.4πC.2πD.4π3答案 D19.(2013课标全国Ⅰ,6,5分)如图,有一个水平放置的透明无盖的正方体容器,容器高8cm,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6cm,如果不计容器的厚度,则球的体积为( )A.500π3cm 3 B.866π3cm 3 C.1372π3cm 3 D.2048π3cm 3 答案 A20.(2013课标全国Ⅰ,8,5分)某几何体的三视图如图所示,则该几何体的体积为( )A.16+8πB.8+8πC.16+16πD.8+16π答案A21.(2013湖北,8,5分)一个几何体的三视图如图所示,该几何体从上到下由四个简单几何体组成,其体积分别记为V1,V2,V3,V4,上面两个简单几何体均为旋转体,下面两个简单几何体均为多面体,则有()A.V1<V2<V4<V3B.V1<V3<V2<V4C.V2<V1<V3<V4D.V2<V3<V1<V4答案C22.(2014江苏,8,5分)设甲、乙两个圆柱的底面积分别为S1、S2,体积分别为V1、V2,若它们的侧面积相等,且S1S2=94,则V1V2的值是.答案3223.(2014山东,13,5分)三棱锥P-ABC中,D,E分别为PB,PC的中点,记三棱锥D-ABE的体积为V1,P-ABC的体积为V2,则V1V2=.答案14三年模拟A组2016—2018年模拟·基础题组考点一三视图和直观图1.(2018浙江杭州二中期中,5)一个几何体的三视图如图所示,其中俯视图为正方形,则该几何体最大的侧面的面积为()A.1B.2C.3D.2答案C2.(2016浙江宁波“十校”联考,3)如图,某多面体的三视图中正视图、侧视图和俯视图的外轮廓分别为直角三角形、直角梯形和直角三角形,则该多面体的各条棱中,最长的棱的长度为()A.22B.10C.23D.13答案C3.(2017浙江名校协作体,12)某几何体的三视图如图所示,且该几何体的体积是3,则正视图中的x的值是,该几何体的表面积是.答案2;53+37+4考点二空间几何体的表面积4.(2018浙江“七彩阳光”联盟期初联考,3)某四棱锥的三视图如图所示,则该四棱锥的表面积为()A.8+42B.6+2+23C.6+42D.6+22+23答案A5.(2018浙江高考模拟卷,13)一个几何体的三视图如图所示,其中正视图是一个正三角形,则这个几何体的体积是,表面积是.答案3;1+36.(2017浙江宁波二模(5月),12)某几何体的三视图如图所示(单位:cm),则该几何体的表面积是cm2;体积是cm3.答案38;12考点三空间几何体的体积7.(2018浙江镇海中学期中,3)某几何体的三视图如图所示,则该几何体的体积是()A.15B.20C.25D.30答案 B8.(2018浙江浙东北联盟期中,3)某几何体的三视图如图所示,则该几何体的体积为( )A.13+π B.23+πC.13+2πD.23+2π 答案 A9.(2017浙江台州4月调研卷(一模),4)某空间几何体的三视图如图所示,其中俯视图是半径为1的圆,则该几何体的体积是( )A.πB.4πC.7πD.8π答案 A10.(2018浙江镇海中学期中,11)某圆锥的侧面展开图是面积为3π,且圆心角为2π3的扇形,则此圆锥的母线长为 , 体积为 .答案3;22π3B组2016—2018年模拟·提升题组一、选择题1.(2018浙江温州适应性测试,3)某几何体的三视图如图所示,则该几何体的体积是()A.4+πB.2+πC.4+π3D.4+2π3答案A2.(2016浙江名校(衢州二中)交流卷五,3)已知一个几何体是由上下两部分构成的组合体,其三视图如图,若图中圆的半径为1,等腰三角形的腰长为2,则该几何体的表面积是()A.4π3B.2π C.4π D.10π3答案C二、填空题3.(2018浙江“七彩阳光”联盟期中,12)某几何体的三视图如图所示,则该几何体的体积为;表面积为.答案643;24+84.(2018浙江9+1高中联盟期中,15)某几何体的三视图如图所示,则俯视图的面积为;此几何体的体积为.答案π2+2;π+835.(2018浙江高考模拟训练冲刺卷一,14)一个几何体的三视图如图所示,正视图与俯视图为全等的矩形,侧视图为正方形和一个圆,则该几何体的表面积为;体积为.答案32+(10-1)π;12-π6.(2017浙江绍兴质量调测(3月),12)已知某几何体的三视图如图所示,则该几何体的表面积为,体积为.答案2+25;237.(2017浙江金华十校调研,12)某几何体的三视图如图所示,则该几何体的体积为,表面积为.答案12+2π;38+π38.(2017浙江吴越联盟测试,11)一个多面体的三视图如图所示,则其表面积为,体积为.答案20;17C组2016—2018年模拟·方法题组方法1三视图的解题策略1.(2016浙江镇海中学期中,5)一个正方体截去两个角后所得几何体的正视图、侧视图如图所示,则其俯视图为()答案C方法2求空间几何体的表面积的解题策略2.(2018浙江名校协作体期初,11)一个棱长为2的正方体被一个平面截去一部分后,剩下部分的三视图如图所示,则该几何体的表面积为,体积为.答案18+23;2033.(2017浙江“七彩阳光”新高考研究联盟测试,13)一个几何体的三视图如图所示,则该几何体最长的棱的长度为;体积为.答案3;13方法3求空间几何体体积的解题策略4.(2018浙江重点中学12月联考,6)已知某几何体的三视图如图所示,则该几何体的体积为()A.2B.8C.10D.3答案C5.(2017浙江宁波期末,12)一个几何体的三视图如图所示,则这个几何体的表面积是,体积是.答案16+25;66.(2017浙江名校协作体期初,10)一个几何体的三视图如图所示,正视图与侧视图为全等的矩形,俯视图为正方形,则该几何体的表面积为,体积为.答案28+410;8。

81 空间几何体的三视图、表面积和体积

81 空间几何体的三视图、表面积和体积

专题八立体几何【真题典例】8.1空间几何体的三视图、表面积和体积挖命题【考情探究】考点内容解读5年考情预测热度考题示例考向关联考点1.三视图与直观图①认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构.②能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述三视图所表示的立体模型;会用斜二测画法画出简单几何体的直观图.③会用平行投影与中心投影两种方法画出简单空间图形的三视图和直观图,了解空间图形的不同表示形式.④会画某些建筑物的视图与直观图(在不影响图形特征的基础上,尺寸、线条等不作严2018课标Ⅰ,7,5分三视图、直观图最短路径★★★2018课标Ⅲ,3,5分三视图、直观图几何体的结构特征2017课标Ⅰ,7,5分三视图、直观图梯形的面积2014课标Ⅰ,12,5分三视图、直观图2.空间几何体的表面积和体积2018课标Ⅱ,16,5分圆锥的性质和侧面积异面直线所成角、线面角★★★2016课标Ⅰ,6,5分三视图、球的体积与表面积2015课标Ⅰ,11,5分三视图、柱体、球体的表面积组合体的表面积2018课标Ⅲ,10,5分锥体的体积球内接三棱锥2017课标Ⅰ,16,5分翻折问题、锥体体积利用函数、导数求值2017课标Ⅲ,8,5分柱体的体积球的内接圆柱2016课标Ⅲ,10,5分球的组合体、体积的最值三角形内切圆半径求法格要求).⑤了解球、棱柱、棱锥、台的表面积和体积的计算公式分析解读从近5年高考情况来看,空间几何体的三视图、表面积和体积等问题一直是高考的重点和热点,主要考查由三视图还原几何体的直观图,求几何体的表面积、体积,有时也以三视图为背景,考查几何体与球的切接问题,一般为选择题、填空题.正确还原几何体三视图所对应的直观图,对复杂几何体进行巧妙的分割转化是解决本节题目的关键.破考点【考点集训】考点一三视图与直观图1.(2018山东胶州质检,5)铜钱:古代铜质辅币,俗称铜钱,是指秦汉以后的各类方孔圆钱,方孔圆钱的铸期一直延伸到清末民国初年.请问铜钱形成的几何体的三视图中不可能有下列哪种图形()A.正方形B.圆C.三角形D.矩形答案C2.(2017湖南益阳调研,8)在一个几何体的三视图中,正视图与俯视图如图所示,则该几何体相应的侧视图可以为()答案D3.(2018河南百校联盟4月联考,9)如图,网格纸上小正方形的边长为1,图中粗线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度为()A.2√3B.3C.√6D.√5答案B考点二空间几何体的表面积和体积1.(2018云南玉溪模拟,5)若一个底面是正三角形的三棱柱的主视图如图所示,则其表面积为()A.6+2√3B.6+√3C.6+4√3D.10答案A2.(2018广东茂名模拟,7)一个几何体的三视图如图所示,则该几何体的体积是()A.7B.152C.233D.476答案D3.(2018安徽皖南八校二联,8)榫卯(sǔn mǎo)是我国古代工匠极为精巧的发明,它是在两个构件上采用凹凸部位相结合的一种连接方式.我国的北京紫禁城,山西悬空寺,福建宁德的廊桥等建筑都用到了榫卯结构.图中网格小正方形的边长为1,粗实线画出的是一种榫卯构件中榫的三视图,则其体积与表面积分别为()A.24+52π,34+52πB.24+52π,36+54πC.24+54π,36+54πD.24+54π,34+52π答案C炼技法【方法集训】方法1 空间几何体的三视图与直观图1.(2018四川南充模拟,6)已知一个棱长为2的正方体被一个平面截后所得几何体的三视图如图所示,则该截面的面积为()A.92B.4 C.3 D.3√102答案A2.(2018安徽合肥二模,8)在正方体ABCD-A1B1C1D1中,E,F,G分别为棱CD,CC1,A1B1的中点,用过点E,F,G的平面截正方体,则位于截面以下部分的几何体的侧(左)视图为()答案C方法2 空间几何体表面积和体积的求解方法1.已知多面体MN-ABCD的底面ABCD是矩形,其直观图和正(主)视图、侧(左)视图如图,其中正(主)视图为等腰梯形,侧(左)视图为等腰三角形,则该多面体的表面积为()A.24B.8√5+8C.40D.32答案B2.(2018河北衡水中学、河南郑州一中联考,9)榫卯是中国传统建筑中极为精巧的发明,这种构件连接方式,超越了当代建筑排架、框架或者钢架的特殊柔性结构体.榫卯结构中凸出部分叫榫(或叫榫头),某“榫头”的三视图如图所示,则该“榫头”的体积是()A.36B.45C.54D.63答案C方法3与球有关的切、接问题的求解方法1.(2018四川南充模拟,9)已知A,B,C,D是同一球面上的四个点,其中△ABC是正三角形,AD⊥平面ABC,AD=2AB=6,则该球的体积为()A.32√3πB.48πC.24πD.16π答案A的三棱锥S-ABC 2.(2018湖南师大附中模拟,16)在体积为43中,AB=BC=2,∠ABC=90°,SA=SC,且平面SAC⊥平面ABC,若该三棱锥的四个顶点都在同一球面上,则该球的体积是.π答案92过专题【五年高考】A组统一命题·课标卷题组考点一三视图与直观图1.(2017课标Ⅰ,7,5分)某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为()A.10B.12C.14D.16答案B2.(2014课标Ⅰ,12,5分)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度为()A.6√2B.6C.4√2D.4答案B考点二空间几何体的表面积和体积1.(2016课标Ⅰ,6,5分)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直,则它的表面积是()的半径.若该几何体的体积是28π3A.17πB.18πC.20πD.28π答案A2.(2015课标Ⅰ,11,5分)圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r=()A.1B.2C.4D.8答案B3.(2017课标Ⅱ,4,5分)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为()A.90πB.63πC.42πD.36π答案B4.(2018课标Ⅲ,10,5分)设A,B,C,D是同一个半径为4的球的球面上四点,△ABC为等边三角形且其面积为9√3,则三棱锥D-ABC体积的最大值为()A.12√3B.18√3C.24√3D.54√3答案B5.(2017课标Ⅲ,8,5分)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为()A.πB.3π4C.π2D.π4答案B6.(2016课标Ⅲ,10,5分)在封闭的直三棱柱ABC-A1B1C1内有一个体积为V的球.若AB⊥BC,AB=6,BC=8,AA1=3,则V的最大值是()A.4πB.9π2C.6π D.32π3答案B7.(2015课标Ⅱ,9,5分)已知A,B是球O的球面上两点,∠AOB=90°,C为该球面上的动点.若三棱锥O-ABC体积的最大值为36,则球O的表面积为()A.36πB.64πC.144πD.256π答案C8.(2018课标Ⅱ,16,5分)已知圆锥的顶点为S,母线SA,SB所成角的余弦值为78,SA与圆锥底面所成角为45°.若△SAB的面积为5√15,则该圆锥的侧面积为.答案40√2π9.(2017课标Ⅰ,16,5分)如图,圆形纸片的圆心为O,半径为5cm,该纸片上的等边三角形ABC 的中心为O.D,E,F为圆O上的点,△DBC,△ECA,△FAB分别是以BC,CA,AB为底边的等腰三角形.沿虚线剪开后,分别以BC,CA,AB为折痕折起△DBC,△ECA,△FAB,使得D,E,F重合,得到三棱锥.当△ABC的边长变化时,所得三棱锥体积(单位:cm3)的最大值为.答案4√15B组自主命题·省(区、市)卷题组考点一三视图与直观图1.(2018北京,5,5分)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为()A.1B.2C.3D.4答案C2.(2014江西,5,5分)一几何体的直观图如图,下列给出的四个俯视图中正确的是()答案B考点二空间几何体的表面积和体积1.(2018浙江,3,4分)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是()A.2B.4C.6D.8答案C2.(2016课标Ⅲ,9,5分)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为()A.18+36√5B.54+18√5C.90D.813.(2018天津,11,5分)已知正方体ABCD-A1B1C1D1的棱长为1,除面ABCD外,该正方体其余各面的中心分别为点E,F,G,H,M(如图),则四棱锥M-EFGH的体积为.答案1124.(2018江苏,10,5分)如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为.答案435.(2017江苏,6,5分)如图,在圆柱O1O2内有一个球O,该球与圆柱的上、下底面及母线均相的值是.切.记圆柱O1O2的体积为V1,球O的体积为V2,则V1V2答案326.(2017天津,10,5分)已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为.π答案927.(2016浙江,11,6分)某几何体的三视图如图所示(单位:cm),则该几何体的表面积是cm2,体积是cm3.答案72;32C组教师专用题组考点一三视图与直观图1.(2017北京,7,5分)某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为()A.3√2B.2√3C.2√2D.2答案BA.①和②B.③和①C.④和③D.④和②3.(2014北京,7,5分)在空间直角坐标系Oxyz中,已知A(2,0,0),B(2,2,0),C(0,2,0),D(1,1,√2).若S1,S2,S3分别是三棱锥D-ABC在xOy,yOz,zOx坐标平面上的正投影图形的面积,则() A.S1=S2=S3 B.S2=S1且S2≠S3C.S3=S1且S3≠S2D.S3=S2且S3≠S1答案D4.(2014福建,2,5分)某空间几何体的正视图是三角形,则该几何体不可能是()A.圆柱B.圆锥C.四面体D.三棱柱答案A5.(2014湖南,7,5分)一块石材表示的几何体的三视图如图所示,将该石材切削、打磨,加工成球,则能得到的最大球的半径等于()A.1B.2C.3D.4答案B考点二空间几何体的表面积和体积1.(2017浙江,3,5分)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是()A.π2+1 B.π2+3 C.3π2+1 D.3π2+3答案A2.(2016北京,6,5分)某三棱锥的三视图如图所示,则该三棱锥的体积为()A.16B.13C.12D.1答案A3.(2016课标Ⅱ,6,5分)下图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积A.20πB.24πC.28πD.32π答案C4.(2015安徽,7,5分)一个四面体的三视图如图所示,则该四面体的表面积是()A.1+√3B.2+√3C.1+2√2D.2√2答案B5.(2015陕西,5,5分)一个几何体的三视图如图所示,则该几何体的表面积为()A.3πB.4πC.2π+4D.3π+4答案D6.(2015课标Ⅰ,6,5分,0.682)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有()A.14斛B.22斛C.36斛D.66斛答案B7.(2015课标Ⅱ,6,5分)一个正方体被一个平面截去一部分后,剩余部分的三视图如图所示,则截去部分体积与剩余部分体积的比值为()A.18B.17C.16D.15答案D8.(2014课标Ⅱ,6,5分)如图,网格纸上正方形小格的边长为1(表示1cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm,高为6cm的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为()A.1727B.59C.1027D.13答案C9.(2016天津,11,5分)已知一个四棱锥的底面是平行四边形,该四棱锥的三视图如图所示(单位:m),则该四棱锥的体积为m3.答案210.(2016四川,13,5分)已知三棱锥的四个面都是腰长为2的等腰三角形,该三棱锥的正视图如图所示,则该三棱锥的体积是.答案√3311.(2015天津,10,5分)一个几何体的三视图如图所示(单位:m),则该几何体的体积为m3.答案83π12.(2014山东,13,5分)三棱锥P-ABC中,D,E分别为PB,PC的中点,记三棱锥D-ABE的体积为V1,P-ABC的体积为V2,则V1V2=.答案14【三年模拟】一、选择题(每小题5分,共50分)1.(2019届河北衡水中学9月月考,8)某几何体的三视图如图所示,则此几何体()A.有四个两两全等的面B.有两对相互全等的面C.只有一对相互全等的面D.所有面均不全等答案B2.(2019届湖南师范大学附中月考,9)已知某几何体的三视图如图,则该几何体的表面积是()A.39π4+3√3 B.45π4+3√3 C.23π2D.49π4答案A3.(2019届广东化州第一次模拟,7)如图是某几何体的三视图,其中正视图和侧视图为正方形,俯视图是腰长为√2的等腰直角三角形,则该几何体的体积是()A.43B.2√23C.83D.4√23答案B4.(2018江西南昌二中3月月考,9)一个几何体的三视图如图所示,在该几何体的各个面中,面积最小的面的面积为()A.8B.4C.4√3D.4√2答案D5.(2018广东揭阳一模,9)某几何体的三视图如图所示,则此几何体的表面积为()A.4π+16B.2(√2+2)π+16C.4π+8D.2(√2+2)π+8答案B6.(2018江西南昌NCS项目4月联考,7)已知圆台和正三棱锥的组合体的正视图和俯视图如图所示,图中小方格是单位正方形,那么组合体的侧视图的面积为()A.6+3√34B.152C.6+√3D.8答案B7.(2018福建4月质检,8)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,俯视图中的两条曲线均为圆弧,则该几何体的体积为()A.64-32π3B.64-8πC.64-16π3D.64-8π3 答案 C8.(2018广东惠州二模,10)已知三棱锥S-ABC 的底面是以AB 为斜边的等腰直角三角形,AB=2,SA=SB=SC=2,则三棱锥S-ABC 的外接球的球心到平面ABC 的距离是( )A.√33B.1C.√3D.3√32 答案 A9.(2017河北衡水中学三调,10)已知正方体ABCD-A 1B 1C 1D 1的外接球的体积为√32π,将正方体割去部分后,剩余几何体的三视图如图所示,则剩余几何体的表面积为( )A.92+√32B.3+√3或92+√32C.2+√3D.92+√32或2+√3答案 B10.(2018中原名校4月联考,10)已知A,B,C,D 是球O 表面上四点,点E 为BC 的中点,若AE ⊥BC,DE ⊥BC,∠AED=120°,AE=DE=√3,BC=2,则球O 的表面积为( )A.73πB.28π3C.4πD.16π答案 B二、填空题(共5分)11.(2019届广东汕头第三次联考,15)一个几何体的三视图如图所示,则该几何体外接球的表面积为 .答案 112π3。

高考微点八 空间几何体的三视图、表面积与体积

高考微点八 空间几何体的三视图、表面积与体积

高考微点八空间几何体的三视图、表面积与体积牢记概念公式,避免卡壳空间几何体的表面积与体积公式几何体名称表面积体积柱体(棱柱和圆柱)S表面积=S侧+2S底V=Sh锥体(棱锥和圆锥)S表面积=S侧+S底V=13Sh台体(棱台和圆台)S表面积=S侧+S上+S下V=13(S上+S下+S上S下)h球4πR243πR31.画三视图的基本要求:正俯一样长,俯侧一样宽,正侧一样高.2.长方体的对角线与共点三条棱之间的长度关系为d2=a2+b2+c2;长方体外接球半径为R时,有(2R)2=a2+b2+c2.3.棱长为a的正四面体内切球半径r=612a,外接球半径R=64a.高效微点训练,完美升级1.(2019·临沂模拟)某几何体的三视图如图所示,那么这个几何体是()A.三棱锥B.四棱锥C.四棱台D.三棱台解析因为正视图和侧视图都为三角形,可知几何体为锥体,又因为俯视图为三角形,故该几何体为三棱锥.答案 A2.《九章算术》商功章有题:一圆柱形谷仓,高1丈3尺313寸,容纳米2 000斛(注:1丈=10尺,1尺=10寸,1斛≈1.62立方尺,圆周率取3),则圆柱底面圆周长约为()A.1丈3尺B.5丈4尺C.9丈2尺D.48丈6尺解析由题意,圆柱形谷仓的高h=10+3+110×⎝⎛⎭⎪⎫3+13=403(尺),体积V≈2000×1.62=3 240(立方尺).设圆柱的底面半径为R尺,由体积公式得πR2×403≈3240,得3R2×403≈3 240,解得R2≈81,故R≈9,所以底面圆周长C=2πR≈2×3×9=54(尺),即5丈4尺.答案 B3.如图是棱长为2的正方体的表面展开图,则多面体ABCDE的体积为()A.2B.2 3C.43 D.83解析多面体ABCDE为四棱锥(如图),利用割补法可得其体积V=4-43=83.答案 D4.若圆锥与球的体积相等,且圆锥底面半径与球的直径相等,则圆锥侧面积与球面面积之比为( ) A.2∶2 B.3∶2 C.5∶2D.3∶2解析 设圆锥底面半径为r ,高为h ,则球的半径R =r2, 由条件知,13πr 2h =43π⎝ ⎛⎭⎪⎫r 23,所以h =r2.所以圆锥的侧面积S 1=πr ·h 2+r 2=πrr 24+r 2=52πr 2,球面面积S 2=4πR 2=4π×⎝ ⎛⎭⎪⎫r 22=πr 2,所以S 1∶S 2=5∶2. 答案 C5.(2019·衡水中学调研)某几何体的三视图如图所示,则该几何体的体积为( )A.6B.4C.223D.203解析 由三视图知该几何体是边长为2的正方体挖去一个三棱柱(如图),且挖去的三棱柱的高为1,底面是边长为2的等腰直角三角形,故几何体体积V =23-12×2×2×1=6.答案 A6.如果一个水平放置的图形的斜二测直观图是一个底角为45°,腰和上底均为1的等腰梯形,那么原平面图形的面积是( ) A.2+ 2 B.1+22C.2+22D.1+ 2解析 恢复后的原图形为一直角梯形, 所以S =12(1+2+1)×2=2+ 2. 答案 A7.如图所示,正四棱锥P -ABCD 底面的四个顶点A ,B ,C ,D 在球O 的同一个大圆上,点P 在球面上,若V P -ABCD =163,则球O 的表面积是( )A.4πB.8πC.12πD.16π解析 由OP =OC =R ,AB =2R ,得13AB 2·OP =13×(2R )2×R =163,所以R =2. ∴S 球=4πR 2=16π. 答案 D8.某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为( )A.1B.2C.3D.4解析在正方体中作出该几何体的直观图,记为四棱锥P-ABCD,如图,由图可知在此四棱锥的侧面中,直角三角形的个数为3.答案 C9.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为()A.πB.3π4C.π2 D.π4解析如图画出圆柱的轴截面ABCD,O为球心.球半径R=OA=1,球心到底面圆的距离为OM=12.∴底面圆半径r=AM=OA2-OM2=32,故圆柱体积V=π·r2·h=π·⎝⎛⎭⎪⎫322×1=3π4.答案 B10.如图,网格纸上小正方形的边长为1,粗实线画出的是某四棱锥的三视图,则该四棱锥的所有棱中,最长的棱的长度为( )A.41B.34C.5D.3 2解析 由三视图可知该几何体为如图所示的四棱锥P -ABCD .其中P A ⊥底面ABCD ,四棱锥P -ABCD 的底面是边长为3的正方形,高P A =4. 连接AC ,易知最长的棱为PC ,且PC =P A 2+AC 2=42+32+32=34.答案 B11.现有橡皮泥制作的底面半径为5、高为4的圆锥和底面半径为2、高为8的圆柱各一个.若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥和圆柱各一个,则新的底面半径为________.解析 设新的底面半径为r ,由题意得13πr 2·4+πr 2·8=13π×52×4+π×22×8,解得r =7. 答案712.正四棱锥的底面边长为2,侧棱长均为3,其正视图和侧视图是全等的等腰三角形,则正视图的周长为________.解析 由题意知,正视图就是如图所示的截面PEF ,其中E ,F 分别是AD ,BC的中点,连接AO ,易得AO =2,又P A =3,于是解得PO =1,所以PE =2,故其正视图的周长为2+2 2. 答案 2+2 213.某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm 3)为________.解析 由三视图可知,该几何体是一个底面为直角梯形的直四棱柱,所以该几何体的体积V =12×(1+2)×2×2=6. 答案 614.在四棱锥P -ABCD 中,底面ABCD 是边长为2的菱形,∠BAD =60°,侧棱P A ⊥底面ABCD ,P A =2,E 为AB 的中点,则三棱锥P -BCE 的体积为________. 解析 由题意知S △EBC =12×2×1×sin 120°=32,故V P -EBC =13×2×32=33. 答案 3315.某几何体的三视图如图所示,则该几何体的表面积为________.解析 由三视图可得该几何体为圆柱和四分之一球的组合体.圆柱的底面半径为1,高为3,球的半径为1.故该几何体的表面积为S =π×12+2π×1×3+4π×12×14+12π×12+12π×12=9π. 答案 9π16.三棱锥P -ABC 的三条侧棱P A ,PB ,PC 两两垂直,且P A =2,PB =1,PC =3,则该三棱锥的外接球的体积是________.解析 三棱锥P -ABC 的三条侧棱P A ,PB ,PC 两两互相垂直,它的外接球就是它扩展为长方体的外接球,求出长方体的对角线的长为2+1+3=6,所以球的直径是6,半径为62.球的体积为V =43×π×⎝ ⎛⎭⎪⎫623=6π.答案6π。

高考数学 专题八 立体几何 1 空间几何体的三视图、表面积和体积课件 理

高考数学 专题八 立体几何 1 空间几何体的三视图、表面积和体积课件 理

注意 (1)求一些不规则几何体的体积常用割补的方法将几何体转化成 已知体积公式的几何体进行解决. (2)求与三视图有关的体积问题注意几何体和数据还原的准确性.
12/10/2021
考向突破 考向一 空间几何体的表面积 例1 (2018广东广州3月调研,7)如图,网格纸上小正方形的边长为1,粗 线画出的是某个几何体的三视图,则该几何体的表面积为 ( )
S侧=π(r'l+rl) S表=π(r'2+r2+r'l+rl)
S表=② 4πR2
2.多面体的表面积 多面体的表面积就是各个面的面积之和,也就是展开图的面积. 注意 (1)几何体的侧面积是指(各个)侧面面积之和,而表面积是侧面积 与所有底面面积之和. (2)组合体的表面积应注意重合部分的处理.
12/10/2021
R. 2 d2 3.三视图和直观图 (1)三视图的定义 几何体的正视图、侧视图和俯视图统称为几何体的三视图. 三视图的正视图、侧视图、俯视图分别是从几何体的正前方、正左 方、正上方观察几何体画出的轮廓线. 注意 画三视图时,能看见的线用实线表示,不能看见的线用虚线表示. 同一物体,若放置的位置不同,则所得的三视图可能不同.
12/10/2021
例1 (2017河北衡水中学七调,5)正方体ABCD-A1B1C1D1中,E为棱BB1的 中点(如图),用过点A,E,C1的平面截去该正方体的上半部分,则剩余几何 体的左视图为 ( )
12/10/2021
解题导引 解析 过点A,E,C1的截面为AEC1F,如图,则剩余几何体的左视图为选项 C中的图形.故选C.
①外接球:球心是正四面体的中心,半径r= 6 a(a为正四面体的棱长);
4
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题八 立体几何第二十二讲 空间几何体的三视图、表面积和体积2019年1.(2019全国II 文16)中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有________个面,其棱长为_________.(本题第一空2分,第二空3分.)2.(2019全国II 文17)如图,长方体ABCD –A 1B 1C 1D 1的底面ABCD 是正方形,点E 在棱AA 1上,BE ⊥EC 1.(1)证明:BE ⊥平面EB 1C 1;(2)若AE =A 1E ,AB =3,求四棱锥11E BB C C -的体积.3.(2019全国III 文16)学生到工厂劳动实践,利用3D 打印技术制作模型.如图,该模型为长方体1111ABCD A B C D -挖去四棱锥O −EFGH 后所得的几何体,其中O 为长方体的中心,E ,F ,G ,H 分别为所在棱的中点,16cm 4cm AB =BC =, AA =,3D 打印所用原料密度为0.9 g/cm 3,不考虑打印损耗,制作该模型所需原料的质量为___________g.4.(2019江苏9)如图,长方体1111ABCD A B C D 的体积是120,E 为1CC 的中点,则三棱锥E -BCD 的体积是 .5.(2019天津文12若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该圆柱的体积为__________.6.(2019北京文12)某几何体是由一个正方体去掉一个四棱柱所得,其三视图如图所示.如果网格纸上小正方形的边长为1,那么该几何体的体积为__________.7.(2019浙江4)祖暅是我国南北朝时代的伟大科学家.他提出的“幂势既同,则积不容异”称为祖暅原理,利用该原理可以得到柱体体积公式V 柱体=Sh ,其中S 是柱体的底面积,h是柱体的高.若某柱体的三视图如图所示,则该柱体的体积是A.158 B.162C.182 D.322010-2018年一、选择题1.(2018全国卷Ⅰ)已知圆柱的上、下底面的中心分别为1O,2O,过直线12O O的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为A.B.12πC.D.10π2.(2018全国卷Ⅰ)某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为BAA.B.C.3D.23.(2018全国卷Ⅰ)在长方体1111ABCD A B C D-中,2AB BC==,1AC与平面11BB C C所成的角为30︒,则该长方体的体积为A.8B.C.D.4.(2018全国卷Ⅲ)中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是5.(2018全国卷Ⅲ)设A ,B ,C ,D 是同一个半径为4的球的球面上四点,ABC △为等边三角形且其面积为,则三棱锥D ABC 体积的最大值为 A.B.C.D.6.(2018浙江)某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:3cm )是俯视图正视图A .2B .4C .6D .87.(2018北京)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为俯视图侧(左)视图正(主)视图A.1 B.2 C.3 D.48.(2017新课标Ⅲ)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为A.πB.34πC.2πD.4π9.(2017北京)某三棱锥的三视图如图所示,则该三棱锥的体积为A.60 B.30 C.20 D.1010.(2017浙江)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:3cm)是俯视图A .12π+ B .32π+ C .312π+ D . 332π+ 11.(2017新课标Ⅱ)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为A .90πB .63πC .42πD .36π12.(2016年山东)一个由半球和四棱锥组成的几何体,其三视图如图所示.则该几何体的体积为A .1233π+ B .13+ C .13 D .1+ 13.(2016年全国I )如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径,若该几何体的体积是28π3,则它的表面积是A .17πB .18πC .20πD .28π 14.(2016年全国II )如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为A .20πB .24πC .28πD .32π15.(2016年全国III )如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为A .18+B .54+C .90D .81 16.(2015浙江)某几何体的三视图如图所示(单位:cm ),则该几何体的体积是A .38cm B .312cm C .3323cm D .3403cm 17.(2015陕西)一个几何体的三视图如图所示,则该几何体的表面积为A .3πB .4πC .24π+D .34π+ 18.(2015重庆)某几何体的三视图如图所示,则该几何体的体积为A .13π+ B .23π+ C .123π+ D .223π+ 19.(2015新课标)一个正方体被一个平面截去一部分后,剩余部分的三视图如图,则截去部分体积与剩余部分体积的比值为A .81 B .71 C .61 D .51 20.(2015安徽)一个四面体的三视图如图所示,则该四面体的表面积是A .1+B .2+C .1+D .21.(2015湖南)某工件的三视图如图3所示,现将该工件通过切割,加工成一个体积尽可能大的长方体新工件,并使新工件的一个面落在原工件的一个面内,则原工件材料的利用率为 (材料利用率=新工件的体积原工件的体积)A .89πB .169πC .31)πD .31)π22.(2015新课标1)圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体三视图中的正视图和俯视图如图所示。

若该几何体的表面积为16 + 20π,则r =A .1B .2C .4D .823.(2014新课标1)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的个条棱中,最长的棱的长度为A .B .6C .D .424.(2014新课标2)如图,网格纸上正方形小格的边长 为1(表示1cm ),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm ,高为6cm 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为A .1727B .59C .1027D .1325.(2014安徽)一个多面体的三视图如图所示,则该多面体的表面积为( )A .21+B .18+C .21D .1826.(2014福建)某空间几何体的正视图是三角形,则该几何体不可能是()A.圆柱B.圆锥C.四面体D.三棱柱27.(2014浙江)某几何体的三视图(单位:cm)如图所示,则此几何体的表面积是俯视图侧视图正视图A.902cm B.1292cm C.1322cm D.1382cm28.(2014新课标2)正三棱柱111ABC A B C-的底面边长为2,D为BC中点,则三棱锥11A B DC-的体积为A.3 B.32C.1 D29.(2014福建)以边长为1的正方形的一边所在直线为旋转轴,将该正方形旋转一周所得圆柱的侧面积等于A.2πB.πC.2 D.130.(2014辽宁)某几何体三视图如图所示,则该几何体的体积为()俯视俯视图左视图主视图A .82π-B .8π-C .82π-D .84π-31.(2014陕西)将边长为1的正方形以其一边所在直线为旋转轴旋转一周,所得几何体的侧面积为( )A .4πB .3πC .2πD .π32.(2014江西)一几何体的直观图如右图,下列给出的四个俯视图中正确的是ABCD33.(2013新课标1)某几何体的三视图如图所示,则该几何体的体积为A .168π+B .88π+C .1616π+D .816π+ 34.(2013江西)一几何体的三视图如图所示,则该几何体的体积为俯视图侧视图正视图A .200+9πB .200+18πC .140+9πD .140+18π 35.(2012广东)某几何体的三视图如图所示,它的体积为A .12πB .45πC .57πD .81π36.(2012湖北)已知某几何体的三视图如图所示,则该几何体的体积为俯视图正视图A .8π3 B .3π C .10π3D .6π 37.(2011新课标)在一个几何体的三视图中,正视图与俯视图如图所示,则相应的侧视图可以为俯视图正视图DCB A38.(2011安徽)一个空间几何体的三视图如图所示,则该几何体的表面积为侧视图A.48 B.C.D.8039.(2011辽宁)如图,四棱锥S—ABCD的底面为正方形,SD⊥底面ABCD,则下列结论中不正确...的是B CAS DA.AC⊥SBB.AB∥平面SCDC.SA与平面SBD所成的角等于SC与平面SBD所成的角D.AB与SC所成的角等于DC与SA所成的角40.(2010安徽)一个几何体的三视图如图,该几何体的表面积为A.280 B.292 C.360 D.372 41.(2010浙江)若某几何体的三视图(单位:cm)如图所示,则此几何体的体积是侧视图A.3523cm3B.3203cm3 C.2243cm3D.1603cm3二、填空题42.(2018天津)如图,已知正方体1111ABCD A B C D-的棱长为1,则四棱锥111A BB D D-的体积为__.D1C1B1A1D CBA43.(2018江苏)如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为.44.(2017新课标Ⅰ)已知三棱锥S ABC-的所有顶点都在球O的球面上,SC是球O的直径.若平面SCA⊥平面SCB,SA AC=,SB BC=,三棱锥S ABC-的体积为9,则球O的表面积为________.45.(2017新课标Ⅱ)长方体的长、宽、高分别为3,2,1,其顶点都在球O的球面上,则球O的表面积为.46.(2017天津)已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为.47.(2017山东)由一个长方体和两个14圆柱体构成的几何体的三视图如图,则该几何体的体积为 .俯视图侧视图(左视图)正视图(主视图)48.(2017江苏)如图,在圆柱12O O 内有一个球O ,该球与圆柱的上、下底面及母线均相切。

相关文档
最新文档