分数的拆分

合集下载

分数拆项公式

分数拆项公式

分数拆项公式
摘要:
1.分数拆项公式的概念和背景
2.分数拆项公式的公式表示
3.分数拆项公式的应用实例
4.分数拆项公式的优点和局限性
正文:
1.分数拆项公式的概念和背景
分数拆项公式,是一种数学工具,用于将一个分数拆分成两个或更多的分数之和。

这个公式在代数学、微积分等数学领域有广泛的应用。

2.分数拆项公式的公式表示
分数拆项公式的一般形式为:a/b = (a±b)/2 ± (ab)/2,其中a、b 为实数,±、表示加减号。

通过这个公式,我们可以将一个分数拆分成两个或更多的分数之和。

3.分数拆项公式的应用实例
例如,我们将分数3/2 拆分成两个分数之和,可以得到3/2 = (3+2)/2 + (3-2)/2,也就是3/2 = 5/2 - 1/2。

这样,我们就将一个分数3/2拆分成两个分数1/2和1的和。

4.分数拆项公式的优点和局限性
分数拆项公式的优点在于,它可以将一个复杂的分数拆分成简单的分数之和,使得问题变得更加容易处理。

第七讲 分数的拆分

第七讲  分数的拆分

第七讲分数的拆分在英国伦敦的博物馆中,陈列着十九世纪苏格兰考古学家兰特在埃及发现的纸草书,后人称之为兰特纸草书。

在兰特纸草书上,人们发现了独特的埃及分数,这些分子为1的分数用不同的象形文字记载着很多历史古题。

比如7/8=1/2+1/4+1/8,有人按兰特纸草书的记载这样解释:把7个面包平均分给8个人,不但每个人分的数量一样多,而且每人分的块数也一样多。

可以这样分,把其中四个面包每个切成两等份,把另两个面包每个切成四等份,最后一个切成八等份,每人拿大、中、小面包各一份。

这有多妙啊!下面我们就研究一些类似的问题。

例1:把11根糖棒平均分给12个人,每根糖棒同样长,分时一次只能切一根,且要平均分。

问:最少要切几刀?分析与解答:方法一:1.计算每人得到的根数:11÷12=11/12根;2.考虑一般的情况:由于每人都得到11/12根,所以每根可以分成12份,才能使每人都得到一份。

把一根糖棒平均分成12份,需要切11刀,11根糖棒最多就要切11×11=121刀。

怎样才能减少切的刀数呢?3.考虑每根切的段数与12的关系。

每人得的块数要尽量少,才能使切的刀数少。

由于每人都得到11/12根,所以也可以说若干个分数的和一定是11/12。

这几个分数在相加时,通分后分母是12,通分前分母必是12的约数,即每根糖棒在平均分时,切出的段数一定是12的约数。

若每根平均分成2段,需要1刀,每段长1/2,即6/12;若每根平均分成3段,需切2刀,每段长1/3,即4/12;若每根平均分成4段,需切3刀,每段长1/4,即3/12;若每根平均分成6段,需切5刀,每段长1/6,即2/12;若每根平均分成12段,需切11刀,每段长1/12。

4.把1/12、2/12、3/12、4/12、6/12通过枚举的方法组成11/12。

(1)11/12=6/12+4/12+1/12=1/2+1/3+1/12;(2)11/12=6/12+3/12+2/12=1/2+1/4+1/6;(3)11/12=4/12+4/12+3/12=1/3+1/3+1/4。

【小学五年级奥数讲义】分数的拆分

【小学五年级奥数讲义】分数的拆分

【小学五年级奥数讲义】分数的拆分1.概念单位分数: 分子为1、分母为自然数的分数叫单位分数。

分数的分拆:把一个分数分拆成几个分数相加的和,叫做分数的分拆2.解题方法与技巧。

(1)把单位分数拆分成单位分数相加的和方法一:先扩分:同剩以分母的约数的和再拆分:拆分成约数作分子的分数。

后约分:约分成最简分数方法二:分子、分母同剩以大于分母,小于分母两倍的自然树(2)把真分数分拆成单位分数相加的和。

把一个真分数拆成两个单位分数相加的和,先给要分拆的分数分子和分母同剩以分母除以分子的整数商加1的和,再给分子加上分母,要使分数大小不变,同时应减去这个数,然后再分拆并约分。

(3)把假分数分拆成单位分数相加的和方法:先把这个假分数分拆成真分数,再按真分数的分拆方法去分。

例题一在错误!未找到引用源。

的括号里填入适当的自然数,使等式成立。

分析一:从式子的左边往右边看,是分数的分拆;才有便往左边看,则是分数的加法,可见分数的分析与分数的加法过程刚好相反。

分数加法主要步骤是通分、合并、约分,因此分数的分拆可按先扩分,再拆分,最后约分的步骤来做。

分析二:根据把单位分数分拆成单位分数相加的和的方法二:分子、分母同剩以大于分母8,小于分母8的2倍(16)的自然数分别求解。

解析一:8的约数有1、2、4、8。

①错误!未找到引用源。

②错误!未找到引用源。

③错误!未找到引用源。

④错误!未找到引用源。

⑤错误!未找到引用源。

⑥错误!未找到引用源。

以上六种分析方法,其中①、④、⑥相同,②和⑤相同。

如果两个约数相同时,可以得到错误!未找到引用源。

,共有四组解。

解法二:错误!未找到引用源。

(像解法二这样的拆分方法不止一种.同学们,你们愿意研究吗?)练习一将下列各分数写成两个单位分数:1.错误!未找到引用源。

2. 错误!未找到引用源。

3. 错误!未找到引用源。

4.错误!未找到引用源。

5. 错误!未找到引用源。

6. 错误!未找到引用源。

例题二:将错误!未找到引用源。

分数的拆分

分数的拆分

第十三讲 分数的拆分〈精讲〉一、知识要点:1、把一个分数写成两个或两个以上分数单位的和,通常称之为分数拆分。

2、一般地,设A 为大于1的自然数,在A 1=)( 1+)( 1的括号里填入不同的自然数,使等式成立的解法是:⑴任选A 的两个不同的约数a 和b ;⑵将A 1的分子、分母同时乘以(a +b ),得:A1=)(b a A b a +⨯+)(; ⑶将上面式子拆成两个分数之和A 1=)(b a A a +⨯+)(b a A b +⨯; ⑷再将这两个分数化简,便可以得到结果。

3、形如下面的分数可以直接拆分:)1(1+⨯n n =n 1-11+n ;)(d n n d +⨯=n 1-dn +1。

4、看起来很复杂的分数计算题,如果用一般的常规方法做,就很复杂。

结合题目的特点,掌握一些分数拆分的方法,可以使计算巧妙、简便。

二、典型例题解析:例1、在下面的括号里填入两个不同的自然数,使等式成立:151=)( 1+)( 1例2、已知181=A 1+B 1+C 1,A ,B ,C 是不同的自然数,求A ,B ,C 的值。

例3、计算21+61+121+201+301+421+561。

例4、计算:411⨯+741⨯+1071⨯+13101⨯+16131⨯。

分数的拆分〈精练〉1、在下面的括号里填入两个不同的自然数,使等式成立。

⑴201=)( 1+)( 1;⑵51=)( 1+)( 1。

2、在下面的括号里填入三个不同的自然数,使等式成立。

241=)( 1+)( 1+)( 1。

3、计算:211⨯+321⨯+431⨯+……+50491⨯。

4、计算:61+121+201+…+721+901+1101。

5、计算:13112⨯+15132⨯+17152⨯+19172⨯+1916、计算:614⨯+1164⨯+16114⨯+…+76714⨯+81764⨯姓名 学校 学号________________ 成绩 分数的拆分〈作业〉1、已知71=A 1+B1,A ,B 是不同的自然数,求A ,B 的值。

分数拆分的几个基本公式

分数拆分的几个基本公式

分数拆分的几个基本公式分数拆分是数学中一个很重要的概念,它指的是将一个分数拆成多个小分数的和的形式。

分数拆分在数学中有很多重要的应用,而分数拆分的公式也是非常重要的。

首先,我们来看一下分数拆分的基础公式:1. 分数拆分为两个基本分式的形式:若分式 f(x) 的分母可以拆分为两个一次式 ax + b 和 cx + d 的乘积,则 f(x) 可以拆分为两个基本分式,即f(x) = A/(ax+b) + B/(cx+d)其中 A 和 B 是待定系数,可通过高斯消元法求出。

2. 分数拆分为多个基本分式的形式:若分式 f(x) 的分母可以拆分为多个一次式的乘积,即f(x) = P(x)/[a1(x-b1)(x-c1)...(x-n1)+a2(x-b2)(x-c2) (x)n2)...+...+ak(x-bk)(x- ck)...(x-nk)]则 f(x) 可以拆分为多个基本分式的和,即f(x) = A1/(x-b1) + A2/(x-c1) + ... + An1/(x-n1) + B1/(x-b2) + B2/(x-c2) + ... + Bn2/(x-n2) + ... + K1/(x-bk) + K2/(x-ck) + ... + Knk/(x-nk)其中 A1、A2、...、An1、B1、B2、...、Bn2、...、K1、K2、...、Knk 是待定系数。

3. 分数拆分为一些特殊的基本分式的形式:一些特殊的基本分式包括线性分式 x/(ax+b)、二次分式x/(ax²+bx+c)、指数分式 x/(a^x-b^x) 等。

我们可以利用各种分式的分子和通分的方法,将一个分式拆分为这些特殊的基本分式的和。

4. 常见公式:分解因式:例如,x^2+2x+1=(x+1)^2,可以利用分解因式的方法将分母进行分解。

配方法:例如,1/(1-x)=1+[x/(1-x)],可以将原式化为一个基本分式和一个线性分式的和的形式。

分数拆分法

分数拆分法

分数拆分法
分数拆分法是一种数学求解方法,通过将一个分数拆分为更简单的分数或整数的和来进行计算。

这种方法常用于求解分数的运算和简化。

对于一个分数,分数拆分法的思想是将其分解为分子和分母的和或差的形式,使得计算更加简便。

具体步骤如下:
1. 首先,观察分数的分子和分母是否存在可以公约的因子。

如果存在公约因子,可以先进行约分操作,将分子和分母分别除以最大公约数,使其变为最简分数。

2. 若分数的分子大于分母,可以先通过整除法将其拆分为整数部分和真分数。

整数部分即是分子与分母相除的商,而真分数部分即是余数与分母构成的分数。

3. 对于真分数,可以进一步拆分为分子和分母的和或差的形式。

常用的拆分方法有相差1的两个分数相加、分子可以被分母整除的两个分数相加、相差2的两个分数相加等。

通过反复应用上述拆分法,可以将复杂的分数拆分为简单的分数或整数的和,从而方便进行计算和简化。

需要注意的是,使用分数拆分法计算时,应注意保持等式两边的值相等,避免出现计算错误。

同时,应根据具体问题选择合适的拆分方法,以得到最简洁的结果。

分数拆分法是数学中常用的求解方法之一,通过灵活运用这种方法,可以简化复杂问题的求解过程,提高计算效率。

(完整版)分数的拆分

(完整版)分数的拆分

什么叫分数的拆分?把一个分数拆成两个或两个以上分数的和或差的形式,叫做分数的拆分.例如:271541181+=; 301451181+=; 221991181+=; 312161-=; 4131121-=;等等。

下面具体讲一下怎样把一个分数拆成两个分数的差。

当一个分数为)1(1n +n ⨯的形式时,可以拆分为111n +-n 的形式(n 为自然数,且n 不为0) 即:111)1(1n +-n =n +n ⨯ 例如:5141541201-=⨯=;7161761421-=⨯=分数拆分的具体应用 例·计算:4213012011216121+++++ 7671171616151514141313121214213012011216121=-=-+-+-+-+-+=+++++ 当分数的分子正好等于分母中两个因数的差时,这个分数也可以拆成两个分数之差.例如:9171972632-=⨯=;8131835245-=⨯=;7141743283-=⨯=用公式表示就是:当n 、n+d (n 不为0)都是自然数时,dn n d n n d +-=+⨯11)( 具体应用: 计算:20182181621614214122⨯+⨯+⨯+⨯12120120118118116116114114112120182181621614214122=+-+-+-+-=⨯+⨯+⨯+⨯dn n d n n d +-=+⨯11)( 这个公式同学们已经熟悉了.对这个公式可以进行变形:例如:)8131(5124551241-⨯=⨯= 因为8—3=5 所以提取一个51,当然,24也可以看成4×6,而6-4=2,所以也可以提取一个21,)6141(2124221241-⨯=⨯=,这得看计算时的需要了。

练习:计算21171171311391951511⨯+⨯+⨯+⨯+⨯ 215212041)2111(41)211171171131131919151511(41)21174171341394954514(4121171171311391951511=⨯=-⨯=-+-+-+-+-⨯=⨯+⨯+⨯+⨯+⨯⨯=⨯+⨯+⨯+⨯+⨯ 1/1*5+1/5*9+1/9*13+1/13*17+1/17*21=1/4*(1-1/5)+1/4*(1/5—1/9)+1/4*(1/9—1/13)+1/4*(1/13—1/17)+1/4* (1/17-1/21) =1/4*(1—1/5+1/5—1/9+1/9—1/13+1/13—1/17+1/17—1/21)=1/4*20/21=5/211/18=1/?+1/?先求出分母18的所有约数:1、2、3、6、9、18要使两个分数单位的和等于1/18,我们可以分别取两个18的约数,用1/18的分子、分母乘这两个约数的和,再通过分拆的办法得到满足两个分数单位的和等于1/18这个条件的一组数.取1和21/18=(1+2)/18*(1+2)=1/18*3+2/18*3=1/54+1/27取1和31/18=(1+3)/18*(1+3)=1/18*4+3/18*4=1/72+1/24取1和61/18=(1+6)/18*(1+6)=1/18*7+6/18*7=1/126+1/21等等注意:取1和2与取3和6;1和3,2和6,3和9与6和18结果一样,知道为什么吗?1/24=1/()+1/()=1/()+1/()=1/()+1/()24的约数有1、2、3、4、6、8、12、24取1和21/24=(1+2)/24*(1+2)=1/24*3+2/24*3=1/72+1/36取1和31/24=(1+3)/24*4=1/96+1/32取1和41/24=(1+4)/24*5=1/120+1/30分子是1的分数拆成两个分数单位之和的形式已经掌握了,如果分子不是1呢?现在就讨论一下这个问题。

分数的拆分

分数的拆分

分数的拆分之阳早格格创做1.观念单位分数: 分子为1、分母为自然数的分数喊单位分数.分数的分拆:把一个分数分拆成几个分数相加的战,喊干分数的分拆2.解题要领与本领.(1)把单位分数拆分成单位分数相加的战要领一:先扩分:共剩以分母的约数的战再拆分:拆分成约数做分子的分数.后约分:约分成最简分数要领二:分子、分母共剩以大于分母,小于分母二倍的自然树(2)把实分数分拆成单位分数相加的战.把一个实分数拆成二个单位分数相加的战,先给要分拆的分数分子战分母共剩以分母除以分子的整数商加1的战,再给分子加上分母,要使分数大小没有变,共时应减去那个数,而后再分拆并约分.(3)把假分数分拆成单位分数相加的战要领:先把那个假分数分拆成实分数,再按实分数的分拆要领去分.例题一正在的括号里挖进适合的自然数,使等式创造.领会一:从式子的左边往左边瞅,是分数的分拆;才有便往左边瞅,则是分数的加法,可睹分数的领会与分数的加法历程刚刚佳好异.分数加法主要步调是通分、合并、约分,果此分数的分拆可按先扩分,再拆分,末尾约分的步调去干.领会二:根据把单位分数分拆成单位分数相加的战的要领二:分子、分母共剩以大于分母8,小于分母8的2倍(16)的自然数分别供解.剖析一:8的约数有1、2、4、8.①②③④⑤⑥以上六种领会要领,其中①、④、⑥相共,②战⑤相共.如果二个约数相共时,不妨得到,公有四组解.解法二:(像解法二那样的拆分要领没有止一种.共教们,您们承诺钻研吗?)训练一将下列各分数写成二个单位分数:1. 2.3. 4.5. 6.例题二:将分拆成三个单位分数之战(任供一解).思路导航领会一:不妨先把拆成二个单位分数之战,再拆成三个单位分数之战.领会二:任与分母10的三个约数之战举止扩分.解法一:10的约数有1、2、5、10,任与二个约数之战举止扩分,便能得到一种拆分又所以要领二:任与10的三个约数1、2、5.训练二:将下列各分数分拆成三个单位分数之战.1. 2.3. 4.5. 6.例题三正在底下的括号内里挖上适合的数字.思路导航根据题意,已知该题是要把分拆成四个单位分数之战.不妨先把分拆成二个单位分数之战,再把那二个单位分数分拆成四个单位分数之战;大概者不妨与8的四个契约数1、2、4、8之战扩领会问.解:又共时所以训练三正在下列等式中的括号挖上适合的各没有相共的自然数,使等式创造. 1.2.3.4.例题四:若A,B是自然数,供切合条件的A战B的值(供出二组即可)思路导航:分母10的约数1、2、5、10.解:训练四1.将下列各分数写成二个单位分数之好.(1) (2)(3) (4)2. 已知a、b皆是自然数,且,供a战b的战.3.已知A、B、C是三个自然数,且,供A、B、C 三个数的战.例题五估计:思路导航由,知解:本式===训练五1、估计:2、估计:3、估计:。

分数的拆分

分数的拆分

分数的拆分之袁州冬雪创作1.概念单位分数: 分子为1、分母为自然数的分数叫单位分数.分数的分拆:把一个分数分拆成几个分数相加的和,叫做分数的分拆2.解题方法与技巧.(1)把单位分数拆分成单位分数相加的和方法一:先扩分:同剩以分母的约数的和再拆分:拆分成约数作分子的分数.后约分:约分成最简分数方法二:分子、分母同剩以大于分母,小于分母两倍的自然树(2)把真分数分拆成单位分数相加的和.把一个真分数拆成两个单位分数相加的和,先给要分拆的分数分子和分母同剩以分母除以分子的整数商加1的和,再给分子加上分母,要使分数大小不变,同时应减去这个数,然后再分拆并约分.(3)把假分数分拆成单位分数相加的和方法:先把这个假分数分拆成真分数,再按真分数的分拆方法去分.例题一在的括号里填入适当的自然数,使等式成立.分析一:从式子的左边往右边看,是分数的分拆;才有便往左边看,则是分数的加法,可见分数的分析与分数的加法过程刚好相反.分数加法主要步调是通分、合并、约分,因此分数的分拆可按先扩分,再拆分,最后约分的步调来做.分析二:根据把单位分数分拆成单位分数相加的和的方法二:分子、分母同剩以大于分母8,小于分母8的2倍(16)的自然数分别求解.解析一:8的约数有1、2、4、8.①②③④⑤⑥以上六种分析方法,其中①、④、⑥相同,②和⑤相同.如果两个约数相同时,可以得到,共有四组解.解法二:(像解法二这样的拆分方法不止一种.同学们,你们愿意研究吗?)操练一将下列各分数写成两个单位分数:1. 2.3. 4.5. 6.例题二:将分拆成三个单位分数之和(任求一解).思路导航分析一:可以先把拆成两个单位分数之和,再拆成三个单位分数之和.分析二:任取分母10的三个约数之和停止扩分.解法一:10的约数有1、2、5、10,任取两个约数之和停止扩分,就可以得到一种拆分又所以方法二:任取10的三个约数1、2、5.操练二:将下列各分数分拆成三个单位分数之和.1. 2.3. 4.5. 6.例题三在下面的括号外面填上适当的数字.思路导航根据题意,已知该题是要把分拆成四个单位分数之和.可以先把分拆成两个单位分数之和,再把这两个单位分数分拆成四个单位分数之和;或者可以取8的四个公约数1、2、4、8之和扩分解答.解:又同时所以操练三在下列等式中的括号填上适当的各不相同的自然数,使等式成立. 1.2.3.4.例题四:若A,B是自然数,求符合条件的A和B的值(求出两组即可)思路导航:分母10的约数1、2、5、10.解:操练四1.将下列各分数写成两个单位分数之差.(1) (2)(3) (4)2. 已知a、b都是自然数,且,求a和b的和.3.已知A、B、C是三个自然数,且,求A、B、C三个数的和.例题五计算:思路导航由,知解:原式===操练五1、计算:2、计算:3、计算:。

分数拆项公式

分数拆项公式

分数拆项公式【引言】在数学领域,分数拆项公式是一种巧妙地将分数拆分成更简单的部分的方法。

这种技巧可以帮助我们更轻松地处理复杂的数学问题。

接下来,我们将详细介绍分数拆项公式及其应用。

【分数拆项公式简介】分数拆项公式是指将一个分数拆分成两个或更多较简单的分数,以便更容易进行计算。

其中一个常见的分数拆项公式为:a / (b * c) = (a / b) - (a / (b * c))这个公式可以帮助我们将一个复杂的分数转换为两个较简单的分数,从而简化计算过程。

【分数拆项公式的应用】分数拆项公式在解决各种数学问题时都非常实用。

例如,当我们需要计算两个分数的差时,可以使用分数拆项公式将其中一个分数拆分成更简单的部分,从而简化计算。

【实例解析】假设我们需要计算以下两个分数的差:3/5 - 1/4我们可以使用分数拆项公式将第二个分数进行拆分:3/5 - 1/4 = 3/5 - (1/2) * (1/4)接下来,我们将两个分数通分,并计算差值:3/5 - 1/4 = 12/20 - 5/20 = 7/20通过使用分数拆项公式,我们成功地将两个复杂的分数转换为一个更简单的分数。

【分数拆项公式在实际生活中的运用】分数拆项公式不仅在数学题中具有实用性,还在现实生活中有所体现。

例如,在购物时,商家经常会提供折扣优惠,我们可以将折扣后的价格与原价进行比较,以判断折扣力度。

这里也可以运用分数拆项公式来简化计算。

【总结】分数拆项公式是一种实用的数学技巧,能帮助我们简化分数计算。

通过掌握这一公式,我们在解决数学问题和实际生活中的问题时都能更加得心应手。

分数拆分妙法

分数拆分妙法

分数拆分妙法 SANY GROUP system office room 【SANYUA16H-
分数的拆分方法
方法一:分数相加(减)拆分:
①把分母分解质因数后得出几个约数,再取不同的任意几个约数相加(减),作为分母和分子的公倍数扩分。

②再拆成两个分数的和(差)。

③把拆开后的两个分数约分,化成最简分数。

方法二:分数相加(减)拆分:
①把分母分解质因数后得出几个约数,再取不同的任意几个约数分母相乘,分子相加(减),再乘以相加(减)后和(差)的倒数。

②再拆成两个分数的和(差),再乘以相加(减)后和(差)的倒数。

③把拆开后的分数约分,化成最简分数。

=-=>=+
==-
=+=>=-
==+
=(-)*
==(-)*
=-
==-。

分数的拆分与合并

分数的拆分与合并

分数的拆分与合并分数是数学中常见的数形式,它包含了一个分子和一个分母,表示了数量的比例关系。

在数学运算中,我们经常需要对分数进行拆分与合并操作,以便进行更复杂的计算和解题。

本文将介绍分数的拆分与合并的基本方法和应用。

一、分数的拆分分数的拆分是将一个分数拆成两个或多个分数之和的过程。

拆分可以通过找到分数的等值形式和分解分子或分母来实现。

1. 拆分方法一:等值形式通过将分数的分子和分母同乘或同除一个数,可以得到与原分数等值的新分数。

这样可以实现分数的基数改变,从而方便拆分。

举例说明:拆分3/4为两个分数之和。

我们可以选择等值形式,将分数的分母4化为8,分子也同样乘以2,则得到新的等值分数6/8。

这样,原分数3/4可以拆分为2/8和4/8的和。

2. 拆分方法二:分解分子或分母通过将分子或分母进行分解,我们可以将一个分数拆成几个部分分数之和。

举例说明:拆分5/6为两个分数之和。

我们可以将分数的分母分解为2和3的乘积,即6=2*3。

然后将分子5按照这个乘积进行分解,得到5=2*2+2*3。

这样,原分数5/6可以拆分为4/6和2/6的和。

二、分数的合并分数的合并是将两个或多个分数相加或相乘的过程。

合并操作可以通过找到它们的公共分母或者利用分数的等值形式来实现。

1. 合并方法一:寻找公共分母当分数的分母不同时,我们可以找到它们的最小公倍数作为新的分母,然后将各个分数的分子进行相应的运算。

举例说明:合并1/2和1/3两个分数。

最小公倍数为6,因此我们将分数的分子分别乘以相应的系数,得到1/2 * 3/3 = 3/6 和 1/3 * 2/2 = 2/6。

这样,两个分数就可以合并为5/6。

2. 合并方法二:等值形式通过寻找分数的等值形式,我们可以将它们转化为分母相同的分数,从而简化合并操作。

举例说明:合并2/3和1/4两个分数。

我们可以通过等值形式将分数的分母变为12,即2/3 * 4/4 = 8/12 和 1/4 * 3/3 = 3/12。

分数拆分口诀

分数拆分口诀

分数拆分口诀口诀一:分数拆分基础法同学们呀听我言,分数拆分很简单。

分母相乘作新母,交叉相乘分子添。

比如说呀三分之一,想拆成几分之一加几分之一。

先把分母写成两数积,1×3咱就不变。

分子呢,设为a和b,那就有a×3 + b×1等于1。

可以试出a是1,b是 - 2,就变成了二分之一减去六分之一啦。

就像搭积木,一块大积木(原分数)可以拆成两块小积木(拆分后的分数),按照这个方法来,分数拆分不再难。

口诀二:同母分数拆分诀同母分数要拆分,分子拆分是窍门。

好比一群小娃娃,住在一个大房子(分母相同)里。

要把他们分成小组就从分子来划分。

比如七分之五,就想成五个娃娃。

可以分成二和三,那就是七分之二加七分之三喽。

记住分子之和等于原来的数,分母一直不变化。

就像把一篮苹果分给不同的人,苹果总数不变,只是分配的份数变了而已。

口诀三:异母分数拆分步异母分数要拆分,先通分来后细分。

好像不同班级的小要一起做游戏就得先站到同一个操场上(通分)。

通分之后再看分子,按照前面说的方法进行拆分。

例如二分之一加三分之一,先通分变成六分之三加六分之二等于六分之五。

那要是把六分之五拆回去呢,就看分子5能怎么分成两个数,3和2就正好,再变回原来的分数形式就好了。

这就像把混合在一起的小豆子(通分后的分数),再按种类分开一样。

口诀四:单位分数拆分招单位分数拆分找因数是个妙法。

分母的因数要找全,一对一对来挑选。

比如说分母是12,12的因数有1、12,2、6,3、4。

选一对因数啊,像2和6,然后分子分母这样算。

分子就是2加6等于8,原分数十二分之一就拆成了八乘以十二分之二加上八乘以十二分之六,化简一下就是四十八分之一加上十六分之一啦。

就如同把一颗星星的光芒分散到不同的角落一样。

口诀五:分数拆分约简法分数拆分和约简,两者关系紧相连。

拆分完了要看看,能不能再化简。

就像整理房间,收拾完了还要检查有没有多余的东西。

如果拆出来的分数分子分母还有公因数,那就约掉它。

分数的拆分

分数的拆分

分数的拆分1.概念单位分数: 分子为1、分母为自然数的分数叫单位分数。

分数的分拆:把一个分数分拆成几个分数相加的和,叫做分数的分拆2.解题方法与技巧。

(1)把单位分数拆分成单位分数相加的和方法一:先扩分:同剩以分母的约数的和再拆分:拆分成约数作分子的分数。

后约分:约分成最简分数方法二:分子、分母同剩以大于分母,小于分母两倍的自然树(2)把真分数分拆成单位分数相加的和.把一个真分数拆成两个单位分数相加的和,先给要分拆的分数分子和分母同剩以分母除以分子的整数商加1的和,再给分子加上分母,要使分数大小不变,同时应减去这个数,然后再分拆并约分。

(3)把假分数分拆成单位分数相加的和方法:先把这个假分数分拆成真分数,再按真分数的分拆方法去分。

例题一在的括号里填入适当的自然数,使等式成立。

分析一: 从式子的左边往右边看,是分数的分拆;才有便往左边看,则是分数的加法,可见分数的分析与分数的加法过程刚好相反。

分数加法主要步骤是通分、合并、约分,因此分数的分拆可按先扩分,再拆分,最后约分的步骤来做.分析二:根据把单位分数分拆成单位分数相加的和的方法二:分子、分母同剩以大于分母8,小于分母8的2倍(16)的自然数分别求解.解析一:8的约数有1、2、4、8。

①②③④⑤⑥以上六种分析方法,其中①、④、⑥相同,②和⑤相同。

如果两个约数相同时,可以得到,共有四组解。

解法二: (像解法二这样的拆分方法不止一种.同学们,你们愿意研究吗?)练习一将下列各分数写成两个单位分数:1。

2.3. 4。

5. 6。

例题二:将分拆成三个单位分数之和(任求一解)。

思路导航分析一:可以先把拆成两个单位分数之和,再拆成三个单位分数之和。

分析二:任取分母10的三个约数之和进行扩分.解法一:10的约数有1、2、5、10,任取两个约数之和进行扩分,就能得到一种拆分又所以方法二:任取10的三个约数1、2、5.练习二:将下列各分数分拆成三个单位分数之和。

1。

分数的拆分与合并

分数的拆分与合并

分数的拆分与合并分数是数学中常见的数的表示形式之一,可以用于表示部分和整体之间的关系。

在数学运算中,我们常常需要对分数进行拆分与合并操作。

本文将介绍分数的拆分与合并方法,并探讨其在实际问题中的应用。

一、分数的拆分1. 拆分真分数真分数是指分子小于分母的分数,这种分数可以被拆分成多个部分。

以1/2为例,可以拆分成1/4+1/4,或者1/3+1/6,还可以是1/6+1/6+1/6等。

拆分真分数的方法可以根据需要选择不同的形式,但要注意拆分后的部分仍需满足分母相同、分子之和等于原分数分子的条件。

2. 拆分假分数假分数是指分子大于等于分母的分数。

拆分假分数的方法类似于拆分真分数,只是需要先将假分数转化为带分数形式,再进行拆分。

例如,将5/2转化为2+1/2,然后可以拆分成2+1/4+1/4,或者2+1/3+1/6等。

同样地,拆分假分数的部分仍需满足分母相同、分子之和等于原分数分子的条件。

二、分数的合并1. 合并同分母的分数当两个或多个分数的分母相同时,我们可以将它们合并为一个分数,分子为各个分数分子的和,分母保持不变。

例如,合并1/4和3/4,它们的分母都是4,所以可以合并为4/4,即1。

2. 合并异分母的分数当两个或多个分数的分母不同,但可以通过通分使其分母相同时,我们可以先进行通分操作,然后再进行合并。

例如,合并1/3和1/6,我们可以先将1/3乘以2/2,得到2/6,然后再与1/6合并,得到3/6,即1/2。

三、分数拆分与合并的实际应用分数的拆分与合并在日常生活和实际问题中有广泛的应用。

例如,在烹饪过程中,需要按照食谱上的比例将食材拆分成合适的份量;在工程设计中,需要将整体任务拆分成多个子任务,并逐步合并完成;在金融投资中,需要将资金拆分成不同的投资组合,并根据市场情况合并调整。

总结:分数的拆分与合并是数学运算中常见的操作,通过拆分和合并可以更好地理解和处理分数的运算,解决实际问题。

拆分时需要满足分母相同、分子之和等于原分数分子的条件;合并时需要分母相同、分子之和等于合并后的分数的条件。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分 数 的 拆 分
◇知识简述◇
分数加减法的主要步骤是通分、合并、约分。

将一个分数分成两个或两个以上的分数的和或差的过程叫做拆分(这里通常将真分数分成若干个单位分数的和或差),分数的分拆与分数的加减法过程刚好相反,可按先扩分,再拆分,最后约分的步骤来做。

把一个分数
n 1拆分成两个单位分数的和,一般的解题思路是:设a 、b 为n 的因数,则:()()
b a n b b a n a n +⨯++⨯=1。

(注:拆分结果不唯一) 把一个分数
n 1拆分成两个单位分数的差,一般的解题思路是:设a 、b 为n 的因数,则:()()
b a n b b a n a n -⨯--⨯=1。

(注:拆分结果不唯一) ◇例题解析◇
1.在()()
11151+=的括号里填入适当的自然数,使等式成立。

你有几种不同的填法?
2.在()()
11151-=的括号里填入适当的自然数,使等式成立。

你有几种不同的填法?
3.将10
1分拆成三个单位分数之和。

你有几种拆法?
4.在括号里填上合适的自然数:
()()11154+=。

◇练习巩固◇
1.()()()()111161
+=+=
()()()()111181+=+= 2.()()()()1111101
-=-=
()()()()1111121-=-= 3.()()()11151
++=
()()()111251++=(括号内填相同的数) 4.()()()11141
-+=
()()()11191+-= 5.()()11163
+=
()()11185+= 6.()()()()1111127
+++=
()()()()11113625+++=。

相关文档
最新文档