n五种类型一次函数解析式的确定

合集下载

函数解析式的表示形式及五种确定方式

函数解析式的表示形式及五种确定方式

函数解析式的表示形式及五种确定方式函数的解析式是函数的最常用的一种表示方法,本文重点研究函数的解析式的表达形式与解析式的求法。

一、解析式的表达形式解析式的表达形式有一般式、分段式、复合式等。

1、一般式是大部分函数的表达形式,例一次函数:b kx y += )0(≠k 二次函数:c bx ax y ++=2 )0(≠a 反比例函数:xk y = )0(≠k 正比例函数:kx y = )0(≠k 2、分段式若函数在定义域的不同子集上对应法则不同,可用n 个式子来表示函数,这种形式的函数叫做分段函数。

例1、设函数(]()⎩⎨⎧+∞∈∞-∈=-,1,log 1,,2)(81x x x x f x ,则满足41)(=x f 的x 的值为 。

解:当(]1,∞-∈x 时,由412=-x 得,2=x ,与1≤x 矛盾; 当()+∞∈,1x 时,由41log 81=x 得,3=x 。

∴ 3=x 3、复合式若y 是u 的函数,u 又是x 的函数,即),(),(),(b a x x g u u f y ∈==,那么y 关于x 的函数[]()b a x x g f y ,,)(∈=叫做f 和g 的复合函数。

例2、已知3)(,12)(2+=+=x x g x x f ,则[]=)(x g f ,[]=)(x f g 。

解:[]721)3(21)(2)(22+=++=+=x x x g x g f [][]4443)12(3)()(222++=++=+=x x x x f x f g 二、解析式的求法根据已知条件求函数的解析式,常用待定系数法、换元法、配凑法、赋值(式)法、方程法等。

1待定系数法若已知函数为某种基本函数,可设出解析式的表达形式的一般式,再利用已知条件求出系数。

例3、已知二次函数)(x f y =满足),2()2(--=-x f x f 且图象在y 轴上的截距为1,被x 轴截得的线段长为22,求函数)(x f y =的解析式。

一次函数解析式的确定及应用

一次函数解析式的确定及应用

一次函数解析式的确定及应用学习目标1.经历用待定系数法确定一次函数解析式的过程,掌握用待定系数法求一次函数解析式的方法,提高数学运算能力.2.能够用一次函数的相关知识解决实际问题,感受一次函数在解决实际问题中的作用,提高利用数学建模解决实际问题的能力.教学过程活动一:待定系数法1.已知一次函数的图象经过点(2,5)和(-1,-1),求这个一次函数的解析式. 设这个一次函数的解析式为 ,将点(2,5)和(-1,-1)代入,得方程组 ,解方租 ,所以这个一次函数的解析式为 .2.一次函数)0(≠+=k b kx y 中有 个待定系数,因此需要根据 个条件才能列出关于 的二元一次方程组求解.探究归纳:1.待定系数法先设出 ,再根据条件确定解析式中 ,从而得出函数解析式的方法,叫做待定系数法.2.求一次函数解析式的步骤(1)设出(2)根据条件列出解析式中关于未知系数的方程(组);(3)解方程(组),确定(4)根据求出的未知系数确定活动二:知识点即时反馈练习1.一次函数3+=kx y 中,当3=x 时,6=y ,则k 的值为( )A.-1B.1C.5D.-52.如果一次函数的图象经过点(0,1)和(-1,3),那么这个函数的解析式为( )A.1-y2-=x=x2+-y B.1C.1=x2+2-yy D.1=x3.如图,直线l为一次函数b=2的图象,则=xy+b活动三:典型习题例1.(1)已知一次函数的图象过A(-3,-5),B(1,3)两点,求这个一次函数的解析式为.(2)已知直线b=,求这个一y2-y+kx=经过点A(0,6),且平行于直线x次函数的解析式.变式练习1一次函数的图象与直线1y平行,且经过点 A(1,-7),求这个一次函数的解=x3--析式.变式练习2已知一次函数的图象经过(-4,15),(6,-5)两点,求一次函数的解析式.例2.某市为节约水资源,制定了新的居民用水收费标准.按照新标准,用户每月缴纳的水费y(单位∶元)与每月用水量x(单位∶m³)之间的关系如图所示.(1)求y关于x的函数解析式(2)若某用户二、三月份共用水 40 m²(二月份用水量不超过25 m ³),缴纳水费 79.8元,则该用户二、三月份的用水量各是多少立方米?变式练习3如图所示的折线ABC 表示甲地向乙地打长途电话需付的电话费y (单位∶元)与通话时间t (单位∶min )之间的函数关系,则通话8 min 应付电话费______元.活动四:课堂反馈训练1.若直线kx y =经过点(3,-2),则它还经过点( )A.(-2,3)B.(-3,2)C.(2,3)D.3,2)2.如图,直线AB 对应的函数解析式为( ). A.323+-=x y B.323+=x y C.332+-=x y D.332+=x y 3.已知弹簧的长度y (单位:cm )与所挂物体的质量x (单位:kg )的关系为一次函数,由图可知,不挂物体时,弹簧的长度为( )A.7 cmB.8 cmC.9 cmD.10 cm4.一辆汽车在行驶过程中,路程y (单位:km )与时间x (单位:h )之间的函数关系如图所示,当10≤≤x 时,y 关于x 的函数解析式为x y 60=,那么当21≤≤x 时,y 关于x 的函数解析式为 .5.若一次函数的图象与直线xP,求一次函数的解析式.y=平行,并且经过点()2,16.某市出租车计费方法如图所示,x(单位:km)表示行驶路程,y(单位:元)表示车费.请根据图象回答下列问题:(1)该市出租车的起步价是多少元?当3x时,>求y关于x的函数解析式.(2)若某位乘客有一次乘出租车的车费为32元,求这位乘客乘车的路程.7.为营造书香家庭,周末小亮和姐姐一起从家出发步行去图书馆借书,走了6 min 发现忘带借书证,小亮立即骑路边共享单车返回家中取借书证,姐姐以原来的速度继续向前行走,小亮取到借书证后骑单车原路原速前往图书馆,小亮追上姐姐后和姐姐一起骑共享单车前往图书馆.已知单车的速度是步行速度的3倍,小亮和姐姐距家的路程 y(单位:m)与出发时间x(单位:min)的函数图象如图所示,根据图象解答下列问题:(1)小亮在家停留了____min;(2)求小亮骑单车从家出发去图书馆时距家的路程 y(单位:m)与出发时间x(单位:min)之间的函数关系式;(3)若小亮和姐姐到图书馆的实际时间为m min,原计划步行到达图书馆的时间为n min,则 n一m= min.活动五:小结及作业教学反思。

根据一次函数的图象确定解析式

根据一次函数的图象确定解析式

4 一次函数的应用1.确定一次函数表达式(1)借助图象确定函数的表达式先观察直线是否过坐标原点,若过原点,则为正比例函数,可设其关系式为y =kx (k ≠0);若不过原点,则为一次函数,可设其关系式为y =kx +b (k ≠0);然后再观察图象上有没有明确几个点的坐标.对于正比例函数,只要知道一个点的坐标即可;对于一次函数,则需要知道两个点的坐标;最后将各点坐标分别代入y =kx 或y =kx +b 中,求出其中的k ,b ,即可确定出其关系式.(2)确定正比例函数、一次函数表达式需要的条件①由于正比例函数y =kx (k ≠0)中只有一个未知系数k ,故只要一个条件,即一对x ,y 的值或一个点的坐标,就可以求出k 的值,确定正比例函数的表达式.②一次函数y =kx +b (k ≠0)有两个未知系数k ,b ,需要两个独立的关于k ,b 的条件,求得k ,b 的值,这两个条件通常是两个点的坐标或两对x ,y 的值.【例1】 如图,直线AB 对应的函数表达式是( ).A .y =-32x +3 B .y =32x +3 C .y =-23x +3 D .y =23x +3 解析:设直线AB 对应的函数表达式是y =kx +b (k ≠0),当x =0时,y =3,代入得b =3,当x =2时,y =0,则2k +3=0,k =-32,故y =-32x +3. 答案:A点技巧 用待定系数法求直线解析式由图象观察可知该函数为一次函数,故应设成y =kx +b (k ≠0)的形式,再将A ,B 两点坐标代入该关系式,即可求出k ,b ,从而确定出具体的关系式.2.待定系数法(1)定义:先设出式子中的未知系数,再根据条件求出未知系数,从而写出这个式子的方法,叫做待定系数法,其中的未知数也称为待定系数.(2)用待定系数法求解析式的一般步骤:①根据已知条件写出含有待定系数的解析式;②将x ,y 的几对值或图象上几个点的坐标代入上述的解析式中,得到以待定系数为未知数的方程或方程组;③解方程(组),得到待定系数的值;④将求出的待定系数代回所求的函数解析式中,得到所求函数的解析式.【例2-1】 一次函数图象如图所示,求其解析式.分析:利用图象所给的信息,即直线与坐标轴交点的坐标,再用待定系数法求出k ,b的值,从而确定表达式.解:设一次函数解析式为y=kx+b,∵一次函数图象过点(0,-2),∴-2=k×0+b,∴b=-2.∵一次函数图象过点(1,0),∴0=k×1+b,∴k=2.∴一次函数解析式为y=2x-2.【例2-2】在直角坐标系中,一次函数y=kx+b的图象经过三点A(2,0),B(0,2),C(m,3),求这个函数的表达式,并求m的值.解:根据题意,得2k+b=0①,b=2, km+b=3②,把b=2代入①,得2k+2=0,即k=-1;把b=2,k=-1代入②,得m=-1.故函数的表达式为y=-x+2.3.一次函数的实际应用(1)通过图象获取信息通过观察一次函数的图象获取有用的信息是我们在日常生活中经常遇到的问题,要掌握这个重点在于对函数图象的观察和分析,观察函数图象时,首先要看横轴、纵轴分别代表的是什么,也就是观察图象反映的是哪两个变量之间的关系.释疑点函数图象中的特殊点观察图象获取信息时,一定要注意图象上的特殊点,这些特殊点对我们解决问题有很大的帮助.(2)一次函数图象的应用一次函数和正比例函数是我们接触到的最简单的函数,它们的图象和性质在现实生活中有着广泛的应用.利用一次函数和正比例函数的图象解决问题是本节的一个重点,这部分内容在中考中占有重要的地位.谈重点函数y=kx+b图象的变化形式在实际问题中,当自变量的取值范围受到一定的限制时,函数y=kx+b(k≠0)的图象就不再是一条直线.要根据实际情况进行分析,其图象可能是射线、线段或折线等等.【例3-1】甲、乙两个工程队分别同时开挖两段河渠,所挖河渠的长度y(m)与挖掘时间x(h)之间的关系如图所示,请根据图象所提供的信息解答下列问题:(1)乙队开挖到30 m时,用了________ h.开挖6 h时甲队比乙队多挖了__________ m.(2)请你求出:①甲队在0≤x≤6的时段内,y与x之间的函数关系式;②乙队在2≤x≤6的时段内,y与x之间的函数关系式.(3)当x为何值时,甲、乙两队在施工过程中所挖河渠的长度相等?分析:(1)由图象可以直接看出乙队开挖到30 m时,用了2 h.开挖6 h时甲队比乙队多挖了10 m;(2)设甲队在0≤x≤6的时段内y与x之间的函数关系式为y=k1x(k1≠0),由图可知,函数图象过点(6,60),∴6k1=60,解得k1=10,∴y=10x.设乙队在2≤x≤6的时段内y与x之间的函数关系式为y=k2x+b(k2≠0),由图可知,函数图象过点(2,30),(6,50),代入y=k2x+b,求出k2=5,b=20,∴y=5x+20.(3)由题意,得10x=5x+20,解得x=4(h).解:(1)210(2)①y=10x.②y=5x+20.(3)由题意,得10x=5x+20,解得x=4(h).故当x为4 h时,甲、乙两队所挖的河渠长度相等.【例3-2】某单位急需用车,但又不准备买车,他们准备和一个体车主或一国有出租车公司签订月租车合同.设汽车每月行驶x km,应付给个体车主的月费用为y1元,应付给国有出租车公司的月费用是y2元,y1,y2分别与x之间的函数关系图象(两条射线)如图,观察图象回答下列问题:(1)每月行驶的路程在什么范围内时,租国有出租车公司的车合算?(2)每月行驶的路程等于多少时,租两家车的费用相同?(3)如果这个单位估计每月行驶的路程为2 600 km,那么这个单位租哪家车合算?分析:本题从给出的两个函数图象中可获取以下信息:都是一次函数,一个是正比例函数;两条直线交点的横坐标为1 500;表明当x=1 500时,两个函数值相等;根据图象可知:x>1 500时,y2>y1;0<x<1 500时,y2<y1.解:观察图象,得:(1)每月行驶的路程小于1 500 km时,租国有出租车公司的车合算;(2)每月行驶的路程为1 500 km时,租两家车的费用相同;(3)如果每月行驶的路程为2 600 km,那么这个单位租个体车主的车合算.析规律函数图象交点规律两函数图象在同一坐标系中,当取相同的自变量时,下方图象对应的函数的函数值小;交点处的函数值相等.4.一次函数和一元一次方程的关系当一次函数y=kx+b(k≠0)中的函数值为0时,可得0=kx+b即kx+b=0,这在形式上变成了求关于x的一元一次方程,也就是说,当一次函数y=kx+b的函数值为0时,相应的自变量的值即为方程kx+b=0的解;若从图象上来看,则可看做函数y=kx+b的图象与x轴的交点的横坐标,即为方程kx+b=0的解.由此可见,方程与函数是密不可分的.【例4】某汽车生产厂对其生产的A型汽车进行耗油量实验,实验中汽车视为匀速行驶.已知油箱中的余油量y(L)与行驶时间t(h)的关系如下表,与行驶路程x(km)的关系如下分析:考查综合利用一次函数的相关知识解决问题的能力.解法一:∵余油量y 与行驶路程x 的关系图象是一条直线,∴可设关系式为y =kx +b (k ≠0).由图象可知y =kx +b 经过两点(0,100)和(500,20),则有b =100,20=500k +b .把b =100代入20=500k +b ,得20=500k +100,解得k =-425. ∴直线的解析式为y =-425x +100. 当y =100时,x =0;当y =84时,x =100.由图表可知,油箱中的余油量从100 L 到84 L ,行驶时间是1 h ,行驶路程是100 km. ∴A 型汽车的速度为100 km/h.解法二:由图表可知:A 型汽车每行驶1 h 的路程耗油16 L.由图象可知:A 型汽车耗油80 L 所行驶的路程为500 km.可设汽车耗油16 L 所行驶的路程为x km ,则500∶80=x ∶16,解得x =100.∴A 型汽车1 h 行驶的路程为100 km.∴它的速度为100 km/h.点评:有时,我们利用一次函数的图象求一元一次方程的近似解.5.一次函数图象的平移一次函数y =kx +b (k ≠0)的图象可以看做由直线y =kx 平移|b |个单位长度而得到(当b >0时,向上平移;当b <0时,向下平移).实际上就是指一次函数y =kx +b 的图象沿y 轴平移时,在b 的位置上按照“上加下减”的规律进行.如:一次函数l 1:y =23x +2的图象可以看做是由正比例函数l :y =23x 的图象沿y 轴向上平移2个单位长度得到的;一次函数l 2:y =23x -2的图象可以看做是由正比例函数l :y =23x 的图象沿y 轴向下平移2个单位长度得到的.【例5】 如图所示,将直线OA 向上平移1个单位长度,得到一个一次函数的图象,那么这个一次函数的解析式是__________.解析:由图象可知,直线经过原点,所以设直线的解析式为y =kx (k ≠0).因为直线经过点(2,4),所以直线的解析式为y =2x .根据“上加下减”的原则,可知所求的一次函数解析式为y =2x +1.答案:y=2x+1析规律平移中的函数解析式解决平移问题可以对性质进行记忆直接运用,也可以找出平移后借助坐标系运用待定系数法求解.平移前后k的值不变,改变的是b的值.6.函数、方程和不等式的完美结合从“数”的角度看,由于任何一元一次方程都可以转化为ax+b=0(a,b为常数,且a≠0)的形式,所以解一元一次方程可以看做:当一次函数y=ax+b的值为0时,求相应的自变量的值;反之,求自变量x为何值时,一次函数y=ax+b的值为0,只要求出方程ax+b=0的解即可.由于任何一元一次不等式都可以转化为类似ax+b>0或ax+b<0的形式,所以解一元一次不等式可以看做:当一次函数y=ax+b的值大(小)于0时,求自变量相应的取值范围;反之,求一次函数y=ax+b的值何时大(小)于0时,只要求出不等式ax+b>0或ax+b<0的解集即可.从一元一次方程、一元一次不等式与一次函数的关系可以看出,三者最终能用函数观点统一起来,并且达到一种完美的结合,这种结合,又常常在一些考题中得以体现.【例6】x -2-1012 3y 6420-2-4那么方程ax+b__________.解析:本题先以表格的形式向我们提供了一次函数y=ax+b的信息.按一般解法,我们完全可以利用这些对应值,通过待定系数法求出未知系数a和b,然后再去解方程或不等式,于是得解.果真那样去做的话,说明你没有真正领会到本题的用意.事实上,本题是想考查你对一元一次方程、一元一次不等式和一次函数之间关系的掌握情况.由三者之间的关系可知,求方程ax+b=0的解,实质上就是求一次函数y=ax+b的函数值为0时,对应的自变量x的取值,从表中可直接看出x=1;同理,求不等式ax+b>0的解集,实质上就是求当一次函数y=ax+b的函数值大于0时,对应的自变量x的取值范围,这时也可以从表中直接看出为x<1.答案:x=1x<17.如何确定一次函数的表达式确定正比例函数和一次函数的解析式是一次函数这部分内容考查的一个重要知识点.那么应该怎样确定正比例函数和一次函数的解析式呢?因为正比例函数的解析式y=kx中,只有一个待定系数k,确定了k的值,也就确定了正比例函数的解析式.而一次函数的解析式y=kx+b中,有两个待定系数k和b,因此需要两个条件,此条件可以是直线上的两个点的坐标,也可以是两对变量与函数的对应值.但在实际求正比例函数和一次函数的解析式时,应该具体问题具体分析.(1)定义型若两个量y与x成正比例,可设为正比例函数形式:y=kx(其中k是常数,k≠0),再用待定系数法求比例系数k.(2)两(或一)点型把点的坐标代入所设的关系式中,根据点的坐标求解.(3)图象型解决看图获取信息的问题,不仅要注意坐标轴所表示的量是什么,还要抓住图中一些关键的点(如:起点、终点、折线中的折点)所反映出的信息.通过观察图象,发掘图象经过坐标轴上的两点,根据两点的坐标构造待定系数的方程组,求出k,b;它体现了数与形的完美结合,是解题的重要思想方法之一.点在函数图象上,就是说点的坐标满足该图象的函数解析式.只需把点的坐标代入函数解析式,然后求方程(组)的解即可.(4)平移型平移不改变k的大小,只改变b的大小.(5)实际应用型解这类题的方法是对问题的审读和理解,掌握用一个变量的代数式表示另一个变量,建立两个变量间的等量关系,同时从题中确定自变量的取值范围.这是求实际应用型问题的函数关系式的至关重要的一点.【例7-1】求一次函数y=(m-2)xm2-3-m+3的关系式.解:由一次函数的定义,得m2-3=1,且m-2≠0.解得m=-2.故所求关系式为y=-4x+5.【例7-2】直线y=kx+b经过点A(-3,0)和点B(0,2),求这条直线的表达式.分析:把点A和点B的横、纵坐标分别当做x,y的值代入y=kx+b中,求出k,b即可.解:把点A和点B的横、纵坐标分别当做x,y的值代入y=kx+b中,得0=-3k+b,2=b,得出k=23,b=2,从而得出这条直线的表达式为y=23x+2.【例7-3】已知某个一次函数的图象如图所示,则该函数的解析式为__________.解析:设一次函数解析式为y=kx+b(k≠0),∵由图可知一次函数y=kx+b的图象过点(0,2),(1,0),∴2=k×0+b,0=k×1+b,解得b=2,k=-2.∴一次函数的解析式为y=-2x+2.答案:y=-2x+2【例7-4】将直线y=2x向上平移两个单位长度,所得的直线是().A.y=2x+2B.y=2x-2C.y=2(x-2) D.y=2(x+2)解析:由于直线y=kx+b可以看做由直线y=kx平移|b|个单位长度而得到(当b>0时,向上平移;当b<0时,向下平移),所以将直线y=2x向上平移两个单位长度,所得的直线是y=2x+2.答案:A【例7-5】大拇指尽量伸开时,拇指与食指的距离称为指距,某研究表明,一般情况下,人的身高h指距d(cm)20212223身高h(cm)160169178187(1)求出h与d(2)某人身高196 cm,一般情况下他的指距是多少?解:(1)设一次函数的解析式为h=kd+b(k,b为常数,且k≠0).由题意,得160=20k+b①,169=21k+b②.②-①,得k=9,代入①,得b=-20.故一次函数的解析式为h=9d-20.(2)当h=196时,196=9d-20,得d=24.因此某人身高196 cm,一般情况下他的指距是24 cm.8.分段计费问题在自变量的不同取值范围内表示函数关系的解析式有不同的形式,这样的函数称为分段函数,有关运用分段函数的知识解决生活中的问题是近几年中考的热点之一,能考查学生分析问题、解决问题的能力,及培养学生思维的广阔性和深刻性.分段计费问题和实际生活联系密切,这类问题考查有效地应用数学知识解决实际问题的能力.常见的分段计费问题有:水费分段计费、电费分段计费、话费分段计费等.点评:解决问题的关键是根据已知条件构建函数在不同的条件下的解析式,再由条件选择对应的解析式求解.【例8】某市居民生活用电基本价格为每度0.4元,若每月用电超过a度,超过部分按基本电价的70%收费.(1)某户五月份用电84度,共缴电费30.72元,求a的值;(2)若该户六月份的电费平均为每度0.36元,求六月份共用电多少度?应缴电费多少元?分析:先判断是不是超过a度,再进行计算.解:设该户每月用电为x度,缴纳电费为y元,根据题意可分段构建函数关系式:当x≤a 时,y=0.4a①;当x>a时,y=0.4a+0.4×70%(x-a)②.(1)∵0.4×84=33.6>30.72,∴五月份的用电超过a度,应满足解析式②.∴30.72=0.4a +0.4×70%(84-a),解得a=60.(2)∵0.36<0.4,∴六月份用电超过a度.∴0.36x=0.4×60+0.4×70%(x-60),解得x=90.∴六月份共用电90度,应缴电费0.36×90=32.4元.。

确定一次函数解析式的五种方法

确定一次函数解析式的五种方法

五种类型一次函数解析式的确定确定一次函数的解析式,是一次函数学习的重要内容。

下面就确定一次函数的解析式的题型作如下的归纳,供同学们学习时参考。

一、根据直线的解析式和图像上一个点的坐标,确定函数的解析式例1、若函数y=3x+b经过点(2,-6),求函数的解析式。

分析:因为,函数y=3x+b经过点(2,-6),所以,点的坐标一定满足函数的关系式,所以,只需把x=2,y=-6代入解析式中,就可以求出b的值。

函数的解析式就确定出来了。

解:因为,函数y=3x+b经过点(2,-6),所以,把x=2,y=-6代入解析式中,得:-6=3×2+b,解得:b=-12,所以,函数的解析式是:y=3x-12.二、根据直线经过两个点的坐标,确定函数的解析式例2、直线y=kx+b的图像经过A(3,4)和点B(2,7),求函数的表达式。

分析:把点的坐标分别代入函数的表达式,用含k的代数式分别表示b,因为b是同一个,这样建立起一个关于k的一元一次方程,这样就可以把k的值求出来,然后,就转化成例1的问题了。

解:因为,直线y=kx+b的图像经过A(3,4)和点B(2,7),所以,4=3k+b,7=2k+b,所以,b=4-3k,b=7-2k,所以,4-3k=7-2k,解得:k=-3,所以,函数变为:y=-3x+b,把x=3,y=4代入上式中,得:4=-3×3+b,解得:b=13,所以,一次函数的解析式为:y=-3x+13。

三、根据函数的图像,确定函数的解析式例3、如图1表示一辆汽车油箱里剩余油量y(升)与行驶时间x(小时)之间的关系.求油箱里所剩油y(升)与行驶时间x(小时)之间的函数关系式,并且确定自变量x的取值范围。

分析:根据图形是线段,是直线上的一部分,所以,我们可以确定油箱里所剩油y(升)是行驶时间x(小时)的一次函数,明白这些后,就可以利用设函数解析式的方法去求函数的解析式。

解:因为,函数的图像是直线,所以,油箱里所剩油y(升)是行驶时间x(小时)的一次函数,设:一次函数的表达式为:y=kx+b,因为,图像经过点A(0,40),B(8,0),所以,把x=0,y=40,x=8,y=0,分别代入y=kx+b中,得:40=k×0+b,0=8k+b解得:k=-5,b=40,所以,一次函数的表达式为:y=-5x+40。

八年级数学下册知识梳理:五种类型一次函数解析式的确定

八年级数学下册知识梳理:五种类型一次函数解析式的确定

五种类型一次函数解析式的确定确定一次函数的解析式,是一次函数学习的重要内容。

下面就确定一次函数的解析式的题型作如下的归纳,供同学们学习时参考。

一、根据直线的解析式和图像上一个点的坐标,确定函数的解析式例1、若函数y=3x+b经过点(2,-6),求函数的解析式。

分析:因为,函数y=3x+b经过点(2,-6),所以,点的坐标一定满足函数的关系式,所以,只需把x=2,y=-6代入解析式中,就可以求出b的值。

函数的解析式就确定出来了。

解:因为,函数y=3x+b经过点(2,-6),所以,把x=2,y=-6代入解析式中,得:-6=3×2+b,解得:b=-12,所以,函数的解析式是:y=3x-12.二、根据直线经过两个点的坐标,确定函数的解析式例2、直线y=kx+b的图像经过A(3,4)和点B(2,7),求函数的表达式。

分析:把点的坐标分别代入函数的表达式,用含k的代数式分别表示b,因为b是同一个,这样建立起一个关于k的一元一次方程,这样就可以把k的值求出来,然后,就转化成例1的问题了。

解:因为,直线y=kx+b的图像经过A(3,4)和点B(2,7),所以,4=3k+b,7=2k+b,所以,b=4-3k,b=7-2k,所以,4-3k=7-2k,解得:k=-3,所以,函数变为:y=-3x+b,把x=3,y=4代入上式中,得:4=-3×3+b,解得:b=13,所以,一次函数的解析式为:y=-3x+13。

三、根据函数的图像,确定函数的解析式例3、如图1表示一辆汽车油箱里剩余油量y(升)与行驶时间x(小时)之间的关系.求油箱里所剩油y(升)与行驶时间x(小时)之间的函数关系式,并且确定自变量x的取值范围。

分析:根据图形是线段,是直线上的一部分,所以,我们可以确定油箱里所剩油y(升)是行驶时间x(小时)的一次函数,明白这些后,就可以利用设函数解析式的方法去求函数的解析式。

解:因为,函数的图像是直线,所以,油箱里所剩油y(升)是行驶时间x(小时)的一次函数,设:一次函数的表达式为:y=kx+b,因为,图像经过点A(0,40),B(8,0),所以,把x=0,y=40,x=8,y=0,分别代入y=kx+b中,得:40=k×0+b,0=8k+b解得:k=-5,b=40,所以,一次函数的表达式为:y=-5x+40。

19.2.2.3 确定一次函数的解析式

19.2.2.3 确定一次函数的解析式
必做题:《教材》 P99 习题19.2 第6、7题 选做题:《课件》课后提升
【课后作业】完成《学法大视野》 【预习】课本P93—P95《一次函数与方程、不等式》
已知一次函数的图象过点(0,2),且与两坐标轴围成 的三角形的面积为2,求此一次函数的解析式.
学有驰,习有张 书山有路勤独秀 学漠无垠恒至洲
x O2
2. 如图,直线l是一次函数y=kx+b的图象,填空:
(1)b=___2___,k=____23__;
y
y
(2)当x=30时,y=__-1_8___; l 4
3
(3)当y=30时,x=__-_4_2__.
2
1
x
O 12345 x
3. 已知直线l与直线y=-2x平行,且与y轴交于点(0,2), 求直线l的解析式.
能力提升
已知一次函数y=kx+b(k≠0)的自变量的取值范围是
- 3≤x≤ 6,相应函数值的范围是- 5≤y≤ - 2 ,求
这个函数的解析式.
分析:(1)当- 3≤x≤ 6时,- 5≤y≤ - 2,实质是给出
了两组自变量及对应的函数值;
(2)由于不知道函数的增减性,此题需分两种情况讨论.
答案:y = 1 x - 4或y = - 1 x - 3
∴b=2
∵一次函数的图象与x轴的交点是( 2 ,0),
k
则 1 2 2 2, 解得k=1或-1.
2
k
故此一次函数的解析式为y=x+2或y=-x+2.
当堂练习
1.一次函数y=kx+b(k≠0)的图象如图,则下列结论 正确的是 ( D )
A.k=2
B.k=3
y

五种类型一次函数解析式的确定

五种类型一次函数解析式的确定

五种种类一次函数分析式确实定确立一次函数的分析式,是一次函数学习的重要内容。

下边就确立一次函数的分析式的题型作以下的概括,供同学们学习时参照。

一、依据直线的分析式和图像上一个点的坐标,确立函数的分析式例1、若函数y=3x+b 经过点(2,-6 ),求函数的分析式。

剖析:由于,函数 y=3x+b 经过点( 2,-6 ),所以,点的坐标必定知足函数的关系式,所以,只要把 x=2,y=-6 代入分析式中,就能够求出 b 的值。

函数的分析式就确立出来了。

解:由于,函数y=3x+b 经过点(2,-6 ),所以,把 x=2,y=-6 代入分析式中,得: -6=3 ×2+b,解得: b=-12,所以,函数的分析式是: y=3x-12.二、依据直线经过两个点的坐标,确立函数的分析式例 2、直线 y=kx+b 的图像经过 A(3,4)和点 B(2,7),求函数的表达式。

剖析:把点的坐标分别代入函数的表达式,用含 k 的代数式分别表示 b,由于 b 是同一个,这样成立起一个对于 k 的一元一次方程,这样就能够把 k 的值求出来,而后,就转变成例 1 的问题了。

解:由于,直线 y=kx+b 的图像经过 A(3,4)和点 B( 2,7),所以, 4=3k+b,7=2k+b,解得: k=-3 ,b=13,所以,一次函数的分析式为:y=-3x+13 。

三、依据函数的图像,确立函数的分析式例 3、如图 1 表示一辆汽车油箱里节余油量y(升)与行驶时间 x(小时)之间的关系.求油箱里所剩油 y(升)与行驶时间 x(小时)之间的函数关系式,而且确立自变量x 的取值范围。

剖析:依据图形是线段,是直线上的一部分,所以,我们能够确立油箱里所剩油 y(升)是行驶时间 x(小时)的一次函数,理解这些后,就能够利用设函数分析式的方法去求函数的分析式。

解:由于,函数的图像是直线,所以,油箱里所剩油y(升)是行驶时间x(小时)的一次函数,设:一次函数的表达式为:y=kx+b,由于,图像经过点A(0,40), B(8,0)所以,把 x=0,y=40,x=8,y=0,分别代入 y=kx+b 中,得: 40=k×0+b, 0=8k+b解得: k=-5 ,b=40,所以,一次函数的表达式为:y=-5x+40 。

一次函数解析式的确定

一次函数解析式的确定

学习方法报社 全新课标理念,优质课程资源 第 1 页 共 1 页 ◎吴育弟一次函数解析式的确定一、利用两点坐标确定例1 直线l 过A (0,-1),B (1,0)两点,求直线l 的解析式.解:设函数解析式为y=kx+b ,将(1,0),(0,-1)分别代入解析式,得⎩⎨⎧-==+,1,0b b k 解得⎩⎨⎧-==.1,1b k 所以直线l 的解析式为y=x-1.二、利用直线平行确定例2 直线l 与y=-2x-1平行,且过点(1,3),求直线l 的解析式.解:因为直线l 与y=-2x-1平行,所以设所求直线l 的解析式为y=-2x+b.又直线l 过点(1,3),所以3=-2×1+b ,解得b=5.所以直线l 的解析式为y=-2x+5.三、利用表格确定例3 某工厂有一种材料,可加工甲、乙、丙三种型号机械配件共240个.厂方计划由20个工人一天内加工完成,并要求每人只加工一种配件.根据下表提供的信息,解答下列问题:设加工甲种配件的人数为x ,加工乙种配件的人数为y ,求y 与x 之间的函数解析式. 解:因为加工甲种配件的人数为x ,加工乙种配件的人数为y ,所以加工丙种配件的人数为(20-x-y )人.因为厂方计划由20个工人一天内加工完成,所以16x+12y+10(20-x-y )=240,则y=-3x+20.四、利用性质确定例4 已知一次函数的图象经过点(0,1),且满足y 随x 的增大而增大,则该一次函数的解析式可以为 .解析:设一次函数的解析式为y=kx+b (k≠0).因为一次函数的图象经过点(0,1),所以b=1.因为y 随x 的增大而增大,所以k >0.当k=1时,该一次函数解析式为y=x+1(答案不唯一,可以是形如y=kx+1,k >0的一次函数).。

用待定系数法确定一次函数的表达式教案

用待定系数法确定一次函数的表达式教案

用待定系数法确定一次函数的表达式教案教学目标 1.用待定系数法求一次函数的解析式;(重点) 2.从题目中获取待定系数法所需要的两个点的条件.(难点)教学过程 一、情境导入已知弹簧的长度y (厘米)在一定的限度内是所挂重物质量x (千克)的一次函数.现已测得不挂重物时弹簧的长度是6厘米,挂4千克质量的重物时,弹簧的长度是7.2厘米.求这个一次函数的关系式. 一次函数解析式怎样确定?需要几个条件? 二、合作探究 探究点:用待定系数法求一次函数解析式【类型一】 已知两点确定一次函数解析式已知一次函数图象经过点A (3,5)和点B (-4,-9). (1)求此一次函数的解析式;(2)若点C (m ,2)是该函数图象上一点,求C 点坐标. 解析:(1)将点A (3,5)和点B (-4,-9)分别代入一次函数y =kx +b (k ≠0),列出关于k 、b 的二元一次方程组,通过解方程组求得k 、b 的值;(2)将点C 的坐标代入(1)中的一次函数解析式,即可求得m 的值.解:(1)设一次函数的解析式为y =kx +b (k 、b 是常数,且k ≠0),则⎩⎪⎨⎪⎧5=3k +b ,-9=-4k +b ,∴⎩⎪⎨⎪⎧k =2,b =-1,∴一次函数的解析式为y =2x -1;(2)∵点C (m ,2)在y =2x -1上,∴2=2m -1,∴m =32,∴点C 的坐标为(32,2).方法总结:解答此题时,要注意一次函数的一次项系数k ≠0这一条件,所以求出结果要注意检验一下.【类型二】 由函数图象确定一次函数解析式如图,一次函数的图象与x 轴、y 轴分别相交于A ,B 两点,如果A 点的坐标为(2,0),且OA =OB ,试求一次函数的解析式.解析:先求出点B 的坐标,再根据待定系数法即可求得函数解析式.解:∵OA =OB ,A 点的坐标为(2,0),∴点B 的坐标为(0,-2).设直线AB 的解析式为y =kx +b (k ≠0),则⎩⎪⎨⎪⎧2k +b =0,b =-2,解得⎩⎪⎨⎪⎧k =1,b =-2,∴一次函数的解析式为y =x -2. 方法总结:本题考查用待定系数法求函数解析式,解题关键是利用所给条件得到关键点的坐标,进而求得函数解析式. 【类型三】 由三角形的面积确定一次函数解析式如图,点B 的坐标为(-2,0),AB 垂直x 轴于点B ,交直线l 于点A ,如果△ABO 的面积为3,求直线l 的解析式.解析:△AOB 面积等于OB 与AB 乘积的一半.根据OB 与已知面积求出AB 的长,确定出A 点坐标.设直线l 解析式为y =kx ,将A 点坐标代入求出k 的值,即可确定出直线l 的解析式.解:∵点B 的坐标为(-2,0),∴OB =2.∵S △AOB =12OB ·AB =3,∴12×2×AB =3,∴AB =3,即A (-2,-3).设直线l 的解析式为y =kx ,将A 点坐标代入得-3=-2k ,即k =32,则直线l 的解析式为y =32x .方法总结:解决本题的关键是根据直线与坐标轴围成三角形的面积确定另一个点的坐标.【类型四】 利用图形变换确定一次函数解析式已知一次函数y =kx +b 的图象过点(1,2),且其图象可由正比例函数y =kx 向下平移4个单位得到,求一次函数的解析式.解析:根据题设得到关于k ,b 的方程组,然后求出k 的值即可.解:把(1,2)代入y =kx +b 得k +b =2.∵y =kx 向下平移4个单位得到y =kx +b ,∴b =-4,∴k -4=2,解得k =6.∴一次函数的解析式为y =6x -4.方法总结:一次函数y =kx +b (k 、b 为常数,k ≠0)的图象为直线,当直线平移时k 不变,当向上平移m 个单位,则平移后直线的解析式为y =kx +b +m .【类型五】 由实际问题确定一次函数解析式已知水银体温计的读数y (℃)与水银柱的长度x (cm)之间是一次函数关系.现有一支水银体温计,其部分刻度线不清晰(如图),表中记录的是该体温计部分清晰刻度线及其对应水银柱的长度.水银柱的长度x (cm) 4.2 … 8.2 9.8体温计的读数y (℃)35.0…40.042.0 (1)求y 关于x 的函数关系式(不需要写出函数自变量的取值范围);(2)用该体温计测体温时,水银柱的长度为6.2cm ,求此时体温计的读数.解析:(1)设y 关于x 的函数关系式为y =kx +b ,由统计表的数据建立方程组求出k ,b 即可;(2)当x =6.2时,代入(1)的解析式就可以求出y 的值.解:(1)设y 关于x 的函数关系式为y =kx +b ,由题意,得⎩⎪⎨⎪⎧35.0=4.2k +b ,40.0=8.2k +b ,解得⎩⎪⎨⎪⎧k =1.25,b =29.75,∴y =1.25x +29.75.∴y 关于x 的函数关系式为y =1.25x +29.75;(2)当x =6.2时,y =1.25×6.2+29.75=37.5.答:此时体温计的读数为37.5℃. 方法总结:本题考查了待定系数法求一次函数的解析式的运用,由解析式根据自变量的值求函数值的运用,解答时求出函数的解析式是关键.【类型六】 与确定函数解析式有关的综合性问题如图,A 、B 是分别在x 轴上位于原点左右侧的点,点P (2,m )在第一象限内,直线P A 交y 轴于点C (0,2),直线PB 交y 轴于点D ,S △AOP =12.(1)求点A 的坐标及m 的值; (2)求直线AP 的解析式;(3)若S △BOP =S △DOP ,求直线BD 的解析式.解析:(1)S △POA =S △AOC +S △COP ,根据三角形面积公式得到12×OA ×2+12×2×2=12,可计算出OA =10,则A 点坐标为(-10,0),然后再利用S △AOP =12×10×m =12求出m ;(2)已知A 点和C 点坐标,可利用待定系数法确定直线AP 的解析式;(3)利用三角形面积公式由S △BOP =S △DOP 得PB =PD ,即点P 为BD 的中点,则可确定B 点坐标为(4,0),D 点坐标为(0,245),然后利用待定系数法确定直线BD 的解析式.解:(1)∵S △POA =S △AOC +S △COP ,∴12×OA ×2+12×2×2=12,∴OA =10,∴A点坐标为(-10,0).∵S △AOP =12×10×m =12,∴m =125;(2)设直线AP 的解析式为y =kx +b ,把A (-10,0),C (0,2)代入得⎩⎪⎨⎪⎧-10k +b =0,b =2,解得⎩⎪⎨⎪⎧k =15,b =2,∴直线AP 的解析式为y =15x +2;(3)∵S △BOP =S △DOP ,∴PB =PD ,即点P为BD 的中点,∴B 点坐标为(4,0),D 点坐标为⎝⎛⎭⎫0,245.设直线BD 的解析式为y =k ′x +b ′,把B (4,0),D ⎝⎛⎭⎫0,245代入得⎩⎪⎨⎪⎧4k ′+b ′=0,b ′=245,解得⎩⎨⎧k ′=-65,b ′=245,∴直线BD 的解析式为y =-65x +245.三、板书设计1.待定系数法的定义2.用待定系数法求一次函数解析式 教学反思 教学中,要让学生通过自主讨论、交流,来探究学习中碰到的问题,教师从中点拨、引导,并和学生一起学习,探讨,真正做到教学相长.。

怎样确定一次函数的解析式

怎样确定一次函数的解析式

安徽省蒙城县板桥中学 张飞轮 邮编 233529 E-mail zfl6732@怎样确定一次函数的解析式一次函数及其图像是初中代数的重要内容,也是高中解析几何的基石,更是中考的重点考查内容。

其中求一次函数解析式就是一类常见题型。

现以部分中考题为例介绍几种求一次函数解析式的常见题型。

希望对同学们的学习有所帮助。

确定一次函数的解析式步骤:先设待求函数的关系式(其中含有未知常数系数即k 和b 的值),再根据条件列出方程,求出未知系数,从而得到所求结果。

一、根据定义:一般地,如果变量y 与变量x 有关系式y= kx+b (k,b 是常数,且k 不为0),那么,y 叫x 的一次函数。

已知函数y m x m =-+-()3328是一次函数,求其解析式。

解:由一次函数定义知m m 28130-=-≠⎧⎨⎩∴=±≠⎧⎨⎩m m 33 ∴=-m 3,故一次函数的解析式为y x =-+33注意:利用定义求一次函数y kx b =+解析式时,要保证k ≠0。

如本例中应保证m -≠30二、根据语言叙述已知一次函数的图象过点(3,5)与(-4,-9),求这个一次函数的解析式。

解:设这个一次函数的解析式为:y= kx+b ……一设因为y= kx+b 的图象过点(3,5)与(-4,-9),所以3549k b k b +=⎧⎫⎨⎬-+=-⎩⎭……二代 解得21k b =⎧⎫⎨⎬=-⎩⎭……三解 这个一次函数的解析式为y=2x-1……四写三、根据图象(2007陕西)如图2,一次函数图象经过点A图象交于点B ,则该一次函数的表达式为( )BA .2y x =-+B .2y x =+C .2y x =-D .2y x =-- 图2解: 设这个一次函数解析式为y =kx +b ,根据题意列方程组得:102k b k b -+=⎧⎨+=⎩ 解方程组得1 2k b =⎧⎨=⎩ 所以这个一次函数解析式为y =x +2.四、根据表格信息、(2007甘肃白银等7市)某产品每件成本10元,试销阶段每件产品的销售价x (元)与产品的日销售量y (件)之间的关系如下表:若日销售量y 是销售价x 的一次函数.(1)求出日销售量y (件)与销售价x (元)的函数关系式;(2)求销售价定为30元时,每日的销售利润.解:(1)设此一次函数解析式为.y kx b =+则1525,2020.k b k b +=⎧⎨+=⎩ 解得k =-1,b =40. 即一次函数解析式为40y x =-+.(2)每日的销售量为y =-30+40=10件, 所获销售利润为(30-10)×10=200元五、根据图象平移特点(2007浙江湖州)将直线y =2x 向右平移2个单位所得的直线的解析式是( )。

一次函数的应用题分类总结整理剖析

一次函数的应用题分类总结整理剖析

一次函数的应用题分类总结整理剖析一次函数应用一、确定解析式的几种方法:1.直接写出一次函数表达式,根据实际意义解决相应问题;(直接法)2.利用待定系数法构建函数表达式,已经明确函数类型;(待定系数法)3.利用问题中各个量之间的关系,变形推导所求两个变量之间的函数关系式;(等式变形法)二、重点题型1.根据各类信息猜测函数类型为一次函数,并验证猜想;2.运用函数思想,构建函数模型解决(最值、决策)问题。

一)根据实际意义直接写出一次函数表达式,然后解决相应问题特点:当所给问题中的两个变量间的关系非常明了时,可以根据二者之间的关系直接写出关系式,然后解决问题。

例1:某办公用品销售商店推出两种优惠方法:①购1个书包,赠送1支水性笔;②购书包和水性笔一律按9折优惠。

书包每个定价20元,水性笔每支定价5元。

XXX和同学需买4个书包,水性笔若干支(不少于4支)。

1)分别写出两种优惠方法购买费用y(元)与所买水性笔支数x(支)之间的函数关系式;直接法:对于第一种优惠方法,每个书包都赠送1支水性笔,所以购买4个书包需要买4支水性笔,总共需要花费4×20+4×5=100元。

因此,y=100.对于第二种优惠方法,购买4个书包和4支水性笔需要花费4×20×0.9+4×5×0.9=82.8元。

因此,y=82.8-0.9x。

2)对x的取值情况进行分析,说明按哪种优惠方法购买比较便宜;当0≤x≤4时,第一种优惠方法更便宜;当x>4时,第二种优惠方法更便宜。

3)XXX和同学需买这种书包4个和水性笔12支,请你设计怎样购买最经济。

由于第一种优惠方法总共需要花费100元,而第二种优惠方法的费用函数为y=82.8-0.9x,因此需要求解当x=12时,y 的值为多少。

代入公式得到y=71.4元。

因此,购买4个书包和12支水性笔的最经济方法是选择第二种优惠方法。

例2:某实验中学组织学生到距学校6千米的XXX去参观,学生XXX因事没能乘上学校的校车,于是准备在学校门口改乘出租车去XXX,出租车的收费标准为:3千米以下(含3千米)收费8元,3千米以上,每增加1千米,收费1.8元。

待定系数法确定一次函数解析式教学实践与反思

待定系数法确定一次函数解析式教学实践与反思

待定系数法确定一次函数解析式教学实践与反思一、实践过程在初中数学教学中,确定一次函数解析式是一个重要的教学内容。

本文将介绍一种待定系数法确定一次函数解析式的教学实践过程,并对该教学方法进行反思。

1. 准备工作在教学前,需要准备一些必要的资料和工具,包括练习册、黑板、白板等。

2. 引入引导学生复习一次函数的定义和性质,并举例说明一次函数在平面直角坐标系中的图像特征。

然后,引入待定系数法的概念,并解释这种方法的作用和步骤。

3. 实践接着,组织学生进行实践。

教师将一些例题写在黑板上,并讲解求解过程。

学生可以跟随教师的步骤进行练习,逐渐掌握这种方法。

学生也需要自己尝试解决一些问题,如:给出一次函数的图像特征,求函数解析式。

4. 讲解在学生完成练习后,需要进行讲解。

教师应该对学生练习过程中可能遇到的问题进行解答,并总结该方法的适用范围、优缺点等。

5. 总结在教学结束后,需要对本次教学进行总结。

学生需要总结自己的学习体会,认真听取教师的反馈和建议,以改进自己的学习方法。

二、反思与展望在实践过程中,待定系数法的适用范围相对较窄,只适用于一些简单的一次函数求解,对于难度较大的问题可能不是很实用。

学生在实践中也容易出现求解过程中的疏漏、错误等问题,需要教师进行及时的指导和纠正,以提高学生的学习效果。

对于待定系数法确定一次函数解析式这一教学内容,我们可以进一步完善教学方法,提高教学效果。

可以增加实践环节的难度,引导学生练习一些较为复杂的问题,提高学生的解题能力。

可以引入一些实例进行讲解,让学生更加深入了解待定系数法的作用和原理。

可以提供适当的练习资源,让学生在课余时间进行练习,巩固所学知识。

待定系数法是一种简单、实用的一次函数解析式确定方法,适用于初中数学教学。

通过对教学方法的不断完善和调整,可以让学生更好地掌握这种方法,提高数学解题能力和综合素质。

一次函数解析式的确定

一次函数解析式的确定

知识点基本要求略高要求较高要求一次 函数理解正比例函数;能结合具体情境了解一次函数的意义,会画一次函数的图象;理解一次函数的性质会根据已知条件确定一次函数的解析式;会根据一次函数的解析式求其图象与坐标轴的交点坐标;能根据一次函数的图象求二元一次方程组的近似解能用一次函数解决实际问题一、用待定系数法求一次函数解析式先设出函数解析式,再根据条件确定解析式中未知的系数,从而具体写出这个式子的方法,叫做待字系数法.用待定系数法求函数解析式的一般步骤: ①根据已知条件写出含有待定系数的解析式;②将x y ,的几对值,或图象上的几个点的坐标代入上述的解析式中,得到以待定系数为未知数的方程或方程组;③解方程(组),得到待定系数的值;④将求出的待定系数代回所求的函数解析式中,得到所求的函数解析式.一、一次函数解析式的确定【例1】 已知一次函数()22312y a x a =-+-.求:①a 为何值时,一次函数的图象经过原点.②a 为何值时,一次函数的图象与y 轴交于点()0,9.【巩固】已知一次函数的图象经过(3,2)和(1,-2)两点.求这个一次函数的解析式.【例2】 已知函数图象如图所示,则此函数的解析式为( )A .2y x =-B .2(10)y x x =--<<知识点睛例题精讲中考要求一次函数解析式的确定O2121-1xyC .12y x =-D . 1(10)2y x x =--<<【巩固】如图,一次函数的图象经过M 点,与x 轴交于A 点,与y 轴交于B 点,根据图中信息求:求这个函数的解析式 .【例3】 已知y 与1x -成正比例,且当3x =时5y =.求y 与x 之间的函数关系式.【巩固】已知y n +与x m +成正比例,其中m 、n 是常数,当1x =时,1y =-,当1x =-时,7y =-.求y 与x 的函数关系.【例4】 已知一次函数y ax b =+的图象经过点(02A ,,(14B ,,()4C c c +,.⑴ 求c ;⑵ 求222a b c ab ac bc ++---的值.【巩固】求证:点A (2,2),B (1-,72),C (12,3-)在一条直线上.【例5】 如果(0)y kx k =≠的自变量增加4,函数值相应地减少16,则k 的值为( )A .4B .- 4C .14D . 14-【巩固】一次函数的图象过点()1,0,且函数值随着自变量的增大而减小,写出一个符合这个条件的一次函数解析式 .【例6】 一次函数y mx n =+(0m ≠),当25x -≤≤时,对应的y 值为07y ≤≤,求一次函数的解析式.【巩固】已知一次函数y kx b =+中自变量x 的取值范围为26x -<<,相应的函数值的范围是119y -<<,求此函数的解析式.【例7】 已知关于x 的一次函数()372y a x a =-+-的图象与y 轴交点在x 轴的上方,且y 随x 的增大而减小,求a 的取值范围.【巩固】已知函数(2)31y a x a =---,当自变量x 的取值范围为35x ≤≤时,y 既能取到大于5的值,又能取到小于3的值,则实数a 的取值范围为 .【例8】 已知一次函数y kx b =+的图象与直线21y x =+平行并且过点P (-1,2),求这个一次函数的解析式.【巩固】如图,将直线OA 向上平移1个单位,得到一个一次函数的图像,那么这个一次函数的解析式是 .1.如果每盒羽毛球有20个,每盒售价为24元,那么羽毛球的售价y(元)与羽毛球个数x(个)之间的关系式为()A.24y x=B.20y x=C.65y x=D.56y x=2.已知y是x一次函数,表给出了部分对应值,m的值是.x1-25y51-m3.已知:y与2x+成正比例,且1x=时,6y=-.⑴求y与x之间的函数关系式;⑵点()2a,在这个函数的图像上,求a的值.4.一条直线l经过不同的三点A(a,b),B(b,a),C(a b-,b a-),那么直线l经过象限.5.已知一次函数的图象过点()0,3与()2,1,则这个一次函数y随x的增大而.6.已知一次函数y kx b=+,当31x-≤≤时,对应的y值为19y≤≤,求kb的值.课后作业。

一次函数的解集和解析式

一次函数的解集和解析式

一次函数的解集和解析式在数学中,一次函数是最简单且常见的函数之一。

一次函数也被称为线性函数,其特点是变量的最高次数为1。

解析式是一次函数的一种表示方式,可以用来描述函数的性质和特点。

本文将讨论一次函数的解集和解析式,并分析其应用及其实际意义。

一、一次函数的定义一次函数是指形如y = ax + b的函数,其中a和b是常数,x是自变量,y是因变量。

其中,a决定了函数的斜率(即直线的倾斜程度),b 决定了函数的截距(即与y轴的交点)。

二、解集的确定为了确定一次函数的解集,需要找到满足函数等式的x和y的值。

通常,解集表示了函数在坐标系中的图像,也就是直线。

考虑以下几种情况:1. 若a≠0,则直线斜率不为零。

此时,一次函数对应的图像是一条斜率不为零的直线。

解集为整个实数集,表示函数在坐标系中的每个点上的取值。

2. 若a=0,b≠0,则直线斜率为零且不与y轴平行。

此时,一次函数对应的图像是一条水平线。

解集为空集,表示函数在坐标系中没有交点。

3. 若a=0,b=0,则直线斜率为零且与y轴平行。

此时,一次函数对应的图像是一条与x轴平行的直线。

解集为整个实数集,表示函数在坐标系中的每个点上的取值。

三、解析式的推导为了推导一次函数的解析式,需要根据已知条件来确定a和b的值。

最常见的情况是已知一次函数的图像上存在两个点(x₁, y₁)和(x₂, y₂)。

根据这两个点的坐标,可以得到以下两个方程:y₁ = ax₁ + by₂ = ax₂ + b通过解这个方程组,可以得到a和b的值。

具体做法是将第一个方程两边同时减去第二个方程,得到:y₁ - y₂ = a(x₁ - x₂)进一步整理后,可得到a的值:a = (y₁ - y₂)/(x₁ - x₂)然后,将a的值代入任意一个方程,可求得b的值:b = y₁ - ax₁最终得到一次函数的解析式为:y = (y₁ - y₂)/(x₁ - x₂) * x + y₁ - (y₁ - y₂)/(x₁ - x₂) * x₁四、应用和实际意义一次函数在数学和实际问题中都有广泛应用。

求一次函数解析式

求一次函数解析式
把x=-1时,y=0和当x=0时,y=-3.代 入y=kx=b(kǂ0)中得
-k+b=0 b=3
解得 k=3
b=3
∴这个一次函数的解析式为y=3x+3
Page 10
2. 利用图像求函数关系式 例3 :求下图中直线的函数表达式
解:设这个一次函数的解析式为y=kx+b.
∵y=kx+b的图象过点(0,3)与(1,0).
Page 21
巩固拓展 知识升华 1.利用点的坐标求函数解析式
已知一条直线与x轴交点的横坐 标为-1,与y轴交点的纵坐标为 -3,求这条直线的解析式.
Page 22
∴ k=2 ∴ y=2x+b ∵ y=2x+b 的图象过点(2,-1).
∴ -1=2×2 - b 解得 b=-5 ∴这个一次函数的解析式为y=2x-5
Page 8
变式3.利用点的坐标求函数解析式
已知一条直线与x轴交点的横坐 标为-1,与y轴交点的纵坐标为 -3,求这条直线的解析式.
Page 9
解:设这条直线的解析式y=kx=b(kǂ0)
解:把 y=xk=x1+时b(,kyǂ=01)和中当,x=得2时,y=3.代入
k+b=1 解得 k=2
2k+b=3
b=-1
∴这个一次函数的解析式为y=2x-1
Page 5
例2:已知一次函数的图象经过点(3,5)与 (-4,-9).求这个一次函数的解析式.
解:设这个一次函数的解析式为y=kx+b(k≠0)
Page 3
1.利用点的坐标求函数解析式
例1、已知一次函数y=kx-2(k≠0) , 且过点(1,3),求函数解析式
解: 把(1,3)代入一次函数y=kx-2( k≠0 )中, 得 k-2=3 解得,k=5

一次函数解析式的求法

一次函数解析式的求法

第14讲确定一次函数表达式(A)【知识回顾】1、一次函数的形式:(其中k、b是常数,);当b=0时,一次函数 ( )叫做正比例函数;正比例函数是特殊的一次函数.2、一次函数的图像是一条。

正比例函数的图像是必定过的一条直线.3、一次函数(),如果几个一次函数的k相同b不同则这几个一次函数的图像(直线);如果几个一次函数的k不同b相同则这几个一次函数的图像(直线)与轴相交于同一点(,)【基础知识精讲】一、待定系数法:1、我们要画出一次函数的图像只要知道2个点的坐标就可以确定,利用一次函数关系式可以求出来;反过来如果知道一次函数y=kx+b的2个点的坐标或者2组x和y 的值,那么就可以用待定系数法求解出一次函数关系式。

2、待定系数法:先设待求函数关系式(其中含有未知常数系数),再根据条件列出方程或方程组,求出未知系数,从而得到所求结果的方法。

例1:一次函数的图象经过点(3,3)和(1,-1).求它的函数关系式3、用待定系数法求函数的步骤:(1)设:设出函数一般形式;(2)列:代入特殊点的坐标,列出方程(组)(3)解:解方程(组),求出待定系数(4)写:写出函数关系式。

练习、1、一次函数的图像经过了点(2,3),并且与y轴相交于(0,6)。

求此一次函数的关系式。

2:一次函数的图像经过了点(2,3),并且与x轴相交于(6,0)。

求此一次函数的关系式。

二、直线的平移:函数y=kx+b由正比例函数y=kx上下平移得到【例2】1、把直线向上平移3个单位,就得到直线,它经过象限2、一次函数的图象过点(,),且与直线平行,则其解析式为()、、、、变式训练:把一次函数向平移个单位得到;【例3】、一次函数图像过点(3,7),并且与正比例函数y=2x图像平行,求一次函数关系式。

三、交点问题例4、1.直线与直线的交点在第象限。

2.若直线经过一次函数的交点,则的值是;3.一次函数图像与函数平行,并且与的交点是(,),请确定一次函数的函数关系式。

五种类型一次函数解析式的确定

五种类型一次函数解析式的确定

五种类型一次函数解析式的确定一次函数,也叫线性函数,是指形如y = kx + b的函数,其中k和b是常数,且k ≠ 0。

一次函数的图像是一条直线。

下面将详细解析五种类型一次函数的确定。

1.斜率为正的一次函数:斜率为正表示直线向上倾斜。

形如y = kx + b,其中k > 0。

当x增大时,y也增大,表示函数具有正相关的关系。

斜率k表示每单位x变化时y的变化量,也就是直线的斜率。

2.斜率为负的一次函数:斜率为负表示直线向下倾斜。

形如y = kx + b,其中k < 0。

当x增大时,y减小,表示函数具有负相关的关系。

斜率k的绝对值表示每单位x变化时y的变化量,斜率的负号表示函数的方向。

3.斜率为零的一次函数:斜率为零表示直线平行于x轴,与y值无关。

形如y=b,其中b为常数。

无论x取何值,y始终为常数b。

该类型的一次函数表示两个变量之间没有线性关系。

4.斜率不存在的一次函数:斜率不存在表示直线垂直于x轴。

由于垂直线没有斜率,所以没有斜率的一次函数只有形如x=k的形式,其中k为常数。

这样的函数表示x取k时,y的取值可以是任意实数。

5.斜率为1的一次函数:斜率为1表示直线与x轴夹角为45度,即倾斜程度适中。

形如y=x+b,其中b为常数。

该类型的一次函数表示x的增加和y的增加的变化率相同,图像上的点都在45度直线上。

以上是五种类型一次函数的解析式的确定。

利用这些解析式,我们可以进一步进行函数的分析和计算,例如求解其零点、斜率、截距等。

一次函数是数学中非常基础和重要的概念,通过研究一次函数,我们可以更好地理解线性关系和直线的性质。

根据一次函数的图象确定解析式

根据一次函数的图象确定解析式
3、根据以上所画的图像,你有什么发现?
一、“发现”小练习
1、(1)一次函数y=kx+b,当x=0时,y= ,横坐标为0点在 上; 当y=0时,x= ,纵坐标为0点在 上。 (2)直线y=4x-3过点(_____,0)、(0, );
2、直线y=3x+2与的 ,相同,所以这两条直线 ,同一点, 且交点坐标 ;直线y=5x-1与y=5x-4的 相同,所以这两条 直线 .
3、直线y=2x-3可以由直线y=2x经过 单位而得到; 直线y=-3x+2可以由直线y=-3x经过 而得到;
4、有下列函数:①y=2x+1, ②y=-3x+4,③y=0.5x,④y=x-6; 其中过原点的直线是________;函数y随x的增大而增大的是 __________;函数y随x的增大而减小的是__________; 图象在第一、二、三象限的是________ 。图象在第一、二、四象限 的是________ 。图象在第一、三、四象限的是________ .
y=2x
(1,2)
k﹥0时图象经过一、 三象限,y随x的增 大而增大;
(0,0)和 (1,k)
(1,-2)
y=-2x
k﹤0时图象经过二、 四象限,y随x的增 大而减小;
二、前置研究
1、在同一坐标系作出下列函数的图象: (1) y = 2x (2) y = 2x+1 (2)y = 2x- 2 2、在同一坐标系作出下列函数的图象: (1) y =- 2x (2) y = -2x+1 (2)y = -2x- 2
一、复习巩固
1、正比例函数:y=kx(k是常 数,k≠0)
2、 一次函数 :y=kx+b(k, b为常数,k≠0)
当b=0时,y=kx+b即y=kx,所以说 正比例函数是一种特殊的一次函数.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

五种类型一次函数解析式的确定
确定一次函数的解析式,是一次函数学习的重要内容。

下面就确定一次函数的解析式的题型作如下的归纳,供同学们学习时参考。

一、根据直线的解析式和图像上一个点的坐标,确定函数的解析式
例1、若函数y=3x+b经过点(2,-6),求函数的解析式。

分析:因为,函数y=3x+b经过点(2,-6),
所以,点的坐标一定满足函数的关系式,所以,只需把x=2,y=-6代入解析式中,就可以求出b的值。

函数的解析式就确定出来了。

解:
因为,函数y=3x+b经过点(2,-6),
所以,把x=2,y=-6代入解析式中,
得:-6=3×2+b,
解得:b=-12,
所以,函数的解析式是:y=3x-12.
二、根据直线经过两个点的坐标,确定函数的解析式
例2、直线y=kx+b的图像经过A(3,4)和点B(2,7),
求函数的表达式。

分析:把点的坐标分别代入函数的表达式,用含k的代数式分别表示b,
因为b是同一个,这样建立起一个关于k的一元一次方程,这样就可以把k的值求出来,然后,就转化成例1的问题了。

解:
因为,直线y=kx+b的图像经过A(3,4)和点B(2,7),
所以,4=3k+b,7=2k+b,
所以,b=4-3k,b=7-2k,
所以,4-3k=7-2k,
解得:k=-3,
所以,函数变为:y=-3x+b,
把x=3,y=4代入上式中,得:4=-3×3+b,
解得:b=13,
所以,一次函数的解析式为:y=-3x+13。

三、根据函数的图像,确定函数的解析式
例3、如图1表示一辆汽车油箱里剩余油量y(升)与行驶时间x(小时)之间的关系.
求油箱里所剩油y(升)与行驶时间x(小时)之间的函数关系式,并且确定自变量x的取值范围。

分析:根据图形是线段,是直线上的一部分,所以,我们可以确定油箱里所剩油y(升)是行驶时间x(小时)的一次函数,明白这些后,就可以利用设函数解析式的方法去求函数的解析式。

解:
因为,函数的图像是直线,
所以,油箱里所剩油y(升)是行驶时间x(小时)的一次函数,
设:一次函数的表达式为:y=kx+b,
因为,图像经过点A(0,40),B(8,0),
所以,把x=0,y=40,x=8,y=0,分别代入y=kx+b中,
得:40=k×0+b,0=8k+b
解得:k=-5,b=40,
所以,一次函数的表达式为:y=-5x+40。

当汽车没有行驶时,油箱里的油是40升,此时,行驶的时间是0小时;
当汽车油箱里的油是0升,此时,行驶的时间是8小时,
所以,自变量x的范围是:0≤x≤8.
四、根据平移规律,确定函数的解析式
例4、如图2,将直线OA向上平移1个单位,得到一个一次函数的图像,那么这个一次函数的解析式是.(08年上海市)
分析:仔细观察图像,直线OA经过坐标原点,所以,直线OA表示的一个正比例函数的图像,并且当x=2时y=4,这样,我们就可以求出,平移的起始函数的解析式,根据函数平移的规律,就可以确定一次函数的解析式。

把正比例函数y=kx(k≠0)的图像向上或者向下平移|b|个单位,就得到一次函数:y=kx+b (k≠0,b≠0)的图像。

具体平移要领:
当b>0时,把正比例函数y=kx(k≠0)的图像向上平移b个单位,就得到一次函数:y=kx+b (k≠0)的图像。

当b<0时,把正比例函数y=kx(k≠0)的图像向下平移|b|个单位,就得到一次函数:y=kx+b (k≠0)的图像。

解:
因为,直线OA经过坐标原点,
所以,直线OA表示的一个正比例函数的图像,
设y=kx,
把x=2,y=4代入上式,得:4=2k,
解得:k=2,
所以,正比例函数的解析式为:y=2x,
所以,直线向上平移1个单位,所得解析式为:y=2x+1,
所以,这个一次函数的解析式是y=2x+1。

五、根据直线的对称性,确定函数的解析式
例5、已知直线y=kx+b与直线y= -3x+7关于y轴对称,求k、b的值。

分析:直线y=kx+b与直线y= -3x+7关于y轴对称,所以,对称点的横坐标互为相反数,纵坐标保持不变,这可以是解题的理论依据,当然,也可以从已知直线解析式的图像上,确定出两个点的坐标,分别求出它们关于y轴的对称点的坐标,然后利用待定系数法,计算出k、b的值。

解法1:
设A(x,y)是直线y= -3x+7上一个点,
其关于y轴对称的点的坐标为(-x,y ),
则有:y= -3x+7,y= -kx+b
整理,得:-3x+7= -kx+b,
比较对应项,得:k=3,b=7。

解法2:设A(m,n)是直线y= -3x+7上一个点,
其关于y轴对称的点的坐标为(a,b),
则有:b=n,m=-a,
因为,A(m,n)是直线y= -3x+7上一个点,
所以,点的坐标满足函数的表达式,
即n=-3×m+7,
把n=b ,m=-a ,代入上式,得:
b=-3×(-a )+7,
整理,得:b=3a+7,即y=3x+7,它实际上与直线y=kx+b 是同一条直线, 比较对应项,得:k=3,b=7。

解法3:
因为,y=kx+b ,所以,x=
k
b y -, 因为,y= -3x +7,所以,x=37--y , 因为,直线y=kx+b 与直线y= -3x +7关于y 轴对称,
所以,两直线上点的坐标,都满足纵坐标相同,横坐标坐标互为相反数, 所以,k b y -= -37--y =3
7-y , 比较对应项,得:y-b= y-7,k=3,
所以,k=3,b= 7。

解法4、
因为,直线y= -3x +7,
所以,
当x=1时,y=-3×1+7=4,
即点的坐标(1,4);
当x=2时,y=-3×2+7=1,
即点的坐标(2,1);
因此,(1,4)、(2,1)关于y 轴对称的坐标分别为(-1,4)、(-2,1), 所以,点(-1,4)、(-2,1)都在直线y=kx+b ,
所以,⎩
⎨⎧+⨯-=+⨯-=b k b k 2114, 留一个练习:
1、已知直线y=kx+b 与直线y= -3x +7关于x 轴对称,求k 、b 的值。

2、已知直线y=kx+b 与直线y= -3x +7关于原点对称,求k 、b 的值。

参考答案:
1、k=3,b=-7.
2、k=-3,b=-7.。

相关文档
最新文档