最新优化设计-孙靖民-课后答案第6章习题解答

合集下载

机械优化设计习题参考答案--孙靖民-第四版第6章习题解答-1教学内容

机械优化设计习题参考答案--孙靖民-第四版第6章习题解答-1教学内容

第六章习题解答1.已知约束优化问题:2)(0)()1()2()(min 21222112221≤-+=≤-=⋅-+-=x x x g x x x g ts x x x f试从第k 次的迭代点[]T k x21)(-= 出发,沿由(-1 1)区间的随机数0.562和-0.254所确定的方向进行搜索,完成一次迭代,获取一个新的迭代点)1(+k x 。

并作图画出目标函数的等值线、可行域和本次迭代的搜索路线。

[解] 1)确定本次迭代的随机方向:[]T TRS 0.4120.9110.2540.5620.2540.2540.5620.5622222-=⎥⎥⎦⎤⎢⎢⎣⎡++=2) 用公式:R k k S x xα+=+)()1( 计算新的迭代点。

步长α取为搜索到约束边界上的最大步长。

到第二个约束边界上的步长可取为2,则:176.1)412.0(22822.0911.0212212111=-⨯+=+==⨯+-=+=++R kk R k k S x x S x xαα⎥⎦⎤⎢⎣⎡=+176.1822.01k X即: 该约束优化问题的目标函数的等值线、可行域和本次迭代的搜索路线如下图所示。

2.已知约束优化问题:)(0)(025)(124)(m in 231222211221≤-=≤-=≤-+=⋅--=x x g x x g x x x g ts x x x f试以[][][]T T T x x x 33,14,12030201===为复合形的初始顶点,用复合形法进行两次迭代计算。

[解] 1)计算初始复合形顶点的目标函数值,并判断各顶点是否为可行点:[][][]935120101-=⇒==⇒=-=⇒=030302023314f x f x f x 经判断,各顶点均为可行点,其中,为最坏点。

为最好点,0203x x2)计算去掉最坏点 02x 后的复合形的中心点:⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡=⎪⎪⎭⎫ ⎝⎛⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡==∑≠=3325.221132103312i i i c x Lx3)计算反射点1R x (取反射系数3.1=α)20.693.30.551422.51.322.5)(1102001-=⎥⎦⎤⎢⎣⎡=⎪⎪⎭⎫ ⎝⎛⎥⎦⎤⎢⎣⎡-⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡=-+=R R c c R f x x x x x 值为可行点,其目标函数经判断α 4)去掉最坏点1R0301x x x x 和,,由02构成新的复合形,在新的复合形中 为最坏点为最好点,011R x x ,进行新的一轮迭代。

第6章课后答案汇总

第6章课后答案汇总

6.1解:1.计算截面特征值工字形截面A=20⨯500⨯2+12⨯450=25400mm2I x=500⨯4903/12-488⨯4503/12=11.9629⨯108mm4;I y=2⨯5003⨯20/12=4.1667⨯108mm4 mm4;i x=217mm;i y=128mm;2.刚度验算λx=6000//217=27.65;λy=46.88λx、λy<[λ] 刚度满足要求3.强度验算因无截面稍弱无需验算截面强度4.整体稳定验算:焊接工字形截面翼缘焰切边x、y轴都属于b类截面ϕmin=ϕy=0.8704σ=N/ϕA=4500⨯103/(0.8704⨯25400) =203.54N/mm2 <f =205 N/mm2杆件整体稳定满足要求5.局部稳定验算:翼缘b1/t=244/20=12.2 <(10+0.1λ)(235/f y)1/2=14.69腹板h0/t w=450/12=37.5 <(25+0.5λ)(235/f y)1/2 = 48.44板件局部稳定满足要求(λ为λx、λy大者,λ=46.88)6.2解:假定λ=45 按b类截面查ϕ=0.878A req=N/ϕmin f=4500⨯103/(0.807⨯215)=23839 mm2i xreq=6000/45=133.33mm;h req≈ i xreq/α1=133.33/0.43=310 mm;i y=3000/45=66.67mm;b req≈ i yreq/α1=66.67/0.24=278 mm;(1)设计工字形截面参考6.1题截面尺寸,取翼缘宽度450厚20,腹板高度480厚度12验算。

A=20⨯450⨯2+12⨯480=23760mm2I x=450⨯5203/12-438⨯4803/12=13.3619⨯108mm4;I y=2⨯4503⨯20/12=3.0375⨯108 mm4;i x=228.1mm;i y=113.07mm;λx=6000/236.5=26.3;λy=3000/112.5=26.53λx、λy<[λ] 刚度满足要求杆件整体稳定验算:焊接工字形截面翼缘焰切边x、y轴都属于b类截面λy=26.53 ϕmin=ϕy=0.948σ=N/ϕA=4500⨯103/(0.948⨯23760) =199.78N/mm2 <f=205 N/mm2 整体稳定满足要求板件局部稳定验算:λx、λy<30 取λ=30翼缘b1/t=219/20=10.95 <(10+0.1λ)(235/f y)1/2=13腹板h0/t w=480/12=40 ≤(25+0.5λ)(235/f y)1/2 =40局部稳定满足要求在侧向加支撑后截面面积节约了钢材6.90%(25400-23760)/23760=6.90%(2)选H型钢HW400⨯400(#400⨯408) A=25150mm2I x=7.11⨯108mm4;I y=2.38⨯108 mm4;i x=168mm;i y=97.3mm;λx=6000/168=35.71;λy=3000/97.3=30.83(两个方向长细比较接近)λx >λy由b类λx查得0.9153σ=N/ϕA=4500⨯103/(0.9153⨯25150) =195.48N/mm2 <f=205 N/mm2 (25150-23760)/ 23760=5.85%翼缘b1/t=193.5/21=9.21 <(10+0.1λ)(235/f y)1/2=13.57腹板h0/t w=358/21=17 ≤(25+0.5λ)(235/f y)1/2 =42.86局部稳定满足要求H型钢比组合截面用钢多(25150-23760)/ 23760=5.85%[截面选择不合适例子]H700⨯300 A=23550mm2I x=20.1⨯108mm4;I y=1.08⨯108 mm4;i x=293mm;i y=67.8mm;λx=6000/293=20.48;λy=3000/67.8=44.25λy>λx由b类λy查得0.881σ=N/ϕA=4500⨯103/(0.881⨯23550) =216.89N/mm2 >f整体稳定不满足要求((两个方向长细相差较大)选HN800⨯300(792⨯300) A=24340mm2I x=25.4⨯108mm4;I y=0.993⨯108 mm4;i x=323mm;i y=63.9mm;λx=6000/323=18.58;λy=3000/63.9=46.95λy>λx由b类λy查得0.87σ=N/ϕA=4500⨯103/(0.87⨯24340) =212.51N/mm2 <f整体稳定满足要求翼缘b1/t=143/22=6.5 <(10+0.1λ)(235/f y)1/2=14.7腹板h0/t w=748/14=53.43>(25+0.5λ)(235/f y)1/2 =48.48腹板局部稳定不满足要求6.3解:(1)A=320⨯20⨯2+10⨯320=16000mm2I x=320⨯3603/12-310⨯3203/12=3.9723⨯108mm4;I y=2⨯3203⨯20/12=1.0923⨯108 mm4;i x=157.6mm;i y=82.6mm;λx=10000/157.6=63.5;λy=10000/82.6=121.1焊接工字形截面翼缘为剪切边x、y轴分别属于b、c类截面ϕx=0.7885 ϕy=0.3746ϕmin=ϕy=0.3746N=fϕA=205⨯ (0.3746⨯16000) =1228.69kN(1230)翼缘b1/t=155/20=7.75 <(10+0.1λ)(235/f y)1/2=22.11腹板h0/t w=320/10=32<(25+0.5λ)(235/f y)1/2 =85.55(2)A=16000mm2I x=400⨯4323/12-392⨯4003/12=5.9645⨯108mm4;I y=2⨯4003⨯16/12=1.7067⨯108 mm4;i x=193.1mm;i y=103.2mm;λx=10000/193.1=51.8;λy=10000/103.2=96.9焊接工字形截面翼缘为剪切边x、y轴分别属于b、c类截面ϕx=0.848 ϕy=0.4776ϕmin=ϕy=0.4776N=fϕA=215⨯ (0.4776⨯16000) =1642.94kN(1230)翼缘b1/t=196/16=12.25 <(10+0.1λ)(235/f y)1/2=19.69腹板h0/t w=400/8=50<(25+0.5λ)(235/f y)1/2 =73.45结论:截面展开的承载能力高。

第六章 答案详解

第六章 答案详解
采用汉宁窗,窗函数
1⎡ ⎛ nπ ⎞⎤ ω (n ) = ⎢1 − cos⎜ ⎟⎥ R51 (n ) 2 25 ⎣ ⎝ ⎠⎦
h (n ) =h d (n ) ω (n ) ,分别代入 h d (n ) 与 ω (n ) 可求出 h (n ) 。 H e
( ) = ∑ h(n)e
jω 50 n =0
− jωn
H (e ) = ∑ h (n )e
jω 50 n=0
− jn ω
jω ,取模即得幅度响应 H e .
( )
N −1 = 25, ω 0 − ω C = 0.3π , ω 0 + ω C = 0.7π 2 带阻数字滤波器的单位脉冲响应为
12 解 N=51, α =
hBS (n) =
⎪ ⎪ π (n − 25) =⎨ ⎪1 − 2ω C = 0.6, ⎪ π ⎩ ⎡ ⎣
⎧ sin[π (n − α )] sin [ω C 1 (n − α )] sin [ω C 2 (n − α )] − ⎪ π (n − α ) + π (n − α ) π (n − α ) ⎪ = ⎨ ⎪1 − ω C 2 − ω C1 . ⎪ π ⎩
.n ≠ α .n = α
4 解 设在 ω = ω C 处对应的幅度值为 A。
(e ) = ∑ h(n)e
jω 50 n =0
− jωn
,取模可得幅度响应 H (e jω ).
13 解 N=51, α =
N −1 = 25 , 2
1 ( ) n = hd 2π
∫ω
ω 0 +ω C
0 −ω C
je − jωα e jnω d ω
n ≠ 25 n = 25
⎧ e j 0.8π (n−25 ) − e j 0.4π (n−25 ) , ⎪ ⎪ 2π (n − 25) =⎨ ⎪ j 0.2π , ⎪ ⎩

优化设计习题答案

优化设计习题答案

第一、填空题1.组成优化设计数学模型的三要素是设计变量 、 目标函数 、 约束条件。

2.函数()22121212,45f x x x x x x =+-+在024X ⎡⎤=⎢⎥⎣⎦点处的梯度为120-⎡⎤⎢⎥⎣⎦,海赛矩阵 为2442-⎡⎤⎢⎥-⎣⎦3.目标函数是一项设计所追求的指标的数学反映,因此对它最基本的要能用 来评价设计的优劣,,同时必须是设计变量的可计算函数。

4.建立优化设计数学模型的基本原则是确切反映工程实际问题,的基础上力求简洁。

5.约束条件的尺度变换常称规格化,这是为改善数学模型性态常用的一种方法。

6.随机方向法所用的步长一般按加速步长法来确定,此法是指依次迭代的步 长按一定的比例递增的方法。

7.最速下降法以负梯度方向作为搜索方向,因此最速下降法又称为梯度法,其收敛速度较 慢 。

8.二元函数在某点处取得极值的充分条件是()00f X ∇=必要条件是该点处的海赛矩阵正定9.拉格朗日乘子法的基本思想是通过增加变量将等式约束优化问题变成无 约束优化问题,这种方法又被称为升维法。

10改变复合形形状的搜索方法主要有反射,扩,收缩,压缩11坐标轮换法的基本思想是把多变量 的优化问题转化为单变量的优化问题 12.在选择约束条件时应特别注意避免出现相互矛盾的约束,,另外应当尽量减少不必要的约束。

13.目标函数是n 维变量的函数,它的函数图像只能在n+1,空间中描述出来,为了在n 维空间中反映目标函数的变化情况,常采用目标函数等值面的方法。

14.数学规划法的迭代公式是1k k k k X X d α+=+,其核心是建立搜索方向,和计算最正确步长15协调曲线法是用来解决设计目标互相矛盾的多目标优化设计问题的。

16.机械优化设计的一般过程中,建立优化设计数学模型是首要和关键的一步,它是取得正确结果的前提。

二、名词解释1.凸规划对于约束优化问题()min f X..s t ()0j g X ≤(1,2,3,,)j m =⋅⋅⋅若()f X 、()j g X (1,2,3,,)j m =⋅⋅⋅都为凸函数,则称此问题为凸规划。

(完整版)机械优化设计习题参考答案孙靖民第四版机械优化设计

(完整版)机械优化设计习题参考答案孙靖民第四版机械优化设计
1.Fibonacci法—理想方法,不常用。
2.黄金分割法(0.618法)
原理:提高搜索效率:1)每次只插一个值,利用一个前次的插值;2)每次的缩短率λ相同。左右对称。
程序:p52
(四)插值方法
1.抛物线法
原理:任意插3点:
算得: ; ;
要求:
设函数 用经过3点的抛物线 代替,有
解线代数方程
解得:
程序框图p57
网格法 ,缩小区间,继续搜索。
Monte Carlo方法 , ,随机数。
比较各次得到的 得解
遗传算法(专题)
(二)区间消去法(凸函数)
1.搜索区间的确定:高—低--高( )则区间内有极值。
2.区间消去法原理:在区间[a, b]内插两个点a1, b1保留有极值点区间,消去多余区间。
缩短率:
(三)0.618法
可行方向—约束允许的、函数减小的方向。(图)约束边界的切线与函数等高线的切线方向形成的区域。
数学模型
用内点法或混合法,取 ,
直接方法
(一)随机方向法
1.在可行域产生一个初始点 ,因 (约束),则
--(0,1)的随机数。
2.找k个随机方向,每个方向有n个方向余弦,要产生kn个随机数 , , ,随机方向的单位向量为
3.取一试验步长 ,计算每个方向的最优点
4.找出可行域中的最好点 得搜索方向 。以 为起点, 为搜索方向得 。最优点必须在可行域内或边界上,为此要逐步增加步长。

穷举下去得递推公式
3.算例
p73
4.框图p72
5.特点
作业:1. 2.
(六)变尺度法
1.引言
坐标变换
二次函数
令 为尺度变换矩阵

机械优化设计习题参考答案 孙靖民 第四版第6章习题解答-2

机械优化设计习题参考答案  孙靖民 第四版第6章习题解答-2

8. 有一汽门用弹簧,已知安装高度H1=50.8mm,安装(初始)载荷F1=272N ,最大工作载荷F2=680N ,工作行程h=10.16mm 弹簧丝用油淬火的50CrV A 钢丝,进行喷丸处理; 工作温度126°C ;要求弹簧中径为20mm ≤D2≤50mm ,弹簧总圈数4≤n1≤50,支 承圈数n2=1.75,旋绕比C ≥6;安全系数为1.2;设计一个具有重量最轻的结构方案。

[解] 1.设计变量:影响弹簧的重量的参数有弹簧钢丝直径:d ,弹簧中径D1和弹簧总圈数n1,可取这三个参数作为设计变量:即:⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=H D x x x 212.目标函数:弹簧的重量为式中 ρ――钢丝材料的容重,目标函数的表达式为3221611262101925.0108.725.0)(x x x n D d x F --⨯=⨯⨯=π3.约束条件:1)弹簧的疲劳强度应满足min S S ≥式中 2.1m i n m i n =--S S ,可取最小安全系数,按题意S ――弹簧的疲劳安全系数,由下式计算:m s s s S ττττττττα⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛-=0002式中 :劳极限,计算方法如下弹簧实际的脉动循环疲--0τ 初选弹簧钢丝直径:4mm ≤d ≤8mm ,其抗拉强度MPa b 1480=σ,取弹簧的循环工作次数大于710,则材料的脉动循环疲劳极限为MPa b 44414803.03.0'0=⨯==στ 设可靠度为90%,可靠性系数 868.0=r k ;工作温度为126°C ,温度修正系数 862.0126273344273344=+=+=T k t 再考虑到材料经喷丸处理,可提高疲劳强度10%,则弹簧实际的脉动循环疲劳极限为MPa k k t r 4.365444862.0868.01.1)1.01('00=⨯⨯⨯=+=ττ36/107.8mm kg -⨯=ρρπ12220.25n D d W =--s τ弹簧材料的剪切屈服极限,计算公式为MPa b s 74014805.05.0=⨯==στ--ατ弹簧的剪应力幅,计算公式为328d D F k a πτα= 式中 k ――曲度系数,弹簧承受变应力时,计算公式为14.02)(6.1615.04414d D C C C k ≈+--=a F ――载荷幅,其值为 N F F F a 2042/)272680(2/)(12=-=-=m τ――弹簧的平均剪应力,计算公式为328d D F k m sm πτ=式中s k ――应力修正系数,计算公式为 dD C k s /615.01615.012+=+= m F ――平均载荷,其值为 N F F F m 4762/)272680(2/)(12=+=+=由此,得到弹簧疲劳强度的约束条件为计算剪应力幅ατ:86.2186.023214.023.8308)/(6.1x x d D F d D d D F ka a =⋅==ππτα328 计算平均应力幅m τ: 21312246.74512.1212615.01x x x d D F D d d D F k m m s m +=⎪⎪⎭⎫ ⎝⎛+==33288ππτ 计算弹簧的实际疲劳安全系数S :m ms s s S τττττττττταα494.0506.14.365+=⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛-=0002 从而得到弹簧的疲劳强度约束条件为 012.1)(min 1≤-=-=SS S S x g 2)根据旋绕比的要求,得到约束条件016)(21min 2≤-=-=x x C C C x g 3)根据对弹簧中径的要求,得到约束条件050222≤-=-=≤-=-=1)4(0120)3(max max 242min 3x D D D g x D D D g 4)根据压缩弹簧的稳定性条件,要求:c F F ≤2式中 c F ――压缩弹簧稳定性的临界载荷,可按下式计算:K H D H F C ⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛--=2022085.611813.0μ 式中 K ――要求弹簧具有的刚度,按下式计算: mm N h F F K /2.4016.1027268012=-=-= 0H ――弹簧的自由高度,按下式计算:当 mm K F 16.9240.26802===λ 时, 304.20)5.0(2.1)5.0(310+-=+-=x n H λμ――长度折算系数,当弹簧一端固定,一端铰支时,取 7.0=μ;则:[][]⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎦⎤⎢⎣⎡+---+-=221398.1311304.20)5.0(268.320.3040.5)(13x x x x x F C 于是得 01680)(25≤-=-=CC C F F F F x g5)为了保证弹簧在最大载荷作用下不发生并圈现象,要求弹簧在最大载荷2F 时的高度2H 应大于压并高度b H ,由于13112)5.0()5.0(64.4016.108.50x x d n H h H H b -=-==-=-= 于是得到010123.00246.0)(131226≤--=-=x x x H H H x g b 6)为了保证弹簧具有足够的刚度,要求弹簧的刚度αK 与设计要求的刚度K 的误差小于1/100,其误差值用下式计算:401.02.40)75.1(8100/)(33241---=--=x x Gx K K K αθ式中 G ――弹簧材料的剪切弹性模量,取G=80000Mpa 。

优化设计 孙靖民 课后答案第6章习题解答-3

优化设计 孙靖民 课后答案第6章习题解答-3

9.图6-39所示为一对称的两杆支架,在支架的顶点承受一个载荷为2F=300000N , 支架之间的水平距离2B=1520mm ,若已选定壁厚T=2.5mm 钢管,密度/1083-6mm Kg ⨯=.7ρ,屈服极限700=s σMpa ,要求在满足强度与稳定性条件下设计最轻的支架尺寸。

[解] 1.建立数学模型 设计变量:⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=H D x x x 21目标函数:221422577600101.2252)(x x HB D T x f +⨯=+=πρ 约束条件: 1)圆管杆件中的压应力σ应小于或等于y ο,即y TDHHB F σπσ≤+=22于是得2122157760019098.59)(x x x x g +=2)圆管杆件中的压应力α应小于或等于压杆稳定的临界应力c σ,由欧拉公式得钢管的压杆温度应力c σ222152222225776006.25102.6)8()(x x H B T D E AL EIC ++⨯=++==ππσ2式中 A ――圆管的截面积;L ――圆管的长度。

于是得0)6006.25)/(577(102.657760019098.59)(2221521222≤++⨯-+=-=x x x x x x g c σσ3) 设计变量的值不得小于或等于0于是得)(0)(2213≤-=≤-=x x g x x g2.从以上分析可知,该优化设计问题具有2个设计变量,4个约束条件,按优化方法程序的规定编写数学模型的程序如下:subroutine ffx(n,x,fx) dimension x(n) fx=1.225e-4*x(1)*sqrt(577600.0+x(2)*x(2)) endsubroutine ggx(n,kg,x,gx) dimension x(n),gx(kg)gx(1)=19098.59*sqrt(577600.0+x(2)*x(2))/(x(1)*x(2))-700.0 gx(2)=19098.59*sqrt(577600.0+x(2)*x(2))/(x(1)*x(2))- 1 2.6e5*(x(1)*x(1)+6.25)/(577600.0+x(2)*x(2)) gx(3)=-x(1) gx(4)=-x(2) end3.利用惩罚函数法(SUMT 法)计算,得到的最优解为:============== PRIMARY DATA ============== N= 2 KG= 4 KH= 0 X : .7200000E+02 .7000000E+03 FX: .9113241E+01GX: -.3084610E+03 -.8724784E+03 -.7200000E+02 -.7000000E+03 PEN = .9132947E+01R = .1000000E+01 C = .4000000E+00 T0= .1000000E-01 EPS1= .1000000E-05 EPS2= .1000000E-05=============== OPTIMUM SOLUTION ============== IRC= 18 ITE= 39 ILI= 39 NPE= 229 NFX= 0 NGR= 57 R= .1717988E-06 PEN= .6157225E+01 X : .4868305E+02 .6988214E+03 FX: .6157187E+01GX: -.1204029E+03 -.1266042E-01 -.4868305E+02 -.6988207E+0310.图6-40所示为一箱形盖板,已知长度L=6000mm ,宽度b=600mm ,厚度mm t s 5承受最大单位载荷q=0.01Mpa ,设箱形盖板的材料为铝合金,其弹性模量MPa E 4107⨯=,泊松比3.0=μ,许用弯曲应力[]MPa 70=σ,许用剪应力[]MPa 45=τ,要求在满足强度、刚度和稳定性条件下,设计重量最轻的结构方案。

人工智能课后习题第6章 参考答案

人工智能课后习题第6章 参考答案

第6章不确定性推理参考答案6.8 设有如下一组推理规则:r1: IF E1THEN E2 (0.6)r2: IF E2AND E3THEN E4 (0.7)r3: IF E4THEN H (0.8)r4: IF E5THEN H (0.9)且已知CF(E1)=0.5, CF(E3)=0.6, CF(E5)=0.7。

求CF(H)=?解:(1) 先由r1求CF(E2)CF(E2)=0.6 × max{0,CF(E1)}=0.6 × max{0,0.5}=0.3(2) 再由r2求CF(E4)CF(E4)=0.7 × max{0, min{CF(E2 ), CF(E3 )}}=0.7 × max{0, min{0.3, 0.6}}=0.21(3) 再由r3求CF1(H)CF1(H)= 0.8 × max{0,CF(E4)}=0.8 × max{0, 0.21)}=0.168(4) 再由r4求CF2(H)CF2(H)= 0.9 ×max{0,CF(E5)}=0.9 ×max{0, 0.7)}=0.63(5) 最后对CF1(H )和CF2(H)进行合成,求出CF(H)CF(H)= CF1(H)+CF2(H)+ CF1(H) × CF2(H)=0.6926.10 设有如下推理规则r1: IF E1THEN (2, 0.00001) H1r2: IF E2THEN (100, 0.0001) H1r3: IF E3THEN (200, 0.001) H2r4: IF H1THEN (50, 0.1) H2且已知P(E1)= P(E2)= P(H3)=0.6, P(H1)=0.091, P(H2)=0.01, 又由用户告知:P(E1| S1)=0.84, P(E2|S2)=0.68, P(E3|S3)=0.36请用主观Bayes方法求P(H2|S1, S2, S3)=?解:(1) 由r1计算O(H1| S1)先把H1的先验概率更新为在E1下的后验概率P(H1| E1)P(H1| E1)=(LS1× P(H1)) / ((LS1-1) × P(H1)+1)=(2 × 0.091) / ((2 -1) × 0.091 +1)=0.16682由于P(E1|S1)=0.84 > P(E1),使用P(H | S)公式的后半部分,得到在当前观察S1下的后验概率P(H1| S1)和后验几率O(H1| S1)P(H1| S1) = P(H1) + ((P(H1| E1) – P(H1)) / (1 - P(E1))) × (P(E1| S1) – P(E1))= 0.091 + (0.16682 –0.091) / (1 – 0.6)) × (0.84 – 0.6)=0.091 + 0.18955 × 0.24 = 0.136492O(H1| S1) = P(H1| S1) / (1 - P(H1| S1))= 0.15807(2) 由r2计算O(H1| S2)先把H1的先验概率更新为在E2下的后验概率P(H1| E2)P(H1| E2)=(LS2×P(H1)) / ((LS2-1) × P(H1)+1)=(100 × 0.091) / ((100 -1) × 0.091 +1)=0.90918由于P(E2|S2)=0.68 > P(E2),使用P(H | S)公式的后半部分,得到在当前观察S2下的后验概率P(H1| S2)和后验几率O(H1| S2)P(H1| S2) = P(H1) + ((P(H1| E2) – P(H1)) / (1 - P(E2))) × (P(E2| S2) – P(E2))= 0.091 + (0.90918 –0.091) / (1 – 0.6)) × (0.68 – 0.6)=0.25464O(H1| S2) = P(H1| S2) / (1 - P(H1| S2))=0.34163(3) 计算O(H1| S1,S2)和P(H1| S1,S2)先将H1的先验概率转换为先验几率O(H1) = P(H1) / (1 - P(H1)) = 0.091/(1-0.091)=0.10011再根据合成公式计算H1的后验几率O(H1| S1,S2)= (O(H1| S1) / O(H1)) × (O(H1| S2) / O(H1)) × O(H1)= (0.15807 / 0.10011) × (0.34163) / 0.10011) × 0.10011= 0.53942再将该后验几率转换为后验概率P(H1| S1,S2) = O(H1| S1,S2) / (1+ O(H1| S1,S2))= 0.35040(4) 由r3计算O(H2| S3)先把H2的先验概率更新为在E3下的后验概率P(H2| E3)P(H2| E3)=(LS3× P(H2)) / ((LS3-1) × P(H2)+1)=(200 × 0.01) / ((200 -1) × 0.01 +1)=0.09569由于P(E3|S3)=0.36 < P(E3),使用P(H | S)公式的前半部分,得到在当前观察S3下的后验概率P(H2| S3)和后验几率O(H2| S3)P(H2| S3) = P(H2 | ¬ E3) + (P(H2) – P(H2| ¬E3)) / P(E3)) × P(E3| S3)由当E3肯定不存在时有P(H2 | ¬ E3) = LN3× P(H2) / ((LN3-1) × P(H2) +1)= 0.001 × 0.01 / ((0.001 - 1) × 0.01 + 1)= 0.00001因此有P(H2| S3) = P(H2 | ¬ E3) + (P(H2) – P(H2| ¬E3)) / P(E3)) × P(E3| S3)=0.00001+((0.01-0.00001) / 0.6) × 0.36=0.00600O(H2| S3) = P(H2| S3) / (1 - P(H2| S3))=0.00604(5) 由r4计算O(H2| H1)先把H2的先验概率更新为在H1下的后验概率P(H2| H1)P(H2| H1)=(LS4× P(H2)) / ((LS4-1) × P(H2)+1)=(50 × 0.01) / ((50 -1) × 0.01 +1)=0.33557由于P(H1| S1,S2)=0.35040 > P(H1),使用P(H | S)公式的后半部分,得到在当前观察S1,S2下H2的后验概率P(H2| S1,S2)和后验几率O(H2| S1,S2)P(H2| S1,S2) = P(H2) + ((P(H2| H1) – P(H2)) / (1 - P(H1))) × (P(H1| S1,S2) – P(H1))= 0.01 + (0.33557 –0.01) / (1 – 0.091)) × (0.35040 – 0.091)=0.10291O(H2| S1,S2) = P(H2| S1, S2) / (1 - P(H2| S1, S2))=0.10291/ (1 - 0.10291) = 0.11472(6) 计算O(H2| S1,S2,S3)和P(H2| S1,S2,S3)先将H2的先验概率转换为先验几率O(H2) = P(H2) / (1 - P(H2) )= 0.01 / (1-0.01)=0.01010再根据合成公式计算H1的后验几率O(H2| S1,S2,S3)= (O(H2| S1,S2) / O(H2)) × (O(H2| S3) / O(H2)) ×O(H2)= (0.11472 / 0.01010) × (0.00604) / 0.01010) × 0.01010=0.06832再将该后验几率转换为后验概率P(H2| S1,S2,S3) = O(H1| S1,S2,S3) / (1+ O(H1| S1,S2,S3))= 0.06832 / (1+ 0.06832) = 0.06395可见,H2原来的概率是0.01,经过上述推理后得到的后验概率是0.06395,它相当于先验概率的6倍多。

优化设计复习资料有答案

优化设计复习资料有答案

现代设计方法参考书目:1、陈继平. 现代设计方法,华中科技大学出版社。

2、高健. 机械设计优化基础,科学出版社,2007,93、刘惟信. 机械最优化设计,第二版,清华大学出版社。

第一章习题例2 某工厂生产甲乙两种产品。

生产每种产品所需的材料、工时、电力和可获得的利润,以及能够提供的材料、工时和电力见表。

试确定两种产品每天的产量,以使每天可能获得的利润最大。

设每天生产甲产品x1件,乙x2件,利润为f(x1,x2)f(x1,x2)=60x1+120x2每天实际消耗的材料、工时和电力分别用函数g1(x1,x2)、g2(x1,x2)、g3(x1,x2)表示:g1(x1,x2)=9x1+4x2g2(x1,x2)=3x1+10x2g3(x1,x2)=4x1+5x2于是上述问题可归结为:求变量 x1,x2使函数 f(x1,x2)= 60x1+120x2极大化满足条件 g1(x1,x2)=9x1+4x2≤360g2(x1,x2)=3x1+10x2≤300g3(x1,x2)=4x1+5x2≤200g4(x1,x2)=x1≥0g5(x1,x2)=x2≥0例3 一种承受纯扭矩的空心传动轴,已知传递的扭矩为T,试确定此传动轴的内外径,以使其用料最省。

例: 求下列非线性规划优化问题优化设计的迭代算法1、下降迭代算法的基本格式 迭代公式基本原理:从某一初始设计开始,沿某个搜索方向以适当步长得到新的可行的设计,如此反复迭代,直到满足设计要求,迭代终止。

k k k SX X k1S(k)——第k步的搜索方向,是一个向量; αk ——第k 步的步长因子,是一个数,它决定在方向S(k)上所取的步长大小。

简单的说:是一个搜索、迭代、逼近的过程。

最关键的是搜索的方向和步长。

迭代算法的基本步骤:1,选定初始点X(0),令k=0;2、在X(k)处选定下降方向S(k);,3、从X(k)出发沿S(k)一维搜索,找到X(k+1)=X(k)+αkS(k), 使得f(X(k+1))<f(X(k)); 令k=k+1,转(2)。

《机械优化设计》第6章习题解答-2资料

《机械优化设计》第6章习题解答-2资料

8. 有一汽门用弹簧,已知安装高度H1=50.8mm,安装(初始)载荷F1=272N ,最大工作载荷F2=680N ,工作行程h=10.16mm 弹簧丝用油淬火的50CrV A 钢丝,进行喷丸处理; 工作温度126°C ;要求弹簧中径为20mm ≤D2≤50mm ,弹簧总圈数4≤n1≤50,支 承圈数n2=1.75,旋绕比C ≥6;安全系数为1.2;设计一个具有重量最轻的结构方案。

[解] 1.设计变量:影响弹簧的重量的参数有弹簧钢丝直径:d ,弹簧中径D1和弹簧总圈数n1,可取这三个参数作为设计变量:即:⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=H D x x x 212.目标函数:弹簧的重量为式中 ρ――钢丝材料的容重,目标函数的表达式为3221611262101925.0108.725.0)(x x x n D d x F --⨯=⨯⨯=π3.约束条件:1)弹簧的疲劳强度应满足min S S ≥式中 2.1m i n m i n =--S S ,可取最小安全系数,按题意S ――弹簧的疲劳安全系数,由下式计算:m s s s S ττττττττα⎪⎪⎭⎫⎝⎛+⎪⎪⎭⎫ ⎝⎛-=002式中 :劳极限,计算方法如下弹簧实际的脉动循环疲--0τ初选弹簧钢丝直径:4mm ≤d ≤8mm ,其抗拉强度MPa b 1480=σ,取弹簧的循环工作次数大于710,则材料的脉动循环疲劳极限为MPa b 44414803.03.0'0=⨯==στ设可靠度为90%,可靠性系数 868.0=r k ; 工作温度为126°C ,温度修正系数 862.0126273344273344=+=+=T k t再考虑到材料经喷丸处理,可提高疲劳强度10%,则弹簧实际的脉动循环疲劳极限为MPa k k t r 4.365444862.0868.01.1)1.01('00=⨯⨯⨯=+=ττ36/107.8mm kg -⨯=ρρπ12220.25n D d W =--s τ弹簧材料的剪切屈服极限,计算公式为MPa b s 74014805.05.0=⨯==στ--ατ弹簧的剪应力幅,计算公式为328dD F ka πτα=式中 k ――曲度系数,弹簧承受变应力时,计算公式为14.02)(6.1615.04414d D C C C k ≈+--=a F ――载荷幅,其值为N F F F a 2042/)272680(2/)(12=-=-=m τ――弹簧的平均剪应力,计算公式为328dD F k m sm πτ=式中s k ――应力修正系数,计算公式为dD C k s /615.01615.012+=+= m F ――平均载荷,其值为N F F F m 4762/)272680(2/)(12=+=+=由此,得到弹簧疲劳强度的约束条件为 计算剪应力幅ατ:86.2186.023214.023.8308)/(6.1x x d D F d D dD F ka a =⋅==ππτα328 计算平均应力幅m τ:21312246.74512.1212615.01x x x d D F Dd dD F k m m sm +=⎪⎪⎭⎫ ⎝⎛+==33288ππτ 计算弹簧的实际疲劳安全系数S :mms s s S τττττττττταα494.0506.14.365+=⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛-=0002从而得到弹簧的疲劳强度约束条件为012.1)(min 1≤-=-=SS S S x g 2)根据旋绕比的要求,得到约束条件016)(21min 2≤-=-=x x C C C x g3)根据对弹簧中径的要求,得到约束条件50222≤-=-=≤-=-=1)4(0120)3(max max 242min 3x D D D g x D D D g4)根据压缩弹簧的稳定性条件,要求:c F F ≤2式中 c F ――压缩弹簧稳定性的临界载荷,可按下式计算:K H D H F C ⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫⎝⎛--=2022085.611813.0μ 式中 K ――要求弹簧具有的刚度,按下式计算:mm N h F F K /2.4016.1027268012=-=-=0H ――弹簧的自由高度,按下式计算: 当mm K F 16.9240.26802===λ 时, 304.20)5.0(2.1)5.0(310+-=+-=x n H λμ――长度折算系数,当弹簧一端固定,一端铰支时,取 7.0=μ;则:[][]⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎦⎤⎢⎣⎡+---+-=221398.1311304.20)5.0(268.320.3040.5)(13x x x x x F C于是得 01680)(25≤-=-=CC C F F F F x g5)为了保证弹簧在最大载荷作用下不发生并圈现象,要求弹簧在最大载荷2F 时的高度2H 应大于压并高度b H ,由于13112)5.0()5.0(64.4016.108.50x x d n H h H H b -=-==-=-=于是得到010123.00246.0)(131226≤--=-=x x x H H H x g b6)为了保证弹簧具有足够的刚度,要求弹簧的刚度αK 与设计要求的刚度K 的误差小于1/100,其误差值用下式计算:401.02.40)75.1(8100/)(33241---=--=x x Gx K K K αθ式中 G ――弹簧材料的剪切弹性模量,取G=80000Mpa 。

大学物理第6章习题参考答案

大学物理第6章习题参考答案

第六章习题解答6-1 解:首先写出S 点的振动方程 若选向上为正方向,则有:0c o s02.001.0ϕ=- 21cos 0-=ϕ,0s i n 00>-=ϕωυA 0sin 0<ϕ 即 πϕ320-=或π34 初始相位 πϕ320-=则 m t y s )32cos(02.0πω-=再建立如图题6-1(a)所示坐标系,坐标原点选在S 点,沿x 轴正向取任一P 点,该点振动位相将落后于S 点,滞后时间为: ux t =∆则该波的波动方程为:m u x t y ⎥⎦⎤⎢⎣⎡--=πω32)(cos 02.0若坐标原点不选在S 点,如习题6-1图(b )所示,P 点仍选在S 点右方,则P 点振动落后于S 点的时间为: uL x t -=∆则该波的波方程为:m uL x t y ⎥⎦⎤⎢⎣⎡---=πω32)(cos 02.0若P 点选在S 点左侧,P 点比S 点超前时间为ux L -,如习题6-1图(c)所示,则⎥⎦⎤⎢⎣⎡--+=πω32)(cos 02.0u x L t y⎥⎦⎤⎢⎣⎡---=πω32)(cos 02.0uL x t∴不管P 点在S 点左边还是右边,波动方程为: ⎥⎦⎤⎢⎣⎡---=πω32)(cos 02.0uL x t y6-2 解(1)由习题6-2图可知, 波长 m 8.0=λ 振幅A=0.5m习题6-1图习题6-1图频率 Hz 125Hz 8.0100===λuv周期 s 10813-⨯==vT ππυω2502==(2)平面简谐波标准波动方程为: ⎥⎦⎤⎢⎣⎡+-=ϕω)(cos u xt A y 由图可知,当t=0,x=0时,y=A=0.5m ,故0=ϕ。

将ϕπωω、、、u v A )2(=代入波动方程,得:m )100(250cos 5.0⎥⎦⎤⎢⎣⎡-=x t y π(3) x =0.4m 处质点振动方程.⎥⎦⎤⎢⎣⎡-=)1004.0(250cos 5.0t y π m )250cos(5.0ππ-=t6-3 解(1)由习题6-3图可知,对于O 点,t=0时,y=0,故2πϕ±=再由该列波的传播方向可知,00<υ取 2πϕ=由习题6-3图可知,,40.0m OP ==λ且u=0.08m/s ,则ππλππω52rad/s 40.008.0222====u v rad/s可得O 点振动表达式为:m t y )252cos(04.00ππ+=(2) 已知该波沿x 轴正方向传播,u=0.08m/s,以及O 点振动表达式,波动方程为:m x t y ⎥⎦⎤⎢⎣⎡+-=2)08.0(52cos 04.0ππ(3) 将40.0==λx 代入上式,即为P 点振动方程:m t y y p ⎥⎦⎤⎢⎣⎡+==ππ2152cos 04.00 (4)习题6-3图中虚线为下一时刻波形,由图可知,a 点向下运动,b 点向上运动。

高中同步创新课堂物理优化方案鲁教必修1习题:第六章习题课分层演练巩固落实 含答案

高中同步创新课堂物理优化方案鲁教必修1习题:第六章习题课分层演练巩固落实 含答案

[随堂达标]1.假设汽车紧急制动后所受到的阻力的大小与汽车所受重力的大小差不多,当汽车以20 m/s 的速度行驶时突然制动,它还能继续滑行的距离约为( )A .40 mB .20 mC .10 mD .5 m解析:选B.由题意F 阻=mg ,汽车所受合力F =F 阻=mg ,对汽车由牛顿第二定律解得汽车刹车时的加速度大小a =F m =g =10 m/s 2.设滑行距离为x ,由v 2=2ax 得x =v 22a =20 m ,故B 正确.2.如图所示,一辆汽车A 拉着装有集装箱的拖车B ,以速度v 1=30 m/s 进入向下倾斜的直车道,车道每100 m 下降2 m .为使汽车速度在s =200 m 的距离内减到v 2=10 m/s ,驾驶员必须刹车.假定刹车时地面的摩擦阻力是恒力,且该力的70%作用于拖车B ,30%作用于汽车A .已知A 的质量m 1=2 000 kg ,B 的质量m 2=6 000 kg.求汽车与拖车的连接处沿运动方向的相互作用力大小.(重力加速度g 取10 m/s 2)解析:汽车沿倾斜车道做匀减速运动,用a 表示加速度的大小,有v 22-v 21=-2as .用f 表示刹车时的总阻力,根据牛顿第二定律有f -(m 1+m 2)·g sin α=(m 1+m 2)a ,式中sin α=2100=2×10-2.设刹车过程中地面作用于汽车的阻力为f ′,根据题意f ′=30100f ,方向与汽车前进方向相反.用F 表示拖车作用于汽车的力,设其方向与汽车前进方向相同. 以汽车为研究对象,由牛顿第二定律有f ′-F -m 1g sin α=m 1a .解得F =30100(m 1+m 2)(a +g sin α)-m 1(a +g sin α),代入有关数据得F =880 N. 答案:880 N3. (2016·苏州高一检测)如图所示,长度l =2 m ,质量M =23 kg 的木板置于光滑的水平地面上,质量m =2 kg 的小物块(可视为质点)位于木板的左端,木板和小物块间的动摩擦因数μ=0.1,现对小物块施加一水平向右的恒力F =10 N ,取g =10 m/s 2.求:(1)将木板M 固定,小物块离开木板时的速度大小;(2)若木板M 不固定,m 和M 的加速度a 1、a 2的大小;(3)若木板M 不固定,小物块从开始运动到离开木板所用的时间. 解析:(1)对小物块进行受力分析,由牛顿第二定律得 F -μmg =ma 解得a =4 m/s 2小物块离开木板,有v 2=2al 解得v =4 m/s.(2)对m ,由牛顿第二定律: F -μmg =ma 1 解得a 1=4 m/s 2对M ,由牛顿第二定律:μmg =Ma 2 解得a 2=3 m/s 2. (3)由位移公式知 x 1=12a 1t 2,x 2=12a 2t 2小物块从开始运动到离开木板 x 1-x 2=l联立解得t =2 s.答案:(1)4 m/s (2)4 m/s 2 3 m/s 2 (3)2 s[课时作业] [学生用书单独成册]一、单项选择题1.两个物体A 和B ,质量分别为m 1和m 2,互相接触地放在光滑水平面上,如图所示,对物体A 施以水平的推力F ,则物体A 对物体B 的作用力等于( )A.m 1m 1+m 2F B .m 2m 1+m 2FC .FD .m 1m 2F解析:选B.根据牛顿第二定律,得对整体:a =Fm 1+m 2对物体B :F ′=m 2a =m 2m 1+m 2F故选B.2.A 、B 两物体以相同的初速度在同一水平面上滑动,两物体与水平面间的动摩擦因数相同,且m A =3m B ,则它们所能滑行的距离x A 、x B 的关系为( )A .x A =xB B .x A =3x BC .x A =12x BD .x A =9x B 解析:选A.物体沿水平面滑动时做匀减速直线运动,加速度a =μmgm=μg ,与质量无关,由0-v 20=-2ax 和题设条件知x A =x B.3.水平面上一个质量为m 的物体,在一水平恒力F 的作用下,由静止开始做匀加速直线运动,经时间t 后撤去外力,又经时间2t 物体停了下来.则物体受到的阻力应为( )A .FB .F 2C.F 3D .F 4解析:选C.设阻力为f ,由牛顿第二定律得:F -f =ma 1,f =ma 2,v =a 1t ,v =a 2·2t ,以上四式联立可得:f =F3,所以C 正确.4. 质量为2 kg 的物体静止在足够大的水平地面上,物体与地面间的动摩擦因数为0.2,最大静摩擦力与滑动摩擦力大小视为相等.从t =0时刻开始,物体受到方向不变、大小呈周期性变化的水平拉力F 的作用,F 随时间t 的变化规律如图所示.重力加速度g 取10 m/s 2,则物体在t =0至t =12 s 这段时间的位移大小为( )A .18 mB .54 mC .72 mD .198 m解析:选B.物体与地面间最大静摩擦力f =μmg =0.2×2×10 N =4 N .由题图知0~3 s 内,F =4 N ,说明物体在这段时间内保持静止.3~6 s 内,F =8 N ,说明物体做匀加速运动,加速度a =F -fm =2 m/s 2.6 s 末物体的速度v =at =2×3 m/s =6 m/s ,在6~9 s 内物体以6 m/s的速度做匀速运动.9~12 s 内又以2 m/s 2的加速度做匀加速运动.作v -t 图象如图所示.故0~12 s 内的位移s =12×3×6×2 m +6×6 m =54 m .故B 项正确.5.如图所示,ad 、bd 、cd 是竖直面内三根固定的光滑细杆,a 、b 、c 、d 位于同一圆周上,a 点为圆周的最高点,d 点为最低点.每根杆上都套有一个小滑环(图中未画出),三个滑环分别从a 、b 、c 处释放(初速度为0),用t 1、t 2、t 3依次表示各滑环到达d 点所用的时间,则( )A .t 1<t 2<t 3B .t 1>t 2>t 3C .t 3>t 1>t 2D .t 1=t 2=t 3解析:选D.选任一杆上的小滑环为研究对象,受力分析如图所示,设圆半径为R ,由牛顿第二定律得,mg cos θ=ma再由几何关系,细杆长度L =2R cos θ设下滑时间为t ,则L =12at 2由以上三式得t =2Rg,可见下滑时间与细杆倾角无关,所以选项D 正确. 6.放在水平地面上的一物块,受到方向不变的水平推力F 的作用,F 的大小与时间t 的关系如图甲所示,物块速度v 与时间t 的关系如图乙所示.取重力加速度g =10 m/s 2.由此两图象可以求得物块的质量m 和物块与地面之间的动摩擦因数μ分别为( )A .m =0.5 kg ,μ=0.4B .m =1.5 kg ,μ=215C .m =0.5 kg ,μ=0.2D .m =1 kg ,μ=0.2解析:选A.由F -t 图和v -t 图可得,物块在2 s 到4 s 内所受外力F =3 N ,物块做匀加速运动,a =Δv Δt =42m/s 2=2 m/s 2,F -f =ma ,即3-10μm =2m ①物块在4 s 到6 s 所受外力F =2 N ,物块做匀速直线运动,则F =f ,F =μmg ,即10μm =2②由①②解得m =0.5 kg ,μ=0.4,故选A. 二、多项选择题7.质量为1 kg 的质点,受水平恒力F 的作用,在光滑平面上由静止开始做匀加速直线运动,它在t 秒内的位移为x m ,则F 的大小不可能为( )A.2x t 2 B .2x 2t -1C.2x 2t +1D .2x t -1解析:选BCD.由运动情况可求得质点的加速度a =2xt 2,则水平恒力F =ma =2xt2 N ,故A 项对.8.如图甲所示,用一水平外力F 拉着一个静止在倾角为θ的光滑斜面上的物体,逐渐增大F ,物体做变加速运动,其加速度a 随外力F 变化的图象如图乙所示,若重力加速度g 取10 m/s 2.根据图乙中所提供的信息可以计算出( )A .物体的质量B .斜面的倾角C .加速度由2 m/s 2增加到6 m/s 2的过程中,物体通过的位移D .加速度为6 m/s 2时物体的速度解析:选AB.由题图乙可知,当水平外力F =0时,物体的加速度a =-6 m/s 2,此时物体的加速度a =-g sin θ,可求出斜面的倾角θ=37°,选项B 正确;当水平外力F =15 N 时,物体的加速度a =0,此时F cos θ=mg sin θ,可得m =2 kg ,选项A 正确;由于不知道加速度与时间的关系,所以无法求出物体在各个时刻的速度,也无法求出物体加速度由2 m/s 2增加到6 m/s 2过程中的位移,选项C 、D 错误.三、非选择题9. 在水平地面上有一质量为2 kg 的物体在水平拉力F 的作用下由静止开始运动,10 s 后拉力大小减为F3,该物体的运动速度随时间t 的变化规律如图所示(g 取10 m/s 2),求:(1)物体受到的拉力F 的大小. (2)物体与地面之间的动摩擦因数.解析:由v -t 图象可知,物体的运动分两个过程,设匀加速运动过程的加速度为a 1,匀减速运动过程的加速度为a 2,则由题图知a 1=8-010m/s 2=0.8 m/s 2a 2=0-814-10m/s 2=-2 m/s 2两过程物体受力分别如图甲、乙所示.加速过程:F -μmg =ma 1减速过程:F3-μmg =ma 2⎝⎛⎭⎫或μmg -F 3=m |a 2| 联立以上各式解得F =8.4 N ,μ=0.34.答案:(1)8.4 N (2)0.3410. 如图所示,A 、B 为两个并排紧贴着放在光滑水平面上的物体,在水平恒力F 1、F 2的作用下做匀加速运动.已知两物体的质量分别为m A 、m B ,那么A 、B 间的相互作用力N 是多少?解析:由于A 、B 两物体一起做匀加速运动,设其加速度大小为a ,同时设F 1>F 2.根据牛顿第二定律,得F 1-F 2=(m A +m B )a ,把B 隔离出来,则有N -F 2=m B a .解得N =m A F 2+m B F 1m A +m B.答案:m A F 2+m B F 1m A +m B11.如图甲所示,质量m =1 kg 的物体沿倾角θ=37°的固定粗糙斜面由静止开始向下运动,风对物体的作用力沿水平方向向右,其大小与风速v 成正比,比例系数用k 表示,物体的加速度a 与风速v 的关系如图乙所示.sin 37°=0.6,cos 37°=0.8,g =10 m/s 2.求:(1)物体与斜面间的动摩擦因数μ; (2)比例系数k .解析:(1)当v =0时,有mg sin θ-μmg cos θ=ma 0 由题图读出a 0=4 m/s 2,代入上式解得μ=g sin θ-a 0g cos θ=0.25.(2)当v =5 m/s 时,加速度为零,有 mg sin θ-μN -kv cos θ=0 又N =mg cos θ+kv sin θ 联立以上两式,解得k =mg (sin θ-μcos θ)v (μsin θ+cos θ)≈0.84 kg/s.答案:(1)0.25 (2)0.84 kg/s12.质量为1 kg 的木板B 静止在水平面上,可视为质点的物块A 从木板的左侧沿表面水平冲上木板,如图甲所示.A 和B 经过1 s 达到同一速度后共同减速直至静止,v -t 图象如图乙所示,g =10 m/s 2,求:(1)A与B之间的动摩擦因数μ1;(2)B与水平面间的动摩擦因数μ2;(3)A的质量m.解析:(1)由题图乙可知,物块在0~1 s内加速度大小为a1=2 m/s2由牛顿第二定律μ1mg=ma1得μ1=0.2.(2)木板在0~1 s内加速度大小为a2=2 m/s2,在1~3 s内物块与木板相对静止,一起做匀减速运动,加速度大小为a3=1 m/s2由牛顿第二定律μ2(M+m)g=(m+M)a3得μ2=0.1.(3)在0~1 s隔离木板B,对其受力分析μ1mg-μ2(m+M)g=Ma2得A的质量m=3 kg.答案:(1)0.2(2)0.1(3)3 kg。

2021优化方案高考总复习·物理(新课标):第六章 第三节课后检测能力提升

2021优化方案高考总复习·物理(新课标):第六章 第三节课后检测能力提升

一、单项选择题 1.某电容式话筒的原理如图所示,E 为电源,R 为电阻,薄片P 和Q 为两金属极板.对着话筒说话时,P振动而Q 可视为不动.在P 、Q 间距增大过程中( )A .P 、Q 构成的电容器的电容增大B .P 上电荷量保持不变C .M 点的电势比N 点的低D .M 点的电势比N 点的高解析:选D.电容式话筒与电源串联,电压保持不变.在P 、Q 间距增大的过程中,依据电容打算式C =εS4πkd 得电容减小,A 错误;又依据电容定义式C =QU 得电容器所带电荷量减小,B 错误;电容器的放电电流通过R的方向由M 到N ,所以M 点的电势比N 点的高,C 错误、D 正确.2.一水平放置的平行板电容器的两极板间距为d ,极板分别与电池两极相连,上极板中心有一小孔(小孔对电场的影响可忽视不计).小孔正上方d2处的P 点有一带电粒子,该粒子从静止开头下落,经过小孔进入电容器,并在下极板处(未与极板接触)返回.若将下极板向上平移d3,则从P 点开头下落的相同粒子将( )A .打到下极板上B .在下极板处返回C .在距上极板d2处返回D .在距上极板25d 处返回解析:选D.设粒子质量为m ,带电量为q ,由动能定理得,第一次粒子从P 点下落有mg ⎝⎛⎭⎫d +d2-qU =0;设其次次粒子从P 点下落进入电容器后在距上极板距离为x 处返回,有mg ⎝⎛⎭⎫x +d 2-q x 23d U =0,联立解得x =25d ,故选项D 正确.3.(2022·杭州模拟)如图所示,带电粒子P 所带的电荷量是带电粒子Q 的3倍,它们以相等的速度v 0从同一点动身,沿着跟电场强度垂直的方向射入匀强电场,分别打在M 、N 点,若OM =MN ,则P 和Q 的质量之比为(粒子重力不计)( )A .3∶4B .4∶3C .3∶2D .2∶3解析:选A.由OM =MN 和t =x v 0知,t P =12t Q ,在垂直极板方向上,y =12·q P E m P t 2P =12·q Q E m Q t 2Q,解得m P ∶m Q =3∶4,A 正确.4.(2022·高考天津卷)如图所示,平行金属板A 、B 水平正对放置,分别带等量异号电荷.一带电微粒水平射入板间,在重力和电场力共同作用下运动,轨迹如图中虚线所示,那么( )A .若微粒带正电荷,则A 板肯定带正电荷B .微粒从M 点运动到N 点电势能肯定增加C .微粒从M 点运动到N 点动能肯定增加D .微粒从M 点运动到N 点机械能肯定增加解析:选C.微粒向下偏转,则微粒受到的电场力与重力的合力向下,若微粒带正电,只要电场力小于重力,就不能确定A 、B 板所带电荷的电性,A 项错误;由于不能确定电场力的方向,因此不能确定电场力做功的正负,不能确定微粒从M 点运动到N 点电势能的变化,B 项错误;由于电场力与重力的合力肯定向下,因此微粒受到的合外力做正功,依据动能定理可知,微粒从M 到N 的过程中动能增加,C 项正确;由于不能确定除重力以外的力即电场力做的是正功还是负功,也就不能确定微粒从M 到N 过程中机械能是增加还是削减,D 项错误.5.(2022·宿州模拟)如图所示,竖直放置的两个平行金属板间存在匀强电场,与两板上边缘等高处有两个质量相同的带电小球,P 小球从紧靠左极板处由静止开头释放,Q 小球从两板正中心由静止开头释放,两小球最终都能运动到右极板上的同一位置,则从开头释放到运动到右极板的过程中它们的() A.运行时间t P>t QB.电势能削减量之比ΔE P∶ΔE Q=2∶1C.电荷量之比q P∶q Q=2∶1D.动能增加量之比ΔE k P∶ΔE k Q=4∶1解析:选C.两球在竖直方向上都做自由落体运动,由于下落高度相同,所以运动时间相等,A错误;在水平方向上,两球都做匀加速运动,由x =12at2可得a P ∶a Q=2∶1,则q P∶q Q=2∶1,C正确;电势能的削减量ΔE P∶ΔE Q=(q P E·x P)∶(q Q E·x Q)=4∶1,B错误;动能增加量(mgh+ΔE P)∶(mgh+ΔE Q)<4∶1,D错误.6.(2022·湖北八校联考)有一静电场,其电势随x坐标的转变而转变,变化的图线如图所示.若将一带负电的粒子(重力不计)从坐标原点O由静止释放,电场中P、Q两点分别位于x坐标轴上的1 mm、4 mm处.则下列说法正确的是()A.粒子将沿x轴正方向始终向前运动B.粒子在P点与Q点的加速度大小相等、方向相反C.粒子经过P点与Q点时,动能相等D.粒子经过P点与Q点时,电场力做功的功率相等解析:选C.由题中φ-x图象,画出电场强度E随x变化的图象及带电粒子的v-t图象,如图所示,由图可知A错误;由牛顿其次定律知,粒子在P、Q两点的加速度满足a P=2a Q,B错误;由v-t图象可知,粒子在P、Q两点对应的时间分别是22t0和(3-2)t0,其速度相等,C正确;粒子在P、Q两点的功率P=Eq v,因电场强度不相同,故功率不同,D错误.二、多项选择题7.如图所示,两块较大的金属板A、B平行放置并与一电源相连,S闭合后,两板间有一质量为m、电荷量为q的油滴恰好处于静止状态.以下说法中正确的是()A.若将A板向上平移一小段位移,则油滴向下加速运动,G中有b→a的电流B.若将A板向左平移一小段位移,则油滴仍旧静止,G中有b→a的电流C.若将S断开,则油滴马上做自由落体运动,G中无电流D.若将S断开,再将A板向下平移一小段位移,则油滴向上加速运动,G中有b→a的电流解析:选AB.依据题图可知,A板带负电,B板带正电,原来油滴恰好处于静止状态,说明油滴受到的竖直向上的电场力刚好与重力平衡;当S闭合,若将A板向上平移一小段位移,则板间间距d变大,而两板间电压U此时不变,故板间场强E=Ud变小,油滴所受的合力方向向下,所以油滴向下加速运动,而依据C =εr S4πkd可知,电容C减小,故两板所带电荷量Q也减小,因此电容器放电,所以G中有b→a的电流,选项A正确;在S闭合的状况下,若将A板向左平移一小段位移,两板间电压U和板间间距d都不变,所以板间场强E不变,油滴受力平衡,仍旧静止,但是两板的正对面积S减小了,依据C=εr S4πkd可知,电容C减小,两板所带电荷量Q也减小,电容器放电,所以G中有b→a的电流,选项B正确;若将S断开,两板所带电荷量Q保持不变,板间场强E也不变,油滴仍旧静止,选项C错误;若将S断开,再将A板向下平移一小段位移,两板所带电荷量仍保持不变,两板间间距d变小,依据C=εr S4πkd,U=QC和E=Ud,可得E=4πkQεr S,明显,两板间场强E不变,所以油滴仍旧静止,G中无电流,选项D错误.8.(2021·高考江苏卷)一带正电的小球向右水平抛入范围足够大的匀强电场,电场方向水平向左.不计空气阻力,则小球()A.做直线运动B.做曲线运动C.速领先减小后增大D.速领先增大后减小解析:选BC.小球运动时受重力和电场力的作用,合力F方向与初速度v0方向不在一条直线上,小球做曲线运动,选项A错误、选项B正确;将初速度v0分解为垂直于F方向的v1和沿F方向的v2,依据运动与力的关系,v1的大小不变,v2先减小后反向增大,因此小球的速领先减小后增大,选项C正确、D错误.9.(2022·成都诊断性检测)如图所示,两对金属板A 、B 和C 、D 分别竖直和水平放置,A 、B 接在电路中,C 、D 板间电压为U .A 板上O 处发出的电子经加速后,水平射入C 、D 板间,电子最终都能打在光屏M 上.关于电子的运动,下列说法正确的是( )A .S 闭合,只向右移动滑片P ,P 越靠近b 端,电子打在M 上的位置越高B .S 闭合,只转变A 、B 板间的距离,转变前后,电子由O 至M 经受的时间相同C .S 闭合,只转变A 、B 板间的距离,转变前后,电子到达M 前瞬间的动能相同D .S 闭合后再断开,只向左平移B ,B 越靠近A 板,电子打在M 上的位置越高解析:选CD.设射出B 板时速度为v ,则电子在A 、B 板间加速,U BA e =12m v 2,在C 、D 板间的偏转位移y =12·Ue md ·⎝⎛⎭⎫L v 2=UL 24dU BA ,S 闭合,只向右移动滑片P ,U BA 增大,偏转位移y 减小,电子打在M 上的位置降低,选项A 错误;设电子在A 、B 板间的运动时间为t 1,A 、B 板间距离为d AB ,则d AB =v2t 1,S 闭合,只转变A 、B 板间距离,板间电压U BA 不变,v 不变,t 1变化,从B 板射出后水平方向匀速运动速度不变,电子由O 到M 经受的时间必定变化,选项B 错误;S 闭合,只转变A 、B 板间距离,板间电压U BA 不变,偏转位移y 相同,依据动能定理知电场力做功相同,电子到达M 瞬间的动能相同,选项C 正确;S 闭合再断开,A 、B 板所带电荷量不变,向左平移B 板,板间距离减小,依据C =εr S 4πkd AB,C 增大,U BA =Q C ,U BA 减小,又y =12·Ue md ·⎝⎛⎭⎫Lv 2=UL 24dU BA可知电子打在M 上的位置上升,选项D 正确.10.如图所示,水平放置的平行板电容器与某一电源相连,它的极板长L =0.4 m ,两极板间距离d =4×10-3m ,有一束由相同带电微粒组成的粒子流以相同的速度v 0从两极板中心平行极板射入,开关S 闭合前,两极板间不带电,由于重力作用,微粒能落到下极板的正中心.已知微粒质量m =4×10-5 kg 、电荷量q =+1×10-8 C ,g =10 m/s 2则下列说法正确的是( )A .微粒的入射速度v 0=10 m/sB .电容器上板接电源正极时微粒有可能从平行板电容器的右边射出电场C .电源电压为180 V 时,微粒可能从平行板电容器的右边射出电场D .电源电压为100 V 时,微粒可能从平行板电容器的右边射出电场解析:选AC.开关S 闭合前,两极板间不带电,微粒落到下极板的正中心,由d 2=12gt 2,L2=v 0t ,联立得v 0=10 m/s ,A 对;电容器上板接电源正极时,微粒的竖直方向加速度更大,水平位移将更小,B 错;设微粒恰好从平行板右边缘下侧飞出时的加速度为a ,电场力向上,则d 2=12at 21,L =v 0t 1,mg -U 1qd=ma ,联立解得U 1=120 V ,同理微粒在平行板右边缘上侧飞出时,可得U 2=200 V ,所以平行板上板带负电,电源电压为120 V ≤U ≤200 V 时,微粒可以从平行板电容器的右边射出电场,C 对、D 错.三、非选择题11.(2021·高考安徽卷)在xOy 平面内,有沿y 轴负方向的匀强电场,场强大小为E (图中未画出),由A 点斜射出质量为m 、带电荷量为+q 的粒子,B 和C 是粒子运动轨迹上的两点,如图所示,其中l 0为常数.粒子所受重力忽视不计.求:(1)粒子从A 到C 过程中电场力对它做的功; (2)粒子从A 到C 过程所经受的时间; (3)粒子经过C 点时的速率.解析:(1)W AC =qE (y A -y C )=3qEl 0.(2)依据抛体运动的特点,粒子在x 方向做匀速直线运动,由对称性可知轨迹最高点D 在y 轴上,可令t AD=t DB =T ,则t BC =T由qE =ma 得a =qE m又y 0=12aT 2,y 0+3l 0=12a (2T )2解得T =2ml 0qE则A →C 过程所经受的时间t =32ml 0qE. (3)粒子在DC 段做类平抛运动,于是有 2l 0=v Cx (2T ),v Cy =a (2T ) v C =v 2Cx +v 2Cy =17qEl 02m.答案:(1)3qEl 0 (2)32ml 0qE (3) 17qEl 02m12.如图甲所示,水平放置的平行金属板AB 间的距离d =0.1 m ,板长L =0.3 m ,在金属板的左端竖直放置一带有小孔的挡板,小孔恰好位于AB 板的正中间.距金属板右端x =0.5 m 处竖直放置一足够大的荧光屏.现在AB 板间加如图乙所示的方波形电压,已知U 0=1.0×102 V .在挡板的左侧,有大量带正电的相同粒子以平行于金属板方向的速度持续射向挡板,粒子的质量m =1.0×10-7 kg ,电荷量q =1.0×10-2 C ,速度大小均为v 0=1.0×104 m/s.带电粒子的重力不计.则(1)求粒子在电场中的运动时间;(2)求在t =0时刻进入的粒子打在荧光屏上的位置到O 点的距离; (3)请证明粒子离开电场时的速度均相同; (4)若撤去挡板,求荧光屏上消灭的光带长度.解析:(1)粒子水平方向做匀速直线运动,故t =Lv 0=3×10-5s.(2)t =0时刻进入的粒子先做匀加速曲线运动t 1=2×10-5s 再做匀减速曲线运动t 2=1×10-5s 加速度大小相等,a =qU 0md=108 m/s 2离开电场时,竖直方向速度v y =at 1-at 2=1 000 m/s由于t 1=2t 2可将整个过程分为3个t 2,由匀加速直线运动的推论可知,竖直方向位移y 1=12at 22y 2=3×12at 22y 3=3×12at 22则离开电场时,竖直位移y ′=7×12at 22=0.035 m依据比例可得y =y ′+v yv 0x =0.035 m +0.05 m =0.085 m.(3)v y =a (t +-t -)t +为粒子在电场中运动时正向电压(上极板为U 0)的持续时间,t -为粒子在电场中运动时负向电压(下极板为U 0)的持续时间(t ++t -)恰好等于交变电压的周期,故v y =1 000 m/s又全部粒子打入时的速度均为10 000 m/s ,且水平方向做匀速直线运动故全部粒子离开电场时的速度均为v = 1 000101 m/s ,方向与水平方向成角θ=arccot 10.(4)由第(3)问可知,全部粒子飞出时的速度均相同,重点争辩2×10-5s 末打入的一个粒子,若其恰好能不碰下极板,如图所示光带长度为l =d -12at 22=0.095 m答案:(1)3×10-5 s (2)0.085 m (3)见解析 (4)0.095 m。

最优化设计 课后习题答案

最优化设计 课后习题答案

最优化方法-习题解答张彦斌计算机学院2014年10月20日Contents1第一章最优化理论基础-P13习题1(1)、2(3)(4)、3、412第二章线搜索算法-P27习题2、4、643第三章最速下降法和牛顿法P41习题1,2,374第四章共轭梯度法P51习题1,3,6(1)105第五章拟牛顿法P73-2126第六章信赖域方法P86-8147第七章非线性最小二乘问题P98-1,2,6188第八章最优性条件P112-1,2,5,6239第九章罚函数法P132,1-(1)、2-(1)、3-(3),62610第十一章二次规划习题11P178-1(1),5291第一章最优化理论基础-P13习题1(1)、2(3)(4)、3、4 1.验证下列各集合是凸集:(1)S={(x1,x2)|2x1+x2≥1,x1−2x2≥1};需要验证:根据凸集的定义,对任意的x(x1,x2),y(y1,y2)∈S及任意的实数λ∈[0,1],都有λx+(1−λ)y∈S.即,(λx1+(1−λ)y1,λx2+(1−λ)y2)∈S证:由x(x1,x2),y(y1,y2)∈S得到,{2x1+x2≥1,x1−2x2≥12y1+y2≥1,y1−2y2≥1(1)1把(1)中的两个式子对应的左右两部分分别乘以λ和1−λ,然后再相加,即得λ(2x1+x2)+(1−λ)(2y1+y2)≥1,λ(x1−2x2)+(1−λ)(y1−2y2)≥1(2)合并同类项,2(λx1+(1−λ)y1)+(λx2+(1−λ)y2)≥1,(λx1+(1−λ)y1)−2(λx2+(1−λ)y2)≥1(3)证毕.2.判断下列函数为凸(凹)函数或严格凸(凹)函数:(3)f(x)=x21−2x1x2+x22+2x1+3x2首先二阶导数连续可微,根据定理1.5,f在凸集上是(I)凸函数的充分必要条件是∇2f(x)对一切x为半正定;(II)严格凸函数的充分条件是∇2f(x)对一切x为正定。

概率论与数理统计课后答案第6章

概率论与数理统计课后答案第6章

第6章习题参考答案1.设是取自总体X的一个样本,在下列情形下,试求总体参数的矩估计与最大似然估计:(1),其中未知,;(2),其中未知,。

2.设是取自总体X的一个样本,其中X服从参数为的泊松分布,其中未知,,求的矩估计与最大似然估计,如得到一组样本观测值X 0 1 2 3 4频数17 20 10 2 1求的矩估计值与最大似然估计值。

3.设是取自总体X的一个样本,其中X服从区间的均匀分布,其中未知,求的矩估计。

4.设是取自总体X的一个样本,X的密度函数为其中未知,求的矩估计。

5.设是取自总体X的一个样本,X的密度函数为其中未知,求的矩估计和最大似然估计。

6.设是取自总体X的一个样本,总体X服从参数为的几何分布,即,其中未知,,求的最大似然估计。

7. 已知某路口车辆经过的时间间隔服从指数分布,其中未知,现在观测到六个时间间隔数据(单位:s):1.8,3.2,4,8,4.5,2.5,试求该路口车辆经过的平均时间间隔的矩估计值与最大似然估计值。

8.设总体X的密度函数为,其中未知,设是取自这个总体的一个样本,试求的最大似然估计。

9. 在第3题中的矩估计是否是的无偏估计?解故的矩估计量是的无偏估计。

10.试证第8题中的最大似然估计是的无偏估计。

11. 设为总体的样本,证明都是总体均值的无偏估计,并进一步判断哪一个估计有效。

12.设是取自总体的一个样本,其中未知,令,试证是的相合估计。

13.某车间生产滚珠,从长期实践中知道,滚珠直径X服从正态分布,从某天生产的产品中随机抽取6个,量得直径如下(单位:mm):14.7,15.0,14.9,14.8,15.2,15.1,求的0.9双侧置信区间和0.99双侧置信区间。

14.假定某商店中一种商品的月销售量服从正态分布,未知。

为了合理的确定对该商品的进货量,需对和作估计,为此随机抽取七个月,其销售量分别为:64,57,49,81,76,70,59,试求的双侧0.95置信区间和方差的双侧0.9置信区间。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第六章习题解答1. 已知约束优化问题:2)(0)()1()2()(min 21222112221≤-+=≤-=⋅-+-=x x x g x x x g ts x x x f试从第k 次的迭代点[]T k x21)(-= 出发,沿由(-1 1)区间的随机数0.562和-0.254所确定的方向进行搜索,完成一次迭代,获取一个新的迭代点)1(+k x 。

并作图画出目标函数的等值线、可行域和本次迭代的搜索路线。

[解] 1)确定本次迭代的随机方向:[]T TRS 0.4120.9110.2540.5620.2540.2540.5620.5622222-=⎥⎥⎦⎤⎢⎢⎣⎡++=2) 用公式:R k k S x xα+=+)()1( 计算新的迭代点。

步长α取为搜索到约束边界上的最大步长。

到第二个约束边界上的步长可取为2,则:176.1)412.0(22822.0911.0212212111=-⨯+=+==⨯+-=+=++R kk R k k S x x S x xαα⎥⎦⎤⎢⎣⎡=+176.1822.01k X即: 该约束优化问题的目标函数的等值线、可行域和本次迭代的搜索路线如下图所示。

2. 已知约束优化问题:)(0)(025)(124)(m in 231222211221≤-=≤-=≤-+=⋅--=x x g x x g x x x g ts x x x f试以[][][]T T T x x x 33,14,12030201===为复合形的初始顶点,用复合形法进行两次迭代计算。

[解] 1)计算初始复合形顶点的目标函数值,并判断各顶点是否为可行点:[][][]935120101-=⇒==⇒=-=⇒=030302023314f x f x f x 经判断,各顶点均为可行点,其中,为最坏点。

为最好点,0203x x 2)计算去掉最坏点 02x 后的复合形的中心点:⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡=⎪⎪⎭⎫ ⎝⎛⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡==∑≠=3325.221132103312i i i c x Lx3)计算反射点1R x (取反射系数3.1=α)20.693.30.551422.51.322.5)(1102001-=⎥⎦⎤⎢⎣⎡=⎪⎪⎭⎫ ⎝⎛⎥⎦⎤⎢⎣⎡-⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡=-+=R R c c R f x x x x x 值为可行点,其目标函数经判断α 4)去掉最坏点1R0301x x x x 和,,由02构成新的复合形,在新的复合形中 为最坏点为最好点,011Rx x ,进行新的一轮迭代。

5)计算新的复合形中,去掉最坏点后的中心点得:⎥⎦⎤⎢⎣⎡=⎪⎪⎭⎫ ⎝⎛⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡=3.151.7753.30.5533211c x 6)计算新一轮迭代的反射点得:,完成第二次迭代。

值为可行点,其目标函数经判断413.14 5.9451.4825123.151.7751.33.151.775)(1201112-=⎥⎦⎤⎢⎣⎡=⎪⎪⎭⎫ ⎝⎛⎥⎦⎤⎢⎣⎡-⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡=-+=R R c c R f x x x x x α3. 设已知在二维空间中的点[]T x x x 21=,并已知该点的适时约束的梯度[]T g 11--=∇,目标函数的梯度[]T f 15.0-=∇,试用简化方法确定一个适用的可行方向。

[解] 按公式6-32 计算适用的可行方向:)(k k kx f P x f P d ∇∇-=/)(kx 点的目标函数梯度为:[]T k x f 15.0)(-=∇kx点处起作用约束的梯度G 为一个J n ⋅ 阶的矩阵,题中:n=2,J=1:[]T k x g G 11)(1--=∇=梯度投影矩阵P 为:[][][]⎥⎦⎤⎢⎣⎡--=-⎪⎪⎭⎫⎝⎛⎥⎦⎤⎢⎣⎡----⎥⎦⎤⎢⎣⎡---⎥⎦⎤⎢⎣⎡=-=--5.05.05.05.0011111111100111TTGGG G I P 则:适用可行方向为:⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡-⎥⎦⎤⎢⎣⎡--⎥⎦⎤⎢⎣⎡-⎥⎦⎤⎢⎣⎡---=707.0707.010.50.50.50.50.510.50.50.50.50.5kd4. 已知约束优化问题:00)(34)(min 3322113)43(222121≤-=≤-=≤-=⋅-+-=x g x g x g ts x x x x x x f 试求在[]T kx1/21/4=点的梯度投影方向。

[解] 按公式6-32 计算适用的可行方向:)(k k kx f P x f P d ∇∇-=/)(kx 点的目标函数梯度为:[]T k x f 125.0125.0--=∇)(kx点处起作用约束的梯度G 为一个J n ⋅ 阶的矩阵,题中:n=3,J=1:[]T k x g G 001)(1-=∇=梯度投影矩阵P 为:[][][]⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=-⎪⎪⎪⎭⎫⎝⎛⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=-=--10001000000100100100110001000111TT G GG G I P则:适用可行方向为:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=97.0243.00125.0100010.250.1251000100000.12500100kd312)(2112221≤-=⋅+-+=x g ts x x x x f m in(提示:可构造惩罚函数 []∑=-=21)(ln )(),(u u x g r x f r x φ,然后用解析法求解。

) [解] 构造内点惩罚函数:[]∑=--+-+=-=21)()(),(u u x r x x x x g r x f r x )3ln(12ln 212221φ令惩罚函数对x 的极值等于零:0)3/()(222221=⎥⎦⎤⎢⎣⎡----=x r x x dx d φ 得:48366121r x x +±== 舍去负根后,得483662rx ++=当 []T x x r 31302=→→该问题的最优解为,时,。

00)( min1 2221 121≤-=≤-=⋅+=xgx xgtsxxxf[解] 将上述问题按规定写成如下的数学模型:subroutine ffx(n,x,fx)dimension x(n)fx=x(1)+x(2)endsubroutine ggx(n,kg,x,gx)dimension x(n),gx(kg)gx(1)=x(1)*x(1)-x(2)gx(2)=-x(1)endsubroutine hhx(n,kh,x,hx)domension x(n),hx(kh)hx(1)=0.0end然后,利用惩罚函数法计算,即可得到如下的最优解:============== PRIMARY DATA ==============N= 2 KG= 2 KH= 0X : .1000000E+01 .2000000E+01FX: .3000000E+01GX: -.1000000E+01 -.1000000E+01X : .1000000E+01 .2000000E+01FX: .3000000E+01GX: -.1000000E+01 -.1000000E+01PEN = .5000000E+01R = .1000000E+01 C = .2000000E+00 T0= .1000000E-01 EPS1= .1000000E-05 EPS2= .1000000E-05=============== OPTIMUM SOLUTION ==============IRC= 21 ITE= 54 ILI= 117 NPE= 3759 NFX= 0 NGR= 0 R= .1048577E-13 PEN= .4229850E-06X : .9493056E-07 .7203758E-07FX: .1669681E-06GX: -.7203757E-07 -.9493056E-077.用混合惩罚函数法求下列问题的最优解:1)(0)()(2121112≤-+=≤-=⋅-=x x x h x x g ts x x x f ln m in[解] 将上述问题按规定写成如下的数学模型: subroutine ffx(n,x,fx) dimension x(n) fx=x(2)-x(1) endsubroutine ggx(n,kg,x,gx) dimension x(n),gx(kg) gx(1)=-log(x(1))] gx(2)=-x(1) gx(3)=-x(2) endsubroutine hhx(n,kh,x,hx) domension x(n),hx(kh) hx(1)=x(1)+x(2)-1 end然后,利用惩罚函数法计算,即可得到如下的最优解:============== PRIMARY DATA ==============N= 2 KG= 3 KH= 1X : .2000000E+01 .1000000E+01 FX: -.1000000E+01GX: -.6931472E+00 -.2000000E+01 -.1000000E+01 X : .2000000E+01 .1000000E+01FX: -.1000000E+01GX: -.6931472E+00 -.2000000E+01 -.1000000E+01 HX: .2000000E+01PEN = .5942695E+01R = .1000000E+01 C = .4000000E+00 T0= .1000000E-01EPS1= .1000000E-05 EPS2= .1000000E-05=============== OPTIMUM SOLUTION ==============IRC= 29 ITE= 143 ILI= 143 NPE= 1190 NFX= 0 NGR= 172R= .7205765E-11 PEN= -.9999720E+00X : .1000006E+01 .3777877E-05FX: -.1000012E+01GX: -.5960447E-05 -.1000006E+01 .6222123E-05HX: -.2616589E-06。

相关文档
最新文档