八年级数学上册第2课时 利用完全平方公式分解因式 (2)

合集下载

因式分解--公式法(2)完全平方公式

因式分解--公式法(2)完全平方公式

注意结 构特征
( 4x 3)2
(a + b )2
a2 ± 2 . a . b + b2 =( a ± b)²
例5 分解因式: 首 2 2 首 尾 尾 2 (首 尾 )2
(2)x24x y4y2. 分析:原式= (x24xy4y2 )
注意符号
[x 2 2 x (2 y ) (2 y )2 ]
黄金中学 程珊
问题:通过这个图形我们可以联想到哪个乘法公式?
(ab)2 a22ab b2
整式乘法
(a b)2 a22ab b2 (ab)2 a22ab b2
因式分解
这两个公式叫做(因式分解的)完全平方公式.
两个数的平方和加上(或减去)这两个数的 积的2倍,等于这两数的和(或差)的平方.
利用公式法因式分解的一般步骤:
1.一提:先观察要分解的多项式有无公因 式, 首先考虑:提公因式 2.二套:即套公式。提完公因式后或没有 公因式,就看项数.
若两项,考虑能否用 平方差公式 若三项,考虑能否用 完全平方公式 3.三查:检查。分解因式,必须进行到 每一个多项式因式都不能 再分解为止.
注意:公式中的字母既可以表示单项式,也可以表示
多项式 .
为更好方便交通管理,准备将原正方形区域位置扩大成 更大区域,位置扩大后仍为正方形,面积达到 (a2b)2,请 你画出扩大后图形并用因式分解的方法验证其面积大小.
解:验扩证大方后法的1区:域如图所示:
(ab)22(ab)bb2
a 2 2 a b b 2 2 a 2 b 2 b 2 a24a b4b2 a+b
因式分解 的方法
数学思 想方法
整体思想 逆向思维

第2课时 用完全平方公式因式分解

第2课时 用完全平方公式因式分解

=2×1+(-1)
=1.
(2)已知a-b=4,ab+c2-6c+13=0,求a+b+c的值.
解:(2)∵a-b=4,∴a=b+4,
∴将a=b+4代入ab+c2-6c+13=0,得
b2+4b+c2-6c+13=0,
∴(b2+4b+4)+(c2-6c+9)=0,
∴(b+2)2+(c-3)2=0,
∴b+2=0,c-3=0,
16.小明是个善于思考的同学.在做到多项式(x2-4x+2)(x2-4x+6)+4的因式分解时,观察发现两个括
号中都含有x2-4x.于是他想到设x2-4x=y.请你按照小明同学的思路尝试对多项式(x2-4x+2)(x24x+
6)+4进行因式分解.
解:设x2-4x=y,
原式=(y+2)(y+6)+4
=(x+1-2)
2
2
=(x-1) .
当 x-1= 时,

原式=( ) =3.
10.将多项式4x2+1加上一个单项式后,能用完全平方公式因式分解,则添加单项式的方法共有多少
种?请写出添加的单项式和因式分解的结果.
解:添加单项式的方法共有3种,添加的单项式和因式分解的结果分别是:
添加4x,得4x2+1+4x=(2x+1)2;
3.(2021 莱州期末)下列各式可以用完全平方公式进行因式分解的是( C )
2
2
A.a +a+1 B.x +6x-9

华师大版数学八年级上册《用平方差公式进行因式分解》说课稿2

华师大版数学八年级上册《用平方差公式进行因式分解》说课稿2

华师大版数学八年级上册《用平方差公式进行因式分解》说课稿2一. 教材分析华师大版数学八年级上册《用平方差公式进行因式分解》这一节,是在学生已经掌握了有理数的乘法、平方根的基础上进行学习的。

平方差公式是初中数学中的一个重要公式,它不仅可以简化运算,还可以把一些复杂的代数式进行因式分解。

这一节内容既有理论性,又有实践性,通过学习,让学生体会数学的简洁美,提高他们学习数学的兴趣。

二. 学情分析八年级的学生已经具备了一定的逻辑思维能力和运算能力,他们已经学习过了有理数的乘法、平方根等知识,对代数式有一定的认识。

但是,学生对平方差公式的理解和运用还需要加强,因此,在教学过程中,我们需要引导学生理解平方差公式的推导过程,掌握公式的运用方法。

三. 说教学目标1.知识与技能:让学生理解和掌握平方差公式,学会运用平方差公式进行因式分解。

2.过程与方法:通过学生的自主学习、合作交流,培养学生的探究能力和团队协作能力。

3.情感态度与价值观:让学生感受数学的简洁美,提高学生学习数学的兴趣,培养学生的自信心。

四. 说教学重难点1.教学重点:平方差公式的理解和运用,以及因式分解的方法。

2.教学难点:平方差公式的推导过程,以及如何把复杂的代数式进行因式分解。

五. 说教学方法与手段在本节课的教学过程中,我将采用自主学习、合作交流的教学方法,让学生在探究中发现问题、解决问题。

同时,我会利用多媒体教学手段,为学生提供丰富的学习资源,帮助学生更好地理解和掌握平方差公式。

六. 说教学过程1.导入:通过复习有理数的乘法、平方根等知识,为学生引入平方差公式。

2.探究:让学生自主探究平方差公式的推导过程,引导学生发现公式的特点。

3.讲解:讲解平方差公式的运用方法,以及如何把复杂的代数式进行因式分解。

4.练习:让学生进行相关的练习,巩固所学知识。

5.总结:对本节课的内容进行总结,让学生明确学习的重点和难点。

七. 说板书设计板书设计要简洁明了,能够突出平方差公式的特点和运用方法。

数学人教版八年级上册运用完全平方公式分解因式

数学人教版八年级上册运用完全平方公式分解因式

14.3 因式分解(第2课时)一、内容与内容解析1.内容用完全平方公式分解因式.2.内容解析因式分解是对整式的一种变形,是把一个多项式转化成几个整式相乘的形式,它与整式乘法是互逆变形的关系.因式分解是后续学习分式、二次根式、一元二次方程、二次函数等知识的基础,是解决整式恒等变换和简便运算问题的重要工具.公式法是因式分解的基本方法.本节课通过逆向运用完全平方公式,把多项式分解为整式的积的形式.其中,公式中的a和b可以是单项式、也可以是数或多项式.运用完全平方公式分解因式关键是找准公式中的a和b.基于以上分析,确定本节课的教学重点:运用完全平方公式分解因式.二、目标和目标解析1.目标(1)进一步了解因式分解的概念.(2)了解完全平方式和运用公式法分解因式的含义,能用完全平方公式进行因式分解.2.目标解析达成目标(1)的标志是:学生知道因式分解的概念,知道因式分解与整式乘法式互逆变形的关系,能说识别某一式子变形是否为因式分解.达成目标(2)的标志是:学生知道完全平方式是两个数的平方和加上(或减去)这两个数的乘积的2倍;知道完全平方公式中的a和b可以是单项式、也可以是数或多项式;知道公式法分解因式要经历“提取公因式”“运用公式”“分解彻底”三个步骤,运用完全平方公式分解因式就是把两个数的平方和加上(或减去)这两个数的乘积的2倍变成这两个数的和(或差)的平方,并能按此步骤对多项式进行因式分解.三、教学问题诊断分析因式分解不同于数的计算,是对整式进行变形,学生在接触时在理解上会有一定的困难.在对整式乘法的认识还不够深入的情况下,就遇到与之有互逆关系的新情境,学生有时会出现因式分解后又反转回去做乘法的错误,解决此问题的关键是让学生正确认识因式分解的概念,理解它与整式乘法的互逆变形关系.学生在运用完全平方公式分解因式的过程中经常遇到的困难是不能辨别完全平方式,表现在当公式中的a或b为多项式时,不能看出可以运用完全平方公式进行因式分解.解决此问题的关键是将多项式看成一个整体再去观察.本节课的教学难点是:完全平方式的识别及正确运用完全平方公式分解因式.四、教学过程设计1.了解因式分解的方法问题1上节课我们学习了因式分解,知道可以把一个多项式化成了几个整式的积的形式。

人教版八年级上册数学《公式法》整式的乘法与因式分解PPT课件(第2课时)

人教版八年级上册数学《公式法》整式的乘法与因式分解PPT课件(第2课时)

因此x=-5是原分式方程的解.
随堂练习
1.下列方程是分式方程的是( B )
A.
一元一次方程
B.
C. x2-1=0
D. 2x+1=3x 一元二次方程
一元一次方程
2.(2020·海南中考)分式方程 的解是(
A. x=-1
B. x=1 C. x=5
x-2=3
D. x=2
x=5
) C
解分式方程时,不要忘记检验哦.
用平方差公式分解因式 由于整式的乘法与因式分解是方向相反的变形,把整 式乘法的平方差公式(a+b)(a-b)=a2-b2的等号两边互换位 置,就得到了 a2-b2=(a+b)(a-b)
语言叙述:两个数的平方差,等于这两个数的和与这 两个数的差的积.
用完全平方公式分解因式 把整式乘法的完全平方公式 (a+b)2=a2+2ab+b2,(a-b)2=a2-2ab+b2 的等号两边互换位置,就可以得到 a2+2ab+b2=(a+b)2,a2-2ab+b2=(a-b)2. 语言叙述:两个数的平方和加上(或减去)这两个数 的积的2倍,等于这两个数的和(或差)的平方.
分析:将b2看成一个整体a,则原式变形为(b2)2-b2-12,
可以看作a2-b-12.
1 -4
b4-b2-12 =(b2-4)(b2+3) =(b+2)(b-2)(b2+3).
13 1×3+1×(-4)=-1
2.(2020·乐山)已知y≠0,且x2-3xy-4y2=0,则 的值是
__4_或__-_1__.
分析:因为x2-3xy-4y2=0, 即(x-4y)(x+y)=0, 可得x=4y或x=-y, 所以 =4或 =−1.

精品 八年级数学上册 因式分解二 同步讲义+同步练习题

精品 八年级数学上册 因式分解二 同步讲义+同步练习题

因式分解 二知识点平方差公式:完全平方公式:十字相乘法公式:分组分解法公式: 例1.用平方差公式对下列各式分解因式。

(1)92+-x (2)x x -5(3)222)21()2(y y x ---例2.用完全平方公式对下列各式分解因式.(1)41292+-x x (2)110252+-x x(3))1(4)(2-+-+y x y x例3.用十字相乘法对多项式进行因式分解.(1)1832-+x x (2)1522--x x (3)226y xy x -+例4.对多项式进行因式分解:(1)3722+-x x (2)622-+y y (3)61362+-x x例5.对多项式进行因式分解:(1)2224)3(x x -- (2)60)(17)(222++-+x x x x例6.用分组分解法对下列多项式进行分解因式:(1)2222c b ab a -+- (2)yz z y x 2222--- (3)181696222-+-++a a y xy x课堂练习:1.下列多项式中,没有公因式的是( )A.()y x a +和(x +y)B.()b a +32和()b x +-C.()y x b -3和 ()y x -2D.()b a 33-和()a b -62.多项式)2()2(2n m n m ---分解因式等于( )A.(n-2)(m+m 2)B.(n-2)(m-m 2)C.m(n-2)(m+1)D.m(n-2)(m-1)3.如果4,-==+ab m b a ,化简)2)(2(--b a 的结果是( )A.6B.82-mC.m 2D.m 2-4.利用因式分解计算:2224825210000-=5.计算:20152014)125.0()8(-⋅-= ;2014201522-= ;20152014)2()2(-+-=6.当m=______时,25)3(22+-+x m x 是完全平方式.7.已知x+y=4,那么221122x xy y ++的值为________ 8.对下列各多项式进行因式分解:(1)23)1(2)1(4-+-q q p (2)122)()(+-+-n n y x b a y x ab (3)x x 32122+-(4)m m m 216423-+- (5)1642-a (6)35a a -(7)44y x - (8)9)(6)(2++-+n m n m (9)1)4(2)4(222++-+x x(10)()()b a b a +-+43 (11)814-x (12)x x x +-232(13)71522++x x (14)4832+-a a (15)6752-+x x(16)101162--y y (17)223116y xy x +- (18)234283x x x --(19)222)73()3(+--x x x (20)91024+-x x (21)1002924+-x x(22)a b b ab a 4912622-++- (23)222y yz xz xy x ++--(24)120)8(22)8(222++++a a a a (25)2222224)(b a b a c ---10.已知3,7==+ab b a ,求32232ab b a b a ++.11.求证:201320142015310343⨯+⨯-能被7整除。

14.3 因式分解【教案】八年级上册数学

14.3  因式分解【教案】八年级上册数学

14.3.1提公因式法课时目标1.了解因式分解的意义,以及它与整式乘法的关系,掌握因式分解的概念,体会数学知识的内在含义与价值.2.能确定多项式各项的公因式,会用提公因式法把多项式分解因式,培养学生有条理的思考和运算能力.3.会利用因式分解进行简便计算,体会因式分解的价值,培养学生的创新意识.学习重点运用提公因式法分解因式.学习难点正确理解因式分解的概念,准确找出公因式.课时活动设计回顾引入1.回顾整式乘法完成填空:(1)m(a+b+c)=ma+mb+mc.(2)(x+1)(x-1)=x2-1.(3)(a+b)2=a2+2ab+b2.2.根据等式性质填空:(1)ma+mb+mc=m(a+b+c).(2)x2-1=(x+1)(x-1).(3)a2+2ab+b2=(a+b)2.设计意图:引导学生回顾旧知识,激活学生已有的知识体系,为学习新知识打下基础.探究新知探究1因式分解问题:回顾引入中第2组式子有什么共同特点?学生回答:将一个多项式化成多个整式相乘.教师引导并给出因式分解的概念:把一个多项式化成几个整式的积的形式,像这样的式子变形叫做这个多项式的因式分解,也叫做把这个多项式分解因式.p(a+b+c)pa+pb+pc通过观察,你发现因式分解和整式乘法有什么关系?学生发现:因式分解与整式乘法的互逆性.探究2提公因式法问题1:观察下列多项式有哪些相同因式?学生观察发现前者的相同因式为p,后者的相同因式为x.总结如下:多项式中各项都含有的相同因式,叫做这个多项式的公因式.师生活动:教师板书:pa+pb+pc=p(a+b+c).引导学生用文字进行总结:一般地,如果多项式的各项有公因式,可以把这个公因式提取出来,将多项式写成公因式与另一个因式的乘积的形式,这种分解因式的方法叫做提公因式法.问题2:找出3x2-6xy的公因式,并思考如何确定一个多项式的公因式?师生活动:学生先独立思考,然后小组交流得出结论:公因式为3x.教师引导学生用文字总结如何确定一个多项式的公因式:1.定字母:字母取多项式各项中都含有的相同的字母;2.定系数:公因式的系数是多项式各项系数的最大公约数;3.定指数:相同字母的指数取各项中最小的一个,即字母的最低次数.设计意图:通过具体问题的解决,让学生在观察、思考和操作的过程中,了解因式分解的概念,培养学生类比的思想方法和运算能力;学生从系数、字母、指数多个角度思考问题,培养学生思维的全面性和开阔性,养成积极思考的学习态度和创新意识.典例精讲例1把下列各式分解因式:(1)8a3b2+12ab3c;(2)2a(b+c)-3(b+c);(3)(a+b)(a-b)-a-b.解:(1)8a3b2+12ab3c=4ab2·2a2+4ab2·3bc=4ab2(2a2+3bc).(2)2a(b+c)-3(b+c)=(b+c)(2a-3).(3)(a+b)(a-b)-a-b=(a+b)(a-b)-(a+b)=(a+b)(a-b-1).技巧:1.整体思想找公因式;2.整项被提取后,1不能丢;3.可以用整式乘法验证.例2以下因式分解是否正确?如果错误,请指出原因并改正.(1)把12x2y+18xy2分解因式.解:原式=3xy(4x+6y).解:不正确.正解:原式=6xy(2x+3y).注意:公因式要提尽.(2)把3x2-6xy+x分解因式.解:原式=x(3x-6y).解:不正确.正解:原式=3xx-6yx+1·x=x(3x-6y+1).注意:某项提出莫漏1.(3)把-x2+xy-xz分解因式.解:原式=-x(x+y-z).解:不正确.正解:原式=-(x2-xy+xz)=-x(x-y+z).注意:首项有负常提负.例3计算:(1)39×37-13×91;(2)29×20.16+72×20.16+13×20.16-20.16×14.解:(1)原式=3×13×37-13×91=13×(3×37-91)=13×20=260.(2)原式=20.16×(29+72+13-14)=2 016.例4已知a+b=7,ab=4,求a2b+ab2的值.解:∵a+b=7,ab=4,∴原式=ab(a+b)=4×7=28.设计意图:通过例题,让学生寻求不同的解题方法,体会在计算求值时,若式子各项都含有公因式,用提公因式的方法可使运算简便,感悟学习因式分解的作用,培养学生转化意识、整体思想,进一步训练运算能力.巩固训练1.多项式15m3n2+5m2n-20m2n3的公因式是(C)A.5mnB.5m2n2C.5m2nD.5mn22.把多项式(x+2)(x-2)+(x-2)提取公因式(x-2)后,余下的部分是(D)A.x+1B.2xC.x+2D.x+33.简便计算:2 0132+2 013-2 0142.解:原式=2 013×(2 013+1)-2 0142=2 013×2 014-2 0142=2 014×(2 013-2 014)=-2 014.设计意图:巩固训练共设计3个题目,针对所学知识点对本节所学知识再巩固,检验学生的学习效果,准确地进行教学评价,帮助教师发现问题和进行教学改进.课堂小结1.整式乘法和因式分解的关系是方向相反的变形,因式分解的目的是把一个多项式化成了几个整式的积的形式.2.找公因式的方法三定:定系数;定字母;定指数.3.提公因式的因式分解的步骤第一步找公因式,第二步提公因式.4.提公因式的技巧或注意问题1.要提尽;2.不漏项;3.提负数要注意变号.5.本节用到什么研究问题的方法?设计意图:引导学生从知识内容和学习过程两个方面总结自己的收获,把握本节课的核心,梳理本节课内容,回顾由具体到抽象的过程,总结方法,建立知识体系,体会类比、转化方法在研究数学问题中的重要作用,促进学生数学思维品质的优化.课堂8分钟.1.教材第115页练习第1,2,3题.2.作业.教学反思14.3.2公式法第1课时运用平方差公式因式分解课时目标1.探索并运用平方差公式进行因式分解,体会转化思想和逆向思维.2.能综合运用提公因式法和平方差公式对多项式进行因式分解,培养运算能力和应用意识.3.培养良好的推理能力,体会“化归”与“整体”的思想方法,形成灵活的应用能力.学习重点掌握平方差公式的特点,运用平方差公式进行因式分解.学习难点灵活应用平方差公式因式分解.课时活动设计回顾引入之前学习了平方差公式,今天先回顾一下.计算:(1)(x+2)(x-2);(2)(x-1)(x+1).选两名学生黑板上板书计算过程:解:(1)(x+2)(x-2)=x2-4.(2)(x-1)(x+1)=x2-1.设计意图:从结构上认识本节课所研究的多项式的结构特点,引出课题,培养学生观察问题的能力和模型观念.探究新知问题:多项式a2-b2有什么特点?你能将它分解因式吗?学生观察得出结论:a2-b2=(a+b)(a-b)是a,b两数的平方差的形式.追问1:你能根据符号语言写出文字语言吗?师生活动:教师引导学生结合整式乘法归纳出因式分解平方差公式的文字语言:两个数的平方差,等于这两个数的和与这两个数的差的积.追问2:如图,在边长为a米的正方形上剪掉一个边长为b米的小正方形,将剩余部分拼成一个长方形,根据此图形变换,你能验证刚才的公式吗?师生活动:教师首先引导学生利用面积验证平方差公式,提问两名同学分别列出左右两个图形涂色区域的面积.左:涂色区域的面积=a2-b2;右:涂色区域的面积=(a+b)(a-b).根据左右涂色区域的面积相等得到:a2-b2=(a+b)(a-b).设计意图:通过利用拼图求面积验证平方差公式,培养学生多角度思考问题的习惯和图形语言、符号语言、文字语言的相互转化能力.典例精讲例1分解因式:(1)4x2-9;(2)(x+p)2-(x+q)2.解:(1)原式=(2x)2-32=(2x+3)(2x-3).(2)原式=[(x+p)+(x+q)]·[(x+p)-(x+q)].例2分解因式:(1)x4-y4;(2)a3b-ab.解:(1)原式=(x2)2-(y2)2=(x2+y2)(x2-y2)=(x2+y2)(x+y)(x-y).(2)原式=ab(a2-1)=ab(a+1)(a-1).例3已知x2-y2=-2,x+y=1,求x-y,x,y的值.解:∵x2-y2=(x+y)(x-y)=-2,∵x+y=1,①∴x-y=-2.②联立①②,组成二元一次方程组{x+y=1, x-y=−2,解得{x =−12,y =32. 例4 计算下列各题:(1)1012-992; (2)53.52×4-46.52×4. 解:(1)原式=(101+99)×(101-99)=200×2=400. (2)原式=4×(53.52-46.52) =4×(53.5+46.5)(53.5-46.5) =4×100×7=2 800.例5 求证:当n 为整数时,多项式(2n +1)2-(2n -1)2一定能被8整除. 证明:原式=(2n +1+2n -1)(2n +1-2n +1)=4n ·2=8n , ∵n 为整数,∴8n 能被8整除.即多项式(2n +1)2-(2n -1)2一定能被8整除.设计意图:进一步通过例题强调平方差公式和因式分解的两种方法的综合应用,让学生体会若用平方差公式分解后的结果中有公因式,一定要再用提公因式法继续分解,分解到不能再分解为止,体会“一提二套三彻底”,培养学生归纳抽象能力和数学思想方法的掌握.巩固训练1.下列多项式中能用平方差公式分解因式的是( D )A.a 2+(-b )2B.5m 2-20mnC.-x 2-y 2D.-x 2+9 2.把下列各式分解因式: (1)16a 2-9b 2= (4a +3b )(4a -3b ) ; (2)(a +b )2-(a -b )2= 4ab ; (3)2x 2-8= 2(x +2)(x -2) ; (4)-a 4+16= (4+a 2)(2+a )(2-a ) .3.如图,在边长为6.8 cm 正方形钢板上,挖去4个边长为1.6 cm 的小正方形,求剩余部分的面积.解:根据题意,得6.82-4×1.62=6.82-(2×1.6)2=6.82-3.22=(6.8+3.2)(6.8-3.2)=10×3.6=36(cm2).答:剩余部分的面积为36 cm2.设计意图:共设计3个题目,针对所学知识点对本节所学知识再巩固,检验学生的学习效果,准确地进行教学评价,帮助教师发现问题和进行教学改进.课堂小结1.因式分解有哪些方法?2.能用平方差公式因式分解的结构特点是什么?3.平方差公式因式分解的步骤及注意问题有什么?4.本节用到什么研究问题的方法?5.根据本节的研究思路思考因式分解还有什么方法?设计意图:以提问的方式引导学生从知识内容和学习过程两个方面总结自己的收获,把握本节课的核心,梳理本节课内容,回顾由具体到抽象的过程,总结方法,建立知识体系,体会类比、转化方法在研究数学问题中的重要作用,促进学生数学思维品质的优化.课堂8分钟.1.教材第119页习题14.3第2,5(4)题.2.作业.教学反思第2课时运用完全平方公式因式分解课时目标1.理解完全平方公式的结构特点,培养模型观念.2.经历探索利用完全平方公式进行因式分解的过程,感受逆向思维的意义,掌握因式分解的基本步骤.3.在运用完全平方公式法进行因式分解的同时,培养学生的观察、比较和判断能力以及运算能力.学习重点掌握完全平方公式的结构特点,运用完全平方公式进行因式分解.学习难点理解完全平方公式的结构特征,灵活运用完全平方公式进行因式分解.课时活动设计回顾引入之前学习了完全平方公式,今天先来回顾一下.计算:(1)(x+2)(x+2);(2)(x-1)(x-1).选两名学生黑板上板书计算过程:解:(1)(x+2)(x+2)=x2+4x+4.(2)(x-1)(x-1)=x2-2x+1.设计意图:通过复习旧知,巩固因式分解和整式乘法的关系,为探究新知做准备,回顾完全平方公式,注重知识间的联系和知识体系的渗透,培养知识的迁移能力.探究新知问题1:观察多项式a2+2ab+b2,a2-2ab+b2,并回答下列各题.(1)每个多项式有几项?解:三项.(2)每个多项式的第一项和第三项有什么特征?解:都是一个数的平方.(3)中间项和第一项,第三项有什么关系?解:中间项是正负这两个数的积的2倍.追问:你能用符号语言和文字语言表述完全平方式吗?师生活动:选两名学生在黑板上板书整式乘法的完全平方公式.(a+b)2=a2+2ab+b2;(a-b)2=a2-2ab+b2.等号两边互换位置,就得到:a2+2ab+b2=(a+b)2;a2-2ab+b2=(a-b)2.教师引导学生用文字表述完全平方式:两个数的平方和加上(或减去)这两个数的积的2倍,等于这两个数的和(或差)的平方.问题2:你能把下面4个图形拼成一个正方形,并根据拼成的图形的面积写出等量关系吗?学生动手操作,通过拼图前后图形面积相等写出等量关系a2+2ab+b2=(a+b)2.设计意图:学生在归纳出完全平方式的结构特征后,尝试用符号语言和文字语言表述完全平方式,最后通过动手操作,以拼图的形式再次验证完全平方式,同时在探究过程中感受到学习数学的乐趣.典例精讲例1分解因式:(1)16x2+24x+9;(2)-x2+4xy-4y2.解:(1)原式=(4x)2+2·4x·3+32=(4x+3)2.(2)原式=-(x2-4xy+4y2)=-(x-2y)2.例2把下列各式分解因式:(1)3ax2+6axy+3ay2;(2)(a2+4)2-16a2.解:(1)原式=3a(x2+2xy+y2)=3a(x+y)2.(2)原式=(a2+4)2-(4a)2=(a2+4+4a)(a2+4-4a)=(a+2)2(a-2)2.例3计算:(1)1002-2×100×99+992;(2)342+34×32+162;(3)7652×17-2352×17.解:(1)原式=(100-99)2=1.(2)原式=(34+16)2=2 500.(3)原式=17×(7652-2352)=17×(765+235)(765-235)=17×1 000×530=9 010 000.例4已知a2+b2+2a-4b+5=0,求2a2+4b-3的值.解:由已知可得(a2+2a+1)+(b2-4b+4)=0,即(a+1)2+(b-2)2=0,解得a=-1,b=2.∴2a2+4b-3=2×(-1)2+4×2-3=7.设计意图:通过多种方法的综合应用,感受因式分解给计算带来的便捷,选题层次分明考察各有侧重点,让学生体会“数式同性”,掌握研究方法和知识的迁移性,形成体系,培养数感和运算能力.巩固训练1.下列四个多项式中,能因式分解的是(B)A.a2+1B.a2-6a+9C.x2+5yD.x2-5y2.把多项式4x2y-4xy2-x3分解因式的结果是(B)A.4xy(x-y)-x3B.-x(x-2y)2C.x(4xy-4y2-x2)D.-x(-4xy+4y2+x2)3.把下列多项式因式分解.(1)4(2a+b)2-4(2a+b)+1;(2)y2+2y+1-x2.解:(1)原式=[2(2a+b)]2-2·2(2a+b)·1+12=(4a+2b-1)2.(2)原式=(y+1)2-x2=(y+1+x)(y+1-x).设计意图:共设计3个题目,针对所学内容对本节所学知识再巩固,检验学生的学习效果,准确地进行教学评价,帮助教师发现问题和进行教学改进.课堂小结(1)因式分解有哪些方法?(2)能用完全平方公式因式分解的结构特点是什么?(3)因式分解的步骤及注意问题有什么?(4)本节用到什么研究问题的方法?设计意图:引导学生从知识内容和学习过程两个方面总结自己的收获,把握本节课的核心,梳理本节课内容,回顾由具体到抽象的过程,总结方法,建立知识体系,体会类比、转化方法在研究数学问题中的重要作用,促进学生数学思维品质的优化.课堂8分钟.1.教材第119页练习第1,2题.2.作业.教学反思。

运用完全平方公式因式分解

运用完全平方公式因式分解

5 x2 1 x
4
原式
x
1 2
2
6 4a2 12ab 9b2 原式 2a 3b2
练习题:
1、下列各式中,能用完全平方公式
分解的是( D )
A、a2+b2+ab B、a2+2ab-b2
C、a2-ab+2b2 D、-2ab+a2+b2
2、下列各式中,不能用完全平方公
式分解的是( C )
A、x2+y2-2xy B、x2+4xy+4y2
A、a b 12 B、a b 12 C、a b 22 D、a b 22
10、计算1002 210099 992 的
结果是( A )
A、 1
B、-1
C、 2
D、-2
思考题:
1.3a x2 6axy 3a y2 2.ax2 2 a2 x a3
3.(x+y)2-2(x2-y2)+(x-y)2能用完全平方公 式分解吗?
4x2+12xy+9y2
2x2 22x3y 3y2 2x 3y2
首2 2首尾 尾2 =(首+尾)2
请运用完全平方公式把下列各式分 解因式:
1 x2 4x 4 原式 x 22
2 a2 6a 9 原式 x 32
3 4a2 4a 1 原式 2a 12
4 9m2 6mn n2 原式 3m n2
小结:
1、完全平方式的特征:
是一个二次三项式 首平方尾平方积的2倍在中央
2、利用完全平方式进行因式分 解应注意什么?
作业
P45 习题12.5 1、2、3
ab 2 a2 2abb2
现在我们把这个公式反过来

《公式法》因式分解PPT课件(第2课时)

《公式法》因式分解PPT课件(第2课时)

B. + −
C. − +
D. − + +
D

课堂检测
基础巩固题
3.如果x2-6x+N是一个完全平方式,那么N是(
A . 11
B. 9
C. -11
)
B
D. -9
4.如果x2-mx+16是一个完全平方式,那么m的值为________.
±8
课堂检测
∴++=(+) =112=121.
连接中考


(2020•眉山)已知 + = − − ,则 −
. 4

的值为


解析:由 +

+






= − − ,
− + + = ,


即 − + + + + = ,
∵ − = , = ,
∴原式=2.
巩固练习
变式训练
已知-+-+=,求++的值.
解:∵x2-4x+y2-10y+29=0,
∴(-)+(-)=.
∵(-) ≥ ,(-) ≥ ,
∴-=,-=,∴=,=,
是.
巩固练习
变式训练
将前面例题的(2)(3)(4)变为完全平方式?
(2) + ²;
+ ² + ;
(3) + − ;
+ + ;
(4) + + .
+ + .
探究新知
知识点 2
用完全平方公式因式分解

2022年人教版八年级上册《运用完全平方公式因式分解》同步练习(附答案)

2022年人教版八年级上册《运用完全平方公式因式分解》同步练习(附答案)

第2课时 完全平方公式一.填空1.〔 〕2+=+22520y xy 〔 〕2. 2.=+⨯-227987981600800〔 --2)= .3.3=+y x ,那么222121y xy x ++= .4.0106222=++-+y x y x那么=+y x .5.假设4)3(2+-+x m x 是完全平方式,那么数m 的值是 .6.158-能被20至30之间的两个整数整除,那么这两个整数是 .二.把以下各式分解因式:7.32231212x x y xy -+8.442444)(y x y x -+9.22248)4(3ax x a -+10.2222)(4)(12)(9b a b a b a ++-+-〔11〕.2222224)(b a c b a --+〔12〕.22222)(624n m n m +-〔13〕.115105-++-m m m x x x三.利用因式分解进行计算:〔14〕.419.36.7825.03.2541⨯-⨯+⨯〔15〕.2298196202202+⨯+〔16〕.225.15315.1845.184+⨯+四.〔17〕.将多项式1362+x 加上一个单项式,使它成为一个整式的平方.五.〔18〕.212=-b a ,2=ab 求:42332444b a b a b a -+-的值.〔19〕.n b a m b a =-=+22)(,)(,用含有m ,n 的式子表示:〔1〕a 与b 的平方和;〔2〕a 与b 的积;〔3〕ba ab +.【课外拓展】〔20〕.△ABC 的三边为a ,b ,c ,并且ca bc ab c b a ++=++222求证:此三角形为等边三角形.〔21〕.c b a ,,是△ABC 三边的长,且0)(22222=+-++c a b c b a 你能判断△ABC 的形状吗?请说明理由.(22).求证:不管为x,y 何值,整式5422+-xy y x 总为正值.一、填空1.2,25x x y +2.800,798,43.924.-2 5.7或-16. 26、24 二.把以下各式分解因式:7.【解】32231212x x y xy -+=232x(x y )-8.【解】442444)(y x y x -+=42244224(2)(2)x x y y x x y y ++-+=22222()()()x y x y x y ++-9.【解】22248)4(3ax x a -+=2223[(4)16]a x x +-=2223[(4)16]a x x +-=223(2)(2)a x x +-10.【解】2222)(4)(12)(9b a b a b a ++-+-=2[3()2()]a b a b -++=2(5)a b -〔11〕.【解】2222224)(b a c b a --+=22222222(2)(2)a b c ab a b c ab +-++--=222222[()][()]a b c a b c +---=()()()()a b c a b c a b c a b c +++--+-- 〔12〕.【解】22222)(624n m n m +-=222226[()4]m n m n -+-=226()()m n m n -+-〔13〕.【解】115105-++-m m m x x x=125(21)m x x x --+=125(1)m x x --三.利用因式分解进行计算:〔14〕.【解】419.36.7825.03.2541⨯-⨯+⨯ =1(25.378.6 3.9)4+-=1(25.378.6 3.9)4+-=25 〔15〕.【解】2298196202202+⨯+=2(20298)+=90000〔16〕.【解】225.15315.1845.184+⨯+=2(184.515.5)+=40000四.〔17〕.【解】12x ±五.〔18〕.【解】42332444b a b a b a -+-=2222(44)a b a ab b --+=222(2)a b a b --而212=-b a ,2=ab .所以42332444b a b a b a -+-=222(2)a b a b -- =-144⨯=-1. (19).【解】〔1〕因为n b a m b a =-=+22)(,)(,所以22222,2a ab b m a ab b n ++=-+=.即22.a b m n +=+所以a 与b 的平方和为m n +.〔2〕由〔1〕可知:1()4ab m n =- 所以a 与b 的积为1()4m n - 〔3〕由〔1〕〔2〕可知,22.a b m n +=+1()4ab m n =- 所以b a a b +=22a b ab +=1()4m n m n +- 44m n m n+=- 【课外拓展】〔20〕.证明:因为ca bc ab c b a ++=++222,所以222222222a b c ab bc ca ++=++. 即222()()()0a b b c c a -+-+-=.所以0,0,0a b b c c a -=-=-=所以a=b=c.此三角形为等边三角形.〔21〕.【解】△ABC 是等边三角形.理由是:∵0)(22222=+-++c a b c b a∴2222220a b c ba bc ++--=∴22()()0a b b c -+-=所以0,0,a b b c -=-=所以a=b=c.∴△ABC 是等边三角形.〔22〕.证明:5422+-xy y x =2(2)110xy -+≥>.即不管为x,y 何值,整式5422+-xy y x 总为正值.《一元二次方程的应用》 综合练习【知能点分类训练】知能点1 面积问题1.有一个三角形的面积为25cm 2,其中一边比这一边上的高的3倍多5cm ,那么这一边的长是________,高是_________.2.要用一条铁丝围成一个面积为120cm 2的长方形,并使长比宽多2cm ,那么长方形的长是______cm .3.有一间长为18m ,宽为7.5m 的会议室,在它的中间铺一块地毯,地毯的面积是会议室面积的12,四周未铺地毯处的宽度相同,那么所留宽度为_______m . 4.在一块长16m ,宽12m 的矩形空地上,要建造四个花园,•中间用互相垂直且宽度相同的两条甬路隔开,并使花园所占面积为空地面积的,求甬路宽.知能点2 增长〔降低〕率问题5.某工厂用两年时间把产量提高了44%,求每年的平均增长率.•设每年的平均增长率为x ,列方程为_______,增长率为_________.6.某粮食大户2005年产粮30万kg ,方案在2007年产粮到达36.3万kg ,假设每年粮食增长的百分数相同,求平均每年增长的百分数.7.某厂一月分的产值为15万元,第一季度的总产值是95万元,设月平均增长率为x ,那么可列方程为〔 〕.A .95=15〔1+x 〕2B .15〔1+x 〕3=95C .15〔1+x 〕+15〔1+x 〕2=95D .15+15〔1+x 〕+15〔1+x 〕2=958.某种商品经过两次降价,由每件100元降低了19元,•那么平均每次降价的百分率为〔 〕.A .9%B .9.5%C .8.5%D .10%9.某班将2005年暑假勤工俭学挣得的班费2000元按一年定期存入银行.2006•年暑假到期后取出1000元寄往灾区,将剩下的1000元和利息继续按一年定期存入银行,待2007年毕业后全部捐给母校.假设2007年到期后可取人民币〔本息和〕1069元,•问银行一年定期存款的年利率是多少.〔假定不交利息税〕【综合应用提高】10.用24cm 长的铁丝:〔1〕能不能折成一个面积为48cm 2的矩形?〔2〕•能不能折成面积是32cm 2的矩形?假设能,求出边长;假设不能,请说明理由.11.如果一个正方体的长增加3cm,宽减少4cm,高增加2cm,•所得的长方体的体积比原正方体的体积增加251cm3,求原正方体的边长.12.某厂方案在两年后总产值要翻两番,那么,•这两年产值的平均增长率应为多少?【开放探索创新】13.某农户种植花生,原种植的花生亩产量为200kg,出油率为50%.现在种植新品种花生后,每亩收获的花生可加工成花生油132kg,•其中花生出油率的增长率是亩产量的增长率的,求新品种花生亩产量的增长率.【中考真题实战】14.〔陕西中考〕在一幅长80cm,宽50cm的矩形风景画的四周镶一条金色纸边,•制成一幅矩形挂图,如下图,如果要使整幅挂图的面积是5400cm2,设金色纸边的宽为xcm,•那么x满足的方程为〔〕.A.x2+130x-1400=0 B.x2+65x-350=0C.x2-130x-1400=0 D.x2-65x-350=015.〔遵义中考〕某商店将一件商品的进价提价20%后又降价20%,以96元的价格出售,•那么该商店卖出这种商品的盈亏情况是〔〕.A.不亏不赚 B.亏4元 C.赚6元 D.亏24元16.〔大连中考〕某企业的年产值在两年内从1000万元增加到1210万元,求平均每年增长的百分率.17.〔新疆中考〕在一块长16m,宽12m的矩形荒地上,要建造一个花园,要求花园所占面积为荒地面积的一半,图a、图b分别是小明和小颖的设计方案.〔1〕你认为小明的结果对吗?请说明理由.〔2〕请你帮助小颖求出图中的x〔精确到0.1m〕.〔3〕你还有其他的设计方案吗?请在以下图中画出你的设计草图,并加以说明.18.〔兰州中考〕某地2004年外贸收入为2.5亿元,2006年外贸收入到到达4亿元.•假设平均每年的增长率为x,那么可以列出方程为〔〕.A.2.5〔1+x〕2=4 B.〔2.5+x%〕2=4C.2.5〔1+x〕〔1+2x〕2=4 D.2.5〔1+x%〕2=4参考答案1.15cm 103cm2.12 点拨:根据题意,可设长为xcm,宽为〔x-2〕cm,可列方程为〔x-2〕x=120.3.1.5 点拨:根据题意,设所留宽度为x,可列方程〔18-2x〕〔7.5-2x〕=12×18×7.5.4.设甬路宽为xm,根据题意可列方程为〔16-x〕〔12-x〕=×16×12,解得x1=2,x2=26〔不符合题意,舍去〕.5.〔1+x〕2=〔1+44%〕 20%6.设平均每年增长的百分数为x,根据题意得30〔1+x〕2=36.3,解得x1=0.1,x2=-2.1〔不符合题意,舍去〕.故平均每年的增长率为10%.7.D 点拨:一个季度的总产值包括一月,二月,三月的产值.8.D 点拨:降低19元,所以现价为81元,可列方程为100〔1-x〕2=81.9.设银行一年定期存款的年利率是x元,根据题意,列方程为[2000〔1+x〕-1000]〔1+x〕=1069,整理得2x2+3x-0.069=0,x1≈0.0225,x2≈-1.5225〔不符合题意,舍去〕.10.〔1〕设矩形的长为xcm,那么宽为〔12-x〕cm,根据题意可得x〔12-x〕=48,整理得x2-12x+48=0,∵b2-4ac=144-4×48<0,∴原方程无解,故用24cm长的铁丝不能折成面积为48cm2的矩形.〔2〕根据题意,可列方程为x〔12-x〕=32,整理得x2-12x+32=0,解得x1=4,x2=8.当x=4时,12-x=8;当x=8时,12-x=4,所以长为8cm时,宽为4cm.用长为24cm 的铁丝能折成面积为32cm2的矩形,边长为4cm和8cm.11.设原正方体的边长为xcm,那么现在长方体的长为〔x+3〕cm,宽为〔x-4〕cm,高为〔x+2〕cm,根据题意列方程得:〔x+3〕〔x-4〕〔x+2〕-x3=251,整理得x2-14x-275=0,∴x1=25,x2=-11〔不符合题意,舍去〕.12.这两年产值的平均增长率为x,根据题意可得〔1+x〕2=4,解得x1=1,x2=-3〔不符合题意,舍去〕故这两年生产总值的平均增长率为100%.13.设新品种花生亩产量的增长率为x,那么花生出油率的增长率为12x.根据题意列方程得200〔1+x〕×50%〔1+12x〕=132,整理得25x2+75x-16=0,解得x1=0.2,x2=-3.2〔舍去〕.故新品种花生亩产量的增长率为20%.14.B15.B 点拨:提高和降低的百分率相同,而基点不同,所得的结果是不同的,设进价为a,那么a〔1+20%〕〔1-20%〕=96,∴a=100.16.设平均每年增长的百分率为x,根据题意,得1000〔1+x〕2=1210,1+x=±1.1,解得x1=0.1=10%,x2=-2.1〔不符合题意,舍去〕.所以x=10%.点拨:此题解题关键是理解和熟记增长率公式.17.〔1〕小明的结果不对,设小路的宽为xm,那么得方程〔16-2x〕〔12-2x〕=12×16×12,解得x1=2,x2=12.而荒地的宽为12m,假设小路宽为12m,不符合实际情况,故x2=12m不符合题意,•应舍去.〔2〕由题意得4×221961612,42xxππ=⨯⨯=,∴x≈5.5m.〔3〕方案不唯一,如图,说明略.18.A。

人教版八年级数学上册《14-3-2 第2课时 运用完全平方公式因式分解》导学案设计优秀公开课

人教版八年级数学上册《14-3-2 第2课时 运用完全平方公式因式分解》导学案设计优秀公开课

第十四章整式的乘法与因式分解教学备注学生在课前完成自主学习部分14.3 因式分解14.3.2 公式法第 2 课时运用完全平方公式因式分解学习目标:1.理解并掌握用完全平方公式分解因式.2.灵活应用各种方法分解因式,并能利用因式分解进行计算.重点:掌握用完全平方公式分解因式.难点:灵活应用各种方法分解因式.一、知识链接1.前面我们学习了因式分解的意义,并且学会了一些因式分解的方法,运用学过的方法你能将a2+2a+1分解因式吗?2.(1) 填一填:在括号内填上适当的式子,使等式成立:①(a+b)2=;②(a-b)2=.③a2++1=(a+1)2;④a2-+1=(a-1)2.(2)想一想:①你解答上述问题时的根据是什么?②第(1)①②两式从左到右是什么变形?第(1)③④两式从左到右是什么变形?二、新知预习1.观察完全平方公式:=(a+b)2;=(a-b)2完全平方公式的特点:左边:①项数必须是;②其中有两项是;③另一项是.右边:.自主学习典例精析要点归纳:把 a²+ +b²和 a²- +b²这样的式子叫作完全平方式.2. 乘法公式完全平方公式与因式分解完全平方公式的联系是. 把乘法公式逆向变形为:a 2+2ab +b 2= ; a 2-2ab +b 2= . 要点归纳:用完全平方公式因式分解,即两个数的平方和加上(或减去)这两个数的积的 2 倍,等于这两个数的和(或差)的平方.三、自学自测1.下列式子为完全平方式的是()A .a 2+ab +b 2B .a 2+2a +2C .a 2-2b +b 2D .a 2+2a +12.若 x 2+6x +k 是完全平方式,则 k =.3.填空:(1)x²+4x+4= ()² +2·( )·( )+( )² =( )²(2)m² -6m+9=()² - 2· ( )·()+( )² =( )²(3)a²+4ab+4b²=( )²+2· () ·()+()²=()²4.分解因式:a 2-4a +4= .四、我的疑惑教学备注 配套 PPT 讲授1. 复习引入(见幻灯片 3)2. 探究点 1 新知讲授( 见 幻 灯 片4-12)3. 探究点 2 新知讲授( 见 幻 灯 片13-21)课堂探究一、要点探究探究点 1:完全平方式例 1:如果 x 2-6x+N 是一个完全平方式,那么 N 是( )A . 11 B. 9 C. -11 D. -9变式训练如果 x 2-mx+16 是一个完全平方式,那么 m 的值为 .教学备注配套 PPT 讲授3.探究点 2 新知讲授(见幻灯片13-21)4.课堂小结方法总结:本题要熟练掌握完全平方公式的结构特征,根据参数所在位置,结合公式,找出参数与已知项之间的数量关系,从而求出参数的值.计算过程中,要注意积的2 倍的符号,避免漏解.探究点2:用完全平方公式进行因式分解议一议:(1)将一个多项式因式分解的一般步骤是什么?(2)应注意的事项有哪些?(3)分解因式的方法有哪些?要点归纳:(1)利用公式把某些具有特殊形式(如,等)的多项式分解因式,这种分解因式的方法叫做公式法.(2)分解因式应根据多项式的特征,有公因式的一般先提,再套用公式,没有公因式的,则直接套用公式.分解因式应注意最后的结果中,多项式的每一个因式均不能再继续分解.例2:因式分解:(1)-3a2x2+24a2x-48a2;(2)(a2+4)2-16a2.例3:简便计算.(1)1002-2×100×99+99²;(2)342+34×32+162.方法总结:在较为复杂的有理数运算中,通常要先观察式子的特征,利用因式分解将其变形,转化为较为简单的运算.例4:已知x2-4x+y2-10y+29=0,求x2y2+2xy+1 的值..典例精析方法总结:此类问题一般情况是将原式进行变形,将其转化为非负数的和的形式,然后利用非负数性质求出未知数的值,然后代入,即可得到所求代数式的值.例5:已知a,b,c分别是△AB C三边的长,且a2+2b2+c2-2b(a+c)=0,请判断△ABC的形状,并说明理由.针对训练1.下列式子中为完全平方式的是( )A.a2+b2 B.a2+2a C.a2-2ab-b2 D.a2+4a+42.若x2+mx+4 是完全平方式,则m 的值是.3.分解因式:(1)y2+2y+1;(2)16m2-72m+81.4.分解因式:(1)(x+y)2+6(x+y)+9;(2)4xy2-4x2y-y3.5.已知|xy-4|+(x-2y-2)2=0,求x2+4xy+4y2 的值.二、课堂小结因式分解公式法方法提公因式法平方差公式完全平方公式当堂检测公式 pa+pb+pc= a 2-b 2=a2±2ab+b2=步骤1.提:提 ;2.套:套; 3.检查:检查.易错题型 1.提公因式时易出现漏项、丢系数或符号错误;2.因式分解不彻底.1.下列四个多项式中,能因式分解的是()A .a 2+1B .a 2-6a +9C .x 2+5yD .x 2-5y2.把多项式 4x 2y -4xy 2-x 3 分解因式的结果是( )A .4xy(x -y)-x 3B .-x(x -2y)2C .x(4xy -4y 2-x 2)D .-x(-4xy +4y 2+x 2)3.若 m =2n +1,则 m 2-4mn +4n 2 的值是.4. 若关于 x 的多项式 x 2-8x +m 2 是完全平方式,则 m 的值为 .5. 把下列多项式因式分解.(1)x 2-12x+36; (2)4(2a+b)2-4(2a+b)+1; (3) y 2+2y+1-x 2.6.计算:(1)38.92-2×38.9×48.9+48.92.(2)20142-2014×4026+20132.1x 2 - 2x + 37.分解因式:(1)4x 2+4x +1;(2) 3.小聪和小明的解答过程如下:教学备注 配套 PPT 讲授5.当堂检测 ( 见 幻 灯 片22-26)他们做对了吗?若错误,请你帮忙纠正过来.8.(1)已知a-b=3,求a(a-2b)+b2 的值;(2)已知ab=2,a+b=5,求a3b+2a2b2+ab3 的值.。

人教版八年级数学第十四单元因式分解(公式法第二课时)yy

人教版八年级数学第十四单元因式分解(公式法第二课时)yy

3、 a2+2a+1 = (a+1)2 叫什么? 提公因式法
因式分解
4、你学了什么方法进行分解因式?
平方差公式法
一、提取公因式分解因式
1、x(m+n)-y(n+m)-(m+n)= (m+n)(x-y-1) 2、a2b-2ab2+ab= ab(a-2b+1)
3、4kx-8ky= 4k(x-2y) 4、x4-x2y2= x2(x2-y2) =x2(x+y)(x-y) 二、下列多项式有公因式吗?能否进行分解因式 ?2 (a+b) 2=a2+2ab+b
a2+2ab+b2=(a+b)2 a2-2ab+b2=(a-b)2
两个数的平方和加上(或减去)这两个数的积的 2倍,等于这两个数的和(或差)的平方。
练习
1。下列多项式是不是完全平方式?为什么? (1) a2-4a+4; 是 不是 1±4a+4a2 4b2+4b+1 a2+2ab+b2
(2) 1+4a2;
归纳: (1) 先提公因式(有的话); (2) 利用公式(可以的话); (3) 分解因式时要分解到不能分解为止.
计算下列各式
(1)8a 2a
3
(2)a (a 0)
0
(3) 12a b x 3ab
3 2 7 3
2 3
(4)(42 10 ) (7 10 )
1.将多项式am+an+bm+bn 分解因式
◆综合拓展: 已知△ABC的三边分别为a,b,c,且a,b,c满足等式 3(a2+b2+c2)=(a+b+c)2,请你说明△ABC是等边三角形.

八年级数学上册第十四章整式的乘法与因式分解14-3因式分解14-3-2公式法第2课时新人教版

八年级数学上册第十四章整式的乘法与因式分解14-3因式分解14-3-2公式法第2课时新人教版
解:原式=-(2a+5b)2.
9.利用因式分解计算: (1)2372+2×237×363+3632; 解:原式=(237+363)2=6002=360000; (2)652+552-110×65. 解:原式=(65-55)2=100.
10.加上下列单项式后,仍不能使4x2+1成为 一个整式的完全平方式的是( D ) A.4x4 B.4x C.-4x D.2x
16.阅读下列分解因式的过程: x2+2ax-3a2
=x2+2ax+a2-a2-3a2(先加上a2,再减去a2) =(x+a)2-4a2(运用完全平方公式) =(x+a+2a)(x+a-2a)(运用平方差公式) =(x+3a)(x-a)
像上面那样通过加减项配出完全平方式后再把 二次三项式分解因式的方法,叫做配方法.请 你用配方法分解下面多项式: (1)m2-4mn+3n2; (2)x2-4x-12.
8.分解因式: (1)4x2+y2-4xy; 解:原式=(2x-y)2;
(2)-9a2+12ab-4b2; 解:原式=-(3a-2b)2;
(3)4m2-2mn+14 n2; 解:原式=(2m-12 n)2; (4)3ax2+6axy+3ay2;
解:原式=3a(x+y)2; (5)-4a2-20ab-25b2.
11.无论x,y取任何值,多项式x2+y2-2x-4y +6的值总是( A )
A.正数
B.负数
C.非正数 D.非负数
12.如图,有三种卡片,其中边长为a的正方 形卡片1张,长为a,宽为b的长方形卡片6张, 边长为b的正方形卡片9张,用这16张卡片拼 成一个大正方形,则这个大正方形的边长 为 a+3b .
13.分解因式: (1)(x2+1)2-4x2; 解:原式=(x+1)2(x-1)2; (2)(x-y)2-4(x-y-1); 解:原式=(x-y-2)2; (3)-a4b4+8a2b2-16. 解:原式=-(a2b2-4)2.

鲁教版八年级上册数学 1.3.2用完全平方公式分解因式 课后习题重点练习课件

鲁教版八年级上册数学 1.3.2用完全平方公式分解因式 课后习题重点练习课件

22.(1)实验与观察:(用“>”“=”或“<”填空) 当x=-5时,x2-2x+2___>_____1; 当x=1时,x2-2x+2___=_____1;
(2)归纳与证明:换几个数再试试,你发现了什么? 请写出来并证明它是正确的;
解:换数比较略,发现x2-2x+2≥1.证明:∵x2-2x +2=x2-2x+1+1=(x-1)2+1,x为任意实数时, (x-1)2≥0,∴(x-1)2+1≥1,即x2-2x+2≥1.
【答案】A
15.若一个长方形的面积是x3+2x2+x(x>0),且一边 长为x+1,则其邻边长为__x_2_+__x__.
【解析】因为x3+2x2+x=x(x2+2x+1)=x(x+1)2 =x(x+1)·(x+1),且长方形的一边长为x+1,所 以其邻边长为x(x+1)=x2+x.
16.下列式子:①-x2-xy-y2;②12a2-ab+12b2; ③-4ab2-a2+4b4;④4x2+9y2-12xy;⑤3x2
【解析】利用完全平方公式把原式整理成三 个非负数的和为零的形式,得到a=b=c, 即可确定△ABC的形状.
解:∵(a+b+c)2=3(a2+b2+c2),∴a2+b2+c2+ 2ab+2bc+2ac=3a2+3b2+3c2, ∴a2+b2-2ab+b2+c2-2bc+c2+a2-2ac=0,即 (a-b)2+(b-c)2+(c-a)2=0, ∴a-b=0,b-c=0,c-a=0, ∴a=b=c.故△ ABC 为等边三角形.
B.(3b+a)2
C.(3b-a)2
D.(3a+b)2
11.如图,将一个正方形分成四个部分,其面 积分别是a2,ab,ab,b2,其中a>0,b >0,则原正方形的边长是( B ) A.a2+b2 B.a+b C.a-b D.a2-b2

. 完全平方公式 优质课获奖课件

. 完全平方公式   优质课获奖课件

讲解此例之前可先让学生自学教材第111页的“添括号法
则”并完成教材第111页练习第1题.然后给出例5题目,让
学生思考选择哪个公式.第(1)小题的解决关键是要引导学 生比较两个因式的各项符号,分别找出符号相同及相反的
项,学会运用整体思想,将其与公式中的字母a,b对照,
其中-2y+3=-(2y-3),故应运用平方差公式.第(2)小 题可将任意两项之和看作一个整体,然后运用完全平方公 式. 在解此例的过程中,应注意边辩析各项的符号特征,边 对照两个公式的结构特征,教师应完整详细地书写解题过 程,帮助学生理解这一公式的拓展应用,突破难点.
1.完全平方公式的推导及其应用. 2.完全平方公式的几何解释.
重点 完全平方公式的推导过程、结构特点、几何解释 ,
灵活应用.
难点 理解完全平方公式的结构特征 , 并能灵活应用公 式进行计算.
一、复习引入 你能列出下列代数式吗? (1)两数和的平方;(2)两数差的平方. 你能计算出它们的结果吗? 二、探究新知 你能发现它们的运算形式与结果有什么规律吗? 引导学生用自己的语言叙述所发现的规律,允许学生之间 互相补充,教师不急于概括; 举例:(1)(p+1)2=(p+1)(p+1)=________________; (2)(p-1)2=(p-1)(p-1)=________________; (3)(m+2)2=________________; (4)(m-2)2=________________.
讲解此例之前可先让学生自学教材第111页的“添括号法
则”并完成教材第111页练习第1题.然后给出例5题目,让
学生思考选择哪个公式.第(1)小题的解决关键是要引导学 生比较两个因式的各项符号,分别找出符号相同及相反的

初中数学教学课件:14.4.2公式法(第2课时)(人教版八年级上)

初中数学教学课件:14.4.2公式法(第2课时)(人教版八年级上)

【例2】把下列各式分解因式: (1)3ax2+6axy+3ay2;
先提公因 式3a
(2)-x2-4y2+4xy.
【解析】(1) 3ax2+6axy+3ay2
=3a(x2+2xy+y2)
写成两数或式的 平方的两项先变 成正号
(=23)a(-xx+2-y)4y2 2+4xy
=-(x2-4xy+4y2)
下列各式是不是完全平方式?
(1)a2-4a+4; 是 (3)4a2+4ab+b2; 是 (5)x2-6x-9;
(2)x2+4x+4y2; (4)a2-ab+b2; (6)a2+a+0.25.是
(2)不是,因为4x不是x与2y乘积的2倍.
(4)不是, ab不是a与b乘积的2倍.
(5)不是,x2与-9的符号不统一.
【解析】原式是一个完全平方式,所以 x2+6x+9x= 3 2 答案:
x 32
3.(杭州·中考)因式分解:9x2-y2-4y-4=_____. 【解析】 9x2-y2-4y-4=9x2-(y2+4y+4) =
( 3 x ) 2 ( y 2 ) 2 ( 3 x y 2 ) ( 3 x y 2 ) .
(2)16a4+24a2b2+9b4 =(4a2)2+2·4a2·3b2+(3b2)2 =(4a2+3b2)2
(3)-2xy-x2-y2 (4)4-12(x-y)+9(x-y)2
【解析】(3)-2xy-x2-y2 =-(x2+2xy+y2) =-(x+y)2; (4)4-12(x-y)+9(x-y)2 =22-2×2×3(x-y)+[3(x-y)]2 =[2-3(x-y)]2 =(2-3x+3y)2

八年级数学人教版(上册)第2课时用完全平方公式进行因式分解

八年级数学人教版(上册)第2课时用完全平方公式进行因式分解

用完全平方公式进行因式分解时要注意的: (1)首项是负,要将负号提出来 (2)判断是否是完全平方式,若是,找准公式中 的a,b (3)利用公式进行因式分解
侵权必究
讲授新课
2.综合运用提公因式法和完全平方公式 进行因式分解
【例3】将下列多项式分解因式:
(1)ax2+2a2x+a3
(2)-3x2+6xy-3y2
课堂小结
公式:a2±2ab+b2=(a±b)2
用完全平方公式进行因式分解时要注意的: (1)首项是负,要将负号提出来 (2)判断是否是完全平方式,若是,找准公 式中的a,b (3)利用公式进行因式分解
侵权必究
侵权必究
新课导入
你能把下面4个图形拼成一个正方形并求出你拼
成的图形的面积吗?
a a a2
b b ab a
ab a
b2 b b
a2 2ab b2
ab
a a2
ab a
a
b ab b2 b
a
b
a b2
侵权必究
讲授新课
✓ 典例精讲 ✓ 归纳总结
侵权必究
讲授新课 1.完全平方式
理解完全平方式 a2+2ab+b2 a2 -2ab+b2 问题四 这两个多项式有什么共同的特点?
16
方法:
1、填平方项就是把中间项除以另一个平方项底
数的2倍,再平方,就是要填的平方项
2、中间项就是两个平方项底数积的2倍
侵权必究
讲授新课 2.用完全平方式进行因式分解 【例1】运用完全平方公式因式分解.
(1) 16m2 +8mn+n2; 解:原式= (4m)2 +2•(4m) +n2

2017-2018学年八年级数学上册 公式 运用完全平方公式因式分解学案

2017-2018学年八年级数学上册 公式 运用完全平方公式因式分解学案

第2课时 运用完全平方公式因式分解1.会判断完全平方式.2.能直接利用完全平方式因式分解.3.掌握利用完全平方公式因式分解的步骤.阅读教材P 117~118“思考及例5、例6”,完成预习内容.知识探究因式分解:2a 2b -4ab 2=________;-3a 3b +12ab 3=____________.(1)填空:(a +b)2=____________;(a -b)2=____________.(2)根据(1)中的式子填空:a 2+2ab +b 2=________;a 2-2ab +b 2=________.(3)形如a 2+________+b 2与a 2-________+b 2的式子称为完全平方式.完全平方公式:a 2±2ab +b 2=(a±b)2,即两个数的________加上(或减去)这两个数的________,等于这两个数的和(或差)的平方. 自学反馈1.判断下列多项式是否为完全平方式,如果是,运用完全平方公式将其因式分解.①b 2+b +1;②a 2-ab +b 2;③1+4a 2;④a 2-a +14.完全平方式其中有两项能写成两个数或两个式子的平方的形式,且符号相同,另一项为这两个数或两个式子积的2倍或2倍的相反数.2.分解因式:(1)x 2+12x +36; (2)-2xy -x 2-y 2;(3)ax 2+2a 2x +a 3.第(2)小题先提取“-”再判断是否能运用完全平方公式,第(3)小题先提公因式,关键找准a 、b.活动1 小组讨论例1 分解因式:(2)-2x 3y +4x 2y -2xy ;(3)(a -b)2-6(b -a)+9;(4)(x 2-2x)2+2(x 2-2x)+1.解:(1)原式=(a +12b)2. (2)原式=-2xy(x 2-2x +1)=-2xy(x -1)2.(3)原式=(a -b)2+6(a -b)+9=(a -b +3)2.(4)原式=(x 2-2x +1)2=[(x -1)2]2=(x -1)4.先找准两个完全平方式,确定a 、b ,再判断是否符合完全平方式结构;第(4)小题先要把括号里的式子看作一个整体,分解后要继续分解到不能分解为止.例2 已知x +1x=4,求: (1)x 2+1x 2的值; (2)(x -1x)2的值. 解:(1)x 2+1x 2=(x +1x)2-2=42-2=14. (2)(x -1x )2=(x +1x)2-4=42-4=12.这里需要活用公式,如x 2+1x 2=(x +1x )2-2,(x -1x )2=(x +1x)2-4,将两个完全平方公式进行互相转化.例3 已知||b -4+a 2-a +14=0,求a b 的值. 解:依题意,得||b -4+(a -12)2=0. ∴⎩⎪⎨⎪⎧b -4=0,a -12=0.∴⎩⎪⎨⎪⎧a =12,b =4.∴a b =(12)4=116.先分解因式得到两个非负数的和,再根据绝对值和完全平方数的非负性求出a ,b.活动2 跟踪训练1.因式分解:(1)(a 2-4a)2+8(a 2-4a)+16;(2)2x 2-12x +18;(4)abx 2+2abxy +aby 2.2.利用因式分解计算:2022+202×196+982.3.如果x 2+mxy +9y 2是一个完全平方式,那么m 的值是________.要注意完全平方式有两个.活动3 课堂小结1.用完全平方式分解因式,关键在于观察各项之间的关系,配凑a 、b.2.分解因式的步骤:先排列,使首项系数不为负;提取公因式;然后运用公式法;检查各因式是否能再分解.【预习导学】知识探究(1)2ab(a -2b) -3ab(a +2b)(a -2b) a 2+2ab +b 2 a 2-2ab +b 2 (2)(a +b)2 (a -b)2(3)2ab 2ab 平方和积的2倍自学反馈1.①②③不是;④是,原式=(a -12)2. 2.(1)(x +6)2.(2)-(x +y)2.(3)a(x +a)2. 【合作探究】活动2 跟踪训练1.(1)(a -2)4.(2)2(x -3)2.(3)12(x +y)2.(4)ab(x +y)2. 2.90 000. 3.±6。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

编号:76854125658544289374459234
学校:麻阳市青水河镇刚强学校*
教师:国敏*
班级:云云伍班*
第2课时利用完全平方公式分解因式
【知识与技能】
理解完全平方公式的特点,能用完全平方公式分解因式.
【过程与方法】
1.探索完全平方公式的结构,逐步掌握完全平方公式的应用.
2.综合考察分解因式的方法,灵活运用各种方法分解因式.
【情感态度】
培养学生观察、分析能力.灵活根据问题特点解决实际问题.
【教学重点】
用完全平方公式分解因式.
【教学难点】
灵活应用公式分解因式.
一、情境导入,初步认识
引导学生由整式乘法中的完全平方公式推导出因式分解中的完全平方公式,即a2±2ab+b2=(a±b)2,用文字表述为:
两个数的平方和,加上(或减去)这两数积的2倍,等于这两个数的和(或差)的平方.
问题判断下列各式是不是完全平方式.
【教学说明】由学生观察并充分分析式子特点,熟悉完全平方式的结构.教师讲课前,先让学生完成“名师导学”.
(2)(4)(5)都不是.
【归纳总结】完全平方公式的特点:左边是一个三项式,其中的两项同号且均为一个整式的平方,另一项是前两项幂的底数的积的2倍,符号可“+”可“-”.右边是两个整式的和(或差)的平方,中间的符号同左边的乘积项的符号.
二、思考探究,获取新知
例1已知4x2+1+mx是关于x的完全平方式,求m2-5m+3的值.
【分析】先由完全平方的结构特点确定m的值,然后再代入求代数式的值.
解:由题意,得4x2+mx+1=(2x±1)2,即4x2+mx+1=4x2±4x+1,所以m=±4.
当m=4时,m2-5m+3=42-5×4+3=-1.
当m=-4时,m2-5m+3=(-4)2-5×(-4)+3=39.
【教学说明】在求m的过程中,要考虑全面,不要忽略m=-4这种情况.
例2分解因式.
例3把下列各式分解因式.
【分析】(1)(2)题先提公因式再运用公式;(3)题用公式后还可以再提公因式,再用公式分解.
三、运用新知,深化理解
1.分解因式.
2.分解因式.
3.用简便方法计算下列各题.
【教学说明】上述三题可让学生自主探究,教师对有困难的同学加以指导,
最后师生共同评析.
四、师生互动,课堂小结
1.表述完全平方公式的结构特征.
2.交流如何对一个二次三项式进行因式分解.
1.布置作业:从教材“习题14.3”中选取部分题.
2.完成创优作业本课时的“课时作业”部分.
本课时教学以引导学生认识完全平方公式的结构特征为重点,以学生自主观察、分析、归纳为主要形式,鼓励学生分组讨论,集中归纳,共同总结,充分调动学生的积极性,主动参与学习过程,接受新知识.。

相关文档
最新文档