高二年级物理下学期3月考试

合集下载

高二下学期物理三月份月考试卷真题

高二下学期物理三月份月考试卷真题

高二下学期物理三月份月考试卷一、选择题1. 在如图所示的闪光灯电路中,电源的电动势为E,电容器的电容为C.当闪光灯两端电压达到击穿电压U时,闪光灯才有电流通过并发光,正常工作时,闪光灯周期性短暂闪光,则可以判定A . 电源的电动势E一定小于击穿电压UB . 电容器所带的最大电荷量一定为CEC . 闪光灯闪光时,电容器所带的电荷量一定增大D . 在一个闪光周期内,通过电阻R的电荷量与通过闪光灯的电荷量一定相等2. 如图所示,甲图中电容器的两个极板和电源的两极相连,乙图中电容器充电后断开电源.在电容器的两个极板间用相同的悬线分别吊起完全相同的小球,小球静止时悬线和竖直方向的夹角均为θ,将两图中的右极板向右平移时,下列说法正确的是A . 甲图中夹角减小,乙图中夹角增大B . 甲图中夹角减小,乙图中夹角不变C . 甲图中夹角不变,乙图中夹角不变D . 甲图中夹角减小,乙图中夹角减小3. 如图所示的电路中,开关S1、S2、S3、S4均闭合,C是极板水平放置的平行板电容器,极板间悬浮着一油滴P,欲使P向下运动,应断开开关A . S1B . S2C . S3D . S44. 一束带电粒子以同一速度,并以同一位置进入匀强磁场,在磁场中它们的轨迹如图所示.粒子q1的轨迹半径为r1,粒子q2的轨迹半径为r2,且r2=2r1,q1、q2分别是它们的带电量,则A . q1带负电、q2带正电,荷质比之比为=2∶1B . q1带负电、q2带正电,荷质比之比为=1∶2C . q1带正电、q2带负电,荷质比之比为=2∶1D . q1带正电、q2带负电,荷质比之比为=1∶15. 下面的四个图显示了磁场对通电直导线的作用力,其中正确的是A .B .C .D .6. 根据楞次定律知:感应电流的磁场一定A . 阻碍引起感应电流的磁通量B . 与引起感应电流的磁场方向相反C . 阻碍引起感应电流的磁通量的变化D . 与引起感应电流的磁场方向相同7. 如图所示,直角坐标系Oxy的2、4象限有垂直坐标系向里的匀强磁场,磁感应强度大小均为B,在第3象限有垂直坐标系向外的匀强磁场,磁感应强度大小为2B.现将半径为R、圆心角为90°的扇形闭合导线框OPQ在外力作用下以恒定角速度绕O 点在纸面内沿逆时针方向匀速转动.t=0时刻线框在图示位置,设电流逆时针方向为正方向.则下列关于导线框中的电流随时间变化的图线,正确的是A .B .C .D .8. 一个电流表的内阻为12 Ω,当通过它的电流为2 mA时,指针偏转一个小格.要使偏转一个小格的电流为1 A时,正确的做法是A . 在表上并一个0.024 Ω的电阻B . 在表上并一个0.24 Ω的电阻C . 在表上并一个0.012 Ω的电阻D . 在表上并一个0.12 Ω的电阻9. 如图所示,灯泡A、B都能正常发光,后来由于电路中某个电阻发生断路,致使灯泡A比原来亮一些,B比原来暗一些,则断路的电阻是()A . R1B . R3C . R2D . R410. 两根材料相同的导线,质量之比为2∶1,长度之比为1∶2,加上相同的电压后,通过的电流之比为A . 8∶1B . 4∶1C . 1∶1D . 1∶411. 如图所示,面积大小为S的矩形线圈abcd,放在磁感应强度为B的匀强磁场中,线圈可以绕O1O2转动.下列说法中正确的是A . 当线圈在图示位置时,穿过线圈的磁通量大小Φ=BSB . 当线圈从图示位置转过90°时,穿过线圈的磁通量大小Φ=0C . 当线圈从图示位置转过180°的过程中,穿过线圈的磁通量的变化量大小ΔΦ=0D . 当线圈从图示位置转过360°的过程中,穿过线圈的磁通量的变化量大小ΔΦ=BS12. 如图,ab边界下方是一垂直纸面向里的匀强磁场,质子和α粒子(He)先后从c点沿箭头方向射入磁场,都从d点射出磁场.不计粒子的重力,则两粒子运动的()A . 轨迹相同B . 动能相同C . 速率相同D . 时间相同13. 图为包含某逻辑电路的一个简单电路图,L为小灯泡.当电阻R′受到光照时,其阻值将变得远小于R.则下列判断正确的是A . 该逻辑电路是”与”门电路B . 该逻辑电路是“或”门电路C . 该逻辑电路是“非”门电路D . 当电阻R′受到光照时,小灯泡L将发光14. 一个点电荷,从静电场中的A点移到B点,电场力做功为零,则A . A,B两点的场强一定相等B . 作用在该电荷上的电场力与其移动方向总是垂直的C . A,B两点间的电势差一定为零D . 电荷在A,B两点的电势能不变二、填空题15. 有一根细长而均匀的金属管线样品,长约为60 cm,电阻大约为6 Ω,横截面如图甲所示.(1)用螺旋测微器测量金属管线的外径,示数如图乙所示,金属管线的外径为________mm;(2)现有如下器材:A.电流表(量程0.6 A,内阻约0.1 Ω)B.电流表(量程3 A,内阻约0.03 Ω)C.电压表(量程3 V,内阻约3 kΩ)D.滑动变阻器(1 750 Ω,0.3 A)E.滑动变阻器(15 Ω,3 A)F.蓄电池(6 V,内阻很小)G.开关一个,带夹子的导线若干要进一步精确测量金属管线样品的阻值,电流表应选________,滑动变阻器应选________.(只填代号字母)(3)请将图丙所示的实际测量电路补充完整.(4)已知金属管线样品材料的电阻率为ρ,通过多次测量得出金属管线的电阻为R,金属管线的外径为d,要想求得金属管线内形状不规则的中空部分的横截面积S,在前面实验的基础上,还需要测量的物理量是________(所测物理量用字母表示并用文字说明).计算中空部分横截面积的表达式为S=________.三、实验题16. 图为“研究电磁感应现象”的实验装置.(1)将图中所缺的导线补接完整.(2)如果在闭合开关时发现灵敏电流计的指针向右偏了一下,那么合上开关后可能出现的情况有:①将小线圈迅速插入大线圈时,灵敏电流计指针将向________偏一下;②小线圈插入大线圈后,将滑动变阻器的阻值调大时,灵敏电流计指针将向________偏一下.四、解答题17. 如图所示,匀强电场的场强E=1.2×102N/C,方向水平向右,一点电荷q=4×10-8C沿半径R=20 cm的圆周,从A点移动到B点,已知∠AOB=90°,请问:(1)这一过程电场力做的功是正功还是负功?做功多少?(2)A、B两点的电势差UAB为多少?18. 已知UAB=10V,R1=5Ω,R2=R3=10Ω,求:(1)A、B间的总电阻.(2)经过每个电阻上的电流大小.(3)电流表和电压表的示数.19. 如图1所示,匀强磁场的磁感应强度B为0.5T.其方向垂直于倾角为30°的斜面向上。

高二下学期物理3月月考试卷第6套真题

高二下学期物理3月月考试卷第6套真题

高二下学期物理3月月考试卷一、单选题1. 下列说法中正确的是()A . 奥斯特首先引入电场线和磁感线,极大地促进了他对电磁现象的研究B . 法拉第发现了电流的磁效应,拉开了研究电与磁相互关系的序幕C . 楞次认为,在原子、分子等物质微粒的内部存在着一种环形电流,从而使每个物质微粒都成为微小的磁体D . 安培发现了磁场对电流的作用规律,洛仑兹发现了磁场对运动电荷的作用规律2. 如图甲所示,为某品牌电热毯的简易电路,电热丝的电阻为,现将其接在的正弦交流电源上,电热毯被加热到一定温度后,温控装置P使输入电压变为图乙所示的波形,从而进入保温状态,若电热丝的电阻保持不变,则保温状态下,理想交流电压表V的读数和电热毯消耗的电功率最接近下列哪一组数据()A . 220V、100WB . 156V、50WC . 110V、25WD . 311V、200W3. 用一根横截面积为S、电阻率为的硬质导线做成一个半径为r的圆环,ab为圆环的一条直径。

如图所示,在ab的左侧存在一个匀强磁场,磁场垂直圆环所在平面,方向如图所示,已知磁感应强度均匀减小且变化率,则()A . 圆环中产生逆时针方向的感应电流B . 圆环具有收缩的趋势C . 圆环中感应电流的大小为D . 图中a、b两点间的电势差大小为4. 如图所示是一火警报警器的部分电路示意图,其中R3为用半导体热敏材料制成的传感器(温度越高,热敏电阻阻值越小)。

值班室的显示器为电路中的电流表,a、b之间接报警器。

当传感器R3所在处出现火情时,显示器的电流I、报警器两端的电压U的变化情况是()A . I变大,U变大B . I变大,U变小C . I变小,U变小D . I变小,U变大5. 在匀强磁场中,一个100匝的矩形金属线圈,绕与磁感线垂直的固定轴匀速转动,线圈外接定值电阻和电流表。

穿过该线圈的磁通量按正弦规律变化。

已知线圈的总电阻为2 ,定值电阻R=8 。

下列说法正确的是()A . 电动势的瞬时值表达式B . 电流表的示数最小为0C . 一个周期内产生的热量为32JD . 0.5s~1.5s的时间内,通过线圈横截面的电荷量为06. 如图所示的是某一质点做简谐运动的图象,下列说法中正确的是()A . 质点开始是从平衡位置沿x轴正方向运动的B . 2s末速度最大,沿x轴的正方向C . 3s末加速度最大,沿x轴负方向D . 质点在4s内的位移为8cm7. 如图所示,理想变压器原线圈a、b间输入一稳定的正弦交流电,原线圈接有理想交流电流表A,副线圈接有理想交流电压表V,当滑动变阻器的滑片向上滑动时,下列说法正确的是A . 电压表的示数不变B . 电压表的示数增大C . 电流表的示数增大D . 电阻R2的功率减小8. 如图所示为一列沿x轴负方向传播的简谐横波在t1=0时的波形图。

浙江省精诚联盟2023-2024学年高二下学期3月月考物理试题(解析版)

浙江省精诚联盟2023-2024学年高二下学期3月月考物理试题(解析版)

浙江省精诚联盟2023-2024学年高二下学期3月月考物理学科试题考生须知:1、本卷共8页,满分100分,考试时间90分钟。

2、答题前,在答题卷指定区域填写班级、姓名、考场号、座位号及准考证号并填涂相应数字。

3、所有答案必须写在答题纸上,写在试卷上无效。

4、考试结束后,只须上交答题纸。

选择题部分一、选择题Ⅰ(本题共13小题,每小题3分,共39分。

每小题列出的四个备选项中只有一个是符合题目要求的,不选、多选、错选均不得分)1. 下列以科学名字命名的物理量,单位换算正确的是( )A. 特斯拉B. 韦伯C. 库仑D. 焦耳 【答案】D【解析】【详解】A .根据可知则故A 错误;B .根据可知磁通量的单位韦伯故B 错误;C .根据3kg1T 1A m =⋅21Wb 1T/m =1C 1A/s=1J 1C V =⋅F BIL ma==2N=TAm=kg m/s ⋅2kg 1T 1A s =⋅BSΦ=2Wb=T m ⋅可知电荷量的单位库仑故C 错误;D .根据可知电场力做功的单位焦耳故D 正确。

故选D 。

2. 在物理学发展过程中,许多物理学家的科学研究推动了人类文明发展的进程。

以下说法正确的是( )A. 爱因斯坦提出了能量子假说B. 法拉第发现了电磁感应现象C. 库仑通过实验测得了最小电荷量D. 麦克斯韦通过实验捕捉到了电磁波【答案】B【解析】【详解】A .普朗克提出了能量子假说,故A 错误;B .法拉第发现了电磁感应现象,故B 正确;C .密立根通过油滴实验测得了最小电荷量,故C 错误;D .赫兹通过实验捕捉到了电磁波,故D 错误。

故选B 。

3. 2023年11月16日发表在《科学进展》杂志上的文章显示我国高海拔宇宙线观测站“拉索”精确测量了迄今最亮的伽马射线暴GRB221009A 的高能辐射能谱,揭示了宇宙背景光在红外波段的强度低于预期,开启了新物理探索之门。

“拉索”记录到史上最亮的伽马射线暴GRB221009A 产生的光子,其最高能量达(万亿电子伏特)。

高二下学期物理3月月考试卷第2套真题

高二下学期物理3月月考试卷第2套真题

高二下学期物理3月月考试卷一、单选题1. 一正弦交变电流的电压随时间变化的规律如图所示.由图可知该交变电流()A . 周期为0.125sB . 电压的有效值为10 VC . 电压的最大值为20 VD . 电压瞬时值的表达式为u=20sin4πt(V)2. 如图,一质量为2kg的物体放在光滑的水平面上,处于静止状态,现用与水平方向成60°角的恒力F=10N作用于物体上,历时5s,则()①力F对物体的冲量大小为50N•s②力F对物体的冲量大小为25N•s③物体的动量变化量为25kg•m/s④物体所受合外力冲量大小为25N•s.A . ①③B . ②③C . ①③④D . ②③④3. 如图所示,理想变压器原线圈输入电压u=Umsinωt,副线圈电路中R0为定值电阻,R是滑动变阻器.V1和V2是理想交流电压表,示数分别用U1和U2表示;A1 和A2 是理想交流电流表,示数分别用I1和I2表示.下列说法正确的是()A . 和表示电流的瞬时值B . 和表示电压的最大值C . 滑片P向下滑动过程中,不变、变大D . 滑片P向下滑动过程中,变小、变小4. 长度为L、质量为M的平板车的左端紧靠着墙壁,右端站着一个质量为m的人(可视为质点),某时刻人向左跳出,恰好落到车的左端,而此时车已离开墙壁有一段距离,那这段距离为(布与水平地面间的摩擦不计)()A . LB .C .D .5. 如图(甲)怕示,理想变压器原副线圈的匝数比为,是原线圈的中心抽头,电压表和电流表均为理想电表,除以外其余电阻不计.从某时刻开始单刀双掷开关掷向,在原线圈两端加上如图(乙)所示交变电压,则下列说法中正确的是()A . 该交变电压瞬时值表达式为B . 滑动变阻器触片向上移,电压表示数不变,电流表的示数变大C . 时,电压表的读数为D . 单刀双掷开关由扳到,电压表和电流表的示数都变大6. 图甲是线圈在匀强磁场中绕垂直于磁场方向的轴匀速转动产生的交变电压图象。

高二下学期第三次月考物理试卷-带参考答案

高二下学期第三次月考物理试卷-带参考答案

高二下学期第三次月考物理试卷-带参考答案考生须知:1.本卷满分100分,考试时间90分钟。

2.答题前,请务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填写在答题纸规定的位置上。

3.答题时,请按照答题纸上“注意事项”的要求,在答题纸相应的位置上规范作答,在试题卷上的作答一律无效。

4. 非选择题的答案必须使用黑色字迹的签字笔或钢笔写在答题纸上相应区域内。

作图时先使用2B 铅笔,确定后必须使用黑色字迹的签字笔或钢笔描黑,答案写在本试题卷上无效。

5.可能用到的相关参数:重力加速度g 均取102/m s 。

选择题部分一、选择题I (本题共13小题,每小题3分,共39分。

每小题列出的四个备选项中只有一个是符合题目要求的,不选、多选、错选均不得分)1.下列物理量是矢量且对应的单位是由国际单位制的基本单位组成的是A .力,NB .冲量,-1kg m s ⋅⋅C .电场强度,-1N C ⋅D .磁通量。

2-2k m m A g ⋅⋅⋅2. 美国“毅力号”火星车于北京时间2021年2月19号4点55分成功登陆火星表面,“毅力号”火星车于北京时间2021年08月06日进行了首次火星样本取样工作,且其携带的“机智号”火星直升机也完成了持续40秒的首飞,飞行约160米,成功“击败”了火星稀薄的空气。

下列说法正确的是A .“火星车于北京时间2021年2月19号4点55分”是指时刻B .研究火星直升机在空中飞行轨迹时不能将火星直升机看作质点处理C .研究火星直升机叶片与空气间相互作用力时可将叶片看作质点D . “机智号”火星直升机首飞时的平均速度一定是4m/s3. 如图为骑行者驾驶摩托车在水平路面上向左匀速拐弯的某个瞬间,不计空气阻力,下列说法正确的是A.地面对摩托车的弹力方向指向左上方B.地面对摩托车的摩擦力方向与车的运动方向相反C.地面对摩托车的作用力与摩托车对地面的作用力大小相等D.摩托车对驾驶员的作用力竖直向上4. 如图所示的LC振荡电路中,某时刻线圈中磁场方向向上,且正在增强,则此时A.电容器上极板带负电,下极板带正电B.振荡电路中能量正在从磁场能转化为电场能C.线圈中的自感电动势正在变小D.增大电容器两极板间的距离,振荡周期会变大5.在江苏卫视《最强大脑》中,一位选手用“狮吼功”震碎了高脚玻璃杯,如图所示。

高二下3月月考物理卷-

高二下3月月考物理卷-
D.用户得到的电流
9.图甲中的理想变压器原、副线圈匝数比n1:n2=22:3,输入端a、b所接电压u随时间t的变化关系如图乙所示。灯泡L的电阻恒为15 Ω,额定电压为24 V。定值电阻R1=10 Ω、R2=5 Ω,滑动变阻器R的最大阻值为10 Ω。为使灯泡正常工作,滑动变阻器接入电路的电变
D.电流表 的示数不变
17.远距离输电的原理图如图所示,升压变压器原、副线圈的匝数分别为n1、n2,电压分别为U1、U2,电流分别为I1、I2,输电线上的电阻为R.变压器为理想变压器,则下列关系式中正确的是( )
A.
B.I2=
C.I1U1=I22R
D.I1U1=I2U2
A.交流电的频率为0.02 Hz
B.原线圈输入电压的最大值为200 V
C.电阻R2的电功率约为6.67 W
D.通过R3的电流始终为零
12.某理想变压器原、副线圈的匝数之比为1:10,当输入电压增加20V时,输出电压
A.降低2VB.增加2VC.降低200VD.增加200V
13.一理想变压器的原、副线圈的匝数比为3:1,在原、副线圈的回路中分别接有阻值相同的电阻,原线圈一侧接在电压为220V的正弦交流电源上,如图所示。设副线圈回路中电阻两端的电压为 ,原、副线圈回路中电阻消耗的功率的比值为k,则
A.2B.3C.4D.5
8.如图所示,某小型水电站发电机的输出功率 ,发电机的电压 ,经变压器升压后向远处输电,输电线总电阻 ,在用户端用降压变压器把电压降为 。已知输电线上损失的功率 ,假设两个变压器均是理想变压器,下列说法正确的是( )
A.发电机输出的电流
B.输电线上的电流
C.降压变压器的匝数比
A.1 ΩB.5 ΩC.6 ΩD.8 Ω
10.如图所示,甲乙两图中的理想变压器以不同的方式接在高压电路中。甲图中变压器原副线圈的匝数比为 ,电压表读数为U,乙图中变压器原副线圈的匝数比为 ,电流表读数为I。则甲图中高压线电压和乙图中高压线电流分别为()

高二3月份检测物理参考答案

高二3月份检测物理参考答案

高二3月份检测物理参考答案1.C2.C3.C 【详解】当磁场在虚线下方时,通电导线的等效长度为12l ,受到的安培力方向竖直向上,设三角形导线框质量为m ,则有:11()2F BI l mg += 当磁场在虚线上方时,通电导线的等效长度为12l ,受到的安培力方向竖直向下,磁感应强度增大到原来的两倍,故此时有:21(2)()2F B I l mg =+联立可得212()3F F I Bl-=故C 正确,ABD 错误; 4.B5.D6.B7.A8.C【详解】A .由题意,如图所示,当粒子在磁场中运动转过的圆心角为180°时,其射出点N 离M 最远,此时MN 对应磁场区域的圆心角为120°,则根据几何关系可知粒子做匀速圆周运动的半径为1sin 60r R =︒= 根据牛顿第二定律有21v qvB m r =解得v 故A 错误;B .粒子在磁场中运动的周期为2π2πr m T v Bq== 当粒子的轨迹与磁场区域内切时,其运动时间最长,恰好为1个周期,故B 错误; C时,粒子运动半径变为212r R = 如图所示,可知此时磁场区域所截粒子轨迹弦长最大值为R ,所以有粒子射出的边界弧长变为1π2π63R MN R =⋅=故C 正确;D .若粒子入射速率为63v 时,粒子运动半径变为316232r r R == 如图所示,可知此时磁场区域所截粒子轨迹弦长最大值为2R ,所以有粒子射出的边界弧长变为1π2π42R MN R =⋅=故D 错误。

9.AD10.AB11.ACD【详解】A .对小球进行受力分析可知sin cos N mg Eq F θθμ=+解得0N F =从而0sin cos Eq mg Bqv θθ+=解得02mg v qB =A 正确;B .若小球的初速度为32mg mg qB Bq>,小球下滑时受到垂直杆向下的支持力,下滑时有摩擦力,减速下滑,随速度减小,支持力减小,导致摩擦力减小,当速度减小到2mg Bq时,支持力减小到零,没有摩擦力,小球匀速运动,因此小球做加速度不断减小的减速运动,最后匀速运动,B 错误;C .若小球的初速度为2mg mg qB Bq<,小球下滑时受到垂直杆向上的支持力,下滑时有摩擦力,减速下滑,随速度减小,洛伦兹力减小,支持力增大,导致摩擦力增大,加速度增大,因此小球做加速度不断增大的减速运动,最后停止运动,C 正确;D .整个运动过程中,小球所受的合力就是摩擦力,根据动能定理222203212f W m g mv q B==D 正确。

高二年级物理下学期3月考试试题

高二年级物理下学期3月考试试题

高二年级物理下学期3月考试试题物理试题第Ⅰ卷(选择题共40分)一.本题共10小题;每小题4分,共40分,在每小题给出的四个选项中,有的小题只有一个选项正确,有的小题有多个选项正确.全部选对的得4分,选不全的得2分,有选错或不答的得0分.1.作简谐运动的物体, 在每次通过同一位置时, 动量、动能、速度、加速度四个量中,总是相同的量是:A.速度和动量B.加速度与动能C.速度、动量和加速度D.动量、动能、速度、加速度2.简谐运动的物体,回复力和位移的关系图是下面所给四个图象中的哪一个?A B C D3.图甲是利用沙摆演示简谐运动图象的装置。

当盛沙漏斗下面的薄木板被水平匀速拉出时,做简谐运动的漏斗漏出的沙在板上形成的曲线显示出沙摆的振动位移随时刻的变化关系。

已知木板被水平拉动的速度为0.20m/s,图乙所示的一段木板的长度为0.60m,则这次实验沙摆的摆长为(取g=π2)A. 0.56mB. 0.65mC. 1.0mD. 2.3m4.卡车在公路上行驶,物资随车厢上、下作简谐运动而不脱离底板,设向上为正方向,其振动图线如图所示,由图可知,物资对底板的压力小于物资的重力的时刻是[ ]A.t1B.t2C.t3D.t45.在实验室能够做“声波碎杯”的实验.用手指轻弹一只酒杯,能够听到清脆的声音,测得这声音的频率为500Hz.将这只酒杯放在两只大功率的声波发生器之间,操作人员通过调整其发出的声波,就能使酒杯碎掉.下列说法中正确的是A.操作人员一定是把声波发生器的功率调到专门大B.操作人员可能是使声波发生器发出了频率专门高的超声波C.操作人员一定是同时增大了声波发生器发出声波的频率和功率D.操作人员一定要将声波发生器发出的声波频率调到500Hz6.一个作简谐运动的物体,位移随时刻的变化规律x=Acosωt,在1/4周期内通过的路程可能是(A)小于A (B)等于A (C)等于 2 A (D)等于1.5A7.质量为1kg的物体自20m的高处自由下落,阻力不计,触地反弹的速度为8m/s,那么物体受到地面反弹前后动量的变化是A、8kgm/s、向上B、28kgm/s、向上C、8kgm/s、向下D、28kgm/s、向下8.一载着游人的小船原先静止在安静的湖面上,在人从游船的一端走到另一端的过程中,若忽略水对小游船的阻力作用,下列说法中正确的是A、人受的冲量与船所受的冲量大小相同B、人向前走的速度一定小于游船后退的速度C、当人突然停止走动时,小游船也赶忙停止后退D、人走动的过程中,人与游船的总动量始终为零9.在光滑的水平面上有两个静止小车,车内各站着一个运动员,每辆车(包含人)的总质量均为M。

高中高二物理下学期3月月考试卷高二全册物理试题

高中高二物理下学期3月月考试卷高二全册物理试题

时遁市安宁阳光实验学校义马高中高二(下)月考物理试卷(3月份)一、选择题(第8.9.10题多选)1.一个质量为m、电荷量为q的带电粒子,由静止开始经加速电场加速后(加速电压为U),该粒子的德布罗意波长为()A .B .C .D .2.入射光照射到某金属表面上发生光电效应,若入射光的强度减弱,而频率保持不变,则()A.从光照至金属表面上到发射出光电子之间的时间间隔将明显增加B.逸出的光电子的最大初动能将减小C.单位时间内从金属表面逸出的光电子数目将减少D.有可能不发生光电效应3.如图所示,一个木箱原来静止在光滑水平面上,木箱内粗糙的底板上放着一个小木块.木箱和小木块都具有一定的质量.现使木箱获得一个向右的初速度v0,则()A.小木块和木箱最终都将静止B.小木块最终将相对木箱静止,二者一起向右运动C.小木块在木箱内壁将始终来回往复碰撞,而木箱一直向右运动D.如果小木块与木箱的左壁碰撞后相对木箱静止,则二者将一起向左运动4.小船相对于地面以速度v1向东行驶,若在船上以相对地面的相同速率v分别水平向东和向西抛出两个质量相等的重物,则小船的速度将()A.不变B.减小C.增大D.改变方向5.如图所示,在光滑的水平面上,有一质量为M=3kg的薄板和质量m=1kg的物块,都以v=4m/s的初速度朝相反方向运动,它们之间有摩擦,当薄板的速度为2.4m/s时,物块的运动情况是()A.做加速运动B.做减速运动C.做匀速运动D.以上运动都有可能6.两球A、B在光滑水平面上沿同一直线、同一方向运动,m A=1kg、m B=2kg、v A=6m/s、v B=2m/s.当球A追上球B并发生碰撞后,两球A、B速度的可能值是(取两球碰撞前的运动方向为正)()A.v A′=5m/s,v B′=2.5m/s B.v A′=2m/s,v B′=4m/sC.v A′=﹣4m/s,v B′=7m/s D.v A′=7m/s,v B′=1.5m/s7.如图所示,在光滑水平地面上有两个完全相同的小球A和B,它们的质量都为m.现B球静止,A球以速度v0与B球发生正碰,针对碰撞后的动能下列说法中正确的是()A.B 球动能的最大值是B.B 球动能的最大值是C.系统动能的最小值是0D .系统动能的最小值是8.质量为m的小球A,沿光滑水平面以速度v0与质量为2m的静止小球B发生正碰,碰撞后,A 球的动能变为原来的,那么小球B的速度可能是()A . v0B . v0C . v0D . v09.在光滑的水平桌面上有等大的质量分别为M=0.6kg,m=0.2kg的两个小球,中间夹着一个被压缩的具有E p=10.8J弹性势能的轻弹簧(弹簧与两球不相连),原来处于静止状态.现突然释放弹簧,球m脱离弹簧后滑向与水平面相切、半径为R=0.425m的竖直放置的光滑半圆形轨道,如图所示.g取10m/s2.则下列说法正确的是()A.球m从轨道底端A运动到顶端B的过程中所受合外力冲量大小为3.4N•s B.M离开轻弹簧时获得的速度为9m/sC.若半圆轨道半径可调,则球m从B点飞出后落在水平桌面上的水平距离随轨道半径的增大而减小D.弹簧弹开过程,弹力对m的冲量大小为1.8N•s10.如图所示,长木板A放在光滑的水平面上,质量为m=4kg的小物体B以水平速度v0=2m/s滑上原来静止的长木板A的表面,由于A、B间存在摩擦,之后A、B速度随时间变化情况如图乙所示,取g=10m/s2,则下列说法正确的是()A.木板A获得的动能为2J B.系统损失的机械能为2JC.木板A的最小长度为2m D.A、B间的动摩擦因数为0.1二、填空题11.为了验证碰撞中的动量守恒和检验两个小球的碰撞是否为弹性碰撞,某同学选取了两个体积相同、质量不等的小球,按下述步骤做了如下实验:①用天平测出两个小球的质量分别为m1和m2,且m1>m2.②按照如图所示的那样,安装好实验装置.将斜槽AB固定在桌边,使槽的末端点的切线水平.将一斜面BC连接在斜槽末端.③先不放小球m2,让小球m1从斜槽顶端A处由静止开始滚下,记下小球在斜面上的落点位置.④将小球m2放在斜槽前端边缘处,让小球m1从斜槽顶端A处滚下,使它们发生碰撞,记下小球m1和小球m2在斜面上的落点位置.⑤用毫米刻度尺量出各个落点位置到斜槽末端点B的距离.图中D、E、F点是该同学记下的小球在斜面上的几个落点位置,到B点的距离分别为L D、L E、L F.根据该同学的实验,回答下列问题:(1)小球m1与m2发生碰撞后,m1的落点是图中的点,m2的落点是图中的点.(2)用测得的物理量来表示,只要满足关系式,则说明碰撞中动量是守恒的.(3)用测得的物理量来表示,只要再满足关系式,则说明两小球的碰撞是弹性碰撞.12.静止在水面上的船长为L、质量为M,一个质量为m的人站在船头,当此人由船头走到船尾时,不计水的阻力,船移动的距离是.13.载着人的气球静止悬浮在空中,人的质量和气球(包括设备)的质量分别为60kg和300kg.气球离地面的高度为20m,为使人能安全着地,气球上悬挂的软梯长度需要 m.三、计算题14.如图,一质量为M的物块静止在桌面边缘,桌面离水平地面的高度为h.一质量为m的子弹以水平速度v0射入物块后,以水平速度射出.重力加速度为g.求:(1)子弹穿出木块时木块的速度大小;(2)此过程中系统损失的机械能;(3)此后物块落地点离桌面边缘的水平距离.15.如图所示,A为有光滑曲面的固定轨道,轨道底端的切线方向是水平的.质量M=40kg的小车B静止于轨道右侧,其上表面与轨道底端在同一水平面上.一个质量m=20kg的物体C以2.0m/s的初速度从轨道顶端滑下,冲上小车B后经一段时间与小车相对静止并一起运动.若轨道顶端与底端的高度差h=1.6m.物体与小车板面间的动摩擦因数μ=0.40,小车与水平面间的摩擦忽略不计.(取g=10m/s2),求:(1)物体与小车保持相对静止时的速度v;(2)物体冲上小车后,与小车发生相对滑动经历的时间t;(3)物体在小车上相对滑动的距离d.16.波长λ=0.71A的伦琴射线使金箔发射光电子,电子在磁感应强度为B的匀强磁场区域内做最大半径为r的匀速圆周运动,已知rB=1.88×10﹣4m•T.试求:(1)光电子的最大初动能;(2)金属的逸出功;(3)该电子的物质波的波长是多少?义马高中高二(下)月考物理试卷(3月份)参考答案与试题解析一、选择题(第8.9.10题多选)1.一个质量为m、电荷量为q的带电粒子,由静止开始经加速电场加速后(加速电压为U),该粒子的德布罗意波长为()A . B .C .D .【考点】物质波.【分析】带电粒子经加速电场加速后,动能的大小等于电场力做功,求得速度v ,代入公式:即可.【解答】解:加速后的速度为v ,根据动能定理可得:所以,由德布罗意波公式可得:.所以选项C正确.故选:C2.入射光照射到某金属表面上发生光电效应,若入射光的强度减弱,而频率保持不变,则()A.从光照至金属表面上到发射出光电子之间的时间间隔将明显增加B.逸出的光电子的最大初动能将减小C.单位时间内从金属表面逸出的光电子数目将减少D.有可能不发生光电效应【考点】光电效应.【分析】发生光电效应的条件是入射光的频率大于金属的极限频率,光的强弱只影响单位时间内发出光电子的数目.【解答】解:A、光的强弱影响的是单位时间内发出光电子的数目,不影响发射出光电子的时间间隔.故A错误.B、根据光电效应方程知,E KM=hγ﹣W0知,入射光的频率不变,则最大初动能不变.故B错误.C、单位时间内从金属表面逸出的光电子数目将减少,光电流减弱,C正确.D、入射光的频率不变,则仍然能发生光电效应.故D错误.故选C.3.如图所示,一个木箱原来静止在光滑水平面上,木箱内粗糙的底板上放着一个小木块.木箱和小木块都具有一定的质量.现使木箱获得一个向右的初速度v0,则()A.小木块和木箱最终都将静止B.小木块最终将相对木箱静止,二者一起向右运动C.小木块在木箱内壁将始终来回往复碰撞,而木箱一直向右运动D.如果小木块与木箱的左壁碰撞后相对木箱静止,则二者将一起向左运动【考点】动量守恒定律.【分析】应用动量守恒定律解决问题的基本思路和一般方法:(1)分析题意,明确研究对象;(2)要对各阶段所选系统内的物体进行受力分析,弄清哪些是系统内部物体之间相互作用的内力,哪些是系统外物体对系统内物体作用的外力,在受力分析的基础上根据动量守恒定律条件,判断能否应用动量守恒;(3)明确所研究的相互作用过程,确定过程的始、末状态,即系统内各个物体的初动量和末动量的量值或表达式;(4)确定好正方向建立动量守恒方程求解.本题中物体系统在光滑的平面上滑动,系统所受外力的合力为零,故系统动量始终守恒,而由于系统内部存在摩擦力,阻碍物体间的相对滑动,最终两物体应该相对静止,一起向右运动.【解答】解:系统所受外力的合力为零,动量守恒,初状态木箱有向右的动量,小木块动量为零,故系统总动量向右,系统内部存在摩擦力,阻碍两物体间的相对滑动,最终相对静止,由于系统的总动量守恒,不管中间过程如何相互作用,根据动量守恒定律,最终两物体以相同的速度一起向右运动.故选B.4.小船相对于地面以速度v1向东行驶,若在船上以相对地面的相同速率v分别水平向东和向西抛出两个质量相等的重物,则小船的速度将()A.不变B.减小C.增大D.改变方向【考点】动量守恒定律.【分析】根据题意确定系统,运用动量守恒定律,即可求解.【解答】解:以两重物和船为系统,抛重物的过程系统满足动量守恒定律的条件,即(M+2m)v=mv﹣mv+Mv′,所以v′=v>v,故C正确;故选C.5.如图所示,在光滑的水平面上,有一质量为M=3kg的薄板和质量m=1kg的物块,都以v=4m/s的初速度朝相反方向运动,它们之间有摩擦,当薄板的速度为2.4m/s时,物块的运动情况是()A.做加速运动B.做减速运动C.做匀速运动D.以上运动都有可能【考点】动量守恒定律.【分析】分析物体的运动情况:初态时,系统的总动量方向水平向左,两个物体开始均做匀减速运动,m的速度先减至零,根据动量守恒定律求出此时M的速度.之后,m向左做匀加速运动,M继续向左做匀减速运动,最后两者一起向左匀速运动.根据动量守恒定律求出薄板的速度大小为2.4m/s时,物块的速度,并分析m的运动情况【解答】解:开始阶段,m向右减速,M向左减速,根据系统的动量守恒定律得:当m的速度为零时,设此时M的速度为v1.根据动量守恒定律得(M﹣m)v=Mv1代入解得v1=2.67m/s.此后m将向左加速,M继续向左减速;当两者速度达到相同时,设共同速度为v2.由动量守恒定律得(M﹣m)v=(M+m)v2,代入解得v2=2m/s.两者相对静止后,一起向左匀速直线运动.由此可知当M的速度为2.4m/s时,m处于向左加速过程中.故选:A6.两球A、B在光滑水平面上沿同一直线、同一方向运动,m A=1kg、m B=2kg、v A=6m/s、v B=2m/s.当球A追上球B并发生碰撞后,两球A、B速度的可能值是(取两球碰撞前的运动方向为正)()A.v A′=5m/s,v B′=2.5m/s B.v A′=2m/s,v B′=4m/sC.v A′=﹣4m/s,v B′=7m/s D.v A′=7m/s,v B′=1.5m/s【考点】动量守恒定律;机械能守恒定律.【分析】两球碰撞过程,系统不受外力,故碰撞过程系统总动量守恒;碰撞过程中系统机械能可能有一部分转化为内能,根据能量守恒定律,碰撞后的系统总动能应该小于或等于碰撞前的系统总动能;同时考虑实际情况,碰撞后A球速度不大于B球的速度.【解答】解:考虑实际情况,碰撞后A球速度不大于B球的速度,因而AD错误,BC满足;两球碰撞过程,系统不受外力,故碰撞过程系统总动量守恒,ABCD均满足;根据能量守恒定律,碰撞后的系统总动能应该小于或等于碰撞前的系统总动能,碰撞前总动能为22J,B选项碰撞后总动能为18J,C选项碰撞后总动能为57J,故C错误,B满足;故选B.7.如图所示,在光滑水平地面上有两个完全相同的小球A和B,它们的质量都为m.现B球静止,A球以速度v0与B球发生正碰,针对碰撞后的动能下列说法中正确的是()A.B 球动能的最大值是B.B 球动能的最大值是C.系统动能的最小值是0D .系统动能的最小值是【考点】动量守恒定律;机械能守恒定律.【分析】根据两球相碰时,若发生弹性碰撞,B球获得的动能最大;若两球发生完全非弹性碰撞,系统损失的动能最大,碰后系统的动能最小.根据动量守恒和动能守恒求出两球碰撞后B的速度,即可求得B球动能的最大值.【解答】解:A、B若两球发生弹性碰撞,则B球获得的动能最大;根据动量守恒和动能守恒得:mv0=mv A+mv B,=+联立解得,B球碰后最大速度为 v B=v0,B球最大动能为E kmax ==.故A 正确,B错误.C、根据动量守恒可知,碰撞后系统总动量为mv0,总动能不可能为零,故C错误.D、若两球发生完全非弹性碰撞,系统损失的动能最大,则有:mv0=(m+m)v得:v=系统动能的最小值是E kmin ==,故D错误.故选A8.质量为m的小球A,沿光滑水平面以速度v0与质量为2m的静止小球B发生正碰,碰撞后,A 球的动能变为原来的,那么小球B的速度可能是()A . v0B . v0C . v0D . v0【考点】动量守恒定律.【分析】碰后A 球的动能恰好变为原来的,速度大小变为原来的,但速度方向可能跟原来相同,也可能相反,再根据碰撞过程中动量守恒即可解题.【解答】解:根据碰后A 球的动能恰好变为原来的得: mv2=•mv=±v0碰撞过程中AB动量守恒,则有:mv0=mv+2mv B解得:v B =v0或v B =v0故选:AB.9.在光滑的水平桌面上有等大的质量分别为M=0.6kg,m=0.2kg的两个小球,中间夹着一个被压缩的具有E p=10.8J弹性势能的轻弹簧(弹簧与两球不相连),原来处于静止状态.现突然释放弹簧,球m脱离弹簧后滑向与水平面相切、半径为R=0.425m的竖直放置的光滑半圆形轨道,如图所示.g取10m/s2.则下列说法正确的是()A.球m从轨道底端A运动到顶端B的过程中所受合外力冲量大小为3.4N•s B.M离开轻弹簧时获得的速度为9m/sC.若半圆轨道半径可调,则球m从B点飞出后落在水平桌面上的水平距离随轨道半径的增大而减小D.弹簧弹开过程,弹力对m的冲量大小为1.8N•s【考点】动量定理;动量冲量.【分析】弹簧弹开小球过程系统动量守恒、机械能守恒,由动量守恒定律与机械能守恒定律求出两球的速度;小球离开圆形轨道后做平抛运动,应用动量定理与平抛运动规律分析答题.【解答】解:释放弹簧过程中系统动量守恒、机械能守恒,以向右为正方向,由动量守恒得:mv1﹣Mv2=0,由机械能守恒得: mv12+Mv22=E P,代入数据解得:v1=9m/s,v2=3m/s;m从A到B过程中,由机械能守恒定律得:mv12=mv1′2+mg•2R,解得:v1′=8m/s;A、以向右为正方向,由动量定理得,球m从轨道底端A运动到顶端B的过程中所受合外力冲量大小为:I=△p=mv1′﹣mv1=0.2×(﹣8)﹣0.2×9=﹣3.4N•s,则合力冲量大小为:3.4N•s,故A正确;B、M离开轻弹簧时获得的速度为3m/s,故B错误;C、设圆轨道半径为r时,飞出B后水平位移最大,由A到B 机械能守恒定律得: mv12=mv1′2+mg•2r,在最高点,由牛顿第二定律得:mg+N=m,m从B点飞出,需要满足:N≥0,飞出后,小球做平抛运动:2r=gt2,x=v1′t,当8.1﹣4r=4r时,即r=1.0125m时,x为最大,球m从B点飞出后落在水平桌面上的水平距离随轨道半径的增大先增大后减小,故C错误;D、由动量定理得,弹簧弹开过程,弹力对m的冲量大小为:I=△p=mv1=0.9=1.8N•s,故D正确;故选:AD.10.如图所示,长木板A放在光滑的水平面上,质量为m=4kg的小物体B以水平速度v0=2m/s滑上原来静止的长木板A的表面,由于A、B间存在摩擦,之后A、B速度随时间变化情况如图乙所示,取g=10m/s2,则下列说法正确的是()A.木板A获得的动能为2J B.系统损失的机械能为2JC.木板A的最小长度为2m D.A、B间的动摩擦因数为0.1【考点】动量守恒定律;功能关系;机械能守恒定律.【分析】由图能读出木板获得的速度,根据动量守恒定律求出木板A的质量,根据E k =mv2求解木板获得的动能.根据斜率求出B的加速度大小,根据牛顿第二定律求出动摩擦因数.根据“面积”之差求出木板A的长度.根据系统克服摩擦力做功求解系统损失的机械能.【解答】解:A、由图示图象可知,木板获得的速度为v=1m/s,A、B组成的系统动量守恒,以B的初速度方向为正方向,由动量守恒定律得:mv0=(M+m)v,解得:M=4kg,木板A的质量为 M=4kg,木板获得的动能为:E k =Mv2=×4×12=2J,故A正确.B、系统损失的机械能△E=mv02﹣mv2﹣Mv2,代入数据解得:△E=4J,故B错误;C、由图得到:0﹣1s内B的位移为x B =×(2+1)×1m=1.5m,A的位移为x A =×1×1m=0.5m,木板A的最小长度为L=x B﹣x A=1m,故C错误.D、由图示图象可知,B的加速度:a===﹣1m/s2,负号表示加速度的方向,由牛顿第二定律得:μm B g=m B a,代入解得,μ=0.1,故D正确.故选:AD.二、填空题11.为了验证碰撞中的动量守恒和检验两个小球的碰撞是否为弹性碰撞,某同学选取了两个体积相同、质量不等的小球,按下述步骤做了如下实验:①用天平测出两个小球的质量分别为m1和m2,且m1>m2.②按照如图所示的那样,安装好实验装置.将斜槽AB固定在桌边,使槽的末端点的切线水平.将一斜面BC连接在斜槽末端.③先不放小球m2,让小球m1从斜槽顶端A处由静止开始滚下,记下小球在斜面上的落点位置.④将小球m2放在斜槽前端边缘处,让小球m1从斜槽顶端A处滚下,使它们发生碰撞,记下小球m1和小球m2在斜面上的落点位置.⑤用毫米刻度尺量出各个落点位置到斜槽末端点B的距离.图中D、E、F点是该同学记下的小球在斜面上的几个落点位置,到B点的距离分别为L D、L E、L F.根据该同学的实验,回答下列问题:(1)小球m1与m2发生碰撞后,m1的落点是图中的 D 点,m 2的落点是图中的F 点.(2)用测得的物理量来表示,只要满足关系式m1=m1+m2,则说明碰撞中动量是守恒的.(3)用测得的物理量来表示,只要再满足关系式m1L E=m1L D+m2L F,则说明两小球的碰撞是弹性碰撞.【考点】验证动量守恒定律.【分析】(1)小球m1和小球m2相撞后,小球m2的速度增大,小球m1的速度减小,都做平抛运动,由平抛运动规律不难判断出;(2)设斜面BC与水平面的倾角为α,由平抛运动规律求出碰撞前后小球m1和小球m2的速度,表示出动量的表达式即可求解;(3)若两小球的碰撞是弹性碰撞,则碰撞前后机械能没有损失.【解答】解:(1)小球m1和小球m2相撞后,小球m2的速度增大,小球m1的速度减小,都做平抛运动,所以碰撞后m1球的落地点是D点,m2球的落地点是F点;(2)碰撞前,小于m1落在图中的E点,设其水平初速度为v1.小球m1和m2发生碰撞后,m1的落点在图中的D点,设其水平初速度为v1′,m2的落点是图中的F点,设其水平初速度为v2.设斜面BC与水平面的倾角为α,由平抛运动规律得:L D sinα=gt2,L D cosα=v′1t解得:v′1=同理可解得:v1=,v2=所以只要满足m1v1=m2v2+m1v′1即:m1=m1+m2则说明两球碰撞过程中动量守恒;(3)若两小球的碰撞是弹性碰撞,则碰撞前后机械能没有损失.则要满足关系式m1v12=m1v′12+m2v2即m1L E=m1L D+m2L F故答案为:(1)D,F;(2)m1=m1+m2;(3)m1L E=m1L D+m2L F12.静止在水面上的船长为L、质量为M,一个质量为m的人站在船头,当此人由船头走到船尾时,不计水的阻力,船移动的距离是.【考点】动量守恒定律.【分析】不计水的阻力,人和小船组成的系统水平方向不受外力,系统的动量守恒,根据动量守恒定律求出船移动的位移大小.【解答】解:船和人组成的系统,在水平方向上动量守恒,人在船上行进,船向后退,规定人的速度方向为正方向,由动量守恒定律有:mv﹣MV=0.人从船头走到船尾,设船后退的距离为x,则人相对于地面的距离为L﹣x.则有:m=M解得:x=故答案为:.13.载着人的气球静止悬浮在空中,人的质量和气球(包括设备)的质量分别为60kg和300kg.气球离地面的高度为20m,为使人能安全着地,气球上悬挂的软梯长度需要24 m.【考点】动量守恒定律.【分析】以人和气球的系统为研究对象,系统所受的合外力为零,动量守恒.用软梯的长度和高度h表示人和气球的速度大小,根据动量守恒定律求出软梯的长度.【解答】解:设人沿软梯滑至地面,软梯长度至少为L.以人和气球的系统为研究对象,竖直方向动量守恒,规定竖直向下为正方向,由动量守恒定律得:0=mv1﹣Mv2…①人沿软梯滑至地面时,气球上升的高度为L﹣h,速度大小:v2=…②人相对于地面下降的高度为h,速度大小为:v1=…③将②③代入①得:L=h=×20m=24m;故答案为:24.三、计算题14.如图,一质量为M的物块静止在桌面边缘,桌面离水平地面的高度为h.一质量为m的子弹以水平速度v0射入物块后,以水平速度射出.重力加速度为g.求:(1)子弹穿出木块时木块的速度大小;(2)此过程中系统损失的机械能;(3)此后物块落地点离桌面边缘的水平距离.【考点】动量守恒定律;平抛运动;功能关系.【分析】(1)子弹射击物块,子弹和物块的总动量守恒,由动量守恒定律求出子弹穿出木块时木块的速度大小.(2)系统损失的机械能等于射入前子弹的动能与射出后物块与子弹总动能之差.(3)子弹射出物块后,物块做平抛运动,由高度求出时间,再求出水平距离.【解答】解:(1)设子弹穿过物块后物块的速度为V,由动量守恒得①解得②(2)系统的机械能损失为③由②③式得④(3)设物块下落到地面所需时间为t,落地点距桌边缘的水平距离为s,则⑤s=Vt ⑥由②⑤⑥式得答:(1)子弹穿出木块时木块的速度大小为.(2)此过程中系统损失的机械能为.(3)此后物块落地点离桌面边缘的水平距离是.15.如图所示,A为有光滑曲面的固定轨道,轨道底端的切线方向是水平的.质量M=40kg的小车B静止于轨道右侧,其上表面与轨道底端在同一水平面上.一个质量m=20kg的物体C以2.0m/s的初速度从轨道顶端滑下,冲上小车B后经一段时间与小车相对静止并一起运动.若轨道顶端与底端的高度差h=1.6m.物体与小车板面间的动摩擦因数μ=0.40,小车与水平面间的摩擦忽略不计.(取g=10m/s2),求:(1)物体与小车保持相对静止时的速度v;(2)物体冲上小车后,与小车发生相对滑动经历的时间t;(3)物体在小车上相对滑动的距离d.【考点】动量守恒定律;动能定理的应用.【分析】(1)物体C从曲面下滑时只有重力做功,由机械能守恒定律(或动能定理)可以求出物体C滑到轨道底端时的速度,物体C滑上小车后在小车上运动,到两者相对静止的过程中,物体C与小车组成的系统动量守恒,由动量守恒定律可以求出物体与小车保持相对静止时的速度v.(2)物体在小车上滑动过程中,小车受到的合外力为物体C对小车的滑动摩擦力,对小车由动量定理可以求出物体C与小车发生相对滑动经历的时间t.(3)物体C在小车上滑动时,克服摩擦力做功产生的热量为fd=μmgd,对物体C与小车组成的系统,应用能量守恒定律可以求出物体在小车上相对滑动的距离d.【解答】解:(1)物体下滑过程机械能守恒,由机械能守恒定律得:mgh+mv12=0+mv22,即:20×10×1.6+×20×22=0+×20×v22解得:v2=6m/s;物体相对于小车板面滑动过程动量守恒,由动量守恒定律得:mv2=(m+M)v,即:20×6=(20+40)×v解得:v=2m/s;(2)对小车,在物体C在车上滑动过程中,由动量定理得:μmgt=Mv﹣0,即:0.4×20×10×t=40×2﹣0解得:t=1s;(2)物体C在小车上滑动过程中,由能量守恒定律得:μmgd=mv22﹣(m+M)v2,即:0.4×20×10×d=×20×62﹣×(20+40)×22解得:d=3m;答:(1)物体与小车保持相对静止时的速度为2m/s;(2)物体冲上小车后,与小车发生相对滑动经历的时间为1s;(3)物体在小车上相对滑动的距离为3m.16.波长λ=0.71A的伦琴射线使金箔发射光电子,电子在磁感应强度为B的匀强磁场区域内做最大半径为r的匀速圆周运动,已知rB=1.88×10﹣4m•T.试求:(1)光电子的最大初动能;(2)金属的逸出功;(3)该电子的物质波的波长是多少?【考点】爱因斯坦光电效应方程;光的波粒二象性.。

高二物理下学期3月月考试卷高二全册物理试题_4

高二物理下学期3月月考试卷高二全册物理试题_4

嗦夺市安培阳光实验学校宜昌一中高二(下)月考物理试卷(3月份)一、选择题(共48分.1~6小题为单选题,每小题4分;7~10小题为多选题,全对得6分,选对但不选全得3分,选错或不选得0分)1.物理实验都需要有一定的控制条件.奥斯特做电流磁效应实验时,应排除地磁场对实验的影响.关于奥斯特的实验,下列说法中正确的是()A.该实验必须在地球赤道上进行B.通电直导线应该竖直放置C.通电直导线应该水平东西方向放置D.通电直导线应该水平南北方向放置2.电视台《今日说法》栏目曾经报道了一起发生在湖南长沙某区湘府路上的离奇交通事故.家住公路拐弯处的张先生和李先生家在三个月内连续遭遇了七次大卡车侧翻在自家门口的场面,第八次有辆卡车冲撞进李先生家,造成三死一伤和房屋严重损毁的血腥惨案.经部门和门协力调查,画出的现场示意图如图所示.交警根据图示作出以下判断,你认为正确的是()①由图可知汽车在拐弯时发生侧翻是因为车作离心运动②由图可知汽车在拐弯时发生侧翻是因为车作向心运动③公路在设计上可能内(东)高外(西)低④公路在设计上可能外(西)高内(东)低.A.①③B.②④C.①④D.②③3.如图所示,水平光滑地面上停放着一辆质量为M 的小车,其左侧有半径为R 的四分之一光滑圆弧轨道AB,轨道最低点B 与水平轨道BC相切,整个轨道处于同一竖直平面内.将质量为m 的物块(可视为质点)从A 点无初速释放,物块沿轨道滑行至轨道末端C处恰好没有滑出.重力加速度为g,空气阻力可忽略不计.关于物块从A位置运动至C位置的过程,下列说法中正确的是()A.小车和物块构成的系统动量守恒B.摩擦力对物块和轨道BC所做功的代数和为零C .物块的最大速度为D .小车的最大速度为4.如图所示,a、b、c为电场中同一条电场线上的三点,其中c为ab的中点.已知a、b两点的电势分别为φa=3V,φb=9V,则下列叙述正确的是()A.该电场在c点处的电势一定为6VB.正电荷从a点运动到b点的过程中电势能一定增大C.a点处的场强E a一定小于b点处的场强E bD.正电荷只受电场力作用从a点运动到b点的过程中动能一定增大5.一汽车在高速公路上以v0=30m/s的速度匀速行驶,t=0时刻,驾驶员采取某种措施,汽车运动的加速度随时间变化关系如图所示,以初速度方向为正,下列说法正确的是()A.t=6s时车速为5m/s B.t=3s时车速为3m/sC.前9s内的平均速度为15m/s D.前6s内车的位移为90m6.一理想变压器原、副线圈的匝数比为10:1,原线圈输入电压的变化规律如图甲所示,副线圈所接电路如图乙所示,P为滑动变阻器的触头.下列说法正确的是()A.副线圈输出电压的频率为5HzB.副线圈输出电压的有效值为31VC.P向右移动时,原、副线圈的电流比减小D.P向右移动时,变压器的输入功率增加7.如图所示,倾角为α的粗糙斜劈放在粗糙水平面上,物体a放在斜面上,轻质细线一端固定在物体a上,另一端绕过光滑的滑轮固定在c点,滑轮2下悬挂物体b,系统处于静止状态.若将固定点c向右移动少许,而a与斜劈始终静止,则()A.细线对物体a的拉力增大 B.斜劈对地面的压力减小C.斜劈对物体a的摩擦力减小D.地面对斜劈的摩擦力增大8.宇航员在地球表面以一定的初速度竖直上抛一小球,经过时间t落回原处;若在某星球表面以相同的速度竖直上抛一小球,则需经5t时间落回原处.已知该星半径与地球半径之比为1:4,则()A.该星表面重力加速度与地球表面重力加速度之比为5:1B.该星质量与地球质量之比为1:80C.该星密度与地球密度之比为4:5D.该星的“第一宇宙速度”与地球的第一宇宙速度之比为1:209.如图所示,竖直平行导轨间距l=20cm,导轨顶端接有一开关S,导体棒ab 与导轨接触良好且无摩擦,ab的电阻R=0.4Ω,质量m=20g,导轨的电阻不计,电路中所接电阻为3R,整个装置处在与竖直平面垂直的匀强磁场中,磁感应强度B=1T,不计空气阻力,设导轨足够长,g取10m/s2,开始时开关断开,当ab棒由静止下落3.2m时,突然接通开关,下列说法中正确的是()A.a点的电势高于b点的电势B.ab间的电压大小为1.2VC.ab间的电压大小为0.4VD.导体棒ab立即做匀速直线运动10.如图所示,在平面直角坐标系中有一个垂直于纸面向里的圆形匀强磁场,其边界过原点O和y轴上的点a(0,L).一质量为m、电荷量为e的电子从a 点以初速度v0平行于x轴正方向射入磁场,并从x轴上的b点射出磁场,此时速度方向与x轴正方向的夹角为60°.下列说法中正确的是()A .电子在磁场中运动的时间为B .电子在磁场中运动的时间为C .磁场区域的圆心坐标(,)D.电子在磁场中做圆周运动的圆心坐标为(0,﹣2L)二、实验题(共15分.11小题每空2分,12小题每空分别为2、2、1、1、3分)11.如图所示为一小球做平抛运动的闪光照片的一部分,图中背景方格的边长均为5cm,如果g取10m/s2,那么:(1)闪光的时间间隔是s;(2)小球运动中水平分速度的大小是m/s;(3)小球经过B点时速度大小是m/s.12.欲用伏安法测定一段阻值约为5Ω左右的金属导线的电阻,要求测量结果尽量准确,现备有以下器材:A.电池组(3V,内阻1Ω)B.电流表(0~3A,内阻0.0125Ω)C.电流表(0~0.6A,内阻0.125Ω)D.电压表(0~3V,内阻3kΩ)E.电压表(0~15V,内阻15kΩ)F.滑动变阻器(0~20Ω,额定电流1A)G.滑动变阻器(0~2 000Ω,额定电流0.3A) H.开关、导线(1)上述器材中应选用的是;(填写各器材的字母代号)(2)实验电路应采用电流表接法;(填“内”或“外”)(3)设实验中,电流表、电压表的某组示数如图1所示,图示中I=A,U= V.(4)为使通过待测金属导线的电流能在0~0.5A范围内改变,请按要求在图2框图中画出测量待测金属导线的电阻R x的原理电路图.三、计算题(共47分.13小题9分,14小题12分,15小题12分,16小题14分)13.一质量为0.1kg的小球从0.80m高处自由下落,落到一厚软垫上,若从小球接触软垫到陷至最低点所用的时间为0.20s,则这段时间内软垫对小球的冲量为大?(g=10m/s2)14.质量为m的小物块A,放在质量为M的木板B的左端,B在水平拉力的作用下沿水平地面匀速向右滑动,且A、B相对静止.某时刻撤去水平拉力,经过一段时间,B在地面上滑行了一段距离x,A在B上相对于B向右滑行了一段距离L(设木板B足够长)后A和B都停下.已知A、B间的动摩擦因数μ1,B 与地面间的动摩擦因数μ2,μ2>μ1,求x的表达式.15.两根固定在水平面上的光滑平行金属导轨MN和PQ,一端接有阻值为R=4Ω的电阻,处于方向竖直向下的匀强磁场中.在导轨上垂直导轨跨放质量m=0.5kg的金属直杆,金属杆的电阻为r=1Ω,金属杆与导轨接触良好,导轨足够长且电阻不计.金属杆在垂直杆F=0.5N的水平恒力作用下向右匀速运动时,电阻R上的电功率是P=4W.(1)求通过电阻R的电流的大小和方向;(2)求金属杆的速度大小;(3)某时刻撤去拉力,当电阻R上的电功率为时,金属杆的加速度大小、方向.16.如图所示,MN为绝缘板,CD为板上两个小孔,AO为CD的中垂线,在MN 的下方有匀强磁场,方向垂直纸面向外(图中未画出),质量为m电荷量为q 的粒子(不计重力)以某一速度从A点平行于MN的方向进入静电分析器,静电分析器内有均匀辐向分布的电场(电场方向指向O点),已知图中虚线圆弧的半径为R,其所在处场强大小为E,若离子恰好沿图中虚线做圆周运动后从小孔C垂直于MN进入下方磁场.(1)求粒子运动的速度大小;(2)粒子在磁场中运动,与MN板碰撞,碰后以原速率反弹,且碰撞时无电荷的转移,之后恰好从小孔D进入MN上方的一个三角形匀强磁场,从A点射出磁场,则三角形磁场区域最小面积为多少?MN上下两区域磁场的磁感应强度大小之比为多少?(3)粒子从A点出发后,第一次回到A点所经过的总时间为多少?宜昌一中高二(下)月考物理试卷(3月份)参考答案与试题解析一、选择题(共48分.1~6小题为单选题,每小题4分;7~10小题为多选题,全对得6分,选对但不选全得3分,选错或不选得0分)1.物理实验都需要有一定的控制条件.奥斯特做电流磁效应实验时,应排除地磁场对实验的影响.关于奥斯特的实验,下列说法中正确的是()A.该实验必须在地球赤道上进行B.通电直导线应该竖直放置C.通电直导线应该水平东西方向放置D.通电直导线应该水平南北方向放置【考点】通电直导线和通电线圈周围磁场的方向.【分析】由于地磁的北极在地理的南极附近,故地磁场的磁感线有一个由南向北的分量,而只有当电流的方向与磁场的方向平行时通电导线才不受磁场的安培力.【解答】解:由于地磁的北极在地理的南极附近,故地磁场的磁感线有一个由南向北的分量,而当电流的方向与磁场的方向平行时通电导线才不受磁场的安培力,故在进行奥斯特实验时通电直导线可以水平南北方向放置,而不必非要在赤道上进行,但不能东西放置和竖直放置,故只有D正确.故选:D.2.电视台《今日说法》栏目曾经报道了一起发生在湖南长沙某区湘府路上的离奇交通事故.家住公路拐弯处的张先生和李先生家在三个月内连续遭遇了七次大卡车侧翻在自家门口的场面,第八次有辆卡车冲撞进李先生家,造成三死一伤和房屋严重损毁的血腥惨案.经部门和门协力调查,画出的现场示意图如图所示.交警根据图示作出以下判断,你认为正确的是()①由图可知汽车在拐弯时发生侧翻是因为车作离心运动②由图可知汽车在拐弯时发生侧翻是因为车作向心运动③公路在设计上可能内(东)高外(西)低④公路在设计上可能外(西)高内(东)低.A.①③B.②④C.①④D.②③【考点】向心力;牛顿第二定律.【分析】汽车拐弯时发生侧翻是由于车速较快,外界提供的力不够做圆周运动所需的向心力,发生离心运动.有可能是内测高外侧低,支持力和重力的合力向外,最终的合力不够提供向心力.【解答】解:①、②汽车发生侧翻是因为提供的力不够做圆周运动所需的向心力,发生离心运动.故①正确,③错误.③、④汽车在水平路面上拐弯时,靠静摩擦力提供向心力,现在易发生侧翻可能是路面设计不合理,公路的设计上可能内侧(东)高外侧(西)低,重力沿斜面方向的分力背离圆心,导致合力不够提供向心力而致.故③正确,④错误.故选A.3.如图所示,水平光滑地面上停放着一辆质量为M 的小车,其左侧有半径为R 的四分之一光滑圆弧轨道AB,轨道最低点B 与水平轨道BC相切,整个轨道处于同一竖直平面内.将质量为m 的物块(可视为质点)从A 点无初速释放,物块沿轨道滑行至轨道末端C处恰好没有滑出.重力加速度为g,空气阻力可忽略不计.关于物块从A位置运动至C位置的过程,下列说法中正确的是()A.小车和物块构成的系统动量守恒B.摩擦力对物块和轨道BC所做功的代数和为零C .物块的最大速度为D .小车的最大速度为【考点】动量守恒定律.【分析】系统所受合外力为零,系统动量守恒,应用动量守恒定律与能量守恒定律分析答题.【解答】解:A、小车和物块组成的系统水平方向所受合外力为零,水平方向动量守恒,系统整体所受合外力不为零,系统动量不守恒,故A错误;B、摩擦力对物块和轨道BC所做功的代数和等于摩擦力与相对位移的乘积,摩擦力做功的代数和不为零,故B错误;C、如果小车固定不动,物块到达水平轨道时速度最大,由机械能守恒定律得:mgR=mv2,v=,现在物块下滑时,小车向左滑动,物块的速度小于,故C错误;D、小车与物块组成的系统水平方向动量守恒,物块下滑过程,以向右为正方向,由动量守恒定律得:mv1﹣Mv2=0,由机械能守恒定律得:mv12+Mv22=mgR,从物块到达水平面到物块到达右端过程中,由动量守恒定律得:mv1﹣Mv2=(M+m)v,解得:v=,故D正确;故选:D.4.如图所示,a、b、c为电场中同一条电场线上的三点,其中c为ab的中点.已知a、b两点的电势分别为φa=3V,φb=9V,则下列叙述正确的是()A.该电场在c点处的电势一定为6VB.正电荷从a点运动到b点的过程中电势能一定增大C.a点处的场强E a一定小于b点处的场强E bD.正电荷只受电场力作用从a点运动到b点的过程中动能一定增大【考点】电势能;电场强度.【分析】题中是一条电场线,无法判断该电场是否是匀强电场,不能确定c点处的电势.根据正电荷在电势高处电势能大,分析电势能的关系.由能量守恒分析动能关系.【解答】解:A、若该电场是匀强电场,则在c点处的电势为φc ==V=6V,若该电场不是匀强电场,则在c点处的电势为φc≠6V.故A错误.BD、根据正电荷在电势高处电势能大,可知正电荷从a点运动到b点的过程中电势能一定增大,而由能量守恒得知,其动能一定减小.故B正确,D错误C、一条电场线,无法判断电场线的疏密,就无法判断两点场强的大小,所以a点处的场强E a不一定小于b点处的场强E b.故C错误.故选:B.5.一汽车在高速公路上以v0=30m/s的速度匀速行驶,t=0时刻,驾驶员采取某种措施,汽车运动的加速度随时间变化关系如图所示,以初速度方向为正,下列说法正确的是()A.t=6s时车速为5m/s B.t=3s时车速为3m/sC.前9s内的平均速度为15m/s D.前6s内车的位移为90m【考点】加速度与力、质量的关系式;匀变速直线运动的速度与时间的关系.【分析】根据匀变速直线运动的速度时间公式,结合加速度先求出3s末的速度,再根据速度时间公式求出6s末的速度,结合位移公式分别求出前3s内和后6s内的位移,从而得出平均速度的大小.【解答】解:AB、根据速度时间公式得,t=3s时的速度为:v1=v0﹣a1t1=30﹣10×3=0m/s,则6s时的速度为:v2=a2t2=5×3m/s=15m/s.故AB错误.C、前3s 内的位移为:,后6s 内的位移为:,则前9s内的位移为:x=x1+x2=135m ,所以汽车的平均速度为:.故C正确.D、后3s 内的位移为:,则前6s内车的位移为:x=x1+x2′=67.5m.故D错误.故选:C6.一理想变压器原、副线圈的匝数比为10:1,原线圈输入电压的变化规律如图甲所示,副线圈所接电路如图乙所示,P为滑动变阻器的触头.下列说法正确的是()A.副线圈输出电压的频率为5HzB.副线圈输出电压的有效值为31VC.P向右移动时,原、副线圈的电流比减小D.P向右移动时,变压器的输入功率增加【考点】变压器的构造和原理;电功、电功率.【分析】根据瞬时值表达式可以求得输出电压的有效值、周期和频率等,再根据电压与匝数成正比即可求得结论.【解答】解:A、由图象可知,交流电的周期为0.02s,所以交流电的频率为50Hz,所以A错误.B、根据电压与匝数成正比可知,原线圈的电压的最大值为310V,所以副线圈的电压的最大值为31V,所以电压的有效值为V=≈22V,所以B错误.C、P右移,R变小,副线的电压不变,则副线圈的电流变大,原线圈的电流也随之变大;但原、副线圈的电流比等于匝数比的倒数,是不变的,故C错误.D、P向右移动时,滑动变阻器的电阻较小,副线圈的电压不变,所以电路消耗的功率将变大,变压器的输入功率、输出功率均增加,故D正确.故选:D.7.如图所示,倾角为α的粗糙斜劈放在粗糙水平面上,物体a放在斜面上,轻质细线一端固定在物体a上,另一端绕过光滑的滑轮固定在c点,滑轮2下悬挂物体b,系统处于静止状态.若将固定点c向右移动少许,而a与斜劈始终静止,则()A.细线对物体a的拉力增大 B.斜劈对地面的压力减小C.斜劈对物体a的摩擦力减小D.地面对斜劈的摩擦力增大【考点】共点力平衡的条件及其应用;力的合成与分解的运用.【分析】对滑轮和物体b受力分析,根据平衡条件求解细线的拉力变化情况;对物体a受力分析,判断物体a与斜面体间的静摩擦力的情况;对斜面体、物体a、物体b整体受力分析,根据平衡条件求解整体与地面间的静摩擦力和弹力的情况.【解答】解:A、对滑轮和物体b受力分析,受重力和两个拉力,如图所示:根据平衡条件,有:m b g=2Tcosθ解得:T=将固定点c向右移动少许,则θ增加,故拉力T增加,故A正确;B、D、对斜面体、物体a、物体b整体受力分析,受重力、支持力、细线的拉力和地面的静摩擦力,如图所示:根据平衡条件,有:N=G总﹣Tcosθ=G总﹣,N与角度θ无关,恒定不变;根据牛顿第三定律,压力也不变;故B错误;f=Tsinθ=tanθ,将固定点c向右移动少许,则θ增加,故摩擦力增加;故D正确;C、对物体a受力分析,受重力、支持力、拉力和静摩擦力,由于不知道拉力与重力的下滑分力的大小关系,故无法判断静摩擦力的方向,故不能判断静摩擦力的变化情况,故C错误;故选:AD.8.宇航员在地球表面以一定的初速度竖直上抛一小球,经过时间t落回原处;若在某星球表面以相同的速度竖直上抛一小球,则需经5t时间落回原处.已知该星半径与地球半径之比为1:4,则()A.该星表面重力加速度与地球表面重力加速度之比为5:1B.该星质量与地球质量之比为1:80C.该星密度与地球密度之比为4:5D.该星的“第一宇宙速度”与地球的第一宇宙速度之比为1:20【考点】万有引力定律及其应用.【分析】通过竖直上抛运动经历的时间求出重力加速度之比,然后根据万有引力等于重力,求出中心天体的质量比.根据密度的定义计算密度之比.第一宇宙速度v=,根据重力加速度和星球半径之比计算第一宇宙速度之比.【解答】解:A、设地球表面重力加速度为g,设该星球表面附近的重力加速度为g′,根据,知重力加速度之比等于它们所需时间之反比,地球上的时间与星球上的时间比1:5,则地球表面的重力加速度和星球表面重力加速度之比g:g′=5:1.故A错误.B 、根据万有引力等于重力,得M=.星球和地球表面的重力加速度之比为1:5,半径比为1:4,所以星球和地球的质量比M星:M地=1:80.故B正确.C 、根据密度的定义,所以,故C正确.D、第一宇宙速度v=,所以,故D错误.故选:BC.9.如图所示,竖直平行导轨间距l=20cm,导轨顶端接有一开关S,导体棒ab 与导轨接触良好且无摩擦,ab的电阻R=0.4Ω,质量m=20g,导轨的电阻不计,电路中所接电阻为3R,整个装置处在与竖直平面垂直的匀强磁场中,磁感应强度B=1T,不计空气阻力,设导轨足够长,g取10m/s2,开始时开关断开,当ab棒由静止下落3.2m时,突然接通开关,下列说法中正确的是()A.a点的电势高于b点的电势B.ab间的电压大小为1.2VC.ab间的电压大小为0.4VD.导体棒ab立即做匀速直线运动【考点】导体切割磁感线时的感应电动势;电磁感应中的能量转化.【分析】由右手定则可得出电流的流向,从而判断电势的高低;根据安培力与重力的大小关系可分析导体棒的运动情况.【解答】解:A、由右手定则可知,电流由a到b,故a点的电势低于b点的电势;故A错误;B、由机械能守恒定律可知:mgh=mv2;解得:v===8m/s;感应电动势为:E=BLv=1×0.2×8=1.6V;ab相当于电源,其两端的电势差为:U=E==1.2V;故B正确;C错误;D 、接通开关时,导体棒受到的安培力为:F=BIL=1××0.2=0.2N;ab受到的重力为:G=mg=0.2N;故导体棒立即做匀速直线运动;故D正确;故选:BD.10.如图所示,在平面直角坐标系中有一个垂直于纸面向里的圆形匀强磁场,其边界过原点O和y轴上的点a(0,L).一质量为m、电荷量为e的电子从a 点以初速度v0平行于x轴正方向射入磁场,并从x轴上的b点射出磁场,此时速度方向与x轴正方向的夹角为60°.下列说法中正确的是()A .电子在磁场中运动的时间为B .电子在磁场中运动的时间为C .磁场区域的圆心坐标(,)D.电子在磁场中做圆周运动的圆心坐标为(0,﹣2L)【考点】带电粒子在匀强磁场中的运动;牛顿第二定律;向心力.【分析】带电粒子在匀强磁场中在洛伦兹力作用下,做匀速圆周运动.所以由几何关系可确定运动圆弧的半径与已知长度的关系,从而确定圆磁场的圆心,并能算出粒子在磁场中运动时间.并根据几何关系来,最终可确定电子在磁场中做圆周运动的圆心坐标.【解答】解:A、B、电子的轨迹半径为R,由几何知识,Rsin30°=R﹣L,得R=2L电子在磁场中运动时间t=,而 T=,得:t=.故A错误,B正确;C、设磁场区域的圆心坐标为(x,y)其中 x=,y=所以磁场圆心坐标为()),故C正确;D、根据几何三角函数关系可得,R﹣L=Rcos60°,解得R=2L所以电子的圆周运动的圆心坐标为(0,﹣L),故D错误;故选:BC.二、实验题(共15分.11小题每空2分,12小题每空分别为2、2、1、1、3分)11.如图所示为一小球做平抛运动的闪光照片的一部分,图中背景方格的边长均为5cm,如果g取10m/s2,那么:(1)闪光的时间间隔是0.1 s;(2)小球运动中水平分速度的大小是 1.5 m/s;(3)小球经过B 点时速度大小是 2.5 m/s .【考点】研究平抛物体的运动.【分析】平抛运动在水平方向上做匀速直线运动,在竖直方向上做自由落体运动,根据竖直方向上相等时间内的位移之差是一恒量求出相等的时间间隔,结合水平位移和时间间隔求出平抛运动的初速度,即水平分速度.根据某段时间内平均速度等于中间时刻的瞬时速度,求出B点竖直方向上的分速度,根据平行四边形定则求出B点的速度大小.【解答】解:(1)根据△y=2L=gT2得,T=;(2)小球在运动过程中水平分速度;(3)B点竖直分速度,根据平行四边形定则知,小球经过B点的速度=.故答案为:(1)0.1,(2)1.5,(3)2.5.12.欲用伏安法测定一段阻值约为5Ω左右的金属导线的电阻,要求测量结果尽量准确,现备有以下器材:A.电池组(3V,内阻1Ω)B.电流表(0~3A,内阻0.0125Ω)C.电流表(0~0.6A,内阻0.125Ω)D.电压表(0~3V,内阻3kΩ)E.电压表(0~15V,内阻15kΩ)F.滑动变阻器(0~20Ω,额定电流1A)G.滑动变阻器(0~2 000Ω,额定电流0.3A) H.开关、导线(1)上述器材中应选用的是ACDFH ;(填写各器材的字母代号)(2)实验电路应采用电流表外接法;(填“内”或“外”)(3)设实验中,电流表、电压表的某组示数如图1所示,图示中I= 0.48 A,U= 2.20 V.(4)为使通过待测金属导线的电流能在0~0.5A范围内改变,请按要求在图2框图中画出测量待测金属导线的电阻R x的原理电路图.【考点】伏安法测电阻.【分析】本题(1)的关键是由电源电动势大小来选择电压表量程,通过求出通过待测电阻的最大电流来选择电流表的量程,通过求出电路中需要的最大电阻来选择变阻器大小;题(2)因为电流表内阻为已知的确定值,采用内接法时能精确求出待测电阻的阻值,所以电流表应采用内接法;题(3)根据电表每小格的读数来确定估读方法;题(4)根据实验要求电流从零调可知,变阻器应采用分压式接法.【解答】解:(1)根据电源电动势为3V可知,电压表应选择D;根据欧姆定律可知通过待测电阻的最大电流为===0.6A,所以电流表应选择C;根据闭合电路欧姆定律可知电路中需要的最大电阻应为===15Ω,所以变阻器应选择F,因此上述器材中应选择ACDFH;(2)由于待测电阻满足,所以应用外接法;(3)由于电流表每小格读数为0.02A,所以应进行“”估读,即电流表读数为I=0.48A;。

高二物理下学期3月月考试卷高二全册物理试题_2

高二物理下学期3月月考试卷高二全册物理试题_2

嗦夺市安培阳光实验学校武城二中高二(下)月考物理试卷(3月份)一、选择题(本题共15小题,1-10题为单选题,11-15题为多选题,每小题4分,共60分)1.将闭合多匝线圈置于仅随时间变化的磁场中,线圈平面与磁场方向垂直,关于线圈中产生的感应电动势和感应电流,下列表述正确的是()A.感应电动势的大小与线圈的匝数无关B.穿过线圈的磁通量越大,感应电动势越大C.穿过线圈的磁通量变化越快,感应电动势越大D.感应电流产生的磁场方向与原磁场方向始终相同2.如图所示,当直导线中电流不断增加时,A、B两轻导线圈的运动情况是()A.A向左,B向右B.A向右,B向左C.均向左D.均向右3.矩形导线框abcd固定在匀强磁场中,磁感线的方向与导线框所在平面垂直,规定磁场的正方向垂直纸面向里,磁感应强度B随时间变化的规律如图所示.若规定顺时针方向为感应电流I的正方向,下列各图中正确的是()A .B .C .D .4.在如图所示的电路中,a、b为两个完全相同的灯泡,L为自感线圈,E为电源,S为开关.关于两灯泡点亮和熄灭的先后次序,下列说法正确的是()A.合上开关,a先亮,b逐渐变亮;断开开关,a、b同时熄灭B.合上开关,b先亮,a逐渐变亮;断开开关,a先熄灭,b后熄灭C.合上开关,b先亮,a逐渐变亮;断开开关,a、b同时熄灭D.合上开关,a、b同时亮;断开开关,b先熄灭,a后熄灭5.如图所示,固定的水平长直导线中通有电流I,矩形线框与导线在同一竖直平面内,且一边与导线平行.线框由静止释放,在下落过程中()A.穿过线框的磁通量保持不变B.线框中感应电流方向保持不变C.线框所受安培力的合力为零D.线框的机械能不断增大6.如图所示,由均匀导线制成的半径为R的圆环,以速度v匀速进入一磁感应强度大小为B的匀强磁场.当圆环运动到图示位置(∠aOb=90°)时,a、b两点的电势差为()A . BRvB . BRvC . BRvD . BRv7.如图所示,虚线上方空间有垂直线框平面的匀强磁场,直角扇形导线框绕垂直于线框平面的轴O以角速度ω匀速转动.设线框中感应电流方向以逆时针为正,那么在选项图中能正确描述线框从图中所示位置开始转动一周的过程中,线框内感应电流随时间变化情况的是()A .B .C .D .8.用相同导线绕制的边长为L或2L的四个闭合导体线框,以相同的速度匀速进入右侧匀强磁场,如图所示.在每个线框进入磁场的过程中,M、N两点间的电压分别为U a、U b、U c和U d.下列判断正确的是()A.U a<U b<U c<U d B.U a<U b<U d<U c C.U a=U b<U c=U d D.U b<U a<U d<U c 9.如图所示,竖直放置的两根平行金属导轨之间接有定值电阻R,质量不能忽略的金属棒与两导轨始终保持垂直并良好接触且无摩擦,棒与导轨的电阻均不计,整个装置放在匀强磁场中,磁场方向与导轨平面垂直,棒在竖直向上的恒力F作用下加速上升的一段时间内,力F做的功与安培力做的功的代数和等于()A.棒的机械能增加量B.棒的动能增加量C.棒的重力势能增加量D.电阻R上放出的热量10.如图所示,在空间中存在两个相邻的,磁感应强度大小相等,方向相反的有界匀强磁场,其宽度均为L.现将宽度也为L的矩形闭合线圈,从图示位置垂直于磁场方向匀速拉过磁场区域,则在该过程中,能正确反映线圈中所产生的感应电流或其所受的安培力随时间变化的图象是()A .B .C .D .11.如图所示,用恒力F将闭合线圈自静止开始(不计摩擦)从图示位置向左加速拉出有界匀强磁场,则在此过程中()A.线圈向左做匀加速直线运动B.线圈向左运动且速度逐渐增大C.线圈向左运动且加速度逐渐减小D.线圈中感应电流逐渐减小12.如图所示,垂直纸面的正方形匀强磁场区域内,有一位于纸面的、电阻均匀的正方形导体框abcd,现将导体框分别朝两个方向以v、3v速度匀速拉出磁场,则导体框从两个方向移出磁场的两个过程中()A.导体框中产生的感应电流方向相同B.导体框中产生的焦耳热相同C.导体框ad边两端电势差相同D.通过导体框截面的电量相同13.如图要使图中ab导线中有向右的电流,则导线cd应()A.向右加速运动B.向右减速运动C.向左加速运动D.向左减速运动14.如图所示,匀强磁场的方向垂直于电路所在的平面,导体棒ab与电路接触良好.当ab在外力F作用下从左向右做匀加速直线运动时,若不计摩擦和导线的电阻,整个过程中,灯泡L未被烧坏,电容器C未被击穿,则该过程中()A.电容器C的上极板带负电B.感应电动势变大C.灯泡L的亮度变大D.电容器两极板间的电场强度减小15.如图所示,相距为d的两水平线L1和L2分别是水平向里的匀强磁场的边界,磁场的磁感应强度为B,正方形线框abcd边长为L(L<d)、质量为m.将线框在磁场上方高h处由静止开始释放,当ab边进入磁场时速度为v0,cd边刚穿出磁场时速度也为v0,从ab边刚进入磁场到cd边刚穿出磁场的整个过程中()A.线框一直都有感应电流B.线框有一阶段的加速度为gC.线框产生的热量为mg(d+h+L)D.线框做过减速运动二、计算题(本题共3小题,第16题12分,第17、18题各14分,共40分)16.如图所示,匀强磁场竖直向上穿过水平放置的金属框架,框架宽为L,右端接有电阻R,磁感应强度为B,一根质量为m、电阻不计的金属棒以v0的初速度沿框架向左运动,棒与框架的动摩擦因数为μ,测得棒在整个运动过程中,通过任一截面的电量为q,求:(1)棒能运动的距离;(2)R上产生的热量.17.U形金属导轨abcd原静放在光滑绝缘的水平桌面上,范围足够大、方向竖直向上的匀强磁场穿过导轨平面,一根与bc等长的金属棒PQ平行bc放在导轨上,棒左边靠着绝缘的固定竖直立柱e、f.已知磁感强度B=0.8T;导轨质量M=2kg,其中bc段长0.5m、电阻r=0.4Ω,其余部分电阻不计;金属棒PQ质量m=0.6kg、电阻R=0.2Ω、与导轨间的动摩擦因数μ=0.2.若向导轨施加方向向左、大小为F=2N的水平拉力,如图所示.求:导轨的最大加速度、最大电流和最大速度(设导轨足够长,g取10m/s2).18.如图所示,质量m1=0.1kg,电阻R1=0.3Ω,长度l=0.4m的导体棒ab横放在U型金属框架上.框架质量m2=0.2kg,放在绝缘水平面上,与水平面间的动摩擦因数μ=0.2,相距0.4m的MM′、NN′相互平行,电阻不计且足够长.电阻R2=0.1Ω的MN垂直于MM′.整个装置处于竖直向上的匀强磁场中,磁感应强度B=0.5T.垂直于ab施加F=2N的水平恒力,ab从静止开始无摩擦地运动,始终与MM′、NN′保持良好接触,当ab运动到某处时,框架开始运动.设框架与水平面间最大静摩擦力等于滑动摩擦力,g取10m/s2.(1)求框架开始运动时ab速度v的大小;(2)从ab开始运动到框架开始运动的过程中,MN上产生的热量Q=0.1J,求该过程ab位移x的大小.武城二中高二(下)月考物理试卷(3月份)参考答案与试题解析一、选择题(本题共15小题,1-10题为单选题,11-15题为多选题,每小题4分,共60分)1.将闭合多匝线圈置于仅随时间变化的磁场中,线圈平面与磁场方向垂直,关于线圈中产生的感应电动势和感应电流,下列表述正确的是()A.感应电动势的大小与线圈的匝数无关B.穿过线圈的磁通量越大,感应电动势越大C.穿过线圈的磁通量变化越快,感应电动势越大D.感应电流产生的磁场方向与原磁场方向始终相同【考点】法拉第电磁感应定律;楞次定律.【分析】解答本题应掌握感应电动势取决于磁通量的变化快慢,与磁通量的变化及磁通量无关.【解答】解:由法拉第电磁感应定律可知,感应电动势E=n,即感应电动势与线圈匝数有关故A错误;同时可知,感应电动势与磁通量的变化率有关,磁通量变化越快,感应电动势越大,故C正确;穿过线圈的磁通量大,但若所用的时间长,则电动势可能小,故B错误;由楞次定律可知:感应电流的磁场方向总是阻碍引起感应电流的磁通量的变化,故原磁通增加,感应电流的磁场与之反向,原磁通减小,感应电流的磁场与原磁场方向相同,即“增反减同”,故D错误;故选C.2.如图所示,当直导线中电流不断增加时,A、B两轻导线圈的运动情况是()A.A向左,B向右B.A向右,B向左C.均向左D.均向右【考点】楞次定律.【分析】先根据安培定则判断出电流的磁场的方向,然后根据楞次定律判断出感应电流的磁场的方向,再使用安培定则判断出感应电流的方向,最后使用左手定则判断出线圈受力的方向和运动的方向.【解答】解:直导线中的电流向上,所以左侧的磁场的方向向外,右侧的磁场的方向向里;当电流增大时,磁感应强度增大,穿过线圈的磁通量增大,A环产生顺时针方向的感应电流,根据左手定则得,A环的右侧受到的安培力的方向向左,A环将向左运动;B环产生逆时针方向的电流,B环的左侧受到的安培力的方向向右,所以B环将向右运动.故选项A正确.故选:A 3.矩形导线框abcd固定在匀强磁场中,磁感线的方向与导线框所在平面垂直,规定磁场的正方向垂直纸面向里,磁感应强度B随时间变化的规律如图所示.若规定顺时针方向为感应电流I的正方向,下列各图中正确的是()A .B .C .D .【考点】法拉第电磁感应定律;闭合电路的欧姆定律.【分析】由右图可知B的变化,则可得出磁通量的变化情况,由楞次定律可知电流的方向;由法拉第电磁感应定律可知电动势,即可知电路中电流的变化情况;【解答】解:由图可知,0﹣1s内,线圈中磁通量的变化率相同,故0﹣1s内电流的方向相同,由楞次定律可知,电路中电流方向为逆时针,即电流为负方向;同理可知,1﹣2s内电路中的电流为顺时针,2﹣3s内,电路中的电流为顺时针,3﹣4s内,电路中的电流为逆时针,由E==可知,电路中电流大小恒定不变.故选D.4.在如图所示的电路中,a、b为两个完全相同的灯泡,L为自感线圈,E为电源,S为开关.关于两灯泡点亮和熄灭的先后次序,下列说法正确的是()A.合上开关,a先亮,b逐渐变亮;断开开关,a、b同时熄灭B.合上开关,b先亮,a逐渐变亮;断开开关,a先熄灭,b后熄灭C.合上开关,b先亮,a逐渐变亮;断开开关,a、b同时熄灭D.合上开关,a、b同时亮;断开开关,b先熄灭,a后熄灭【考点】自感现象和自感系数.【分析】对于线圈来讲通直流阻交流,通低频率交流阻高频率交流.【解答】解:由于a、b为两个完全相同的灯泡,当开关接通瞬间,b灯泡立刻发光,而a灯泡由于线圈的自感现象,导致灯泡渐渐变亮;当开关断开瞬间,两灯泡串联,由线圈产生瞬间电压提供电流,导致两灯泡同时熄灭.故选:C5.如图所示,固定的水平长直导线中通有电流I,矩形线框与导线在同一竖直平面内,且一边与导线平行.线框由静止释放,在下落过程中()A.穿过线框的磁通量保持不变B.线框中感应电流方向保持不变C.线框所受安培力的合力为零D.线框的机械能不断增大【考点】电磁感应中的能量转化;楞次定律.【分析】根据磁能量形象表示:穿过磁场中某一面积的磁感线的条数判断磁能量的变化.用楞次定律研究感应电流的方向.用左手定则分析安培力,根据能量守恒定律研究机械能的变化.【解答】解:A、线框在下落过程中,所在磁场减弱,穿过线框的磁感线的条数减小,磁通量减小.故A错误.B、下落过程中,因为磁通量随线框下落而减小,根据楞次定律,感应电流的磁场与原磁场方向相同,不变,所以感应电流的方向不变,故B正确.C、线框左右两边受到的安培力平衡抵消,上边受的安培力大于下边受的安培力,安培力合力不为零.故C错误.D、线框中产生电能,机械能减小.故D错误故选B6.如图所示,由均匀导线制成的半径为R的圆环,以速度v匀速进入一磁感应强度大小为B的匀强磁场.当圆环运动到图示位置(∠aOb=90°)时,a、b两点的电势差为()A . BRvB . BRvC . BRvD . BRv【考点】导体切割磁感线时的感应电动势;电势差.【分析】根据感应电动势公式E=BLv求出感应电动势的大小E,ab边切割磁感线,相当于电源,ab间的电压是路端电压,根据欧姆定律求解.【解答】解:当圆环运动到图示位置,圆环切割磁感线的有效长度为l;线框刚进入磁场时ab边产生的感应电动势为:E=Blv;线框进入磁场的过程中a、b两点的电势差由欧姆定律得:U ab=E﹣I•r ab =Blv ﹣=Blv;故选:D7.如图所示,虚线上方空间有垂直线框平面的匀强磁场,直角扇形导线框绕垂直于线框平面的轴O以角速度ω匀速转动.设线框中感应电流方向以逆时针为正,那么在选项图中能正确描述线框从图中所示位置开始转动一周的过程中,线框内感应电流随时间变化情况的是()A .B .C .D .【考点】导体切割磁感线时的感应电动势;闭合电路的欧姆定律.【分析】当线框以O为转轴进入磁场时,磁通量发生变化有感应电流产生,根据有效切割长度判断出电流大小变化,根据楞次定律或右手定制判断出感应电流方向,即可正确解答.【解答】解:当线框进入磁场后,切割的有效长度为半圆的半径不变,即电动势及电流大小不变;由右手定则可知,电流为逆时针,故为正值,当线框全部进入磁场,磁通量不变,无感应电流.故选A.8.用相同导线绕制的边长为L或2L的四个闭合导体线框,以相同的速度匀速进入右侧匀强磁场,如图所示.在每个线框进入磁场的过程中,M、N两点间的电压分别为U a、U b、U c和U d.下列判断正确的是()A.U a<U b<U c<U d B.U a<U b<U d<U c C.U a=U b<U c=U d D.U b<U a<U d<U c 【考点】导体切割磁感线时的感应电动势;闭合电路的欧姆定律.【分析】当线框进入磁场时,MN边切割磁感线,相当于电源,因此MN两端的电压为路端电压,根据闭合电路欧姆定律可进行解答.【解答】解:线框进入磁场后切割磁感线,a、b中产生的感应电动势是c、d 中电动势的一半,而不同的线框的电阻不同,设a线框电阻为4r,b、c、d线框的电阻分别为6r、8r、6r则有:U a =BLv•=BLv,U b =BLv•=BLv,U c =B•2Lv•=BLv ,Ud=B•2Lv•=BLv,故U a<U b<U d<U c.故选B.9.如图所示,竖直放置的两根平行金属导轨之间接有定值电阻R,质量不能忽略的金属棒与两导轨始终保持垂直并良好接触且无摩擦,棒与导轨的电阻均不计,整个装置放在匀强磁场中,磁场方向与导轨平面垂直,棒在竖直向上的恒力F作用下加速上升的一段时间内,力F做的功与安培力做的功的代数和等于()A.棒的机械能增加量B.棒的动能增加量C.棒的重力势能增加量D.电阻R上放出的热量【考点】电磁感应中的能量转化;导体切割磁感线时的感应电动势.【分析】棒在竖直向上的恒力F作用下加速上升的一段时间内,F做正功,安培力做负功,重力做负功,动能增大.根据动能定理分析力F做的功与安培力做的功的代数和.【解答】解:A、棒受重力G、拉力F和安培力F A的作用.由动能定理:W F+W G+W安=△E K得W F+W安=△E K+mgh即力F做的功与安培力做功的代数和等于机械能的增加量.故A正确.B、由动能定理,动能增量等于合力的功.合力的功等于力F做的功、安培力的功与重力的功代数和.故B错误.C、棒克服重力做功等于棒的重力势能增加量.故C错误.D、棒克服安培力做功等于电阻R上放出的热量.故D错误故选A10.如图所示,在空间中存在两个相邻的,磁感应强度大小相等,方向相反的有界匀强磁场,其宽度均为L.现将宽度也为L的矩形闭合线圈,从图示位置垂直于磁场方向匀速拉过磁场区域,则在该过程中,能正确反映线圈中所产生的感应电流或其所受的安培力随时间变化的图象是()A .B .C .D .【考点】导体切割磁感线时的感应电动势.【分析】根据楞次定律判断出感应电流的方向,根据切割产生的感应电动势和闭合电路欧姆定律求出感应电流的大小.根据安培力公式求出安培力的大小,通过左手定则判断安培力的方向.【解答】解:A、线圈进入磁场,在进入磁场0﹣L的过程中,E=BLv,电流I=,方向为逆时针方向.安培力的大小F=BIL=,根据左手定则,知安培力方向水平向左.在L﹣2L的过程中,电动势E=2BLv,电流I=,方向为顺时针方向,安培力的大小F=,根据左手定则,知安培力方向水平向左.在2L﹣3L的过程中,E=BLv,电流I=,方向为逆时针方向,安培力的大小为F=BIL=,根据左手定则,知安培力方向水平向左.故D正确,A、B、C 错误.故选D.11.如图所示,用恒力F将闭合线圈自静止开始(不计摩擦)从图示位置向左加速拉出有界匀强磁场,则在此过程中()A.线圈向左做匀加速直线运动B.线圈向左运动且速度逐渐增大C.线圈向左运动且加速度逐渐减小D.线圈中感应电流逐渐减小【考点】导体切割磁感线时的感应电动势;电磁感应中的能量转化.【分析】本题的关键是首先根据右手定则或楞次定律判定ab边产生电动势的方向并写出电动势大小,再根据左手定则判定ab边产生安培力的方向并写出安培力大小,然后根据牛顿第二定律写出线圈产生加速度的表达式,再讨论即可.【解答】解:线圈向左运动时,ab边做切割磁感线运动产生电动势,根据右手定则可知ab产生的电动势方向从a向b,电动势的大小为E=BLv①,通过ab的电流为I=②,由左手定则可知ab 边受到的安培力方向向右,大小为=BIL③根据牛顿第二定律应有F ﹣=ma④联立①②③④可得a=﹣,可见,加速度a随速度v的增大而减小,即线圈做加速度减小的加速运动,所以A错误BC正确;线圈加速运动,产生的感应电流应逐渐增大,所以D错误.故选:BC12.如图所示,垂直纸面的正方形匀强磁场区域内,有一位于纸面的、电阻均匀的正方形导体框abcd,现将导体框分别朝两个方向以v、3v速度匀速拉出磁场,则导体框从两个方向移出磁场的两个过程中()A.导体框中产生的感应电流方向相同B.导体框中产生的焦耳热相同C.导体框ad边两端电势差相同D.通过导体框截面的电量相同【考点】导体切割磁感线时的感应电动势;电流、电压概念;电磁感应中的能量转化.【分析】A、感应电流的方向可以通过楞次定律或右手定则进行判定.B、根据热量的公式Q=I2Rt进行分析.C、先求出感应电动势,再求外电压.D、通过q=进行分析.【解答】解:A、根据右手定则,导线框产生的感应电流方向相同.故A正确. B、I=,t=,根据Q=I2Rt=,知Q与速度v有关,所以导线框产生的焦耳热不同.故B错误.C、向上移出磁场的过程中,电动势E=BLv,ad边两端电势差U=;向右移出磁场的过程中,电动势E=3BLv,ad边两端电势差U=.故C错误.D、q=,沿两个不同方向移出,磁通量的变化量相同,所以通过导体框截面的电量相同.故D正确.故选AD.13.如图要使图中ab导线中有向右的电流,则导线cd应()A.向右加速运动B.向右减速运动C.向左加速运动D.向左减速运动【考点】法拉第电磁感应定律.【分析】根据导体棒切割磁感线,产生感应电动势,由右手定则来确定cd棒中的感应电流的方向,则螺线管内产生变化的磁通量,导致导线ab出现感应电流,再由右手螺旋定则可确定螺线管磁场方向,最后由楞次定则确定导线ab 的感应电流方向.【解答】解:由于导体棒cd的运动,导致ab导线中有向右的电流,从而根据楞次定律可知,穿过导线ab的磁场要么向左减小,要么向右增大.因此由右手螺旋定则可知,要么从c到d的感应电流,且大小减小;要么有从d到c感应电流,且大小增大.所以根据右手定则及切割感应电动势,可知,要么向左减速运动,要么向右加速运动,故AD正确,BC错误;故选AD14.如图所示,匀强磁场的方向垂直于电路所在的平面,导体棒ab与电路接触良好.当ab在外力F作用下从左向右做匀加速直线运动时,若不计摩擦和导线的电阻,整个过程中,灯泡L未被烧坏,电容器C未被击穿,则该过程中()A.电容器C的上极板带负电B.感应电动势变大C.灯泡L的亮度变大D.电容器两极板间的电场强度减小【考点】导体切割磁感线时的感应电动势;电容.【分析】根据E=BLv判断产生的感应电动势的变化,根据右手定则判断出感应电流的方向,从而确定电容器极板带电的正负.【解答】解:A、由右手定则可知,导体棒向右运动时,a端电势高、b端电势低,电热器上极板带正电,故A错误;B、导体棒做匀加速直线运动,v变大,由E=BLv知,感应电动势变大,故B正确.C、感应电动势增大,通过灯泡的电流增大,灯泡实际功率增大,灯泡的亮度变大,故C正确.D、由电路图可知,电容器与灯泡并联,灯泡两端电压增大,电热器两极板电压增大,则电场强度增大,故D错误.故选:BC.15.如图所示,相距为d的两水平线L1和L2分别是水平向里的匀强磁场的边界,磁场的磁感应强度为B,正方形线框abcd边长为L(L<d)、质量为m.将线框在磁场上方高h处由静止开始释放,当ab边进入磁场时速度为v0,cd边刚穿出磁场时速度也为v0,从ab边刚进入磁场到cd边刚穿出磁场的整个过程中()A.线框一直都有感应电流B.线框有一阶段的加速度为gC.线框产生的热量为mg(d+h+L)D.线框做过减速运动【考点】导体切割磁感线时的感应电动势;电磁感应中的能量转化.【分析】正方形线框abcd边长为L(L<d),所以有一段过程线框完全进入磁场,线框无感应电流,只受重力.根据能量守恒研究从ab边刚进入磁场到cd边刚穿出磁场的整个过程求解.【解答】解:A、正方形线框abcd边长为L(L<d),所以cd进入磁场后,ab 还在磁场内,所以线框磁通量不变,即无感应电流.故A错误.B、有一段过程,线框无感应电流,只受重力,线框有一阶段的加速度为g.故B正确.C、根据能量守恒研究从ab边刚进入磁场到cd边刚穿出磁场的整个过程:动能变化为0,重力势能转化为线框产生的热量.Q=mg(d+L),故C错误.D、线框ab边刚进入磁场速度为v0,cd边刚穿出磁场时速度也为v0,线框有一阶段的加速度为g.在这过程中必然有加速过程和减速过程,故D正确.故选:BD.二、计算题(本题共3小题,第16题12分,第17、18题各14分,共40分)16.如图所示,匀强磁场竖直向上穿过水平放置的金属框架,框架宽为L,右端接有电阻R,磁感应强度为B,一根质量为m、电阻不计的金属棒以v0的初速度沿框架向左运动,棒与框架的动摩擦因数为μ,测得棒在整个运动过程中,通过任一截面的电量为q,求:(1)棒能运动的距离;(2)R上产生的热量.【考点】导体切割磁感线时的感应电动势;焦耳定律.【分析】(1)由法拉第电磁感应定律可求得通过棒的电量;(2)由能的转化和守恒定律可求得R上产生的热量.【解答】解:(1)设在整个过程中,棒运动的距离为s,磁通量的变化量△Φ=BLs,通过棒的任一截面的电量q=I△t=,解得s=.(2)根据能的转化和守恒定律,金属棒的动能的一部分克服摩擦力做功,一部分转化为电能,电能又转化为热能Q ,即有mv02=μmgs+Q,解得Q=mv02﹣μmgs=mv02﹣.答:(1)棒能运动的距离为;(2)R 上产生的热量为mv02﹣.17.U形金属导轨abcd原静放在光滑绝缘的水平桌面上,范围足够大、方向竖直向上的匀强磁场穿过导轨平面,一根与bc等长的金属棒PQ平行bc放在导轨上,棒左边靠着绝缘的固定竖直立柱e、f.已知磁感强度B=0.8T;导轨质量M=2kg,其中bc段长0.5m、电阻r=0.4Ω,其余部分电阻不计;金属棒PQ质量m=0.6kg、电阻R=0.2Ω、与导轨间的动摩擦因数μ=0.2.若向导轨施加方向向左、大小为F=2N的水平拉力,如图所示.求:导轨的最大加速度、最大电流和最大速度(设导轨足够长,g取10m/s2).【考点】安培力的计算;牛顿第二定律.【分析】根据牛顿第二定律与安培力的表达式,可求出最大加速度与最大电流;再由闭合电路欧姆定律及法拉第电磁感应定律,即可求解.【解答】解:导轨受到棒PQ水平向右的摩擦力f=μmg根据牛顿第二定律并整理得F﹣μmg﹣F安=Ma刚拉动导轨时,I感=0,安培力为零,导轨有最大加速度a m ==(2﹣0.2×0.6×10)=0.40m/s2随着导轨速度增大,感应电流增大,加速度减小,当a=0时,速度最大设为v m,电流最大设为I m,导轨受到向右的安培力 F B=BIL F﹣μmg﹣BI m L=0I m =代入数字算得 I m =A=2AI=I m =v m=I m=3m/s答:导轨的最大加速度为0.40m/s2、最大电流2A和最大速度3m/s.18.如图所示,质量m1=0.1kg,电阻R1=0.3Ω,长度l=0.4m的导体棒ab横放在U型金属框架上.框架质量m2=0.2kg,放在绝缘水平面上,与水平面间的动摩擦因数μ=0.2,相距0.4m的MM′、NN′相互平行,电阻不计且足够长.电阻R2=0.1Ω的MN垂直于MM′.整个装置处于竖直向上的匀强磁场中,磁感应强度B=0.5T.垂直于ab施加F=2N的水平恒力,ab从静止开始无摩擦地运动,始终与MM′、NN′保持良好接触,当ab运动到某处时,框架开始运动.设框架与水平面间最大静摩擦力等于滑动摩擦力,g取10m/s2.(1)求框架开始运动时ab速度v的大小;(2)从ab开始运动到框架开始运动的过程中,MN上产生的热量Q=0.1J,求该过程ab位移x的大小.【考点】导体切割磁感线时的感应电动势;电磁感应中的能量转化.【分析】ab向右做切割磁感线运动,产生感应电流,电流流过MN,MN受到向右的安培力,当安培力等于最大静摩擦力时,框架开始运动.根据安培力、欧姆定律和平衡条件等知识,求出速度.依据能量守恒求解位移.。

高二物理下学期3月考试试题

高二物理下学期3月考试试题

嗦夺市安培阳光实验学校东阿曹植培训学校下学期高二3月调研高二物理试卷本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

试卷共5页。

满分共110分。

考试时间110分钟。

第Ⅰ卷注意事项:1.答卷Ⅰ2.答卷Ⅰ时,每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案。

不能答在试题卷上。

3.考试结束,将答卷纸和答题卡一并交回。

1 “B 超”可用于探测人体内脏的病变状况。

下图是超声波从肝脏表面入射,经折射与反射,最后从肝脏表面射出的示意图。

超声波在进入肝脏发生折射时遵循的规律与光的折射规律类似,可表述为1122sin sin v v θθ=(式中θ1是入射角,θ2是折射角,ν1,ν2 为别是超声波在肝外和肝内的传播速度),超声波在肿瘤表面发生反射时遵循的规律与光的反射规律相同。

已知ν2=0.9v 1,入射点与出射点之间的距离是d ,入射角为i ,肿瘤的反射面恰好与肝脏表面平行,则肿瘤离肝脏表面的深度h 为( )A .i id 2sin 81100sin 9- B .i id sin 100sin 100812- C .i id sin 20sin 100812- D .i id sin 18sin 811002-2.如图所示是做双缝干涉实验的示意图.先做操作1:用两块不同颜色的滤色片分别挡住双缝屏上下两半Ⅰ和Ⅱ;接着再做操作2:用不透明的挡板挡住b 缝。

若两块滤色片一块是红色,一块是蓝色.则正确的选项是( )A.完成操作1后,光屏上出现的是图(2),且甲是红色条纹,乙是蓝色条纹B.完成操作1后,光屏上出现的是图(3),且丙是蓝色条纹,丁是红色条纹C.完成操作2后,光屏上出现的是图(2),且甲是蓝色条纹,乙是红色条纹D.完成操作2后,光屏上出现的是图(3),且丙是红色条纹,丁是蓝色条纹 3.如图所示,红色细光束a 射到折射率为2的透明球表面,入射角为45°,在球的内壁经过一次反射后,从球面射出的光线为b,则入射光线a 与出射光线b 之间的夹角α为( )A.30°B.45°C.60°D.75°4.把一平行玻璃板压在另一个平行玻璃板上,一端用薄片垫起,构成空气劈尖,让单色光从上方射入,如图所示,这时可以看到明暗相间的条纹.下面关于条纹的说法中正确的是( )A .干涉条纹的产生是由于光在空气劈尖膜的前后两表面反射形成的两列光波叠加的结果B .干涉条纹中的暗纹是由于上述两列反射光的波谷与波谷叠加的结果C .将上玻璃板平行上移,条纹向着劈尖移动D .观察薄膜干涉条纹时,眼睛应在入射光的另一侧 5.下列有说法正确的是( )A 太阳光下的小露珠看起来特别亮,因为发生了全反射。

高二物理下学期3月月考试卷高二全册物理试题 (4)

高二物理下学期3月月考试卷高二全册物理试题 (4)

嗦夺市安培阳光实验学校高二物理下学期3月月考试卷一.选择题(每小题4分,共56分,1--10只有一个选项正确,11--14多个选项正确,全部选对得4分,选不全的2分,选错或不答者的零分)1、一矩形线圈绕垂直于匀强磁场且位于线圈平面内的固定轴转动。

线圈中的感应电动势e随时间t的变化关系如图所示。

下列说法中正确的是()A.t1时刻穿过线圈的磁通量为零B.t2时刻穿过线圈的磁通量最大C.t3时刻穿过线圈的磁通量的变化率最大D.每当e变换方向时,穿过线圈的磁通量都为最大2、理想变压器正常工作时,在其两侧的原、副线圈中不一定相同的物理量是( )A.电压的最大值B.输入功率、输出功率C.磁通量的变化率D.交流电的频率3、如图所示,三只完全相同的灯泡a、b、c分别与盒子Ⅰ、Ⅱ、Ⅲ中的三种元件串联,再将三者并联,接在正弦交变电路中,三只灯泡亮度相同。

若保持电路两端电压有效值不变,将交变电流的频率增大,观察到灯a变暗、灯b变亮、灯c亮度不变。

则三个盒子中的元件可能是 ( )A.Ⅰ为电阻,Ⅱ为电容器,Ⅲ为电感器B.Ⅰ为电感器,Ⅱ为电容器,Ⅲ为电阻C.Ⅰ为电感器,Ⅱ为电阻,Ⅲ为电容器D.Ⅰ为电容器,Ⅱ为电感器,Ⅲ为电阻4、某变电站用11 kV的交变电压输电,输送功率一定,输电线的电阻为R,现若用变压器将电压升高到440 kV送电,下面选项正确的是( )A.由I=UR,所以输电线上的电流变为原来的20倍B.由I=PU,所以输电线上的电流变为原来的120C.由P=U2R,所以输电线上损失的功率变为原来的1 600倍D.由P=I2R,所以输电线上损失的功率变为原来的11 6005、如图所示,为一正弦交流电通过一电子元件后的波形图,则下列说法正确的是( )A.这也是一种交流电B.电流的变化周期是0.01 sC.电流的有效值是1 AD.电流通过100 Ω的电阻时,1 s内产生的热量为200 J6、做简谐运动的物体经过平衡位置时( )A .速度为零B .加速度为零C .合力为零D .位移为零 7、一位游客在千岛湖边欲乘坐游船,当日风浪较大,游船上下浮动。

高二物理下学期(3月份)月考试卷高二全册物理试题

高二物理下学期(3月份)月考试卷高二全册物理试题

嗦夺市安培阳光实验学校高二物理下学期(3月份)月考试卷一、选择题(本题有12小题,每小题4分,共48分,其中7-12题为多选题,全部选对的得4分,选对但不全的得2分,有选错或不答的得0分)1.交流电压的表达式为u=100sin100πtV,可知()A.用电压表测该电压其示数为50VB.该交流电压的周期为0.02sC.将该电压在“100V 100W”的灯泡两端,灯泡的实际功率小于100WD.t=s时,该交流电压的瞬时值为50V2.滑雪运动是人们酷爱的户外体育活动,现有质量为m的人站立于雪橇上,如图所示.人与雪橇的总质量为M,人与雪橇以速度v1在水平面上由北向南运动(雪橇所受阻力不计).当人相对于雪橇以速度v2竖直跳起时,雪橇向南的速度大小为()A .B .C .D.v13.如图,理想变压器原、副线圈匝数比n1:n2=2:1,V和A均为理想电表,灯光电阻R L=6Ω,AB端电压u1=12sin100πt(V).下列说法正确的是()A.电流频率为100Hz B.V的读数为24VC.A的读数为0.5A D.变压器输入功率为6W4.在高台跳水中,运动员从高台向上跃起,在空中完成动作后,进入水中在浮力作用下做减速运动,速度减为零后返回水面.设运动员在空中运动过程为Ⅰ,在进入水中做减速运动过程为Ⅱ.不计空气阻力和水的粘滞阻力,则下述判断错误的是()A.在过程Ⅰ中,运动员受到的冲量等于动量的改变量B.在过程Ⅰ中,运动员受到重力冲量的大小与过程Ⅱ中浮力冲量的大小相等C.在过程Ⅰ中,每秒钟运动员动量的变化量相同D.在过程Ⅰ和在过程Ⅱ中运动员动量变化的大小相等5.水平恒定推力F1和F2分别作用于水平面上原来静止的、质量相等的a、b两物体上,作用一段时间后撤去推力,由于惯性.物体将继续运动一段时间后才能停下,两物体的v﹣t图象如图所示,已知图中线段AB∥CD,则()A.a物体受到的摩擦力小于b物体受到的摩擦力B.a物体受到的摩擦力大于b物体受到的摩擦力C.F1的冲量大于F2的冲量D.F1的冲量小于F2的冲量6.如图所示为一交流电压随时间变化的图象.每个周期内,前三分之一周期电压按正弦规律变化,后三分之二周期电压恒定.根据图中数据可得,此交流电压的有效值为()A.7.5V B.8V C . V D . V7.对下列物理现象的解释,正确的是()A.击钉时,不用橡皮锤仅仅是因为橡皮锤太轻B.跳远时,在沙坑里填沙,是为了减小冲量C.易碎品运输时,要用柔软材料包装,船舷常常悬挂旧轮胎,都是为了延长作用时间,减小作用力D.在车内推车推不动,是因为合外力冲量为零8.如图所示,一个单匝矩形导线圈在匀强磁场中绕垂直于磁感线的轴oo′匀角速转动,转动周期为T0.线圈产生的电动势的最大值为E m,则()A .线圈产生的电动势的有效值为E mB .线圈转动过程中穿过线圈的磁通量的最大值为C.线圈转动过程中磁通量变化率的最大值为E mD.经过2T0的时间,通过线圈电流的方向改变2次9.某同学质量为60kg,在事训练中要求他从岸上以大小为2m/s的速度跳到一条向他缓慢飘来的小船上,然后去执行任务,小船的质量是140kg,原来的速度大小是0.5m/s,该同学上船后又跑了几步,最终停在船上,则()A.人和小船最终静止在水面上B.该过程同学的动量变化量为105kg•m/sC.船最终的速度是0.95m/sD.船的动量变化量是﹣105kg•m/s10.图甲是小型交流发电机的示意图,两磁极N、S间的磁场可视为水平方向的匀强磁场,A为交流电流表.线圈绕垂直于磁场方向的水平轴OO′沿逆时针方向匀速转动.从图示位置开始计时,产生的交变电流随时间变化的图象如图乙所示.以下判断正确的是()A.电流表的示数为10AB.线圈转动的角速度为50π rad/sC.0.01s时线圈平面与磁场方向平行D.0.02s时电阻R中电流的方向自右向左11.2014年10月28日携带“天鹅座”宇宙飞船的“安塔瑞斯”号运载在弗吉尼亚州瓦勒普斯岛发射升空时爆炸,爆炸燃起巨大火球,运载没有载人.下面对于该的描述正确的是()A.发射的初速度大于7.9km/sB.上升过程中处于超重状态C.忽略空气阻力,则碎片落地时速度大小相等D.在爆炸的极短时间内,系统动量守恒12.如图所示,(a)是远距离输电线路的示意图,(b)是用户得到的电压随时间变化的图象,已知降压变压器的匝数比为10:1,不考虑降压变压器与用户间导线的电阻,则()A.发电机输出交流电的频率是50HzB.升压变压器的输出电压为2200VC.输电线的电流只由降压变压器匝副线圈的匝数比决定D.当用户用电器的总电阻增大时,输电线上损失的功率减小二、实验题13.如图甲所示,用“碰撞实验器”可以验证动量守恒定律,即研究两个小球在轨道水平部分碰撞前后的动量关系.(1)经测定,m1=45.0g,m2=7.5g,小球落地点的平均位置距O点的距离如图乙所示.碰撞前后m1的动量分别为p1与p1′,则p1:p1′=:11;若碰撞结束时m2的动量为p2′,则p1′:p2′=11:.实验结果说明,碰撞前后总动量的比值= .(2)有同学认为,在上述实验中仅更换两个小球的材质,其他条件不变,可以使被撞小球做平抛运动的射程增大.请你用(1)中已知的数据,分析和计算出被碰小球m1平抛运动射程ON的最大值为cm.三、计算题14.一辆车强行超车时,与另一辆迎面驶来的轿车相撞,两车相撞后连为一体,两车车身因相互挤压,皆缩短了0.5米.据测算两车相撞前的速度约为30m/s.求:(1)若人与车一起做减速运动,车祸过程中车内约60kg的人受到的平均冲力是多大(2)若此人系有安全带,安全带在车祸过程中与人体作用时间是1s,求这时人体受到的平均冲力为多大?15.如图所示,匀强磁场的磁感应强度B=0.5T,边长L=10cm的正方形线圈abcd 共100匝,线圈电阻r=1Ω,线圈绕垂直于磁感线的对称轴OO′匀速转动,角速度ω=2πrad/s,外电路电阻R=4Ω,求:(1)转动过程中感应电动势的最大值;(2)由图示位置(线圈平面与磁感线平行)转过60°角时的瞬时感应电动势;(3)由图示位置转过60°角的过程中产生的平均感应电动势;(4)交流电压表的示数;(5)线圈转动一周外力所做的功;(6)周期内通过R的电荷量为多少?16.如图所示,AOB是光滑水平轨道,BC是半径为R 的光滑的固定圆弧轨道,两轨道恰好相切.质量为M的小木块静止在O点,一个质量为m的子弹以某一初速度水平向右快速射入小木块内,并留在其中和小木块一起运动,且恰能到达圆弧轨道的最高点C(木块和子弹均可看成质点).已知R=0.4m,m=1Kg,M=10Kg.(g=10m/s2,结果保留2位有效数字)(1)子弹射入木块前的速度V(2)若每当小木块上升到圆弧并返回到O点或静止于O点时,立即有相同的子弹射入小木块,并留在其中,则当第3颗子弹射入小木块后,木块速度多大?故城高中高二(下)月考物理试卷(3月份)参考答案与试题解析一、选择题(本题有12小题,每小题4分,共48分,其中7-12题为多选题,全部选对的得4分,选对但不全的得2分,有选错或不答的得0分)1.交流电压的表达式为u=100sin100πtV,可知()A.用电压表测该电压其示数为50VB.该交流电压的周期为0.02sC.将该电压在“100V 100W”的灯泡两端,灯泡的实际功率小于100WD.t=s时,该交流电压的瞬时值为50V【考点】E3:正弦式电流的图象和三角函数表达式;BG:电功、电功率.【分析】电压表读数为有效值.先根据最大值求有效值,求得电压表读数;通过瞬时表达式与交电流的ω=,可求出周期;运用瞬时表达式求出有效值,从而利用电功率的公式P=求出电功率;直接根据瞬时表达式代入数据求解.【解答】解:A、交变电压的表达式为u=100sin100πt V,可知最大值为100,又是正弦式电流,则电压的有效值:U=V=100V,故A错误.B、由公式ω=,则有周期T=0.02s.故B正确.C、由于电压的有效值为100V,则该电压加在“100V 100W”的灯泡两端,灯泡正常发光,为额定功率,故C错误D、将t=s代入瞬时表达式,则有交流电压的瞬时值为100V.故D错误.故选:B2.滑雪运动是人们酷爱的户外体育活动,现有质量为m的人站立于雪橇上,如图所示.人与雪橇的总质量为M,人与雪橇以速度v1在水平面上由北向南运动(雪橇所受阻力不计).当人相对于雪橇以速度v2竖直跳起时,雪橇向南的速度大小为()A .B .C .D.v1【考点】53:动量守恒定律.【分析】人和雪橇组成的系统水平方向不受外力,系统水平动量守恒,根据系统水平动量守恒列式求解.【解答】解:雪橇所受阻力不计,人起跳后,人和雪橇组成的系统水平方向不受外力,系统水平动量守恒,起跳后人和雪橇的水平速度相同,设为v.取向南为正方向,由水平动量守恒得:Mv1=Mv,得 v=v1,方向向南,故ABC错误,D正确.故选:D3.如图,理想变压器原、副线圈匝数比n1:n2=2:1,V和A均为理想电表,灯光电阻R L=6Ω,AB端电压u1=12sin100πt(V).下列说法正确的是()A.电流频率为100Hz B.V的读数为24VC.A的读数为0.5A D.变压器输入功率为6W【考点】E8:变压器的构造和原理.【分析】根据电压与匝数成正比,电流与匝数成反比,变压器的输入功率和输出功率相等,逐项分析即可得出结论.【解答】解;A、AB端电压u1=12sin100πt(V).电流频率为f==50Hz,故A错误;B、电压表的示数为电路的有效电压的大小,根据电压与匝数成正比,可知,U2=6V,故B错误;C、I2==1A,A的读数为1A,故C错误;D、P1=P2=U2I2=6W,故D正确.故选:D.4.在高台跳水中,运动员从高台向上跃起,在空中完成动作后,进入水中在浮力作用下做减速运动,速度减为零后返回水面.设运动员在空中运动过程为Ⅰ,在进入水中做减速运动过程为Ⅱ.不计空气阻力和水的粘滞阻力,则下述判断错误的是()A.在过程Ⅰ中,运动员受到的冲量等于动量的改变量B.在过程Ⅰ中,运动员受到重力冲量的大小与过程Ⅱ中浮力冲量的大小相等C.在过程Ⅰ中,每秒钟运动员动量的变化量相同D.在过程Ⅰ和在过程Ⅱ中运动员动量变化的大小相等【考点】52:动量定理.【分析】力与力的作用时间的乘积是力的冲量,由动量定理可得,动量的变化等于合外力的冲量.【解答】解:A、在过程І中,运动员只受重力,故重力的冲量一定等于动量的改变量,故A正确;B、由于在过程II中人也会受到重力,故由动量定理可知,整体过程中重力的冲量等于过程II中浮力的冲量大小,故B错误;C、在过程I中,由于重力不变,运动员的加速度相同,在相同的时间内运动员的速度变化相同,故秒钟运动员动量的变化量相同,故C正确;D、由题意知,过程I中的末速度等于过程II的初速度,而过程II的末速度为零,故动量的变化的大小相等,故D正确.本题选错误的;故选:B.5.水平恒定推力F1和F2分别作用于水平面上原来静止的、质量相等的a、b两物体上,作用一段时间后撤去推力,由于惯性.物体将继续运动一段时间后才能停下,两物体的v﹣t图象如图所示,已知图中线段AB∥CD,则()A.a物体受到的摩擦力小于b物体受到的摩擦力B.a物体受到的摩擦力大于b物体受到的摩擦力C.F1的冲量大于F2的冲量D.F1的冲量小于F2的冲量【考点】52:动量定理;27:摩擦力的判断与计算.【分析】由速度图象分析可知,水平推力撤去后,AB与CD平行,说明加速度相同,动摩擦因数相同,两物体的质量相等,说明摩擦力大小相等.根据动量定理,研究整个过程,确定两个推力的冲量关系.【解答】解:A、由图,AB与CD平行,说明推力撤去后两物体的加速度相同,而撤去推力后物体的合力等于摩擦力,根据牛顿第二定律可知,两物体受到的摩擦力大小相等;故AB错误.C、根据动量定理,对整个过程研究得F1t1﹣ft OB=0,F2t2﹣ft OD=0由图看出,t OB<t OD,则有 F1t1<F2t2,即F1的冲量小于F2的冲量.故C错误,D 正确.故选:D6.如图所示为一交流电压随时间变化的图象.每个周期内,前三分之一周期电压按正弦规律变化,后三分之二周期电压恒定.根据图中数据可得,此交流电压的有效值为()A.7.5V B.8V C . V D . V【考点】E4:正弦式电流的最大值和有效值、周期和频率.【分析】正弦式电流给灯泡供电,电压表显示是电源电压的有效值,要求电路中灯泡的电流或功率等,均要用正弦式电流的有效值.而求有效值方法:是将交流电在一个周期内产生热量与将恒定电流在相同时间内产生的热量相等,则恒定电流的值就是交流电的有效值.【解答】解:如图所示,它不是正弦式电流,因此有效值不是等于最大值除以根号2取一个周期进行分段,在0﹣1s 是正弦式电流,则电压的有效值等于3.在1s﹣3s是恒定电流,则有效值等于9V.则在0﹣3s 内,产生的热量U=2故选:C7.对下列物理现象的解释,正确的是()A.击钉时,不用橡皮锤仅仅是因为橡皮锤太轻B.跳远时,在沙坑里填沙,是为了减小冲量C.易碎品运输时,要用柔软材料包装,船舷常常悬挂旧轮胎,都是为了延长作用时间,减小作用力D.在车内推车推不动,是因为合外力冲量为零【考点】52:动量定理;31:惯性.【分析】力与时间的乘积是力的冲量;应用冲量的计算公式I=Ft与动量定理分析答题.【解答】解:A、用橡皮锤击钉子,橡皮锤与钉子接触时形变量比较大,延长了作用时间,使作用力减小,所以不要橡皮锤钉钉子,故A错误;B、跳远时,在沙坑里填沙,是为了增加运动员与沙子的作用时间,从而减小作用力,避免运动员受到伤害,故B错误;C、易碎品运输时,要用柔软材料包装,船舷常常悬挂旧轮胎,都是为了延长作用时间,减小作用力,故C正确;D、在车内推车推不动,是因为合外力冲量为零,故D正确;故选:CD.8.如图所示,一个单匝矩形导线圈在匀强磁场中绕垂直于磁感线的轴oo′匀角速转动,转动周期为T0.线圈产生的电动势的最大值为E m,则()A .线圈产生的电动势的有效值为E mB .线圈转动过程中穿过线圈的磁通量的最大值为C.线圈转动过程中磁通量变化率的最大值为E mD.经过2T0的时间,通过线圈电流的方向改变2次【考点】D8:法拉第电磁感应定律;D7:磁通量.【分析】根据正弦交流电的最大值与有效值的关系,结合最大值,即可求解有效值;由公式E m=BSω,结合ω=,可求出磁通量的最大值;根据法拉第电磁感应定律表达式E m =,可确定磁通量变化率的最大值,最后由线圈在一个周期内,电流方向改变2次,从而即可求解.【解答】解:A、线圈在匀强磁场中匀速转动,产生正弦式交流电,则电动势的有效值为E m,故A错误;B、由公式E m=BSω,结合ω=,可求出磁通量的最大值∅m =,故B正确;C、根据法拉第电磁感应定律表达式E m =,可确定磁通量变化率的最大值=E m,故C正确;D、经过T0的时间,通过线圈电流的方向改变2次,故D错误;故选:BC.9.某同学质量为60kg,在事训练中要求他从岸上以大小为2m/s的速度跳到一条向他缓慢飘来的小船上,然后去执行任务,小船的质量是140kg,原来的速度大小是0.5m/s,该同学上船后又跑了几步,最终停在船上,则()A.人和小船最终静止在水面上B.该过程同学的动量变化量为105kg•m/sC.船最终的速度是0.95m/sD.船的动量变化量是﹣105kg•m/s【考点】53:动量守恒定律;52:动量定理.【分析】水的阻力忽略不计,该同学跳上小船后与小船达到同一速度的过程,人和船组成的系统合外力为零,系统的动量守恒,根据动量守恒定律列式求解.【解答】解:AC、规定船原来的速度方向为正方向.设人和小船最终的共同速度为v.由题意,水的阻力忽略不计,该同学跳上小船后与小船达到同一速度的过程,人和船组成的系统合外力为零,系统的动量守恒,由动量守恒定律得:m人v人﹣m船v船=(m人+m船)v,代入数据解得:v=﹣0.25m/s,方向与船原来的速度方向相同.故AC错误;B、该过程同学的动量变化量为:△p=m人v﹣m人v人=60×=105kg•m/s,故B正确;D、船的动量变化量为:△p′=m船v﹣m船v船=140×(﹣0.25﹣0.5)=﹣105kg•m/s;故D正确.故选:BD10.图甲是小型交流发电机的示意图,两磁极N、S间的磁场可视为水平方向的匀强磁场,A为交流电流表.线圈绕垂直于磁场方向的水平轴OO′沿逆时针方向匀速转动.从图示位置开始计时,产生的交变电流随时间变化的图象如图乙所示.以下判断正确的是()A.电流表的示数为10AB.线圈转动的角速度为50π rad/sC.0.01s时线圈平面与磁场方向平行D.0.02s时电阻R中电流的方向自右向左【考点】E4:正弦式电流的最大值和有效值、周期和频率;E2:交流发电机及其产生正弦式电流的原理.【分析】由题图乙可知交流电电流的最大值、周期,电流表的示数为有效值,感应电动势最大,则穿过线圈的磁通量变化最快,由楞次定律可判断出0.02s 时流过电阻的电流方向.【解答】解:A 、由题图乙可知交流电电流的最大值是A,周期T=0.02s,由于电流表的示数为有效值,故示数I==10A,选项A正确;B、角速度==100π rad/s,选项B错误;C、0.01s时线圈中的感应电流达到最大,感应电动势最大,则穿过线圈的磁通量变化最快,磁通量为0,故线圈平面与磁场方向平行,选项C正确;D、由楞次定律可判断出0.02s时流过电阻的电流方向自左向右,选项D错误.故选AC.11.2014年10月28日携带“天鹅座”宇宙飞船的“安塔瑞斯”号运载在弗吉尼亚州瓦勒普斯岛发射升空时爆炸,爆炸燃起巨大火球,运载没有载人.下面对于该的描述正确的是()A.发射的初速度大于7.9km/sB.上升过程中处于超重状态C.忽略空气阻力,则碎片落地时速度大小相等D.在爆炸的极短时间内,系统动量守恒【考点】53:动量守恒定律;4F:万有引力定律及其应用;52:动量定理.【分析】明确的发射速度,根据加速度确定是否超重;根据动量守恒的条件明确动量是否守恒.【解答】解:A、发射时的最小速度为7.9km/s;故A正确;B、在上升过程中,具有向上的加速度,故处于超重状态;故B正确;C、由于在爆炸过程中,碎片的速度大小及方向均不相同;故落地时的速度大小不一定相同;故C错误;D、在爆炸过程中由于内力远大于外力;故可以认为动量守恒;故D正确;故选:ABD.12.如图所示,(a)是远距离输电线路的示意图,(b)是用户得到的电压随时间变化的图象,已知降压变压器的匝数比为10:1,不考虑降压变压器与用户间导线的电阻,则()A.发电机输出交流电的频率是50HzB.升压变压器的输出电压为2200VC.输电线的电流只由降压变压器匝副线圈的匝数比决定D.当用户用电器的总电阻增大时,输电线上损失的功率减小【考点】EA:远距离输电.【分析】根据图象可知交流电的最大值以及周期等物理量,然后进一步可求出其瞬时值的表达式以及有效值等.同时由变压器电压与匝数成正比,电流与匝数成反比.【解答】解:A、变压器不会改变交流电的频率,有图b可知周期为T=0.02s,故频率为f=,故A正确;B 、在降压变压器中,根据可得U3=2200V,有与输电线路上有电阻,故损失一部分电压,故升压变压器输送的电压大于2200V,故B错误;C、输电线的电流由输送的功率与电压决定的,与降压变压器原副线圈的匝数比无关,故C错误;D、当用户用电器的总电阻增大时,用户的功率减小,降压变压器的输出功率减小,则输入的功率减小,输入的电流减小,输电线上损失的功率减小,故D正确;故选:AD二、实验题13.如图甲所示,用“碰撞实验器”可以验证动量守恒定律,即研究两个小球在轨道水平部分碰撞前后的动量关系.(1)经测定,m1=45.0g,m2=7.5g,小球落地点的平均位置距O点的距离如图乙所示.碰撞前后m1的动量分别为p1与p1′,则p1:p1′=14 :11;若碰撞结束时m2的动量为p2′,则p1′:p2′=11: 2.9 .实验结果说明,碰撞前后总动量的比值= 1.01 .(2)有同学认为,在上述实验中仅更换两个小球的材质,其他条件不变,可以使被撞小球做平抛运动的射程增大.请你用(1)中已知的数据,分析和计算出被碰小球m1平抛运动射程ON的最大值为76.8 cm .【考点】ME:验证动量守恒定律.【分析】验证动量守恒定律实验中,质量可测而瞬时速度较难.因此采用了落地高度不变的情况下,水平射程来反映平抛的初速度大小,所以仅测量小球抛出的水平射程来间接测出速度.过程中小球释放高度不需要,小球抛出高度也不要求.只需满足每次入射球每次从同一点开始运动即可;最后可通过质量与水平射程乘积来验证动量是否守恒;当发生弹性碰撞时机械能损失最少,小球1平抛运动的射程最大.【解答】解:设落地时间为t,则v0=;v1=,v2=;则碰前的动量:P1=m1v0=m1;碰后的动量:P'1=m1v1=m1P'2=m2v2=m2;则可知,碰撞前后m1动量之比: ===,======1.01;发生弹性碰撞时,被碰小球获得速度最大,根据动量守恒的表达式是m1v0=m1v1+m2v2由m1v02=m1v12+m2v22联立解得v2=v0,因此最大射程s m =•OP=×44.8=76.8cm.故答案为:14;2.9;1.01;76.8.三、计算题14.一辆车强行超车时,与另一辆迎面驶来的轿车相撞,两车相撞后连为一体,两车车身因相互挤压,皆缩短了0.5米.据测算两车相撞前的速度约为30m/s.求:(1)若人与车一起做减速运动,车祸过程中车内约60kg的人受到的平均冲力是多大(2)若此人系有安全带,安全带在车祸过程中与人体作用时间是1s,求这时人体受到的平均冲力为多大?【考点】37:牛顿第二定律;1E:匀变速直线运动的位移与时间的关系.【分析】(1)人随车动,根据位移速度公式可求车的加速度,然后利用牛顿第二定律可求人受到的平均冲力;(2)由动量定理求出人受到的水平冲力.【解答】解:(1)由得人和车减速的加速度大小为:根据牛顿第二定律得人受到的平均冲力为:F=ma=60×900N=5.4×104N(2)有动量定理得:F′t=mv﹣mv0解得:负号表示力的方向与初速度方向相反答:(1)若人与车一起做减速运动,车祸过程中车内约60kg的人受到的平均冲力是5.4×104N(2)若此人系有安全带,安全带在车祸过程中与人体作用时间是1s,求这时人体受到的平均冲力为1800N.15.如图所示,匀强磁场的磁感应强度B=0.5T,边长L=10cm的正方形线圈abcd 共100匝,线圈电阻r=1Ω,线圈绕垂直于磁感线的对称轴OO′匀速转动,角速度ω=2πrad/s,外电路电阻R=4Ω,求:(1)转动过程中感应电动势的最大值;(2)由图示位置(线圈平面与磁感线平行)转过60°角时的瞬时感应电动势;(3)由图示位置转过60°角的过程中产生的平均感应电动势;(4)交流电压表的示数;(5)线圈转动一周外力所做的功;(6)周期内通过R的电荷量为多少?【考点】E2:交流发电机及其产生正弦式电流的原理;E4:正弦式电流的最大值和有效值、周期和频率.【分析】(1)先根据Em=NBωS求出最大值,再根据最大值与有效值的关系求出有效值;(2)先写出电动势的瞬时表达式,再带入数据求得瞬时值;(3)利用法拉第电磁感应定律,求出平均感应电动势;(4)电压表测量的是电阻R的电压,根据闭合电路欧姆定律即可求解.(5)通过最大值求出有效值,根据W=EIT求解;(6)线圈由如图位置转过周期内,通过R的电量为:q=t=.【解答】解:(1)根据E m=NBωS,可得感应电动势的最大值:E m=100×0.5×0.12×2πV=3.14V;(2)由于线框垂直于中性面开始计时,所以瞬时感应电动势表达式:e=E m cos2πt(V);当线圈转过60°角时的瞬时感应电动势为:e=1.57V;(3)根据法拉第电磁感应定律可得转60°角的过程中产生的平均感应电动势大小为:=N =N =1.5V=2.6V(4)转动过程中,交流电压表的示数为有效值,所以有:U=R=×4V=1.256V=1.78V;(5)线圈转动一周外力所做的功为:W=EIT===0.99J (6)周期内线圈转过60°角,通过R的电量q电,由公式可得:q=t=•=8.66×10﹣2 C;答:(1)转动过程中感应电动势的最大值3.14V;(2)线圈转过60°角时的瞬时感应电动势1.57V;(3)线圈转过60°角过程中产生的平均感应电动势2.6V;(4)电压表示数1.78V;(5)线圈转动一周外力所做的功为0.99J;(6)线圈转过60°角通过电阻R的电荷量8.66×10﹣2 C;16.如图所示,AOB是光滑水平轨道,BC是半径为R 的光滑的固定圆弧轨道,两轨道恰好相切.质量为M的小木块静止在O点,一个质量为m的子弹以某一初速度水平向右快速射入小木块内,并留在其中和小木块一起运动,且恰能到达圆弧轨道的最高点C(木块和子弹均可看成质点).已知R=0.4m,m=1Kg,M=10Kg.(g=10m/s2,结果保留2位有效数字)(1)子弹射入木块前的速度V(2)若每当小木块上升到圆弧并返回到O点或静止于O点时,立即有相同的子弹射入小木块,并留在其中,则当第3颗子弹射入小木块后,木块速度多大?【考点】53:动量守恒定律.【分析】从B到C,由机械能守恒求解子弹射入木块后的速度,由动量守恒求解.【解答】解:(1)子弹射入木块的过程,系统动量守恒,以子弹的初速度方向为正方向,由动量守恒定律得:mv=(m+M)v1,。

山西省长治市2023-2024学年高二下学期3月月考试题 物理含答案

山西省长治市2023-2024学年高二下学期3月月考试题 物理含答案

2023~2024学年高二3月质量检测卷物理(答案在最后)考生注意:1.本试卷分选择题和非选择题两部分。

满分100分,考试时间75分钟。

2.答题前,考生务必用直径0.5毫米黑色墨水签字笔将密封线内项目填写清楚。

3.考生作答时,请将答案答在答题卡上。

选择题每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;非选择题请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,超出答题区域书写的答案无效,在试题卷、草稿纸上作答无效。

4.本卷命题范围:人教版选择性必修第一册第一至三章,选择性必修第二册第一至三章。

一、选择题(本题共10小题,共46分.在每小题给出的四个选项中,第1~7题中只有一项符合题目要求,每小题4分,第8~10题有多项符合题目要求,全部选对的得6分,选对但不全的得3分,有选错的得0分)1.关于简谐运动和机械波,下列说法正确的是()A.物体做受迫振动达到稳定时的周期等于外界驱动力的周期与物体的固有周期之和B.声波由空气进入水中时,波长变短C.我们通过判断飞机发出声音的音调高低而得知飞机在靠近或远离,是利用多普勒效应D.当波的波长小于障碍物的尺寸时就不能发生衍射2.2023年9月2日,以“翱翔贵州,写意山水”为主题的国际高桥极限运动邀请赛在安顺黄果树坝陵河大桥正式拉开帷幕。

“蹦极”运动中,长弹性绳的一端固定,另一端绑在人身上,人从几十米高处跳下.将蹦极过程简化为人沿竖直方向的运动,从绳恰好伸直到人第一次下降至最低点的过程中,若不计空气阻力,下列分析正确的是()A.绳对人的冲量始终向上,人的动量一直减小B.绳对人的拉力始终做负功,人的动能一直减小C.当绳的拉力与人的重力等大时,人的动量最大D.人在最低点时的动量对时间的变化率为零3.如图所示,一轻质弹簧下端系一质量为m的书写式激光笔,组成一弹簧振子,并将其悬挂于教室内一体机白板的前方,使弹簧振子沿竖直方向上下自由振动,白板以速率v水平向左匀速运动,激光笔在白板上留下书写印迹,图中相邻竖直虚线的间隔均为0x(未标出),印迹上P、Q两点的纵坐标分别为0y和0y .忽略一切阻力,重力加速度为g,则()A .该弹簧振子的振幅为02y B .该弹簧振子的振动周期为03x vC .激光笔在留下P 、Q 两点时所受的回复力相同D .激光笔在留下PQ 段印迹的过程中,弹簧的弹性势能增大了02mgy 4.如图所示为回旋加速器的原理图,磁感应强度为B 的匀强磁场垂直于D 型盒向下,一质子从加速器的A 处由静止开始加速,D 型盒的半径为R ,高频交变电源的电压为U 、周期为T ,质子质量为m ,电荷量为q .则质子从开始到离开D 型盒所转圈数约为()A .224qB R mU B .22qB R mU C .222qB R mU D .224qB R mU5.如图所示,光滑水平面上A 、B 、C 三个质量均为2kg 的物体紧贴着静止放在一起,A 、B 之间有微量炸药.炸药爆炸后三个物体均沿水平方向运动且B 对C 做的功为16J ,若炸药爆炸过程释放的能量全部转化为三个物体的动能,则炸药爆炸过程中释放出的能量为()A .48JB .64JC .96JD .108J6.如图所示,质量为M 的物块连接在水平放置的左端固定的轻质弹簧的右端,构成一弹簧振子,物块可沿光滑水平面在BC 间做简谐运动,振幅为A .在运动过程中将一质量为m 的小物块轻轻地(无初速度)放在M 上并立即保持相对静止,第一次是当M 运动到平衡位置O 处时放在上面,第二次是当M 运动到最大位移处C 处时放在上面,观察到第一次放后的振幅为1A ,第二次放后的振幅为2A ,则()A .第一次放小物块后的振幅与原来相同B .第二次放小物块后的振幅与原来相同C .第一次放小物块前后系统机械能守恒D .第二次放小物块后弹簧振子的周期变小7.一列简谐横波沿x 轴传播,在0t =和0.2s t =时的波形分别如图中实线和虚线所示.已知该波的周期0.20s T >.下列说法正确的是()A .该波一定沿x 轴正方向传播B .波长为8cmC .0.04m x =的质点在0.70s t =时速度最大D .0.08m x =的质点在0.05s t =时距离平衡位置5cm8.如图甲所示,理想变压器原、副线圈的匝数比为4∶1,电压表和电流表均为理想电表,原线圈接如图乙所示的正弦交流电,图甲中t R 为NTC 型热敏电阻(阻值随温度的升高而减小),1R 为定值电阻,下列说法正确的是()A .图乙交变电压u 的表达式182(V)u t π=B .t R 处温度升高时,电压表示数不变,电流表示数变大C .原、副线圈中交变电流的变化频率之比为4∶1D .t R 处温度升高时,变压器原线圈的输入功率变大9.如图所示,光滑的水平桌面上固定有一个内壁光滑的直线槽,质量相等的A 、B 两球之间由一根长为L 且不可伸长的轻绳相连,A 球始终在槽内,其直径略小于槽的直径,B 球放在水平桌面上.开始时刻A 、B 两球的位置连线垂直于槽,相距2L ,某时刻给B 球一个平行于槽的速度0v ,关于两球以后的运动,下列说法正确的是()A .绳子拉直前后,A 、B 两球组成的系统动量不守恒B .绳子拉直后,A 球做直线运动,B 球做圆周运动C .绳子对A 球的冲量与绳子对B 球的冲量相同D .绳子拉直的瞬间,B 球的机械能的减少量大于A 球机械能的增加量10.两根间距为L 的光滑金属导轨,平行等高固定放置在倾角为30θ=︒的绝缘斜面上(导轨平面与水平面夹角为30°),导轨的下端接有电阻R ,导轨自身的电阻可忽略不计.斜面处在匀强磁场中,磁场方向垂直于斜面向上,磁感应强度大小为B .质量为m 、导轨间有效电阻为R 的导体棒ab 在沿着斜面向上、与棒垂直的恒力10.5F mg =作用下由静止开始沿导轨上滑,当导体棒速度达到稳定时,导体棒沿导轨上滑了距离s ,重力加速度大小为g ,导体棒始终与导轨垂直,下列说法正确的是()A .导体棒ab 将会沿金属导轨做匀加速运动B .导体棒ab 的最大速度为2220mgRB LC .从开始至速度稳定所经历的时间为2222220mR B L s B L mgR+D .恒力F 做的功等于导体棒ab 增加的机械能二、实验题(本题共2小题,共14分)11.(6分)如图所示为某同学做“用单摆测重力加速度”的实验装置.(1)实验前根据单摆周期公式推导出重力加速度的表达式,四位同学对表达式有不同的观点.同学甲认为,T 一定时,g 与l 成正比.同学乙认为,l 一定时,g 与2T 成正比.同学丙认为,l 变化时,2T 是不变的.同学丁认为,l 变化时,l 与2T 比值是定值.其中观点正确的是______(选填“甲”“乙”“丙”或“丁”).(2)实验时摆线与悬点连接处用铁架夹住摆线,用米尺测得摆线长度和摆球直径,用秒表测得100次全振动时间.下表是某次记录的一组数据,请填空(均保留三位有效数字).次数摆线长度(cm )摆球直径(cm )100次全振动时间(s )摆长L (cm )重力加速度g (2m/s )199.00 2.00200.0____________(3)若该同学实验时使用的摆线具有一定的弹性,则所测得的重力加速度数值______(填“偏大”或“偏小”).12.(8分)某实验小组用如图所示的装置验证动量守恒定律.(1)首先,图甲中用十分度的游标卡尺测量出小球的直径D =______mm ;(2)如图乙,下列操作中不需要或者错误的是______.A .实验前固定在桌边上的斜槽末端的切线要沿水平方向B .两次释放1m 时的位置可以不同C .实验中需要测量小球抛出点距地面的高度HD .实验中需要测量小球做平抛运动的水平射程E .1m 的质量可以小于2m (3)第一步:先从S 处释放1m 并多次重复找到落点P ,并测出水平射程OP .第二步:将2m 静置于轨道末端O '点,再从S 处释放1m ,两球发生对心碰撞,并多次重复实验操作后,分别确定两球的水平射程OM 和ON .若两球相碰前后的动量守恒,其表达式可表示为______(用1m 、2m 、OP 、OM 、ON 表示).实际上OP OM +______ON (选填“>”或“<”).三、计算题(本题共3小题,共计40分.解答时应写出必要的文字说明、方程式和重要的演算步骤,只写出最后答案的不能得分.有数值计算的题,答案中必须明确写出数值和单位)13.(10分)两列简谐横波分别沿x 轴正方向和负方向传播,两波源分别位于0.2m x =-和 1.2m x =处,两列波的波速均为0.2m/s ,波源的振幅均为3m .如图所示是两列波在0t =时刻的图像,此刻介质中平衡位置在0.2m x =和0.8m x =处的P 、Q 两质点刚开始振动.质点M 的平衡位置位于0.5m x =处.(1)判断两波源的起振方向并求两列波相遇的时刻;(2)求0~4.5s 这段时间内质点M 运动的路程.14.(14分)如图所示,用不可伸长的轻绳将小球A 悬挂于O 点,轻绳的长度为L .现将轻绳拉至水平并刚好伸直,将小球A 由静止释放,当小球A 运动至最低点时,与静止在水平面上的物块B 发生弹性正碰,碰撞后物块B 无能量损失地滑上斜面C ,到达的最高点未超出斜面.已知小球A 的质量为m ,物块B 的质量为2m ,斜面C 的质量也为2m ,A 、B 均可视为质点,重力加速度大小为g ,水平面与斜面均光滑,斜面底端与水平面之间由小圆弧平滑衔接,不计空气阻力.求:(1)碰撞后瞬间,绳子对小球A 的拉力大小;(2)物块B 在斜面C 上面上升的最大高度;(3)物块B 返回水平面时的速度大小.15.(16分)如图所示,在0x >的区域内有沿x 轴负向的匀强电场,电场强度大小为E ,在0x <的区域内有垂直坐标平面向外的匀强磁场.一质子(质量为m ,电量为e )从x 轴上A 点以沿y -轴方向的初速度开始运动.质子第一次穿越y 轴时经过y 轴上的C 点(图中未画出);质子第二次穿越y 轴时恰好经过坐标原点O .已知A 、C 两点到坐标原点的距离分别为2L 、4L ,不计质子的重力.求:(1)质子的初速度0v ;(2)磁感应强度B 的大小;(3)质子第四次经过y 轴的位置坐标及从开始至第四次经过y 轴的总时间.2023~2024学年高二3月质量检测卷·物理参考答案、提示及评分细则1.C 做受迫振动的物体的周期等于驱动力的周期,与固有周期无关,A 错误;声波由空气进入水中,频率和周期不变,波速变大,故波长变长,B 错误;利用多普勒效应可以判断波源在靠近或远离,C 正确;波的波长小于障碍物尺寸时,衍射现象不明显,但仍能发生衍射,D 错误.2.C 人的速度先增大后减小到零,当拉力与重力等大时,速度最大,故人的动量先增大后减小,动能也先增大后减小,绳对人的拉力始终向上,故绳对人的冲量始终向上,绳对人的拉力做负功,A 、B 错误,C 正确;最低点合力不为零,故动量对时间的变化率不为零,D 错误.3.D 白板做匀速运动,振子振动的周期等于白板运动位移02x 所用的时间,则周期02x T v =,振幅为0A y =,A 、B 错误;加速度是矢量,激光笔在留下P Q 、两点时加速度大小相等,方向相反,回复力大小相同,方向相反,C 错误;在激光笔留下PQ 段印迹的过程中,由机械能守恒可知,重力势能减小02mgy ,故弹性势能增加了02mgy ,D 正确.4.A 由洛伦兹力提供向心力2v qvB m r =,解得qBr v m=,当r R =时,质子获得最大动能2222km m 122q B R E mv m ==,令加速次数为n ,则有222km 2q B R E nqU m ==,解得222qB R n mU =,圈数为2n ,A 正确.5.C 对C 由动能定理得4m /s c v =,爆炸后B 和C 共速,对A B C 、、整体动量守恒得2,8m /s A BC A mv mv v ==,爆炸释放的能量为三者动能之和,故96J E =,C 正确.6.B 振子运动到C 点时速度恰为0,此时放上小物块,系统的总能量即为此时弹簧储存的弹性势能且不变,故振幅不变;振子运动到平衡位置时速度最大,弹簧的弹性势能为零,放上小物块后,系统的机械能有一部分转化为内能,故弹簧的最大伸长(压缩)量减小,即振幅减小,A 、C 错误,B 正确;第二次放小物块后,振子质量变大,回复力不变,故加速度减小,周期变大,D 错误.7.C 无法判定波的传播方向,A 错误;由y x -图像可知波长0.16m λ=,B 错误;20.2s,2510T nT T n ⎛⎫+== ⎪+⎝⎭,因为0.20s T >,故波的周期0.4s T v λ==,根据振动与波动的关系知0t =时,0.04m x =的质点在波峰,30.70s 14t T ==,故此时该质点位于平衡位置,振动速度最大,C 正确;因为10.05s 8T =,故此时质点的位移为±,距离平衡位置,D 错误.8.ABD 由题图乙可知交变电压的最大值m U =,周期0.02s T =,角速度2100rad /s Tπωπ==,则可得交变电压u 的表达式()V u t π=,A 正确;t R 处温度升高时,其阻值减小,副线圈中电流变大,电流表的示数变大,原线圈中电流变大,电压表的示数不变,故变压器输入功率变大,B 、D 正确;原、副线圈电流的频率相同,C 错误.9.AD 在绳子拉直前后,A 和B 作为一个系统,在平行于槽的方向不受力,所以A 、B 两球组成的系统在平行于槽的方向动量守恒,总动量不守恒,A 正确.绳子拉直后,B 球要以A 为圆心,L 为半径做圆周运动,故B 球相对地面不是圆周运动,B 错误;绳子对A 球和B 球的冲量等大反向,C 错误;绳子拉直的瞬间,系统的机械能要损失,所以B 球的机械能的减少量大于A 球机械能的增加量,D 正确.10.BC 导体棒做加速度变小的加速运动,A 错误;当导体棒达到最大速度时有sin F mg F θ=+安,22m B L v F BIL R R ==+安,解得m 2220mgRv B L =,B 正确;由动量定理sin ,m Ft mgt BILt t I mv q R Rθ∆Φ--===+,解得2222220mR B L s t B L mgR =+,C 正确;力F 做的功等于导体棒机械能与焦耳热增量之和,D 错误.11.(1)丁(2)100cm 29.86m /s (3)偏小解析:(1)根据2T =,得224,T l g g π=是当地重力加速度,与T l 、无关,所以甲、乙同学错误;摆长l 变化时,2T 会随之变化,丙同学错误;l 变化时,l 与2T 比值是定值,丁同学正确.(2)摆长L 等于摆线长度加摆球半径299100cm 22d L L =+=+=线,由单摆公式2T =度22249.86m /s l g Tπ==.(3)若摆线具有弹性,则摆动时会变长,则所得单摆周期偏大,故重力加速度数值偏小.12.(1)10.9(2)BCE (3)112m OP m OM m ON =+>解析:(1)由图甲可知,小球的直径()100.19mm 10.9mmD =+⨯=(2)小球离开轨道后做平抛运动,所以实验前要调节底端水平.小球在空中飞行时间t 相同.由动量守恒定律111122m v m v m v +''=可知111122m v t m v t m v t +''=所以111122m x m x m x +''=,两次释放1m 的位置要相同,B 错误;C 不必要测量,为保证1m 不反弹,1m 要大于2m ,E 错误.(3)要验证碰撞过程中动量守恒,表达式应为112m OP m OM m ON =+,由于存在能量损失,碰前动能要大于碰后总动能,故OP OM ON +>.13.解:(1)两列波源的起振方向均沿y 轴负方向相遇时间 1.5s2Q Px x t v -==(2)两列波在M 点相遇.即在 1.5s t =时M 点开始振动.两列波是相干波,它们的相位差恒定为0,会产生稳定的干涉由题意,读图知0.4mλ=波的周期为2s T vλ==M 点到两波源的波程差为零因而M 点是振动加强点,因而M 点的振幅026mA A ==M 点一个振动周期,通过的路程是4A ,则总路程为636ms A ==14.解:(1)根据机械能守恒2012mgL mv =得0v =A 与B 碰撞过程动量守恒和能量守恒,则0122mv mv mv =+2220121112222mv mv mv =+⨯得12v v ==碰后对A 球21v T mg m L -=得119T mg =(2)当B 沿斜面到达最大高度时,BC 共速,则()2222mv m m v=+()22211222222mv m m v mgh ⨯=⨯++得29h L =(3)当B 再次返回水平面时,B 和C 等价于弹性碰撞,由动量守恒和动能守恒22222cmv mv mv +''=22222111222222c mv mv mv ''=+解的20v '=15.解:(1)质子在电场区域内做类平抛运动,设运动时间为1t ,则014v t L =21122eE t L m⨯=解得1004,L t v v ==(2)质子进入磁场后做匀速圆周运动,洛伦兹力提供向心力;设质子进入磁场时的速度方向与0v 方向的夹角为θ,进入磁场后做圆周运动的半径为r ,则由几何关系可得10tan eE t m v θ=sin Lrθ=解得4πθ=r =由向心力公式可得2v evB m r=整理得mv B er ==(3)质子第一次经过y 轴时间104Lt v =第一次至第二次时间为2270233602m m t eB eBππ=⋅=第二至三次时间为3132,8t t y L==-第三至四次时间为()4427023,8443602m m t y L L L eB eB ππ=⋅==--=-故(63T π=+总位置坐标为()0,4L -。

物理下学期3月月考试卷高二全册物理试题

物理下学期3月月考试卷高二全册物理试题

外对市爱戴阳光实验学校高二〔下〕月考物理试卷〔3月份〕一、选择题〔本大题共10小题,每题4分,共40分.1-6小题为单项选择;7-10小题为不项选择,全对的得4分,选对但不全的得2分,不选或有错误选项的得0分〕1.以下说法中正确的选项是〔〕A.汤姆孙发现电子并提出了原子核式结构模型B.贝克勒尔用α粒子轰击氮原子核发现了质子C.在原子核人工转变的中,约里奥﹣居里夫妇发现了正电子D.在原子核人工转变的中,卢瑟福发现了中子2.现有三个核反:①Na→Mg+e②U+n→Ba+Kr+3n③H+H→He+n以下说法正确的选项是〔〕A.①是裂变,②是β衰变,③是聚变B.①是聚变,②是裂变,③是β衰变C.①是β衰变,②是裂变,③是聚变D.①是β衰变,②是聚变,③是裂变3.如下图是光电管的原理图,当有频率为ν0的光照射到阴极K上时,电路中有光电流,那么〔〕A.当换用频率为ν1〔ν1<ν0〕的光照射阴极K时,电路中一没有光电流B.当换用频率为ν2〔ν2>ν0〕的光照射阴极K时,电路中一有光电流C.当增大电路中电源的电压时,电路中的光电流一增大D.当将电源极性反接时,电路中一没有光电流产生4.图中画出了氢原子的4个能级,并注明了相的能量E.处在n=4的能级的一群氢原子向低能级跃迁时,能够发出假设干种不同频率的光波.金属钾的逸出功为2eV.在这些光波中,能够从金属钾的外表打出光电子的总共有〔〕A.二种B.三种C.四种D.五种5.在匀强磁场中有一个静止的氡原子核〔Rn〕,由于衰变它放出一个粒子,此粒子的径迹与反冲核的径迹是两个相互外切的圆,大圆与小圆的直径之比为42:1,如图所示,那么氡核的衰变方程是以下方程中的哪一个〔〕A .Rn→Fr+eB .Rn→Po+HeC .Rn→At+eD .Rn→At+H6.如下图在足够长的光滑水平面上有一静止的质量为M的斜面,斜面外表光滑、高度为h、倾角为θ.一质量为m〔m<M〕的小物块以一的初速度沿水平面向右运动,不计冲上斜面过程中的机械能损失.如果斜面固,那么小物块恰能冲到斜面的顶端.如果斜面不固,那么小物块冲上斜面后能到达的最大高度为〔〕A.h B .C .D .7.以下说法正确的选项是〔〕A.天然放射现象的发现揭示了原子核有复杂的结构B.氢原子从n=3的能级向低能级跃迁时只会辐射出两种不同频率的光C.比结合能大的原子核分解成比结合能小的原子核时要吸收能量D.有10个放射性元素的原子核,当有5个原子核发生衰变所需的时间就是该放射性元素的半衰期8.一个质子以1.0×107m/s的速度撞入一个静止的铝原子核后被俘获,铝原子核变为硅原子核,铝核的质量是质子的27倍,硅核的质量是质子的28倍,那么以下判断中正确的选项是〔〕A.核反方程为Al+H→SiB.核反方程为Al+n→SiC.硅原子核速度的数量级为107m/s,方向跟质子的初速度方向一致D.硅原子核速度的数量级为105m/s,方向跟质子的初速度方向一致9.质量分别为m a=0.5kg,m b=kg的物体a、b在光滑水平面上发生正碰.假设不计碰撞时间,它们碰撞前后的位移﹣时间图象如下图,那么以下说法正确的选项是〔〕A.碰撞前a物体的动量大小为4kg•m/sB.碰撞前b物体的动量大小为零C.碰撞后a物体的动量大小为1kg•m/sD.碰撞后b物体的动量大小为kg•m/s10.如下图,在光滑的水平面上放有一物体M,物体上有一光滑的半圆弧轨道,轨道半径为R,最低点为C,两端A、B高,现让小滑块m 从A点静止下滑,在此后的过程中,那么〔〕A.小滑块到达B点时半圆弧轨道的速度为零B.小滑块到达C点时的动能小于mgRC.假设小滑块与半圆弧轨道有摩擦,小滑块与半圆弧轨道组成的系统在水平方向动量不守恒D.m从A到B的过程中,M运动的位移为二、题〔本大题共3小题,共24分〕11.用甲、乙两种光做光电验,发现光电流与电压的关系如下图,由图可知,两种光的频率v甲v乙〔填“<〞,“>〞或“=〞〕,〔选填“甲〞或“乙〞〕光的强度大.普朗克常量为h,被照射金属的逸出功为W0,那么甲光对的遏止电压为.〔频率用v,元电荷用e表示〕12.太阳内部不断进行着各种核聚变反,一个氘核和一个氚核结合成一个氦核是其中一种,请写出其核反方程;如果氘核的比结合能为E1,氚核的比结合能为E2,氦核的比结合能为E3,那么上述反释放的能量可表示为.13.如图是用来验证动量守恒的装置,弹性球1用细线悬挂于O点,O点下方桌子的边沿有一竖直立柱.时,调节悬点,使弹性球1静止时恰与立柱上的球2接触且两球高.将球1拉到A点,并使之静止,同时把球2放在立柱上.释放球1,当它摆到悬点正下方时与球2发生对心碰撞,碰后球1向左最远可摆到B点,球2落到水平地面上的C点.测出有关数据即可验证1、2两球碰撞时动量守恒.现已测出A 点离水平桌面的距离为a,B点离水平桌面的距离为b,C点与桌子边沿间的水平距离为c.此时,〔1〕除了弹性小球1、2的质量m1、m2,还需要测量的量是和.〔2〕根据测量的数据,该中动量守恒的表达式为.〔忽略小球的大小〕14.氢原子处于基态时,原子能量E1=﹣1eV,普朗克常数取h=×10﹣34J•s〔1〕处于n=2激发态的氢原子,至少要吸收多大能量的光子才能电离?〔2〕今有一群处于n=4激发态的氢原子,可以辐射几种不同频率的光?其中最小的频率是多少?〔结果保存2位有效数字〕15.Po原子核质量为2082 87u,Pb原子核的质量为2074 46u,He原子核的质量为4.002 60u,静止的Po核在α衰变中放出α粒子后变成Pb.求:〔1〕在衰变过程中释放的能量;〔2〕α粒子从Po核中射出的动能;〔3〕反冲核的动能.〔lu相当于93MeV,且核反释放的能量只转化为动能〕16.质量M=3kg.足够长的平板车放在光滑的水平面上,在平板车的左端放有一质量m=1kg的小物块〔可视为质点〕,小车左上方的天花板上固一障碍物A,其下端略高于平板车上外表但能挡住物块,如下图.初始时,平板车与物块一起以v0=2m/s的水平速度向左运动,此后每次物块与A发生碰撞后,速度均反向但大小保持不变,而小车可继续运动,物块与小车间的动摩擦因数μ=0.5,取g=10m/s2,碰撞时间可忽略不计,求:①与A第一次碰撞后,物块与平板车相对静止时的速率;②从初始时刻到第二次碰撞后物块与平板车相对静止时,物块相对车发生的位移.17.如下图,固的凹槽水平外表光滑,其内放置U形滑板N,滑板两端为半径R=0.45m的圆弧面.A和D分别是圆弧的端点,BC段外表粗糙,其余段外表光滑.小滑块P1和P2的质量均为m.滑板的质量M=4m,P1和P2与BC面的动摩擦因数分别为μ1=0.10和μ2=0.40,最大静摩擦力近似于滑动摩擦力.开始时滑板紧靠槽的左端,P2静止在粗糙面的B点,P1以v0=4.0m/s的初速度从A点沿弧面自由滑下,与P2发生弹性碰撞后,P1处在粗糙面B点上.当P2滑到C点时,滑板恰好与槽的右端碰撞并与槽牢固粘连,P2继续运动,到达D点时速度为零.P1与P2视为质点,取g=10m/s2.问:〔1〕P2在BC段向右滑动时,滑板的加速度为多大?〔2〕BC长度为多少?N、P1和P2最终静止后,P1与P2间的距离为多少?高二〔下〕月考物理试卷〔3月份〕参考答案与试题解析一、选择题〔本大题共10小题,每题4分,共40分.1-6小题为单项选择;7-10小题为不项选择,全对的得4分,选对但不全的得2分,不选或有错误选项的得0分〕1.以下说法中正确的选项是〔〕A.汤姆孙发现电子并提出了原子核式结构模型B.贝克勒尔用α粒子轰击氮原子核发现了质子C.在原子核人工转变的中,约里奥﹣居里夫妇发现了正电子D.在原子核人工转变的中,卢瑟福发现了中子【考点】粒子散射;天然放射现象.【分析】此题可根据汤姆孙、卢瑟福、贝克勒尔、约里奥﹣居里夫妇,及查德威克人的物理学成就进行解答即可.【解答】解:A、汤姆生发现了电子,提出原子枣糕式模型,是卢瑟福提出了原子核式结构学说;故A错误.B、贝克勒尔发现了天然放射现象,卢瑟福用α粒子轰击氮原子核发现了质子,故B错误.C、约里奥﹣居里夫妇首先发现了正电子,故C正确;D、在原子核人工转变的中,查德威克发现了中子,故D错误.应选:C.2.现有三个核反:①Na→Mg+e②U+n→Ba+Kr+3n③H+H→He+n以下说法正确的选项是〔〕A.①是裂变,②是β衰变,③是聚变B.①是聚变,②是裂变,③是β衰变C.①是β衰变,②是裂变,③是聚变D.①是β衰变,②是聚变,③是裂变【考点】天然放射现象;原子核的人工转变;重核的裂变;轻核的聚变.【分析】具有放射性的物质的原子核不稳,释放出一个高速电子即β粒子,而原子核转变成一个的原子核的现象即β衰变;核裂变是质量较大的原子核分裂成两个质量差异不是太大的中质量的原子核的现象;核聚变是指两个较轻的原子核结合成一个质量较大的原子核,同时释放出大量能量的现象.【解答】解:具有放射性的物质的原子核不稳,有时它的一个中子能够转化为一个质子同时释放出一个高速电子,原子核转变成一个的原子核即发生β衰变.故①是β衰变.核裂变是质量较大的原子核分裂成两个质量差异不是太大的中质量的原子核的现象,故②是裂变.核聚变是指两个较轻的原子核结合成一个质量较大的原子核,同时释放出大量能量的现象,故③是核聚变.故C正确.应选C.3.如下图是光电管的原理图,当有频率为ν0的光照射到阴极K上时,电路中有光电流,那么〔〕A.当换用频率为ν1〔ν1<ν0〕的光照射阴极K时,电路中一没有光电流B.当换用频率为ν2〔ν2>ν0〕的光照射阴极K时,电路中一有光电流C.当增大电路中电源的电压时,电路中的光电流一增大D.当将电源极性反接时,电路中一没有光电流产生【考点】光电效.【分析】根据光电效的条件,判断能否发生光电效,从而判断是否有光电流;增大正向电压,电流到达饱和值时,不会增大.加反向电压时,在未到达遏止电压前,电路中有光电流.【解答】解:A、当换用频率为ν1〔ν1<ν0〕的光照射阴极K时,入射光的频率可能大于金属的极限频率,发生光电效,电路中可能有光电流.故A错误.B、频率为ν0的光照射到阴极K上时,电路中有光电流,知发生了光电效,当换用频率为ν2〔ν2>ν0〕的光照射阴极K时,一能发生光电效,一有光电流.故B正确.C、增大电源电源,电路中的光电流可能到达饱和值,保持不变.故C 错误.D、将电源的极性反接,电子做减速运动,可能能到达阳极A,电路中可能有光电流.故D错误应选:B.4.图中画出了氢原子的4个能级,并注明了相的能量E.处在n=4的能级的一群氢原子向低能级跃迁时,能够发出假设干种不同频率的光波.金属钾的逸出功为2eV.在这些光波中,能够从金属钾的外表打出光电子的总共有〔〕A.二种B.三种C.四种D.五种【考点】氢原子的能级公式和跃迁.【分析】发生光电效的条件是光子能量大于逸出功,根据该条件确出n=4的能级的一群氢原子向低能级跃迁时辐射光子能量大于逸出功的种数.【解答】解:处在n=4的能级的一群氢原子向低能级跃迁时能发出不同光电子的数目为=6种,n=4跃迁到n=3辐射的光子能量为0.66eV,n=3跃迁到n=2辐射的光子能量为9eV,均小于2eV,不能使金属钾发生光电效,其它四种光子能量都大于2eV.故C正确,A、B、D错误.应选C.5.在匀强磁场中有一个静止的氡原子核〔Rn〕,由于衰变它放出一个粒子,此粒子的径迹与反冲核的径迹是两个相互外切的圆,大圆与小圆的直径之比为42:1,如图所示,那么氡核的衰变方程是以下方程中的哪一个〔〕A .Rn→Fr+eB .Rn→Po+HeC .Rn→At+eD .Rn→At+H【考点】带电粒子在匀强磁场中的运动;原子核衰变及半衰期、衰变速度.【分析】核衰变过程动量守恒,反冲核与释放出的粒子的动量大小相,结合带电粒子在匀强磁场中圆周运动的半径公式可得小粒子与反冲核的电荷量之比,利用排除法可得正确答案【解答】解:原子核的衰变过程满足动量守恒,可得两带电粒子动量大小相,方向相反,就动量大小而言有:m1v1=m2v2由带电粒子在匀强磁场中圆周运动的半径公式可得:r=所以,===审视ABCD四个选项,满足42:1关系的只有B应选B6.如下图在足够长的光滑水平面上有一静止的质量为M的斜面,斜面外表光滑、高度为h、倾角为θ.一质量为m〔m<M〕的小物块以一的初速度沿水平面向右运动,不计冲上斜面过程中的机械能损失.如果斜面固,那么小物块恰能冲到斜面的顶端.如果斜面不固,那么小物块冲上斜面后能到达的最大高度为〔〕A.h B .C .D .【考点】动量守恒律;动能理的用.【分析】斜面固时,由动能理求出初速度,斜面不固时,由水平方向动量守恒列式,再根据机械能守恒列式,联立方程即可求解.【解答】解:斜面固时,由动能理得:﹣mgh=0﹣,所以;斜面不固时,由水平方向动量守恒得:mv0=〔M+m〕v,由机械能守恒得:=+mgh′解得:.应选D7.以下说法正确的选项是〔〕A.天然放射现象的发现揭示了原子核有复杂的结构B.氢原子从n=3的能级向低能级跃迁时只会辐射出两种不同频率的光C.比结合能大的原子核分解成比结合能小的原子核时要吸收能量D.有10个放射性元素的原子核,当有5个原子核发生衰变所需的时间就是该放射性元素的半衰期【考点】原子核衰变及半衰期、衰变速度;天然放射现象;原子核的结合能.【分析】天然放射现象的发现揭示了原子核有复杂的结构;从n=3的能级向低能级跃迁时会辐射3种不同频率的光;比结合能大的原子核分解成比结合能小的原子核时释放核能;半衰期是放射性元素衰变的统计规律,对个别的原子没有意义.【解答】解:A、天然放射现象的发现说明原子核内部是有结构的,进而人们研究揭示了原子核有复杂的结构,故A正确.B、从n=3的能级向低能级跃迁时会辐射3种不同频率的光;故B错误.C、比结合能大的原子核分解成比结合能小的原子核时质量增加,要吸收核能;故C正确.D、放射性元素样品中,放射性原子核的数目减少一半所需的时间于半衰期;半衰期是放射性元素衰变的统计规律,对个别的原子没有意义,所以有10个放射性元素的原子核,当有5个原子核发生衰变所需的时间不一于该放射性元素的半衰期.故D错误.应选:AC8.一个质子以1.0×107m/s的速度撞入一个静止的铝原子核后被俘获,铝原子核变为硅原子核,铝核的质量是质子的27倍,硅核的质量是质子的28倍,那么以下判断中正确的选项是〔〕A.核反方程为Al+H→SiB.核反方程为Al+n→SiC.硅原子核速度的数量级为107m/s,方向跟质子的初速度方向一致D.硅原子核速度的数量级为105m/s,方向跟质子的初速度方向一致【考点】原子核衰变及半衰期、衰变速度;动量守恒律.【分析】由质量数、电荷数守恒可知核反方程;由动量守恒可知硅原子核速度的数量级及速度方向,从而即可求解.【解答】解:AB、由质量数守恒,电荷数守恒可知:方程为Al+H→Si,故A正确,B错误;CD、由动量守恒可知,mv=28mv′,解得v′=m/s故数量级约为105m/s.故C错误,D正确;应选:AD.9.质量分别为m a=0.5kg,m b=kg的物体a、b在光滑水平面上发生正碰.假设不计碰撞时间,它们碰撞前后的位移﹣时间图象如下图,那么以下说法正确的选项是〔〕A.碰撞前a物体的动量大小为4kg•m/sB.碰撞前b物体的动量大小为零C.碰撞后a物体的动量大小为1kg•m/sD.碰撞后b物体的动量大小为kg•m/s【考点】动量守恒律.【分析】根据图示图象由速度公式求出碰撞前后物体的速度,然后由动量的计算公式求出物体的动量.【解答】解:A、由图示图象可知,碰撞前a的速度:v a ===4m/s,碰撞前a的动量:P a=m a v a=0.5×4=2kg•m/s,故A错误;B、由图示图象可知,碰撞前b静止,碰撞前b的动量为零,故B正确;C、由图示图象可知,碰撞由a、b的速度相,为:v===1m/s,碰撞后a的动量大小为:P a′=m a v a′=0.5×1=0.5kg•m/s,故C错误;D、碰撞后b的动量大小为:P b′=a v b′=×1=kg•m/s,故D正确;应选:BD.10.如下图,在光滑的水平面上放有一物体M,物体上有一光滑的半圆弧轨道,轨道半径为R,最低点为C,两端A、B高,现让小滑块m 从A点静止下滑,在此后的过程中,那么〔〕A.小滑块到达B点时半圆弧轨道的速度为零B.小滑块到达C点时的动能小于mgRC.假设小滑块与半圆弧轨道有摩擦,小滑块与半圆弧轨道组成的系统在水平方向动量不守恒D.m从A到B的过程中,M运动的位移为【考点】动量守恒律;机械能守恒律.【分析】小滑块m从A点静止下滑,物体M与滑块m组成的系统水平方向所受合力为零,系统水平方向动量守恒,竖直方向有加速度,合力不为零,系统动量不守恒.用位移表示平均速度,根据水平方向平均动量守恒律求出物体M发生的水平位移.【解答】解:A、小滑块m从A点静止下滑,物体M与滑块m组成的系统水平方向所受合力为零,系统水平方向动量守恒,开始时系统水平方向的动量守恒,滑块到达B点时滑块和圆弧轨道的速度相同,由水平方向动量守恒可知,小滑块到达B点时半圆弧轨道的速度为零.故A正确.B、小滑块到达C点时滑块的重力势能转化为滑块和圆弧轨道的动能,那么知到达C点时滑块的动能小于mgR.故B正确.C、小滑块与半圆弧轨道组成的系统在水平方向不受外力,所以水平方向动量守恒.故C错误.D、设滑块从A到B的过程中为t,M发生的水平位移大小为x,那么m产生的位移大小为2R﹣x取水平向右方向为正方向.那么根据水平方向平均动量守恒得:m﹣M=0解得:x=R,故D错误;应选:AB二、题〔本大题共3小题,共24分〕11.用甲、乙两种光做光电验,发现光电流与电压的关系如下图,由图可知,两种光的频率v 甲= v 乙〔填“<〞,“>〞或“=〞〕,甲〔选填“甲〞或“乙〞〕光的强度大.普朗克常量为h,被照射金属的逸出功为W0,那么甲光对的遏止电压为.〔频率用v,元电荷用e表示〕【考点】光电效.【分析】根据光的强度越强,形成的光电流越大;并根据光电效方程,即可求解.【解答】解:根据eUc=hv0=hv﹣W0,由于Uc相同,因此两种光的频率相,根据光的强度越强,那么光电子数目越多,对的光电流越大,即可判甲光的强度较大;由光电效方程mv2=hv﹣W0,可知,电子的最大初动能E K m=hv﹣W0;那么甲光对的遏止电压为Uc=;故答案为:=,甲,.12.太阳内部不断进行着各种核聚变反,一个氘核和一个氚核结合成一个氦核是其中一种,请写出其核反方程;如果氘核的比结合能为E1,氚核的比结合能为E2,氦核的比结合能为E3,那么上述反释放的能量可表示为4E3﹣2E1﹣3E2.【考点】爱因斯坦质能方程.【分析】根据电荷数守恒、质量数守恒写出核反方程,根据比结合能于结合能与核子数的比值,通过能量关系,求出释放的核能.【解答】解:根据电荷数守恒、质量守恒守恒,知核反方程为;氘核的比结合能为E1,氚核的比结合能为E2,氦核的比结合能为E3,根据比结合能于结合能与核子数的比值,那么有:该核反中释放的核能△E=4E3﹣2E1﹣3E2.故答案为:;4E3﹣2E1﹣3E213.如图是用来验证动量守恒的装置,弹性球1用细线悬挂于O点,O点下方桌子的边沿有一竖直立柱.时,调节悬点,使弹性球1静止时恰与立柱上的球2接触且两球高.将球1拉到A点,并使之静止,同时把球2放在立柱上.释放球1,当它摆到悬点正下方时与球2发生对心碰撞,碰后球1向左最远可摆到B点,球2落到水平地面上的C点.测出有关数据即可验证1、2两球碰撞时动量守恒.现已测出A 点离水平桌面的距离为a,B点离水平桌面的距离为b,C点与桌子边沿间的水平距离为c.此时,〔1〕除了弹性小球1、2的质量m1、m2,还需要测量的量是立柱高h 和桌面高H .〔2〕根据测量的数据,该中动量守恒的表达式为2m1=2m1+m2.〔忽略小球的大小〕【考点】验证动量守恒律.【分析】要验证动量守恒,就需要知道碰撞前后的动量,所以要测量12两个小球的质量,1球下摆过程机械能守恒,根据守恒律列式求最低点速度;球1上摆过程机械能再次守恒,可求解碰撞后速度;碰撞后小球2做平抛运动,根据平抛运动的分位移公式求解碰撞后2球的速度,然后验证动量是否守恒即可.【解答】解:〔1〕要验证动量守恒,就需要知道碰撞前后的动量,所以要测量12两个小球的质量m1、m2,要通过平抛运动的分位移公式求解碰撞后2球的速度,所以要测量立柱高h,桌面高H;〔2〕1小球从A处下摆过程只有重力做功,机械能守恒,根据机械能守恒律,有m1g〔a﹣h〕=m1v12解得:v1=碰撞后1小球上升到最高点的过程中,机械能守恒,根据机械能守恒律,有m1g〔b﹣h〕=m1v22解得:v2=碰撞后小球2做平抛运动,t=所以2球碰后速度v3==所以该中动量守恒的表达式为:m1v1=m2v3+m1v2带入数据得:2m1=2m1+m2故答案为:〔1〕立柱高h;桌面高H;〔2〕2m1=2m1+m2.14.氢原子处于基态时,原子能量E 1=﹣1eV,普朗克常数取h=×10﹣34J•s〔1〕处于n=2激发态的氢原子,至少要吸收多大能量的光子才能电离?〔2〕今有一群处于n=4激发态的氢原子,可以辐射几种不同频率的光?其中最小的频率是多少?〔结果保存2位有效数字〕【考点】氢原子的能级公式和跃迁.【分析】所谓电离,就是使处于基态或激发态的原子的核外电子跃迁到n=∞的轨道,n=∞时,E∞=0,要使处于n=2的氢原子电离,照射光光子的能量能使电子从第2能级跃迁到无限远处.根据求出氢原子发出光子的种数.根据hγ=E m﹣E n,可知在何能级间跃迁发出光的频率最小.【解答】解:〔1〕要使处于n=2的氢原子电离,照射光光子的能量能使电子从第2能级跃迁到无限远处,最小的光子能量为:E=E∞﹣E2=0﹣〔﹣eV〕=eV.〔2〕根据=6,知这群氢原子最多能发出6种频率的光.因为放出的光子能量满足hγ=E m﹣E n,知,从n=4能级跃迁到n=3能级发出光的频率最小.,E4﹣E3=hνmi n答:〔1〕处于n=2激发态的氢原子,至少要吸收eV能量的光子才能电离;〔2〕今有一群处于n=4激发态的氢原子,可以辐射6种不同频率的光,其中最小的频率是1.6×1014Hz.15.Po原子核质量为2082 87u ,Pb原子核的质量为2074 46u ,He原子核的质量为4.002 60u,静止的Po核在α衰变中放出α粒子后变成Pb.求:〔1〕在衰变过程中释放的能量;〔2〕α粒子从Po核中射出的动能;〔3〕反冲核的动能.〔lu相当于93MeV,且核反释放的能量只转化为动能〕【考点】爱因斯坦质能方程;动量守恒律;原子核衰变及半衰期、衰变速度.【分析】〔1〕首先写出核反方程式,再求出质量亏损△m,再根据爱因斯坦质能方程求解释放的能量;〔2、3〕衰变前后系统的动量守恒,根据动量守恒律分析α粒子和铅核关系,根据动能与动量的关系及能量守恒列式求解.【解答】解:〔1〕根据质量数与质子数守恒规律,那么有,衰变方程:→+;衰变过程中质量亏损为:△m=2082 87 u﹣2074 46 u﹣4.002 60u=0.00581 u反过程中释放的能量为:△E=0.005 81×93 MeV=12 MeV;〔2〕因衰变前后动量守恒,那么衰变后α粒子和铅核的动量大小相,方向相反而P=mv=,那么有:=即mαE kα=m P b•E k Pb那么4E kα=206•E kp b又因核反释放的能量只能转化为两者的动能,故有:E kα+E k p b=△E=12 MeV所以α粒子从钋核中射出的动能为:E kα=1 MeV〔3〕反冲核即铅核的动能为:E k P b=0.10 MeV答:〔1〕在衰变过程中释放的能量12 MeV;〔2〕α粒子从Po核中射出的动能1 MeV;〔3〕反冲核的动能0.10 MeV.16.质量M=3kg.足够长的平板车放在光滑的水平面上,在平板车的左端放有一质量m=1kg的小物块〔可视为质点〕,小车左上方的天花板上固一障碍物A,其下端略高于平板车上外表但能挡住物块,如下图.初始时,平板车与物块一起以v0=2m/s的水平速度向左运动,此后每次物块与A发生碰撞后,速度均反向但大小保持不变,而小车可继续运动,物块与小车间的动摩擦因数μ=0.5,取g=10m/s2,碰撞时间可忽略不计,求:。

高二物理第二学期3月月考测评卷及答案

高二物理第二学期3月月考测评卷及答案

平遥中学-高二下学期三月质检物理试题一、选择题每小题给出的四个选项中,有的小题只有一个选项正确,有的小题有多个选项正确,共56分。

1.下列哪位科学家首先发现电流的磁效应( )A.安培 B.法拉第 C.奥斯特 D.洛论兹2.下列说法正确的是( )A.除永久磁铁外,一切磁场都是由运动电荷产生的B.一切磁现象都起源于运动电荷C.一切磁作用都是运动电荷通过磁场发生的D.有磁必有电,有电必有磁3.超导是当今高科技的热点之一。

当一块磁体靠近超导体时,超导体中会产生强大的电流,对磁体有排斥作用。

这种排斥力可使磁体悬浮在空气中。

磁悬浮列车就采用了这项技术,磁悬浮列车的原理是( )A .超导体电流的磁场方向与与磁体的磁场方向相同B .超导体电流的磁场方向与与磁体的磁场方向相反C .超导体使磁体处于失重状态D .超导体对磁体的磁力与磁体的重力相平衡4.带电粒子(不计重力)可能处的状态是( )A .在磁场中处于平衡状态B .在匀强磁场中做匀变速曲线运动C .在匀强电场中做匀变速曲线运动D .在电场中做匀速圆周运动5.如图所示,半径为R 的圆形线圈两端A 、C 接入一个平行板电容器,线圈放在随时间均匀变化的匀强磁场中,线圈所在平面与磁感线的方向垂直,要使电容器所带的电量增大,可采取的措施是( )A .电容器的两极板靠近些B .增大磁感应强度的变化率C .增大线圈的面积D .改变线圈平面与磁场方向的夹角6.如图所示的电路,三个电阻中 R 1 消耗的功率最大,则三个电阻的阻值大小关系为( )A . R 1>R 2>R 3B . R 2>R 1>R 3C..R 3>R 2>R 1 D . R 1>R 3>R 27.电流从A 点分两路通过对称的分路汇合于B 点,在环形分路的中心处磁感应强度是( )A.垂直环形分路所在的平面,且指向纸内B.在环形分路所在的平面内,且指向AC.在环形分路所在的平面内,且指向BD.磁感应强度为零8.如图所示,有一电量为q 的正离子,从A 点沿箭头方向开始运动,运动半周到B 点时,突然吸附若干电子,接着又运动半周到C 点,已知BC=2AB ,磁感线方向垂直指向纸内,电子质量远远小于离子质量,重力不计,则离子在B 处吸附的电子数为(磁场为匀强磁场)B A( )A .B .C .D . 9.关于磁感应强度与通电导线在磁场中受力情况及其相互关系,下列说法中正确的是( )A .一小段通电直导线在磁场中不受安培力作用,该处磁感应强度一定为零B .一小段通电直导线所受安培力的方向一定与磁场方向垂直C .一小段通电直导线所受安培力的方向、磁场方向、导线中的电流方向,这三者总是互相垂直的D .通电直导线在磁场中所受安培力越大,其磁感应强度一定越大。

高二第二学期物理第三次月考试卷附答案)

高二第二学期物理第三次月考试卷附答案)

高二第二学期物理第三次月考试卷答题注意事项:命题人:管伟权1.本试卷满分100分;2.请将试题按要求解答在答题卷指定的位置。

一、本题共4小题,每小题4分,共16分,在每小题给出的四个选项中,有一个选项正确,选对的得4分,有选错或不答的得0分.1、某同学对磁感应强度进行理解时,形成了下列看法,其中错误的是()A.磁感应强度是描述磁场强弱和方向的物理量B.磁场中某点磁感应强度大小是由磁场自身决定的C.虽然B=F/IL,但磁感应强度B与通电导线受到的磁场力F并不成正比D.磁场中某处磁感应强度的方向就是该处一小段通电导线所受磁场力的方向2、在如图所示的实验电路中,当滑动变阻器R0的滑动触头向右端滑动时()A.L1变暗,L2变亮,L3变亮B.L1变暗,L2变暗,L3变亮C.L1变暗,L2变暗,L3变暗D.L1变亮,L2变暗,L3变亮3、在使用电阻器件时,不仅要知道电阻的标称阻值,还要注意电阻的最大功率,否则在使用中如果超过电阻的最大功率,电阻将被烧坏。

某人在调试电路时,用一个“100kΩ,1/8W”的电阻和一个“300kΩ,1/8W”的电阻串联后作为400 kΩ的电阻使用,则这两只电阻串联后允许消耗的总功率最大不得超过()A.1/2W B.1/4W C.1/6W D.1/8W4、如图所示是示波器原理图。

电子经电压为U1的电场加速后,射入电压为U2的偏转电场,离开偏转电场后电子打在荧光屏上的P点,离荧光屏中心O的偏转距离为y。

我们把单位偏转电压引起的偏转距离(y/U2)称为示波器的灵敏度。

则下列哪些方法可以提高示波器的灵敏度()A.提高加速电压U1B.降低偏转电场电压U2C.增大偏转极板的长度LD.增大偏转极板间的距离d二、双项选择题:每小题6分。

在每小题给出的四个选项中,有两个选项符合题目要求,全部选对的得6分,只选1个且正确的得3分,有选错或不答的得0分。

5、欧姆定律适用于()A.金属导电B.气体导电C.电解液导电D.半导体导电6、在研究两个闭合电路A和B的路端电压U与其总电流I的关系时,得到如右图所示的图象,由此可判断()A.电路A的电动势比电路B的电动势大B.电路A的电源内电阻比电路B的电源内电阻大C .电路A 的外电阻始终比电路B 的外电阻小D .电路A 的路端电压始终比电路B 的路端电压大7、在学习“电场”一章的过程中,可总结出一些“经典”结论,有时可直接引用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高二年级物理下学期3月考试物理试题第Ⅰ卷(选择题 共40分)一.本题共10小题;每小题4分,共40分,在每小题给出的四个选项中,有的小题只有一个选项正确,有的小题有多个选项正确.全部选对的得4分,选不全的得2分,有选错或不答的得0分.1.作简谐运动的物体, 在每次通过同一位置时, 动量、动能、速度、加速度四个量中,总是相同的量是:A.速度和动量B.加速度与动能C.速度、动量和加速度D.动量、动能、速度、加速度 2.简谐运动的物体,回复力和位移的关系图是下面所给四个图象中的哪一个?A B C D3. 图甲是利用沙摆演示简谐运动图象的装置。

当盛沙漏斗下面的薄木板被水平匀速拉出时,做简谐运动的漏斗漏出的沙在板上形成的曲线显示出沙摆的振动位移随时间的变化关系。

已知木板被水平拉动的速度为0.20m/s ,图乙所示的一段木板的长度为0.60m ,则这次实验沙摆的摆长为(取g =π2)A. 0.56mB. 0.65mC. 1.0mD. 2.3m4. 卡车在公路上行驶,货物随车厢上、下作简谐运动而不脱离底板,设向上为正方向,其振动图线如图所示,由图可知,货物对底板的压力小于货物的重力的时刻是[ ]A .t 1B .t 2C .t 3D .t 45. 在实验室可以做“声波碎杯”的实验.用手指轻弹一只酒杯,可以听到清脆的声音,测得这声音的频率为500Hz .将这只酒杯放在两只大功率的声波发生器之间,操作人员通过调整其发出的声波,就能使酒杯碎掉.下列说法中正确的是A.操作人员一定是把声波发生器的功率调到很大B.操作人员可能是使声波发生器发出了频率很高的超声波C.操作人员一定是同时增大了声波发生器发出声波的频率和功率D.操作人员一定要将声波发生器发出的声波频率调到500Hz6.一个作简谐运动的物体,位移随时间的变化规律x=Acosωt,在1/4周期内通过的路程可能是(A)小于A (B)等于A (C)等于 2 A (D)等于1.5A7.质量为1kg的物体自20m的高处自由下落,阻力不计,触地反弹的速度为8m/s,那么物体受到地面反弹前后动量的变化是A、8kgm/s、向上B、28kgm/s、向上C、8kgm/s、向下D、28kgm/s、向下8.一载着游人的小船原来静止在平静的湖面上,在人从游船的一端走到另一端的过程中,若忽略水对小游船的阻力作用,下列说法中正确的是A、人受的冲量与船所受的冲量大小相同B、人向前走的速度一定小于游船后退的速度C、当人突然停止走动时,小游船也立即停止后退D、人走动的过程中,人与游船的总动量始终为零9.在光滑的水平面上有两个静止小车,车上各站着一个运动员,每辆车(包含人)的总质量均为M。

设甲车上的人接到一个质量为m、沿水平方向抛来的速度为v的篮球。

乙车上的人把原来在车上的一个同样篮球沿水平方向以同样速度抛出去。

则这两种情况下,甲、乙两车所获得速度大小的关系是………………………………………………………()A、v甲>v乙B、v甲<v乙C、v甲=v乙D、不同的M、m及v值结论不同10.如图所示,在光滑的水平面上放着一辆小车C,车上有质量不同的A、B两物体,两物体跟车面之间有摩擦,且动摩擦因数相同。

A、B之间用一根轻质弹簧连接,从A、B两侧压缩弹簧后由静止释放。

在A、B被弹开过程中则:A.以A、B、弹簧为系统,动量守恒,机械能也守恒B.以A、B、弹簧为系统,动量不守恒,机械能也不守恒C.以A、B、C、弹簧为系统,动量守恒,机械能也守恒D.以A、B、C、弹簧为系统,动量守恒,机械能不守恒图东莞市2006~2007学年下学期高二年级3月考试物 理 试 题答题卷第Ⅱ卷(非选择题 共110分)二.本题共8小题,共110分。

按题目要求作答。

解答题应写出必要的文字说明、方程式和重要演算步骤。

只写出最后答案的不能得分。

有数值计算的题,答案中必须明确写出数值和单位。

11.(10分)如图所示装置验证碰撞中的动量守恒,A 、B 两球直径相同,质量分别为m 1、m 2.(1)实验中所必须用的测量工具是_______、 (2m 1∶m 2=_______.12.(10分) ⑴测摆长时测量结果如图1然后用秒表记录了单摆振动50.班别____________ 姓名____________ 座号___________10图1⑵他测得的g值偏小,可能的原因是()A.测摆线长时摆线拉得过紧B.摆线上端未牢固地系于悬点,振动中出现了松动,使摆线长度增加了C.开始计时时,秒表提前按下D.实验中误将49次全振动数为50次13.(12分)一挺机枪架在静止于平静湖面上的小船中,机枪和船的总质量M=200kg,每颗子弹的质量m=20g,如果机枪在t=10s内沿水平方向以v0=600m/s 的速度(相对于地面)发射40颗子弹,不计水对船的阻力,求发射后船速的大小及方向14.(14分)质量分别为3m和m的两个物体,用一根细线相连,中间夹着一个被压缩的轻质弹簧,整个系统原来在光滑水平地面上以速度V0向右匀速运动,如图所示。

后来细线断裂,质量为m的物体离开弹簧时的速度变为2V0。

求⑴质量为3m的物体最终的速度;⑵绳断前弹簧的弹性势能。

15.(14分)如图所示,光滑水平面上有两个质量分别为m1、m2的小球a、b,球a以水平速度v o向右匀速运动,球b处于静止状态.两球右侧有一竖直墙壁,假设两球之间、球与墙壁之间发生正碰时均无机械能损失,为了使两球能发生、而且只能发生一次碰撞,试讨论两球的质量之比m1/m2应满足什么条件.V0m 3m16.(16分)如图1所示,a 、b 和c 为质量相等的三个弹性小球(可视为质点),a 、b 分别悬挂在l 1=1m 、l 2=0.25m 的轻质细线上,它们刚好与光滑水平面接触而不互相挤压,a 、b 相距10cm 。

若c 从a 和b 的连线中点处以v 0=5cm/s 的速度向右运动,则c 将与a 和b 反复碰撞而往复运动。

已知碰撞前后小球c 均沿同一直线运动,碰撞时间极短,且碰撞过程中没有机械能损失,碰撞后a 和b 的摆动均可视为简谐运动。

以c 球开始运动作为时间零点,以向右为正方向,试简述小球c 的运动情况并在图2中画出在10s 内c 球运动的位移一时间图象,图象以c 球的初位置为坐标原点。

()π≈8.917.(16分)如图所示,在光滑水平地面上静放着质量为m=2Kg 的小滑块和质量为M=4Kg 、长L=8m 的薄板。

滑块和薄板间动摩擦因数为μ=0.2,且最大静摩擦力等于滑动摩擦力。

若向薄板施加水平拉力F=20N ,作用2s 后撤去,取g=10m/s 2。

求: ⑴拉力F 所做的功。

⑵薄板在水平地面上运动的最终速度。

图1-图218.(18分)某学生实验小组为了搞清楚功、能、动量之间的关系,设计了如下实验:㈠主要实验器材:一块正方形的软木块,其边长D=16cm,质量M=40g;一支出射速度能够连续可调的气枪,其子弹的质量m=10g;……㈡主要实验过程:首先,他们把正方形的软木块固定在桌面上,当子弹以20m/s的水平速度从正面射入该木块后,实验小组测得了子弹能够进入木块中5cm的深度。

然后,他们把该木块放在光滑的水平面上(例如气垫导轨上),子弹再次从正面射入该木块,……。

在后者情况下,请你利用力学知识,帮助他们分析和预测以下几个问题:⑴若子弹仍以20m/s的水平速度射入木块,子弹最多能进入木块中的深度有多大?⑵若子弹仍以20m/s的水平速度射入木块,在子弹射入木块的过程中,系统损失的机械能和产生的热量各是多少?⑶为了使子弹能够穿透该木块,那么子弹的入射速度大小不能低于多少?图参考答案及评分标准11.(1)刻度尺、天平。

(每空2分) (2)4:1 (6分) 12. ⑴99.80cm 、100.6s . (每空2分)⑵BC (6分) 13. (12分)解:由动量守恒定律得:040v m Mv ⨯⨯= (6分)s m v 4.2= (4分) 方向与子弹速度方向相反 . (2分)14. (14分)解:设3m 的物体离开弹簧时的速度为1v ,由动量守恒定律得:()100323mv v m v m m +⨯=+ (4分)所以 0321v v = (3分) 由能量守恒定律得:()()20212021*******v m m v m v m E P +-+⨯= (4分) 所以弹性势能 2032mv E P =(3分) 15. (14分)解:设两球碰撞后速度分别为:1v 、2v由动量守恒定律可得:221101v m v m v m += (3分)因无机械能损失:222212112120121v m v m v m += (3分) 由上述两式可得:()210211m m v m m v +-=(2分)210122m m v m v +=(2分)要想二者在b 球撞墙以原速率反弹后不在相碰,必须:1v 为负值,且 12v v -≤ (2分) 所以 m 1/m 2≤1/3(2分)班别____________ 姓名____________ 座号___________16.(16分)解:由单摆的周期公式:glT π2= 可得a 、b 两球的周期分别为 s T a 2= (3分) s T b 1= (3分)a 与c 、b 与c 的碰撞均没有机械能的损失,三者的质量又相等,碰后二者互换速度。

C 球从起点出发,先匀速运动1s ,前进5cm 与b 球碰后停止,1/2s 后被b 球碰回,以当初的速度匀速运动2s ,前进10cm 与a 球碰后停止,1s 后被a 球碰回,以当初的速度匀速运动1s 回到出发点(原点),此后将重复上述运动。

(4分) c 球的位移时间图象如图所示, (6分)17.(16分)解:⑴由牛顿第二定律可得:二者要发生相对运动 滑块的加速度 221s m g mmga ===μμ (1分)薄板的加速度 242s m MmgF a =-=μ (1分) 若薄板足够长,2s 时二者对地位移分别为:mt a S 421211== (1分) m t a S 822212== (1分) 两者的相对位移m S S S 412=-=∆<L (1分) 说明此时滑块没有脱离薄板 所以拉力做的功为:j FS W 1602== (2分)⑵力F 撤消瞬间,两者的速度分别为:s m t a v 411== (1分) s m t a v 822== (1分) 若薄板足够长,则二者最终共速为v ,由动量及能量守恒定律可得:()v M m Mv mv +=+21 (2分)()22122212121v M m Mv mvmgs +-+=μ (2分) 代入数字解得:s mv 320=(1分) ms 38=<m 4 (滑块没有离开薄板)(1分) 所以二者最终共速 s mv 320=(1分)-18.(18分)解:⑴设子弹打入木块过程中受到的平均阻力为f ,打入木块的深度分别为d 1、d 2,子弹初速为v 0,打入后二者共速v , 木块固定时,由动能定理得:20121mv fd =(2分) 木块不固定时,由动量守恒定律得:()v M m mv +=0 (2分) 由能量守恒定律得:()22022121v M m mv fd +-= (2分) 由以上三式可得:cm d 42= (2分)⑵由能量守恒定律知:损失的机械能与产生的内能相等,即 △==Q E ()j v M m mv fd 6.121212202=+-=(4分) ⑶设子弹初速为1v 时,恰好不能射穿木块,此时二者共速2v ,由动量守恒与能量守恒得:()21v M m mv += (2分)()22212121v M m mv fD +-=(2分) 上述两式与20121mv fd =联立即可解得 :s m v 401= (2分)故为了使子弹能够穿透该木块,子弹的入射速度大小至少不能低于s m 40。

相关文档
最新文档