高中数学—— 圆幂定理
高中数学 第一章 相似三角形定理与圆幂定理 1.3.1 圆
![高中数学 第一章 相似三角形定理与圆幂定理 1.3.1 圆](https://img.taocdn.com/s3/m/8869a656cc175527072208ec.png)
三个定理的综合应用 [例 3] 如图所示,已知 PA 与⊙O 相切,A 为切点,PBC 为割线,弦 CD∥AP,AD、BC 相交于 E 点,F 为 CE 上一点, 且 DE2=EF·EC.
(1)求证:∠P=∠EDF; (2)求证:CE·EB=EF·EP; (3)若 CE∶BE=3∶2,DE=6,EF=4,求 PA 的长.
[精解详析] 因为 MA 为圆 O 的切线, 所以 MA2=MB·MC. 又 M 为 PA 的中点, 所以 MP2=MB·MC. 因为∠BMP=∠PMC, 所以△ BMP∽△PMC, 于是∠MPB=∠MCP. 在△ MCP 中,由∠MPB+∠MCP+∠BPC+∠BMP=180°, 得∠MPB=20°.
解析:因为 AF=3,EF=32,FB=1,
所以 CF=AFE·FFB=3×3 1=2, 2
因为 EC∥BD,所以△ACF∽△ADB,
所以AAFB=BCDF=AADC=ADA-DCD=34,
所以 BD=CFA·FAB=2×3 4=83,且 AD=4CD,
又因为 BD 是圆的切线,所以 BD2=CD·AD=4CD2,
[思路点拨] 本题考查切割线定理、相交弦定理.以及相 似三角形的判定与性质的综合应用.解答本题需要分清各个定 理的适用条件,并会合理利用.
[精解详析] (1)证明:∵DE2=EF·EC, ∴DE∶CE=EF∶ED. ∵∠DEF 是公共角,∴△DEF∽△CED. ∴∠EDF=∠C. ∵CD∥AP,∴∠C=∠P. ∴∠P=∠EDF.
1.从圆外一点引圆的两条割线,这一点到每条割线与圆的 交点的两条线段长的积有什么关系?
提示:相等. 2.从圆外一点引圆的切线,则这一点、两个切点及圆心四 点是否共圆?若共圆,圆的直径是什么? 提示:四点共圆.且圆心为圆外一点与原圆心连线的 中点,直径为圆外一点到原圆心的距离.
中考技巧圆幂定理 、共高定理、共角定理、共边定理
![中考技巧圆幂定理 、共高定理、共角定理、共边定理](https://img.taocdn.com/s3/m/a817437aaef8941ea76e0591.png)
中考技巧圆幂定理、共高定理、共角定理、共边定理圆幂定理是平面几何中的一个定理,是相交弦定理、切割线定理及割线定理(切割线定理推论)的统一,例如如果交点为P的两条相交直线与圆O相交于A、B与C、D,则PA·PB=PC·PD。
圆幂定理是一个总结性的定理。
根据两条与圆有相交关系的线的位置不同,有以下定理:相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等。
则有AE·CE=BE·DE。
切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。
则有PA²=PC·PD。
割线定理:从圆外一点P引两条割线与圆分别交于A、B、C、D,则有PA·PB=PC·PD。
从上述定理可以看出,两条线的位置从内到外,都有着相似的结论。
经过总结和归纳,便得出了圆幂定理。
点对圆的幂定义:P点对圆O的幂定义为OP²—R²。
性质:点P对圆O的幂的值,和点P与圆O的位置关系有下述关系:点P在圆O内→P对圆O的幂为负数;点P在圆O外→P对圆O的幂为正数;点P在圆O上→P对圆O的幂为0。
注意:以上关系除正向应用通过点和圆的位置关系判断点对的圆的幂的符号,还可以逆向应用,通过点对圆的幂的符号反推点和圆的位置关系。
在某些书中,点P对圆O的幂表示为 |OP²—R²|。
共高定理如图1,延长△PAM的边AM至点B,得△PBM,根据面积公式可以证明以下定理.图1共高定理:若M在直线AB上,P为直线AB外一点,则有S△PAM:S△PBM=AM:BM.证明:如图1,因为S△PAM=1/2AM·PM,S△PAM=1/2BM·PM,所以S△PAM:S△PBM=AM:BM.【举一反三】如图2,点P在△ABC的边BC上,且∠BAP=∠CAP,试用共高定理推出PB:PC=AB:AC.图2共角定理中考数学压轴题昨天共角定理若两个三角形有一组对应角相等或互补,则它们的面积比等于对应两边乘积的比。
数学竞赛辅导讲义——圆幂与根轴
![数学竞赛辅导讲义——圆幂与根轴](https://img.taocdn.com/s3/m/7b2e87cb50e2524de5187e44.png)
数学竞赛辅导讲义——圆幂与根轴一、圆幂的定义:在平面上,从点P 作半径为r 的圆O 的割线,从P 起到和该圆周相交为止的两线段之积是一个定值,称为点P 对于此圆周的圆幂.圆幂定理:(1)当P 在圆O 外时,点P 对于此圆的幂等于22OP r -; (2)当P 在圆O 内时,点P 对于此圆的幂等于22r OP -;(3)当P 在圆O 上时,规定:点P 对于此圆的幂等于0.二、根轴及其性质 1.根轴的定义:对于两个已知圆的圆幂相等的点的轨迹是一条直线,该直线称为这两圆的根轴.2.根轴的性质:(1)若两圆1O 与2O 相离(半径分别为1r ,2r 且12r r ≤),点M 为12O O 的中点,点H 在线段1O M 上,且2221122r r MH O O -=,则此两圆的根轴是过点H 且垂直于12O O 的直线.特别地,当两圆相离且半径相等时,它们的根轴是线段12O O 的中垂线.(2)若两个圆是同心圆,则这两个圆不存在根轴.(3)若两个圆相交,则它们的公共弦所在的直线就是它们的根轴.(4)若两圆相切,则过两圆切点的公切线是它们的根轴.(5)若三个圆的圆心互不相同,则任意两个圆的根轴共三条直线,它们相交于一点或互相平行.(6)若两圆相离,则两圆的四条公切线的中点共线(都在根轴上). 思考:能否从解析几何的角度看根轴?三、例题例1 如图,设I 和O 分别是ABC ∆的内心和外心,r 和R 分别是ABC ∆的内切圆和外接圆的半径,过I 作ABC ∆的外接圆的弦AK . 求证:(1)IK BK =;(2)2AI IK Rr ⋅=; (3)222OI R Rr =-.(欧拉公式)例2 如图,设圆1O 与圆2O 相离,引它们的一条外公切线切圆1O 于A ,切圆2O 于B ,又引它们的一条内公切线切圆1O 于C ,切圆2O 于D ,求证:(1)AC BD ⊥;(2)直线12O O 是分别以AB ,CD 为直径的圆3O ,4O 的根轴;(3)直线AC 和BD 的交点K 在两圆的连心线12O O 上 .例1K例3(1997年全国联赛)已知两个半径不相等的1O 与2O 相交于M ,N 两点,且1O ,2O 分别与O 内切于S ,T 两点,S ,N ,T三点共线,求证:OM MN ⊥.四、练习题1.点D ,E 为ABC ∆的边AB ,AC 上的点,分别以BE ,CD 为直径的圆1O 与2O 交于点M ,N .求证:ABC ∆的垂心H 在直线MN 上.1.C例32. (第36届IMO )设A 、B 、C 、D 是一条直线上依次排列的四个不同的点,分别以AC ,BD 为直径的圆1O ,2O 交于点X ,Y ,直线XY 交BC 于点Z .若P 为直线XY 上异于Z 的一点,直线CP 与交圆1O 于点C 及M ,直线BP 与交圆2O 于点B 及N . 求证:(1)B ,M ,N ,C 四点共圆; (2)A ,M ,N ,D 四点共圆; (3)AM ,DN ,XY 共点.3. (第40届IMO 国家队选拔题)凸四边形ABCD 的四边满足AB AD CB CD +=+,圆O 分别与凸四边形ABCD 的AB ,BC 两边相切于G ,H 两点,与对角线AC 相交于E ,F 两点.求证:存在另一个过E ,F 两点,且分别与DA ,DC 的延长线相切的圆'O .2.3.BD。
圆幂定理+讲义2023年九年级数学中考复习【附解析】
![圆幂定理+讲义2023年九年级数学中考复习【附解析】](https://img.taocdn.com/s3/m/abc6c5c3f9c75fbfc77da26925c52cc58ad69059.png)
圆幂定理九年级数学中考复习一、圆幂的定义:一点P对半径为r的圆O的幂=22OP r-二、圆幂定理:是相交弦定理、切割线定理、割线定理(切割线定理推论)的统称。
1、相交弦定理:若圆内任意弦AB、弦CD交于点P,则··PAPB PC PD=()PAC PBD∆∆∽2、切割线定理:从圆外一点引圆的切线和割线,切线(PA)长是割线和这点到割线(PD)与圆交点的两条线段长的比例中项²·PA PC PD=()PAC PDA∆∆∽3、割线定理(切割线定理的推论):例如如果交点为P的两条相交直线与圆O相交于A、B 与C、D,则·PA PB PC PD⋅=总结:平面上任意一点对于圆的幂为这个点到圆心的距离与圆的半径的平方差的绝对值。
22··PA PB PC PD r OP==-222·PA PC PD OP r==-22·PA PB PC PD OP r⋅==-例题讲解【例1】如图,在圆O 中,M 、N 是弦AB 的三等分点,弦CD ,CE 分别经过点M ,N , 若2CM =,4MD =,3CN =,则线段NE 的长为( )A .83B .3C .103D .52【例2】如题图,圆O 的弦AB ,CD 相交于点E ,过点A 作圆O 的切线与DC 的延长线交于 点P ,若6PA =,9AE =,3PC =,:2:1CE ED =,则BE = .【例3】如图,点P 为弦AB 上一点,连接OP ,过P 作PC OP ⊥,PC 交O 于点C ,若 6AP =,3PB =,则PC 的长为( )A .4B .5C .23D .32【例4】如图,正方形ABCD 内接于O ,点P 在劣弧AB 上,连接DP ,交AC 于点Q .若 QP QO =,则QC QA的值为( )A .231B .23C 32D 32+【例5】如图,PA 切圆于点A ,直线PCB 交圆于C ,B 两点,切线长42PA =4PC =, 则AB AC等于( )A 2B .22C .2D .以上结果都不对 【例6】如图,AT 切O 于T ,若6AT =,3AE =,4AD =,2DE =,则BC 等于()A .3B .4C .6D .8【例7】如图,在以O 为圆心的两个同心圆中,A 为大圆上任意一点,过A 作小圆的割线 AXY ,若4AX AY ⋅=,则图中圆环的面积为( )A .16πB .8πC .4πD .2π【例8】如图,在ABCD 中,过A 、B 、C 三点的圆交AD 于E ,且与CD 相切.若4AB =, 5BE =,则DE 的长为( )A .3B .4C .154D .165【例9】如图,四边形ABCD 是圆的内接四边形,AB 、DC 的延长线交于点P ,若C 是PD 的中点,且6PD =,2PB =,那么AB 的长为( )A .9B .7C .3D .92【例10】已知:P 为O 外一点,PQ 切O 于Q ,PAB 、PCD 是O 的割线,且PAC BAD ∠=∠.求证:22PQ PA AC AD -=.【例11】圆幂定理是平面几何中最重要的定理之一,它包含了相交弦定理、切割线定理、割线定理以及它们推论,其中切割线定理的内容是:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项.喜欢思考的天天在了解这个定理之后尝试给出证明,下面是他的部分证明过程:已知:如图①,点P为O外一点,切线PA与圆相切于点A,割线PBC与圆相交于点B、C.求证:2=⋅.PA PB PC证明:如图,连接AB、AC、BO、AO,PA切O于点A,∠+∠=︒.PAB BAO∴⊥,即90PA AO⋯阅读以上材料,完成下列问题:(1)请帮助天天补充完成以上证明过程;(2)如图②,割线PDE与圆交于点D、E,且4PE=,求DE的长.==,7PB BC挑战训练【挑战训练1】如图,已知:PA切O于A,若AC为O的直径,PBC为O的割线,E 为弦AB的中点,PE的延长线交AC于F,且45FPB∠=︒,点F到PC的距离为5,则FC 的长为()。
人教B版高中数学-选修4-1教学案-第一章-圆 幂 定 理 (Word)
![人教B版高中数学-选修4-1教学案-第一章-圆 幂 定 理 (Word)](https://img.taocdn.com/s3/m/f10142a1960590c69ec3764c.png)
_1.3圆幂定理与圆内接四边形1.3.1圆幂定理[对应学生用书P25][读教材·填要点]1.相交弦定理圆内的两条相交弦,被交点分成的两条线段长的积相等.2.切割线定理从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项.3.圆幂定理已知⊙(O,r),通过一定点P,作⊙O的任一条割线交圆于A,B两点,则PA·PB为定值,设定值为k,则:(1)当点P在圆外时,k=PO2-r2,(2)当点P在圆内时,k=r2-OP2,(3)当点P在⊙O上时,k=0.[小问题·大思维]1.从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积有什么关系?提示:相等.2.从圆外一点引圆的切线,则这一点、两个切点及圆心四点是否共圆?若共圆,圆的直径是什么?提示:四点共圆.且圆心为圆外一点与原圆心连线的中点,直径为圆外一点到原圆心的距离.[对应学生用书P26][例1] 如图,AB 、CD 是半径为a 的圆O 的两条弦,它们相交于AB 的中点P ,PD =23a ,∠OAP =30°,求CP 的长.[思路点拨] 本题考查相交弦定理及垂径定理、勾股定理的综合应用.解决本题需要先在Rt △OAP 中,求得AP 的长,然后利用相交弦定理求解.[精解详析] ∵P 为AB 的中点, ∴由垂径定理得OP ⊥AB .在Rt △OAP 中,BP =AP =a cos30°=32a . 由相交弦定理,得BP ·AP =CP ·DP , 即⎝⎛⎭⎫32a 2=CP ·23a ,解之得CP =98a .在实际应用中,若圆中有两条相交弦,要想到利用相交弦定理.特别地,如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项.1.如图,已知AB 和AC 是圆的两条弦,过点B 作圆的切线与AC 的延长线相交于点D .过点C 作BD 的平行线与圆相交于点E ,与AB 相交于点F ,AF =3,FB =1,EF =32,则线段CD 的长为________.解析:因为AF =3,EF =32,FB =1,所以CF =AF ·FB EF =3×132=2,因为EC ∥BD ,所以△ACF ∽△ADB ,所以AF AB =CF BD =AC AD =AD -CD AD =34,所以BD =CF ·AB AF =2×43=83,且AD =4CD ,又因为BD 是圆的切线,所以BD 2=CD ·AD =4CD 2, 所以CD =43.答案:43[例2] 自圆O 外一点P 引圆的一条切线PA ,切点为A ,M 为PA 的中点,过点M 引圆的割线交圆于B ,C 两点,且∠BMP =100°,∠BPC =40°.求∠MPB 的大小.[思路点拨] 本题考查切割线定理,由定理得出△BMP ∽△PMC 而后转化角相等进行求解.[精解详析] 因为MA 为圆O 的切线, 所以MA 2=MB ·MC . 又M 为PA 的中点, 所以MP 2=MB ·MC . 因为∠BMP =∠PMC , 所以△BMP ∽△PMC , 于是∠MPB =∠MCP .在△MCP 中,由∠MPB +∠MCP +∠BPC +∠BMP =180°,得∠MPB =20°.相交弦定理、切割线定理涉及与圆有关的比例线段问题,利用相交弦定理能做到知三求一,利用切割线定理能做到知二求一.。
圆幂定理
![圆幂定理](https://img.taocdn.com/s3/m/2834d7e681c758f5f61f67eb.png)
圆幂定理廖述美 知识要点相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等. 即若弦AB 、CD 交于点P ,则PA·PB=PC·PD . 切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段的比例中项.即若PT 切⊙O 于点T ,PAB 是⊙O 的割线,则PT2=PA·PB割线定理:从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等.即若割线AB 、CD 与⊙O 分别交于A 、B 、C 、D ,则PA·PB=PC·PD .圆幂定理:相交弦定理、切割线定理、割线定理统称圆幂定理. 经典例题例1. 如图,⊙O 和⊙O ′都经过点A 和B ,PQ 切⊙O 于P ,交⊙O ′于Q ,M ,交AB的延长线于N.求证:2PN NM NQ =∙例2.如图,两个以O 为圆心的同心圆,AB 切大圆于B ,AC 切小圆于C ,交大圆于D ,E ,AB =12,AO =20,AD =8, 求两圆的半径.例3.如图,在以O为圆心的两个同心圆中,A,B是大圆上任意两点,过A,B作小圆的割线AXY和BPQ.求证:AX·AY=BP·BQ破题分析相交弦定理练习1:如图,圆中两条弦AB,CD相交于圆内一点P,已知PA=PB=4,PC=14PD,求CD的长。
切割线定理2:两圆相交于A,B两点,P为两圆公共弦AB上任一点,从P引两圆的切线PC,PD,求证PC=PD3:E 是圆内两弦AB 和CD 的交点,直线EF//CB,交AD 的延长线于F,切圆于G 求证(1) EFA DFE (2)EF=FG基础题1.如图1,AB 是⊙O 的直径,C ,D 是半圆的三等分点,则∠C +∠E +∠D =( )A .135°B .110°C .145°D .120° 2.如图2,以等腰三角形的腰为直径作圆,交底边于D ,连结AD ,那么( )A .∠BAD +∠CAD =90°B .∠BAD >∠CADC .∠BAD =∠CADD .∠BAD <∠CAD3、如图3,PAB 、PC 分别是圆O 的割线和切线(C 为切点),若3PA AB ==,则PC 的长为A .62B .6C .32D .3(如图1) (如图2) (如图3)ABC OP4、 如图4,已知⊙O 的直径5AB =,C 为圆周上一点,4=BC ,过点C 作⊙O 的切线l ,过点A 作l 的垂线AD ,垂足为D ,则CD =___________.5、如图5,已知PA 是圆O 的切线,切点为A ,PO 交圆O 于,B C 两点,3,1PA PB ==, 则圆O 的半径为 ,C ∠=6、如图6,PC 切O 于点C ,割线PAB 经过圆心O ,弦C D A B ⊥于点E ,已知O 的半径为3,2PA =,则PC =_________,OE =_________.(如图4) (如图5) (如图6)7.如图7,AB 是⊙O 的直径,CB 切⊙O 与B ,CD 切⊙O 与D ,交BA 的延长线于E .若AB =3,ED =2,则BC 的长为______.8. 如图8,AB 是O ⊙的直径,弦CD AB ⊥,垂足为E ,P 是BA 延长线上的点,连结PC交O ⊙于F ,如果713P F F C ==,,且::2:4:P A A E E B =,那么CD 的长是 .9. 如图9,BC 是半圆O ⊙的直径,EF BC ⊥于点F ,5BFFC=.已知点A 在CE 的延长线上,AB 与半圆交于D ,且82AB AE ==,,则AD 的长为_____________.O F EDCBAPABCDEFO(如图7) (如图8) (如图9)AB PCO ·PCBA D EO lOAD CB10.如图,在梯形ABCD中,AB∥CD,⊙O为内切圆,E为切点,(Ⅰ)求∠AOD的度数;(Ⅱ)若AO=8 cm,DO=6 cm,求OE的长.11.如图,在△ABC中,∠C=90°,AD是∠BAC的平分线,O是AB上一点,以OA为半径的⊙O经过点D.(1)求证:BC是⊙O切线;(2)若BD=5,DC=3,求AC的长.12.如图,AB 是⊙O 的直径,CD 是⊙O 的一条弦,且CD ⊥AB 于E ,连结AC 、OC 、BC .(1)求证:∠ACO =∠BCD ;(2)若BE =2,CD =8,求AB 和AC 的长.提高题1、如图1:PA 切O 于点A ,4PA =,PBC 过圆心O ,且与圆相交于B 、C 两点,:1:2AB AC =,则O 的半径为 .2、如图2,在圆内接四边形ABCD 中, 对角线, AC BD 相交于点E .已知23BC CD ==,2AE EC =,30CBD ∠=,则CAB ∠= ,AC 的长是 .3、如图3,过⊙O 外一点A 作一条直线与⊙O 交于C ,D 两点,AB 切⊙O 于B ,弦MN 过CD 的中点P .已知AC =4,AB =6,则MP ·NP = .(如图1) (如图2) (如图3)C D M NOBAP BCOAP4、如图,在半径为4的⊙O中,AB、CD是两条直径,M为OB的中点,CM的延长线交⊙O于点E,且EM>MC.连接DE,DE=15,求EM的长.5.如图所示,⊙O1与⊙O2相交于A、B两点,过点A作⊙O1的切线交⊙O2于点C,过点B作两圆的割线,分别交⊙O1、⊙O2于点D、E,DE与AC相交于点P.(1)求证:AD∥EC;(2)若AD是⊙O2的切线,且PA=6,PC=2,BD=9,求AD的长.挑战极限1.如图,⊙A与⊙B外切于点D,PC,PD,PE分别是圆的切线,C,D,E是切点,若∠CED=x°,∠ECD=y°,⊙B的半径为R,则⋂DE的长度是()(题目进行过改编)A.()9090Rx-πB.()9090Ry-πC.()180180Rx-πD.()180180Ry-π2.(2012武汉中考题)在平面直角坐标系中,点A的坐标为(3.0),点B为y轴正半轴上的一点,点C是第一象限内一点,且AC=2.设tan∠BOC=m,则m的取值范围是.考点:切线的性质;坐标与图形性质;勾股定理;锐角三角函数的定义。
数学竞赛辅导讲义——圆幂与根轴
![数学竞赛辅导讲义——圆幂与根轴](https://img.taocdn.com/s3/m/b50f8a7402768e9951e7380c.png)
数学竞赛辅导讲义——圆幂与根轴一、圆幂的定义:在平面上,从点P 作半径为r 的圆O 的割线,从P 起到和该圆周相交为止的两线段之积是一个定值,称为点P 对于此圆周的圆幂.圆幂定理:(1)当P 在圆O 外时,点P 对于此圆的幂等于22OP r -; (2)当P 在圆O 内时,点P 对于此圆的幂等于22r OP -;(3)当P 在圆O 上时,规定:点P 对于此圆的幂等于0.二、根轴及其性质 1.根轴的定义:对于两个已知圆的圆幂相等的点的轨迹是一条直线,该直线称为这两圆的根轴.2.根轴的性质:(1)若两圆1O 与2O 相离(半径分别为1r ,2r 且12r r ≤),点M 为12O O 的中点,点H 在线段1O M 上,且2221122r r MH O O -=,则此两圆的根轴是过点H 且垂直于12O O 的直线.特别地,当两圆相离且半径相等时,它们的根轴是线段12O O 的中垂线.(2)若两个圆是同心圆,则这两个圆不存在根轴.(3)若两个圆相交,则它们的公共弦所在的直线就是它们的根轴.(4)若两圆相切,则过两圆切点的公切线是它们的根轴.(5)若三个圆的圆心互不相同,则任意两个圆的根轴共三条直线,它们相交于一点或互相平行.(6)若两圆相离,则两圆的四条公切线的中点共线(都在根轴上). 思考:能否从解析几何的角度看根轴?三、例题例1 如图,设I 和O 分别是ABC ∆的内心和外心,r 和R 分别是ABC ∆的内切圆和外接圆的半径,过I 作ABC ∆的外接圆的弦AK . 求证:(1)IK BK =;(2)2AI IK Rr ⋅=; (3)222OI R Rr =-.(欧拉公式)例2 如图,设圆1O 与圆2O 相离,引它们的一条外公切线切圆1O 于A ,切圆2O 于B ,又引它们的一条内公切线切圆1O 于C ,切圆2O 于D ,求证:(1)AC BD ⊥;(2)直线12O O 是分别以AB ,CD 为直径的圆3O ,4O 的根轴;(3)直线AC 和BD 的交点K 在两圆的连心线12O O 上 .例1例3(1997年全国联赛)已知两个半径不相等的1O 与2O 相交于M ,N 两点,且1O ,2O 分别与O 内切于S ,T 两点,S ,N ,T 三点共线,求证:OM MN ⊥.四、练习题1.点D ,E 为ABC ∆的边AB ,AC 上的点,分别以BE ,CD 为直径的圆1O 与2O 交于点M ,N .求证:ABC ∆的垂心H 在直线MN 上.1.C例32. (第36届IMO )设A 、B 、C 、D 是一条直线上依次排列的四个不同的点,分别以AC ,BD 为直径的圆1O ,2O 交于点X ,Y ,直线XY 交BC 于点Z .若P 为直线XY 上异于Z 的一点,直线CP 与交圆1O 于点C 及M ,直线BP 与交圆2O 于点B 及N . 求证:(1)B ,M ,N ,C 四点共圆; (2)A ,M ,N ,D 四点共圆; (3)AM ,DN ,XY 共点.3. (第40届IMO 国家队选拔题)凸四边形ABCD 的四边满足AB AD CB CD +=+,圆O 分别与凸四边形ABCD 的AB ,BC 两边相切于G ,H 两点,与对角线AC 相交于E ,F 两点.求证:存在另一个过E ,F 两点,且分别与DA ,DC 的延长线相切的圆'O .2.3.BD。
圆幂定理及其相关问题解答
![圆幂定理及其相关问题解答](https://img.taocdn.com/s3/m/3ad4374d91c69ec3d5bbfd0a79563c1ec5dad7e3.png)
圆幂定理及其相关问题解答1. 圆幂定理简介圆幂定理是平面几何中的一个重要定理,用于解决与圆相关的问题。
它给出了在一个平面内,一个点到圆的两条切线所构成的线段与该点到圆心的距离乘积的平方等于该点到圆的距离与圆心到切点的距离乘积的平方。
圆幂定理的数学表达如下:PA * PB = PC * PD其中,P为点到圆的距离,A、B为切点,C为圆心到切点A的距离,D为圆心到切点B的距离。
2. 圆幂定理的证明圆幂定理的证明可以通过构造垂直,利用勾股定理和相似三角形推导得到。
具体证明过程如下:假设点P到圆O的两条切线分别与圆O相交于A、B两点。
连接线段OP,并设其交点为C。
根据正弦定理可得:PA / sin ∠PAC = PC / sin ∠CPAPB / sin ∠PBC = PC / sin ∠CPB由于∠CPA = ∠CPB,而sin ∠PAC = sin ∠PBC,因此有:PA / PB = sin ∠PBC / sin ∠PAC由于∠PAC和∠PBC都是直角,所以sin ∠PAC = PC/PA,sin ∠PBC = PC/PB。
将上述结果代入可得:PA * PB = PC^2同样的方式可以得到另一组切线的结论。
综上所述,圆幂定理得到证明。
3. 圆幂定理的应用圆幂定理在解决与圆相关的问题时具有重要的应用价值,下面介绍几个常见的问题及其解法:3.1 问题一:求解切线长度已知一个圆的半径为r,以及一个点P到该圆的距离d,求解与该点P到圆的两条切线的长度。
解法:根据圆幂定理可得:PA * PB = PC * PD = d^2 - r^2由于PA = PB,所以:PA = PB = sqrt(d^2 - r^2)因此,切线长度为sqrt(d^2 - r^2)。
3.2 问题二:判断两个圆的位置关系已知两个圆的半径分别为r1和r2,以及两个圆的圆心之间的距离d,判断两个圆的位置关系。
解法:根据圆幂定理可得:(r1 + r2)^2 = d^2根据以上公式,可以得到以下几种情况:•当d < r1 + r2时,两个圆相交•当d = r1 + r2时,两个圆相切•当d > r1 + r2时,两个圆相离3.3 问题三:求解切点坐标已知一个圆的半径为r,以及一个点P到该圆的距离d,求解与该点P到圆的两条切线的切点坐标。
圆幂定理
![圆幂定理](https://img.taocdn.com/s3/m/f0cba91e680203d8ce2f24c6.png)
圆幂定理圆幂定理是对、及(切割线定理推论)以及它们推论统一归纳的结果。
=PO^2-R^2(该结论为)所以圆内的点的幂为负数,圆外的点的幂为正数,圆上的点的幂为零。
相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等。
切定理:从圆外一点引圆的和割线,是这点到割线与圆交点的两条线段长的。
割线定理:从圆外一点P引两条割线与圆分别交于A、B;C、D,则有PA·PB=PC·PD。
统一归纳:过任意不在圆上的一点P引两条直线L1、L2,L1与圆交于A、B(可重合,即切线),L2与圆交于C、D(可重合),则有PA·PB=PC·PD。
问题1相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的乘积相等。
证明:连结AC,BD,由的推论,得∠A=∠D,∠C=∠B。
∴△PAC∽△PDB∴PA/PD=PC/PB∴PA·PB=PC·PD问题2割线定理:从圆外一点P引两条割线与圆分别交于则有PA·PB=PC·PD,当PA=PB,即直线AB重合,即PA切线时得到切线定理PA^2=PC·PD证明:(令A在P、B之间,C在P、D之间)∵ABCD为∴∠CAB+∠CDB=180°又∠CAB+∠PAC=180°∴∠PAC=∠CDB∵∠APC公共∴△APC∽△DPB∴PA/PD=PC/PB∴PA·PB=PC·PD切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项几何语言:∵PT切⊙O于点T,PBA是⊙O的割线∴PT^2=PA·PB(切割线定理)推论从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等几何语言:∵PBA、PDC是⊙O的割线∴PD·PC=PA·PB(切割线定理推论)问题3过点P任作直线交定圆于两点A、B,证明PA·PB为定值(圆幂定理)。
圆幂定理及其应用之一
![圆幂定理及其应用之一](https://img.taocdn.com/s3/m/51c6ad116d85ec3a87c24028915f804d2a168742.png)
圆幂定理及其应用之一编者注:本专题本来我打算放到后面写,但是昨天和今天通过考试及学生提问,我发现很多学生对圆幂的概念不清,产生了极大的错误,所以先写一篇概念,以正视听。
“yuan”幂“yang”幂老婆看到这篇文章的标题,第一反应是“杨幂定理”!不过读起来确实有点像,虽然圆幂定理在数学中是很著名的定理,不过在当今中国应该还是没有杨幂的名气大。
言归正传,作为第一篇,本篇主要写关于圆幂的三个概念:点对圆的幂、两圆根轴、三圆根心。
众所周知,如图,半径为r的圆O内相交于E两弦AB、CD,有相交弦定理:AE*BE=CE*DE=r^2-OE^2,同样对半径为r的圆O外点E,ET为圆切线,EAB、ECD为割线,则有切割线定理[1]:ET^2=EA*EB=EC*ED=OE^2- r^2。
为了把他们统一起来,我们引入点E对半径为r的圆O的幂[2] 为:由定义知:E在圆内时,p(E)<>E在圆上时,p(E)=0;E在圆外时,p(E)>0,即为过E的圆的切线长的平方。
从而圆幂的范围为:若过E的任意直线交圆O于A、B两点,则容易证明:圆幂定理:用向量(或者有向线段)的乘积表示圆幂的目的就是为了将切割线定理和相交弦定理中的正负号统一起来。
这里需要特别强调的是:刚开始接触圆幂概念的人会觉得很奇怪,为什么要引入一个负值呢,明明两个线段的乘积为正的,为什么要画蛇添足,引入有向线段的乘积来表示圆幂呢?所以很多竞赛教材都将圆幂定义成这恰恰是画蛇添足!还有些教材觉得加不加绝对值无所谓,都是合理的。
事实上,定义中绝对不能加绝对值!!至于原因,请允许我先买个关子,一会儿讲到根轴的时候再说明。
在解析几何中,点E(a,b)对圆O:的幂,不难用定义得到这样定义圆幂其实更简单明了,就是将点的坐标带入圆的解析式中即可。
对一个圆而言,每个点都有一个圆幂。
下面自然的问题是对两个圆呢?最简单的问题是:对两个圆的幂相等的点轨迹是什么?当然很多人知道这就是所谓的两圆的根轴,是一条与两圆连心线垂直的直线,若两圆相交,根轴即为两圆公共弦。
圆中的重要模型-圆幂定理模型(解析版)
![圆中的重要模型-圆幂定理模型(解析版)](https://img.taocdn.com/s3/m/195dd9fbba4cf7ec4afe04a1b0717fd5360cb2ff.png)
圆中的重要模型--圆幂定理模型圆幂定理是一个总结性的定理,是对相交弦定理、切割线定理、割线定理、弦切角定理、托勒密定理以及它们推论的统一与归纳。
可能是在19世纪由德国数学家施泰纳(Steiner )或者法国数学家普朗克雷(Poncelet )提出的。
圆幂定理的用法:可以利用圆幂定理求解与圆有关的线段比例、角度、面积等问题。
模型1.相交弦模型条件:在圆O 中,弦AB 与弦CD 交于点E ,点E 在圆O 内。
结论:△CAE ∼△BDE ⇒EC EB =EA ED⇒EC ⋅ED =EB ⋅EA 。
1(2023·广东广州·九年级校考期中)如图,两个同心圆,大圆的弦AB 与小圆相切于点P ,大圆的弦CD 经过点P ,且CD =13,PD =4,两圆组成的圆环的面积是.【答案】36π【分析】连接AC ,BD ,OP ,OA ,先根据切线的性质定理和垂径定理证出PA =PB ,再证明△APC ∽△DPB ,得到AP DP =CP BP,代入数据求得AP =BP =6,最后根据圆环的面积公式进行计算即可求解.【详解】解:如图,连接AC ,BD ,OP ,OA ,∵大圆的弦AB 与小圆相切于点P ,∴OP ⊥AB ,∴PA =PB ,OA 2-OP 2=AP 2,∵CD =13,PD =4,∴PC =13-4=9,∵∠BAC =∠BDC ,∠C =∠B ,∴△APC ∽△DPB ,∴AP DP =CP BP ,即AP 4=9BP,解得:AP =BP =6(负值舍去),∴圆环的面积为:π⋅OA 2-π⋅OP 2=π⋅AP 2=36π,故答案为:36π.【点睛】此题综合运用了切线的性质定理、垂径定理、勾股定理、圆周角定理、圆环的面积公式,分别求出大圆和小圆的半径是解题的关键.2(2023·江西景德镇·九年级校考期末)如图,PT是⊙O的切线,T为切点,PA是割线,交⊙O于A、B两点,与直径CT交于点D.已知CD=2,AD=3,BD=4,那PB=.【答案】20.【分析】连接AC,BT,AT,易证∆CAD~∆BTD,得到TD=6,易证:∆BTP~∆TAP,得:TP2=AP⋅BP,设PB=x,则AP=x+7,TP2=(x+7)⋅x,PD=x+4,根据勾股定理,即可求解.【详解】连接AC,BT,AT,∵∠CAD=∠BTD,∠ADC=∠TDB,∴∆CAD~∆BTD,∴CD BD =ADTD,即:24=3TD∴TD=6,∵PT是⊙O的切线,T为切点,∴∠BTP+∠BTD=90°,∵CT是直径,∴∠CAD+∠TAP=90°∵∠CAD=∠BTD,∴∠BTP=∠TAP,∵∠P=∠P,∴∆BTP~∆TAP,∴TPAP =BPTP,即:TP2=AP⋅BP,设PB=x,则AP=x+7,TP2=(x+7)⋅x,PD=x+4,∵在Rt∆DPT中,DT2+PT2=PD2,∴62+(x+7)x=(x+4)2,解得:x=20,故答案是:20.【点睛】本题主要考查相似三角形的判定和性质定理与圆的性质的综合,根据题意,添加辅助线,构造相似三角形,是解题的关键.3(2023·江苏·九年级专题练习)相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等.(1)为了说明相交弦定理正确性,需要对其进行证明,如下给出了不完整的“已知”“求证”,请补充完整,并写出证明过程.已知:如图①,弦AB,CD交于点P,求证:.(2)如图②,已知AB是⊙O的直径,AB与弦CD交于点P,且AB⊥CD于点P,过D作⊙O的切线,交BA的延长线于E,D为切点,若AP=2,⊙O的半径为5,求AE的长.【答案】(1)PA ⋅PB =PC ⋅PD ,证明见解析(2)103【分析】(1)先证明△ACP ∽△DBP ,再利用相似的性质即可;(2)利用(1)可知PA ⋅PB =PC ⋅PD ,求出PD ,再证明△OPD ∼△DPE ,利用相似的性质求出PE ,求差即可得到AE 的长.【详解】(1)求证:PA ⋅PB =PC ⋅PD .证明:连接AC 、BD .如图①.∵∠A =∠D ,∠C =∠B .∴△ACP ∽△DBP .∴AP PD =PC BP.∴PA ⋅PB =PC ⋅PD .(2)解:∵AP =2,OA =5,PB =10-2=8.由(1)可知PA ⋅PB =PC ⋅PD .∴PC ⋅PD =16.∵AB ⊥CD ,AB 是⊙O 的直径,PC =PD ,PD =4.连接OD .如图②.∵DE 为切线.∴∠EDO =90°.∵∠1+∠2=90°.∠E +∠2=90°.∴∠1=∠E .∴△OPD ∼△DPE .∵OP PD =PD PE,∴OP ⋅PE =PD ⋅PD .∴16=3PE ,PE =163.又∵AP =2.∴AE =163-2=103.【点睛】本题考查了圆的相关性质,三角形相似的判定与性质,严格的逻辑思维和严密的书写过程是解题的关键.模型2.双割线模型条件:如图,割线CH 与弦CF 交圆O 于点E 和点G 。
圆幂定理的内容
![圆幂定理的内容](https://img.taocdn.com/s3/m/38f785a5760bf78a6529647d27284b73f3423663.png)
圆幂定理的内容以下是 7 条关于圆幂定理的内容:1. 嘿,你知道吗?圆幂定理可有意思啦!就好比有两个点,在圆外和圆内的情况那可是大不同哦!比如说,有一个圆,点A 在圆外,点B 在圆内,那它们到圆的关系就像一场有趣的较量呢,这就是圆幂定理在起作用呀!比如你看,点 A 到圆的切线长和割线长之间的关系,是不是很神奇?2. 哎呀呀,圆幂定理啊,就像是一把神奇的钥匙!打开了圆与点之间奇妙关系的大门!想象一下,在一个大大的圆里,点 C 离圆很近,点 D 离圆稍远,它们的存在是不是让圆变得更加丰富多彩啦?就好像生活中的不同角色一样。
比如计算一下点 C 和点 D 到圆的各种距离,就能深深感受到圆幂定理的魅力啦!3. 哇塞,圆幂定理真的超有趣的!可以把圆和点的关系变得清晰明了。
举个例子呀,你看那个圆,还有点 E 和点 F 在它周围,就像好朋友围着它一样。
这种关系下,圆幂定理就像一个指挥家,指挥着它们之间距离的变化呢!比如观察点 E 和点 F 到圆的割线和交点的情况,神奇吧?4. 嘿哟,圆幂定理可不是一般的厉害!它能让我们看到圆和点那些隐藏的联系呢!好比一个舞台,圆是主角,点G 和点H 是配角,它们相互配合。
比如实际算一下点 G 和点 H 与圆相关的一些长度或数量,你就会惊叹,原来圆幂定理这么牛啊!5. 哇哦,圆幂定理呀!它就像一个神秘的魔法!可以让圆和点之间发生很多意想不到的事情呢!比如说有个圆,点 I 和点 J 在它身边,它们的故事可精彩啦!通过圆幂定理,我们能知道点 I 和点 J 对圆产生了怎样的影响。
就像在探索一个奇妙的世界,不是吗?比如试着分析一下它们到圆的某些线段长度,绝对让你大开眼界!6. 哈哈,圆幂定理真的让人大开眼界呀!就像一道亮光,照亮了圆和点的复杂关系。
想象一下,圆K,还有点L 和点M 在旁边,它们相互作用呢!用圆幂定理去理解这些关系,就好像解开一个谜团一样刺激!比如观察他们在圆上产生的一些变化情况,怎能不让人着迷?7. 圆幂定理呀,那可真是太重要啦!它可是连接圆与点的重要桥梁呢!无论是在数学世界里还是在我们的实际生活中,都有着不可忽视的作用呀!当真的去探索和应用它的时候,你会发现它的魅力无穷无尽!就像很多数学定理一样,看似普通,实则蕴含着巨大的能量呢!。
高中数学第一章相似三角形定理与圆幂定理131圆幂定理课件新人教B版选修4
![高中数学第一章相似三角形定理与圆幂定理131圆幂定理课件新人教B版选修4](https://img.taocdn.com/s3/m/1b555dcbbb0d4a7302768e9951e79b89680268a7.png)
(4)利用“中间比”代换得到,在证明比例线段(不论共线与否),如果
不能直接运用有关定理,不妨就寻找“中间比”进行代换试试.
与圆有关的比例线段证明要诀:圆幂定理是法宝,相似三角形中找
诀窍,联想射影定理分角线,辅助线来搭桥,第三比作介绍,代数方法不
UITANGYANLIAN
M 目标导航 Z 知识梳理 Z 重难聚焦
UBIAODAOHANG
1
2
3
HISHI SHULI
HONGNAN JVJIAO
D典例透析 S随堂演练
IANLI TOUXI
4
解:如图所示,取 BC 的中点 D,连接 OD 和 OB,则 OD⊥BC.
易知 OD= 3,
则 BC=2BD=2 2 - 2 =2 2 -3.
可少,分析综合要记牢,十有八九能见效.
M 目标导航 Z 知识梳理 Z 重难聚焦
UBIAODAOHANG
HISHI SHULI
HONGNAN JVJIAO
D典例透析 S随堂演练
IANLI TOUXI
UITANGYANLIAN
2.垂径定理、射影定理、相交弦定理、切割线定理之间的关系
剖析如图,PA,PB为☉O的两条切线,A,B为切点,PCD为过圆心O的
大致可分为以下几种:
(1)直接由相似形得到,即先由已知条件证得两个三角形相似,从而
直接得到有关对应线段成比例.这是简单型的比例线段问题.
(2)利用“等线段”代换得到,在证明“等积式”形如a2=bc时,如果其中
有三条线段共线,那么一般往往把平方项线段用“等线段”进行代换.
(3)利用“中间积”代换得到,在证明“等积式”形如a2=bc时,如果其中
人教B版高中数学选修4-1课件 1.3.1圆幂定理课件2
![人教B版高中数学选修4-1课件 1.3.1圆幂定理课件2](https://img.taocdn.com/s3/m/fef0684927284b73f3425008.png)
∴r=12(AC-CD)=12
14-2
714=5
14 14 .
反思感悟 (1)应用切割线定理的一般步骤: ①观察图形,寻找切割线定理成立的条件; ②找准相关线段的长度,列出等式; ③解方程,求出结果. (2)应用切割线定理及割线定理的前提条件: 只有从圆外一点才可能产生割线定理或切割线定理,切割线定理 是指一条切线和一条割线,而割线定理则是指两条割线,只有弄 清前提,才能正确运用定理.
【考题1】 (2012·北京高考)如图,∠ACB=90°,CD⊥AB于点 D,以BD为直径的圆与BC交于点E,则( ). A.CE·CB=AD·DB B.CE·CB=AD·AB C.AD·AB=CD2 D.CE·EB=CD2 解析 ∵CD⊥AB,∴以BD为直径的圆与CD相切.∴CD2= CE·CB. 在 Rt△ABC 中 , CD 为 斜 边 AB 上 的 高 , 有 CD2 = AD·DB,因此,CE·CB=AD·DB. 答案 A 反思感悟 本题考查直角三角形射影定理.切割线定理等基 础知识,考查推理论证能力.
根据切割线定理,得 AB2=BM·BN,即 22=x(x+x).
解得 x= 2,∴BC=3x=3 2.
(2)在 Rt△ABC 中,
AC= BC2-AB2= 14,
由割线定理,得
CD·AC=CN·CM,由(1)可知,
CN= 2, CM=BC-BM=3 2- 2=2 2,AC= 14,
∴CD=CNA·CCM=2 714,
答案
9 8a
反思感悟 本小题主要考查解直角三角形知识及相交弦定理的应 用.
3.圆幂定理:
已知⊙(O , r),通过一定点 的任意一条割线交圆于A , B两点,则:
当点P在圆外时,k= PO2 - r2 ; 当点P在圆内时,k= r2 - PO2; 当点P在⊙O上时,k= 0.
圆幂定理‘-概述说明以及解释
![圆幂定理‘-概述说明以及解释](https://img.taocdn.com/s3/m/89e9d09ec0c708a1284ac850ad02de80d4d80689.png)
圆幂定理‘-概述说明以及解释1.引言1.1 概述部分:圆幂定理作为几何学中重要的定理之一,其内容涉及到圆和直线之间的关系。
通过圆幂定理,我们可以推导出在圆内或圆外的点与圆的关系,从而解决相关的几何问题。
该定理的基本概念和证明方法将在后续章节进行详细介绍。
圆幂定理在数学研究和实际问题解决中具有重要的应用价值,我们将在文章的后续部分探讨其具体应用案例。
通过本文的学习,读者将对圆幂定理有更深入的理解,从而提升数学知识和解题能力。
1.2 文章结构:本文主要分为引言、正文和结论三个部分。
在引言部分,首先概述了圆幂定理的基本概念和意义,接着介绍了文章的结构和目的,为读者提供了全文的概览。
在正文部分,将详细阐述圆幂定理的基本概念,包括定义、原理和相关定理等内容;然后介绍圆幂定理的证明方法,探讨其推导过程和逻辑;最后探讨圆幂定理在几何学和其他领域中的应用,展示其在实际问题中的作用和意义。
在结论部分,将对全文进行总结,回顾圆幂定理的重要性和实际应用,同时展望未来对该定理的进一步研究和应用方向。
整个结构清晰,逻辑严谨,希望能为读者提供全面深入的了解和思考。
1.3 目的圆幂定理是几何学中的重要定理之一,它可以帮助我们理解圆的性质和与其他几何图形之间的关系。
本文的目的在于深入探讨圆幂定理的基本概念、证明方法以及应用,以便读者能够更全面地了解这一定理的内容和意义。
通过学习圆幂定理,我们可以更好地解决与圆相关的几何问题,拓展我们的数学思维,提高我们的解题能力。
同时,深入理解圆幂定理还可以为我们之后学习更高级的几何知识打下良好的基础。
除此之外,通过探讨圆幂定理的重要性和应用,我们也可以更好地体会到数学在现实生活中的应用,激发我们对数学的兴趣和热情。
希望本文能够为读者带来启发,并引起他们对数学的思考和探索欲望。
2.正文2.1 圆幂定理的基本概念圆幂定理是几何学中的一项重要定理,它描述了圆与直线之间的关系。
在介绍圆幂定理之前,我们需要了解一些基本概念。
人教版B版高中数学选修4-1(B版)圆幂定理
![人教版B版高中数学选修4-1(B版)圆幂定理](https://img.taocdn.com/s3/m/4c8c1595bb4cf7ec4bfed014.png)
切割线定理
切线长定理
CA
•P
•P
BD
PA•PB=PC•PD
AB CD
PA•PB=PC•PD
A(B)
•P
C
D
PA²=PC•PD
•P
C PA=PC
统一叙述为:过一点P(无论点P在圆内,还是在圆外) 的两条直线,与圆相交或相切(把切点看成两个重合 的“交点”)于点A、B、C、D,PA•PB=PC•PD 。
(2)EF=FG
(1)由EF//CB得∠BCA=∠FED 又∠BCA=∠FAE ,故∠FED=∠FAE ∵∠EFD=∠AFE ,∴△DFE∽△EFA
(2)由(1) 得EF2=FD·FA 又FG是圆的切线 , 故FG2=FD·FA ∴EF2= FG2 即EF =FG
例3:两圆相交于A,B两点,P为两圆公共 弦AB上任一点,从P引两圆的切线PC,PD, 求证:PC=PD
PC2= PA· PB
如图,PAB和PCD是⊙O
的两条割线。
可得:PA· PB=PC· PD
D
C
O
仍是由三角形相似得
P A
PA· PB=PC· PD
B
割线定理 从圆外一点引圆的两条割线, 这一点到每条割线与圆的交点的两条线段长 的积相等。
切割线定理 从圆外一点引圆的 切线和割线,切线长是这点到割 线与圆交点的两条线段长的比例 中项。
证明:∵PC、PD为两圆切线 ∴PC2=PB·PA ,
PD2=PB·PA , ∴PC2=PD2 即PC=PD
如图,在半径为4的⊙O中,AB、CD是两条直径,M 为OB的中点,CM的延长线交⊙O于点E,且 EM>MC。连接DE,DE= 15 , 求EM的长。
圆幂定理讲义(带答案解析)
![圆幂定理讲义(带答案解析)](https://img.taocdn.com/s3/m/a67a9dbb27d3240c8447efeb.png)
圆幂定理STEP 1:进门考理念:1. 检测垂径定理的基本知识点与题型。
2. 垂径定理典型例题的回顾检测。
3. 分析学生圆部分的薄弱环节。
(1)例题复习。
1.(2015•夏津县一模)一副量角器与一块含30°锐角的三角板如图所示放置,三角板的直角顶点C落在量角器的直径MN上,顶点A,B恰好都落在量角器的圆弧上,且AB∥MN.若AB=8cm,则量角器的直径MN= cm.【考点】M3:垂径定理的应用;KQ:勾股定理;T7:解直角三角形.【分析】作CD⊥AB于点D,取圆心O,连接OA,作OE⊥AB于点E,首先求得CD的长,即OE的长,在直角△AOE中,利用勾股定理求得半径OA的长,则MN即可求解.【解答】解:作CD⊥AB于点D,取圆心O,连接OA,作OE⊥AB于点E.在直角△ABC中,∠A=30°,则BC=AB=4cm,在直角△BCD中,∠B=90°﹣∠A=60°,∴CD=BC•sinB=4×=2(cm),∴OE=CD=2,在△AOE中,AE=AB=4cm,则OA===2(cm),则MN=2OA=4(cm).故答案是:4.【点评】本题考查了垂径定理的应用,在半径或直径、弦长以及弦心距之间的计算中,常用的方法是转化为解直角三角形.2.(2017•阿坝州)如图将半径为2cm的圆形纸片折叠后,圆弧恰好经过圆心O,则折痕AB的长为()A.2cm B.cm C.2cm D.2cm【考点】M2:垂径定理;PB:翻折变换(折叠问题).【分析】通过作辅助线,过点O作OD⊥AB交AB于点D,根据折叠的性质可知OA=2OD,根据勾股定理可将AD的长求出,通过垂径定理可求出AB的长.【解答】解:过点O作OD⊥AB交AB于点D,连接OA,∵OA=2OD=2cm,∴AD===(cm),∵OD⊥AB,∴AB=2AD=2cm.故选:D.【点评】本题考查了垂径定理和勾股定理的运用,正确应用勾股定理是解题关键.3.(2014•泸州)如图,在平面直角坐标系中,⊙P的圆心坐标是(3,a)(a>3),半径为3,函数y=x的图象被⊙P截得的弦AB的长为,则a的值是()A.4 B. C. D.【考点】M2:垂径定理;F8:一次函数图象上点的坐标特征;KQ:勾股定理.【专题】11 :计算题;16 :压轴题.【分析】PC⊥x轴于C,交AB于D,作PE⊥AB于E,连结PB,由于OC=3,PC=a,易得D点坐标为(3,3),则△OCD为等腰直角三角形,△PED也为等腰直角三角形.由PE⊥AB,根据垂径定理得AE=BE=AB=2,在Rt△PBE中,利用勾股定理可计算出PE=1,则PD=PE=,所以a=3+.【解答】解:作PC⊥x轴于C,交AB于D,作PE⊥AB于E,连结PB,如图,∵⊙P的圆心坐标是(3,a),∴OC=3,PC=a,把x=3代入y=x得y=3,∴D点坐标为(3,3),∴CD=3,∴△OCD为等腰直角三角形,∴△PED也为等腰直角三角形,∵PE⊥AB,∴AE=BE=AB=×4=2,在Rt△PBE中,PB=3,∴PE=,∴PD=PE=,∴a=3+.故选:B.【点评】本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理和等腰直角三角形的性质.4.(2013•内江)在平面直角坐标系xOy中,以原点O为圆心的圆过点A (13,0),直线y=kx﹣3k+4与⊙O交于B、C两点,则弦BC的长的最小值为.【考点】FI:一次函数综合题.【专题】16 :压轴题.【分析】根据直线y=kx﹣3k+4必过点D(3,4),求出最短的弦CB是过点D且与该圆直径垂直的弦,再求出OD的长,再根据以原点O为圆心的圆过点A(13,0),求出OB的长,再利用勾股定理求出BD,即可得出答案.【解答】解:∵直线y=kx﹣3k+4=k(x﹣3)+4,∴k(x﹣3)=y﹣4,∵k有无数个值,∴x﹣3=0,y﹣4=0,解得x=3,y=4,∴直线必过点D(3,4),∴最短的弦CB是过点D且与该圆直径垂直的弦,∵点D的坐标是(3,4),∴OD=5,∵以原点O为圆心的圆过点A(13,0),∴圆的半径为13,∴OB=13,∴BD=12,∴BC的长的最小值为24;故答案为:24.【点评】此题考查了一次函数的综合,用到的知识点是垂径定理、勾股定理、圆的有关性质,关键是求出BC最短时的位置.STEP 2:新课讲解1、熟练掌握圆幂定理的基本概念。
【初中数学】圆幂定理
![【初中数学】圆幂定理](https://img.taocdn.com/s3/m/db8b515e5e0e7cd184254b35eefdc8d376ee14b2.png)
【初中数学】圆幂定理圆幂定理是一个总结性的定理,是对相交弦定理、切割线定理及割线定理(切割线定理推论)以及它们推论的统一与归纳,所以目前书上已经把这个定理删除了,也作为补充知识点介绍。
根据两条与圆有相交关系的线的位置不同,有以下定理:(1)相交弦定理(2)切割线定理(3)割线定理从上述定理可以看出,两条线的位置从内到外,都有着相似的结论。
经过总结和归纳,便得出了圆幂定理。
圆幂定理是几何学中的一条定理,它描述了一个点与一个圆之间的关系。
具体来说,圆幂定理说明了如果有一条直线通过了一个P点,与一个圆相交于点A和点B,那么这个点P到点A、点B的长度的乘积等于点P到圆心O的距离的平方减去圆的平方的绝对值,即可以表示为:PA·PB=|PO²-r²|(r表示圆的半径).如何证明这个定理呢?就需要分三种情况讨论,点P与圆的位置关系。
我们非常清楚,点与圆的位置关系只有三种:圆外、圆上、圆内。
1、点P在圆外如图,点P在⊙O外部,过点P的直线与⊙O相交于A、B两点,连接OP交⊙O于点C,⊙O的半径为r.证明:如图,延长PO交⊙O与点D.由割线定理可得:PA·PB=PC·PD∵ PC=PO+OC,PD=PO+OD,OC=OD=r∴ PC=PO+r,PD=PO+r∴ PA·PB=(PO+r)(PO-r)∴ PA·PB=PO²-r²=|PO²-r²|2、点P在圆内如图,点P在⊙O内部,过点P的直线与⊙O相交于A、B两点,连接OP交⊙O于点C,⊙O的半径为r.证明:延长PO交⊙O于C、D两点根据相交弦定理,得:PA·PB=PC·PD∵ PC=OC-PO,PD=PO+OD,OD=OC=r∴ PC=r-PO,PD=PO+r∴ PA·PC=(r-OP)(PO+r)∴ PA·PC=r²-PO²=|PO²-r²|3、当点P在圆上通过以上两种情况的证明可得,PA·PB=|PO²-r²|,那么当P点在圆上时,P、A 两点重合,故PA=0,OP=r,所以PA·PB=0,PO²-r²=0,所以也成立。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
B
PC PD ?
C
P
图2 24
D
O
AB
图2 25
一 与圆有关的比例线段 切割线定理
从圆外一点引圆的一条割线与一条切线, 切线长是这点到割线与圆的两个交点的线段 的等比中项
已知:如图,从⊙O外一点P引⊙O的割线 PBA与切线PC,与⊙O分别交于点A、B与
2 求证: PA· PB = PC C
已知:如图,从⊙O外一点P引⊙O的两条 割线PBA与PDC,与⊙O分别交于点A、B 与 C、 D 求证:PA· PB=PC· PD
PD PA PB PC
A
B
O
· C
P
D
探究 在图2 24 中, 使割线 PB 绕 P 点运动到切线位置
P
D C A
O
图2 25, 是否还有PA PB
A
O
圆内接四边形的一个
B
C
E
外角等于它的内对角。
6 D
A 5
O
7
4 3 B 2
E
C 1
综上:
性质定理: 圆的内接四边 形的对角互补,并且任何 一个外角都等于它的内角 的对角。(内对角)
判定定理:
如果一个四边形对角互补,那么 这个四边形的四点共圆; 如果四边形的一个外角等于它的 内对角,那么这个四边形的四个 顶点共圆。
A
O B
图5
E D
C
已知:B D 180
反证法:以D在圆外为例 A 证明四点共圆:通常三 点做圆,证明第四点就 在这个圆上;或者两个 三点做圆,两圆一致 B D’
0
求证:四边形ABCD内接于圆
D
C
例3如图7,⊙1和⊙O2都经过A、B两点,经过 点A的直线CD与⊙O1交于点C,与⊙O2交于点D 经过点B的直线EF与⊙O1交于点E,与⊙O2交于 点F.求证:CE∥DF. D A C O 1
· ·
O2 B
图7
E
F
例2 如图6,已知AD是△ABC的外角 ∠EAC的平分线,交BC的延长线于点D延 长DA交△ABC的外接圆于点F,连接FB, FC. (1)求证:FB=FC; (2)若AB是△ABC的外接圆的直径, ∠EAC =120°,BC=6,求AD的长.
F B
图6
A
C
E
C
D
例1 如图5,AB是⊙O的直径,C是⊙O 外一点,且AC=AB,BC交⊙O于点D. 已知BC=4,AD=6,AC交⊙O于点E, 求四边形ABDE的周长.
A
B
O
PC PA PB PC
P ·
C
练习:
做诊断练习的1、2,
学力练习的1 答案: 4
9
2 3
二 圆内接四边形 若一个多边形各顶点都在同一 个圆上,那么,这个多边形叫做圆 内接多边形,这个圆叫做这个多边 形的外接圆。
D E C B
O
B
C
A
A F
O
D E
如图,四边形ABCD为 圆内接四边形;⊙O为 四边形ABCD外接圆。
(二)
一 与圆有关的比例线段
(1)相交弦定理
(2)割线定理
(3)切割线定理
圆幂定理
二 圆内接四边形
一 与圆有关的比例线段 相交弦定理
圆的两条相交弦,被交点分成两段的积相等
已知:如图,⊙O的两条弦AB、CD相交
于圆内一点P, 求证:PA· PB=PC· PD
D B P
PD PA PB PC
A
A
O
D
B
C
如图:圆内接四边形ABCD中, ∵ 弧BCD和弧BAD所对的 D 圆心角的和是周角
∴∠A+∠C=180°A 同理∠B+∠D=180°
B
O
C
圆内接四边形的对角互补。
如果延长BC到E,那么 ∠DCE+∠BCD = 180°
A
O
D
B
C
E
又 ∠A +∠BCD= 180°
所以∠A=∠DCE
因为∠A是与∠DCE相邻的内 角∠DCB的对角,我们把 ∠A叫做∠DCE的内对角。 D
C
DC,PAO源自探究 使圆的两条相交弦的交点
B
图2 23
D C
再到圆外图 2 24 , 结论 1 是否 还能成立?
B
P 从圆内运动到圆上 图 2 23 ,
P
A
O
图2 24
一 与圆有关的比例线段
割线定理
从圆外一点引圆的两条割线,这点到每条 割线与圆的交点的两条线段的积相等