函数图像知识点归纳梳理

合集下载

初中知识点归纳——函数图像篇

初中知识点归纳——函数图像篇

初中知识点归纳——函数图像篇函数图像是初中数学中的重要内容之一。

通过函数图像的形状、特点以及变化规律,可以深入理解函数的性质和作用。

本文将从函数图像的基本形状与分类、常见函数图像的特点及其变化规律等方面进行归纳与总结。

一、函数图像的基本形状与分类函数图像的形状可以分为线性函数、二次函数、指数函数和对数函数等几种常见类型。

1. 线性函数图像线性函数的特点是图像为一条直线。

直线的斜率表示了函数的增减趋势,当斜率为正时,函数图像呈上升趋势;当斜率为负时,函数图像呈下降趋势;斜率为0时,函数图像为水平直线。

2. 二次函数图像二次函数的图像通常为抛物线形状。

抛物线的开口方向由二次项的系数决定,当二次项的系数为正时,抛物线开口向上;当二次项的系数为负时,抛物线开口向下。

二次函数的图像还受到常数项的影响,常数项决定了抛物线的位置。

3. 指数函数图像指数函数的图像为指数曲线,呈现上升或下降的趋势。

指数函数的底数决定了曲线在坐标系中的位置和形状。

当底数大于1时,指数曲线呈现上升趋势;当底数小于1但大于0时,指数曲线呈现下降趋势。

4. 对数函数图像对数函数的图像为对数曲线,也呈现上升或下降的趋势。

对数函数的底数决定了曲线在坐标系中的位置和形状。

当底数大于1时,对数曲线呈现上升趋势;当底数小于1但大于0时,对数曲线呈现下降趋势。

二、常见函数图像的特点与变化规律1. 线性函数的特点与变化规律线性函数的图像为一条直线,具有以下特点和变化规律:(1)斜率决定了线性函数图像的倾斜程度和方向,斜率越大图像越陡峭,斜率为正表示函数图像上升,斜率为负表示函数图像下降。

(2)截距决定了线性函数图像与纵轴的交点位置,截距为正表示交点在纵轴上方,截距为负表示交点在纵轴下方。

2. 二次函数的特点与变化规律二次函数的图像为抛物线,具有以下特点和变化规律:(1)开口方向由二次项的系数决定,正系数表示抛物线开口向上,负系数表示抛物线开口向下。

(2)顶点是抛物线的最高点或最低点,在坐标系中的横坐标为顶点的x坐标,纵坐标为顶点的y坐标。

函数的图像知识点及题型归纳总结

函数的图像知识点及题型归纳总结

函数的图像知识点及题型归纳总结知识点精讲一、掌握基本初等函数的图像 (1)一次函数;(2)二次函数;(3)反比例函数;(4)指数函数;(5)对数函数;(6)三角函数. 二、函数图像作法 1.直接画①确定定义域;②化简解析式;③考察性质:奇偶性(或其他对称性)、单调性、周期性、凹凸性;④特殊点、极值点、与横/纵坐标交点;⑤特殊线(对称轴、渐近线等). 2.图像的变换 (1)平移变换①函数()(0)y f x a a =+>的图像是把函数()y f x =的图像沿x 轴向左平移a 个单位得到的; ②函数()(0)y f x a a =->的图像是把函数()y f x =的图像沿x 轴向右平移a 个单位得到的; ③函数()(0)y f x a a =+>的图像是把函数()y f x =的图像沿y 轴向上平移a 个单位得到的; ④函数()(0)y f x a a =+>的图像是把函数()y f x =的图像沿y 轴向下平移a 个单位得到的; (2)对称变换①i:函数()y f x =与函数()y f x =-的图像关于y 轴对称; ii:函数()y f x =与函数()y f x =-的图像关于x 轴对称;iii: 函数()y f x =与函数()y f x =--的图像关于坐标原点(0,0)对称; ②i:若函数()f x 的图像关于直线x a =对称,则对定义域内的任意x 都有()()f a x f a x -=+或()(2)f x f a x =-(实质上是图像上关于直线x a =对称的两点连线的中点横坐标为a ,即()()2a x a x a -++=为常数);ii: 若函数()f x 的图像关于点(,)a b 对称,则对定义域内的任意x 都有()2(2)()2()f x b f a x f a x b f a x =---=-+或③()y f x =的图像是将函数()f x 的图像保留x 轴上方的部分不变,将x 轴下方的部分关于x 轴对称翻折上来得到的(如图2-21(a )和图2-21(b ))所示④()y f x =的图像是将函数()f x 的图像只保留y 轴右边的部分不变,并将右边的图像关于y 轴对称得到函数()y f x =左边的图像即函数()y f x =是一个偶函数(如图2-21(c )所示).注:()f x 的图像先保留()f x 原来在x 轴上方的图像,做出x 轴下方的图像关于x 轴对称图形,然后擦去x 轴下方的图像得到;而()f x 的图像是先保留()f x 在y 轴右方的图像,擦去y 轴左方的图像,然后做出y 轴右方的图像关于y 轴的对称图形得到.这两变换又叫翻折变换. ⑤函数1()y fx -=与()y f x =的图像关于y x =对称.(3)伸缩变换①()(0)y Af x A =>的图像,可将()y f x =的图像上的每一点的纵坐标伸长(1)A >或缩短(01)A <<到原来的A 倍得到.②()(0)y f x ωω=>的图像,可将()y f x =的图像上的每一点的横坐标伸长(01)ω<<或缩短(1)ω>到原来的1ω倍得到. 题型归纳及思路提示题型1 由式选图(识图) 思路提示利用函数的性质(如定义域、值域、奇偶性、单调性、周期性、特殊点等)排除错误选项,从而筛选出正确答案例2.70 函数22xy x =-的图像大致是()分析观察四个选项给出的图像,区别在于函数零点的个数及单调性不同.解析解法一:当0x ≤时,函数2xy =单调递增,同时函数2y x =-单调递增,故函数()f x 在(],0-∞上单调递增,排除,C D ;当0x >时,()f x 存在两个零点122,4x x ==,所以排除选项B .故选A . 解法二:如图2-22所示,有图像可知,函数2xy =与函数2y x =的交点有3个,说明函数22xy x =-的AxOxyO y xx yO O y BCD零点有3个,故排除选项,B C ;当0x x <时,22x x >成立,即220x y x =-<,故排除选项D ,故选A .变式1 函数ln cos 22y x x ππ⎛⎫=-<< ⎪⎝⎭的图像是()变式2 在同一坐标系中画出函数log ,,xa y x y a y x a ===+的图像,可能正确的是()变式3 函数2y ax bx =+与log ,0,b ay x ab a b =≠≠在同一直角坐标系中的图像可能是()变式4(2012新课标全国卷10)已知函数1()ln(1)f x x x=+-,则()y f x =的图像大致为( )题型2 函数图像的应用 思路提示1利用函数图像判断方程解的个数.由题设条件作出所研究对象的图像,利用图像的直观性得到方程解的个数.例2.71函数0.5()2log 1xf x x =-的零点个数为( ).1A.2B.3C.4D解析令0.5()2log 10xf x x =-=可得0.51log 2xx ⎛⎫= ⎪⎝⎭.设0.5()log g x x =,1()2xh x ⎛⎫= ⎪⎝⎭,在同一坐标系下分别画出函数(),()g x h x 的图像,如图2-23所示.可以发现两个函数一定有2个交点,因此函数()f x 有2个零点.故选B .变式1 已知函数32,2()(1),2x f x x x x ⎧≥⎪=⎨⎪-<⎩,若关于x 的方程()f x k =有两个不同的实根,则实数k 的取值范围是变式2 直线1y =与曲线2y x x a =-+有4个交点,则a 的取值范围是变式3 函数()2ln f x x =的图像与函数2()45g x x x =-+的图像的交点个数为().3A .2B .1C .0D变式4 设定义域为R 的函数lg 1(1)()0(1)x x f x x ⎧-≠⎪=⎨=⎪⎩,则关于x 的方程[]2()()0f x bf x c ++=有7个不同实数解的充要条件是().00Ab c <>且.00B b c ><且.00C b c <=且.00Db c ≥=且变式5 设定义域为R 的函数1251(0)()44(0)x x f x x x x -⎧-≥⎪=⎨++<⎪⎩,若关于x 的方程[]22()2()0f x mxf x m -+=有7个不同实数解,则m =思路提示2利用函数图像求解不等式的解集及参数的取值范围.先作出所研究对象的图像,求出它们的交点,根据题意结合图像写出答案例2.72设函数1221(0)()(0)x x f x x x -⎧-≤⎪=⎨⎪>⎩,若0()1f x >,则0x 的取值范围是().(1,1)A -.(1,)B -+∞.(,2)(0,)C -∞+∞.(,1)(1,)D -∞-+∞分析作出函数()y f x =与1y =的图像,由图像得不等式的解集.解析作出函数()y f x =与1y =的图像,如图2-24所示,得0()1f x >所对应的0x 的取值范围是(,1)(1,)-∞-+∞,故选D .变式1 (2010新课标全国卷理24)设函数(),142+-=x x f 若不等式()ax x f ≤的解集非空,求a 的取值范围.变式2 已知函数()()(),040422⎪⎩⎪⎨⎧<-≥+=x x x x x x x f 若不等式()()a f a f >-22,则实数a 的取值范围是 ( ) A 、()()+∞⋃-∞-,21, B 、()2,1- C 、()1,2- D 、()()+∞⋃-∞-,12,变式3 (2012福建理15)对于实数a 和b ,定义运算“*”:a *b =⎪⎩⎪⎨⎧>-≤-ba ab b ba ab a ,,22,设()()12-=x x f *()1-x ,且关于x 的方程()()R m m x f ∈=恰有3个互不相等的实数根1x32,,x x ,则321x x x 的取值范围是 .变式4(2010新课标全国卷理11)已知函数()(),10621)100(lg ⎪⎩⎪⎨⎧>+-≤<=x x x x x f 若c b a ,,互不相等,且()()(),c f b f a f ==则abc 的取值范围是 ( )A 、()10,1B 、()6,5C 、()12,10D 、()24,20思路提示3利用函数图像求函数的最值,先做出所涉及到的函数图像,根据题目对函数的要求,从图像上寻找取得最值的位置,计算出结果,这体现出了数形结合的思想。

数学函数图像知识点总结

数学函数图像知识点总结

数学函数图像知识点总结函数是数学中的一个重要概念,通过函数可以描述各种现象和规律。

函数图像是函数的图形表示,通过函数图像可以直观地理解函数的性质和行为。

在学习数学函数图像时,我们需要掌握一些重要的知识点,包括函数的定义、基本函数图像、函数的性质、函数图像的变换等内容。

本文将围绕这些知识点展开详细的介绍。

一、函数的定义1.1 函数的定义在数学中,函数是一种特殊的关系,它将一个集合中的每一个元素都对应到另一个集合中的唯一元素。

通俗的讲,函数就是一种映射关系,将自变量映射到因变量。

函数的定义可以用一个公式、图形或者文字描述。

函数通常用f(x)或者y来表示,其中x是自变量,y是因变量。

函数的一般表示形式为y=f(x),其中f表示函数名,x表示自变量,y表示因变量。

1.2 函数的性质函数有许多重要的性质,包括定义域、值域、奇偶性、周期性等。

在图像中,这些性质通常能够直观地表现出来。

- 定义域:函数的自变量的取值范围称为函数的定义域。

在函数图像上,定义域通常可以通过图形的横坐标范围来表示。

- 值域:函数的因变量的取值范围称为函数的值域。

在函数图像上,值域通常可以通过图形的纵坐标范围来表示。

- 奇偶性:函数的奇偶性是指函数图像关于y轴对称还是关于原点对称。

奇函数的图像关于原点对称,偶函数的图像关于y轴对称。

- 周期性:具有周期性的函数在一定的距离内重复出现相似的图像。

周期函数的图像通常具有明显的重复性特征。

1.3 常见的基本函数在函数图像中,一些基本函数的图像具有重要的参考意义,这些函数包括线性函数、二次函数、指数函数、对数函数、三角函数等。

- 线性函数:线性函数的图像是一条直线,具有固定的斜率和截距。

- 二次函数:二次函数的图像是一个抛物线,具有一个顶点。

- 指数函数:指数函数的图像是以底数为底的指数幂函数,具有快速增长或者快速衰减的特点。

- 对数函数:对数函数的图像是以底数为底的对数函数,具有反映增长速度缓慢的特点。

高一数学函数图像知识点总结

高一数学函数图像知识点总结

高一数学函数图像知识点总结一、函数图像知识点汇总1.函数图象的变换1平移变换①水平平移:y=fx±aa>0的图象,可由y=fx的图象向左+或向右-平移a个单位而得到.②竖直平移:y=fx±bb>0的图象,可由y=fx的图象向上+或向下-平移b个单位而得到.2对称变换①y=f-x与y=fx的图象关于y轴对称.②y=-fx与y=fx的图象关于x轴对称.③y=-f-x与y=fx的图象关于原点对称.由对称变换可利用y=fx的图象得到y=|fx|与y=f|x|的图象.①作出y=fx的图象,将图象位于x轴下方的部分以x轴为对称轴翻折到上方,其余部分不变,得到y=|fx|的图象;②作出y=fx在y轴上及y轴右边的图象部分,并作y轴右边的图象关于y轴对称的图象,即得y=f|x|的图象.3伸缩变换①y=afxa>0的图象,可将y=fx图象上每点的纵坐标伸a>1时或缩a<1时到原来的a倍,横坐标不变.②y=faxa>0的图象,可将y=fx的图象上每点的横坐标伸a<1时或缩a>1时到原来的倍,纵坐标不变.4翻折变换①作为y=fx的图象,将图象位于x轴下方的部分以x轴为对称轴翻折到上方,其余部分不变,得到y=|fx|的图象;②作为y=fx在y轴上及y轴右边的图象部分,并作y轴右边的图象关于y轴对称的图象,即得y=f|x|的图象.2.等价变换可看出函数的图象为半圆.此过程可归纳为:1写出函数解析式的等价组;2化简等价组;3作图.3.描点法作图方法步骤:1确定函数的定义域;2化简函数的解析式;3讨论函数的性质即奇偶性、周期性、单调性、最值甚至变化趋势;4描点连线,画出函数的图象.注意:一条主线数形结合的思想方法是学习函数内容的一条主线,也是高考考查的热点.作函数图象首先要明确函数图象的形状和位置,而取值、列表、描点、连线只是作函数图象的辅助手段,不可本末倒置.两个区别1一个函数的图象关于原点对称与两个函数的图象关于原点对称不同,前者是自身对称,且为奇函数,后者是两个不同的函数对称.2一个函数的图象关于y轴对称与两个函数的图象关于y轴对称也不同,前者也是自身对称,且为偶函数,后者也是两个不同函数的对称关系.三种途径明确函数图象形状和位置的方法大致有以下三种途径.1图象变换:平移变换、伸缩变换、对称变换.2函数解析式的等价变换.3研究函数的性质.二、例题解析三、复习指导函数图象是研究函数性质、方程、不等式的重要工具,是数形结合的基础,是高考考查的热点,复习时,应重点掌握几种基本初等函数的图象,并在审题、识图上多下功夫,学会分析“数”与“形”的结合点,把几种常见题型的解法技巧理解透彻。

函数图像及知识点总结

函数图像及知识点总结

函数图像及知识点总结本文将首先介绍函数的概念,接着讨论函数图像的基本特征和性质,然后给出一些常见的函数图像和它们的性质分析,最后总结本文的内容。

一、函数的概念在代数学中,函数是一种对应关系,它将一个集合的元素映射到另一个集合的元素上。

具体地说,一个函数 f 是一个规则,它将集合 A 中的每个元素 x 映射到集合 B 中的一个元素f(x) 上。

其中,集合 A 被称为函数的定义域,集合 B 被称为函数的值域。

如果对于定义域A 中的每个元素 x,都有一个唯一的值 f(x) 与之对应,那么函数 f 是一一对应的,否则称为多对一的。

函数可以用多种方式来表示,比如用代数式、图表、表格或者用文字描述。

在本文中,我们将主要讨论函数图像的性质和特点。

二、函数图像的基本特征和性质在直角坐标系中,函数 f 的图像是它的定义域的点在坐标系中的表示,即点 (x, f(x))。

函数图像的基本特征和性质可以通过其图像的形状和位置来描述。

1. 函数的增减性和极值对于函数 f,如果在定义域的某个区间上,当 x1 < x2 时有 f(x1) < f(x2),那么称函数 f 在该区间上是增加的;如果在该区间上,当 x1 < x2 时有 f(x1) > f(x2),那么称函数 f 在该区间上是减少的。

极值是函数图像中的最高点或最低点,它们可以通过导数或者图像来求得。

2. 函数的奇偶性如果对于函数 f 的所有 x 都有 f(-x) = f(x),那么称函数 f 是偶函数;如果对于函数 f 的所有x 都有 f(-x) = -f(x),那么称函数 f 是奇函数。

3. 函数的周期性如果存在一个正数 T,使得对于函数 f 的所有 x 都有 f(x+T) = f(x),那么称函数 f 是周期函数,其中 T 被称为函数 f 的周期。

4. 函数的对称性如果函数图像关于某个点对称,那么称函数具有对称性。

常见的对称性有关于 x 轴、y 轴和原点的对称性。

高三函数的图像知识点

高三函数的图像知识点

高三函数的图像知识点函数是数学中非常重要的概念,而在高三数学学习中,关于函数的图像尤为重要。

本文将介绍高三函数的图像知识点。

一、函数的图像及其性质函数的图像是函数在直角坐标系中的几何表示,它能够直观地反映函数的性质。

常见的函数图像有线性函数、二次函数、指数函数、对数函数等。

1. 线性函数图像线性函数的图像是一条直线,表现为函数图像上的所有点都在线性关系 y = kx + b 上。

其中 k 表示斜率,b 表示截距。

2. 二次函数图像二次函数的图像是抛物线,分为开口向上和开口向下两种情况。

开口向上的抛物线表现为函数图像上的点低于顶点,并随着 x 的增大而增大。

开口向下的抛物线则相反。

3. 指数函数图像指数函数的图像是以底数大于 1 的指数函数图像。

当底数大于1 时,指数函数图像表现为随着 x 的增大,函数图像逐渐上升;当底数在 0 和 1 之间时,指数函数图像表现为随着 x 的增大,函数图像逐渐下降。

4. 对数函数图像对数函数的图像是以底数大于 1 的对数函数图像。

对数函数图像与指数函数图像是互逆的关系。

当底数大于 1 时,对数函数图像表现为随着 x 的增大,函数图像逐渐上升;当底数在 0 和 1 之间时,对数函数图像表现为随着 x 的增大,函数图像逐渐下降。

二、函数图像的平移、伸缩和翻折除了基本的函数图像形状外,我们还可以通过平移、伸缩和翻折等变换来改变函数图像。

1. 平移函数图像的平移是指将函数图像沿着 x 轴或 y 轴的方向移动一定的距离。

沿着 x 轴方向平移表示为 y = f(x - a),其中 a 表示平移的距离;沿着 y 轴方向平移表示为 y = f(x) + b,其中 b 表示平移的距离。

2. 伸缩函数图像的伸缩是指将函数图像在 x 轴或 y 轴的方向上进行拉伸或压缩,改变函数图像的幅度。

沿着 x 轴方向伸缩表示为 y = f(kx),其中 k 表示水平方向上的伸缩比例;沿着 y 轴方向伸缩表示为 y = kf(x),其中 k 表示垂直方向上的伸缩比例。

函数图像变换知识点总结

函数图像变换知识点总结

函数图像变换知识点总结一、基本概念1. 函数图像的平移函数图像的平移是指将原函数图像沿横轴或纵轴方向平移一定的距离。

平移的方向和距离可以是正数也可以是负数。

- 沿横轴方向平移:对于函数y=f(x),如果在横轴方向上平移了a个单位,新函数表示为y=f(x-a)。

- 沿纵轴方向平移:对于函数y=f(x),如果在纵轴方向上平移了b个单位,新函数表示为y=f(x)+b。

2. 函数图像的伸缩函数图像的伸缩是指将原函数图像沿横轴或纵轴方向进行拉伸或压缩。

伸缩的方向和比例可以是正数也可以是负数。

- 沿横轴方向伸缩:对于函数y=f(x),如果在横轴方向上进行了伸缩,新函数表示为y=f(kx)。

- 沿纵轴方向伸缩:对于函数y=f(x),如果在纵轴方向上进行了伸缩,新函数表示为y=kf(x)。

3. 函数图像的翻转函数图像的翻转是指对原函数图像进行镜像操作,可以分为关于横轴翻转和关于纵轴翻转两种情况。

- 关于横轴翻转:对于函数y=f(x),进行横轴翻转后,新函数表示为y=-f(x)。

- 关于纵轴翻转:对于函数y=f(x),进行纵轴翻转后,新函数表示为y=f(-x)。

二、函数图像变换的特点1. 平移:平移不改变函数的基本形状,只是改变了函数的位置;2. 伸缩:伸缩可以改变函数的斜率和幅度,但不改变函数的形状;3. 翻转:翻转改变了函数的整体形状,使得原函数变为其镜像;4. 组合变换:可以将多种变换进行组合,得到更复杂的函数图像变换。

三、函数图像变换的应用函数图像变换不仅仅是数学中的一种抽象概念,还可以应用到具体的问题中,如物理、经济等领域。

1. 物理问题:在物理学中,函数图像变换可以用来描述物体的运动、变形等。

例如,对于速度-时间图像,进行平移可表示物体的起始位置不同;进行伸缩则可以描述加速度的变化;进行翻转可以描述反向运动等情况。

2. 经济问题:在经济学中,函数图像变换可以用来描述经济模型的变化。

例如,对于需求-价格图像,进行平移可以表示需求量或价格的变化;进行伸缩可以描述需求的弹性;进行翻转可以描述替代品或补充品的关系等情况。

函数及其图像知识点总结

函数及其图像知识点总结

函数及其图像知识点总结
导数、函数的图像、微分的概念是微积分的重要知识点,下面对函数及其图像知识点进行总结。

导数
在微积分中,导数是用来描述函数变化率的概念。

如果一个函数y=f(x)在x=x0处有导数f'(x0),那么f'(x0)表示了函数f(x)在x=x0处的变化率。

导数也可以解释为函数在某一点的切线的斜率。

对于一个函数y=f(x),其导数可以用极限的方式来定义:
\[ f'(x)=\lim_{\Delta x\to 0}\frac{f(x+\Delta x)-f(x)}{\Delta x} \]
函数的图像
函数的图像是描述函数y=f(x)在坐标系中的关系的一种形象化表示。

函数的图像通常以曲线的形式呈现,曲线上的每个点(x,y)表示函数在自变量x取值为x时对应的函数值y。

函数的图像可以用各种方式来描述,比如使用表格、方程、图表等。

函数的图像是帮助我们直观理解函数性质的重要工具。

微分
微分是导数的一个重要应用,它用来描述函数的局部线性近似。

如果一个函数y=f(x)在
x=x0处可微,则存在一个线性函数y=l(x)和一个小量ε,使得当x足够接近x0时有
\[ f(x)=l(x)+ε \]
其中l(x)即为函数y=f(x)在x=x0处的切线方程,而ε则表示了函数f(x)和切线l(x)之间的误差。

微分的概念可以帮助我们更好地理解函数在某一点的性质。

综上所述,导数、函数的图像、微分是微积分中关于函数及其图像的重要知识点。

它们帮助我们理解函数的变化率、形状以及局部线性近似等性质,对于理解函数的行为和性质都起着至关重要的作用。

函数的图像知识点高三复习

函数的图像知识点高三复习

函数的图像知识点高三复习在高三数学的复习中,函数的图像知识点是非常重要的内容之一。

理解函数的图像特点可以帮助我们更好地解决与函数相关的各类问题。

本文将简要介绍函数的图像知识点,并带您回顾一些重要的概念和定理。

一、基本概念回顾1. 函数的定义:函数是一种特殊的关系,每个自变量都对应唯一的因变量。

常用的函数表示方法包括表达式、图像、映射关系、函数图、函数式等。

2. 定义域和值域:函数的定义域是自变量的取值范围,值域是因变量的取值范围。

3. 奇偶性:对于函数f(x),如果满足 f(-x) = f(x),则称该函数为偶函数;如果满足 f(-x) = -f(x),则称该函数为奇函数。

4. 单调性:设函数f(x)在定义域上有定义,若对于任意的x₁、x₂(x₁ < x₂),都有 f(x₁) ≤ f(x₂),则称f(x)在该定义域上是递增的;若对于任意的x₁、x₂(x₁ < x₂),都有 f(x₁) ≥ f(x₂),则称f(x)在该定义域上是递减的。

5. 极值和最值:设函数f(x)在定义域上有定义,如果存在x=a,使得f(a) ≥ f(x)(或f(a) ≤ f(x))对于该定义域内的任意x成立,则称 f(a) 为 f(x) 的极大值(或极小值);如果存在 x=b,使得f(b) ≥f(x)(或f(b) ≤ f(x))对于该定义域内的任意x成立,则称 f(b) 为f(x) 的最大值(或最小值)。

二、函数图像的特征1. 函数图像的对称性:函数图像可以表现出对称性,分为关于x轴对称、关于y轴对称和关于原点对称三种情况。

对称性可以根据奇偶性和函数的解析式进行判断。

2. 函数图像的平移:通过改变函数图像的解析式中的常数项,可以实现将函数图像在平面上进行平移。

平移可以使图像向左右、上下或者斜向平移。

3. 函数图像的伸缩:通过改变函数图像的解析式中的系数,可以实现对图像进行伸缩。

伸缩可以使图像在横向或纵向发生变换,使其变得更宽或更窄,更高或更低。

初中数学函数图像知识点汇总

初中数学函数图像知识点汇总

初中数学函数图像知识点汇总函数是数学中的重要概念,而函数图像则是理解函数性质的重要工具之一。

在初中数学中,学习函数图像有助于学生理解函数的变化规律、性质和应用。

下面将对初中数学函数图像的知识点进行详细总结。

1. 基本函数图像:(1) 常数函数 f(x)=a : 这是一条平行于x轴的直线,横坐标不变,纵坐标为常数a。

(2) 一次函数 f(x)=kx+b : 这是一条斜率为k的直线,纵截距为b。

(3) 平方函数 f(x)=x^2 : 这是一条开口向上的抛物线,对称轴是y轴。

(4) 绝对值函数 f(x)=|x| : 这是一条以原点为顶点的V字形折线。

2. 函数的变换:(1) 平移:将函数图像沿x轴或y轴平行地移动。

当函数图像向右平移h单位时,函数表示形式为f(x-h);当函数图像向上平移k单位时,函数表示形式为f(x)+k。

(2) 翻折:将函数图像沿x轴或y轴翻转。

当函数图像关于x轴对称时,函数表示形式为-f(x);当函数图像关于y轴对称时,函数表示形式为f(-x)。

(3) 压缩与拉伸:将函数图像沿x轴或y轴进行扩大或缩小。

当函数图像水平方向压缩为原来的1/a倍,纵轴方向拉伸为原来的a倍时,函数表示形式为f(ax);当函数图像水平方向拉伸为原来的a倍,纵轴方向压缩为原来的1/a倍时,函数表示形式为f(x/a)。

3. 常见函数图像特征:(1) 斜率:一次函数的斜率代表了函数图像的倾斜程度。

斜率越大,函数图像越陡峭。

(2) 零点:函数图像与x轴相交的点称为零点。

零点对应于函数的解,即f(x)=0。

(3) 最值:函数图像的最高点称为最大值,最低点称为最小值。

(4) 对称中心:若函数图像关于某一点对称,则该点为对称中心。

常见对称中心有原点和y轴。

(5) 单调性:函数图像在某一区间上递增或递减称为函数的单调性。

4. 常用函数图像的特点:(1) 常数函数 f(x)=a : 函数图像平行于x轴,斜率为0,没有零点,单调性为常数。

函数图像知识点归纳梳理

函数图像知识点归纳梳理

函数的图像【知识梳理】一、函数的图像1、作图方法:描点法和利用基本函数图象变换作图;作函数图象的步骤:①确定函数的定义域;②化简函数的解析式;③讨论函数的性质即单调性、奇偶性、周期性、最值(甚至变化趋势) ;④描点连线,画出函数的图象。

2、识图:分布范围、变化趋势、对称性、周期性等等方面.二、函数图像的变化1、平移变换: ( 1)水平平移:函数y f(x a)的图像可以把函数y f (x) 的图像沿x轴方向向左(a 0)或向右(a 0)平移| a |个单位即可得到;( 2)竖直平移:函数y f (x) a的图像可以把函数y f(x)的图像沿x轴方向向上(a 0) 或向下(a 0)平移|a| 个单位即可得到.左移 h 右移 h① y f(x)y f(x h);② y f(x) y f(x h);上移 h 下移 hy f(x)y f(x) h;④ y f(x) y f(x) h.③2、对称变换: (1)函数y f ( x)的图像可以将函数y f (x)的图像关于y轴对称即可得到;(2)函数y f (x) 的图像可以将函数y f (x) 的图像关于x轴对称即可得到;(3)函数y f ( x)的图像可以将函数y f (x)的图像关于原点对称即可得到;1(4)函数y f 1( x)的图像可以将函数y f(x) 的图像关于直线y x对称得到.x轴y 轴直线 x a 原点y f(x) y f(x);② y f(x) y f( x);③ y f(x) y f(2a x);④y f(x) y f( x).①ab提示:(i)若f(a x) f(b x),x R 恒成立,则y f (x)的图象关于x a b成轴对称图形,2ab若f(a x) f(b x),x R,则y f (x)的图象关于点( ,0) 成中心对称图形.21(ii ) 函数y f(a x) 与函数y f (b x)的图象关于直线x (b a)对称 .23、翻折变换:( 1)函数y | f (x) |的图像可以将函数y f(x)的图像的x 轴下方部分沿x轴翻折到x 轴上方,去掉原x 轴下方部分,并保留y f (x) 的x 轴上方部分即可得到;(2)函数 y f (| x |)的图像可以将函数 y f ( x)的图像右边沿 y 轴翻折到 y 轴左边替代原 y 轴左边部分并保留 y f(x)在 y 轴右边部分即可得到.yy=f(x)y a oyy=|f(x)|yy=f(|x|)aob cxa ob c x bc xa obc x4、伸缩变(1)函数 y af(x) (a 0)的图像可以将函数 y f(x)的图像中的每一点横坐标不变纵坐(a 1) 或压缩( 0 a 1)为原来的 a 倍得到;(2)函数 y f (ax) (a 0)的图像可以将函数 y f (x)的图像中的每一点纵坐标不变横坐标伸长 (a 1)或压缩1( 0 a 1 )为原来的 倍得到.axx y①y f(x)y f ( ) ; ② y f (x) y f (x) .【经典例题】【例 1】函数 y f(x)与 y g(x)的图像如下图:则函数 y f (x) g ( x)的图像可能是( A )yy=f(x)o例 2】说明由函数 y 2xyox的图像经过怎样的图像变换得到函数y 2 x 31的图像. y=g(x)C . B .A . D .y 2x 3的图像;解析】:( 1)将函数y 2x的图像向右平移 3个单位,得到函数2)作出函数y 2x 3的图像关于y轴对称的图像,得到函数y 2 x 3的图像;3)把函数y 2 x 3的图像向上平移 1个单位,得到函数y 2 x 3 1的图像.1例 3】( 1)试作出函数y x 的图像;x(2)对每一个实数x ,三个数x,x,1 x2中最大者记为y,试判断y是否是x的函数?若是,作出其图像,讨论其性质(包括定义域、值域、单调性、最值);若不是,说明为什么?【例 4】已知函数f (x) |x2 4x 3|(1)求函数f(x)的单调区间,并指出其增减性;(2)若关于x的方程f (x) a x至少有三个不相等的实数根,求实数a的取值范围.课堂练习】1、下列每组两个函数的图象中,正确的是()a23、已知函数y 与y ax2 bx, 则下列图象正确的是()xy1y=ax+1 y1-1 o 1x y=loga xoA. B. C.y=a xy=a x1yy y=ax+11xy=ax+1 o xD.2 y axbx 与指数函数y (b)x的图象只可能是(a2、在下列图象中,二次函数y= ax+1y=ax+14、函数y |1 x2| 的图象是(3x 15、函数y 3x x21的图象()A. 关于点( 2,3) 对称B. 关于点(2, 3) 对称C. 关于直线x 2对称D. 关于直线y 3对称6、设函数y f (x)定义在实数集上,则函数y f(x 1)与y f(1 x)的图象关于( )对称A. 直线x 0B. 直线x 1C. 点(0,0)D. 点(1,0)7、在以下四个按对应图象关系式画出的略图中,不正确...的是( )1 |x|23A.y |log2 x| B. y 2 C. y log 0.5 x D. y |x 3 |9、下列命题中:①函数y f (x)的图象与x f ( y)的图象关于直线y x对称;②若f(x) f ( x),则f (x) 的图象关于原点对称;③若f (x) f( x),则f (x)的图象关于y轴对称;④ y f(x)的图象与y f(x)的图象关于y 轴对称,其中真命题是( )A、②③ B 、②③④ C 、①②③ D 、全都是10、若函数y log2 |ax 1|图象的对称轴是x 2, 则非零实数a的值为.11、函数y f (| x m |)的图象与y f(| x |)的图象关于直线对称.212、方程|x2 2x 3| a(x 2) 有四个实数根,求实数a的取值范围 .课后作业】8、已知函数y f (x) 的图象如图,则y f(1 x) 的图象是(y1-1 o 1 x-1 oB y1-2 -1 o xy1-1 o111、函数y ln 1的图象为 (|2x 3|y log 2 x 的图象重合的函数是 (D y2、下列函数的图像中,经过平移或翻折后不能与函数5、已知下图①的图象对应的函数为 y f (x), 则图②的图象对应的函数在下列给出的四式中,只可能是8、若对任意 x R,不等式 |x|≥ ax 恒成立,则实数 a 的 取值范围是 ( )A . a <-1B .|a|≤1C .|a|<1D .a ≥1 9、f ( x)定义域为 R ,对任意 x R,满足 f (x) f (4 x)且当 x 2, 时, f (x) 为减函数,则 ( )A . f(0)< f(1)< f(5)B . f (1)< f(5)< f(0)C . f(5)< f(0)< f(1)D . f (5)<f(1)< f(0) 1|1 x|10、若函数 y ( )|1 x|m 的图像与 x 轴有公共点,则 m 2的取值范围是 _____ .11、若直线 y x m 曲线 y 1 x 2有两个不同的交 点,则 m 的取值范围是 .. y f( |x |) D .y f(| x|)A . y f (| x|)B . y | f (x)|C A . y2xB . y log 1 x C24xy 2 3、若函数 f (x) 在 (4, )上为减函数,且对任意的1D . y log 2 1 x [a,b], 函数 y f (x)的图象如下图所示,则函数 f(| x |)的图象大致是 ( )A . f(2) > f(3)B . f(2) > f(5)C . f (3)> f (5)D . f(3)> f(6) 4、(2009 安徽)设 a <b,函数 y (x a)2(x b )的图象可12、设函数f ( x), g ( x)的定义域分别为F,G,且F,G .若对x F,都有g(x) f ( x),则称g(x)为f(x)在G上1x的一个“延拓函数” .已知函数f(x) ( )x(x≤0),若g(x) 为f(x) 在R上的一个延拓函数,且g( x)是偶函数,2则函数g(x) 的解析式为___ .【参考答案】【课堂练习】1、 D 2 、 A 3 、 C 4 、 C 5 、 A 6 、D 7 、 C 8 、 C 9 、 C10.1/2 11. x=m/2 12.x 2+(2+a)x 2a 3=0, 由Δ=0以及 (2+a)/2<1 可得 a= 6+2 5,6+2 5 <a<0 ∴ 【课下作业】1、A 2 、C 3 、D 4 、C 5 、C 6 、C 7 、B 8 、B 9 、C10、- 1≤ m<011、 1≤m< 212、g(x)=2|x|。

函数和图像知识点汇总

函数和图像知识点汇总

《函数及其图像》知识点一、函数的概念、变量(自变量、因变量)、常量的概念。

①变量:在某一函数变化过程中,可以取不同数值的量,叫做变量。

②自变量:在某一函数变化过程中,主动变化的量的叫做自变量。

③因变量:在某一函数变化过程中,因为自变量的变化而被动变化的量叫做因变量。

此时,我们也称因变量是自变量的函数④常量:在某一函数变化中,始终保持不变的量,叫做常量。

练习:在函数r c π2=中,自变量是 ,因变量是 ,常量是 , 叫做的函数。

二、函数的三种表示方法:①解析法:②列表法:三、函数自变量的取值范围: 函数自变量取值范围的确定如下表:四、平面直角坐标系:在平面上画两条原点重合、互相垂直且具有相同单位长度的数轴,这就建立了平面直角坐标系。

水平的数轴叫做横轴(x 轴),取向右为正方向;铅直的数轴叫做纵轴(y 轴),取向上为正方向;两条数轴的交点O 叫做坐标原点。

x 轴和y 轴将坐标平面分成四个象限(如图):yxO第四象限第三象限第二象限第一象限五、平面内点的坐标:(横坐标,纵坐标)如图:过点P 作x 轴的垂线段,垂足在x 轴上表示的数是2,因此点P 的横坐标为 2 过点P 作y 轴的垂线段,垂足在y 轴上表示的数是3,因此点P 的纵坐标为 3 所以点P 的坐标为(2 , 3)六、平面内特殊位置的点的坐标情况:(连线)第一象限 第二象限 第三象限 第四象限 x 轴上 y 轴上 (- ,-) (- ,+) (+ ,+) (+ ,-) (0 ,a ) (b , 0) 七、点的表示(横坐标,纵坐标)注意: ①不要丢了括号和中间的逗号;②表示的意思:当___x =时,___y =如点A (2,1) 表示:当2x =时,1y =③注意x 轴上点的特征:(___,0)即纵坐标等于0;y 轴上点的特征:(0,___)即:横坐标等于0。

概括:坐标轴上的点的横坐标和纵坐标至少有一个为0。

八、对称点的坐标关系:⑴关于x 轴对称的点:横坐标 ,纵坐标 。

函数与其图像知识点总结

函数与其图像知识点总结

函数与其图像知识点总结函数与其图像是数学中常见的概念,对于理解数学问题和解决实际问题具有重要意义。

在高中阶段,学生已经接触到了函数与其图像的相关知识,下面将从函数的定义、性质、图像绘制及应用等方面进行总结。

一、函数的定义1. 自变量和因变量函数是一个映射关系,它描述了自变量和因变量之间的对应关系。

通常情况下,自变量用x表示,因变量用y表示。

在函数中,自变量的取值范围我们称之为定义域,因变量的取值范围称之为值域。

2. 函数的定义函数的定义包括了自变量的定义域和因变量的值域,以及自变量和因变量之间的对应关系。

一般情况下,我们用符号y=f(x)表示函数的定义,其中f表示函数名称,x表示自变量,y表示因变量。

3. 函数的表示函数可以用表达式、图像、数据表等形式进行表示。

常见的函数表示形式包括解析式表示、图像表示、数据表示等。

二、函数的性质1. 奇偶性函数的奇偶性是指当自变量x的取值变化时,因变量y的取值是否满足某种对称性。

若对于任意x∈D,都有f(-x) = f(x),则函数f(x)是偶函数;若对于任意x∈D,都有f(-x) = -f(x),则函数f(x)是奇函数。

2. 单调性函数的单调性是指当自变量x的取值增大时,因变量y的取值是单调递增还是单调递减。

若对于任意x1 > x2,有f(x1) > f(x2),则函数f(x)是递增函数;若对于任意x1 > x2,有f(x1) < f(x2),则函数f(x)是递减函数。

3. 周期性函数的周期性是指函数在一定范围内具有重复性。

若存在正数T,使得对于任意x∈D,有f(x+T) = f(x),则函数f(x)是周期函数,其中T称为函数的周期。

4. 上下界函数的上下界是指函数在定义域内取值的最大值和最小值。

若存在常数M,使得对于任意x∈D,都有f(x) ≤ M,则M称为函数f(x)的上界;若存在常数m,使得对于任意x∈D,都有f(x) ≥ m,则m称为函数f(x)的下界。

高一数学必修一函数图像知识点总结

高一数学必修一函数图像知识点总结

高一数学必修一函数图像知识点总结函数图像是高中数学中的重要内容之一,它是数学与实际问题相结合的桥梁。

在高一数学必修一中,我们学习了函数图像的基本概念、性质和绘制方法。

下面将对这些知识点进行总结。

一、函数图像的基本概念函数是一种特殊的关系,它把一个集合中的每个元素都对应到另一个集合中的唯一元素。

函数图像是函数在坐标系中的表示,横坐标表示自变量,纵坐标表示因变量。

函数图像可以用来描述实际问题中的变化规律,比如温度随时间的变化、销售额随月份的变化等。

二、函数图像的性质1. 定义域和值域:函数的定义域是自变量的取值范围,值域是因变量的取值范围。

通过观察函数图像可以确定函数的定义域和值域。

2. 奇偶性:如果函数满足$f(x) = f(-x)$,则称该函数为偶函数;如果函数满足$f(x) = -f(-x)$,则称该函数为奇函数。

通过观察函数图像可以确定函数的奇偶性。

3. 单调性:如果函数在定义域上递增,那么称该函数为递增函数;如果函数在定义域上递减,那么称该函数为递减函数。

通过观察函数图像可以确定函数的单调性。

4. 最值和极值:函数的最大值和最小值称为最值,函数的极大值和极小值称为极值。

通过观察函数图像可以确定函数的最值和极值。

三、函数图像的绘制方法1. 函数关系式法:如果已知函数的关系式,可以根据关系式中的变量值来绘制函数图像。

比如,已知函数$y = 2x + 1$,可以取不同的$x$值计算对应的$y$值,然后将这些点连成一条直线。

2. 函数性质法:如果已知函数的性质,可以根据性质来绘制函数图像。

比如,已知函数是偶函数,且在定义域上递增,可以根据这些性质来确定函数的图像形状。

3. 函数变换法:通过对已知函数进行平移、伸缩、翻转等变换,可以得到新的函数图像。

比如,对函数$y = x^2$进行平移变换,可以得到函数$y = (x-2)^2$的图像,它在$x$轴上向右平移了2个单位。

四、常见函数图像1. 一次函数:一次函数的图像是一条直线,可以表示为$y = kx + b$,其中$k$为斜率,$b$为截距。

高中函数图像知识点总结

高中函数图像知识点总结

一、函数图像的基本概念1. 函数的概念函数是一种特殊的关系,它把所有属于定义域的元素映射到值域中唯一确定的元素上。

函数的符号表示为 y = f(x),其中 x 是自变量,y 是因变量,f 表示函数名。

2. 函数的图像函数的图像是函数在坐标平面上的几何表示,通常用曲线、直线或点的方式表示。

3. 自变量与因变量在函数中,自变量是独立的变量,通常表示为 x;因变量是依赖于自变量的变量,通常表示为 y。

4. 坐标系坐标系是用来表示函数图像的平面,它通常由横轴和纵轴组成。

横轴表示自变量,纵轴表示因变量。

坐标系被分成四个象限,分别用来表示不同的正负值。

二、函数图像的特性1. 函数的奇偶性若对任意x∊D,都有 f(-x)=f(x),则称函数 f(x) 是偶函数;若对任意x∊D,都有 f(-x)=-f(x),则称函数 f(x) 是奇函数。

2. 函数的周期性若存在常数 T>0,使得对任意x∊D,都有 f(x+T)=f(x),则称函数 f(x) 是周期函数,T 称为函数的周期,最小的正周期称为函数的基本周期。

3. 函数的增减性若对任意x1,x2∊D,若 x1<x2,有f(x1)≤f(x2),则称函数在区间 D 上是增函数;若对任意x1,x2∊D,若 x1<x2,有f(x1)≥f(x2),则称函数在区间 D 上是减函数。

4. 函数的最值和极值函数在定义域 D 上的最大值和最小值称为函数的最值;函数在定义域 D 上的极大值和极小值称为函数的极值。

1. 一次函数 y = kx + b一次函数的图像是一条直线,其斜率 k 表示直线的倾斜程度,截距 b 表示直线与 y 轴的交点。

2. 二次函数 y = ax^2 + bx + c二次函数的图像是一条抛物线,其开口方向由 a 的正负确定,开口向上时为正,开口向下时为负,顶点坐标为 (-b/2a, c-b^2/4a)。

3. 指数函数 y = a^x指数函数的图像是以底数 a (a>1) 为底,自变量 x 为指数的幂函数。

函数图像知识点总结

函数图像知识点总结

函数图像知识点总结基本初等函数的图像:一次函数:图像是直线,根据斜率k的正负,函数可能单调递增或递减。

二次函数:图像是抛物线,其开口方向由a决定,与x轴的交点由判别式b^2-4ac决定,对称轴两边函数的单调性不同。

反比例函数:图像是双曲线,当k>0时,图像经过一、三象限;当k<0时,图像经过二、四象限。

指数函数:当底数不同时,其图像会有所变换。

对数函数:底数不同时,图像也会发生变换。

对勾函数:对于函数y=x+k/x,当k>0时,是对勾函数,可以通过均值定理找到其最值。

函数图像的基本性质:定义域和值域:函数的定义域是指函数所能接收的自变量的集合,值域是指函数所能取到的因变量的集合。

函数图像应当包含在定义域和值域的笛卡尔积上。

单调性:如果函数在定义域内递增,那么函数图像应当从左向右逐渐上升;如果函数在定义域内递减,那么函数图像应当从左向右逐渐下降。

奇偶性:如果函数是偶函数,那么函数图像在原点处具有对称性;如果函数是奇函数,那么函数图像在原点处具有中心对称性。

周期性:如果函数具有周期性,那么函数图像在一段区间内会重复出现,并且重复的间隔是固定的。

极值:函数在定义域内的最大值和最小值分别称为函数的最大值和最小值,对应的自变量称为函数的极大值和极小值。

函数图像在极值处存在驻点,即切线斜率为零。

函数图像在数学中的应用:函数图像可以直观地表示函数的性质与特征,例如单调性、极值点、零点等。

通过观察函数图像,我们可以更好地理解函数的表现特征和性质。

函数图像不仅在数学中有应用,还涉及其他相关领域,如经济学、生物学、人文社科等。

函数图像可以帮助解释实验现象,描述物理现象的变化规律,并帮助人们理解和解释实验结果。

这些知识点对于理解和分析函数图像非常重要,通过熟练掌握和应用这些知识点,可以更好地理解函数的性质,解决实际问题。

函数图像总结

函数图像总结

函数图像总结函数图像是指函数在直角坐标系中的图形表示。

通过观察函数图像,可以了解函数的基本特征和性质。

下面我将对常见的函数图像进行总结。

一、一次函数图像:一次函数的一般形式为y = kx + b,其中k为斜率,b为截距。

当k>0时,函数图像呈现正斜率,向右上方倾斜;当k<0时,函数图像呈现负斜率,向右下方倾斜;当k=0时,函数图像为水平直线;当b>0时,函数图像在y轴上方截距b的位置;当b<0时,函数图像在y轴下方截距-b的位置。

二、二次函数图像:二次函数的一般形式为y = ax^2 + bx + c,其中a决定了函数的开口方向和开口大小,b决定了函数图像的对称轴位置,c决定了函数图像与y轴的交点。

当a>0时,函数图像向上开口;当a<0时,函数图像向下开口;当b=0时,函数图像的对称轴为y轴;当b>0时,函数图像的对称轴在原点的右侧;当b<0时,函数图像的对称轴在原点的左侧。

三、指数函数图像:指数函数的一般形式为y = a^x,其中a为底数。

当底数a>1时,函数图像呈现增长趋势,向上凸起;当0<a<1时,函数图像呈现递减趋势,向下凹陷;当a=1时,函数图像为水平直线。

四、对数函数图像:对数函数的一般形式为y = loga(x),其中a为底数。

当底数a>1时,函数图像呈现增长趋势,向右上方倾斜;当0<a<1时,函数图像呈现递减趋势,向右下方倾斜;当a=1时,函数图像为y轴。

五、三角函数图像:常见的三角函数包括正弦函数、余弦函数、正切函数等。

正弦函数的图像呈现周期性的波形,振动范围在[-1,1]之间;余弦函数的图像也呈现周期性的波形,振动范围也在[-1,1]之间;正切函数的图像在某些点上发生突变,振动范围在整个坐标轴上。

总结以上几种函数图像,可以根据函数的数学表达式和特点来推测图像的形状和性质,进而帮助解决与函数相关的问题。

初中数学函数图像知识总结

初中数学函数图像知识总结

初中数学函数图像知识总结函数图像是初中数学中的一个重要内容,它能够直观地描述数学中的关系和规律。

通过学习函数的图像,我们可以更好地理解和应用函数概念。

本文将对初中数学中常见的函数图像进行总结,并重点介绍了线性函数、二次函数和反比例函数的图像特征。

1. 线性函数图像:线性函数是最简单的一类函数,其图像为一条直线。

线性函数的通式为y = kx + b,其中k为斜率,b为截距。

当k大于0时,函数图像是上升的直线;当k小于0时,函数图像是下降的直线;当k等于0时,函数图像是水平的直线;当b不等于0时,函数图像与y轴有交点,否则函数图像与y轴平行。

2. 二次函数图像:二次函数的通式为y = ax^2 + bx + c,其中a决定了抛物线的开口方向。

当a大于0时,函数图像开口向上;当a小于0时,函数图像开口向下。

二次函数的图像称为抛物线,其对称轴为x = -b/(2a),顶点坐标为(-b/(2a), c)。

对于对称轴,若b为奇数则图像在y轴左侧,若为偶数则图像在y轴右侧。

3. 反比例函数图像:反比例函数的通式为y = k/x,其中k为比例常数。

反比例函数的图像是一根过原点的曲线,其特点是随着自变量x的增大,函数值y逐渐减小,并且函数图像永远不会经过坐标轴上的某个点。

当k大于0时,函数图像在第一象限和第三象限;当k小于0时,函数图像在第二象限和第四象限。

除了以上介绍的三种常见的函数图像之外,还有其他函数图像,如绝对值函数、指数函数和对数函数等。

掌握这些函数图像的特点有助于解决各种数学问题。

在学习函数图像时,我们可以使用一些辅助工具来帮助我们更好地理解和绘制函数图像。

例如,可以使用平移、翻转和尺度变换等方法来得到函数图像的特定形态。

此外,也可以借助计算机软件或在线绘图工具来绘制函数图像,以便更加准确地观察和分析函数的性质和变化规律。

总之,初中数学中的函数图像是一种重要的表示方法,能够帮助我们理解和应用函数的概念。

高三函数图像知识点总结

高三函数图像知识点总结

一、基本初等函数的图像1. 一次函数搜索性质:一次函数图像是直线,当k>0时,函数单调递增;当k<0时,函数单调递减2. 二次函数搜索性质:二次函数图像是抛物线,a决定函数图像的开口方向,判别式b^2-4ac决定了函数图像与x轴的交点,对称轴两边函数的单调性不同。

3.反比例函数搜索性质:反比例函数图像是双曲线,当k>0时,图像经过一、三象限;当k<0时,图像经过二、四象限。

要注意表述函数单调性时,不能说在定义域上单调,而应该说在(-∞,0),(0,∞)上单调。

4.指数函数搜索当0<a<b<1<c<d时,指数函数的图像如下图不同底的指数函数图像在同一个坐标系中时,一般可以做直线x=1,与各函数的交点,根据交点纵坐标的大小,即可比较底数的大小。

5.对数函数搜索当底数不同时,对数函数的图像是这样变换的一、函数的定义二、函数的基本性质三、基本初等函数指数函数(一)指数四、函数的应用方程的根与函数的零点1、函数零点的概念:对于函数,把使成立的实数叫做函数的零点。

2、函数零点的意义:函数的零点就是方程实数根,亦即函数的图象与轴交点的横坐标。

即:方程有实数根,函数的图象与坐标轴有交点,函数有零点.3、函数零点的求法:(1)(代数法)求方程的实数根;(2)(几何法)对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点.4、二次函数的零点:(1)△>0,方程有两不等实根,二次函数的图象与轴有两个交点,二次函数有两个零点.(2)△=0,方程有两相等实根(二重根),二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点.(3)△<0,方程无实根,二次函数的图象与轴无交点,二次函数无零点.6.幂函数y=x a 搜索性质:先看第一象限,即x>0时,当a>1时,函数越增越快;当0<a<1时,函数越增越慢;当a<0时,函数单调递减;然后当x<0时,根据函数的定义域与奇偶性判断函数图像即可。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数的图像【知识梳理】 一、函数的图像1、作图方法:描点法和利用基本函数图象变换作图;作函数图象的步骤:①确定函数的定义域;②化简函数的解析式;③讨论函数的性质即单调性、奇偶性、周期性、最值(甚至变化趋势);④描点连线,画出函数的图象。

2、识图:分布范围、变化趋势、对称性、周期性等等方面. 二、函数图像的变化1、平移变换:(1)水平平移:函数()y f x a =+的图像可以把函数()y f x =的图像沿x 轴方向向左(0)a >或向右(0)a <平移||a 个单位即可得到;(2)竖直平移:函数()y f x a =+的图像可以把函数()y f x =的图像沿x 轴方向向上(0)a >或向下(0)a <平移||a 个单位即可得到.①()y f x =h左移→()y f x h =+; ②()y f x =h右移→()y f x h =-; ③()y f x =h 上移→()y f x h =+; ④()y f x =h下移→()y f x h =-.2、对称变换:(1)函数()y f x =-的图像可以将函数()y f x =的图像关于y 轴对称即可得到; (2)函数()y f x =-的图像可以将函数()y f x =的图像关于x 轴对称即可得到; (3)函数()y f x =--的图像可以将函数()y f x =的图像关于原点对称即可得到; (4)函数1()y fx -=的图像可以将函数()y f x =的图像关于直线y x =对称得到.①()y f x =轴x →()y f x =-;②()y f x =轴y →()y f x =-;③()y f x =ax =→直线(2)y f a x =-;④()y f x =原点→()y f x =--.提示:()i 若()(),R f a x f b x x +=-∈恒成立,则()y f x =的图象关于2a bx +=成轴对称图形, 若()(),R f a x f b x x +=--∈,则()y f x =的图象关于点(,0)2a b+成中心对称图形. ()ii 函数()y f a x =+与函数()y f b x =-的图象关于直线1()2x b a =-对称.3、翻折变换:(1)函数|()|y f x =的图像可以将函数()y f x =的图像的x 轴下方部分沿x 轴翻折到x 轴上方,去掉原x 轴下方部分,并保留()y f x =的x 轴上方部分即可得到;(2)函数(||)y f x =的图像可以将函数()y f x =的图像右边沿y 轴翻折到y 轴左边替代原y 轴左边部分并保留()y f x =在y 轴右边部分即可得到.4、伸缩变换:(1)函数()y af x =(0)a >的图像可以将函数()y f x =的图像中的每一点横坐标不变纵坐标伸长(1)a >或压缩(01a <<)为原来的a 倍得到;(2)函数()y f ax =(0)a >的图像可以将函数()y f x =的图像中的每一点纵坐标不变横坐标伸长(1)a >或压缩(01a <<)为原来的1a倍得到. ①()y f x =ω⨯→x ()xy f ω=;② ()y f x =ω⨯→y ()y f x ω=.【经典例题】【例1】函数()y f x =与()y g x =的图像如下图:则函数()()y f x g x =⋅的图像可能是( A )A .B .C .D .【例2】说明由函数2xy =的图像经过怎样的图像变换得到函数321x y --=+的图像.【解析】:(1)将函数2x y =的图像向右平移3个单位,得到函数32x y -=的图像;(2)作出函数32x y -=的图像关于y 轴对称的图像,得到函数32x y --=的图像;(3)把函数32x y --=的图像向上平移1个单位,得到函数321x y --=+的图像.【例3】(1)试作出函数1y x x=+的图像; (2)对每一个实数x ,三个数2,,1x x x --中最大者记为y ,试判断y 是否是x 的函数?若是,作出其图像,讨论其性质(包括定义域、值域、单调性、最值);若不是,说明为什么? 【例4】已知函数2()|43|f x x x =-+(1)求函数()f x 的单调区间,并指出其增减性;(2)若关于x 的方程()f x a x -=至少有三个不相等的实数根,求实数a 的取值范围. 【课堂练习】1、下列每组两个函数的图象中,正确的是( )A. B. C. D.2、在下列图象中,二次函数2y ax bx =+与指数函数()xb y a=的图象只可能是( )3、已知函数a y x=与2,y ax bx =+则下列图象正确的是( )4、函数y =的图象是( )5、函数312x y x -=+的图象 ( )A. 关于点(2,3)-对称B. 关于点(2,3)-对称C. 关于直线2x =-对称D. 关于直线3y =-对称 6、设函数()y f x =定义在实数集上,则函数(1)y f x =-与(1)y f x =--的图象关于( )对称 A.直线0x = B.直线1x = C.点(0,0) D.点(1,0) 7、在以下四个按对应图象关系式画出的略图中,不正确...的是( ) A .2|log |y x = B. |x|2y = C. 20.5log y x = D. 13||y x-=o yxo yxo y xo yx8、已知函数()y f x =的图象如图,则(1)y f x =-的图象是( )11-1o yxA11-1o yxB-21-1oyxC11-1oyxD 11-1o yx9、下列命题中:①函数()y f x =的图象与()x f y =的图象关于直线y x =对称;②若()()f x f x =--,则()f x 的图象关于原点对称;③若()()f x f x =-,则()f x 的图象关于y 轴对称;④()y f x =的图象与()y f x =-的图象关于y 轴对称,其中真命题是( )A 、②③B 、②③④C 、①②③D 、全都是 10、若函数2log |1|y ax =-图象的对称轴是2,x =则非零实数a 的值为 . 11、函数(||)y f x m =-的图象与(||)y f x =的图象关于直线 对称. 12、方程2|23|(2)x x a x +-=-有四个实数根,求实数a 的取值范围. 【课后作业】 1、函数1ln|23|y x =-的图象为( )2、下列函数的图像中,经过平移或翻折后不能与函数2log y x =的图象重合的函数是( )A .2xy = B .12log y x = C .42x y = D .21log 1y x =+3、若函数()f x 在(4,)+∞上为减函数,且对任意的,x R ∈有(4)f(4)f x x +=-,则( )A .(2)f >(3)fB .(2)f >(5)fC .(3)f >(5)fD .(3)f >(6)f4、(2009安徽)设a <,b 函数2()()y x a x b =--的图象可能是( )5、已知下图①的图象对应的函数为(),y f x =则图②的图象对应的函数在下列给出的四式中,只可能是( )A .(||)y f x =B .|()|y f x =C .(||)y f x =-D .(||)y f x =- 6、函数1()1||f x x =+的图象是( )7、已知函数()f x 的定义域为[,],a b 函数()y f x =的图象如下图所示,则函数(||)f x 的图象大致是( )12、设函数(),()f x g x 的定义域分别为,,F G 且,F G .若对,x F ∀∈都有()(),g x f x =则称()g x 为()f x 在G 上的一个“延拓函数”.已知函数1()()(2xf x x =≤0),若()g x 为()f x 在R 上的一个延拓函数,且()g x 是偶函数,则函数()g x 的解析式为________.8、若对任意,x R ∈不等式||x ≥ax 恒成立,则实数a 的取值范围是( )A .a <-1B .||a ≤1C .||a <1D .a ≥19、()f x 定义域为R ,对任意,x R ∈满足()(4)f x f x =-且当[)2,x ∈+∞时,()f x 为减函数,则( ) A .(0)f <(1)f <(5)f B .(1)f <(5)f <(0)f C .(5)f <(0)f <(1)f D .(5)f <(1)f <(0)f 10、若函数|1|1()2x y m -=+的图像与x 轴有公共点,则m的取值范围是________.11、若直线y x m =+曲线21y x =-有两个不同的交点,则m 的取值范围是________.【参考答案】【课堂练习】1、 D2、 A3、 C4、 C5、 A6、D7、 C8、 C9、 C10.1/2 11. x=m/2 12.x2+(2+a)x-2a-3=0, 由Δ=0以及-(2+a)/2<1可得a= -6+25,∴-6+25<a<0【课下作业】1、A2、C3、D4、C5、C6、C7、B8、B9、C10、-1≤m<011、1≤m< 212、g(x)=2|x|。

相关文档
最新文档