九2班圆的有关性质的基础训练

合集下载

人教版九年级数学上册 24.1圆的有关性质同步训练(含答案)

人教版九年级数学上册 24.1圆的有关性质同步训练(含答案)

E ,满足 AEC 65 ,连接 AD ,则 BAD
度.
答案: 一、选择题
1.(2020•青岛)如图,BD 是⊙O 的直径,点 A,C 在⊙O 上, = ,AC 交 BD 于点 G.若∠COD=126°,则 ∠AGB 的度数为( )
A.99°
B.108°
解:∵BD 是⊙O 的直径,
∴∠BAD=90°,
度数是( )
A.130°
B.140°
C.150°
解:由题意得到 OA=OB=OC=OD,作出圆 O,如图所示,
∴四边形 ABCD 为圆 O 的内接四边形,
∴∠ABC+∠ADC=180°,
∵∠ABC=40°,
∴∠ADC=140°,
故选:B.
D.160°
6.(2020•眉山)如图,四边形 ABCD 的外接圆为 O , BC CD , DAC 35 , ACD 45 ,则 ADB 的度数 为( )
∴∠OEC=∠OCE=40°+ x,
∵OD<OE,∠DOE=100°﹣x+40°=140°﹣x,
∴∠OED<20°+ x,
∴∠CED=∠OEC﹣∠OED>(40°+ x)﹣(20°+ x)=20°,
∵∠CED<∠ABC=40°, ∴20°<∠CED<40° 故选:C. 二、填空题
16.(2020•襄阳)在 O 中,若弦 BC 垂直平分半径 OA ,则弦 BC 所对的圆周角等于 60 或 120 . 解:如图,
上任意一点.则
A.10°
B.20°
C.30°
D.40°
解:连接 OD、OE, ∵OC=OA, ∴△OAC 是等腰三角形, ∵点 D 为弦 AC 的中点, ∴∠DOC=40°,∠BOC=100°, 设∠BOE=x,则∠COE=100°﹣x,∠DOE=100°﹣x+40°, ∵OC=OE,∠COE=100°﹣x,

圆的有关性质练习及答案(供参考)

圆的有关性质练习及答案(供参考)

1° ° D CB A O圆的有关性质【知识要点】 1.圆的定义:(1)动态定义:在一个平面内,线段OA 绕它固定的一个端点O 旋转一周,另一个端点A 所形成的图形叫做圆。

(2)静态定义:在平面内到定点(圆心O )的距离等于定长(半径r )所有点的集合叫做圆:2.圆的相关概念弦:直径:弧:半圆弧:优弧:劣弧:等弧:同心圆:3.垂径定理及推论:垂直于弦的直径平分弦,并且平分弦所对的两条弧。

由此得到推论:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。

(2)弦的垂直平分线,经过圆心, 并且平分弦所对的两条弧。

4.圆的轴对称性:(1)圆是轴对称图形;(2)经过圆心的每一条直线都是它的对称轴;(3)圆的对称轴有无数条。

5..圆的旋转不变性圆是以圆心为对称中心的中心对称图形6.圆心角、弧、弦关系定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对弦的弦心距相等。

7.弧的度数等于它所对的圆心角的度数。

8..圆周角定理及推论:在同圆或等圆中,同弧或等弧所对的圆周角相等,并等于这条弧所对的圆心角的一半.推论:(1)半圆(或直径)所对的圆周角是直角.90°的圆周角所对的弦是直径.(2)三角形的一边上的中线等于这边的一半,则这个三角形是直角三角形9:三角形:圆内接三角形;圆:三角形的外接圆 四边形:圆内接四边形圆:四边形的外接圆 定理:圆内接四边形的对角互补【基础和能力训练】 一、选择题1.平行四边形的四个顶点在同一圆上,则该平行四边形一定是( )A.正方形 B.菱形 C.矩形 D.等腰2.(2014•毕节地区)如图,已知⊙O 的半径为13,弦AB 长为24,则点O 到AB 的距离是( ) A 6 B 5 C 4 D 33. ( 2014•珠海)如图,线段AB 是⊙O 的直径, 弦CD 丄AB ,∠CAB =20°,则∠AOD 等于( ) A 160° B 150° C 140° D 120°4.(2015湖南常德)如图,四边形ABCD 为⊙O 的内接四边形,已知∠BOD =100°,则∠BCD 的度数为( ) A 、50° B 、80° C 、100° D 、130°5.(2015上海)如图,已知在⊙O 中,AB 是弦,半径OC ⊥AB ,垂足为点D ,要使四边形OACB 为菱形,还需要添加一个条件,这个条件可以是( )A 、AD =BD ;B 、OD =CD ;C 、∠CAD =∠CBD ;D ∠OCA =∠OCB .6. 如图:是小明完成的.作法是:取⊙O 的直径AB ,在⊙O 上任取一点C 引弦CD ⊥A B.当C 点在半圆上移动时(C 点不与A 、B 重合),∠OCD 的平分线与⊙O 的交点P 必( ) A 。

人教版九年级上册数学 24.1圆的有关性质 专项训练(附答案)

人教版九年级上册数学   24.1圆的有关性质  专项训练(附答案)

人教版九年级上册数学24.1圆的有关性质专项训练一、选择题1.如图,AB是半圆的直径,O为圆心,C是半圆上的点,D是AC上的点,若40∠的度∠=︒,则DBOC 数为()A.100︒B.110︒C.120︒D.130︒2.如图,AB是半圆的直径,C、D是半圆上的两点,106∠等于()∠=︒,则CABADCA.10︒B.14︒C.16︒D.26︒3.如图,在半径为的⊙O中,弦AB与CD交于点E,∠DEB=75°,AB=6,AE=1,则CD的长是()A.2B.2C.2D.44.如图,AB为O的直径,CD是O的弦,35∠的度数为()∠=︒,则CABADCA.35︒B.45︒C.55︒D.65︒5.如图,A,B,C,D是⊙O上的四个点,∠A=60°,∠B=24°,则∠C的度数为()A.84°B.60°C.36°D.24°6.如图,在⊙O中,OA⊥BC,∠AOB=50°,则∠ADC的大小为()A.20°B.25°C.50°D.100°7.如图,AD是⊙O的直径,,若∠AOB=40°,则圆周角∠BPC的度数是()A.40°B.50°C.60°D.70°8.如图,A,B,C,D是⊙O上的点,则图中与∠A相等的角是()A .∠B B .∠C C .∠DEBD .∠D9.如图,点A ,B ,C 均在⊙O 上,若∠A =66°,则∠OCB 的度数是( )A .24°B .28°C .33°D .48°10.如图,O 中,OC AB ⊥,28APC ∠=︒,则BOC ∠的度数为( )A .14︒B .28︒C .42︒D .56︒11.如图,E ,F ,G 为圆上的三点,50FEG ∠=︒,P 点可能是圆心的是( )A .B .C .D .12. 如图,点A 、B 、C 在O 上,CD OA ⊥,CE OB ⊥,垂足分别为D 、E ,若40DCE ∠=︒,则ACB ∠的度数为( )A .140︒B .70︒C .110︒D .80︒13.如图,点A ,B ,C ,D 在O 上,OA BC ⊥,垂足为E .若30ADC ∠=︒,1AE =,则(BC = )A .2B .4C .3D .2314.如图,四边形ABCD 内接于O ,AE CB ⊥交CB 的延长线于点E ,若BA 平分DBE ∠,5AD =,13CE =,则(AE = )A .3B .32C .43D .2315.如图,在半径为3的O 中,AB 是直径,AC 是弦,D 是AC 的中点,AC 与BD 交于点E .若E 是BD 的中点,则AC 的长是( )A .532B .33C .32D .42二、填空题 16.如图,已知在⊙O 中,半径OA ,弦AB =2,∠BAD =18°,OD 与AB 交于点C ,则∠ACO = 度.17.如图,AB 是⊙O 的直径,点C ,D ,E 都在⊙O 上,∠1=55°,则∠2= °.18.如图,已知锐角三角形ABC 内接于半径为2的O ,OD BC ⊥于点D ,60BAC ∠=︒,则OD = .19.如图,A ,B ,C ,D 是O 上的四点,且点B 是AC 的中点,BD 交OC 于点E ,100AOC ∠=︒,35OCD ∠=︒,那么OED ∠= .20.如图,在半径为5的O 中,M 为弦AB 的中点,若4OM =,则AB 的长为 .21.如图,AB 为O 的直径,弦CD AB ⊥于点H ,若10AB =,8CD =,则OH 的长度为 .22.如图,ABC ∆内接于O ,BC 是O 的直径,OD AC ⊥于点D ,连接BD ,半径OE BC ⊥,连接EA ,EA BD ⊥于点F .若2OD =,则BC = .答案:一、选择题1.B.2.C.3.C.4.C.5.D.6.B.7.B.8.D.9.A.10.D.11.C.12.C.13.D.14.D.15.D.二、填空题16.81.17.35°.18.1.19.60 .20.6.21.3.22.。

人教版 九年级上册数学 24.1 圆的有关性质 课时训练(含答案)

人教版 九年级上册数学 24.1 圆的有关性质 课时训练(含答案)

人教版九年级数学24.1 圆的有关性质课时训练一、选择题1. 如图所示的圆规,点A是铁尖的端点,点B是铅笔芯尖的端点,已知点A与点B的距离是2 cm,若铁尖的端点A固定,将铅笔芯尖的端点B绕点A旋转一周,则作出的圆的直径是()A.1 cm B.2 cm C.4 cm D.π cm2. 如图,A,B,C,D是⊙O上的点,则图中与∠A相等的角是()A.∠B B.∠CC.∠DEB D.∠D3. 与圆心的距离不大于半径的所有点组成的图形是()A.圆的外部(包括边界) B.圆的内部(不包括边界)C.圆D.圆的内部(包括边界)4. 如图,在直角坐标系中,以原点为圆心,半径为5的圆内有一点P(0,-3),那么经过点P的所有弦中,最短的弦的长为()A.4 B.5 C.8 D.105. 如图,AB是⊙O的直径,CD为弦,CD⊥AB于点E,则下列结论中不成立...的是( )A .∠COE =∠DOEB .CE =DEC .OE =BED.BD ︵=BC ︵6. (2019•广元)如图,AB ,AC分别是⊙O 的直径和弦,OD AC ⊥于点D ,连接BD ,BC ,且10AB =,8AC =,则BD 的长为A .5B .4C .13D .4.87.如图,AB 是⊙O 的直径,EF ,EB 是⊙O 的弦,且EF =EB ,EF 与AB 交于点C ,连接OF .若∠AOF =40°,则∠F 的度数是( )A .20°B .35°C .40°D .55°8. P为⊙O 内一点,若过点P 的最长的弦为8 cm ,最短的弦为4 cm ,则OP 的长为( )A .2 3 cm B. 3 cm C .3 cmD .2 cm二、填空题9. 如图,AB 为⊙O 的直径,CD ⊥AB.若AB =10,CD =8,则圆心O 到弦CD的距离为________.10. 如图所示,动点C 在⊙O 的弦AB 上运动,AB =23,连接OC ,过点C 作CD ⊥OC 交⊙O 于点D ,则CD 的最大值为________.11. 如图,点A ,B ,C 都在⊙O 上,OC ⊥OB ,点A 在BC ︵上,且OA =AB ,则∠ABC =________°.12. 如图,⊙O 的直径AB 过弦CD 的中点E ,若∠C =25°,则∠D =________°.13. 如图2,一下水管道横截面为圆形,直径为100 cm ,下雨前水面宽为60 cm ,一场大雨过后,水面宽为80 cm ,则水位上升________cm. 链接听P39例4归纳总结14. 在Rt △ABC 中,∠C =90°,BC =3,AC =4,点P 在以点C 为圆心,5为半径的圆上,连接PA ,PB.若PB =4,则PA 的长为________.15. 如图,定长弦CD 在以AB 为直径的⊙O 上滑动(点C ,D 与点A ,B 不重合),M 是CD 的中点,过点C 作CP ⊥AB 于点P.若CD =3,AB =8,PM =l ,则l 的最大值是________.16. 只用圆规测量∠XOY 的度数,方法是:以顶点O 为圆心任意画一个圆,与角的两边分别交于点A ,B(如图),在这个圆上顺次截取AB ︵=BC ︵=CD ︵=DE ︵=EF ︵=…,这样绕着圆一周一周地截下去,直到绕第n 周时,终于使第m(m >n)次截得的弧的末端恰好与点A 重合,那么∠XOY 的度数等于________.三、解答题17. 如图,AB 是⊙O的直径,弦CD 与AB 相交,D 为AB ︵的中点.(1)求∠ABD 的大小;(2)若AC =6,BD =5 2,求BC 的长.18. 如图,AB为O的直径,点C在O上.的平分线,与O交于点D;连接OD,交BC于点E(不(1)尺规作图:作BAC写作法,只保留作图痕迹,且用黑色墨水笔将作图痕迹加黑);(2)探究OE与AC的位置及数量关系,并证明你的结论.19. 如图,直线AB经过⊙O的圆心,与⊙O相交于点A,B,点C在⊙O上,且∠AOC=30°,P是直线AB上的一个动点(与点O不重合),直线PC与⊙O相交于点Q.在直线AB上使QP=QO成立的点P共有几个?请相应地求出∠OCP的度数.人教版九年级数学24.1 圆的有关性质课时训练-答案一、选择题1. 【答案】C2. 【答案】D3. 【答案】D4. 【答案】C[解析] 过点P 作弦AB ⊥OP ,连接OB ,如图.则PB =AP ,∴AB =2BP =2OB 2-OP 2.再过点P 任作一条弦MN ,过点O 作OG ⊥MN 于点G ,连接ON . 则MN =2GN =2ON 2-OG 2.∵OP >OG ,OB =ON ,∴MN >AB , ∴AB 是⊙O 中的过点P 最短的弦.在Rt △OPB 中,PO =3,OB =5,由勾股定理,得PB =4,则AB =2PB =8.5. 【答案】C6. 【答案】C【解析】∵AB 为直径,∴90ACB ∠=︒,∴22221086BC AB AC =-=-=, ∵OD AC ⊥,∴142CD AD AC ===, 在Rt CBD △中,2246213BD =+=.故选C .7. 【答案】B8. 【答案】A[解析] 设⊙O 中过点P 的最长的弦为AB ,最短的弦为CD ,如图所示,则CD ⊥AB 于点P.根据题意,得AB =8 cm ,CD =4 cm,∴OC =12AB =4 cm. ∵CD ⊥AB , ∴CP =12CD =2 cm.在Rt △OCP 中,根据勾股定理,得OP =OC2-CP2=42-22=2 3(cm).二、填空题9. 【答案】310. 【答案】3 [解析] 如图,连接OD ,过点O 作OH ⊥AB 于点H ,则AH =BH=12AB = 3.∵CD ⊥OC ,∴CD =OD 2-OC 2.∵OD 为⊙O 的半径,∴当OC 最小时,CD 最大.当点C 运动到点H 时,OC 最小,此时CD =BH =3,即CD 的最大值为 3.11. 【答案】15[解析] ∵OC ⊥OB ,∴∠COB =90°.又∵OC =OB ,∴△COB 是等腰直角三角形, ∴∠OBC =45°.∵OA =AB ,OA =OB ,∴OA =AB =OB , ∴△AOB 是等边三角形,∴∠OBA =60°, ∴∠ABC =∠OBA -∠OBC =15°.12. 【答案】65[解析] ∵∠C =25°,∴∠A =∠C =25°.∵⊙O 的直径AB 过弦CD 的中点E , ∴AB ⊥CD ,∴∠AED =90°, ∴∠D =90°-25°=65°.13. 【答案】10或70 [解析] 对于半径为50 cm 的圆而言,圆心到长为60 cm 的弦的距离为40 cm ,到长为80 cm 的弦的距离为30 cm.①当圆心在两平行弦之外时,两弦间的距离=40-30=10(cm);②当圆心在两平行弦之间时,两弦间的距离=40+30=70(cm).综上所述,水位上升10 cm 或70 cm.14. 【答案】3或73[解析] 如图,连接CP,PB的延长线交⊙C于点P′.∵PC=5,BC=3,PB=4,∴BC2+PB2=PC2,∴△CPB为直角三角形,且∠CBP=90°,即CB⊥PB,∴PB=P′B=4.∵∠ACB=90°,∴PB∥AC.又∵PB=AC=4,∴四边形ACBP为平行四边形.又∵∠ACB=90°,∴▱ACBP为矩形,∴PA=BC=3.在Rt△APP′中,∵PA=3,PP′=8,∴P′A=82+32=73.综上所述,PA的长为3或73.15. 【答案】34[解析] 如图,当CD∥AB时,PM的长最大,连接OM,OC.∵CD∥AB,CP⊥AB,∴CP⊥CD.∵M为CD的中点,OM过点O,∴OM⊥CD,∴∠OMC=∠PCD=∠CPO=90°,∴四边形CPOM是矩形,∴PM=OC.∵⊙O 的直径AB =8, ∴半径OC =4,∴PM =4.16. 【答案】⎝⎛⎭⎪⎫360n m ° [解析] 设∠XOY 的度数为x ,则mx =n ×360°,所以x =⎝ ⎛⎭⎪⎫360n m °.三、解答题17. 【答案】解:(1)∵D 为AB ︵的中点, ∴AD ︵=BD ︵.∵AB 是⊙O 的直径, ∴∠ADB =90°, ∴∠ABD =∠DAB =45°.(2)由(1)知AD ︵=BD ︵,∴AD =BD =5 2. 又∵∠ADB =90°, ∴AB =AD2+BD2=10. ∵AB 是⊙O 的直径, ∴∠ACB =90°,∴BC =AB2-AC2=102-62=8.18. 【答案】(1)如图所示:(2)OE AC ∥,12OE AC =. 理由如下:∵AD 平分BAC ∠,∴12BAD BAC ∠=∠,∵12BAD BOD ∠=∠,∴BOD BAC ∠=∠, ∴OE AC ∥, ∵OA OB =,∴OE 为ABC △的中位线, ∴OE AC ∥,12OE AC =.19. 【答案】解:在直线AB 上使QP =QO 成立的点P 共有3个. (1)如图①.在△QOC 中,OC =OQ ,∴∠OQC =∠OCQ . 在△OPQ 中,QP =QO ,∴∠QOP =∠QPO .又∵∠QPO =∠OCQ +∠AOC ,且∠AOC =30°,∠QOP +∠QPO +∠OQC =180°,∴3∠OCQ =120°, ∴∠OCQ =40°. 即∠OCP =40°.(2)如图②. ∵QO =QP , ∴∠QPO =∠QOP .设∠QPO =x ,则∠OQC =∠QPO +∠QOP =2x .又∵OC =OQ , ∴∠OCQ =∠OQC =2x ,∴∠AOC =∠OPC +∠OCP =x +2x =3x . ∵∠AOC =30°,∴3x =30°,解得x =10°,∴∠OCP=2x=20°.(3)如图③.∵QO=QP,∴∠QOP=∠QPO.∵OC=OQ,∴∠OQC=∠OCQ.设∠QPO=y,则∠OQC=∠OCQ=∠QPO+∠AOC=y+30°,∴在△OPQ中,有y+y+y+30°=180°,解得y=50°,∴∠OCP=180°-50°-30°=100°.综上所述,在直线AB上使QP=QO成立的点P共有3个,∠OCP的度数分别为40°,20°,100°.。

人教版 九年级数学 24.1 圆的有关性质 课时训练(含答案)

人教版 九年级数学 24.1 圆的有关性质 课时训练(含答案)

人教版九年级数学24.1 圆的有关性质课时训练一、选择题1. 如图,☉O的直径AB垂直于弦CD.垂足是点E,∠CAO=22.5°,OC=6,则CD的长为()A.6B.3C.6D.122. 2019·葫芦岛如图,在⊙O中,∠BAC=15°,∠ADC=20°,则∠ABO的度数为()A.70°B.55°C.45°D.35°3. 如图,在直角坐标系中,以原点为圆心,半径为5的圆内有一点P(0,-3),那么经过点P的所有弦中,最短的弦的长为()A.4 B.5 C.8 D.104. (2019•贵港)如图,AD 是O 的直径,AB CD =,若40AOB ∠=︒,则圆周角BPC ∠的度数是A .40︒B .50︒C .60︒D .70︒5. (2019•广元)如图,AB ,AC分别是⊙O 的直径和弦,OD AC ⊥于点D ,连接BD ,BC ,且10AB =,8AC =,则BD 的长为A .5B .4C .13D .4.86. 在⊙O 中,圆心角∠AOB =3∠COD (∠COD <60°),则劣弧AB ,劣弧CD 的大小关系是( ) A.AB ︵=3CD ︵B.AB ︵>3CD ︵C.AB ︵<3CD ︵D .3AB ︵<CD ︵7. 如图,AB是⊙O的直径,点C,D在⊙O上,∠BOC=110°,AD∥OC,则∠AOD的度数为()A.70°B.60°C.50°D.40°8. 如图,在⊙O内有折线OABC,其中OA=8,AB=12,∠A=∠B=60°,则BC的长为()A.19 B.16 C.18 D.20二、填空题9.如图,⊙O的两条弦AB、CD互相垂直,垂足为E,且AB=CD,已知CE=1,ED=3,则⊙O的半径是________.10. 如图,圆内接四边形ABCD中两组对边的延长线分别相交于点E,F,且∠A =55°,∠E=30°,则∠F=________°.11. 如图所示,OB,OC是⊙O的半径,A是⊙O上一点.若∠B=20°,∠C=30°,则∠A=________°.12. 如图,AB为⊙O的直径,弦CD⊥AB于点E,已知CD=6,EB=1,则⊙O 的半径为________.13. 如图,以△ABC的边BC为直径的⊙O分别交AB,AC于点D,E,连接OD,OE.若∠A=65°,则∠DOE=________°.14. 如图,在⊙O的内接五边形ABCDE中,∠CAD=35°,则∠B+∠E=________°.15. 如图,半径为5的⊙P与y轴交于点M(0,-4),N(0,-10),则圆心P的坐标为________.16. 如图2,一下水管道横截面为圆形,直径为100 cm,下雨前水面宽为60 cm,一场大雨过后,水面宽为80 cm,则水位上升________cm.链接听P39例4归纳总结三、解答题17. 如图,△ABC的高AD,BF相交于点H,AD的延长线交△ABC的外接圆于点E.求证:DH=DE.18. 如图,在⊙O 中,AB ︵=2AC ︵,AD ⊥OC于点D.求证:AB =2AD.19.如图,已知△ABC 内接于⊙O ,点C 在劣弧AB 上(不与点A ,B 重合),点D 为弦BC 的中点,DE ⊥BC ,DE 与AC 的延长线交于点E .射线AO 与射线EB 交于点F ,与⊙O 交于点G .设∠GAB =α,∠ACB =β,∠EAG +∠EBA =γ. (1)点点同学通过画图和测量得到以下近似..数据猜想:β关于α的函数表达式,γ关于α的函数表达式,并给出证明;(2)若γ=135°,CD =3,△ABE 的面积为△ABC 的面积的4倍,求⊙O 半径的长.人教版九年级数学24.1 圆的有关性质课时训练-答案一、选择题1. 【答案】A[解析]∵∠A=22.5°,∴∠COE=45°,∵☉O的直径AB垂直于弦CD,∴∠CEO=90°,CE=DE.∵∠COE=45°,∴CE=OE=OC=3,∴CD=2CE=6,故选A.2. 【答案】B3. 【答案】C[解析] 过点P作弦AB⊥OP,连接OB,如图.则PB=AP,∴AB=2BP=2 OB2-OP2.再过点P任作一条弦MN,过点O作OG⊥MN于点G,连接ON.则MN=2GN=2 ON2-OG2.∵OP >OG ,OB =ON ,∴MN >AB , ∴AB 是⊙O 中的过点P 最短的弦.在Rt △OPB 中,PO =3,OB =5,由勾股定理,得PB =4,则AB =2PB =8.4. 【答案】B【解析】∵AB CD =,40AOB ∠=︒,∴40COD AOB ∠=∠=︒, ∵180AOB BOC COD ∠+∠+∠=︒,∴100BOC ∠=︒,∴1502BPC BOC ∠=∠=︒,故选B .5. 【答案】C【解析】∵AB 为直径,∴90ACB ∠=︒,∴6BC ===, ∵OD AC ⊥,∴142CD AD AC ===,在Rt CBD △中,BD ==C .6. 【答案】A[解析] 把∠AOB 三等分,得到的每一份角所对的弧都等于CD ︵,因此有AB ︵=3CD ︵.7. 【答案】D[解析] ∵∠BOC =110°,∴∠AOC =70°.∵AD ∥OC ,∴∠A =∠AOC =70°.∵OA =OD ,∴∠D =∠A =70°.在△OAD 中,∠AOD =180°-(∠A +∠D)=40°.8. 【答案】D[解析] 如图,延长AO交BC于点D,过点O作OE⊥BC于点E.∵∠A=∠B=60°,∴△DAB是等边三角形,∴AD=DB=AB=12,∠ADB=∠A=60°,∴OD=AD-OA=12-8=4.在Rt△ODE中,∵∠DOE=90°-∠ADB=30°,∴DE=12OD=2,∴BE=DB-DE=12-2=10.由垂径定理,知BC=2BE=20.二、填空题9. 【答案】 5 【解析】本题考查垂径定理、弦、弦心距的性质、正方形的判定与性质、勾股定理等内容. 解题思路:过点O作OF⊥AB,OG⊥CD,垂足分别是F、G. 连接OD.解图⎭⎬⎫⎭⎪⎬⎪⎫AB⊥CDOF⊥ABOG⊥CD⇒四边形OFEG是矩形AB=CD⇒OF=OG⇒⎭⎬⎫ 矩形OFEG 是正方形⎭⎬⎫ ⎭⎪⎬⎪⎫CE =1ED =3 ⇒CD =4 AB ⊥CD ⇒GD =12CD =2⇒EG =1 ⇒OG =GE =1⇒OD =OG 2+DG 2=12+22= 5.10. 【答案】40 [解析] ∵∠BCD =180°-∠A =125°,∠CBF =∠A +∠E =85°,∴∠F =∠BCD -∠CBF =125°-85°=40°.11. 【答案】50 [解析] 连接OA ,则OA =OB ,OA =OC ,∴∠OAB =∠B ,∠OAC =∠C ,∴∠BAC =∠OAB +∠OAC =∠B +∠C =20°+30°=50°.12. 【答案】5 [解析] 设圆的半径为x ,则OE =x -1.根据垂径定理可知,CE =3,由勾股定理可得32+(x -1)2=x2,解得x =5.故答案为5.13. 【答案】50 [解析] 由三角形的内角和定理,得∠B +∠C =180°-∠A .再由OB =OD =OC =OE ,得到∠BDO =∠B ,∠CEO =∠C .在等腰三角形BOD 和等腰三角形COE 中,∠DOB +∠EOC =180°-2∠B +180°-2∠C =360°-2(∠B +∠C )=360°-2(180°-∠A )=2∠A ,所以∠DOE =180°-2∠A =50°.14. 【答案】215 [解析] 连接CE ,则∠B +∠AEC =180°,∠DEC =∠CAD =35°,∴∠B +∠AED =(∠B +∠AEC)+∠DEC =180°+35°=215°.15. 【答案】(-4,-7)[解析] 过点P作PH⊥MN于点H,连接PM,则MH=12MN=3,OH=OM+MH=7.由勾股定理,得PH=4,∴圆心P的坐标为(-4,-7).16. 【答案】10或70[解析] 对于半径为50 cm的圆而言,圆心到长为60 cm的弦的距离为40 cm,到长为80 cm的弦的距离为30 cm.①当圆心在两平行弦之外时,两弦间的距离=40-30=10(cm);②当圆心在两平行弦之间时,两弦间的距离=40+30=70(cm).综上所述,水位上升10 cm或70 cm.三、解答题17. 【答案】证明:连接BE.∵AD,BF是△ABC的高,∴∠FBC+∠C=90°,∠CAD+∠C=90°,∴∠FBC=∠CAD.∵∠CBE=∠CAD,∴∠FBC=∠CBE.又∵BD=BD,∠BDH=∠BDE=90°,∴△BDH≌△BDE,∴DH=DE.18. 【答案】证明:如图,延长AD交⊙O于点E.∵OC ⊥AD ,∴AE ︵=2AC ︵,AE =2AD.∵AB ︵=2AC ︵,∴AE ︵=AB ︵,∴AB =AE ,∴AB =2AD.19. 【答案】【思维教练】(1)观察表格可猜想β=90°+α,γ=180°-α.连接BG ,由直径所对的圆周角为90°和圆内接四边形的对角和为180°即可得出β=90°+α;由题干条件易知△EBD ≌△EGD ,∠EBC =∠ECB ,再由三角形的外角和定理和β=90°+α,利用角度之间的转化即可得出结论;(2)由(1)的结论可以得出α=∠BAG =45°,β=∠ACB =135°,∴∠ECB =45°,∠CEB =90°,△ECD 、△BEC 、△A BG 都是等腰直角三角形,由CD 的长,可得出BE 和CE 的长,再由题干条件△A BE 的面积是△ABC 的面积的4倍可得出AC 的长,利用勾股定理在△ABE 中求出AB 的长,再利用勾股定理在△ABG 求出AG 的长,即可求出半径长.①(1)①β=90°+α,γ=180°-α证明:如解图①,连接BG ,∵AG 是⊙O 的直径,∴∠ABG =90°,∴α+∠BGA =90°,(1分)又∵四边形ACBG 内接于⊙O ,∴β+∠BGA=180°,∴β-α=90°,即β=90°+α;(3分)②∵D是BC的中点,且DE⊥BC,∴△EBD≌△ECD,∴∠EBC=∠ECB,∵∠EAG+∠EBA=γ,∴∠EAB+α+∠EBC+∠CBA=γ,∵∠EAB+∠CBA=∠ECB,∴2∠ECB+α=γ,(4分)∴2(180°-β )+α=γ,由①β=90°+α代入后化简得,γ=180°-α;(6分) (2)如解图②,连接BG,②∵γ=135°,γ=180°-α,∴α=45°,β=135°,∴∠AGB=∠ECB=45°,(8分)∴△ECD和△ABG都是等腰直角三角形,又∵△ABE的面积是△ABC的面积的4倍,∴AE=4AC,∴EC=3AC,(9分)∵CD=3,∴CE=32,AC=2,∴AE=42,(10分) ∵∠BEA=90°,∴由勾股定理得,AB=BE2+AE2=(32)2+(42)2=50=52,(11分)∴AG=2AB=2×52=10,∴r=5.(12分)。

人教版 九年级数学 上册24.1 圆的有关性质 针对训练 (含答案)

人教版 九年级数学 上册24.1 圆的有关性质 针对训练 (含答案)

人教版 九年级数学 24.1 圆的有关性质 针对训练一、选择题1. M ,N 是⊙O 上的两点,已知OM =3 cm ,那么一定有( )A .MN >6 cmB .MN =6 cmC .0 cm<MN <6 cmD .0 cm<MN≤6 cm2. 如图,四边形ABCD 内接于⊙O ,F 是CD ︵上一点,且DF ︵=BC ︵,连接CF 并延长交AD 的延长线于点E ,连接AC ,若∠ABC =105°,∠BA C =25°,则∠E 的度数为( )A . 45°B . 50°C . 55°D . 60°3. 如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,则下列结论正确的是( )A .OE =BEB.BC ︵=BD ︵ C .△BOC 是等边三角形D .四边形ODBC 是菱形4. 如图,AB 是⊙O 的直径,CD 是⊙O 的弦,∠ABD =59°,则∠C 等于( )A .29°B .31°C .59°D .62°5. 如图,在⊙O 中,已知∠OAB =22.5°,则∠C 的度数为( )A.135°B.122.5°C.115.5°D.112.5°6. 如图,直线l1∥l2,以直线l1上的点A为圆心、适当长为半径画弧,分别交直线l1,l2于点B,C,连接AC,BC.若∠ABC=54°,则∠1等于()A.36°B.54°C.72°D.73°7. 如图,OA是⊙O的半径,B为OA上一点(不与点O,A重合),过点B作OA 的垂线交⊙O于点C.以OB,BC为边作矩形OBCD,连接BD.若BD=10,BC=8,则AB的长为()A.8 B.6 C.4 D.28. 如图,以O为圆心的两个同心圆中,小圆的弦AB的延长线交大圆于点C.若AB=4,BC=1,则下列整数与圆环面积最接近的是()A.10 B.13 C.16 D.199.如图,已知⊙O的半径为5,弦AB,CD所对的圆心角分别是∠AOB,∠COD,若∠AOB与∠COD互补,弦CD=6,则弦AB的长为( )A .6B .8C .5 2D .5 310. 如图,在△ABC 中,∠ACB =90°,∠A =40°,以点C 为圆心,CB 的长为半径的圆交AB 于点D ,连接CD ,则∠ACD 的度数为( )A .10°B .15°C .20°D .25°二、填空题11. 2019·随州如图,点A ,B ,C 在⊙O 上,点C 在AMB ︵上.若∠OBA =50°,则∠C 的度数为________.12. 如图,圆内接四边形ABCD 中两组对边的延长线分别相交于点E ,F ,且∠A =55°,∠E =30°,则∠F =________°.13. 如图,在⊙O 的内接五边形ABCDE 中,∠CAD =35°,则∠B +∠E =________°.14. 如图,点A ,B ,C 都在⊙O 上,OC ⊥OB ,点A 在BC ︵上,且OA =AB ,则∠ABC =________°.15. 在Rt △ABC 中,∠C =90°,BC =3,AC =4,点P 在以点C 为圆心,5为半径的圆上,连接PA ,PB.若PB =4,则PA 的长为________.三、解答题16. 如图,已知⊙O 上依次有A ,B ,C ,D 四个点,AD ︵=BC ︵,连接AB ,AD ,BD ,延长AB 到点E ,使BE =AB ,连接EC ,F 是EC 的中点,连接BF.求证:BF =12BD.17. 如图,在⊙O 中,B 是⊙O 上的一点,∠ABC =120°,弦AC =2 3,弦BM 平分∠ABC 交AC 于点D ,连接MA ,MC.(1)求⊙O 的半径;(2)求证:AB +BC =BM.18. 如图为一拱形公路桥,圆弧形桥拱的水面跨度AB=80米,桥拱到水面的最大高度为20米.(1)求桥拱的半径;(2)现有一艘宽60米,船舱顶部为长方形并高出水面9米的轮船要经过这里,这艘轮船能顺利通过这座拱桥吗?请说明理由.19. 如图,△ABC和△ABD都是直角三角形,且∠C=∠D=90°.求证:A,B,C,D四点在同一个圆上.20. 如图,点E是△ABC的内心,线段AE的延长线交BC于点F(∠AFC≠90°),交△ABC的外接圆于点D.(1)求点F与△ABC的内切圆⊙E的位置关系;(2)求证:ED=BD;(3)若∠BAC=90°,△ABC的外接圆的直径是6,求BD的长;(4)B,C,E三点可以确定一个圆吗?若可以,则它们确定的圆的圆心和半径分别是什么?若不可以,请说明理由.人教版 九年级数学 24.1 圆的有关性质 针对训练 -答案一、选择题1. 【答案】D [解析] ∵OM =3 cm ,∴⊙O 的半径为3 cm ,∴⊙O 的直径为6 cm , 即⊙O 中最长的弦的长度为6 cm ,∴MN 最长为6 cm ,∴0 cm <MN≤6 cm.2. 【答案】B【解析】∵四边形ABCD 是圆内接四边形,∠ABC =105°,∴∠ADC =75°,∵=,∴∠BAC =∠DCF =25°,∴∠E =∠ADC -∠DCF =50°.3. 【答案】B [解析] AB 是⊙O 的直径,弦CD ⊥AB 于点E ,由垂径定理可以得到CE =DE ,BC ︵=BD ︵,AC ︵=AD ︵.但并不一定能得到OE =BE ,OC =BC ,从而A ,C ,D 选项都是错误的.故选B.4. 【答案】B5. 【答案】D [解析] ∵OA =OB ,∴∠OAB =∠OBA =22.5°,∴∠AOB =180°-22.5°-22.5°=135°,∴∠C =180°-12×135°=112.5°.6. 【答案】C7. 【答案】C8. 【答案】C[解析] 如图,连接OA,OC,过点O作OD⊥AB,垂足为D,则AD=BD=2,=πOC2-πOA2=π(OD2+DC2-OD2-AD2)=π(32-22)∴DC=2+1=3.S圆环=5π≈15.7.9. 【答案】B[解析] 如图,延长AO交⊙O于点E,连接BE,则∠AOB+∠BOE=180°.又∵∠AOB+∠COD=180°,∴∠BOE=∠COD,∴BE=CD=6.∵AE为⊙O的直径,∴∠ABE=90°,∴AB=AE2-BE2=8.10. 【答案】A[解析] ∵∠ACB=90°,∠A=40°,∴∠B=50°.∵CD=CB,∴∠BDC=∠B=50°,∴∠BCD=180°-2×50°=80°,∴∠ACD=90°-80°=10°.二、填空题11. 【答案】40°12. 【答案】40[解析] ∵∠BCD=180°-∠A=125°,∠CBF=∠A+∠E=85°,∴∠F=∠BCD-∠CBF=125°-85°=40°.13. 【答案】215[解析] 连接CE,则∠B+∠AEC=180°,∠DEC=∠CAD=35°,∴∠B+∠AED=(∠B+∠AEC)+∠DEC=180°+35°=215°.14. 【答案】15[解析] ∵OC⊥OB,∴∠COB=90°.又∵OC=OB,∴△COB是等腰直角三角形,∴∠OBC=45°.∵OA=AB,OA=OB,∴OA=AB=OB,∴△AOB是等边三角形,∴∠OBA=60°,∴∠ABC=∠OBA-∠OBC=15°.15. 【答案】3或73[解析] 如图,连接CP,PB的延长线交⊙C于点P′.∵PC=5,BC=3,PB=4,∴BC2+PB2=PC2,∴△CPB为直角三角形,且∠CBP=90°,即CB⊥PB,∴PB=P′B=4.∵∠ACB=90°,∴PB∥AC.又∵PB=AC=4,∴四边形ACBP为平行四边形.又∵∠ACB=90°,∴▱ACBP为矩形,∴PA=BC=3.在Rt△APP′中,∵PA=3,PP′=8,∴P′A=82+32=73.综上所述,PA 的长为3或73.三、解答题16. 【答案】证明:连接AC.∵AB =BE ,F 是EC 的中点,∴BF 是△EAC 的中位线,∴BF =12AC.∵AD ︵=BC ︵,∴AD ︵+AB ︵=BC ︵+AB ︵,即BD ︵=AC ︵,∴BD =AC ,∴BF =12BD.17. 【答案】解:(1)连接OA ,OC ,过点O 作OH ⊥AC 于点H ,如图①.∵∠ABC =120°,∴∠AMC =180°-∠ABC =60°,∴∠AOC =2∠AMC =120°.∵OH ⊥AC ,∴AH =CH =12AC =3,∠AOH =12∠AOC =60°,∴∠OAH =30°,∴OH =12OA.在Rt △AOH 中,由勾股定理,得OH2+AH2=OA2,即(12OA)2+(3)2=OA2,解得OA =2(负值已舍去),故⊙O 的半径为2.(2)证明:在BM 上截取BE =BC ,连接CE ,如图②.∵∠ABC =120°,BM 平分∠ABC ,∴∠MBC =∠ABM =12∠ABC =60°.又∵BE =BC ,∴△EBC 是等边三角形,∴EC =BC =BE ,∠BCE =60°,∴∠BCD +∠DCE =60°.∵∠ACM =∠ABM =60°,∴∠ECM +∠DCE =60°,∴∠ECM =∠BCD.∵∠MAC =∠MBC =60°,∠AMC =60°,∴∠MAC =∠AMC =∠ACM ,∴△ACM 是等边三角形,∴AC =MC.在△ACB 和△MCE 中,⎩⎨⎧AC =MC ,∠BCA =∠ECM ,BC =EC ,∴△ACB ≌△MCE ,∴AB =ME.∵ME +BE =BM ,∴AB +BC =BM.18. 【答案】解:(1)如图①,设点E 是桥拱所在圆的圆心,连接AE ,过点E 作EF ⊥AB 于点F ,延长EF 交AB ︵于点D.根据垂径定理知F 是AB 的中点,D 是AB ︵的中点,DF 的长是桥拱到水面的最大高度,∴AF=FB=12AB=40米,EF=DE-DF=AE-DF.由勾股定理,知AE2=AF2+EF2=AF2+(AE-DF)2. 设桥拱的半径为r米,则r2=402+(r-20)2,解得r=50.答:桥拱的半径为50米.(2)这艘轮船能顺利通过这座拱桥.理由如下:如图②,由题意,知DE⊥MN,PM=12MN=30米,EF=50-20=30(米).在Rt△PEM中,PE=EM2-PM2=40米,∴PF=PE-EF=40-30=10(米).∵10米>9米,∴这艘轮船能顺利通过这座拱桥.19. 【答案】证明:如图,取AB的中点O,连接OC,OD.∵△ABC和△ABD都是直角三角形,且∠ACB=∠ADB=90°,∴OC,OD分别为Rt△ABC和Rt△ABD斜边上的中线,∴OC=OA=OB,OD=OA=OB,∴OA=OB=OC=OD,∴A,B,C,D四点在同一个圆上.20. 【答案】解:(1)设⊙E切BC于点M,连接EM,则EM⊥BC.又线段AE的延长线交BC 于点F,∠AFC≠90°,∴EF>EM,∴点F在△ABC的内切圆⊙E外.(2)证明:∵点E是△ABC的内心,∴∠BAD=∠CAD,∠ABE=∠CBE.∵∠CBD=∠CAD,∴∠BAD=∠CBD.∵∠BED=∠ABE+∠BAD,∠EBD=∠CBE+∠CBD,∴∠BED=∠EBD,∴ED=BD.(3)如图①,连接CD.设△ABC的外接圆为⊙O.∵∠BAC=90°,∴BC是⊙O的直径,∴∠BDC=90°.∵⊙O的直径是6,∴BC=6.∵E为△ABC的内切圆的圆心,∴∠BAD=∠CAD,∴BD=CD.又∵BD2+CD2=BC2,∴BD=CD=3 2.(4)B,C,E三点可以确定一个圆.如图②,连接CD.∵点E是△ABC的内心,∴∠BAD=∠CAD,∴BD=CD.又由(2)可知ED=BD,∴BD=CD=ED,∴B,C,E三点确定的圆的圆心为点D,半径为BD(或ED,CD)的长度.。

《圆有关性质》基础训练题

《圆有关性质》基础训练题

《圆有关性质》基础训练题班级姓名座号一.选择题(共8小题)1.如图,在⊙O中,半径OC与弦AB垂直于点D,且AB=8,OC=5,则CD的长是()A.3 B.2.5 C.2 D.12.下列语句中正确的是()A.长度相等的两条弧是等弧B.平分弦的直径垂直于弦C.相等的圆心角所对的弧相等D.经过圆心的每一条直线都是圆的对称轴3.如图,⊙O的直径为10,弦AB的长为6,M是弦AB上的一动点,则线段的OM的长的取值范围是()A.3≤OM≤5 B.4≤OM≤5 C.3<OM<5 D.4<OM<54.如图,在半径为的⊙O中,AB、CD是互相垂直的两条弦,垂足为P,且AB=CD=4,则OP的长为()A.1 B.C.2 D.25.如图,在半径为5cm的⊙O中,圆心O到弦AB的距离为3cm,则弦AB的长是()A.4cm B.6cm C.8cm D.10cm6.如图,⊙C过原点,与x轴、y轴分别交于A、D两点.已知∠OBA=30°,点D 的坐标为(0,2),则⊙C半径是()A.B.C.D.27.如图,⊙O的直径AB=20cm,CD是⊙O的弦,AB⊥CD,垂足为E,OE:EB=3:2,则CD的长是()A.10cm B.14cm C.15cm D.16cm8.如图,⊙O是△ABC的外接圆,若∠ABC=40°,则∠AOC的度数为()A.20°B.40°C.60°D.80°二.解答题(共7小题)9.如图,AB为⊙O的弦,AB=8,OC⊥AB于点D,交⊙O于点C,且CD=l,求⊙O的半径.10.已知:如图,AB是⊙O的弦,半径OC、OD分别交AB于点E、F,且OE=OF.求证:AE=BF.11.如图,⊙O的半径为10cm,弦AB∥CD,AB=16cm,CD=12cm,圆心O位于AB、CD的上方,求AB和CD间的距离.12.如图所示,AB是⊙O的直径,AC是⊙O的弦,∠ACB的平分线交⊙O于点D.若AB=10,AC=6,求BC、BD的长.13.如图,已知AB是⊙O的直径,弦CD⊥AB于E,CD=16cm,AB=20cm,求BE 的长.14.如图,△ABC内接于⊙O,∠BAC=120°,AB=AC=4,求⊙O的直径.15.如图,AB是⊙O的直径,C、D两点在⊙O上,若∠C=45°,(1)求∠ABD的度数.(2)若∠CDB=30°,BC=3,求⊙O的半径.参考答案与试题解析一.选择题(共8小题)1.如图,在⊙O中,半径OC与弦AB垂直于点D,且AB=8,OC=5,则CD的长是()A.3 B.2.5 C.2 D.1【分析】根据垂径定理以及勾股定理即可求答案.【解答】解:连接OA,设CD=x,∵OA=OC=5,∴OD=5﹣x,∵OC⊥AB,∴由垂径定理可知:AB=4,由勾股定理可知:52=42+(5﹣x)2∴x=2,∴CD=2,故选(C)【点评】本题考查垂径定理,解题的关键是熟练运用垂径定理以及勾股定理,本题属于基础题型.2.下列语句中正确的是()A.长度相等的两条弧是等弧B.平分弦的直径垂直于弦C.相等的圆心角所对的弧相等D.经过圆心的每一条直线都是圆的对称轴【分析】根据等弧的定义对A进行判断;根据垂径定理对B进行判断;根据圆心角、弧、弦的关系对C进行判断;根据圆的对称性对D进行判断.【解答】解:A、能完全重合的两条弧是等弧,所以A选项错误;B、平分弦(非直径)的直径垂直于弦,所以B选项错误;C、在同圆或等圆中,相等的圆心角所对的弧相等,所以C选项错误;D、经过圆心的每一条直线都是圆的对称轴,所以D选项正确.故选D.【点评】本题考查了圆的认识:掌握与圆有关的概念(弦、直径、半径、弧、半圆、优弧、劣弧、等圆、等弧等).也考查了垂径定理和圆心角、弧、弦的关系.3.如图,⊙O的直径为10,弦AB的长为6,M是弦AB上的一动点,则线段的OM的长的取值范围是()A.3≤OM≤5 B.4≤OM≤5 C.3<OM<5 D.4<OM<5【分析】由垂线段最短可知当OM⊥AB时最短,当OM是半径时最长.根据垂径定理求最短长度.【解答】解:如图,连接OA,作OM⊥AB于M,∵⊙O的直径为10,∴半径为5,∴OM的最大值为5,∵OM⊥AB于M,∴AM=BM,∵AB=6,∴AM=3,在Rt△AOM中,OM====4;此时OM最短,当OM是半径时最长,OM=5.所以OM长的取值范围是4≤OM≤5.故选B.【点评】本题考查了垂径定理、勾股定理,解决本题的关键是确定OM的最小值,所以求OM的范围问题又被转化为求弦的弦心距问题,而解决与弦有关的问题时,往往需构造以半径、弦心距和弦长的一半为三边的直角三角形,若设圆的半径为r,弦长为a,这条弦的弦心距为d,则有等式r2=d2+()2成立,知道这三个量中的任意两个,就可以求出另外一个.4.如图,在半径为的⊙O中,AB、CD是互相垂直的两条弦,垂足为P,且AB=CD=4,则OP的长为()A.1 B.C.2 D.2【分析】作OE⊥AB于E,OF⊥CD于F,连结OD、OB,如图,根据垂径定理得到AE=BE=AB=2,DF=CF=CD=2,根据勾股定理在Rt△OBE中计算出OE=1,同理可得OF=1,接着证明四边形OEPF为正方形,于是得到OP=OE=.【解答】解:作OE⊥AB于E,OF⊥CD于F,连结OD、OB,如图,则AE=BE=AB=2,DF=CF=CD=2,在Rt△OBE中,∵OB=,BE=2,∴OE==1,同理可得OF=1,∵AB⊥CD,∴四边形OEPF为矩形,而OE=OF=1,∴四边形OEPF为正方形,∴OP=OE=.故选B.【点评】本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理.5.如图,在半径为5cm的⊙O中,圆心O到弦AB的距离为3cm,则弦AB的长是()A.4cm B.6cm C.8cm D.10cm【分析】连结OA,OD⊥AB,根据垂径定理得到AD=BD,且OD=3cm,在Rt△AOD 中根据勾股定理计算出AD,然后利用AB=2AD求解.【解答】解:连结OA,OD⊥AB,如图,∴AD=BD,OD=3cm,在Rt△AOD中,OA=5cm,OD=3cm,∴AD==4cm,∴AB=2AD=8cm.故选C.【点评】本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理.6.如图,⊙C过原点,与x轴、y轴分别交于A、D两点.已知∠OBA=30°,点D 的坐标为(0,2),则⊙C半径是()A.B.C.D.2【分析】连接AD.根据90°的圆周角所对的弦是直径,得AD是直径,根据等弧所对的圆周角相等,得∠D=∠B=30°,运用解直角三角形的知识即可求解.【解答】解:连接AD.∵∠AOD=90°,∴AD是圆的直径.在直角三角形AOD中,∠D=∠B=30°,OD=2,∴AD==.则圆的半径是.故选B.【点评】此题主要是运用了圆周角定理的推论、解直角三角形的知识.7.如图,⊙O的直径AB=20cm,CD是⊙O的弦,AB⊥CD,垂足为E,OE:EB=3:2,则CD的长是()A.10cm B.14cm C.15cm D.16cm【分析】根据垂径定理与勾股定理即可求出答案.【解答】解:连接OC,设OE=3x,EB=2x,∴OB=OC=5x,∵AB=20∴10x=20∴x=2,∴由勾股定理可知:CE=4x=8,∴CD=2CE=16故选(D)【点评】本题考查垂径定理的应用,解题的关键是根据勾股定理求出CE的长度,本题属于基础题型.8.如图,⊙O是△ABC的外接圆,若∠ABC=40°,则∠AOC的度数为()A.20°B.40°C.60°D.80°【分析】由⊙O是△ABC的外接圆,若∠ABC=40°,根据圆周角定理,即可求得答案.【解答】解:∵⊙O是△ABC的外接圆,∠ABC=40°,∴∠AOC=2∠ABC=80°.故选:D.【点评】此题考查了圆周角定理.此题比较简单,注意掌握数形结合思想的应用.二.解答题(共7小题)9.如图,AB为⊙O的弦,AB=8,OC⊥AB于点D,交⊙O于点C,且CD=l,求⊙O的半径.【分析】根据垂径定理得到直角三角形,然后在直角三角形中运用勾股定理计算出半径的长.【解答】解:如图:连接OA,由OC⊥AB于D,得:AD=DB=AB=4.设⊙O的半径为r,在Rt△OAD中,OA2=AD2+OD2∴r2=(r﹣1)2+42整理得:2r=17∴r=.所以圆的半径是.【点评】本题考查的是垂径定理,根据垂径定理求出AD的长,连接OA,得到直角三角形,然后在直角三角形中计算出半径的长.10.已知:如图,AB是⊙O的弦,半径OC、OD分别交AB于点E、F,且OE=OF.求证:AE=BF.【分析】如图,过点O作OM⊥AB于点M.根据垂径定理得到AM=BM.然后利用等腰三角形“三线合一”的性质推知EM=FM,故AE=BE.【解答】证明:如图,过点O作OM⊥AB于点M,则AM=BM.又∵OE=OF∴EM=FM,∴AE=BF.【点评】本题考查了垂径定理.平分弦所对一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.11.如图,⊙O的半径为10cm,弦AB∥CD,AB=16cm,CD=12cm,圆心O位于AB、CD的上方,求AB和CD间的距离.【分析】过点O作弦AB的垂线,垂足为E,延长AE交CD于点F,连接OA,OC;由于AB∥CD,则OF⊥CD,EF即为AB、CD间的距离;由垂径定理,易求得AE、CF的长,在构建的直角三角形中,根据勾股定理即可求出OE、OF的长,也就求出了EF的长,即弦AB、CD间的距离.【解答】解:过点O作弦AB的垂线,垂足为E,延长OE交CD于点F,连接OA,OC,∵AB∥CD,∴OF⊥CD,∵AB=30cm,CD=16cm,∴AE=AB=×16=8cm,CF=CD=×12=6cm,在Rt△AOE中,OE===6cm,在Rt△OCF中,OF===8cm,∴EF=OF﹣OE=8﹣6=2cm.答:AB和CD的距离为2cm.【点评】本题考查的是勾股定理及垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.12.如图所示,AB是⊙O的直径,AC是⊙O的弦,∠ACB的平分线交⊙O于点D.若AB=10,AC=6,求BC、BD的长.【分析】根据直径得出∠ACB=∠ADB=90°,根据勾股定理求出BC的长度.根据直径所对的圆周角是直角可得∠ACB=∠ADB=90°,再根据角平分线的定义可得∠DAC=∠BCD,然后求出AD=BD,再根据等腰直角三角形的性质其解即可.【解答】解:(1)∵AB是直径,∴∠ACB=∠ADB=90°(直径所对的圆周角是直角),在Rt△ABC中,AB=10,AC=6,∴BC===8,即BC=8;∵AB是直径,∴∠ACB=∠ADB=90°,∵∠ACB的平分线交⊙O于点D,∴∠DCA=∠BCD,∴=,∴AD=BD,∴在Rt△ABD中,AD=BD=AB=×10=5,即BD=5.【点评】本题考查了勾股定理,圆周角定理,解题的关键是求出∠ACB=∠ADB=90°.13.如图,已知AB是⊙O的直径,弦CD⊥AB于E,CD=16cm,AB=20cm,求BE 的长.【分析】如图,连接OD;由垂径定理求出DE的长度,运用勾股定理列出关于OE的等式,求出OE即可解决问题.【解答】解:如图,连接OD;∵弦CD⊥AB,且直径AB=20,CD=16,∴OD=10,DE=CE=8,由勾股定理得:OE2=OD2﹣DE2,∴OE=6,BE=10﹣6=4(cm).【点评】该题主要考查了垂径定理、勾股定理等几何知识点及其应用问题;解题的关键是作辅助线,构造直角三角形.14.如图,△ABC内接于⊙O,∠BAC=120°,AB=AC=4,求⊙O的直径.【分析】连接BO并延长交圆O与点D,连接AD,根据BD是直径,易证△ABD 为直角三角形;∠D=∠C=30°.则BD=2AB=8.【解答】解:连接BO并延长交圆O于点D,连接AD,∵∠BAC=120°,AB=AC=4,∴∠C=30°,∴∠BOA=60°.又∵OA=OB,∴△AOB是正三角形.∴OB=AB=4,∴BD=8.∴⊙O的直径为8.【点评】本题运用了圆周角定理的推论,直径所对的圆心角是直角.正确地作出辅助线是解题的关键.15.如图,AB是⊙O的直径,C、D两点在⊙O上,若∠C=45°,(1)求∠ABD的度数.(2)若∠CDB=30°,BC=3,求⊙O的半径.【分析】(1)求出∠A的度数,继而在Rt△ABD中,可求出∠ABD的度数;(2)连接AC,则可得∠CAB=∠CDB=30°,在Rt△ACB中求出AB,继而可得⊙O 的半径.【解答】解:(1)∵∠C=45°,∴∠A=∠C=45°,∵AB是⊙O的直径,∴∠ADB=90°,∴∠ABD=45°;(2)连接AC,∵AB是⊙O的直径,∴∠ACB=90°,∵∠CAB=∠CDB=30°,BC=3,∴AB=6,∴⊙O的半径为3.【点评】本题考查了圆周角定理,熟练掌握圆周角定理的内容是解题关键.。

(完整版)圆的基本性质练习题一

(完整版)圆的基本性质练习题一

圆的基本性质练习一、看准了再选1..如图,⊙O 中,ABDC 是圆内接四边形,∠BOC=110°,则∠BDC 的度数是( ) A.110° B.70° C.55° D.125°2.如图,⊙O 的直径CD 过弦EF 的中点G 且EF ⊥CD ,若∠EOD=40°,则∠DCF 等于( ) A.80° B. 50° C.40° D. 20°3.直线a上有一点到圆心O 的距离等于⊙O 的半径,则直线a与⊙O 的位置关系是( ) A、相离 B、相切 C、相切或相交 D、相交4.在⊙O 中,弦AB 垂直并且平分一条半径,则劣弧AB 的度数等于( ) A.30° B.120° C.150° D.60°5.如图,⊙O 的半径OA=3,以点A 为圆心,OA 的长为半径画弧交⊙O 于B ,C•则BC=( ). A .32 B .33 C .323 D .3326..如图所示,∠1,∠2,∠3的大小关系是( ).A .∠1>∠2>∠3B .∠3>∠1>∠2C .∠2>∠1>∠3D .∠3>∠2>∠1 7..如图,已知∠BAC=45°,一动点O 在射线AB 上运动(点O•与点A 不重合),设OA=x ,如果半径为1的圆O 与射线AC 有公共点,那么x 的取值范围是( ) A .0<x ≤2 B .1<x ≤2 C .1≤x ≤2 D .x>28.如图,AB 、AC 与⊙O 相切于点B 、C ,∠A=50°,点P 是圆上异于B 、C 的一动点,则∠BPC 的度数是( )OCFGD EAPBC OA .65°B .115°C .65°或115°D .130°或50°9如图,PA 、PB 分别切⊙O 于A 、B ,AC 是⊙O 的直径,连结AB 、BC 、OP ,则与∠PAB 相等的角有( )个。

九年级数学圆专题训练

九年级数学圆专题训练

九年级数学圆专题训练摘要:1.圆的概述2.圆的相关概念3.圆的性质4.圆的计算5.圆的应用正文:九年级数学圆专题训练旨在帮助学生深入理解圆的相关知识,提高解决与圆相关的数学问题的能力。

本文将从圆的概述、相关概念、性质、计算和应用五个方面进行讲解。

一、圆的概述圆是平面上到定点距离等于定长的所有点的集合。

定点称为圆心,定长称为半径。

圆可以分为内接圆、外接圆、同心圆等。

二、圆的相关概念1.圆心:圆中心的点。

2.半径:从圆心到圆上任意一点的线段。

3.直径:通过圆心,并且两端都在圆上的线段。

4.弧:圆上任意两点间的部分。

5.圆周角:以圆心为顶点,以两条射线分别与圆相交所构成的角。

6.圆心角:以圆心为顶点,以两条射线分别与圆相交所构成的角。

三、圆的性质1.圆的直径等于半径的两倍。

2.圆周角等于其所对的圆心角的两倍。

3.在同圆或等圆中,同弧或等弧所对的圆周角相等,所对的圆心角相等。

4.在同圆或等圆中,直径所对的圆周角为直角,直径所对的圆心角为平角。

四、圆的计算1.计算圆的面积:圆的面积公式为πr,其中r 为半径。

2.计算圆的周长:圆的周长公式为2πr,其中r 为半径。

3.计算圆弧长:圆弧长公式为θr,其中θ为圆心角的弧度制表示,r 为半径。

4.计算圆扇形的面积:圆扇形的面积公式为(θ/360)πr,其中θ为圆心角的弧度制表示,r 为半径。

五、圆的应用1.解直角三角形:利用圆的性质,可以将直角三角形的斜边作为直径,构造外接圆,从而求解其他边和角。

2.解圆与直线的交点:通过求解圆与直线的交点,可以解决一些实际问题,如求两个圆的交点等。

3.解圆与圆的位置关系:判断两个圆的位置关系,如内含、内切、外切、相交等。

九年数学双基目标训练与解析圆的基本概念和性质二

九年数学双基目标训练与解析圆的基本概念和性质二

年 班 姓名 B ACE DO一、选择题1.下列说法正确的是( )A .弦是直径B .半圆是弧C .长度相等的弧是等弧D .过圆心的线段是直径 2.下列语句中,不正确的个数是( )①直径是弦;②弧是半圆;③长度相等的弧是等弧;•④经过圆内一定点可以作无数条直径.A .1个B .2个C .3个D .4个3.如图,⊙O 中,点A 、O 、D 以及点B 、O 、C 分别在一条直线上,图中弦的条数有(• ) A .2条 B .3条 C .4条 D .5条第3题 第4题4.如图,已知⊙O 的半径为5,点O 到弦AB 的距离为3,则⊙O 上到弦AB 所在直线的距离为2的点有( )A .1个B .2个C .3个D .4个5.已知、是同圆的两段弧,且,则弦AB 与CD 之间的关系为( ) A.AB=2CD B.AB<2CD C.AB>2CD D.不能确定6. 如图,点A 、D 、G 、M 在半圆O 上,四边形ABOC ,DEOF ,HMNO 均为矩形,设BC=a,EF=b,NH=c,则下列各式正确的是( )A.a >b >cB.b >c >aC.c >a >bD.a=b=c第6题 第7题»AB »CD »»2AB CD 5 5-5-5PxyO BA. O二、填空题7.如图,P(x,y)是以坐标原点为圆心,5为半径的圆周上的点,若x、y都是整数,猜想这样的P点一共有 .8.P为⊙O内一点,OP=3cm,⊙O半径为5cm,则经过P点的最短弦长为________;•最长弦长为_______.9.已知,圆A的周长是圆B的周长的4倍,那么圆A的面积是圆B的面积的倍.10.如图,在半径不等的同心圆中,圆心角∠AOB所对的的长度有__ ___关系;的度数有_ ___关系.11.如图,已知⊙O内一点P,过P点的最短的弦在圆内的位置是__ __;过P点的最长的弦在圆内的位置是__ __;并分别将图画出来.12.在同一平面内,1个圆把平面分成0×1+2=2个部分,2个圆把平面最多分成1×2+2=4个部分,,3个圆把平面最多分成2×3+2=8个部分,4个圆把平面最多分成3×4+2=14个部分,……(1)10个圆把平面最多分成个部分;(2)n个圆把平面最多分成个部分.三、解答题13.如图,CD是⊙O的直径,点A在DC的延长线上,∠A=20°,AE交⊙O于点B,且AB=OC.(1)求∠AOB的度数.(2)求∠EOD的度数.14.已知:如图,AB是⊙O的直径,AC是⊙O的弦,AB=2,∠BAC=30°.在图中作弦AD,使AD=1,并求∠CAD的度数.15.如图所示,AB是⊙O的一条弦(不是直径),点C,D是直线AB上的两点,且AC=BD.(1)判断△OCD的形状,并说明理由.(2)当图中的点C与点D在线段AB上时(即C,D在A,B两点之间),(1)题的结论还存在吗?【答案与解析】一、选择题1.【答案】B;【解析】A、弦是连接圆上任意两点的线段,只有经过圆心的弦才是直径,不是所有的弦都是直径.故本选项错误;B、圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆.所以半圆是弧是正确的;C、在同圆或等圆中,能够互相重合的弧叫做等弧,长度相等的弧不一定能够重合.故本选项错误;D、过圆心的弦才是直径,不是所有过圆心的线段都是直径,故本选项错误.故选B.2.【答案】C;【解析】①直径是弦符合弦的定义正确;②弧是半圆,这句话不对,可能是半圆,也可能使优弧或劣弧;③长度相等的弧是等弧,这句话不符合等弧的定义:能够完全重合的弧,故错误;•④经过圆内一定点只能作一条直径.所以原题不正确. 故②③④都不正确.3.【答案】B;【解析】图中的弦有弦AB、弦BC、弦CE共三条.4.【答案】C;【解析】在弦AB所在直线的两侧分别有1个和两个点符合要求,故选C;5.【答案】B;【解析】把两条弦转化到一个三角形中,由三角形两边之和大于第三边得到.6.【答案】D;【解析】如图,连接OM、OD、OA、根据矩形的对角线相等,得BC=OA,EF=OD,NH=OM.再根据同圆的半径相等,得a=b=c.故选D;二、填空题7.【答案】12.【解析】每个象限有2个符合要求的点,坐标轴上有4个点,共12个.即:(3,4)、(4,3)、(3,-4)、(4,-3)、(-3,4)、(-4,3)、(-3,-4)、(-4,-3)、(0,5)、(0,-5)、(5,0)、(-5,0).8.【答案】8cm,10cm;9.【答案】16【解析】设圆A的半径为a,圆B的半径为b.由题意2πa=4×2πb,∴a=4b,∴⊙A的面积:⊙B的面积=π•(4b)2:πb2=16:1.10.【答案】;相等;11.【答案】垂直于过p点的直径的弦;过p点的直径. 如图:12.【答案】(1)92;(2)n2-n+2.【解析】(1)9×10+2=92;(2)(n-1)n+2=n2-n+2.三、解答题13.【答案与解析】解:(1)连OB,如图,∵AB=OC,OB=OC,∴AB=BO,∴∠AOB=∠1=∠A=20°;(2)∵∠2=∠A+∠1,∴∠2=2∠A,∵OB=OE,∴∠2=∠E,∴∠E=2∠A,∴∠DOE=∠A+∠E=3∠A=60°.14.【答案与解析】解:以A圆心AD长为半径画弧与圆有两个交点D,D' 再连接OD,O D' ;∵AB是⊙O的直径,AB=2,AD=1,∵AD=OD=OA=1,∴△OAD是等边三角形.∴∠DAO=60°.同理可得∠OA D'=60°.∴∠DAC=60°﹣30°=30°;同理可得:∠D' AC=60°+30°=90°;综上所述:∠CAD的度数为30°或90°.15.【答案与解析】(1)△OCD是等腰三角形.如图(1)所示,过点O作OM⊥AB,垂足为M,由圆的对称性有MA=MB.又∵AC=BD,∴AC+MA=BD+MB,即CM=DM.又OM⊥CD,即OM是CD的垂直平分线,∴OC=OD,∴△OCD为等腰三角形.(1)(2)(2)当点C,D在线段AB上时,(1)题的结论还存在.如图(2)所示,同上问,作OM⊥AB,垂足为M,由圆的对称性,得AM=BM.又∵AC=BD,∴CM=AM-AC=BM-BD=DM,∴OC=OD,∴△OCD为等腰三角形.。

人教版 九年级数学 24.1 圆的有关性质 课时训练(含答案)

人教版 九年级数学 24.1 圆的有关性质 课时训练(含答案)

人教版九年级数学24.1 圆的有关性质课时训练一、选择题(本大题共12道小题)1. 下列说法中正确的是()A.等弦所对的弧相等B.等弧所对的弦相等C.圆心角相等,它们所对的弦也相等D.等弦所对的圆心角相等2. 2019·葫芦岛如图,在⊙O中,∠BAC=15°,∠ADC=20°,则∠ABO的度数为()A.70°B.55°C.45°D.35°3. 如图,直线l1∥l2,以直线l1上的点A为圆心、适当长为半径画弧,分别交直线l1,l2于点B,C,连接AC,BC.若∠ABC=54°,则∠1等于()A.36°B.54°C.72°D.73°4. 如图,⊙O的直径AB垂直于弦CD,垂足是E,∠CAO=22.5°,OC=6,则CD的长为()A.6 2 B.3 2 C.6 D.125. 在半径等于5 cm 的圆内有长为5 3 cm 的弦,则此弦所对的圆周角为( )A .60°或120°B .30°或120°C .60°D .120°6. 如图,在⊙O 中,如果AB ︵=2AC ︵,那么( )A .AB =AC B .AB =2AC C .AB <2ACD .AB >2AC7. 2019·梧州如图,在半径为13的⊙O 中,弦AB 与CD 交于点E ,∠DEB =75°,AB =6,AE =1,则CD 的长是( )A .2 6B .2 10C .2 11D .4 38.如图,AB 是⊙O 的直径,EF ,EB 是⊙O 的弦,且EF =EB ,EF 与AB 交于点C ,连接OF .若∠AOF =40°,则∠F 的度数是( )A .20°B .35°C .40°D .55°9. 如图,将半径为6的⊙O 沿AB 折叠,AB ︵与垂直于AB 的半径OC 交于点D ,且CD =2OD ,则折痕AB 的长为( )A .4 2B .8 2C .6D .6 310. 甲、乙、丙三个牧民用同样长为l 米的铁丝各围一块草地放牧,甲牧民围成面积为S 1的圆形草地,乙牧民围成面积为S 2的正方形草地,丙牧民围成面积为S 3的矩形(不是正方形)草地,则下列结论正确的是( ) A .S 1>S 3>S 2 B .S 2>S 1>S 3 C .S 3>S 1>S 2D .S 1>S 2>S 311. 如图,在⊙O 中,AB ︵所对的圆周角∠ACB =50°,若P 为AB︵上一点,∠AOP =55°,则∠POB 的度数为( )A .30°B .45°C .55°D .60°12.如图,四边形ABCD 内接于⊙O ,点I 是△ABC 的内心,∠AIC =124°,点E 在AD 的延长线上,则∠CDE 的度数为( )A .56°B .62°C .68°D .78°二、填空题(本大题共6道小题)13.如图,⊙O 的两条弦AB 、CD 互相垂直,垂足为E ,且AB =CD ,已知CE =1,ED =3,则⊙O 的半径是________.14. 2019·随州如图,点A ,B ,C 在⊙O 上,点C 在AMB ︵上.若∠OBA =50°,则∠C 的度数为________.15. 如图,AB为⊙O 的直径,CD ⊥AB.若AB =10,CD =8,则圆心O 到弦CD的距离为________.16. 如图,在⊙O 中,半径OA 垂直于弦BC ,点D 在圆上,且∠ADC =30°,则∠AOB 的度数为________.17. 如图,已知等腰三角形ABC 中,∠ACB =120°且AC =BC =4,在平面内任作∠APB =60°,则BP 的最大值为________.18. 如图,在△ABC 中,AB =AC =10,以AB 为直径的⊙O 与BC 交于点D ,与AC 交于点E ,连接OD ,BE ,它们交于点M ,且MD =2,则BE 的长为________.三、解答题(本大题共3道小题)19. 如图,在⊙O 中,AB ︵=2AC ︵,AD ⊥OC于点D.求证:AB =2AD.20. 如图,AB是⊙O 的直径,AC 是弦,将劣弧AC 沿弦AC 翻折与AB 的交点恰好是圆心O ,作OD ⊥AC ,垂足为E ,交⊙O 于点D ,连接BC ,CD .求证:四边形BCDO 是菱形.21. 如图,点E 是△ABC 的内心,线段AE 的延长线交BC 于点F (∠AFC ≠90°),交△ABC 的外接圆于点D .(1)求点F 与△ABC 的内切圆⊙E 的位置关系;(2)求证:ED=BD;(3)若∠BAC=90°,△ABC的外接圆的直径是6,求BD的长;(4)B,C,E三点可以确定一个圆吗?若可以,则它们确定的圆的圆心和半径分别是什么?若不可以,请说明理由.人教版九年级数学24.1 圆的有关性质课时训练-答案一、选择题(本大题共12道小题)1. 【答案】B2. 【答案】B3. 【答案】C4. 【答案】A[解析] ∵∠A=22.5°,∴∠COE=45°.∵⊙O的直径AB垂直于弦CD,∴CE=DE,∠CEO=90°.∵∠COE=45°,∴CE=OE.在Rt△COE中,由勾股定理,得CE2+OE2=OC2,∴2CE2=62,解得CE=3 2,∴CD=2CE=6 2.故选A.5. 【答案】A6. 【答案】C[解析] 取AB ︵的中点D ,则AD ︵=BD ︵=AC ︵,所以AD =BD =AC ,而AD +BD >AB ,所以2AC >AB .7. 【答案】C8. 【答案】B9. 【答案】B[解析] 如图,延长CO 交AB 于点E ,连接OB .∵CE ⊥AB ,∴AB=2BE .∵OC =6,CD =2OD ,∴CD =4,OD =2,OB =6.由折叠的性质可得DE =12×(6×2-4)=4,∴OE =DE -OD =4-2=2.在Rt △OEB 中,BE =OB2-OE2=62-22=4 2,∴AB =8 2.故选B.10. 【答案】D[解析] 本题中甲的草地:2πr =l ,r =l 2π,S 1=π·r 2=l24π;乙的草地:S 2=l 4×l 4=l216;丙的草地:设一边长为x ,则S 3=x (l 2-x )=-x 2+l 2x .只有当x =l 4时,S 3取得最大值,此时S 3=l216,但此时矩形为正方形,不符合题意.所以S 1>S 2>S 3.11. 【答案】B12. 【答案】C[解析] ∵点I 是△ABC 的内心,∴∠BAC =2∠IAC ,∠ACB =2∠ICA . ∵∠AIC =124°,∴∠B =180°-(∠BAC +∠ACB )=180°-2(∠IAC +∠ICA )=180°-2(180°-∠AIC )=68°.又四边形ABCD内接于⊙O,∴∠CDE=∠B=68°.二、填空题(本大题共6道小题)13. 【答案】 5【解析】本题考查垂径定理、弦、弦心距的性质、正方形的判定与性质、勾股定理等内容. 解题思路:过点O作OF⊥AB,OG⊥CD,垂足分别是F、G. 连接OD.解图⎭⎬⎫⎭⎪⎬⎪⎫AB⊥CDOF⊥ABOG⊥CD⇒四边形OFEG是矩形AB=CD⇒OF=OG⇒⎭⎬⎫矩形OFEG是正方形⎭⎬⎫⎭⎪⎬⎪⎫CE=1ED=3⇒CD=4AB⊥CD⇒GD=12CD=2⇒EG=1⇒OG=GE=1⇒OD=OG2+DG2=12+22= 5.14. 【答案】40°15. 【答案】316. 【答案】60°[解析] ∵OA⊥BC,∴AB︵=AC︵,∴∠AOB=2∠ADC.∵∠ADC =30°,∴∠AOB=60°.17. 【答案】8[解析] 由题意可得A,P,B,C在同一个圆上,所以当BP为圆的直径时,BP 最大,此时∠P AB =90°.过点C 作CD ⊥AB 于点D ,可求得AB =4 3,进而可求得BP 的最大值为8.18. 【答案】8[解析] 连接AD ,如图所示.∵以AB 为直径的⊙O 与BC 交于点D ,与AC 交于点E , ∴∠AEB =∠ADB =90°,即AD ⊥BC. 又∵AB =AC , ∴BD =CD.又∵OA =OB ,∴OD ∥AC , ∴OD ⊥BE ,∴BM =EM , ∴CE =2MD =4, ∴AE =AC -CE =6,∴BE =AB2-AE2=102-62=8.三、解答题(本大题共3道小题)19. 【答案】证明:如图,延长AD 交⊙O 于点E.∵OC ⊥AD ,∴AE ︵=2AC ︵,AE =2AD. ∵AB ︵=2AC ︵,∴AE ︵=AB ︵, ∴AB =AE ,∴AB =2AD.20. 【答案】证明:如图,连接AD ,OC .∵OD⊥AC,∴AE=EC.由翻折的性质,得AC是OD的垂直平分线,∴OE=DE,∴四边形OADC是平行四边形,∴OA∥CD,OA=CD.∵OA=OB,∴OB=CD,OB∥CD,∴四边形BCDO是平行四边形.又∵OB=OD,∴四边形BCDO是菱形.21. 【答案】解:(1)设⊙E切BC于点M,连接EM,则EM⊥BC.又线段AE的延长线交BC 于点F,∠AFC≠90°,∴EF>EM,∴点F在△ABC的内切圆⊙E外.(2)证明:∵点E是△ABC的内心,∴∠BAD=∠CAD,∠ABE=∠CBE.∵∠CBD=∠CAD,∴∠BAD=∠CBD.∵∠BED=∠ABE+∠BAD,∠EBD=∠CBE+∠CBD,∴∠BED=∠EBD,∴ED=BD.(3)如图①,连接CD.设△ABC的外接圆为⊙O.∵∠BAC=90°,∴BC是⊙O的直径,∴∠BDC=90°.∵⊙O的直径是6,∴BC=6.∵E为△ABC的内切圆的圆心,∴∠BAD=∠CAD,∴BD=CD.又∵BD2+CD2=BC2,∴BD=CD=3 2.word 版 初中数学11 /11(4)B ,C ,E 三点可以确定一个圆.如图②,连接CD .∵点E 是△ABC 的内心,∴∠BAD =∠CAD ,∴BD =CD .又由(2)可知ED =BD ,∴BD =CD =ED ,∴B ,C ,E 三点确定的圆的圆心为点D ,半径为BD (或ED ,CD )的长度.。

九年级数学上册 圆的有关性质以及相关练习 人教新课标版

九年级数学上册 圆的有关性质以及相关练习 人教新课标版

九年级数学上册圆的有关性质以及相关练习人教新课标版本章重点1.圆的定义:(1)线段OA绕着它的一个端点O旋转一周,另一个端点A所形成的封闭曲线,叫做圆.(2)圆是到定点的距离等于定长的点的集合.2.判定一个点P是否在⊙O上.设⊙O的半径为R,OP=d,则有d>r点P在⊙O 外;d=r点P在⊙O 上;d<r点P在⊙O 内.3.与圆有关的角(1)圆心角:顶点在圆心的角叫圆心角.圆心角的性质:圆心角的度数等于它所对的弧的度数.(2)圆周角:顶点在圆上,两边都和圆相交的角叫做圆周角.圆周角的性质:①圆周角等于它所对的弧所对的圆心角的一半.②同弧或等弧所对的圆周角相等;在同圆或等圆中,相等的圆周角所对的弧相等.③90°的圆周角所对的弦为直径;半圆或直径所对的圆周角为直角.④如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.⑤圆内接四边形的对角互补;外角等于它的内对角.(3)弦切角:顶点在圆上,一边和圆相交,另一边和圆相切的角叫弦切角.弦切角的性质:弦切角等于它夹的弧所对的圆周角.弦切角的度数等于它夹的弧的度数的一半.4.圆的性质:(1)旋转不变性:圆是旋转对称图形,绕圆心旋转任一角度都和原来图形重合;圆是中心对称图形,对称中心是圆心.在同圆或等圆中,两个圆心角,两条弧,两条弦,两条弦心距,这四组量中的任意一组相等,那么它所对应的其他各组分别相等.(2)轴对称:圆是轴对称图形,经过圆心的任一直线都是它的对称轴.垂径定理及推论:(1)垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.(2)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.(3)弦的垂直平分线过圆心,且平分弦对的两条弧.(4)平分一条弦所对的两条弧的直线过圆心,且垂直平分此弦.(5)平行弦夹的弧相等.5.三角形的内心、外心、重心、垂心(1)三角形的内心:是三角形三个角平分线的交点,它是三角形内切圆的圆心,在三角形内部,它到三角形三边的距离相等,通常用“I”表示.(2)三角形的外心:是三角形三边中垂线的交点,它是三角形外接圆的圆心,锐角三角形外心在三角形内部,直角三角形的外心是斜边中点,钝角三角形外心在三角形外部,三角形外心到三角形三个顶点的距离相等,通常用O表示.(3)三角形重心:是三角形三边中线的交点,在三角形内部;它到顶点的距离是到对边中点距离的2倍,通常用G表示.(4)垂心:是三角形三边高线的交点.6.切线的判定、性质:(1)切线的判定:①经过半径的外端并且垂直于这条半径的直线是圆的切线.②到圆心的距离d等于圆的半径的直线是圆的切线.(2)切线的性质:①圆的切线垂直于过切点的半径.②经过圆心作圆的切线的垂线经过切点.③经过切点作切线的垂线经过圆心.(3)切线长:从圆外一点作圆的切线,这一点和切点之间的线段的长度叫做切线长.(4)切线长定理:从圆外一点作圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角.7.圆内接四边形和外切四边形(1)四个点都在圆上的四边形叫圆的内接四边形,圆内接四边形对角互补,外角等于内对角.(2)各边都和圆相切的四边形叫圆外切四边形,圆外切四边形对边之和相等.8.直线和圆的位置关系:设⊙O 半径为R,点O到直线l的距离为d.(1)直线和圆没有公共点直线和圆相离d>R.(2)直线和⊙O有唯一公共点直线l和⊙O相切d=R.(3)直线l和⊙O 有两个公共点直线l和⊙O 相交d<R.9.圆和圆的位置关系:设的半径为R、r(R>r),圆心距.(1)没有公共点,且每一个圆上的所有点在另一个圆的外部外离d>R+r.(2)没有公共点,且的每一个点都在外部内含d<R-r(3)有唯一公共点,除这个点外,每个圆上的点都在另一个圆外部外切d=R+r.(4)有唯一公共点,除这个点外,的每个点都在内部内切d=R-r.(5)有两个公共点相交R-r<d<R+r.10.两圆的性质:(1)两个圆是一个轴对称图形,对称轴是两圆连心线.(2)相交两圆的连心线垂直平分公共弦,相切两圆的连心线经过切点.11.圆中有关计算:圆的面积公式:,周长C=2πR.圆心角为n°、半径为R的弧长.圆心角为n°,半径为R,弧长为l的扇形的面积.弓形的面积要转化为扇形和三角形的面积和、差来计算.圆柱的侧面图是一个矩形,底面半径为R,母线长为l的圆柱的体积为,侧面积为2πRl,全面积为.圆锥的侧面展开图为扇形,底面半径为R,母线长为l,高为h的圆锥的侧面积为πRl ,全面积为,母线长、圆锥高、底面圆的半径之间有.重点、热点垂径定理及推论;圆心角、弧、弦、弦心距之间的关系定理. 运用圆内接四边形的性质解有关计算和证明题.【典型例析】例1.(1)如图7.1-1.OE、OF分别是⊙O的弦AB、CD的弦心距,若OE=OF,则(只需写出一个正确的结论).(2)如图7.1-2.已知,AB为⊙O的直径,D为弦AC的中点,BC=6cm,则OD= .[特色] 以上几道中考题均为直接运用圆的有关性质解题.[解答](1)AB=CD或 AB=CD或AD=BC,直接运用圆心角、弧、弦、弦心距之间的关系定理.1BC(2)由三角形的中位线定理知OD=2[拓展]复习中要加强对圆的有关性质的理解、运用.例2.(1)下列命题中真命题是().A.平分弦的直径垂直于弦B.圆的半径垂直于圆的切线C.到圆心的距离大于半径的点在圆内 D.等弧所对的圆心角相等(2)如图7.1-3.AB是⊙O的直径,CD是⊙O弦,若AB=10cm,CD=8cm,那么A、B两点到直线CD的距离之和为().A.12cmB.10cmC.8cmD.6cm(3)已知如图7.1-4圆心角∠BOC=100 ,则圆周角∠BAC的度数是().A. 50B.100C.130D.200[特色]着眼于基本知识的考查和辨析思维的评价.[解答] (1) D (考查对基本性质的理解).1CD=4,(2)D (过O作OM⊥CD,连结OC,由垂径定理得CM=2由勾股定理得OM=3,而AB两点到CD的距离和等于OM的2倍)(3)A (由圆周角定理可得)[拓展] 第(2)题中,涉及圆的弦一般作弦心距.例3.圆内接四边形ABCD,∠A、∠B、∠C的度数的比是1∶2∶3,则这个四边形的最大角是 .[特色]运用圆内接四边形的性质进行简单计算.[解答]设A=x,则∠B=2x,∠C=3x . ∵∠A+∠C=180 ,∴x+3x=180 ,∴ x=45 .∴∠A=45 ,∠ B=90 ,∠C=135 ,∠ D=90 .∴最大角为135 .[拓展]此题着眼于基本性质、基本方法的考查.设未知数,列方程求解是解此类题的基本方法.例4.已知,如图7.1-5 BC为半圆O的直径,F是半圆上异于BC的点,A是BF的中点,AD⊥BC于点D,BF交AD于点E.(1)求证:BE•BF=BD•BC(2)试比较线段BD与AE的大小,并说明道理.[特色] 此题是教材中的习题变形而来,它立意于考查分析、观察、比较、归纳等能力.[解答] (1)连结FC,则BF⊥FC.在△BDF和△BCF中,∵∠BFC=∠EDB=90 ,∠ FBC=∠EBD,∴△BDE∽△BFC,∴ BE∶BC=BD∶BF.即 BF•BE=BD•BC.(2) AE>BD , 连结AC、AB 则∠BAC=90 .∵AF AB , ∴∠1=∠2.又∵∠2+∠ABC=90 ,∠3+∠ABD=90 ,∴∠2=∠3,∠1=∠3,∴ AE=BE.在Rt△EBD中, BE>BD,∴AE>BD.[拓展] 若AC交BE于G,请想一想,在什么情况下线段BE、BG、FG 有相等关系?例5.如图7.4-1,矩形ABCD,AD=8,DC=6,在对角线AC上取一点O,以OC为半径的圆切AD于E,交BC于F,交CD于G.(1)求⊙O的半径R;(2)设∠BFE=α,∠GED=β,请写出α、β、90 三者之间的关系式(只需写出一个),并证明你的结论.[特色]此题第二问设计为开放性问题,它立意考查学生分析、观察、比较、归纳能力.[解答] (1)连结OE,则OE⊥AD.∵四边形是矩形,∴∠D=90 , OE∥CD,∴AC=22DC AD +=2268+=10.∵△AOE ∽△ACD , ∴ OE ∶CD=AO ∶AC , ∴R ∶6=(10-R) ∶10,解之得: R=415. (2)∵四边形是圆的内接四边形,∴∠EFB=∠EGC , ∵∠EGC=90 +β,∴α =90 +β 或 ∵ β<90 , α =∠EGC>90 , ∴ β < 90 < α.[拓展]比较角的大小时,要善于发现角与角之间的关系,判断角是锐角还是直角、钝角.。

九年级数学下册 第27章 圆基础训练 试题

九年级数学下册 第27章 圆基础训练 试题

圆根底训练制卷人:歐陽文化、歐陽理複;制卷時間:二O 二二年二月七日一、圆的概念集合形式的概念: 1、 圆可以看作是到定点的间隔 等于定长的点的集合; 二、点与圆的位置关系1、点在圆内 ⇒ d r < ⇒ 点C 在圆内;2、点在圆上 ⇒ d r = ⇒ 点B 在圆上;3、点在圆外 ⇒ d r > ⇒ 点A 在圆外;三、垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。

推论1:〔1〕平分弦〔不是直径〕的直径垂直于弦,并且平分弦所对的两条弧; 〔2〕弦的垂直平分线经过圆心,并且平分弦所对的两条弧;〔3〕平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧 以上一共4个定理,简称2推3定理:此定理中一共5个结论中,只要知道其中2个即可推出其它3个结论,即: ①AB 是直径 ②AB CD ⊥ ③CE DE = ④ 弧BC =弧BD ⑤ 弧AC =弧AD中任意2个条件推出其他3个结论。

推论2:圆的两条平行弦所夹的弧相等。

即:在⊙O 中,∵AB ∥CD ∴弧AC =弧BD六、1、圆心角定理:同圆或者等圆中,相等的圆心角所对的弦相等,所对的弧等,弦心距等。

此定理也称1推3定理,即上述四个结论中,只要知道其中的1个相等,那么可以推出其它AD的3个结论,即:①AOB DOE ∠=∠;②AB DE =;③OC OF =;④ 弧BA =弧BD 七、1、圆周角定理:同弧所对的圆周角等于它所对的圆心的角的一半。

即:∵AOB ∠和ACB ∠是弧AB 所对的圆心角和圆周角∴2AOB ACB ∠=∠ 2、圆周角定理的推论:推论1:同弧或者等弧所对的圆周角相等;同圆或者等圆中,相等的圆周角所对的弧是等弧;即:在⊙O 中,∵C ∠、D ∠都是所对的圆周角 ∴C D ∠=∠推论2:半圆或者直径所对的圆周角是直角;圆周角是直角所对的弧是半圆,所对的弦是直径。

即:在⊙O 中,∵AB 是直径 或者∵90C ∠=︒ ∴90C ∠=︒ ∴AB 是直径推论3:假设三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。

2021-2022学年数学人教版九年级上册 圆 基础提升练(2)圆的有关性质 提升练

2021-2022学年数学人教版九年级上册 圆  基础提升练(2)圆的有关性质 提升练

基础提升练(2)圆的有关性质一、解答题1.如图,四边形ABCD是O的内接四边形,点F是CD延长线上的一点,且DA平分BDF∠,AE CD⊥于点E.(1)求证:AB AC=.(2)若11DE=,求CD的长.BD=,2二、单选题2.下列关于圆的叙述中正确的是( )A.圆是由圆心唯一确定的B.圆是一条封闭的曲线C.平面内到定点的距离小于或等于定长的所有点组成圆D.圆内任意一点到圆心的距离都相等3.如图,AB为O的直径,弦CD ABBE=,则O的直径为( )⊥于点E,已知16CD=,4A.8B.10C.15D.204.如图,AB,CD是O的直径,AE BD=,若32∠=︒,则COE∠的度数是( )AOEA.32°B.60°C.68°D.64°5.如图,已知AOB COD∠=∠,下列结论不一定成立的是( )A.AB CD= B.AB CD=C.AOB COD≌ D.AOB,COD都是等边三角形6.如图,AB BC,是O的两条弦,AO BC⊥,垂足为D.若O的半径为5,8BC=,则AB的长为( )A.8B.10C.D.7.如图,等边三角形ABC和正方形ADEF都内接于O,则:AD AB=( )A.8.如图,在ABC中,90C∠=︒,DCEα∠=,以点C为圆心,BC长为半径的圆分别交AB于点D,交AC于点E,则A∠的度数为( )A.1452α- B.12a C.1452α+ D.1252α+9.如图,四边形ABCD内接于O,AC平分BAD∠,则下列结论正确的是( )A.AB AD =B.BC CD =C.AB AD =D.BCA DCA ∠=∠10.如图,已知BC 是O 的直径,半径OA BC ⊥,点D 在劣弧A C 上(不与点A ,C 重合),BD 与OA 交于点E .设,AED AOD αβ∠=∠=,则( )A.3180αβ︒+=B.2180αβ︒+=C.390αβ︒-=D.290αβ︒-=11.如图,在O 中,AB 为直径,80AOC ∠=︒,点D 为弦AC 的中点,点E 为BC 上任意一点.则CED ∠的大小可能是( )A.10°B.20°C.30°D.40°三、填空题12.如图,在半圆O 中,AB 是直径,CD 是一条弦,若10AB =,则COD 面积的最大值是___________.13.我国古代数学经典著作《九章算术》中记载了一个“圆材埋壁”的问题:“今有圆材埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺.问径几何?意思是:今有一圆柱形木材,埋在墙壁中,不知其大小.用锯去锯这木材,锯口深1ED =寸,锯道长1AB =尺(1尺=10寸).问这根圆形木材的直径是_________寸.14.如图,在O 中,AB CD =,有下列结论①AB CD =,②AC BD =;③AOC BOD ∠=∠,④AOB 通过旋转能与COD 重合,其中正确的结论有___________(填序号).15.如图,AB 是O 的弦,半径,//OC AB AC OB ⊥,则BOC ∠的度数为___________.参考答案1.答案:(1)证明:DA 平分BDF ∠,ADF ADB ∴∠=∠.180ABC ADC ∠+∠=︒,180ADC ADF ∠+∠=︒,ABC ADF ∴∠=∠.ACB ADB ∠=∠,ABC ACB ∴∠=∠,AB AC ∴=.(2)解:如图,过点A 作AG BD ⊥,垂足为G .DA 平分BDF ∠,AE CF ⊥,AG BD ⊥,AG AE ∴=,90AGB AEC ∠=∠=︒.在AED 和AGD 中,AE AG =,AD AD =,90AGD AED ∠=∠=︒,Rt Rt (HL)AED AGD ∴≅,2GD ED ∴==.在AEC 和AGB 中,AE AG =,AB AC =,90AGB AEC ∠=∠=︒,Rt Rt (HL)AEC AGB ∴≅,BG CE ∴=.11BD =,1129BG BD GD ∴=-=-=,9CE BG ∴==,927CD CE DE ∴=-=-=.解析:2.答案:B解析:①圆指的是“圆周”,即一条封闭的曲线,而不是“圆面”;②“圆上的点”指的是圆周上的点,圆心不在圆周上.3.答案:D解析:如图,连接OC .AB 为O 的直径,弦CD AB ⊥于点E , 182CE CD ∴==.设O 的半径为r ,则OC OB r ==.222OC OE CE =+,即222(4)8r r =-+,解得10r =,O ∴的直径为220r =.故选D.4.答案:D解析:AE BD =,32BOD AOE ∴∠=∠=︒.BOD AOC ∠=∠,32AOC ∴∠=︒,323264COE ∴∠=︒+︒=︒.故选D.5.答案:D解析:AOB COD ∠=∠,AB CD ∴=,AB CD =.OA OB OC OD ===,AOB COD ∴≌,∴选项A, B,C 成立;AOB ∠和COD ∠不一定等于60°,AOB ∴,COD 不一定是等边三角形,∴选项D 不一定成立.故选D.6.答案:D解析:连接OB .0,8904A BC BC BDO BD CD ⊥=∠=︒==,,.在Rt BOD 中由勾股定理,得3,538OD AD OA OD ==∴=+=+=在Rt ADB 中,由勾股定理,得AB ==.故选D.7.答案:B解析:如图,连接OA ,OB ,OD ,过O 作OH AB ⊥于H .由垂径定理得12AH BH AB ==,60AOH BOH ∠=∠=︒,30OAB ∴∠=︒,12OH OA ∴=,AH ∴=,2AB AH ∴=.又AOD 为2等腰直角三角形,AD ∴=,:AD AB ∴=.8.答案:A解析:9090DCE ACB BCD αα∠=∠=︒∴∠=︒-,,.BC DC =,()()1111801809045,222B BCD ∠∠αα∴=-=-+=+190452A B α∴∠=-∠=-.故选A. 9.答案:B解析:ACB ∠与ACD ∠的大小关系不确定,∴AB 与AD 不一定相等,AB 与AD 不一定相等,故选项A,C,D 错误.AC 平分BAD ∠,BAC DAC ∴∠=∠,BC CD ∴=,故B 选项正确.故选B.10.答案:D解析:OA BC ⊥,90AOB AOC ∴∠=∠=︒,909090DBC BEO AED α∴∠=︒-∠=︒-∠=︒-,21802COD DBC α∴∠=∠=-.90AOD COD ∠+∠=︒,180290,290βααβ∴+-=∴-=.故选D.11.答案:C解析:连接AE ,连接OD 分别交圆O 于点M ,N ,连接CM ,如图.80AOC ∠=︒,40AEC ∴∠=︒,40CED AEC AED ∴∠=∠-∠<︒.又点D 为弦AC 的中点,1402COD AOC ∴∠=∠=︒,1202CMN COD ∴∠=∠=︒.CED ∠所对的弧大于CN ,CED CMN ∴∠>∠,即20CED ∠>︒.综上,2040CED ︒<∠<︒,故选C.12.答案:12.5解析:如图,作DH CO ⊥交CO 的延长线于点H .12COD S OC DH =⋅,且DH OD ≤,∴当DH OD =时,COD 的面积最大,此时COD 是等腰直角三角形,90COD ∠=︒,∴面积的最大值为15512.52⨯⨯=.故答案为12.5.13.答案:26解析:本题考查垂径定理、勾股定理.由题意可知.OE AB OE ⊥为O 半径,AD BD ∴==1122AB =尺=5寸.设半径OA OE r ==寸,1ED =寸,(1)OD r ∴=-寸,在Rt OAD 中,根据勾股定理可得222(1)5r r -+=,解得13,r =∴木材直径为26寸.14.答案:①②③④ 解析:在O 中,,AB CD AB CD =∴=,∴①正确;BC 为公共弧,AC BD AOC BOD ∴=∴∠=∠,,∴②正确,③正确;OA OB OC OD AOB COD ===∠=∠,,AOB COD ∴≌,AOB ∴通过旋转能与COD 重合,∴④正确.15.答案:60°解析:设AB 交OC 于点K .OC AB ⊥,.//AK BK AC OB ∴=,CAK OBK ∴∠=∠.又AKC BKO ∠=∠,(ASA)AKC BKO ∴≅,11.,22OK KC OC OB OC OK OB ∴===∴=.在Rt OBK 中,1sin ,30,602OK OBK OBK BOC OB ∠==∴∠=∴∠=.。

九年级数学下册第24章圆集训课堂测素质圆及圆的基本性质习题新版沪科版

九年级数学下册第24章圆集训课堂测素质圆及圆的基本性质习题新版沪科版

19 (12分)如图,AB是⊙O的一条弦,OD⊥AB,垂足为C, OD交⊙O于点D,点E在⊙O上. (1)若∠AOD=54°,求∠DEB的度数; 解:∵OD⊥AB,∴A︵D=B︵D. ∴∠DEB=12∠AOD=12×54°=27°.
(2)若CD=2,AB=8,求⊙O的半径. 解:设⊙O 的半径为 r,则 OC=r-2. ∵OD⊥AB,∴AC=12AB=4,∠ACO=90°. 在 Rt△ AOC 中,AO2=AC2+OC2, ∴r2=42+(r-2)2,解得 r=5. ∴⊙O 的半径是 5.
20 (12分)【2021·荆门】如图,在△ABC中,∠BAC=
90°,点E在BC边上,过A,C,E三点的⊙O交AB边

于另一点F,且F是AE的中点,AD是⊙O的一条直径,
连接DE并延长交AB边于M点.
(1)求证:四边形CDMF为平行四边形;
证明:如图,连接DF.
∵∠BAC=90°,∴FC是⊙O的直径.
沪科版 九年级
第24章 圆
集训课堂
测素质
圆及圆的基本性质
习题链接
温馨提示:点击 进入讲评
1C 2A 3D 4B
5D 6A 7B 8A
答案呈现
9D
10 D 11 60° 12 50°
习题链接
温馨提示:点击 进入讲评
13 (0,8)
17
14 AC=AE
18
15 20°
19
16 4
20
答案呈现
1 如图,在以原点为圆心,2 为半径的⊙O 上有一点 C, ∠COA=45°,则点 C 的坐标为( C ) A.( 2, 2) B.( 2,- 2) C.(- 2, 2) D.(- 2,- 2)
11 已知⊙O中最长的弦是12 cm,弦AB=6 cm,则 ∠AOB=____6_0_°__.

最新数学巩固初三年级训练《圆的有关性质》

最新数学巩固初三年级训练《圆的有关性质》

最新数学巩固初三年级训练《圆的有关性质》1. 圆上各点到圆心的距离都等于 .2. 圆是对称图形,任何一条直径所在的直线都是它的 ;圆又是对称图形,是它的对称中心. 例1:(2009山西省太原市)如图,在中,=90deg;,=10,若以点为圆心,长为半径的圆恰好经过的中点,则的长等于( ) A.B.5 C. D.6 分析:连接CD,因为点D在圆上,所以CD=CB,又CD是的斜边中线,所以CD=BD,所以CD=CB=BD,所以Delta;BCD是等边三角形,所以ang;B=60deg;,所以AC=AB sinB= 解:选A 同步测试:1.(2009山西省太原市)如图,AB是半圆O的直径,点P从点O出发,沿的路径运动一周.设为,运动时间为,则下列图形能大致地刻画与之间关系的是( )2.(2009荆门市)如图,在□ABCD中,ang;BAD为钝角,且AEperp;BC,AFperp;CD.(1)求证:A、E、C、F四点共圆; (2)设线段BD与(1)中的圆交于M、N.求证:BM=ND. 知识点二:弦、弧、半圆、优弧、同心圆、等圆、等弧、圆心角、圆周角等与圆有关的概念 1.在同圆或等圆中,相等的弧叫做 2. 同弧或等弧所对的圆周角,都等于它所对的圆心角的 . 3. 直径所对的圆周角是,90deg;所对的弦是 . 例2:(2008年镇江市)如图,⊙O是等腰三角形的外接圆,,,为⊙O的直径,,连结,则, . 分析:因为ang;D和ang;A都是弧BC所对的圆周角,所以ang;D=ang;A=45deg;,因为BD是直径,所以ang;BCD=90deg;,所以BC=BD sinD=2 解:ang;D=45deg;;BC=2 同步测试:1.(2009天津市)如图,内接于,若,则的大小为( )D A.B. C. D. 2.(2008年泰州市)如图,⊿ABC内接于⊙O,AD是⊿ABC的边BC上的高,AE是⊙O的直径,连接BE,⊿ABE与⊿ADC相似吗?请证明你的结论。

人教版 九年级数学 24.1 圆的有关性质 课时训练(含答案)

人教版 九年级数学 24.1 圆的有关性质 课时训练(含答案)

人教版九年级数学24.1 圆的有关性质课时训练一、选择题(本大题共12道小题)1. 下列说法中正确的是()A.等弦所对的弧相等B.等弧所对的弦相等C.圆心角相等,它们所对的弦也相等D.等弦所对的圆心角相等2. 2019·葫芦岛如图,在⊙O中,∠BAC=15°,∠ADC=20°,则∠ABO的度数为()A.70°B.55°C.45°D.35°3. 如图,直线l1∥l2,以直线l1上的点A为圆心、适当长为半径画弧,分别交直线l1,l2于点B,C,连接AC,BC.若∠ABC=54°,则∠1等于()A.36°B.54°C.72°D.73°4. 如图,⊙O的直径AB垂直于弦CD,垂足是E,∠CAO=22.5°,OC=6,则CD的长为()A.6 2 B.3 2 C.6 D.125. 在半径等于5 cm 的圆内有长为5 3 cm 的弦,则此弦所对的圆周角为( )A .60°或120°B .30°或120°C .60°D .120°6. 如图,在⊙O 中,如果AB ︵=2AC ︵,那么( )A .AB =AC B .AB =2AC C .AB <2ACD .AB >2AC7. 2019·梧州如图,在半径为13的⊙O 中,弦AB 与CD 交于点E ,∠DEB =75°,AB =6,AE =1,则CD 的长是( )A .2 6B .2 10C .2 11D .4 38.如图,AB 是⊙O 的直径,EF ,EB 是⊙O 的弦,且EF =EB ,EF 与AB 交于点C ,连接OF .若∠AOF =40°,则∠F 的度数是( )A .20°B .35°C .40°D .55°9. 如图,将半径为6的⊙O 沿AB 折叠,AB ︵与垂直于AB 的半径OC 交于点D ,且CD =2OD ,则折痕AB 的长为( )A .4 2B .8 2C .6D .6 310. 甲、乙、丙三个牧民用同样长为l 米的铁丝各围一块草地放牧,甲牧民围成面积为S 1的圆形草地,乙牧民围成面积为S 2的正方形草地,丙牧民围成面积为S 3的矩形(不是正方形)草地,则下列结论正确的是( ) A .S 1>S 3>S 2 B .S 2>S 1>S 3 C .S 3>S 1>S 2D .S 1>S 2>S 311. 如图,在⊙O 中,AB ︵所对的圆周角∠ACB =50°,若P 为AB︵上一点,∠AOP =55°,则∠POB 的度数为( )A .30°B .45°C .55°D .60°12.如图,四边形ABCD 内接于⊙O ,点I 是△ABC 的内心,∠AIC =124°,点E 在AD 的延长线上,则∠CDE 的度数为( )A .56°B .62°C .68°D .78°二、填空题(本大题共6道小题)13.如图,⊙O 的两条弦AB 、CD 互相垂直,垂足为E ,且AB =CD ,已知CE =1,ED =3,则⊙O 的半径是________.14. 2019·随州如图,点A ,B ,C 在⊙O 上,点C 在AMB ︵上.若∠OBA =50°,则∠C 的度数为________.15. 如图,AB为⊙O 的直径,CD ⊥AB.若AB =10,CD =8,则圆心O 到弦CD的距离为________.16. 如图,在⊙O 中,半径OA 垂直于弦BC ,点D 在圆上,且∠ADC =30°,则∠AOB 的度数为________.17. 如图,已知等腰三角形ABC 中,∠ACB =120°且AC =BC =4,在平面内任作∠APB =60°,则BP 的最大值为________.18. 如图,在△ABC 中,AB =AC =10,以AB 为直径的⊙O 与BC 交于点D ,与AC 交于点E ,连接OD ,BE ,它们交于点M ,且MD =2,则BE 的长为________.三、解答题(本大题共3道小题)19. 如图,在⊙O 中,AB ︵=2AC ︵,AD ⊥OC于点D.求证:AB =2AD.20. 如图,AB是⊙O 的直径,AC 是弦,将劣弧AC 沿弦AC 翻折与AB 的交点恰好是圆心O ,作OD ⊥AC ,垂足为E ,交⊙O 于点D ,连接BC ,CD .求证:四边形BCDO 是菱形.21. 如图,点E 是△ABC 的内心,线段AE 的延长线交BC 于点F (∠AFC ≠90°),交△ABC 的外接圆于点D .(1)求点F 与△ABC 的内切圆⊙E 的位置关系;(2)求证:ED=BD;(3)若∠BAC=90°,△ABC的外接圆的直径是6,求BD的长;(4)B,C,E三点可以确定一个圆吗?若可以,则它们确定的圆的圆心和半径分别是什么?若不可以,请说明理由.人教版九年级数学24.1 圆的有关性质课时训练-答案一、选择题(本大题共12道小题)1. 【答案】B2. 【答案】B3. 【答案】C4. 【答案】A[解析] ∵∠A=22.5°,∴∠COE=45°.∵⊙O的直径AB垂直于弦CD,∴CE=DE,∠CEO=90°.∵∠COE=45°,∴CE=OE.在Rt△COE中,由勾股定理,得CE2+OE2=OC2,∴2CE2=62,解得CE=3 2,∴CD=2CE=6 2.故选A.5. 【答案】A6. 【答案】C[解析] 取AB ︵的中点D ,则AD ︵=BD ︵=AC ︵,所以AD =BD =AC ,而AD +BD >AB ,所以2AC >AB .7. 【答案】C8. 【答案】B9. 【答案】B[解析] 如图,延长CO 交AB 于点E ,连接OB .∵CE ⊥AB ,∴AB=2BE .∵OC =6,CD =2OD ,∴CD =4,OD =2,OB =6.由折叠的性质可得DE =12×(6×2-4)=4,∴OE =DE -OD =4-2=2.在Rt △OEB 中,BE =OB 2-OE 2=62-22=4 2, ∴AB =8 2.故选B.10. 【答案】D [解析] 本题中甲的草地:2πr =l ,r =l 2π,S 1=π·r 2=l 24π;乙的草地:S 2=l 4×l 4=l 216;丙的草地:设一边长为x ,则S 3=x (l 2-x )=-x 2+l 2x .只有当x =l 4时,S 3取得最大值,此时S 3=l 216,但此时矩形为正方形,不符合题意.所以S 1>S 2>S 3.11. 【答案】B12. 【答案】C[解析] ∵点I 是△ABC 的内心,∴∠BAC =2∠IAC ,∠ACB =2∠ICA . ∵∠AIC =124°,∴∠B =180°-(∠BAC +∠ACB )=180°-2(∠IAC +∠ICA )=180°-2(180°-∠AIC )=68°.又四边形ABCD 内接于⊙O ,∴∠CDE=∠B=68°.二、填空题(本大题共6道小题)13. 【答案】 5【解析】本题考查垂径定理、弦、弦心距的性质、正方形的判定与性质、勾股定理等内容. 解题思路:过点O作OF⊥AB,OG⊥CD,垂足分别是F、G. 连接OD.解图⎭⎬⎫⎭⎪⎬⎪⎫AB⊥CDOF⊥ABOG⊥CD⇒四边形OFEG是矩形AB=CD⇒OF=OG⇒⎭⎬⎫矩形OFEG是正方形⎭⎬⎫⎭⎪⎬⎪⎫CE=1ED=3⇒CD=4AB⊥CD⇒GD=12CD=2⇒EG=1⇒OG=GE=1⇒OD=OG2+DG2=12+22= 5.14. 【答案】40°15. 【答案】316. 【答案】60°[解析] ∵OA⊥BC,∴AB︵=AC︵,∴∠AOB=2∠ADC.∵∠ADC =30°,∴∠AOB=60°.17. 【答案】8[解析] 由题意可得A,P,B,C在同一个圆上,所以当BP为圆的直径时,BP最大,此时∠P AB=90°.过点C作CD⊥AB于点D,可求得AB=4 3,进而可求得BP 的最大值为8.18. 【答案】8[解析] 连接AD ,如图所示.∵以AB 为直径的⊙O 与BC 交于点D ,与AC 交于点E , ∴∠AEB =∠ADB =90°,即AD ⊥BC. 又∵AB =AC , ∴BD =CD.又∵OA =OB ,∴OD ∥AC , ∴OD ⊥BE ,∴BM =EM , ∴CE =2MD =4, ∴AE =AC -CE =6,∴BE =AB2-AE2=102-62=8.三、解答题(本大题共3道小题)19. 【答案】证明:如图,延长AD 交⊙O 于点E.∵OC ⊥AD ,∴AE ︵=2AC ︵,AE =2AD. ∵AB ︵=2AC ︵,∴AE ︵=AB ︵, ∴AB =AE ,∴AB =2AD.20. 【答案】证明:如图,连接AD ,OC .∵OD⊥AC,∴AE=EC.由翻折的性质,得AC是OD的垂直平分线,∴OE=DE,∴四边形OADC是平行四边形,∴OA∥CD,OA=CD.∵OA=OB,∴OB=CD,OB∥CD,∴四边形BCDO是平行四边形.又∵OB=OD,∴四边形BCDO是菱形.21. 【答案】解:(1)设⊙E切BC于点M,连接EM,则EM⊥BC.又线段AE的延长线交BC 于点F,∠AFC≠90°,∴EF>EM,∴点F在△ABC的内切圆⊙E外.(2)证明:∵点E是△ABC的内心,∴∠BAD=∠CAD,∠ABE=∠CBE.∵∠CBD=∠CAD,∴∠BAD=∠CBD.∵∠BED=∠ABE+∠BAD,∠EBD=∠CBE+∠CBD,∴∠BED=∠EBD,∴ED=BD.(3)如图①,连接CD.设△ABC的外接圆为⊙O.∵∠BAC=90°,∴BC是⊙O的直径,∴∠BDC=90°.∵⊙O的直径是6,∴BC=6.∵E为△ABC的内切圆的圆心,∴∠BAD=∠CAD,∴BD=CD.又∵BD2+CD2=BC2,∴BD=CD=3 2.(4)B,C,E三点可以确定一个圆.如图②,连接CD.∵点E是△ABC的内心,∴∠BAD=∠CAD,∴BD=CD.又由(2)可知ED=BD,∴BD=CD=ED,∴B,C,E三点确定的圆的圆心为点D,半径为BD(或ED,CD)的长度.。

24.1 圆的有关性质 人教版九年级数学上册素养基础达标(含答案)

24.1 圆的有关性质 人教版九年级数学上册素养基础达标(含答案)

24.1圆的有关性质【素养基础达标】2023-2024学年人教版数学九年级上册圆的旋转定义在一个平面内,线段OA 绕它固定的一个端点O 旋转一周,另一个端点A 所形成的图形叫做圆.固定的端点O 叫做圆心,线段OA 叫做半径,一般用r 表示.圆的表示法以点O 为圆心的圆,记作“⊙O ”,读作“圆O ”.确定一个圆需要的“两要素”一是圆心,圆心确定其位置;二是半径,半径确定其大小.注意:圆是一条封闭的曲线,“圆”指的是“圆周”,而不是“圆面”;圆的集合定义圆心为O 、半径为r 的圆可以看成是平面内所有到定点(圆心O )的距离等于定长(半径r )的点的集合.结论(1)圆上各点到定点(圆心O )的距离都等于定长(半径r ).(2)到定点的距离等于定长的点都在同一个圆上.数学语言(1)∵点A 、B 在圆上∴OA =OB (2)∵OA =OB∴点A 、B 在圆上2.圆的有关概念定义:连接圆上任意两点的线段叫做弦。

经过圆心的弦叫做直径弦注意:1.弦和直径都是线段;2.直径是弦,是经过圆心的特殊弦,但弦不一定是直径.直径是最长的弦定义:圆上任意两点间的部分叫做圆弧,简称“弧”。

以A 、B 为端点的弧记作读作“圆弧AB ”或“弧AB ”.半圆圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆劣弧小于半圆的弧叫做劣弧,如弧优弧大于半圆的弧叫做优弧,如等圆定义;能够重合的两个圆叫做等圆.等圆是两个半径相等的圆.在同圆或等圆中,能够互相重合的弧叫做等弧.等弧注意:等弧仅仅存在于同圆或者等圆中.3.垂直于弦的直径圆的对称性圆是轴对称图形,任何一条直径所在的直线都是圆的对轴.垂直于弦的直径平分弦,并且平分弦所对的两条弧.垂径定理数学语言:∵CD 是⊙O 的直径,CD ⊥AB ,(条件)∴AP =BP ,(结论)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧.垂径定理的推论数学语言:∵CD是⊙O的直径,AP=BP ,AB 不是直径(条件)∴CD ⊥AB ,(结论)弓形中的重要数量关系弦长a ,弦心距d (指圆心O 到弦的距离),弓形高h ,半径r 之间有以下关系:d +h =r ,4.圆心角、弧、弦圆是中心对称图形圆是旋转对称图形,具有旋转不变性圆心角定义顶点在圆心的角,叫圆心角,如∠AOB .在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等.弧、弦与圆心角的关系定理数学语言:∵∠AOB =∠COD∴,AB =CD推论一:在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的弦相等.数学语言:∵∴∠AOB =∠COD ,AB =CD 弧、弦与圆心角关系定理的推论推论二:在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的优弧和劣弧分别相等.∵AB =CD∴∠AOB =∠COD ,(优弧或劣弧)注意:一条弦对应两条弧,由弦相等得到弧相等时需要区分优弧和劣弧.5.圆周角圆周角定义顶点在圆上,并且两边都与圆相交的角叫做圆周角.圆周角定理一条弧所对的圆周角等于它所对的圆心角的一半.即:圆周角定理的推论1同弧或等弧所对的圆周角相等.圆周角定理的推论2半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.圆内接多边形的定义如果一个多边形的所有顶点都在同一个圆上,这个多边形叫做圆内接多边形,这个圆叫做这个多边形的外接圆.圆内接四边形的性质:圆的内接四边形的对角互补.∠A +∠C =180°,∠B +∠D =180°一.选择题(共10小题)1.如图,是半圆的直径,是的中点,若,则的度数是 A .B .C .D .2.如图,中,为优弧上一个动点(不与,两点重合),,垂足为,是的中点,连接.若的半径为4,则线段的最大值是 A .4B .C .6D .83.如图,中,,,则的度数为A.B.C.D.4.如图,中,弦,相交于点,若,,则等于 A.B.C.D.5.如图,点,,,是上的点,是的直径,若,则的度数为 A.B.C.D.6.如图,是半圆的直径,,在半圆上.若,则的度数为 A.B.C.D.7.为了测量一个铁球的直径,将该铁球放入工件槽内,测得的有关数据如图所示(单位:,则该铁球的直径为 A.B.C.D.8.如图,四边形内接于,对角线于点,若的长与的半径相等,则下列等式正确的是 A.B.C.D.9.学了圆后,小亮突发奇想,想到用这种方法测量三角形的角度:将三角形纸片如图放置,使得顶点在量角器的半圆上,纸片另外两边分别与量角器交于,两点.点,的度数是,,这样小明就能得到的度数,请你帮忙算算的度数是 A.B.C.D.10.如图,在中,,是劣弧的中点,是优弧任意一点,连接,,则的度数是 A.或B.C.D.二.填空题(共8小题)11.如图,量角器外沿上有、两点,它们的读数分别是、,则的度数为 .12.一条弦把圆分成两部分,则这条弦所对的圆周角的度数是 .13.如图,的弦垂直平分半径,若,则的半径为 .14.如图,,是的两条半径,点在上,若,则的度数为 .15.如图,含角的直角三角板的斜边与量角器的直径重合,点和点在量角器的半圆上,若点在量角器上对应的读数是,则的度数是 .16.如图,一条公路(公路的宽度忽略不计)的转弯处是一段圆弧,点是这段弧所在圆的圆心,半径,圆心角,则这段弯路的长度为 .17.如图,是直径,弦与相交,若,则的大小是 .18.如图,已知是半圆的直径,弦,,,则的长为 .三.解答题(共8小题)19.如图,中,弦与相交于点,,连接,.求证:(1);(2).20.求证:圆内接平行四边形是矩形.(请思考不同证法)21.如图,在中,弦、相交于点,,,求的度数.22.如图,是的直径,是延长线上一点,点在上,且,的延长线交于点,若,求的度数.23.筒车是我国古代发明的一种水利灌溉工具,彰显了我国古代劳动人民的智慧,图1,点表示筒车的一个盛水桶.如图2,当筒车工作时,盛水桶的运行路径是以轴心为圆心,为半径的圆,且圆心在水面上方.若圆被水面截得的弦长为,求筒车工作时,盛水桶在水面以下的最大深度.24.已知线段、为的弦,且,求证:.25.如图,点、、、、都在上,平分,且,求证:.26.如图,、、、在上,,,求的周长.24.1圆的有关性质【素养基础达标】2023-2024学年人教版数学九年级上册圆的旋转定义在一个平面内,线段OA 绕它固定的一个端点O 旋转一周,另一个端点A 所形成的图形叫做圆.固定的端点O 叫做圆心,线段OA 叫做半径,一般用r 表示.圆的表示法以点O 为圆心的圆,记作“⊙O ”,读作“圆O ”.确定一个圆需要的“两要素”一是圆心,圆心确定其位置;二是半径,半径确定其大小.注意:圆是一条封闭的曲线,“圆”指的是“圆周”,而不是“圆面”;圆的集合定义圆心为O 、半径为r 的圆可以看成是平面内所有到定点(圆心O )的距离等于定长(半径r )的点的集合.结论(1)圆上各点到定点(圆心O )的距离都等于定长(半径r ).(2)到定点的距离等于定长的点都在同一个圆上.数学语言(1)∵点A 、B 在圆上∴OA =OB(2)∵OA =OB ∴点A 、B 在圆上2.圆的有关概念定义:连接圆上任意两点的线段叫做弦。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A
B
C D
E
九(2)班圆的有关性质的基础训练
姓名
一、选择题(30分)
1、如图1,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,则下列结论一定正确的个数有①CE=DE ;②BE=OE ;③CB
⌒=BD ⌒;④∠CAB=∠DAB ;⑤AC=AD ( ) A .4个 B .3个 C .2个 D .1个
2、如图2,O ⊙的直径AB 垂直弦CD 于P ,且P 是半径OB 的中点,6cm CD =,则直径AB 的长是( )
A .23cm
B .32cm
C .42cm
D .43cm
3、一条排水管的截面如图所示.已知排水管的截面圆半径10OB =,截面圆圆心O 到水面的距离OC 是6,则水面宽AB 是( )
A .16
B .10
C .8
D .6
4、如图,半径为10的⊙O 中,弦AB 的长为16,则圆心O 到这条弦的距离为( ) A .6
B .8
C .10
D .12
图2 图3 图4 5、如图5,小华同学设计了一个圆直径的测量器,标有刻度的尺子OA 、OB 在O 点钉在一起,并使它们保持垂直,在测直径时,把O 点靠在圆周上,读得刻度OE=8个单位,OF=6个单位,则圆的直径为( ) A .12个单位 B .10个单位 C .4个单位 D .15个单位 6、如图6,⊙O 是△A BC 的外接圆,∠OCB =40°则∠A 的度数等于( ) A .60° B .50° C . 40° D .30° 7、如图7,ABC △内接于O ⊙,若28OAB ∠=°,则C ∠的大小为( ) A . 28° B .56° C .60° D .62° 8、如图8,⊙O 的半径为1,AB 是⊙O 的一条弦,且AB=3,则弦AB 所对圆周角的度数为( ) A .30° B .60° C .30°或150° D .60°或120°
图5 图6 图8 9、 (2011广东肇庆)如图,四边形ABCD 是圆内接四边形,
E 是BC 延长线上一点,若∠BAD =105°,则∠DCE 的
大小是( ) A . 115° B . 105° C . 100° D . 95°
图1
B
C D E O A · C O A B
A B O
图7 C A B O
第9题图
O
A
B
C
D
A
B
C
D
P
O
B
A
O
D B C
图 2
O
B
C
A
图7
A
O D
B
C
E O
C
D
B
A
10、如图, AB 为 ⊙ O 的直径,CD 为弦, AB ⊥ CD ,如果∠BOC = 700
, 那么∠A 的度数为( )
A .70︒
B . 35︒
C . 30︒
D . 20︒ 二、填空(32分)
1. (2011安徽)如图,⊙O 的两条弦AB 、CD 互相垂直,
垂足为E ,且AB =CD ,已知CE =1,ED =3,则⊙O 的半径是 .
2. (2011江苏扬州)如图,⊙O 的弦CD 与直径AB 相交,若∠BAD=50°,则∠ACD= 3、(2011四川广安)如图所示,若⊙O 的半径为13cm ,点p 是弦AB 上一动点,且到圆心的最短距离为5 cm ,则弦AB 的长为________cm
4、. ( 2011重庆江津, 16,4分)已知如图,在圆内接四边形ABCD 中,∠B=30º,则∠D=-________.
5、(2011浙江温州)如图,AB 是⊙O 的直径,点C ,D 都在⊙O 上,连结CA ,CB ,DC ,DB .已知∠D =30°,BC =3,则AB 的长是 .
6. (2011湖南常德)如图2,已知⊙O 是△ABC 的外接圆,且∠C =70°,则∠OAB =__________.
7.(2011河北)如图7,点O 为优弧ACB 所在圆的圆心,∠AOC=108°,点D 在AB 的延长线
上,BD=BC ,则∠D= °.
8. (2011湖南永州)如图,在⊙O 中,直径CD 垂直弦AB 于点E ,连接OB,CB ,已知⊙O 的半径为2,AB=32,则∠BCD=_____度.
A B
O
三、解答题(38分)
1、(9分)如图,在⊙O 中,∠ACB=∠BDC=60°,AC=cm 32,(1)求∠BAC 的度数; (2)求⊙O 的周长
2、(9分)如图,M 是弧BA 的中点,过M 的弦MN 交AB 于点C ,设圆的半径为4厘米,MN=43厘米,
(1)求圆心O 到弦AB 的距离, (2)求∠ACM 的度数。

N
C O B
A
M
3、(10分)已知:如图,AB 为O ⊙的直径,AB AC BC =,交O ⊙于点D ,AC 交O ⊙于点
45E BAC ∠=,°.(1)求EBC ∠的度数;(2)求证:BD CD =.
4、如图,⊙C 经过原点且与两坐标轴分别交于点A 与点B , 点A 的坐标为(0, 4 ) , M 是圆上一点, ∠BMO =1200.求:⊙C 的半径和圆心C 的坐标.。

相关文档
最新文档