江苏省南京市、盐城市2015届高三第一次模拟考试数学试题 含答案

合集下载

等差数列(判定、性质、通项及求和)

等差数列(判定、性质、通项及求和)

考点1 等差数列(判定、性质、通项及求和)1.(15盐城市盐都区时杨中学届高三上学期1月调考)已知{}n a 是等差数列,若7523a a -=,则9a 的值是________.【考点】等差数列的性质. 【答案】3【分析】在等差数列{}n a 中,5972a a a +=,7523a a -= ∴7523a a =+ 5953a a a +=+,得93a =.2. (15泰州一模)数列{n a },{n b },{n c }满足:12n n n b a a +=﹣,122n n n c a a ++=+﹣2,n ∈N *. (1)若数列{n a }是等差数列,求证:数列{n b }是等差数列;(2)若数列{n b },{n c }都是等差数列,求证:数列{n a }从第二项起为等差数列;(3)若数列{n b }是等差数列,试判断当1b +3a =0时,数列{n a }是否成等差数列?证明你的结论.【考点】数列递推式;等差关系的确定. 【解】(1)证明:设数列{n a }的公差为d , ∵12nn n b a a +=-,∴1121121(2)(2)()2()2n nn n n n n n n n b b a a a a a a a a d d d +++++++-=---=---=-=-,∴数列{n b }是公差为﹣d 的等差数列. (2)当n ≥2时,1122n n n c a a +=+﹣﹣,∵12nn n b a a +=-,∴122n n n b c a -++=,∴1112n nn b c a +++=+, ∴11111=2222n n n n n n n n n n b c b c b b c c a a +-+-+++---=-+ ∵数列{n b },{n c }都是等差数列, ∴1122n n n n b b c c +---+为常数, ∴数列{n b }从第二项起为等差数列.(3)数列{n a }成等差数列. 解法1:设数列{n b }的公差为d', ∵12n n n b a a +=﹣,∴11222nn n n n n b a a ++=-,∴1111222n n n n n n b a a ----=-,…,2112222b a a =-,∴11111122...222nn n n n n b b b a a -+-++++=-,设2112122...22n n n nn T b b b b --=++++, ∴211122...22n n n nn T b b b +-=+++,两式相减得:()211122...222n n n n n T b d b -+'-=++++-,即()11124212n n n n T b d b -+'=---+,∴()1111112421'222n n n n n b d b a a -+++---+=-,∴()()111111111222421'22242n n n n n n n a a b d b a b d b d +-+++''=++--=+---,∴()11+11224=2n n n a b d a b d +'+-'--,令n =2,得()111132133224224=22a b d a b d a b d b ''+-+-'--=- ∵130b a +=,∴1113322402a b d b a '+-=+=, ∴11224'0a b d +=﹣, ∴1(')n n a b d +=--,∴211(')(')'n n n n a a b d b d d +++-=--+-=-,∴数列{n a }(n ≥2)是公差为-'d 的等差数列, ∵12nn n b a a +=-,令n =1,1232a a a -=-,即12320a a a -+=,∴数列{n a }是公差为﹣d'的等差数列.解法2:∵1132,0n n n b a a b a +=-+=,令n =1,1232a a a -=-,即12320a a a -+=,∴1122232,2n n n n n n b a a b a a ++++++=-=-,∴12122132(2)2(2)n nn n n n n n n b b b a a a a a a +++++++--=-----,∵数列{n b }是等差数列, ∴1220n n n b b b ++--=,∴1221322(2)n n n n n n a a a a a a +++++--=--,∵12320a a a -+=, ∴1220n nn a a a ++--=,∴数列{n a }是等差数列.3.(江苏省淮安市淮阴区南陈集中学2015届高三上学期10月调考数学试卷) 已知在等差数列{}n a 中,首项为23,公差是整数,从第七项开始为负项,则公差为________. 【考点】等差数列的性质. 【答案】4-【分析】等差数列{}n a 中,首项为23,公差是整数,从第七项开始为负项, ∴1617123,50,60a a a d a a d ==+=+<≥ , ∴23+5d ≥0,且23+6d <0, 解得:232356d -<-≤,又d 为整数,∴d =4-.4.(江苏省南通市2015届高三第一次模拟考试数学试题)在等差数列{}n a 中,已知首项10a >,公差0d >.若122360,100a a a a ++≤≤,则155a a +的最大值为________. 【考点】等差数列的性质.【答案】200【分析】∵在等差数列{}n a 中,已知首项10a >,公差0d >, 又122360,100a a a a ++≤≤,∴11260,23100a d a d ++≤≤,∴151111564(2)(23)(22)(3)a a a d x a d y a d x y a x y d +=+=+++=+++,∴226,34x y x y +=+=,解得51,22x y ==, ∴151151515(2)(23)601002002222a a a d a d +=+++⨯+⨯=≤.5.(江苏2015高考冲刺压轴卷)已知正项数列{}n a 的前n 项和为n S ,对n ∀∈N ﹡有2nS =2n n a a +.令111n nn n nb a a a a ++=+,设{}n b 的前n 项和为n T ,则在123100,,T T T T …中有理数的个数为_____________.【考点】本题考查数列求通项公式及其等差数列的通项公式、裂项求和方法. 【答案】9【分析】由2n S =2n n a a +可得12n S -=211n n a a --+ ,两式相减得22112n n n n n a a a a a --=-+- 化简得2211n n n n a a a a --+=-,即11n n a a --=,正项数列{}n a 是等差数列,当1n = 时,12a =211a a +解得11a = ,故n a n =;()111n b n n n n=+++1111n n n n =⋅+⋅++11111n n n n n n +-==-+⋅+, 111111111 (1223111)n T n n n n n =-+-++-+-=--++,故当3,8,15,24,35,48,63,80,99n =时前n 项和为n T 为有理数,故在123100,,T T T T …中有理数的个数为9个.6.(徐州市2014届高考信息卷)设数列{}n a 的前n 项和为n S ,若{}n a 和{}n S n +都是公差为(0)d d ≠的等差数列,则1a = .【考点】等差数列的通项公式,不等式恒成立问题. 【答案】34-【分析】因为{}n S n + 是公差为(0)d d ≠的等差数列,所以11n n S n S n d +++=++对于n ∈*N 始终成立,平方整理得()()()222211112222110d d n d a a d d n a d -+--++-+=对于n ∈*N 始终成立,即1121120221010d a a d d a d -=⎧⎪--+=⎨⎪-+=⎩解得13412a d ⎧=-⎪⎪⎨⎪=⎪⎩故答案为134a =- 7.(南通市2015届高三第三次调研)在等差数列{}n a 中,若*246()n n a a n n ++=+∈N ,则该数列的通项公式n a = . 【考点】考查等差数列,数列的通项公式,考查学生的运算能力,灵活运用有关知识解决问题的能力.【答案】21n +【分析】设通项公式为1(1)n a a n d =+-,由211(1)(1)46n n a a a n d a n d n ++=+-+++=+,再通过比较系数得出13,2a d ==,则n a 通项公式为n a =21n +.8.(15江苏模拟(三))已知{}n a 为等差数列,其前n 项和为n S ,若371517233a a a a ++-=,则17S = .【答案】10.2【分析】由条件得953a =,故1791710.2S a ==.9.(15江苏模拟(三))已知数列{n a }、{n b }满足:1121141nn n n nb a a b b a +=+==-,,. (1)求1234,,,b b b b ;(2)证明:11n b ⎧⎫⎨⎬-⎩⎭是等差数列,并求数列{}n b 的通项公式;(3)设1223341...n n n S a a a a a a a a +=++++,求实数a 为何值时4n n aS b <恒成立. 【解】(1)11(1)(1)(2)2n n n n n n n nb b b a a b b b +===---+ ∵1113,44a b == ∴234456,,567b b b ===. (2)∵11112n nb b +-=-- ∴12111111n n n n b b b b +-==-+---. ∴数列{11n b -}是以-4为首项,-1为公差的等差数列. ∴14(1)31n n n b =---=---∴12133n n b n n +=-=++.(3)113n n a b n =-=+. ∴12231111114556(3)(4)444(4)n n n n S a a a a a a n n n n +=++⋅⋅⋅+=++⋅⋅⋅=-=⨯⨯++++, ∴22(1)(36)8443(3)(4)n n an n a n a n aS b n n n n +-+---=-=++++. 由条件可知2(1)(36)80a n a n -+--<恒成立即可满足条件设2()(1)3(2)8f n a n a n =-+--,a =1时,()380f n n =--<恒成立, a >1时,由二次函数的性质知不可能成立.a <l 时,对称轴3231(1)02121a a a --⋅=--<--,f (n )在[)1,+∞为单调递减函数. (1)(1)(36)84150f a a a =-+--=-<, ∴a <1时4n aS b <恒成立.综上知:a ≤1时,4n aS b <恒成立.10.(15江苏高考压轴)已知数列{}n a 中,2a =a (a 为非零常数),其前n 项和n S 满足1()2n n n a a S -=(n ∈*N ). (1)求数列{}n a 的通项公式; (2)若a =2,且21114m n a S -=,求m 、n 的值; (3)是否存在实数a 、b ,使得对任意正整数p ,数列{}n a 中满足n a b p +≤的最大项恰为第32p -项?若存在,分别求出a 与b 的取值范围;若不存在,请说明理由. 【解】(1)由已知,得1a =1S =111()2a a ⋅-=0,∴2n n na S =, 则有11(1)=2n n n a S +++,∴112()(1)n n n n S S n a na ++-=+-, 即1(1)n n n a na +=-,∴21(1)n n na n a ++=+, 两式相加,得122n n n a a a n *++=+∈N ,, 即211n n n n a a a a n *+++=∈N --,, 故数列{}n a 是等差数列.又1a =0,2a =a ,∴(1)n a n a =-.(2)若a =2,则2(1)n a n =-,(1)n S n n ∴=-.由21114m n a S -=,得2211(1)n n m -+=-,即224(1)(21)43m n --=-, ∴(2m +2n -3)(2m -2n -1)=43.∵43是质数,2m +2n -3>2m -2n -1,2m +2n -3>0,∴221122343m n m n --=⎧⎨+-=⎩解得m =12,n =11.(3)由n a b p +≤,得(1)a n b p +-≤.若a <0,则+1p bn a -≥,不合题意,舍去; 若a >0,则+1p bn a-≤. ∵不等式n a b p +≤成立的最大正整数解为3p -2, ∴32+131p bp p a---≤<, 即2a -b <(3a -1)p ≤3a -b 对任意正整数p 都成立. ∴3a -1=0,解得a =13, 此时,23-b <0≤1-b ,解得23<b ≤1. 故存在实数a 、b 满足条件,a 与b 的取值范围是a =13,23<b ≤1. 11.(15南通市直调考)已知无穷数列{}n a 满足:1a =1,22a =1a +3a ,且对于任意n ∈*N ,都有na >0,21n a + =2n n a a + +4.(1)求2a ,3a ,4a 的值; (2)求数列{}n a 的通项公式. 考点: 数列递推式.【解】(1)由条件,∀n ∈*N ,21n a + =2n n a a + +4, 令n =1,得22a =13a a +4.…(2分)又∵22a =1a +3a ,且1a =1,解得2a =3,3a =5.…(4分)再令n =2,得23a =24a a +4,解得4a =7. …(6分) (2)∵21n a + =2n n a a + +4,①∴22n a + =13n n a a ++ +4,②由①-②得,2212n n a a ++- =(2n n a a ++4)-(13n n a a +++4)=2n n a a +-13n n a a ++ …(8分)∴2211322n n n n n n a a a a a a ++++++=+,∴1n a +(1n a ++3n a +)=2n a +(n a +2n a +), ∴21312n n n n n n a a a a a a +++++++=,∴数列{21n n n a a a +++}为常数数列.…(12分) ∴21n n n a a a +++=132a a a +=2,∴n a +2n a +=21n a +,∴数列{n a }为等差数列. …(14分) 又公差d =2a -1a =2,∴n a =2n -1.…(16分)12. (15江阴市高三上学期月考数学试卷)已知数列{n a }满足122n n n a a a ++=+(n ∈N *),它的前n 项和为n S ,且361072a S ==,.若1302n n b a =-,求数列{n b }的前n 项和的最小值为 .【考点】数列递推式;数列的求和. 【答案】-225【分析】由题知数列n a 为等差数列,在等差数列{n a }中,由361072a S ==,, 得1121061572a d a d +=+=,, 解得1a =2,d =4, ∴42n a n =-. ∴1302312n n b a n ==--, ∵由n b =2n -31≥0,得n ≥312, ∴{n b }前15项为负值,∴数列{b n }的前n 项和n T 的最小值=15T =-225.13. (15无锡市高三上学期期中试卷)若一直角三角形的三边长构成公差为2的等差数列,则该直角三角形的周长为_______. 【考点】等差数列的性质.【答案】24【分析】由题意设一直角三角形的三边长分别为:a 、a +2、a +4,所以222(4)(2)a a a +=++,即24120a a --=,解得,a =6或a =-2(舍去),所以直角三角形的三边长分别为:6、8、10, 所以该直角三角形的周长为24, 故答案为:24.14. (15南京一中等五校联考)各项均为实数的等差数列的公差为2,其首项的平方与其余各项之和不超过33,则这样的数列至多有______项. 【考点】等差数列的通项公式. 【答案】7【分析】222123111...(1)n a a a a a n n a a ++++=++-- =211(1)()a n a n +-+ =211(1)(1)a n a n n +-+-=2211(1)()(1)24n n a n n --++-- =211(1)(31)()3324n n n a --+++≤, 为了使得n 尽量大,故211()02n a -+=, ∴(1)(31)334n n -+≤, ∴(n -1)(3n +1)≤132,当n =6时,5×19<132, 当n =7时,6×22=132, ∴max 7n =,故答案为7.15. (2015·北京海淀区一模)在等差数列{}n a 中,11a =,35a =-,则1234a a a a ---=________. 【答案】16【分析】在等差数列中,312a a d =+,即512d -=+,故3d -=,则22a -=,48a -=,所以1234=16.a a a a ---16. (2015·合肥一模)以n S 表示等差数列{}n a 的前n 项和,若2756a a a +-=,则7S =________. 【答案】42 【分析】依题意得2755454=()==6a a a a a a a +--+,17747)7422a a S a +===(.17. (2015·合肥质量检测)已知数列{}n a 的前n 项和为n S ,并满足:212n n n a a a ++=-,534a a =-,则7S =________.【答案】14【分析】 依题意,数列{}n a 是等差数列,且354a a +=,173577)7()1422a a a a S ++==(=.18. (2014·海口调研)已知等差数列{}n a ,前n 项和用n S 表示,若579232a a a ++=14,则13S =________. 【答案】26【分析】依题意得7714a =,72a =,()1131371313262a a S a +===.19. (2015·银川质量检测)已知数列{}n a 为等差数列,若3170a a +>,且10110a a +<,则使{}n a 的前n 项和n S 有最大值的n 为________.【答案】10【分析】 依题意得1020a >,即100a >,11100a a -<<,因此在等差数列{}n a 中,前10项均为正,从第11 项起以后各项均为负,使数列{}n a 的前n 项和n S 有最大值的n 为10.20. (2014·荆州质检)公差不为零的等差数列{}n a 的前n 项和为n S ,若4a 是3a 与7a 的等比中项,且1060S =,则20S =________. 【答案】320【分析】 由题意可知,2437a a a =,由于{}n a 是等差数列,所以2111(3)(2)(6)a d a d a d +=++,解得132a d -= (d =0舍去),又10191010602S a d ⨯+==,所以1962a d =+,从而d =2,13a -=. 所以2012019206020193202S a d ⨯=-+⨯==+.21. (2015·南通模拟)在数列{}n a 中,若221n n a a +-=p (n ≥1,*n ∈N ,p 为常数),则称{}n a 为“等方差数列”,下列是对“等方差数列”的判断: ①若{}n a 是等方差数列,则{}2n a 是等差数列;②{(1)n-}是等方差数列; ③若{}n a 是等方差数列,则{kn a }(*k ∈N ,k 为常数)也是等方差数列.其中真命题的序号为________. 【答案】①②③【分析】①正确,因为221n n a a p +-=,所以221n n a a p +-=-,于是数列{}2n a 为等差数列.②正确,因为22(1)(1)(1)0nn ---+=为常数,于是数列{(1)}n -为等方差数列.③正确,因为()()221k na a+-=+()22()kn kn kn k kn k aa a a +++-+-++-kp =,则{}kn a (*k ∈N ,k 为常数)也是等方差数列.22. (2014·南京、盐城模拟)记等差数列{}n a 的前n 项和为n S .(1)求证:数列n S n ⎧⎫⎨⎬⎩⎭是等差数列; (2)若1a =1,且对任意正整数n ,k (n >k ),都有2n k n k n S S S +-+=成立,求数列{}n a 的通项公式.【解】(1)证明:设等差数列{}n a 的公差为d ,则1(1)2n n n S na d -=+,从而112n S n a d n -=+, 所以当2n ≥时,11112()()1222n n S S n n da d a d n n ----=+-+=-, 即数列n S n ⎧⎫⎨⎬⎩⎭是等差数列.(2)因为对任意正整数n ,k (n >k ),都有2n k n k n S S S +-+=成立,所以112n n n S S S +-+=,即数列{n S }是等差数列. 设数列{n S }的公差为1d ,则n S =1S +(n -1)1d =1+(n -1)1d ,所以21[1(1)]n S n d -=+,所以当2n ≥时,1n n n a S S --==222211111[1(1)][1(2)]232n d n d d n d d ---=-+++,因为{}n a 是等差数列,所以2132a a a a --=,即222222111111111(432)1(632)(432)d d d d d d d d d -+-=-+--+,所以11d =,即21n a n -=. 又当21n a n -=时,2n S n =,此时2n k n k n S S S +-+=对任意正整数n ,k (n >k )都成立,因此21n a n -=.。

南京市2015届高三第一次模拟考试

南京市2015届高三第一次模拟考试

南京市2015届高三第一次模拟考试数学附加题参考答案及评分标准 2015.321.A (几何证明选讲)(本题满分10分)证明:因为FG 切⊙O 于点G ,所以FG 2=FB ·F A .…………………………………2分 因为EF ∥CD ,所以∠BEF =∠ECD .又A 、B 、C 、D 四点共圆,所以∠ECD =∠EAF ,所以∠BEF =∠EAF .………5分 又∠EF A =∠BFE ,所以△EF A ∽△BFE . ………………………………7分 所以EF AF =FB FE,即EF 2=FB ·F A . 所以FG 2= EF 2,即EF =FG ..…………………………………………………………10分21.B (矩阵与变换)(本题满分10分)解:由题设得MN =⎣⎢⎡⎦⎥⎤0 11 0 ⎣⎢⎡⎦⎥⎤0 -11 0=⎣⎢⎡⎦⎥⎤1 00 -1.……………………………………3分 设(x ,y )是直线2x -y +1=0上任意一点,点(x ,y ) 在矩阵MN 对应的变换作用下变为(x ',y '),则有⎣⎢⎡⎦⎥⎤1 00 -1 ⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤x 'y ',即⎣⎢⎡⎦⎥⎤ x -y =⎣⎢⎡⎦⎥⎤x 'y ',所以⎩⎨⎧x =x ',y =-y '.…………………………7分 因为点(x ,y )在直线2x -y +1=0上,从而2 x '-(-y ')+1=0,即2x '+y '+1=0. 所以曲线F 的方程为2x +y +1=0. ………………………………………………10分21.C (坐标系与参数方程)(本题满分10分)解:直线l 的参数方程为⎩⎨⎧x =4-2t ,y =t -2(t 为参数),故直线l 的普通方程为x +2y =0.…2分 因为P 是椭圆x 24+y 2=1上任意一点,故可设P (2cos θ ,sin θ)其中θ∈R .…………4分 因此点P 到直线l 的距离是d =∣2cos θ+2sin θ∣12+22=22∣sin(θ+π4)∣5.…………8分 所以当θ=k π+π4,k ∈Z 时,d 取得最大值2105. …………………………………10分21.D (不等式选讲)(本题满分10分)证明:(方法一)因为a >0,b >0,所以(a +b )⋅(1a +4b )=5+b a +4a b……………………………………………………4分 ≥5+2b a ×4a b =9.……………………………………………8分 所以1a +4b ≥9a +b.……………………………………………………………………10分 (方法二)因为a >0,b >0,。

江苏省2015年普通高校招生全国统一考试 第一次模拟 数学

江苏省2015年普通高校招生全国统一考试 第一次模拟 数学

江苏省2015年普通高校招生全国统一考试 第一次模拟数学Ⅰ一、填空题:本大题共14小题,每小题5分,共70分.请把答案填写在答题卡指定位置上.1.设集合A ={1,2,3,4},B ={a ,a 2-2a },若B 是A 的子集,则a 的最大值为 ▲ .2.已知复数z 满足(2-3i)=z (i+3),则复数z 的模为 ▲ .3.执行右图所示的程序图,所得S 的值为 ▲ .4.若f (x )=ax 2+bx +2在[-a ,2a -1]上是偶函数,则f (x )的最值为▲ .5.已知以F 1,F 2为焦点的椭圆2225161y x +=上有一点P ,若三角形PF 1F 2的面积为16,则∠PF 1F 2的大小为 ▲ .6.试判断圆()2224x y -+=与直线270x y +-=之间的位置关系: ▲ .7.已知△ABC 中,a 、b 、c 分别是角A 、B 、C 所对边的长,若cos cos ab c A B ++=,判断△ABC 的形状: ▲ .8.05,39x y x y <+<-<-<,则4x y +的取值范围为 ▲ .9.已知函数()log ,11,1ax x f x ax x ì£ï=í+>ïî在R 上单调,则a 的取值范围为 ▲ . 10.已知锐角△ABC 中,a 、b 、c 分别是角A 、B 、C 所对边的长,若6cos b a a b C+=,那么 tan tantan tan CC A B+= ▲ . 11.在平行四边形ABCD 中,E 、F 分别是边CD 、BC 的中点,AC =a AE +b AF ,则a +b = ▲ .12.已知函数f (x )是定义在R 上的不恒为0的偶函数,对任意自变量都有xf (x +1)=(x +1)f (x ),则f (f (2.5))= ▲ .13.已知数列{a n }满足a 1=5,21122n n n a a n a a ++=+,则数列的前10项和为 ▲ .14)()64sin cos 23cos sin 236a a p a+a +a -+-a <+对于锐角a 总成立,则a的取值范围为 ▲ .二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答............,解答时应写出文字说明、证明过程或演算步骤.15.(本大题满分14分)已知函数f (x )=a sin x -12cos2x +a -3a +12,a ∈R ,a ≠0. (1)若对任意x ∈R ,都有f (x )≤0,求a 的取值范围;(2)若a ≥2,且存在x ∈R ,使得f (x )≤0,求a 的取值范围.16.(本大题满分14分)如图,四棱锥P -ABCD 中,PD ⊥平面ABCD ,PD =DC =BC =1,AB =2,AB ∥DC ,BC ·CD =0.(1)求证:PC ⊥BC ;(2)求点A 到平面PBC 的距离.17.(本大题满分14分)提高过江大桥的车辆通行能力可改善整个城市的交通状况.在一般情况下,大桥上的车流速度v (单位:千米/小时)是车流密度x (单位:辆/千米)的函数.当桥上的的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时,研究表明;当20≤x ≤200时,车流速度v 是x 的一次函数.(1)求0≤x ≤200时,函数v (x )的解析式;(2)当车流密度x 为多大时,车流量(单位时间内通过桥上某观点的车辆数,单位:辆/每小时) f (x )=x ·v (x )可以达到最大,并求出最大值(精确到1辆/小时)18.(本大题满分16分) 已知双曲线2221xy -=的两焦点为F 1, F 2,P 为动点,若PF 1+PF 2=4.(1)求动点P 的轨迹E 方程;(2)若A 1(-2,0),A 2(2,0),M (1,0),设直线l 过点M ,且与轨迹E 交于R 、Q 两点,直线A 1R 与A 2Q 交于点S .试问:当直线l 在变化时,点S 是否恒在一条定直线上?若是,请写出这条定直线方程,并证明你的结论;若不是,请说明理由.19.(本大题满分16分)设数列{a n }的前n 项和为S n ,已知,a 1=1,a 2=6,a 3=11且(5n -8)S n +1-(5n +2)S n =An +B ,其中A ,B 为常数.(1)求A 与B 的值;(2)证明:数列{a n }为等差数列;(3)证明:不等式15>-n m mn a a a 对任何正整数m ,n 都成立.20.(本大题满分16分)已知函数f (x )=x -ln(x +a )的最小值为0,其中a >0.(1)求a ;(2)若对任意的x ≥0,有f (x )≤λx 2成立,求λ的最小值;(3)对正整数n ,求证:2211ln(21)2ni i n -=-+<å.数学Ⅱ(附加题)21.【选做题】本题包括A 、B 、C 、D 四小题,请选定其中两小题,并在相应的答题区域内...................作答...若多做,则按作答的前两小题评分,解答时应写出文字说明、证明过程或演算步骤. A .[选修4-1:几何证明选讲] (本小题满分10分)如图,在△ABC 中,CD 是∠ACB 的平分线,△ACD 的外接圆交BC 于点E ,AB =2AC ,求证:BE =2AD .B .[选修4-2:矩阵与变换] (本小题满分10分)已知矩阵A =1214轾犏犏-臌. (1)求A 的逆矩阵A -1;(2)求A 的特征值和特征向量.C .[选修4-4:坐标系与参数方程] (本小题满分10分)已知曲线C 的极坐标方程为ρ=4sin θ,以极点为原点,极轴为x 轴的非负半轴建立平面直角坐标系,直线l的参数方程为121x t y ì=ïïíï+ïî(t 为参数),求直线l 被曲线C 截得的线段长度. D .[选修4-4:坐标系与参数方程] (本小题满分10分)已知2x 2+3y 2+z 2=1,求F =x +y +z 的取值范围.【必做题】第22题、第23题,每题10分,共计20分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.22.(本大题满分10分)如图,在三棱柱ABC -A 1B 1C 1中,A 1B ⊥面ABC ,AC ⊥AB ,AB =AC =A 1B =2.(1)求棱AA 1与BC 所成的角的大小;(2)在B 1C 1上确定一点P ,使二面角P -AB -A 1.23.(本大题满分10分)已知数列{a n }满足a 1=2,a n +1= a n n +1-(n +1).(1)证明:对于n ≥3,有a n >n ;(2)2.。

江苏省南京市、盐城市2015届高三第一次模拟考试附加题答案

江苏省南京市、盐城市2015届高三第一次模拟考试附加题答案

江苏省南京市、盐城市2015届高三第一次模拟考试21. A. 由切割线定理,得PC2=PA·PB,解得PB=2,所以AB=16,即Rt△ABC的外接圆半径r=8.(5分) 记Rt△ABC外接圆的圆心为O,连接OC,则OC⊥PC.在Rt△POC中,PO=AP-r=18-8=10,由面积法得OC·PC=PO·CD,解得CD=.(10分) B. 设P(x,y)是所求曲线上的任意一点,它在已知直线上的对应点为Q(x',y'),-则(5分)解得-代入x'-y'-1=0中,得(x+y)-(y-x)-1=0,化简可得所求曲线方程为x=.(10分) C. 将圆ρ=2cos θ化为普通方程为x2+y2-2x=0,圆心为(1,0).(4分)又2ρsin=1,即2ρsin θ+cos θ=1,所以直线的普通方程为x+y-1=0, (8分) 故所求的圆心到直线的距离d=-.(10分) D. 当x<-1时,不等式可化为-x-1+2-x<4,解得-<x<-1; (3分) 当-1≤x≤2时,不等式可化为x+1+2-x<4,解得-1≤x≤2; (6分) 当x>2时,不等式化为x+1+x-2<4,解得2<x<.(9分) 所以原不等式的解集为-.(10分)22. (1) 以点A为坐标原点,AB,AC,AA1分别为x轴、y轴、z轴,建立空间直角坐标系O-xyz,设CC1=m,则B1(3,0,m),B(3,0,0),P(0,4,λm),所以=(3,0,m),=(3,-4,-λm),=(3,0,0), (2分) 当λ=时,有·=(3,0,m)·--=0,解得m=3,即棱CC1的长为3.(4分) (2) 设平面PAB的一个法向量为n1=(x,y,z),则得--即令z=1,则y=-,所以平面PAB的一个法向量为n1=-.(6分) 又平面ABB1与y轴垂直,所以平面ABB1的一个法向量为n2=(0,1,0).因为二面角B1-AB-P的平面角的大小为,所以|cos<n1,n2>|==-,结合λ>0,解得λ=.(10分)23. (1) 当n=2时,即S={1,2},此时A={1},B={2},所以P2=1.(2分) 当n=3时,即S={1,2,3},若A={1},则B={2}或B={3}或B={2,3};若A={2}或A={1,2},则B={3},所以P3=5.(4分) (2) 当集合A中的最大元素为“k”时,集合A的其余元素可在1,2,…,k-1中任取若干个(包含不取),所以集合A共有-+-+-+…+--=2k-1种情况.(6分)此时,集合B中的元素只能在k+1,k+2,…,n中任取若干个(至少取1个),所以集合B共有-+-+-+…+--=2n-k-1种情况.所以当集合A中的最大元素为k时,集合对(A,B)共有2k-1(2n-k-1)=2n-1-2k-1对, (8分) 当k依次取1,2,3,…,n-1时,可分别得到集合对(A,B)的个数,求和可得P n=(n-1)·2n-1-(20+21+22+…+2n-2)=(n-2)·2n-1+1.(10分)江苏省南通市2015届高三第一次模拟考试21. A.如图,连接ON,因为AN=AC,ON=OC,OA是公共边,所以△ANO≌△ACO,故∠OAC=∠OAN.(3分) 又因为∠OAC=∠OCA,所以∠NAC=∠OAC+∠OAN=∠OCA+∠OAC=2∠OCA.因为A,C,D,N四点共圆,所以∠MDN=∠NAC,所以∠MDN=2∠OCA.(10分)(第21-A题)B.因为MM-1=--=---=, (5分)所以---解得(10分)C.将曲线C的参数方程化为普通方程得x=8y2.(3分)由方程组解得或(6分) 所以A(0,0),B,所以AB==.(10分) D. 因为a,b,c都是正实数,所以+=≥.(3分) 同理可得+≥,+≥.将上述三个不等式两边分别相加并除以2,得++≥++.(10分)22.设BE的中点为O,连接AO,DO,由于AB=AE,BO=OE,所以AO⊥BE,同理DO⊥BE.又因为平面ABE⊥平面BCDE,平面ABE∩平面BCDE=BE,所以AO⊥平面BCDE.由题意得BE2=2AB2=2DB2,所以AB=BD=DE=AE.(1) 不妨设OA=a,以O为坐标原点,建立如图所示的空间直角坐标系O-xyz,则A(0,0,a),B(0,-a,0),C(a,-2a,0),D(a,0,0),E(0,a,0).(3分)所以=(0,-a,-a),=(-a,a,0),因为cos<,>===-,所以与的夹角为120°,所以异面直线AB与DE所成角为60°.(5分)(第22题)(2) 设平面ACE的法向量为n1=(x,y,z),因为=(0,a,-a),=(a,-3a,0),所以n1·=0,n1·=0,所以y=z且x=3y,取y=z=1,得x=3,所以n1=(3,1,1).又因为平面ABE的一个法向量为n2=(1,0,0),设二面角B-AE-C的平面角为θ,则cos θ===,因此二面角B-AE-C的余弦值为.(10分)23. (1) 当n=1时,只有自然数1满足题设条件,所以a1=1;当n=2时,有11,2两个自然数满足题设条件,所以a2=2;当n=3时,有111,21,12三个自然数满足题设条件,所以a2=3;当n=4时,有1111,112,121,211,22五个自然数满足题设条件,所以a4=5.综上所述,a1=1,a2=2,a3=3,a4=5.(4分) (2) 设自然数X的各位数字之和为n+2,由题设可知,X的首位为1或2.当X的首位为1时,其余各位数字之和为n+1,故首位为1的各位数字之和为n+2的自然数的个数为a n+1;当X的首位为2时,其余的各位数字之和为n,故首位为2的各位数字之和为n+2的自然数的个数为a n,所以各位数字之和为n+2的自然数为a n+1+a n,即a n+2=a n+1+a n.(7分) 下面用数归纳法证明:a5n-1是5的倍数.证明如下:①当n=1时,a4=5,所以a4是5的倍数,命题成立;②假设n=k时命题成立,即a5k-1是5的倍数.则a5k+4=a5k+3+a5k+2=2a5k+2+a5k+1=2(a5k+1+a5k)+a5k+1=3a5k+1+2a5k=3(a5k+a5k-1)+2a5k=5a5k+3a5k-1.因为5a5k是5的倍数,a5k-1是5的倍数,所以5a5k+3a5k-1是5的倍数,即a5k+4是5的倍数.所以当n=k+1时,命题也成立.由①②可知,a5n-1(n∈N*)是5的倍数.(10分)江苏省无锡市2015届高三第一次模拟考试21. A. (1) 由题设知A,B,C,D四点共圆,所以∠D=∠CBE.由已知得∠CBE=∠E,所以∠D=∠E.(5分)(2) 如图,设BC中点为N,连接MN,由MB=MC,知MN⊥BC,所以O在MN上.又AD不是圆O的直径,M为AD的中点,故OM⊥AD,即MN⊥AD,所以AD∥BC,故∠CBE=∠A.又∠CBE=∠E,故∠A=∠E.由(1)知∠D=∠E,所以△ADE为等边三角形.(10分)(第21-A题)B. (1) 因为M=,所以M-1=.(5分) (2) 设点P(x,y)是曲线y=2x上任意一点,在矩阵M-1对应的变换作用下得到点Q(x',y'),则==,所以即(8分) 且点P在直线y=2x上,于是得2y'=2×x',y'=x',即直线y=2x在矩阵M-1对应的变换作用下的曲线方程为y=x.(10分) C. (1) 根据半圆C的参数方程为α为参数,α∈-,得圆的普通方程为x2+(y-1)2=1(0≤x≤1), (3分) 所以半圆C的极坐标方程为ρ=2sinθ,θ∈.(5分) (2) 依题意可知半圆C的直径为2,设半圆C的直径为OA,所以sin∠TAO=.(8分) 因为∠TAO∈,所以∠TAO=.因为∠TAO=∠TOx,所以∠TOx=,所以点T的极坐标为.(10分) D. (1) 当a=2时,由f(x)≥4,得|x-1|+|x-2|≥4,则-或或-(2分) 解得x≤-或x≥.故原不等式的解集为-或.(5分)(2) 由不等式的性质得f(x)≥|a-1|,要使不等式f(x)≥2a恒成立,则只需|a-1|≥2a, (8分) 解得a≤0或0<a≤,所以实数a的取值范围为-.(10分)22. (1) 由已知条件,可设抛物线方程为x2=2py(p>0).因为点P(2,1)在抛物线上,所以22=2p×1,解得p=2.(3分) 故所求抛物线的方程为x2=4y.(4分) (2) 由题意知k AP+k BP=0,所以--+--=0.(6分)又y1=,y2=,所以--+--=0,所以+=0,所以x1+x2=-4.(8分)所以k AB=--=--==-1为定值.(10分)23. (1) 当n=3时,集合M只有1个符合条件的子集,S3=1+2+3=6; (1分) 当n=4时,集合M每个元素出现了次,S4=(1+2+3+4)=30; (2分) 当n=5时,集合M每个元素出现了次,S5=(1+2+3+4+5)=90, (3分)所以当集合M中有n个元素时,每个元素出现了-次,所以S n=-·.5分(2) 因为S n=-·=--=6, (7分) 则S3+S4+S5+…+S n=6(+++…+)=6(+++…+)=6.(10分)江苏省苏州市2015届高三第一次模拟考试21. A. 设圆O的半径为r,由切割线定理得AP2=PC·(PC+2r),即122=6×(6+2r),解得r=9.(4分) 连接OA,则有OA⊥AP.又因为CD⊥AP,所以OA∥CD, (7分) 所以=,即CD==(cm).(10分) B. 设α=,由A2α=β,得=, (5分)所以所以-所以α=-.(10分) C. 由题易知圆ρ=3cosθ的普通方程为x2+y2=3x,即-+y2=.(3分) 直线2ρcosθ+4ρsinθ+a=0的普通方程为2x+4y+a=0.(6分) 又因为圆与直线相切,所以=,解得a=-3±3.(10分) D. 因为(x2+y2+z2)(12+22+32)≥(x+2y+3z)2=36, (4分) 所以x2+y2+z2≥,当且仅当x==时取等号, (7分) 因为x+2y+3z=6,所以x=,y=,z=,所以x2+y2+z2的最小值为,此时x=,y=,z=.(10分) 22. (1) 如图,以,,为正交基底建立空间直角坐标系,(第22题)则E(0,0,1),D(,0,0),B(0,,0),F(,1).(2分) =(,-,0),=(,0,1).设平面DFB的法向量为n=(a,b,c),则n·=0,n·=0,-所以令a=1,得b=1,c=-,所以n=(1,1,-.(4分) 又由题知平面ADF的法向量为m=(1,0,0),从而cos<n,m>=-=,显然二面角A-DF-B为锐角,故二面角A-DF-B的大小为60°.(6分) (2) 由题意,设P(a,a,0)(0≤a≤),则=(-a,-a,1),=(0,,0).因为PF与BC所成的角为60°,=,故cos60°=--解得a=或a=(舍去),所以点P在线段AC的中点处.(10分) 23. (1) 依题意知,X的可能取值分别为1,0,-1, (2分) X的概率分布列如下表所示:(4分)所以E(X)=1×-1×=.(5分) (2) 设Y表示10.(8分)所以E(Y)=2α-2β=4α-2,依题意得4α-2≥,所以≤α≤1,即α的取值范围为.(10分)江苏省常州市2015届高三第一次模拟考试21. A. 连接AE,EB,OE,则∠AOE=∠BOE=90°.(2分) 因为∠APE是圆周角,∠AOE是同弧上的圆心角,所以∠APE=∠AOE=45°.(5分) 同理∠BPE=45°.所以PE是∠APB的平分线.(8分) 又PC也是∠APB的平分线,∠APB的平分线有且只有一条,所以PC与PE重合.所以直线PC经过点E.(10分)B. 由题意知,λ1,λ2是方程f(λ)=--=λ2-ab=0的两根.因为λ1=1,所以ab=1. ①(2分) 又因为Mα2=λ2α2,所以=λ2,从而(5分) 所以=ab=1.因为λ1≠λ2,所以λ2=-1.从而a=b=-1.(8分)故矩阵M=--.(10分)C. 设M(x,y),则-(2分) 两式平方相加得x2+y2=2.(5分)又x=sin,y=sinθ-,θ∈[0,π],所以x∈[-1,],y∈[-1,].(8分)所以动点M的轨迹的普通方程为x2+y2=2(x,y∈[-1,]).(10分) D. 因为a>0,b>0,所以a2+b2+ab≥3=3ab>0,当且仅当a2=b2=ab,即a=b时取等号.(4分)ab2+a2b+1≥3=3ab>0,当且仅当ab2=a2b=1,即a=b=1时取等号.(8分)所以(a2+b2+ab)(ab2+a2b+1)≥9a2b2,当且仅当a=b=1时取等号.(10分) 22. (1) 记“该网民购买i种商品”为事件A i,i=4,5,则P(A5)=××××=,P(A4)=××××-+××-×××+××-×××=, (2分) 所以该网民至少购买4种商品的概率为P(A5)+P(A4)=+=.答:该网民至少购买4种商品的概率为.(3分)(2) 随机变量η的可能取值分别为0,1,2,3,4,5,P(η=0)=-×-×-×-×-=,P(η=1)=××-×-×-×-+××-×-×1-×-+×-×-×-×-=,P(η=2)=××-×-×-+××-×-×-+×-××-×-×+××-×-×-×+××-×××-×-=,P(η=4)=P(A4)=,P(η=5)=P(A5)=, (8分)P(η=3)=1-[P(η=0)+P(η=1)+P(η=2)+P(η=4)+P(η=5)]=1-----=.故E(η)=0×+1×+2×+3×+4×+5×=.(10分) 23. (1) 因为a n(n∈N*且n≥3)均为正实数,左边-右边=+-2a1++-2a2++-2a3≥2-2a1+2-2a2+2-2a3=0,所以原不等式++≥a1+a2+a3成立.(4分)(2) 归纳的不等式为++…+--+-+≥a1+a2+…+a n(n∈N*且n≥3).(5分)记F n=++…+--+-+-(a1+a2+…+a n),当n=3(n∈N*)时,由(1)知,不等式成立;假设当n=k(k∈N*且k≥3)时,不等式成立,即F k=++…+--+-+-(a1+a2+…+a k)≥0.则当n=k+1时,F k+1=++…+--+-++-(a1+a2+…+a k+a k+1)=F k+-++----a k+1(7分)=F k+a k-1a k-+a k+1-1+(a k+1-a k)≥0+-+a k+1-+(a k+1-a k)=(a k+1-a k)-,因为a k+1≥a k,+≥2,≤=2,所以F k+1≥0,所以当n=k+1时,不等式成立.(9分) 综上所述,不等式++…+--+-+≥a1+a2+…+a n(n∈N*且n≥3)成立.(10分)江苏省镇江市2015届高三第一次模拟考试21. A. 连接PB,因为BC切圆P于点B,所以PB⊥BC.(2分) 因为CD=2,CB=2由切割线定理得CB2=CD·CE, (3分) 所以CE=4,DE=2,BP=1.(5分) 又因为EF⊥CE,所以△CPB∽△CFE, (8分) 所以=,EF=.(10分) B.MN==,(4分)设点P(x,y)是曲线y=sin x上任意一点,在矩阵MN对应的变换作用下得到点(x',y'),则==, (6分) 即x'=x,y'=2y, (8分) 代入y=sin x,得y'=sin 2x',即曲线y=sin x在矩阵MN对应的变换作用下得到的函数解析式为y=2sin 2x.(10分) C. (1) 由ρsin-=6,得ρ-=6,所以y-x=12,即直线l的直角坐标方程为x-y+12=0.(4分)由题知圆C的直角坐标方程为x2+y2=100.(6分) (2) 因为d=6,r=10,所以弦长l=2-=16.(10分) D. 由|a+b|+|a-b|≥|a|f(x),且a≠0,得-≥f(x).(3分) 又-≥-=2,则有2≥f(x).(6分) 解不等式|x-1|+|x-2|≤2,①x≤; (7分) --解得2≤<x<2; (8分) ②--解得1③x≤1.(9分) --解得≤所以≤x≤.(10分) 22.设T(x,y),A(x0,y0),则4-y0+1=0. ①(2分) 又M(-2,0),由=2,得(x-x0,y-y0)=2(-2-x,0-y), (5分) 所以x0=3x+4,y0=3y.(7分) 代入①式得4(3x+4)2-3y+1=0,即为动点T的轨迹方程.(10分) 23.建立如图所示的空间直角坐标系,则A(0,0,0),D(1,0,0),P(0,0,1),B(0,2,0),C(1,1,0),M.(1分)(第23题)(1) 因为=(0,0,1),=(0,1,0),故·=0,所以AP⊥DC.由题设知AD⊥DC,且AP与AD是平面PAD内的两条相交直线,由此得DC⊥平面PAD.又因为DC⊂平面PCD,所以平面PAD⊥平面PCD.(4分) (2) 因为=(1,1,0),=(0,2,-1),所以||=,||=,·=1×0+1×2+0×(-1)=2,所以cos<·>===.(7分) (3) 设平面AMC的一个法向量为n1=(x1,y1,z1),则n1⊥,所以n1·=(x1,y1,z1)·=y1+z1=0,又n1⊥,所以n1·=(x1,y1,z1)·(1,1,0)=x1+y1=0,取x1=1,得y1=-1,z1=2,故n1=(1,-1,2),同理可得平面BMC的一个法向量n2=(1,1,2),因为cos<n1,n2>==-=, (10分) 所以平面AMC与平面BMC所成二面角(锐角)的余弦值为.江苏省扬州市2015届高三第一次模拟考试21. A. 设P(x,y)是曲线C1上任意一点,点P(x,y)在矩阵A对应的变换下变为点P'(x',y'),则有=,即(5分) 又因为点P'(x',y')在曲线C2:+y2=1上,故+(y')2=1,从而+=1,所以曲线C1的方程是x2+y2=4.(10分) B. 由ρcos-=-,得曲线C1的平面直角坐标系方程为x+y+1=0.(3分) 由得曲线C2的普通方程为x2+y=1(-1≤x≤1).(7分) 由得x2-x-2=0,即x=2(舍去)或x=-1,所以曲线C1与曲线C2交点的直角坐标为(-1,0).(10分) 22.在甲靶射击命中记作A,不中记作在乙靶射击命中记作B,不中记作,其中P(A)=,P()=1-=,P(B)=,P(=1-=.(2分) (1) ξ的所有可能取值为0,2,3,4,则P(ξ=0)=P()=P()P()P()=××=,P(ξ=2)=P(B+P(B)=P()P(B)P()+P()P()P(B)=××+××=,P(ξ=3)=P(A)=,P(ξ=4)=P(BB)=P(P(B)P(B)=××=.E(ξ)=0×+2×+3×+4×=3.(7分)(2) 射手选择方案1通过测试的概率为P1,选择方案2通过测试的概率为P2 ,则P1=P(ξ≥3)=+=;P2=P(ξ≥3)=P(BB)+P(B B)+P(BB)=××+××+×=, (9分)因为P2<P1,所以选择方案1通过测试的概率更大.(10分)23. (1) 当n=2时,x=a0+2a1+4a2,a0∈{0,1},a1∈{0,1},a2=1,故满足条件的x共有4个,分别为x=0+0+4,x=0+2+4,x=1+0+4,x=1+2+4,它们的和是22,所以A2=22.(4分) (2) 由题意得,a0,a1,a2,…,a n-1各有n种取法,a n有n-1种取法,由分步计数原理可得a0,a1,a2,…,a n-1的不同取法共有n·n·…·n·(n-1)=n n(n-1),即满足条件的x共有n n(n-1)个.(6分) 当a0分别取0,1,2,…,n-1时,a1,a2,…,a n-1各有n种取法,a n有n-1种取法,故A n中所有含a0项的和为(0+1+2+…+n-1)·n n-1(n-1)=-;同理,A n中所有含a1项的和为(0+1+2+…+n-1)·n n-1(n-1)·n=-·n;A n中所有含a2项的和为(0+1+2+…+n-1)·n n-1(n-1)·n2=-·n2;…A n中所有含a n-1项的和为(0+1+2+…+n-1)·n n-1(n-1)·n n-1=-·n n-1;当a n分别取i=1,2,…,n-1时,a0,a1,a2,…,a n-1各有n种取法,故A n中所有含a n项的和为(1+2+…+n-1)n n·n n=-·n n.+-·n n=-·(n n+1+n n-1), 所以A n=-(1+n+n2+…+n n-1)+-·n n=-·--所以f(n)=n n+1+n n-1.(10分) 江苏省泰州市2015届高三第一次模拟考试21. A. 因为EA与圆O相切于点A.由切割线定理知DA2=DB·DC.因为D是EA的中点,所以DA=DE,所以DE2=DB·DC.(5分) 所以=.因为∠EDB=∠CDE,所以△EDB∽△CDE,所以∠DEB=∠DCE.(10分) B. 因为B=,所以B-1=-,所以AB-1=-=-.(5分) 设直线l上任意一点(x,y)在矩阵AB-1对应的变换作用下为点(x',y'),则-=,-所以代入l',得x-2y+2y-2=0,化简后得直线l:x=2.(10分) C. 由题意知,圆O:x2+y2=4,直线l:x-y+1=0, (5分) 圆心O到直线l的距离d==,弦长AB=2=.(10分)D. 因为正实数a,b,c满足a+b+c=3,所以3=a+b+c≥3,所以abc≤1, (5分) 所以++≥3=3≥3,当且仅当a=b=c时等号成立.(10分) 22. (1) 以,,为一组正交基底,建立如图所示的空间直角坐标系D-xyz,(第22题)由题意,知D(0,0,0),A'(2,0,1),B(2,2,0),C'(0,2,1),O'(1,1,1).设P(t,t,0),所以=(t-1,t-1,-1),=(-2,0,1).设异面直线O'P与BC'所成角为θ,则cosθ==,=-化简得21t2-20t+4=0,解得t=或t=,所以DP=或DP=.(5分) (2) 因为DP=,所以P,=(0,2,1),=(2,2,0),=-,=-,设平面DC'B的一个法向量为n1=(x1,y1,z1), 则所以即--取y1=-1,得n1=(1,-1,2).设平面PA'C'的一个法向量为n2=(x2,y2,z2), 则所以--即取y2=1,得n2=(1,1,1).设平面PA'C'与平面DC'B所成角为φ,所以|cosφ|===,所以sinφ=.(10分) 23.因为≤i2,所以当i≥2时,==1≤i2,=-=i≤i2,=-=-≤i2,≤,所以当2≤i≤5,i∈N*时,≤i2的解为r=0,1,…,i.(3分) 当6≤i≤10,i∈N*时,≥⇔r≤-,由=--≤i2⇔i=3,4,5可知:当r=0,1,2,i-2,i-1,i时,≤i2成立,当r=3,…,i-3时,≥≥i2(等号不同时成立),即>i2.(6分) 所以随机变量ξ(8分) 故E(ξ)=(0+1+2)×+(3+4+5+6+7+8)×+9×+10×=.(10分)江苏省苏北四市2015届高三第一次模拟考试21. A. 因为CD=AC,所以∠D=∠CAD.(2分) 因为AB=AC,所以∠ABC=∠ACB.(4分) 因为∠EBC=∠CAD,所以∠EBC=∠D.(6分) 因为∠ACB=∠CAD+∠ADC=2∠EBC, (8分) 所以∠ABE=∠EBC,即BE平分∠ABC.(10分) B. 设直线x-y-1=0上任意一点P(x,y)在变换T A的作用下变成点P'(x',y'),由-=,得-(4分)因为P'(x',y')在直线x-y-1=0上,所以x'-y'-1=0,即(-1-b)x+(a-3)y-1=0.(6分) 又因为P(x,y)在直线x-y-1=0上,所以x-y-1=0.(8分)因此----解得a=2,b=-2.(10分) C. 因为直线l的参数方程为消去参数t,得直线l的普通方程为y=2x+1.(3分)又因为圆C的参数方程为(a>0,θ为参数),所以圆C的普通方程为x2+y2=a2.(6分) 由题意知圆C的圆心到直线l的距离d=, (8分) 故依题意,得+a=+1,解得a=1.(10分) D. 因为a>0,b>0,所以+≥.(3分) 又因为+=,所以ab≥2,当且仅当a=b=时取等号, (6分) 所以a3+b3≥2≥4,当且仅当a=b=.(9分) 所以a3+b3的最小值为4.(10分) 22. (1) 记“某同学至少选修1门自然科学课程”为事件A,则P(A)=1-=1-=, (2分) 所以该同学至少选修1门自然科学课程的概率为.(3分) (2) 由题意知,随机变量ξ的所有可能取值为0,1,2,3.(4分) 因为P(ξ=0)=×=,P(ξ=1)=×+×××=,P(ξ=2)=×××+×=,P(ξ=3)=×=, (8分) 所以ξ的概率分布为所以E(ξ)=0×+1×+2×+3×=2.3.(10分) 23. (1) 由题设知-=-,即p=,所以抛物线的方程为y2=x.(2分) (2) 因为函数y=-的导函数为y'=-,设A(x0,y0),则直线MA的方程为y-y0=-×(x-x0).(4分) 因为点M(0,-2)在直线MA上,所以-2-y0=-×(0-x0).联立--解得A(16,-4).(5分) 所以直线OA的方程为y=-x.(6分) 设直线BC的方程为y=kx-2,联立-得k2x2-(4k+1)x+4=0,所以x B+x C=,x B x C=.(7分)由--得x N=.(8分)所以+=+=x N×=×=×=2,故+为定值2.(10分) 江苏省南京市2015届高三期初模拟考试21. A. 连接AO.设圆O的半径为r.因为PA是圆O的切线,PCB是圆O的割线,所以PA2=PC·PB.(3分)(第21-A题)因为PA=4,PC=2,所以42=2×(2+2r),解得r=3, (5分) 所以PO=PC+CO=2+3=5,AO=r=3.由PA是圆O的切线得PA⊥AO,故在Rt△APO中,因为AQ⊥PO,由面积法可知,×AQ×PO=×AP×AO,即AQ===.(10分) B. (1) 因为矩阵A=属于特征值λ的一个特征向量为α=-,所以-=λ-,即--=-.(3分)从而---解得b=0,λ=2.(5分)(2) 由(1)知,A=.设曲线C上任意一点M(x,y)在矩阵A对应的变换作用下变为曲线C″上一点P(x0,y0),则==,从而(7分) 因为点P在曲线C″上,所以+2=2,即(2x)2+2(x+3y)2=2,从而3x2+6xy+9y2=1,所以曲线C的方程为3x2+6xy+9y2=1.(10分) C. 方法一:直线l的普通方程为x-y+=0.(3分) 因为点P在圆C上,故设P(+cos θ,sin θ),从而点P到直线l的距离d=-=--, (7分)所以d min=-1.即点P到直线l的距离的最小值为-1.(10分) 方法二:直线l的普通方程为x-y+=0.(3分) 圆C的圆心坐标为(,0),半径为1.从而圆心C到直线l的距离为d=--=, (6分) 所以点P到直线l的距离的最小值为-1.(10分)D. 因为a,b是正数,且a+b=1,所以(ax+by)(bx+ay)=abx2+(a2+b2)xy+aby2=ab(x2+y2)+(a2+b2)xy(3分) ≥ab·2xy+(a2+b2)xy(8分)=(a+b)2xy=xy,即(ax+by)(bx+ay)≥xy成立.(10分) 22. (1) 以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立如图所示的空间直角坐标系.(第22题)由题设,知B(2,3,0),A1(2,0,5),C(0,3,0),C1(0,3,5).因为=λ,所以E(0,3,5λ),从而=(2,0,-5λ),=(2,-3,5-5λ).(2分) 当∠BEA1为钝角时,cos∠BEA1<0,所以·<0,即2×2-5λ(5-5λ)<0,解得<λ<.即实数λ的取值范围是.(5分) (2) 当λ=时,=(2,0,-2),=(2,-3,3).设平面BEA1的一个法向量为n1=(x,y,z),由得--取x=1,得y=,z=1,所以平面BEA1的一个法向量为n1=.(7分)易知,平面BA1B1的一个法向量为n2=(1,0,0).因为cos<n1,n2>===,从而|cos θ|=.(10分) 23. (1) 因为P(X=10)==,P(X=5)==,P(X=2)==,P(X=0)==,所以X的概率分布表如下:(4分)从而E(X)=10×+5×+2×+0×=3.1.(6分) (2) 记该顾客一次摸球中奖为事件A,由(1)知,P(A)=,从而他两次摸球中至少有一次中奖的概率P=1-[1-P(A)]2=.答:他两次摸球中至少有一次中奖的概率为.(10分)江苏省2015届高三名校联考卷21. A. 由相交弦定理得MC·CN=BC·CE,MC·CN=AC·CD.又CE=CD+DE,AC=AB+BC, (5分) 所以BC·(CD+DE)=(AB+BC)·CD,所以BC·DE=AB·CD.(10分) B. 由题知,M=-,即-=-,所以--解得(6分) 所以M=-.由M-1M=,得M-1=-.(10分)C. 由-消t得2x+y=3.(2分)由消去θ得x2=y+1.(5分) 因为y=sin 2θ∈[-1,1],所以曲线C2的普通方程为x2=y+1,y∈[-1,1].(6分)由解得--或--(8分)因为y∈[-1,1],所以--即曲线C1与C2的交点坐标为(-1+,5-2).(10分)D. 因为a,b,c均为正数,所以由算术-几何平均不等式,得≥, (3分) ≥, (7分)两式相乘,并整理得(1+a+b)(1+a2+b2)≥9ab.(10分) 22.根据题意,建立如图所示的平面直角坐标系O-xyz,(第22题)设侧棱长AA1=2a,则O(0,0,0),B(-1,0,0),C(1,0,0),D(1,a,0),A(0,0,.(1) 由题设知平面BCC1B1的法向量为=(0,0,),又=(1,a,-), (2分)因为直线AD与平面BB1C1C所成的角为45°,所以|cos<,>|===, (4分) 解得a=,所以侧棱AA1=2.(5分) (2) 由(1)知点D的坐标为(1,0,),平面BCD的一个法向量为=(0,0,(6分)设平面ABD的一个法向量为n=(x,y,z),-则令x=1,则y=-,z=-.(8分) 所以n=--.cos<n,>=-=-.因为该二面角为锐角,所以其余弦值为.(10分) 23. (1) 当n=3时,排出的字符串是abca,acba,abda,adba,acda,adca,共6个,故a3=6. (2分) (2) 由题设知a n+1=3n-a n.猜想a n=-(n∈N*,n≥1).证明:①当n=1时,因为a1=0,-=0,所以等式成立.②假设当n=k时,等式成立,即a k=-(k∈N*,k≥1),那么当n=k+1时,因为a k+1=3k-a k=3k--=---=-,所以当n=k+1时,等式仍成立.根据①②可知a n=-(n∈N*,n≥1)成立.(5分) 易知P=·-=1+-, (6分)当n为奇数(n≥3)时,P=1-,因为3n≥27,所以P≥-=.当n为偶数(n≥2)时,P=1+,因为0<≤,所以<P≤.综上所述,≤P≤.(10分)江苏省南京市、盐城市、徐州市2015届高三第二次模拟考试21. A.如图,连接ED.因为圆与BC切于点D,所以∠BDE=∠BAD.(4分)(第21-A题)因为AD平分∠BAC,所以∠BAD=∠DAC.又因为∠DAC=∠DEF,所以∠BDE=∠DEF,所以EF∥BC.(10分) B. (1) 因为AA-1===.所以解得a=1,b=-.(5分) (2) 由(1) 得A=,则矩阵A的特征多项式f(λ)=---=(λ-3)( λ-1).令f(λ)=0,解得A的特征值λ1=1,λ2=3.(10分) C.由消去s,得曲线C的普通方程为y=x2;由消去t,得直线l的普通方程为y=3x-2.(5分)联立直线方程与曲线C的方程,即-解得交点的坐标分别为(1,1),(2,4).则AB=--=.(10分) D.因为x为正数,所以1+x≥2.同理1+y≥2,1+z≥2.所以(1+x)(1+y)(1+z)≥2·2·2=8.因为xyz=1,所以(1+x)(1+y)(1+z)≥8.(10分) 22. (1) 记甲队以3∶0,3∶1,3∶2获胜分别为事件A,B,C.由题意得P(A)==,P(B)=××=,P(C)=×××=.(5分) (2) X的可能取值为0,1,2,3.P(X=3)=P(A)+P(B)=;P(X=2)=P(C)=,P(X=1)=××=,P(X=0)=1-P(1≤X≤3)=.所以X的分布列为:从而E(X)=0×+1×+2×+3×=.答:甲队以3∶0,3∶1,3∶2获胜的概率分别为,,;甲队得分X的数学期望为.(10分) 23. (1) 由题意知,f n(m)=所以a m=(2分) 所以a1+a2+…+a12=++…+=63.(4分) (2) 当n=1时,b m=(-1)m mf1(m)=-则b1+b2=-1.(6分) 当n≥2时,b m=-又因为m=m·-=n·---=n--,所以b1+b2+…+b2n=n[--+---+-+…+(-1)n--]=0.所以b1+b2+…+b2n的取值构成的集合为{-1,0}.(10分)江苏省南通市、连云港市、扬州市、淮安市2015届高三第二次模拟考试21. A. 因为PC为圆O的切线,所以∠PCA=∠CBP.(3分) 又因为∠CPA=∠CPB,所以△CAP∽△BCP, (7分) 所以=,即AP·BC=AC·CP.(10分) B. 设是矩阵M属于特征值λ的一个特征向量,则=λ, (5分) 故解得(10分) C. 方法一: 将直线θ=化为直角坐标方程得y=x,将曲线ρ2-10ρcosθ+4=0化为直角坐标方程得x2+y2-10x+4=0.(4分) 联立-消去y,得2x2-5x+2=0,解得x1=,x2=2,所以AB中点的横坐标为=,纵坐标为, (8分) 化为极坐标为.(10分) 方法二: 联立直线l与曲线C的方程得-(2分)消去θ,得ρ2-5ρ+4=0, 解得ρ1=1,ρ2=4, (6分)所以线段AB中点的极坐标为,即.(10分)D. 由柯西不等式,得(a2+b2+c2)(12+22+32)≥(a+2b+3c)2, (6分) 因为a+2b+3c=4,故a2+b2+c2≥, (8分) 当且仅当==,即a=,b=,c=时取“=”.(10分)22. (1) 将点A(8,-4)代入y2=2px,解得p=1, (2分) 将点P(2,t)代入y2=2x,得t=±2,因为t<0,所以t=-2.(4分) (2) 依题意,点M的坐标为(2,0),直线AM的方程为y=-x+,联立-解得B, (6分)所以k1=-,k2=-2,代入k1+k2=2k3,得k3=-.(8分) 从而直线PC的方程为y=-x+,联立--解得C-.(10分)23. (1) 当n=3时,A∪B={1,2,3},且A∩B=⌀, 若a=1,b=2,则1∈B,2∈A,共种;若a=2,b=1,则2∈B,1∈A,共种,所以a 3= +=2.(2分)当n=4时,A ∪B={1,2,3,4},且A ∩B=⌀,若a=1,b=3,则1∈B ,3∈A ,共 种;若a=2,b=2,则2∈B ,2∈A ,这与A ∩B=⌀矛盾;若a=3,b=1,则3∈B ,1∈A ,共 种,所以a 4= + =2.(4分)(2) 当n 为偶数时,A ∪B={1,2,3,…,n },且A ∩B=⌀,若a=1,b=n-1,则1∈B ,n-1∈A ,共 -(考虑A )种; 若a=2,b=n-2,则2∈B ,n-2∈A ,共 - (考虑A )种; …… 若a= -1,b= +1,则 -1∈B , +1∈A ,共 -- (考虑A )种;若a= ,b= ,则 ∈B ,∈A ,这与A ∩B=⌀矛盾; 若a= +1,b= -1,则 +1∈B , -1∈A ,共 -(考虑A )种;……若a=n-1,b=1,则n-1∈B ,1∈A ,共 - -(考虑A )种, 所以a n = - + - +…+ -- + -+ …+ - -=2n-2- -- .(8分)当n 为奇数时,同理得a n = -+ - +…+--=2n-2,综上,a n=----为偶数-为奇数(10分)江苏省泰州市2015届高三第二次模拟考试21. A. (1) 因为CD是圆O的切线,所以CD2=CA·CB.如图,连接OD,则OD⊥CD.因为BE是圆O的切线,所以BE=DE.(第21-A题)又DE=EC,所以BE=EC,所以∠C=30°,则OD=OC,而OB=OD,所以CB=BO=OD=OA,所以CA=3CB.(5分) (2) 由CA=3CB,得CB=CA,代入CD2=CA·CB,得CD2=CA·CA,所以CA=CD.(10分) B. (1) BA==.设P(x,y)是l1上的任意一点,其在BA作用下对应的点为(x',y'),得l1变换到l3的变换公式为则2ax+by+4=0,即为直线l1:x-y+4=0,则a=,b=-1.(5分) (2) 由(1)知B=-,同理可得l2的方程为2y-x+4=0,即x-2y-4=0.(10分)C. (1) 直线l的极坐标方程为ρsinθ-=3,则ρsin θ-ρcos θ=3,即ρsin θ-ρcos θ=6,所以直线l的直角坐标方程为x-y+6=0.(5分) (2) 因为P为椭圆C:+=1上一点,所以可设P(4cos α,3sin α),其中α∈[0, 2π),则点P到直线l的距离d=-=,其中cos φ=,sin φ=,所以当cos(α+φ)=-1时,d取得最小值为.(10分) D.因为(a+b+c)2≤(1+1+2)(a2+b2+c2)=4,所以a+b+c≤2.(5分) 又因为a+b+c≤|x2-1|对任意实数a,b,c恒成立,所以|x2-1|≥(a+b+c)max=2,解得x≤-或x≥,即实数x的取值范围是(-∞,-]∪[,+∞).(10分) 22.这5名幸运之星中,每人获得A奖品的概率为=,获得B奖品的概率为=.(1) 要获得A奖品的人数大于获得B奖品的人数,则获得A奖品的人数可能为3,4,5,则所求概率为P=32++5=.(4分) (2) 由题意知ξ的可能取值为1,3,5,则P(ξ=1)=32+=,P(ξ=3)=4+=,P(ξ=5)=5+5=, (8分) 所以ξ的分布列如下表:故随机变量ξ的数学期望E(ξ)=1×+3×+5×=.(10分)23. (1) 令x=1,则f(1)g(1)=g(1),即g(1)·[f(1)-1]=0.因为f(1)-1=3n-1≠0,所以g(1)=0.令x=-1,则f[(-1)2]g(-1)=g[(-1)3],即f(1)g(-1)=g(-1),即g(-1)·[f(1)-1]=0,因为f(1)-1=3n-1≠0,所以g(-1)=0.(3分) 例如g(x)=a(x2-1)n(n∈N*)(其中a为非零常数).(4分) (2) 当n=1时,f(x)=x2+x+1=(1+x2)+x,故存在常数a0=1,a1=1,使得f(x)=a0(1+x2)+a1x.(5分) 假设当n=k(k∈N*)时,都存在与x无关的常数a0,a1,a2,…,a k,使得f(x)=a0(1+x2k)+a1(x+x2k-1)+a2(x2+x2k-2)+…+a k-1(x k-1+x k+1)+a k x k,即(x2+x+1)k=a0(1+x2k)+a1(x+x2k-1)+a2(x2+x2k-2)+…+a k-1(x k-1+x k+1)+a k x k.则当n=k+1时,f(x)=(x2+x+1)k+1=(x2+x+1)·(x2+x+1)k=(x2+x+1)·[a0(1+x2k)+a1(x+x2k-1)+…+a k-1(x k-1+x k+1)+a k x k]=(a0+a1x+…+a k-1x k-1+a k x k+a k-1x k+1+…+a1x2k-1+a0x2k)+(a0x+a1x2+…+a k-1x k+a k x k+1+a k-1x k+2+…+a1x2k+a0x2k+1)+(a0x2+a1x3+…+a k-1x k+1+a k x k+2+a k-1x k+3+…+a1x2k+1+a0x2k+2)=a0+(a1+a0)x+(a2+a1+a0)x2+(a3+a2+a1)x3+…+(a k-1+a k-2+a k-3)x k-1+(a k+a k-1+a k-2)x k+(2a k-1+a k)x k+1+(a k+a k-1+a k-2)x k+2+…+(a3+a2+a1)x2k-1+(a2+a1+a0)x2k+(a1+a0)·x2k+1+a0x2k+2=a0(1+x2k+2)+(a1+a0)(x+x2k+1)+(a2+a1+a0)(x2+x2k)+…+(a k+a k-1+a k-2)(x k+x k+2)+(2a k-1+a k)x k+1.令a0'=a0,a1'=a0+a1,a m'=a m-2+a m-1+a m(2≤m≤k),a k+1'=2a k-1+a k,故存在与x无关的常数a0',a1',a2',…,a k',a k+1',使得f(x)=a0'(1+x2k+2)+a1'(x+x2k+1)+a2'(x2+x2k)+…+a k'(x k+x k+2)+a k+1'x k+1.综上所述,对于任意给定的正整数n,都存在与x无关的常数a0,a1,a2,…,a n,使得f(x)=a0(1+x2n)+a1(x+x2n-1)+a2(x2+x2n-2)+…+a n-1(x n-1+x n+1)+a n x n.(10分) 江苏省苏锡常镇2015届高三第二次模拟考试21. A. 因为CA为圆O的切线,所以CA2=CE·CD.(3分) 又CA=CB,所以CB2=CE·CD,即=.(5分) 又因为∠BCD=∠BCD,所以△BCE∽△DCB, (8分) 所以∠CBE=∠BDE.(10分)B. 设点(x0,y0)为曲线|x|+|y|=1上的任意一点,在矩阵M=对应的变换作用下得到的点为(x',y'),则由=, (3分) 得即(5分) 所以曲线|x|+|y|=1在矩阵M=对应的变换作用下得到的曲线为|x|+3|y|=1.(8分) 所围成的图形为菱形,其面积为×2×=.(10分) C. 曲线C的直角坐标方程为x2+y2-2x-2y=0,圆心为(1,1),半径为(3分) 将直线l的参数方程化为普通方程得x-y-=0, (5分) 所以圆心到直线l的距离为d=--=, (8分) 所以弦长为2-=.(10分)D. 因为(-+)2=-·+·2≤(3-3x+3x+2)=, (3分) 所以y=-+≤.(5分) 当且仅当-=,即x=时等号成立.(8分) 所以y的最大值为.(10分) 22. (1) 设AC与BD交于点O,以O为顶点,向量,为x轴、y轴,平行于AP且方向向上的向量为z轴建立空间直角坐标系.(1分) 则A(-1,0,0),C(1,0,0),B(0,-,0),D(0,P(-1,0,),所以M,=0,,-,=(1,-,-),(3分)cos<,>==-=0.(4分)故异面直线PB与MD所成的角为90°.(5分) (2) 设平面PCD的法向量为n1=(x1,y1,z1),平面PAD的法向量为n2=(x2,y2,z2),因为=(-1,,0),=(1,,-),=(0,0,-),由--令y1=1,得n1=(,1,).(7分)由--令y2=-1,得n2=(,-1,0), (8分)所以cos<n1,n2>===,所以sin<n1,n2>=.(10分)23. (1) 当n=2时,取数a1=1,a2=2,因为-=-3∈Z,即a1=1,a2=2可构成“2个好数”.(1分)当n=3时,取数a1=2,a2=3,a3=4,则-=-5∈Z,-=-7∈Z,-=-3∈Z, (3分)即a1=2,a2=3,a3=4可构成“3个好数”.(4分) (2) ①由(1)知当n=2,3时均存在.②假设命题当n=k(k∈Z)时,存在k个不同的正整数a1,a2,…,a k,其中a1<a2<…<a k,使得对任意的1≤i<j≤k,都有-∈Z成立, (5分) 则当n=k+1时,构造k+1个数A,A+a1,A+a2,…,A+a k,…,(*)其中A=1×2×3×…×a k,若在(*)中取到的是A和A+a i(i≤k),则--=--1∈Z,所以成立;若取到的是A+a i(i≤k)和A+a j(j≤k),且i<j,则--=-+-,由归纳假设得-∈Z,又a j-a i<a k,所以a j-a i是A的一个因子,即-∈Z,所以--=-+-∈Z,(8分)所以当n=k+1时结论也成立.(9分) 所以对任意的正整数n(n≥2),均存在“n个好数”.(10分)江苏省南京市、淮安市2015届高三第三次模拟考试21. A. 因为AB是圆O的切线,所以∠ABD=∠AEB.又因为∠BAD=∠EAB,所以△BAD∽△EAB,所以=.(5分)同理,=.因为AB,AC是圆O的切线,所以AB=AC.因此=,即BE·CD=BD·CE.(10分) B. (1) 设直线l上一点M0(x0,y0)在矩阵A对应的变换作用下变为l'上点M(x,y),则==,所以(3分)代入l'方程得(ax0+y0)-(x0+ay0)+2a=0,即(a-1)x0-(a-1)y0+2a=0.因为(x0,y0)满足x0-y0+4=0,所以-=4,解得a=2.(6分) (2) 由A=,得A2==.(10分)C. 以极点为坐标原点、极轴为x轴的正半轴,建立平面直角坐标系,则由题意,得圆C的直角坐标方程为x2+y2-4x=0,直线l的直角坐标方程为y=x.(4分)由-解得或所以A(0,0),B(2,2).从而以AB为直径的圆的直角坐标方程为(x-1)2+(y-1)2=2,即x2+y2=2x+2y.(7分) 将其化为极坐标方程为ρ2-2ρ(cos θ+sin θ)=0,即ρ=2(cos θ+sin θ).(10分) D. 因为x>y,所以x-y>0,从而左边=(x-y)+(x-y)+-+2y≥3---+2y=2y+3=右边.即原不等式成立.(10分)(第22题)22. (1) 因为PA⊥平面ABCD,AB⊂平面ABCD,AD⊂平面ABCD,所以PA⊥AB,PA⊥AD.又AD⊥AB,故分别以AB,AD,AP所在直线为x轴,y轴,z轴建立空间直角坐标系,如图.根据条件,得AD=.所以B(1,0,0),D(0,,0),C,P(0,0,2).从而=(-1,,0),=-.(3分) 设异面直线BD,PC所成的角为θ,则cos θ=|cos <,>|==--=.即异面直线BD与PC所成角的余弦值为.(5分) (2) 因为AB⊥平面PAD,所以平面PAD的一个法向量为=(1,0,0).设平面PCD的一个法向量为n=(x,y,z),由n⊥,n⊥,=-,=(0,,-2),得--解得不妨取z=3,则得n=(2,2,3).(8分) 设二面角A-PD-C的大小为φ,则cos φ=cos<,n>===.即二面角A-PD-C的余弦值为.(10分) 23. (1) f(3)=1,f(4)=2, (2分)(2) 设A0=m,A1=-,。

江苏省盐城中学2015届高三上学期1月月考数学试题及答案

江苏省盐城中学2015届高三上学期1月月考数学试题及答案

高三年级阶段性随堂练习数学试题(2015.01)审题人:胥容华 命题人:沈艳 马岚试卷说明:本场考试时间120分钟,总分160分.一、填空题:(本大题共14小题,每小题5分,计70分. 不需写出解答过程,请把答案写在答题纸的指定位置上)1.已知集合{}1,0,1,2--=A ,集合{}1|2<=x x B ,则B A ⋂ = ▲ .2.已知复数32iiz -=+(i 为虚数单位),则||z 的值为 ▲ . 3.从1,2,3,4,5这5个数中一次随机地取2个数,则所取2个数的和 为5的概率是 ▲ .4.阅读下面的流程图,若输入10=a ,6=b ,则输出的结果是 ▲ .5.在ABC ∆中,33=a ,2=c ,150=B ,则b = ▲ .6.已知圆柱的底面半径为1,母线长与底面的直径相等,则该圆柱的体积为 ▲ .7.在等比数列{}n a 中,21=a ,164=a ,则=+⋅⋅⋅++n a a a 242 ▲ .8.函数a x f x+-=131)( ()0≠x ,则“1)1(=f ”是“函数)(x f 为奇函数”的 ▲ 条件.(用“充分不必要”、“必要不充分”、“充要”、“既不充分又不必要”填写) 9.已知,0,0,0>>>n y x ,1=+y nx yx 41+的最小值为,16则n 的值为 ▲ . 10.在ABC ∆中,90=∠A ,1=AB ,2=AC ,设点Q P ,,满足AB λ=,)1(λ-=R ∈λ.若2-=⋅,则λ的值是 ▲ .11.设)1,0(),0,1(B A ,直线,:ax y l =圆()1:22=+-y a x C .若圆C 既与线段AB 又与直线l 有公共点,则实数a 的取值范围是 ▲ .12.若()x f 是定义在R 上的奇函数,当0≥x 时,()()⎩⎨⎧+∞∈--∈+=),1[,13)1,0[,1log 2x x x x x f ,则函数()()21-=x f x g 的所有零点之和为 ▲ .图②13.如图,已知椭圆的中心在坐标原点,焦点21,F F 在x 轴上且 焦距为c 2,21A A 为左右顶点,左准线l 与x 轴的交点为M ,1:6:112=F A MA ,若点p 在直线l 上运动,且离心率21<e , 则21tan PF F ∠的最大值为 ▲ .14.若函数()ax x x f +=ln 存在与直线02=-y x 平行的切线,则实数a 的取值范围 是 ▲ .二、解答题:(本大题共6小题,计90分. 解答应写出必要的文字说明、证明过程或演算步骤,请把答案写在答题纸的指定区域内)15. (本小题14分)已知PA ⊥菱形ABCD 所在平面,点E 、F 分别为线段BC 、PA 的中点.(Ⅰ)求证:BD PC ⊥;(Ⅱ)求证:BF ∥平面PDE .16. (本小题14分)已知ABC ∆中,角A 、B 、C 的对边分别为a 、b 、c ,2=a ,向量)1,1(-=m ,)22sin sin ,cos (cos -=C B C B ,且⊥. (Ⅰ)求A ; (Ⅱ)当)127cos(sin C B -+π取得最大值时,求B 和b .17. (本小题14分)如图①,一条宽为1km 的两平行河岸有三个工厂A 、B 、C ,工厂B 与A 、C 的直线距离都是2km ,BC 与河岸垂直,D 为垂足.现要在河岸AD 上修建一个供电站,并计划铺设地下电缆和水下电缆,从供电站向三个工厂供电.已知铺设地下电缆、水下电缆的费用分别为2万元/km 、4万元/km .(Ⅰ)已知工厂A 与B 之间原来铺设有旧电缆(原线路不变),经改造后仍可使用,旧电缆在点D 的改造费用是0.5万元/km .现决定将供电站建处,并通过改造旧电缆修建供电线路,试求该方案总施工费用的最小值; (Ⅱ)如图②,已知供电站建在河岸AD 的点E 处,且图①决定铺设电缆的线路为CE 、EA 、EB ,若)30(πθθ≤≤=∠DCE ,试用θ表示出总施工费用y (万元)的解析式,并求总施工费用y 的最小值.18. (本小题16分)若椭圆C 的方程为)0(12222>>=+b a by a x ,1F 、2F 是它的左、右焦点,椭圆C 过点)1,0(,且离心率为322=e . (Ⅰ)求椭圆的方程;(Ⅱ)设椭圆的左右顶点为A 、B ,直线l 的方程为4=x ,P 是椭圆上任一点,直线PA 、PB 分别交直线l 于G 、H 21HF GF ⋅的值;(Ⅲ)过点)0,1(Q 任意作直线m (与x 轴不垂直)与椭圆C M 、N 两点,与y 轴交于R 点MQ RM λ=,NQ RN μ=.证明:μλ+为定值.19. (本小题16分)已知函数112)(22+-+=x a ax x f ,其中R a ∈.(Ⅰ)当1=a 时,求曲线)(x f y =在原点处的切线方程; (Ⅱ)求)(x f 的单调区间;(Ⅲ)若)(x f 在),0[+∞上存在最大值和最小值,求a 的取值范围.20. (本小题16分)已知无穷数列{}n a 的各项均为正整数,n S 为数列{}n a 的前n 项和.(Ⅰ)若数列{}n a 是等差数列,且对任意正整数n 都有()22n n S S =成立,求数列{}n a 的通项公式;(Ⅱ)对任意正整数n ,从集合12{,,,}n a a a 中不重复地任取若干个数,这些数之间经过加减运算后所得数的绝对值为互不相同的正整数,且这些正整数与12,,,n a a a 一起恰好是1至n S 全体正整数组成的集合.(ⅰ)求12,a a 的值;(ⅱ)求数列{}n a 的通项公式. 高三年级阶段性随堂练习 数学答题纸(2015.01)(14×5=70分)1、{ 0 } 23、154、25、76、π27、()3144-n8、充要 9、410、32 11、]251,21[+- 12、12- 13、205 14、⎪⎭⎫ ⎝⎛-⋃⎪⎭⎫ ⎝⎛-∞-2,1212,e e二、解答题(共90分))PA ⊥平面,又ABCD 是菱形,PA AC A =,∴.PD 的中点G1,2,,}n S ,显然2a , 21,2,,}{1,S =24a =,所以,,}n a 按上述规则,1,,,}n n a a +按上述规则产生的1,2,,n S 这nS 1|i -(1,2,,)n i S =,共。

2015年5月份南京、盐城高三模拟数学

2015年5月份南京、盐城高三模拟数学

2015届高三模拟考试试卷(南京盐城)数 学(满分160分,考试时间120分钟)2014.5 参考公式:样本数据x 1,x 2,…,x n 的方差s 2=(x i -x -)2,其中x -=.一、 填空题:本大题共14小题,每小题5分,共70分.1. 记函数f(x)=3-x 的定义域为A ,函数g(x)=lg(x -1)的定义域为B ,则A ∩B =____________.2. 已知复数z 满足(z +1)i =3+5i ,其中i 为虚数单位,则|z|=____________.3. 某算法的伪代码如图所示,若输出y 的值为3,则输入x 的值为____________.Read x If x ≤0 Then y ←x +2 Else y ←log 2x End If Print y(第3题)4. 上图是7位评委给某作品打出的分数的茎叶图,那么这组数据的方差是____________.5. 已知函数f(x)=2sin (ωx +φ)(ω>0)的部分图象如图所示,则ω=____________ .(第5题)6. 在一个盒子中有分别标有数字1,2,3,4,5的5张卡片,现从中一次取出2张卡片,则取到的卡片上的数字之积为偶数的概率是__________.7. 在平面直角坐标系xOy 中,已知OA →=(3,-1),OB →=(0,2).若OC →·AB →=0,AC →=λOB →,则实数λ的值为__________.8. 已知m 、n 是两条不同的直线,α、β是两个不同的平面. ① 若m α,m ⊥β,则α⊥β; ② 若m α,α∩β=n ,α⊥β,则m ⊥n ; ③ 若m α,n β,α∥β,则m ∥n; ④ 若m ∥α,m β,α∩β=n ,则m ∥n. 上述命题中为真命题的是________.(填序号)9. 如图,在△ABC 中,∠B =45°,D 是BC 边上一点,AD =5,AC =7,DC =3,则AB 的长为____________.(第9题)10. 记定义在R 上的函数y =f(x)的导函数为f′(x).如果存在x 0∈[a ,b],使得f(b)-f(a)=f′(x 0)(b -a)成立,则称x 0为函数f(x)在区间[a ,b]上的“中值点”,那么函数f(x)=x 3-3x 在区间[-2,2]上“中值点”的个数为______________.11. 在平面直角坐标系xOy 中,点F 是双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的右焦点,过F作双曲线C 的一条渐近线的垂线,垂足为A ,延长FA 与另一条渐近线交于点B.若FB →=2FA →,则双曲线的离心率为____________.12. 在平面直角坐标系xOy 中,已知圆C :x 2+y 2-(6-2m)x -4my +5m 2-6m =0,直线l 经过点(1,0).若对任意的实数m ,直线l 被圆C 截得的弦长为定值,则直线l 的方程为____________.13. 已知数列{a n }的通项公式为a n =-n +p ,数列{b n }的通项公式为b n =2n -5.设c n =⎩⎪⎨⎪⎧a n ,a n ≤b n ,b n ,a n >b n ,若在数列{c n }中,c 8>c n (n ∈N *,n ≠8),则实数p 的取值范围是__________. 14. 设点P 是曲线y =x 2上的一个动点,曲线y =x 2在点P 处的切线为l ,过点P 且与直线l 垂直的直线与曲线y =x 2的另一交点为Q ,则PQ 的最小值为____________.二、 解答题:本大题共6小题,共90分. 解答时应写出必要的文字说明、证明过程或演算步骤.15. (本小题满分14分)已知α、β∈(0,π),且tan α=2,cos β=-7210.(1) 求cos2α的值; (2) 求2α-β的值.如图,在正三棱柱ABCA 1B 1C 1中,A 1A =2AC ,D 、E 、F 分别为线段AC 、A 1A 、C 1B 的中点.(1) 求证:EF ∥平面ABC ; (2) 求证:C 1E ⊥平面BDE.17. (本小题满分14分)已知函数f(x)=12m(x -1)2-2x +3+lnx ,m ∈R .(1) 当m =0时,求函数f(x)的单调增区间;(2) 当m >0时,若曲线y =f(x)在点P(1,1)处的切线l 与曲线y =f(x)有且只有一个公共点,求实数m 的值.将一张长8 cm、宽6 cm的长方形的纸片沿着一条直线折叠,折痕(线段)将纸片分成两部分,面积分别为S1 cm2、S2 cm2,其中S1≤S2.记折痕长为l cm.(1) 若l=4,求S1的最大值;(2) 若S1∶S2=1∶2,求l的取值范围.在平面直角坐标系xOy 中,椭圆C :x 2m +y 28-m=1.(1) 若椭圆C 的焦点在x 轴上,求实数m 的取值范围; (2) 若m =6,① P 是椭圆C 上的动点,M 点的坐标为(1,0),求PM 的最小值及对应的点P 的坐标; ② 过椭圆C 的右焦点F 作与坐标轴不垂直的直线,交椭圆C 于A 、B 两点,线段AB的垂直平分线l 交x 轴于点N ,求证ABFN是定值,并求出这个定值.记等差数列{a n }的前n 项和为S n .(1) 求证:数列⎩⎨⎧⎭⎬⎫S n n 是等差数列;(2) 若a 1=1,且对任意正整数n 、k(n >k),都有S n +k +S n -k =2S n 成立,求数列{a n }的通项公式;(3) 记b n =aa n (a >0),求证:b 1+b 2+…+b n n ≤b 1+b n2.2013届高三模拟考试试卷(七)数学附加题(满分40分,考试时间30分钟)21. 【选做题】 在A 、B 、C 、D 四小题中只能选做2题,每小题10分,共20分.若多做,则按作答的前两题计分.解答时应写出必要的文字说明、证明过程或演算步骤.A. (选修41:几何证明选讲)如图,PA 、PB 是圆O 的切线,切点分别为A 、B ,线段OP 交圆O 于点C.若PA =12,PC =6,求AB 的长.B. (选修42:矩阵与变换)已知矩阵M =⎣⎢⎡⎦⎥⎤1 a b 1对应的变换将点A(1,1)变为A′(0,2),将曲线C :xy =1变为曲线C′.(1) 求实数a 、b 的值; (2) 求曲线C′的方程.C. (选修44:坐标系与参数方程)已知圆C 的极坐标方程为ρ=4cos ⎝ ⎛⎭⎪⎫θ-π6,点M 的极坐标为⎝ ⎛⎭⎪⎫6,π6,直线l 过点M ,且与圆C 相切,求l 的极坐标方程.D. (选修45:不等式选讲) 解不等式x|x -4|-3<0.【必做题】 第22、23题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.22. 如图,在三棱锥PABC 中,已知PA ⊥平面ABC ,△ABC 是边长为2的正三角形,D 、E 分别为PB 、PC 的中点.(1) 若PA =2,求直线AE 与PB 所成角的余弦值; (2) 若平面ADE ⊥平面PBC ,求PA 的长.23.如图,一颗棋子从三棱柱的一个顶点沿棱移到相邻的另一个顶点的概率均为13.刚开始时,棋子在上底面点A 处,若移了n 次后,棋子落在上底面顶点的概率记为p n .(1) 求p 1、p 2的值;(2) 求证:14p i -1>n 2n +1.2013届高三模拟考试试卷(七)(南京、盐城)数学参考答案及评分标准1. (1,3]2. 53. 84.127 5. 23 6. 710 7. 2 8. ①④ 9. 56210. 2 11. 2 12. 2x +y -2=0 13. (12,17) 14. 33215. 解:(1) 方法一: 因为tan α=2,所以sin αcos α=2,即sin α=2cos α.(2分)又sin 2α+cos 2α=1,解得sin 2α=45,cos 2=15.(4分)所以cos2α=cos 2α-sin 2α=-35.(6分)方法二:因为cos2α=cos 2α-sin 2α(2分) =cos 2α-sin 2αsin 2α+cos 2α=1-tan 2αtan 2α+1,(4分) 又tan α=2,所以cos2α=1-2222+1=-35.(6分)(2) 方法一: 因为α∈(0,π),且tan α=2,所以α∈⎝ ⎛⎭⎪⎫0,π2.又cos2α=-35<0,故2α∈⎝ ⎛⎭⎪⎫π2,π,sin2α=45.(8分)由cos β=-7210,β∈(0,π),得sin β=210,β∈⎝ ⎛⎭⎪⎫π2,π.(10分)所以sin (2α-β)=sin2αcos β-cos2αsin β=45×⎝⎛⎭⎫-7210-⎝⎛⎭⎫-35×210=-22.(12分)又2α-β∈⎝ ⎛⎭⎪⎫-π2,π2,所以2α-β=-π4.(14分)方法二:因为α∈(0,π),且tan α=2,所以α∈⎝ ⎛⎭⎪⎫0,π2,tan2α=2tan α1-tan 2α=-43.从而2α∈⎝ ⎛⎭⎪⎫π2,π.(8分)由cos β=-7210,β∈(0,π),得sin β=210,β∈⎝ ⎛⎭⎪⎫π2,π,因为tan β=-17,(10分)所以tan (2α-β)=tan2α-tan β1+tan2αtan β=-43+171+⎝⎛⎭⎫-43×⎝⎛⎭⎫-17=-1.(12分)又2α-β∈⎝ ⎛⎭⎪⎫-π2,π2,所以2α-β=-π4.(14分)16. 证明:(1) 如图,取BC 的中点G ,连结AG ,FG .因为F 为C 1B 的中点,所以FG 綊12C 1C.在三棱柱ABCA 1B 1C 1中,A 1A 綊C 1C ,且E 为A 1A 的中点,所以FG 綊EA. 所以四边形AEFG 是平行四边形. 所以EF ∥AG.(4分)因为EF 平面ABC ,AG 平面ABC ,所以EF ∥平面ABC.(6分)(2) 因为在正三棱柱ABCA 1B 1C 1中,A 1A ⊥平面ABC ,BD 平面ABC ,所以A 1A ⊥BD.因为D 为AC 的中点,BA =BC ,所以BD ⊥AC.因为A 1A ∩AC =A ,A 1A 平面A 1ACC 1,AC平面A 1ACC 1,所以BD ⊥平面A 1ACC 1.因为C 1E平面A 1ACC 1,所以BD ⊥C 1E.(9分)根据题意,可得EB =C 1E =62AB ,C 1B =3AB ,所以EB 2+C 1E 2=C 1B 2.从而∠C 1EB =90°,即C 1E ⊥EB.(12分)因为BD ∩EB =B ,BD 平面BDE ,EB 平面BDE , 所以C 1E ⊥平面BDE.(14分)17. 解:(1) 由题意知,f(x)=-2x +3+lnx ,所以f′(x)=-2+1x =-2x +1x(x >0).(2分)由f′(x)>0,得x ∈⎝⎛⎭⎫0,12. 所以函数f(x)的单调增区间为⎝⎛⎭⎫0,12.(4分) (2) 由f′(x)=mx -m -2+1x,得f′(1)=-1,所以曲线y =f(x)在点P(1,1)处的切线l 的方程为y =-x +2.(6分) 由题意得,关于x 的方程f(x)=-x +2有且只有一个解,即关于x 的方程12m(x -1)2-x +1+lnx =0有且只有一个解.令g(x)=12m(x -1)2-x +1+lnx(x >0).则g′(x)=m(x -1)-1+1x =mx 2-(m +1)x +1x =(x -1)(mx -1)x(x >0).(8分)① 当0<m <1时,由g′(x)>0得0<x <1或x >1m ,由g′(x)<0得1<x <1m ,所以函数g(x)在(0,1)上为增函数,在⎝⎛⎭⎫1,1m 上为减函数,在⎝⎛⎭⎫1m ,+∞上为增函数. 又g(1)=0,且当x →∞时,g(x)→∞,此时曲线y =g(x)与x 轴有两个交点. 故0<m <1不合题意.(10分)② 当m =1时,g ′(x)≥0,g(x)在(0,+∞)上为增函数,且g(1)=0,故m =1符合题意.③ 当m >1时,由g′(x)>0得0<x <1m 或x >1,由g′(x)<0得1m<x <1,所以函数g(x)在⎝⎛⎭⎫0,1m 上为增函数,在⎝⎛⎭⎫1m ,1上为减函数,在(1,+∞)上为增函数. 又g(1)=0,且当x →0时,g(x)→-∞,此时曲线y =g(x)与x 轴有两个交点. 故m >1不合题意.综上所述,实数m 的值为m =1.(14分)18. 解:如图所示,不妨设纸片为长方形ABCD ,AB =8 cm ,AD =6 cm ,其中点A 在面积为S 1的部分内.折痕有下列三种情形:① 折痕的端点M ,N 分别在边AB ,AD 上; ② 折痕的端点M ,N 分别在边AB ,CD 上; ③ 折痕的端点M ,N 分别在边AD ,BC 上.(1) 在情形②、③中MN ≥6,故当l =4时,折痕必定是情形①. 设AM =x cm ,AN =y cm ,则x 2+y 2=16.(2分) 因为x 2+y 2≥2xy ,当且仅当x =y 时取等号,所以S 1=12xy ≤4,当且仅当x =y =22时取等号.即S 1的最大值为4.(5分)(2) 由题意知,长方形的面积为S =6×8=48.因为S 1∶S 2=1∶2,S 1≤S 2,所以S 1=16,S 2=32.当折痕是情形①时,设AM =x cm ,AN =y cm ,则12xy =16,即y =32x.由⎩⎪⎨⎪⎧0≤x ≤8,0≤32x ≤6,得163≤x ≤8.所以l =x 2+y 2=x 2+322x 2,163≤x ≤8.(8分)设f(x)=x 2+322x2,x >0,则f ′(x)=2x -2×322x 3=2(x 2+32)(x +42)(x -42)x 3,x >0.故x 163 ⎝⎛⎭⎫163,42 4 2 (42,8) 8 f ′(x) -0 +f(x)64496480所以f(x)的取值范围为[64,80],从而l 的范围是[8,45];(11分)当折痕是情形②时,设AM =x cm ,DN =y cm ,则12(x +y)×6=16,即y =163-x.由⎩⎪⎨⎪⎧0≤x ≤8,0≤163-x ≤8,得0≤x ≤163.所以l =62+(x -y )2=62+4⎝⎛⎭⎫x -832,0≤x ≤163.所以l 的范围为⎣⎡⎦⎤6,21453;(13分)当折痕是情形③时,设BN =x cm ,AM =y cm ,则12(x +y)×8=16,即y =4-x.由⎩⎪⎨⎪⎧0≤x ≤6,0≤4-x ≤6,得0≤x ≤4. 所以l =82+(x -y )2=82+4(x -2)2,0≤x ≤4.所以l 的取值范围为[8,45].综上,l 的取值范围为[6,45].(16分)19. 解:(1) 由题意得,m >8-m >0,解得4<m <8. 即实数m 的取值范围是(4,8).(2分)(2) 因为m =6,所以椭圆C 的方程为x 26+y 22=1.① 设点P 坐标为(x ,y),则x 26+y22=1.因为点M 的坐标为(1,0),所以PM 2=(x -1)2+y 2=x 2-2x +1+2-x 23=2x 23-2x +3=23⎝⎛⎭⎫x -322+32,x ∈[-6,6].(4分) 所以当x =32时,PM 的最小值为62,此时对应的点P 坐标为⎝⎛⎭⎫32,±52.(6分)② 由a 2=6,b 2=2,得c 2=4,即c =2,从而椭圆C 的右焦点F 的坐标为(2,0),右准线方程为x =3,离心率e =63.设A(x 1,y 1),B(x 2,y 2),AB 的中点H(x 0,y 0),则 x 216+y 212=1,x 226+y 222=1, 所以x 21-x 226+y 21-y 222=0,即k AB =y 1-y 2x 1-x 2=-x 03y 0.(9分)令k =k AB ,则线段AB 的垂直平分线l 的方程为y -y 0=-1k(x -x 0).令y =0,则x N =ky 0+x 0=23x 0.因为F(2,0),所以FN =|x N -2|=23|x 0-3|.(12分)因为AB =AF +BF =e(3-x 1)+e(3-x 2)=263|x 0-3|.故AB FN =263×32= 6. 即ABFN为定值 6.(16分) 20. 解:(1) 设等差数列{a n }的公差为d ,则S n =na 1+n (n -1)2d ,从而S nn =a 1+n -12 d.所以当n ≥2时,S n n -S n -1n -1=⎝ ⎛⎭⎪⎫a 1+n -12d -⎝ ⎛⎭⎪⎫a 1+n -22d =d 2. 即数列⎩⎨⎧⎭⎬⎫S n n 是等差数列.(2分)(2) 因为对任意正整数n ,k(n >k),都有S n +1+S n -k =2S n 成立,所以S n +1+S n -1=2S n ,即数列{S n }是等差数列.(4分)设数列{S n }的公差为d 1,则S n =S 1+(n -1)d 1=1+(n -1)d 1, 所以S n =[1+(n -1)d 1]2,所以当n ≥2时,a n =S n -S n -1=[1+(n -1)d 1]2-[1+(n -2)d 1]2=2d 21n -3d 21+2d 1, 因为{a n }是等差数列,所以a 2-a 1=a 3-a 2,即(4d 21-3d 21+2d 1)-1=(6d 21-3d 21+2d 1)-(4d 21-3d 21+2d 1), 所以d 1=1,即a n =2n -1.又当a n =2n -1时,S n =n 2,S n +k +S n -k =2S n 对任意正整数n ,k(n >k)都成立, 因此a n =2n -1.(7分)(3) 设等差数列{a n }的公差为d ,则a n =a 1+(n -1)d ,b n =aa n ,所以b nb n -1=aa n -a n -1=a d ,即数列{b n }是公比大于0,首项大于0的等比数列.(9分) 记公比为q(q >0),以下证明:b 1+b n ≥b p +b k ,其中p ,k 为正整数,且p +k =1+n.因为(b 1+b n )-(b p +b k )=b 1+b 1q n -1-b 1q p -1-b 1q k -1=b 1(q p -1-1)(q k -1-1). 当q >1时,因为y =q x 为增函数,p -1≥0,k -1≥0,所以q p -1-1≥0,q k -1-1≥0,所以b 1+b n ≥b p +b k . 当q =1时,b 1+b n =b p +b k .当0<q <1时,因为y =q x 为减函数,p -1≥0,k -1≥0,所以q p -1-1≤0,q k -1-1≤0,所以b 1+b n ≥b p +b k .综上,b 1+b n ≥b p +b k ,其中p ,k 为正整数,且p +k =1+n.(14分) 所以n(b 1+b n )=(b 1+b n )+(b 1+b n )+…+(b 1+b n ) ≥(b 1+b n )+(b 2+b n -1)+(b 3+b n -2)+…+(b n +b 1) =(b 1+b 2+…+b n )+(b n +b n -1+…+b 1), 即b 1+b 2+…+b n n ≤b 1+b n 2.(16分)2013届高三模拟考试试卷(七)(南京、盐城)数学附加题参考答案及评分标准21. A. 选修41:几何证明选讲解:如图,延长PO 交圆O 于D ,连结AO 、BO.AB 交OP 于点E. 因为PA 与圆O 相切, 所以PA 2=PC·PD.设圆O 的半径为R ,因为PA =12,PC =6, 所以122=6(2R +6),解得R =9.(4分)因为PA 、PB 与圆O 均相切,所以PA =PB.又OA =OB ,所以OP 是线段AB 的垂直平分线.(7分) 即AB ⊥OP ,且AB =2AE.在Rt △OAP 中,AE =OA·PA OP =365.所以AB =725.(10分)B. 选修42:矩阵与变换解:(1) 由题知,⎣⎢⎡⎦⎥⎤1 a b 1⎣⎢⎡⎦⎥⎤11=⎣⎢⎡⎦⎥⎤02,即⎩⎪⎨⎪⎧1+a =0,b +1=2, 解得⎩⎪⎨⎪⎧a =-1,b =1.(4分)(2) 设P′(x ,y)是曲线C′上任意一点,P ′由曲线C 上的点P(x 0,y 0)经矩阵M 所表示的变换得到,所以⎣⎢⎡⎦⎥⎤1 -11 1⎣⎢⎡⎦⎥⎤x 0y 0=⎣⎢⎡⎦⎥⎤x y ,即⎩⎪⎨⎪⎧x 0-y 0=x ,x 0+y 0=y ,解得⎩⎪⎨⎪⎧x 0=y +x 2,y 0=y -x 2.(7分) 因为x 0y 0=1,所以y +x 2·y -x 2=1,即y 24-x 24=1.即曲线C′的方程为y 24-x24=1.(10分)C. 曲线44:坐标系与参数方程解:以极点为原点,极轴为x 轴正半轴建立平面直角坐标系, 则圆C 的直角坐标方程为(x -3)2+(y -1)2=4, 点M 的直角坐标为(33,3).(3分) 当直线l 的斜率不存在时,不合题意. 设直线l 的方程为y -3=k(x -33),由圆心C(3,1)到直线l 的距离等于半径2. 故|23k -2|k 2+1=2.(6分)解得k =0或k = 3.所以所求的直线l 的直角坐标方程为y =3或3x -y -6=0.(8分)所以所求直线l 的极坐标方程为ρsin θ=3或ρsin ⎝ ⎛⎭⎪⎫π3-θ=3.(10分)D. 选修45:不等式选讲解:原不等式等价于⎩⎪⎨⎪⎧x ≥4,x 2-4x -3<0,或⎩⎪⎨⎪⎧x <4,-x 2+4x -3<0.(5分)解得⎩⎪⎨⎪⎧x ≥4,2-7<x <2+7,或⎩⎪⎨⎪⎧x <4,x <1或x >3.即4≤x <2+7或3<x <4或x <1.综上,原不等式的解集为{x|x <1或3<x <2+7}.(10分)22. 解:(1) 如图,取AC 的中点F ,连结BF ,则BF ⊥AC.以A 为坐标原点,过A 且与FB 平行的直线为x 轴,AC 为y 轴,AP 为z 轴,建立空间直角坐标系.则A(0,0,0),B(3,1,0),C(0,2,0),P(0,0,2),E(0,1,1)从而PB →=(3,1,-2),AE →=(0,1,1). 设直线AE 与PB 所成角为θ,则cos θ=|PB →·AE →|PB →|×|AE →||=14.即直线AE 与PB 所成角的余弦值为14.(4分)(2) 设PA 的长为a ,则P(0,0,a),从而PB →=(3,1,-a),PC →=(0,2,-a). 设平面PBC 的法向量为n 1=(x ,y ,z),则n 1·PB →=0,n 1·PC →=0,所以3x +y -az =0,2y -az =0.令z =2,则y =a ,x =33a.所以n 1=⎝⎛⎭⎫33a ,a ,2是平面PBC 的一个法向量.因为D 、E 分别为PB 、PC 的中点,所以D ⎝⎛⎭⎫32,12,a2,E ⎝⎛⎭⎫0,1,a 2, 则AD →=⎝⎛⎭⎫32,12,a 2,AE →=⎝⎛⎭⎫0,1,a 2. 设平面ADE 的法向量为n 2=(x ,y ,z),则n 2·AD →=0,n 2·AE →=0.所以32x +12y +a 2z =0,y +a2z =0.令z =2,则y =-a ,x =-33a. 所以n 2=⎝⎛⎭⎫-33a ,-a ,2是平面ADE 的一个法向量.(8分) 因为平面ADE ⊥平面PBC ,所以n 1⊥n 2,即n 1·n 2=⎝⎛⎭⎫33a ,a ,2·⎝⎛⎭⎫-33a ,-a ,2=-13a 2-a 2+4=0,解得a =3,即PA 的长为 3.(10分)23. 解:(1) p 1=23,p 2=23×23+13×⎝⎛⎭⎫1-23=59.(2分) (2) 证明:因为移了n 次后棋子落在上底面顶点的概率为p n ,故落在下底面顶点的概率为1-p n .于是移了n +1次后棋子落在上底面顶点的概率为p n +1=23p n +13(1-p n )=13p n +13.(4分)从而p n +1-12=13⎝⎛⎭⎫p n -12. 所以数列⎩⎨⎧⎭⎬⎫p n -12是等比数列,其首项为16,公比为13.所以p n -12=16×⎝⎛⎭⎫13n -1,即p n =12+12×13n .(6分)用数学归纳法证明:① 当n =1时,左式=14×23-1=35,右式=12,因为35>12,所以不等式成立.当n =2时,左式=14×23-1+14×59-1=7855,右式=43,因为7855>43,所以不等式成立.② 假设n =k(k ≥2)时,不等式成立,即14p i -1>k 2k +1.则n =k +1时,左式=14p i -1+14p k +1-1>k 2k +1+14⎝ ⎛⎭⎪⎫12+12×13k +1-1=k 2k +1+3k +13k +1+2.要证k 2k +1+3k +13k +1+2≥(k +1)2k +2,只要证3k +13k +1+2≥(k +1)2k +2-k 2k +1,只要证3k +13k +1+2≥k 2+3k +1k 2+3k +2,只要证23k +1≤1k 2+3k +1, 只要证3k +1≥2k 2+6k +2. 因为k ≥2,所以3k +1=3(1+2)k ≥3(1+2k +4C 2k )=6k 2+3=2k 2+6k +2+2k(2k -3)+1>2k 2+6k +2,所以k 2k +1+3k +13k +1+2≥(k +1)2k +2.即n =k +1时,不等式也成立.由①②可知,不等式14p i -1>n 2n +1对任意的n ∈N *都成立.(10分)。

江苏省南京市、盐城市2015届高三第一次模拟考试 数学 Word版含答案

江苏省南京市、盐城市2015届高三第一次模拟考试 数学 Word版含答案

南京市、盐城市2015届高三年级第一次模拟考试一、填空题:本大题共14小题,每小题5分,计70分.1.设集合{}2,0,M x =,集合{}0,1N =,若N M ⊆,则x = ▲ . 答案:1 2.若复数a iz i+=(其中i 为虚数单位)的实部与虚部相等,则实数a = ▲ . 答案:-13.在一次射箭比赛中,某运动员5次射箭的环数依次是9,10,9,7,10,则该组数据的方差是 ▲ . 答案:654.甲、乙两位同学下棋,若甲获胜的概率为0.2,甲、乙下和棋的概率为0.5,则乙获胜的概率为 ▲ . 答案:0.3解读:为了体现新的《考试说明》,此题选择了互斥事件,选材于课本中的习题。

5.若双曲线222(0)x y a a -=>的右焦点与抛物线24y x =的焦点重合,则a = ▲ . 答案:226.运行如图所示的程序后,输出的结果为 ▲ . 答案:42解读:此题的答案容易错为22。

7.若变量,x y 满足202300x y x y x -≤⎧⎪-+≥⎨⎪≥⎩,则2x y+的最大值为 ▲ .答案:88.若一个圆锥的底面半径为1,侧面积是底面积的2倍,则该圆锥的体积为 ▲ . 答案:33π 9.若函数()sin()(0)6f x x πωω=+>图象的两条相邻的对称轴之间的距离为2π,且该函数图象关于点0(,0)x 成中心对称,0[0,]2x π∈,则0x = ▲ .答案:512π 10.若实数,x y 满足0x y >>,且22log log 1x y +=,则22x y x y+-的最小值为 ▲ .答案: 4i ←1S ←0While i <8 i ←i + 3 S ←2´i + S End While Print S第6题图11.设向量(sin 2,cos )θθ=a ,(cos ,1)θ=b ,则“//a b ”是“1tan 2θ=”成立的 ▲ 条件 (选填“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”) . 答案:必要不充分12.在平面直角坐标系xOy 中,设直线2y x =-+与圆222(0)x y r r +=>交于,A B 两点,O 为坐标原点,若圆上一点C 满足5344OC OA OB =+,则r = ▲ . 答案:10 解读:方法1:(平面向量数量积入手)22225325539244164416OC OA OB OA OA OB OB⎛⎫=+=+⋅⋅+ ⎪⎝⎭,即:222225159+c o s 16816r r r A O B r =∠+,整理化简得:3cos 5AOB ∠=-,过点O 作AB 的垂线交AB 于D ,则23cos 2cos 15AOB AOD ∠=∠-=-,得21cos 5AOD ∠=,又圆心到直线的距离为222OD ==,所以222212cos 5OD AOD r r ∠===,所以210r =,10r =. 方法2:(平面向量坐标化入手)设()11,A x y ,()22,B x y ,(),C x y ,由5344OC OA OB =+得125344x x x =+,125344y y y =+,则22222222121211112222535325251525251544441616816168x y x x y y x y x y x y x y ⎛⎫⎛⎫+=+++=+++++ ⎪ ⎪⎝⎭⎝⎭由题意得,()222112225251516168r r r x y x y =+++,联立直线2y x =-+与圆222(0)x y r r +=>的方程,由韦达定理可解得:10r =. 方法3:(平面向量共线定理入手)由5344OC OA OB =+得153288OC OA OB =+,设OC 与AB 交于点M ,则A M B 、、三点共线。

南京市、盐城市2015年高三年级第一次模拟考试

南京市、盐城市2015年高三年级第一次模拟考试

南京市、盐城市2015年高三年级第一次模拟考试语文试题一、语言文字运用(15分)1.在下面一段话空缺处依次填入词语,最恰当...的一组是(3分)语言和人及其文化的关系,是一个极其复杂的问题,透过这个问题,我们可以一个时代的文化现象及其意识形态。

在当代社会,最的语言形式也许非广告语莫属;当广告语言地向我们袭来时,所引发的思考是非常复杂的。

A.瞥见引人注目排山倒海 B.洞察备受瞩目铺天盖地C.瞥见引人注目铺天盖地 D.洞察备受瞩目排山倒海2.下列语言表达得体..的一项是(3分)A.几位著名艺术家下乡采风,举行笔会,我也有幸叨陪末座。

B.这次你到基层工作,无论遇到什么困难,我都会鼎力相助。

C.张建祝贺老师从教三十年时说:“我没有过奖之词,您是我人生的引路人!”D.明日老友相聚,不烦你出门,请于府上恭候,我会按时前往。

3.下面一段文字中,需要修改的一组词语是(3分)一位登山探险爱好者在组织旅游活动时发帖①说:“登山活动难免②危险,本次活动纯属志愿③,过程中若出现意外④,由本人⑤承担后果。

请大家珍惜驴友⑥之间的感情,团结互助,注意自身安全!”A.①④ B.②⑤ C.③⑤ D.④⑥4.在下面一段文字横线处填入语句,衔接最恰当...的一项是(3分)昆曲的衰落当然是有历史原因的。

▲。

但昆曲之幸也恰恰就因为它是中国雅文化的结晶,从清末到当下,中国文化人勇于担当,肩负起括救昆曲的重任,才使昆曲的香火一脉流传,直到今天。

①雅文化的衰落必然导致昆曲走向衰落②却必须直面昆曲衰落这无法改变的事实③当代世界范围内文化重心的下移更让昆曲几乎遭遇灭顶之灾④昆曲是雅文化美学追求的浓缩、代表与象征⑤我们可以感慨人类文化的尴尬A.⑤②③①④B. ④①③⑤②C. ⑤①④②③D.①③④②⑤5 .对下面这段话的含义理最贴切...的一项是(3分)山崖崩塌了,在它的伤口一一断崖上,开出了鲜艳的花朵。

鲜艳的花儿被掐走了,它又开在了姑娘的鬂上。

A.只有在困难和失败中努力奋起,才能到打目的地。

江苏省四市2015届高三第一次调研考试(一模)数学试题及答案

江苏省四市2015届高三第一次调研考试(一模)数学试题及答案

徐州、淮安、宿迁、连云港四市2015届高三第一次模拟考试数学试卷一、填空题:本大题共14小题,每小题5分,共计70分.不需写出解题过程,请把答案直接填写在答题卡相应位置上,1.己知集合{}{}0,1,2,3,2,3,4,5A B ==,则 AB 中元素的个数为_______.2.设复数z 满足 (4)32i z i -=+(i 是虚数单位),则z 的虚部为_______. 3.如图,茎叶图记录了甲、乙两组各3名同学在期末考试中的数学成绩, 则方差较小的那组同学成绩的方差为_______.4.某用人单位从甲、乙、丙、丁4名应聘者中招聘2人,若每名应聘者被录用的机会均等,则甲、乙2人中至少有1入被录用的概率为_______. 5.如图是一个算法的流程图,若输入x 的值为2,则输出y 的值为_____. 6. 已知圆锥的轴截面是边长为2的正三角形,则该圆锥的体积为 ______. 7. 已知 ()f x 是定义在R 上的奇函数,当 0x <时,2()log (2)f x x =-, 则(0)(2)f f +的值为_____.8. 在等差数列{}n a 中,已知2811a a +=,则3113a a +的值为______. 9. 若实数,x y 满足40x y +-≥,则226210z x y x y =++-+的最小值为_____.10. 已知椭圆22221(0)x y a b a b+=>>,点12,,,A B B F 依次为其左顶点、下顶点、上顶点和右焦点,若直线 2AB 与直线 1B F 的交点恰在椭圆的右准线上,则椭圆的离心率为______. 11.将函数2sin()(0)4y x πωω=->的图象分别向左、向右各平移4π个单位长度后,所得的两个图象对称轴重合,则ω的最小值为______.12.己知a ,b 为正数,且直线 60ax by +-=与直线 2(3)50x b y +-+=互相平行,则2a +3b 的最小值为________.13.已知函数 22,0,()2,0x x f x x x x +⎧-≥⎪=⎨<⎪⎩,则不等式 (())3f f x ≤的解集为______.14.在△ABC 中,己知 3,45AC A =∠=,点D 满足 2CD BD =,且 13AD =,则BC 的长为_______ .二、解答题:本大题共6小题.15~17每小题14分,18~20每小题16分,共计90分.请在答题卡指定的区域内作答,解答时应写出文字说明、证明过程或演算步骤. 15.(本小题满分14分) 己知向量(1,2sin ),(sin(),1)3a b πθθ==+,R θ∈.(1)若a b ⊥,求tan θ的值: (2)若//a b ,且(0,)2πθ∈,求θ的值.16.(本小题满分14分)如图,在三棱锥P - ABC 中,已知平面PBC ⊥平面ABC . (1)若AB ⊥BC ,CD ⊥PB ,求证:CP ⊥P A :(2)若过点A 作直线上平面ABC ,求证: //平面PBC .17.(本小题满分14分)在平面直角坐标系xOy 中,己知点(3,4),(9,0)A B -,C ,D 分别为线段OA ,OB 上的动点,且满足AC =BD .(1)若AC =4,求直线CD 的方程;(2)证明:∆OCD 的外接圈恒过定点(异于原点O ).18.(本小题满分16分)如图,有一个长方形地块ABCD ,边AB 为2km ,AD 为4 km.,地块的一角是湿地(图中阴影部分),其边缘线AC 是以直线AD 为对称轴,以AAC 上一点P 的直线型隔离带EF ,E ,F 分别在边AB ,BC 上(隔离带不能穿越湿地,且占地面积忽略不计).设点P 到边AD 的距离为t (单位:km),△BEF 的面积为S (单位:2km ).(I)求S 关于t 的函数解析式,并指出该函数的定义域;(2)是否存在点P ,使隔离出的△BEF 面积S 超过32km ?并说明理由.19.(本小题满分16分)在数列{}n a 中,已知12211,2,n n n a a a a a n N λ*++==+=+∈,λ为常数.(1)证明: 14,5,a a a 成等差数列; (2)设22n na a n c +-=,求数列 的前n 项和 n S ;(3)当0λ≠时,数列 {}1n a -中是否存在三项1111,1,1s t p a a a +++---成等比数列,且,,s t p 也成等比数列?若存在,求出,,s t p 的值;若不存在,说明理由.20.(本小题满分16分)己知函数21()ln ,2f x x ax x a R =-+∈ (1)若(1)0f =,求函数 ()f x 的单调递减区间;(2)若关于x 的不等式()1f x ax ≤-恒成立,求整数 a 的最小值:(3)若 2a =-,正实数 12,x x 满足 1212()()0f x f x x x ++=,证明: 12512x x -+≥附加题部分21.【选做题】本题包括A, B, C, D 四小题,请选定其中两题,并在相应的答题区域内作答.解答时应写出文字说明、证明过程或演算步骤.A 选修4-1:几何证明选讲(本小题满分10分)如图,O 是△ABC 的外接圆,AB = AC ,延长BC 到点D ,使得CD = AC ,连结AD 交O 于点E .求证:BE 平分∠ABC .B.选修4-2:矩阵与变换(本小题满分10分)已知,a b R ∈,矩阵 1 3a A b -⎡⎤=⎢⎥⎣⎦所对应的变换A T 将直线 10x y --=变换为自身,求a ,b 的值。

江苏省南京市、盐城市2015届高三第一次模拟考试 数学含答案

江苏省南京市、盐城市2015届高三第一次模拟考试 数学含答案

江苏省南京市、盐城市2015届高三第一次模拟考试数学含答案南京市和盐城市的2015届高三年级第一次模拟考试包含了14个填空题,每个小题5分,共计70分。

1.设集合M={2,0,x},集合N={0,1},若N是M的子集,则x=1.2.如果复数z=-1,则z^2+2z的值为0.3.在一次射箭比赛中,某运动员的5次射箭的环数分别是9.10.9.7.10,则该组数据的方差是4.8.4.如果a+i(其中i为虚数单位)的实部和虚部相等,则实数a=0.5.如果双曲线x^2-y^2=a^2(a>0)的右焦点与抛物线y^2=4x的焦点重合,则a=2.6.运行如下程序后,输出的结果为42:i←1S←0While i<8i←i+3S←2×i+SEndWhilePrint S7.如果x-2y+3≤0且x+y≥0,则2的最大值为3.8.如果一个圆锥的底面半径为1,侧面积是底面积的2倍,则该圆锥的体积为3π。

9.如果函数f(x)=sin(ωx+π/6)(ω>0)的图像中,相邻的两条对称轴之间的距离为π/2,且该函数的图像关于点(x,0)成中心对称,其中x∈[0,5π/12],则x=5π/12.10.如果实数x,y满足x>y>0且log2x+log2y=1,则x-y的最小值为4.11.设向量a=(sin^2θ,cosθ),b=(cosθ,1),则“a//b”是“tanθ=1/2”成立的必要不充分条件。

12.在平面直角坐标系xOy中,设直线y=-x+2与圆x^2+y^2=r^2(r>0)交于A,B两点,O为坐标原点,若圆上一点C满足OC=10,则r=√26.13.已知f(x)是定义在[-2,2]上的奇函数,当x∈(0,2]时,f(x)=x^2-1.如果对于任意x∈[-2,2],存在x2∈[-2,2],使得g(x2)=f(x1),则实数m的值为1.14.该文章中没有第14题,可能是因为该模拟考试只包含了13个填空题。

2015年江苏省盐城市、南京市高考一模数学试卷【解析版】

2015年江苏省盐城市、南京市高考一模数学试卷【解析版】

2015年江苏省盐城市、南京市高考数学一模试卷一.填空题:本大题共20小题,每小题5分,计70分.1.(5分)设集合M={2,0,x},集合N={0,1},若N⊆M,则x=.2.(5分)若复数(其中i为虚数单位)的实部与虚部相等,则实数a =.3.(5分)在一次射箭比赛中,某运动员5次射箭的环数依次是9,10,9,7,10,则该组数据的方差是.4.(5分)甲、乙两位同学下棋,若甲获胜的概率为0.2,甲、乙下和棋的概率为0.5,则乙获胜的概率为.5.(5分)若双曲线x2﹣y2=a2(a>0)的右焦点与抛物线y2=4x的焦点重合,则a=.6.(5分)运行如图所示的程序后,输出的结果为.7.(5分)已知变量x,y满足,则2x+y的最大值为.8.(5分)若一个圆锥的底面半径为1,侧面积是底面积的2倍,则该圆锥的体积为.9.(5分)若函数图象的两条相邻的对称轴之间的距离为,且该函数图象关于点(x0,0)成中心对称,,则x0=.10.(5分)若实数x,y满足x>y>0,且log2x+log2y=1,则的最小值为.11.(5分)设向量=(sin2θ,cosθ),=(cosθ,1),则“∥”是“tanθ=”成立的条件(选填“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”).12.(5分)在平面直角坐标系xOy中,设直线y=﹣x+2与圆x2+y2=r2交于A,B两点,O为坐标原点,若圆上一点C满足=+则r=.13.(5分)已知f(x)是定义在[﹣2,2]上的奇函数,当x∈(0,2]时,f(x)=2x﹣1,函数g(x)=x2﹣2x+m.如果对于∀x1∈[﹣2,2],∃x2∈[﹣2,2],使得g(x2)=f(x1),则实数m的取值范围是.14.(5分)已知数列{a n}满足a1=﹣1,a2>a1,|a n+1﹣a n|=2n(n∈N*),若数列{a2n﹣1}单调递减,数列{a2n}单调递增,则数列{a n}的通项公式为a n=.15.(5分)在平面直角坐标系xOy中设锐角α的始边与x轴的非负半轴重合,终边与单位圆交于点P(x1,y1),将射线OP绕坐标原点O按逆时针方向旋转后与单位圆交于点Q(x2,y2)记f(α)=y1+y2(1)求函数f(α)的值域;(2)设△ABC的角A,B,C所对的边分别为a,b,c,若f(C)=,且a =,c=1,求b.16.(15分)如图,在正方体ABCD﹣A1B1C1D1中,O,E分别为B1D,AB的中点.(1)求证:OE∥平面BCC1B1;(2)求证:平面B1DC⊥平面B1DE.17.(12分)在平面直角坐标系xOy中,椭圆的右准线方程为x=4,右顶点为A,上顶点为B,右焦点为F,斜率为2的直线l经过点A,且点F到直线l的距离为.(1)求椭圆C的标准方程;(2)将直线l绕点A旋转,它与椭圆C相交于另一点P,当B,F,P三点共线时,试确定直线l的斜率.18.(5分)某地拟模仿图甲建造一座大型体育馆,其设计方案侧面的外轮廓线如图乙所示:曲线AB是以点E为圆心的圆的一部分,其中E(0,t)(0<t ≤25,单位:米);曲线BC是抛物线y=﹣ax2+50(a>0)的一部分;CD⊥AD,且CD恰好等于圆E的半径.假定拟建体育馆的高OB=50米.(1)若要求CD=30米,AD=米,求t与a的值;(2)若要求体育馆侧面的最大宽度DF不超过75米,求a的取值范围;(3)若,求AD的最大值.(参考公式:若,则)19.(5分)设数列{a n}是各项均为正数的等比数列,其前n项和为S n,若a1a5=64,S5﹣S3=48.(1)求数列{a n}的通项公式;(2)对于正整数k,m,l(k<m<l),求证:“m=k+1且l=k+3”是“5a k,a m,a l这三项经适当排序后能构成等差数列”成立的充要条件;(3)设数列{b n}满足:对任意的正整数n,都有a1b n+a2b n﹣1+a3b n﹣2+…+a n b1=3•2n+1﹣4n﹣6,且集合中有且仅有3个元素,试求λ的取值范围.20.(5分)已知函数f(x)=e x,g(x)=mx+n.(1)设h(x)=f(x)﹣g(x).①若函数h(x)在x=0处的切线过点(1,0),求m+n的值;②当n=0时,若函数h(x)在(﹣1,+∞)上没有零点,求m的取值范围;(2)设函数r(x)=+,且n=4m(m>0),求证:当x≥0时,r(x)≥1.A、(选修4-1:几何证明选讲)21.(5分)如图,已知点P为Rt△ABC的斜边AB的延长线上一点,且PC与Rt△ABC的外接圆相切,过点C作AB的垂线,垂足为D,若P A=18,PC=6,求线段CD的长.B、(选修4-2:矩阵与变换)22.求直线x﹣y﹣1=0在矩阵的变换下所得曲线的方程.三.C、(选修4-4:坐标系与参数方程)23.在极坐标系中,求圆ρ=2cosθ的圆心到直线2ρsin(θ+)=1的距离.24.(8分)解不等式|x+1|+|x﹣2|<4.25.(10分)如图,在直三棱柱ABC﹣A1B1C1中,AB⊥AC,AB=3,AC=4,动点P满足(λ>0),当λ=时,AB1⊥BP.(1)求棱CC1的长;(2)若二面角B1﹣AB﹣P的大小为,求λ的值.26.(10分)设集合S={1,2,3,…,n}(n∈N*,n≥2),A,B是S的两个非空子集,且满足集合A中的最大数小于集合B中的最小数,记满足条件的集合对(A,B)的个数为P n.(1)求P2,P3的值;(2)求P n的表达式.2015年江苏省盐城市、南京市高考数学一模试卷参考答案与试题解析一.填空题:本大题共20小题,每小题5分,计70分.1.(5分)设集合M={2,0,x},集合N={0,1},若N⊆M,则x=1.【解答】解:∵集合M={2,0,x},N={0,1},∴若N⊆M,则集合N中元素均在集合M中,∴x=1.故答案为:1.2.(5分)若复数(其中i为虚数单位)的实部与虚部相等,则实数a=﹣1.【解答】解:复数==﹣ai+1,∵Z的实部与虚部相等,∴﹣a=1,解得a=﹣1.故答案为:﹣1.3.(5分)在一次射箭比赛中,某运动员5次射箭的环数依次是9,10,9,7,10,则该组数据的方差是.【解答】解:数据9,10,9,7,10的平均数是=(9+10+9+7+10)=9,∴它的方差是s2=[(9﹣9)2+(10﹣9)2+(9﹣9)2+(7﹣9)2+(10﹣9)2]=.故答案为:.4.(5分)甲、乙两位同学下棋,若甲获胜的概率为0.2,甲、乙下和棋的概率为0.5,则乙获胜的概率为0.3.【解答】解:∵“乙获胜”与“甲获胜”及“甲、乙下和棋”是互斥事件.且与“乙获胜”与“甲获胜与甲、乙下和棋的并事件”是互斥事件.∵甲获胜的概率为0.2,甲、乙下和棋的概率为0.5,∴乙获胜的概率P=1﹣(0.2+0.5)=0.3.故答案为:0.35.(5分)若双曲线x2﹣y2=a2(a>0)的右焦点与抛物线y2=4x的焦点重合,则a=.【解答】解:抛物线y2=4x的焦点坐标为(1,0),故双曲线x2﹣y2=a2(a>0)的右焦点坐标为(1,0),故c=1,由双曲线x2﹣y2=a2的标准方程为:,故2a2=1,又由a>0,∴a=.故答案为:6.(5分)运行如图所示的程序后,输出的结果为42.【解答】解:模拟执行程序,有i=1,s=0,满足条件i<8,i=4,s=8,满足条件i<8,i=7,s=22,满足条件i<8,i=10,s=42,不满足条件i<8,退出循环,输出s的值为42.故答案为:42.7.(5分)已知变量x,y满足,则2x+y的最大值为8.【解答】解:作出不等式组对应的平面区域如图:设z=x+y,则y=﹣x+z,平移直线y=﹣x+z,由图象可知当直线y=﹣x+z经过点A时y=﹣x+z的截距最大,此时z最大.由,解得,即A(1,2),代入z=x+y得z=1+2=3.即z=x+y最大值为3,∴2x+y的最大值为23=8.故答案为:8.8.(5分)若一个圆锥的底面半径为1,侧面积是底面积的2倍,则该圆锥的体积为.【解答】解:∵圆锥的底面半径r=1,侧面积是底面积的2倍,∴圆锥的母线长l=2,故圆锥的高h==,故圆锥的体积V===,故答案为:.9.(5分)若函数图象的两条相邻的对称轴之间的距离为,且该函数图象关于点(x0,0)成中心对称,,则x0=.【解答】解:∵函数图象的两条相邻的对称轴之间的距离为,∴=π,∴ω=2∴f(x)=sin(2x+).∵f(x)的图象关于点(x0,0)成中心对称,∴f(x0)=0,即sin(2x0+)=0,∴2x0+=kπ,∴x0=﹣,k∈Z,∵x0∈[0,],∴x0=.故答案为:.10.(5分)若实数x,y满足x>y>0,且log2x+log2y=1,则的最小值为4.【解答】解:∵log2x+log2y=1,∴log2xy=1=log22,∴xy=2,∴==(x﹣y)+≥2=4,但且仅当x=1+,y=﹣1时取等号,故的最小值为4,故答案为:4.11.(5分)设向量=(sin2θ,cosθ),=(cosθ,1),则“∥”是“tanθ=”成立的必要不充分条件(选填“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”).【解答】解:若∥,则sin2θ﹣cosθcosθ=0,即2sinθcosθ﹣cosθcosθ=0,即cosθ(2sinθ﹣cosθ)=0,则cosθ=0或tanθ=,故∥”是“tanθ=”成立必要不充分条件,故答案为:必要不充分.12.(5分)在平面直角坐标系xOy中,设直线y=﹣x+2与圆x2+y2=r2交于A,B两点,O为坐标原点,若圆上一点C满足=+则r=.【解答】解:由题意可得,=r设,θ∈[0,π]则==r2cosθ∵=+两边同时平方可得,=即×∴cosθ=∵,∴且cos∴=设圆心O到直线x+y﹣2=0的距离为d,则d=r cos=即∴r=故答案为:.13.(5分)已知f(x)是定义在[﹣2,2]上的奇函数,当x∈(0,2]时,f(x)=2x﹣1,函数g(x)=x2﹣2x+m.如果对于∀x1∈[﹣2,2],∃x2∈[﹣2,2],使得g(x2)=f(x1),则实数m的取值范围是[﹣5,﹣2].【解答】解:∵f(x)是定义在[﹣2,2]上的奇函数,∴f(0)=0,当x∈(0,2]时,f(x)=2x﹣1∈(0,3],则当x∈[﹣2,2]时,f(x)∈[﹣3,3],若对于∀x1∈[﹣2,2],∃x2∈[﹣2,2],使得g(x2)=f(x1),则等价为g(x)max≥3且g(x)min≤﹣3,∵g(x)=x2﹣2x+m=(x﹣1)2+m﹣1,x∈[﹣2,2],∴g(x)max=g(﹣2)=8+m,g(x)min=g(1)=m﹣1,则满足8+m≥3且m﹣1≤﹣3,解得m≥﹣5且m≤﹣2,故﹣5≤m≤﹣2,故答案为:[﹣5,﹣2]14.(5分)已知数列{a n}满足a1=﹣1,a2>a1,|a n+1﹣a n|=2n(n∈N*),若数列{a2n﹣1}单调递减,数列{a2n}单调递增,则数列{a n}的通项公式为a n=.【解答】解:方法一:先采用列举法得a1=﹣1,a2=1,a3=﹣3,a4=5,a5=﹣11,a6=21,…,然后从数字的变化上找规律,得,∴a n=(a n﹣a n﹣1)+(a n﹣1﹣a n﹣2)+…+(a2﹣a1)+a1=(﹣1)n•2n﹣1+(﹣1)n﹣1•2n﹣2+…﹣22+2﹣1==.方法二:∵,,∴,而{a2n﹣1}递减,∴a2n+1﹣a2n﹣1<0,故;同理,由{a2n}递增,得;又a2>a1,∴,以下同上.15.(5分)在平面直角坐标系xOy中设锐角α的始边与x轴的非负半轴重合,终边与单位圆交于点P(x1,y1),将射线OP绕坐标原点O按逆时针方向旋转后与单位圆交于点Q(x2,y2)记f(α)=y1+y2(1)求函数f(α)的值域;(2)设△ABC的角A,B,C所对的边分别为a,b,c,若f(C)=,且a =,c=1,求b.【解答】解:(Ⅰ)由三角函数定义知,y1=sinα,y2=sin(α+)=cosα,f(α)=y1+y2=cosα+sinα=sin(α+),∵角α为锐角,∴<α+<,∴<sin(α+)≤1,∴1<sin(α+)≤,则f(α)的取值范围是(1,];(Ⅱ)若f(C)=,且a=,c=1,则f(C)═sin(C+)=,即sin(C+)=1,则C=,由余弦定理得c2=a2+b2﹣2ab cos C,即1=2+b2﹣2×b,则b2﹣2b+1=0,即(b﹣1)2=0,解得b=1.16.(15分)如图,在正方体ABCD﹣A1B1C1D1中,O,E分别为B1D,AB的中点.(1)求证:OE∥平面BCC1B1;(2)求证:平面B1DC⊥平面B1DE.【解答】证明:(1):连接BC1,设BC1∩B1C=F,连接OF,…2分因为O,F分别是B1D与B1C的中点,所以OF∥DC,且,又E为AB中点,所以EB∥DC,且d1=1,从而,即四边形OEBF是平行四边形,所以OE∥BF,…6分又OE⊄面BCC1B1,BF⊂面BCC1B1,所以OE∥面BCC1B1.…8分(2)因为DC⊥面BCC1B1,BC1⊂面BCC1B1,所以BC1⊥DC,…10分又BC1⊥B1C,且DC,B1C⊂面B1DC,DC∩B1C=C,所以BC1⊥面B1DC,…12分而BC1∥OE,所以OE⊥面B1DC,又OE⊂面B1DE,所以面B1DC⊥面B1DE.…14分17.(12分)在平面直角坐标系xOy中,椭圆的右准线方程为x=4,右顶点为A,上顶点为B,右焦点为F,斜率为2的直线l经过点A,且点F到直线l的距离为.(1)求椭圆C的标准方程;(2)将直线l绕点A旋转,它与椭圆C相交于另一点P,当B,F,P三点共线时,试确定直线l的斜率.【解答】解:(1)由题意知,直线l的方程为y=2(x﹣a),即2x﹣y﹣2a=0,∴右焦点F到直线l的距离为,∴a﹣c=1,又椭圆C的右准线为x=4,即,∴,将此代入上式解得a=2,c=1,∴b2=3,∴椭圆C的方程为.(2)方法一:由(1)知,F(1,0),∴直线BF的方程为,联立方程组,解得或(舍),即,∴直线l的斜率.方法二:由(1)知,F(1,0),∴直线BF的方程为,由题A(2,0),显然直线l的斜率存在,设直线l的方程为y=k(x﹣2),联立方程组,解得,代入椭圆解得:或,又由题意知,<0得k>0或,∴.方法三:由题A(2,0),显然直线l的斜率存在,设直线l的方程为y=k(x﹣2),联立方程组,得(4k2+3)x2﹣16k2x+16k2﹣12=0,,∴,,当B,F,P三点共线时有,k BP=k BF,即,解得或,又由题意知,<0得k>0或,∴.18.(5分)某地拟模仿图甲建造一座大型体育馆,其设计方案侧面的外轮廓线如图乙所示:曲线AB是以点E为圆心的圆的一部分,其中E(0,t)(0<t ≤25,单位:米);曲线BC是抛物线y=﹣ax2+50(a>0)的一部分;CD⊥AD,且CD恰好等于圆E的半径.假定拟建体育馆的高OB=50米.(1)若要求CD=30米,AD=米,求t与a的值;(2)若要求体育馆侧面的最大宽度DF不超过75米,求a的取值范围;(3)若,求AD的最大值.(参考公式:若,则)【解答】解:(1)∵CD=50﹣t=30,解得t=20.此时圆E:x2+(y﹣20)2=302,令y=0,得,∴,将点代入y=﹣ax2+50(a>0)中,解得.(2)∵圆E的半径为50﹣t,∴CD=50﹣t,在y=﹣ax2+50中,令y=50﹣t,得,则由题意知对t∈(0,25]恒成立,∴恒成立,而当,即t=25时,取最小值10,故,解得.(3)当时,,又圆E的方程为x2+(y﹣t)2=(50﹣t)2,令y=0,得,∴,从而,又∵f′(t)=5=,令f'(t)=0,得t=5,当t∈(0,5)时,f'(t)>0,f(t)单调递增;当t∈(5,25)时,f'(t)<0,f(t)单调递减,从而当t=5时,f(t)取最大值为25.答:当t=5米时,AD的最大值为25米.(3)方法二:(三角换元)令,则=,其中ϕ是锐角,且,从而当时,AD取得最大值为25米.方法三:令,则题意相当于:已知x2+y2=25(x≥0,y≥0),求z=AD=5×(2x+y)的最大值.根据线性规划知识,当直线y=﹣2x+与圆弧x2+y2=25(x≥0,y≥0)相切时,z取得最大值为25米.19.(5分)设数列{a n}是各项均为正数的等比数列,其前n项和为S n,若a1a5=64,S5﹣S3=48.(1)求数列{a n}的通项公式;(2)对于正整数k,m,l(k<m<l),求证:“m=k+1且l=k+3”是“5a k,a m,a l这三项经适当排序后能构成等差数列”成立的充要条件;(3)设数列{b n}满足:对任意的正整数n,都有a1b n+a2b n﹣1+a3b n﹣2+…+a n b1=3•2n+1﹣4n﹣6,且集合中有且仅有3个元素,试求λ的取值范围.【解答】解:(1)设等比数列{a n}的公比是q,∵数列{a n}是各项均为正数的等比数列,∴,解得a3=8,又∵S5﹣S3=48,∴,解得q=2,∴;…4分(2)(ⅰ)必要性:设5a k,a m,a l这三项经适当排序后能构成等差数列,①若2•5a k=a m+a l,则10•2k=2m+2l,∴10=2m﹣k+2l﹣k,∴5=2m﹣k﹣1+2l﹣k﹣1,∴,∴.…6分②若2a m=5a k+a l,则2•2m=5•2k+2l,∴2m+1﹣k﹣2l﹣k=5,左边为偶数,等式不成立,③若2a l=5a k+a m,同理也不成立,综合①②③,得m=k+1,l=k+3,所以必要性成立.…8分(ⅱ)充分性:设m=k+1,l=k+3,则5a k,a m,a l这三项为5a k,a k+1,a k+3,即5a k,2a k,8a k,调整顺序后易知2a k,5a k,8a k成等差数列,所以充分性也成立.综合(ⅰ)(ⅱ),原命题成立.…10分(3)因为,即,①∴当n≥2时,,②则②式两边同乘以2,得,③∴①﹣③,得2b n=4n﹣2,即b n=2n﹣1(n≥2),又当n=1时,,即b1=1,适合b n=2n﹣1(n≥2),∴b n=2n﹣1.…14分∴,∴,∴n=2时,,即;∴n≥3时,,此时单调递减,又,,,,∴.…16分20.(5分)已知函数f(x)=e x,g(x)=mx+n.(1)设h(x)=f(x)﹣g(x).①若函数h(x)在x=0处的切线过点(1,0),求m+n的值;②当n=0时,若函数h(x)在(﹣1,+∞)上没有零点,求m的取值范围;(2)设函数r(x)=+,且n=4m(m>0),求证:当x≥0时,r(x)≥1.【解答】解:(1)①h(x)=f(x)﹣g(x)=e x﹣mx﹣n.则h(0)=1﹣n,函数的导数h′(x)=e x﹣m,则h′(0)=1﹣m,则函数在x=0处的切线方程为y﹣(1﹣n)=(1﹣m)x,∵切线过点(1,0),∴﹣(1﹣n)=1﹣m,即m+n=2.②当n=0时,h(x)=f(x)﹣g(x)=e x﹣mx.若函数h(x)在(﹣1,+∞)上没有零点,即e x﹣mx=0在(﹣1,+∞)上无解,若x=0,则方程无解,满足条件,若x≠0,则方程等价为m=,设g(x)=,则函数的导数g′(x)=,若﹣1<x<0,则g′(x)<0,此时函数单调递减,则g(x)<g(﹣1)=﹣e ﹣1,若x>0,由g′(x)>0得x>1,由g′(x)<0,得0<x<1,即当x=1时,函数取得极小值,同时也是最小值,此时g(x)≥g(1)=e,综上g(x)≥e或g(x)<﹣e﹣1,若方程m=无解,则﹣e﹣1≤m<e.(2)∵n=4m(m>0),∴函数r(x)=+=+=+,则函数的导数r′(x)=﹣+=,设h(x)=16e x﹣(x+4)2,则h′(x)=16e x﹣2(x+4)=16e x﹣2x﹣8,[h′(x)]′=16e x﹣2,当x≥0时,[h′(x)]′=16e x﹣2>0,则h′(x)为增函数,即h′(x)>h′(0)=16﹣8=8>0,即h(x)为增函数,∴h(x)≥h(0)=16﹣16=0,即r′(x)≥0,即函数r(x)在[0,+∞)上单调递增,故r(x)≥r(0)=,故当x≥0时,r(x)≥1成立.A、(选修4-1:几何证明选讲)21.(5分)如图,已知点P为Rt△ABC的斜边AB的延长线上一点,且PC与Rt△ABC的外接圆相切,过点C作AB的垂线,垂足为D,若P A=18,PC=6,求线段CD的长.【解答】解:由切割线定理,得PC2=P A•PB,解得PB=2,所以AB=16,即Rt△ABC的外接圆半径r=8,…5分记Rt△ABC外接圆的圆心为O,连OC,则OC⊥PC,在Rt△POC中,由面积法得OC•PC=PO•CD,解得.…10分.B、(选修4-2:矩阵与变换)22.求直线x﹣y﹣1=0在矩阵的变换下所得曲线的方程.【解答】解:设P(x,y)是所求曲线上的任一点,它在已知直线上的对应点为Q(x',y'),∵=,∴,解得,代入x'﹣y'﹣1=0中,得:,化简可得所求曲线方程为.三.C、(选修4-4:坐标系与参数方程)23.在极坐标系中,求圆ρ=2cosθ的圆心到直线2ρsin(θ+)=1的距离.【解答】解:将圆ρ=2cosθ化为ρ2=2ρcosθ,普通方程为x2+y2﹣2x=0,圆心为(1,0),又,即,∴直线的普通方程为,故所求的圆心到直线的距离.24.(8分)解不等式|x+1|+|x﹣2|<4.【解答】解:当x<﹣1时,不等式化为﹣x﹣1+2﹣x<4,解得;当﹣1≤x≤2时,不等式化为x+1+2﹣x<4,解得﹣1≤x≤2;当x>2时,不等式化为x+1+x﹣2<4,解得;所以原不等式的解集为.25.(10分)如图,在直三棱柱ABC﹣A1B1C1中,AB⊥AC,AB=3,AC=4,动点P满足(λ>0),当λ=时,AB1⊥BP.(1)求棱CC1的长;(2)若二面角B1﹣AB﹣P的大小为,求λ的值.【解答】解:(1)以点A为坐标原点,AB,AC,AA1分别为x,y,z轴,建立空间直角坐标系,设CC1=m,则B1(3,0,m),B(3,0,0),P(0,4,λm),所以,,,…2分当时,有解得,即棱CC1的长为.…4分(2)设平面P AB的一个法向量为=(x,y,z),则由,得,即,令z=1,则,所以平面P AB的一个法向量为,…6分又平面ABB1与y轴垂直,所以平面ABB1的一个法向量为,因二面角B1﹣AB﹣P的平面角的大小为,所以|cos<>|==||,结合λ>0,解得.…10分.26.(10分)设集合S={1,2,3,…,n}(n∈N*,n≥2),A,B是S的两个非空子集,且满足集合A中的最大数小于集合B中的最小数,记满足条件的集合对(A,B)的个数为P n.(1)求P2,P3的值;(2)求P n的表达式.【解答】解:(1)当n=2时,即S={1,2},此时A={1},B={2},所以P2=1,…2分当n=3时,即S={1,2,3},若A={1},则B={2},或B={3},或B={2,3};若A={2}或A={1,2},则B={3};所以P3=5.…4分(2)当集合A中的最大元素为“k”时,集合A的其余元素可在1,2,…,k ﹣1中任取若干个(包含不取),所以集合A共有种情况,…6分此时,集合B的元素只能在k+1,k+2,…,n中任取若干个(至少取1个),所以集合B共有种情况,所以,当集合A中的最大元素为“k”时,集合对(A,B)共有2k﹣1(2n﹣k﹣1)=2n﹣1﹣2k﹣1对,…8分当k依次取1,2,3,…,n﹣1时,可分别得到集合对(A,B)的个数,求和可得.…12分。

南京市、盐城市2015届高三第一次模拟考试数学试题-含答案

南京市、盐城市2015届高三第一次模拟考试数学试题-含答案

i ←1 S ←0 While i <8 i ←i + 3 S ←2´i + S End While Print S第6题图南京市、盐城市2015届高三年级第一次模拟考试数 学 试 题(总分160分,考试时间120分钟)参考公式:样本数据x 1,x 2,…,x n 的方差2211()n i i s x x n ==-∑,其中11n i i x x n ==∑锥体的体积公式:13V Sh =,其中S 是锥体的底面积,h 是锥体的高. 圆锥的侧面积公式:rl s π=,其中是圆锥的r 底面半径,l 为母线长一、 填空题:本大题共14小题,每小题5分,计70分。

不需写出解答过程,请把答案写在答题纸的指定位置。

1.设集合{}2,0,M x =,集合{}0,1N =,若N M ⊆,则x = ▲ . 2.若复数a iz i+=(其中i 为虚数单位)的实部与虚部相等,则实数a = ▲ . 3.在一次射箭比赛中,某运动员5次射箭的环数依次是9,10,9,7,10,则该组数据的 方差是 ▲ .4.甲、乙两位同学下棋,若甲获胜的概率为0.2,甲、乙下和棋的概率为0.5,则乙获胜的 概率为 ▲ . 5.若双曲线222(0)x y a a -=>的右焦点与抛物线24y x =的焦点重合,则a = ▲ . 6.运行如图所示的程序后,输出的结果为 ▲ .7.若变量,x y 满足202300x y x y x -≤⎧⎪-+≥⎨⎪≥⎩,则2x y+的最大值为 ▲ .8.若一个圆锥的底面半径为1,侧面积是底面积的2倍,则该圆锥的体积为 ▲ . 9.若函数()sin()(0)6f x x πωω=+>图象的两条相邻的对称轴之间的距离为2π,且该函数图象关于点0(,0)x 成中心对称,0[0,]2x π∈,则0x = ▲ .10.若实数,x y 满足0x y >>,且22log log 1x y +=,则22x y x y+-的最小值为 ▲ .11.设向量(sin 2,cos )θθ=a ,(cos ,1)θ=b ,则“//a b ”是“1tan 2θ=”成立的 ▲ 条件 (选填“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”) .12.在平面直角坐标系xOy 中,设直线2y x =-+与圆222(0)x y r r +=>交于,A B 两点,O 为坐标原点,若圆上一点C 满足5344OC OA OB =+u u u r u u u r u u u r,则r = ▲ .13.已知()f x 是定义在[2,2]-上的奇函数,当(0,2]x ∈时,()21xf x =-,函数2()2g x x x m =-+. 如果对于1[2,2]x ∀∈-,2[2,2]x ∃∈-,使得21()()g x f x =,则实数m 的取值范围是 ▲ .14.已知数列{}n a 满足11a =-,21a a >,*1||2()n n n a a n N +-=∈,若数列{}21n a -单调递减,数列{}2n a 单调递增,则数列{}n a 的通项公式为n a = ▲ .二、解答题(本大题共6小题,计90分.解答应写出必要的文字说明,证明过程或演算步骤,并把答案写在答题纸的指定区域内)15.在平面直角坐标系xOy 中,设锐角α的始边与x 轴的非负半轴重合,终边与单位圆交于点11(,)P x y ,将射线OP 绕坐标原点O 按逆时针方向旋转2π后与单位圆交于点22(,)Q x y . 记12()f y y α=+. (1)求函数()f α的值域;(2)设ABC ∆的角,,A B C 所对的边分别为,,a b c ,若()2f C =2a =1c =,求b .16.(本小题满分14分)如图,在正方体1111ABCD A B C D -中,,O E 分别为1,B D AB 的中点. (1)求证://OE 平面11BCC B ; (2)求证:平面1B DC ⊥平面1B DE .xy PQOα 第15题图BACDB 1A 1C 1D 1E第16题图O17.在平面直角坐标系xOy 中,椭圆2222:1(0)x y C a b a b+=>>的右准线方程为4x =,右顶点为A ,上顶点为B ,右焦点为F ,斜率为2的直线l 经过点A ,且点F 到直线l 的距离为25.(1)求椭圆C 的标准方程;(2)将直线l 绕点A 旋转,它与椭圆C 相交于另一点P ,当,,B F P 三点共线时,试确定直线l 的斜率.18.某地拟模仿图甲建造一座大型体育馆,其设计方案侧面的外轮廓线如图乙所示:曲线AB 是以点E 为圆心的圆的一部分,其中(0,)E t (025t <≤,单位:米);曲线BC 是抛物线250(0)y ax a =-+>的一部分;CD AD ⊥,且CD 恰好等于圆E 的半径. 假定拟建体育馆的高50OB =米.(1)若要求30CD =米,AD =245米,求t 与a 的值;(2)若要求体育馆侧面的最大宽度DF 不超过75米,求a 的取值范围;(3)若125a =,求AD 的最大值.(参考公式:若()f x a x =-,则()2f x a x'=--)FPOxAly B第17题图·第18题-甲 xy O ABCD 第18题-乙E ·F19.设数列{}n a 是各项均为正数的等比数列,其前n 项和为n S ,若1564a a =,5348S S -=.(1)求数列{}n a 的通项公式;(2)对于正整数,,k m l (k m l <<),求证:“1m k =+且3l k =+”是“5,,k m l a a a 这三项经适当排序后能构成等差数列”成立的充要条件;(3)设数列{}n b 满足:对任意的正整数n ,都有121321n n n n a b a b a b a b --++++L13246n n +=⋅--,且集合*|,n n b M n n N a λ⎧⎫=≥∈⎨⎬⎩⎭中有且仅有3个元素,试求λ的取值范围.20.已知函数()xf x e =,()g x mx n =+.(1)设()()()h x f x g x =-.① 若函数()h x 在0x =处的切线过点(1,0),求m n +的值;② 当0n =时,若函数()h x 在(1,)-+∞上没有零点,求m 的取值范围; (2)设函数1()()()nx r x f x g x =+,且4(0)n m m =>,求证:当0x ≥时,()1r x ≥.南京市、盐城市2015届高三年级第一次模拟考试数学参考答案一、填空题:本大题共14小题,每小题5分,计70分. 1. 1 2. -1 3. 654. 0.3 5.2 6. 42 7. 889. 512π10. 4 11.要不充分 1213. [5,2]-- 14. (2)13n --( 说明:本答案也可以写成21,321,3n nn n ⎧--⎪⎪⎨-⎪⎪⎩为奇数为偶数12解读:方法1:(平面向量数量积入手)22225325539244164416OC OA OB OA OA OB OB⎛⎫=+=+⋅⋅+ ⎪⎝⎭u u u r u u u r u u u r u u u r u u ur u u u r u u u r ,即:222225159+cos 16816r r r AOB r =∠+,整理化简得:3cos 5AOB ∠=-,过点O 作AB 的垂线交AB 于D ,则23cos 2cos 15AOB AOD ∠=∠-=-,得21cos 5AOD ∠=,又圆心到直线的距离为OD ==所以222212cos 5OD AOD r r ∠===,所以210r =,r =.方法2:(平面向量坐标化入手)设()11,A x y ,()22,B x y ,(),C x y ,由5344OC OA OB=+u u u r u u u r u u u r得125344x x x =+,125344y y y =+,则22222222121211112222535325251525251544441616816168x y x x y y x y x y x y x y ⎛⎫⎛⎫+=+++=+++++ ⎪ ⎪⎝⎭⎝⎭由题意得,()222112225251516168r r r x y x y =+++,联立直线2y x =-+与圆222(0)x y r r +=>的方程,由韦达定理可解得:r =.方法3:(平面向量共线定理入手)由5344OC OA OB =+u u u r u u u r 得153288OC OA OB =+u u u r u u u r u u u r,设OC与AB 交于点M ,则A M B 、、三点共线。

江苏省南京市、盐城市高三数学第一次模拟考试试题

江苏省南京市、盐城市高三数学第一次模拟考试试题

南京市、盐城市2015届高三年级第一次模拟考试一、填空题:本大题共14小题,每小题5分,计70分.1.设集合{}2,0,M x =,集合{}0,1N =,若N M ⊆,则x = ▲ . 答案:1 2.若复数a iz i+=(其中i 为虚数单位)的实部与虚部相等,则实数a = ▲ . 答案:-13.在一次射箭比赛中,某运动员5次射箭的环数依次是9,10,9,7,10,则该组数据的方差是 ▲ . 答案:654.甲、乙两位同学下棋,若甲获胜的概率为0.2,甲、乙下和棋的概率为0.5,则乙获胜的概率为 ▲ . 答案:0.3解读:为了体现新的《考试说明》,此题选择了互斥事件,选材于课本中的习题。

5.若双曲线222(0)x y a a -=>的右焦点与抛物线24y x =的焦点重合,则a = ▲ .答案:26.运行如图所示的程序后,输出的结果为 ▲ . 答案:42解读:此题的答案容易错为22。

7.若变量,x y 满足202300x y x y x -≤⎧⎪-+≥⎨⎪≥⎩,则2x y+的最大值为 ▲ .答案:88.若一个圆锥的底面半径为1,侧面积是底面积的2倍,则该圆锥的体积为 ▲ .9.若函数()sin()(0)6f x x πωω=+>图象的两条相邻的对称轴之间的距离为2π,且该函数图象关于点0(,0)x 成中心对称,0[0,]2x π∈,则0x = ▲ .答案:512π 10.若实数,x y 满足0x y >>,且22log log 1x y +=,则22x y x y+-的最小值为 ▲ .答案:4第6题图11.设向量(sin 2,cos )θθ=a ,(cos ,1)θ=b ,则“//a b ”是“1t an 2θ=”成立的 ▲ 条件 (选填“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”) . 答案:必要不充分12.在平面直角坐标系xOy 中,设直线2y x =-+与圆222(0)x y r r +=>交于,A B 两点,O 为坐标原点,若圆上一点C 满足5344OC OA OB =+,则r = ▲ .解读:方法1:(平面向量数量积入手)22225325539244164416OC OA OB OA OA OB OB⎛⎫=+=+⋅⋅+ ⎪⎝⎭,即:222225159+c o s 16816r r r A O B r =∠+,整理化简得:3cos 5AOB ∠=-,过点O 作AB 的垂线交AB 于D ,则23cos 2cos 15AOB AOD ∠=∠-=-,得21cos 5AOD ∠=,又圆心到直线的距离为OD ==222212cos 5OD AOD r r ∠===,所以210r =,r =方法2:(平面向量坐标化入手)设()11,A x y ,()22,B x y ,(),C x y ,由5344OC OA OB =+得125344x x x =+,125344y y y =+,则22222222121211112222535325251525251544441616816168x y x x y y x y x y x y x y ⎛⎫⎛⎫+=+++=+++++ ⎪ ⎪⎝⎭⎝⎭由题意得,()222112225251516168r r r x y x y =+++,联立直线2y x =-+与圆222(0)x y r r +=>的方程,由韦达定理可解得:r =. 方法3:(平面向量共线定理入手)由5344OC OA OB =+得153288OC OA OB =+,设OC 与AB 交于点M ,则A M B 、、三点共线。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第6题图南京市、盐城市2015届高三年级第一次模拟考试数 学 试 题(总分160分,考试时间120分钟)一、填空题:本大题共14小题,每小题5分,计70分.1.设集合{}2,0,M x =,集合{}0,1N =,若N M ⊆,则x = ▲ . 2.若复数a iz i+=(其中i 为虚数单位)的实部与虚部相等,则实数a = ▲ . 3.在一次射箭比赛中,某运动员5次射箭的环数依次是9,10,9,7,10,则该组数据的方差是 ▲ . 4.甲、乙两位同学下棋,若甲获胜的概率为0.2,甲、乙下和棋的概率为0.5,则乙获胜的概率为 ▲ . 5.若双曲线222(0)x y a a -=>的右焦点与抛物线24y x =的焦点重合,则a = ▲ . 6.运行如图所示的程序后,输出的结果为 ▲ .7.若变量,x y 满足202300x y x y x -≤⎧⎪-+≥⎨⎪≥⎩,则2x y+的最大值为 ▲ .8.若一个圆锥的底面半径为1,侧面积是底面积的2倍,则该圆锥的体积为 ▲ .9.若函数()sin()(0)6f x x πωω=+>图象的两条相邻的对称轴之间的距离为2π,且该函数图象关于点0(,0)x 成中心对称,0[0,]2x π∈,则0x = ▲ .10.若实数,x y 满足0x y >>,且22log log 1x y +=,则22x y x y+-的最小值为 ▲ .11.设向量(sin 2,cos )θθ=a ,(cos ,1)θ=b ,则“//a b ”是“1tan 2θ=”成立的 ▲ 条件 (选填“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”) .12.在平面直角坐标系xOy 中,设直线2y x =-+与圆222(0)x y r r +=>交于,A B 两点,O 为坐标原点,若圆上一点C 满足5344OC OA OB =+,则r = ▲ . 13.已知()f x 是定义在[2,2-上的奇函数,当(0,2x ∈时,()21xf x =-,函数2()2g x x x m=-+. 如果对于1[2,2]x ∀∈-,2[2,2]x ∃∈-,使得21()()g x f x =,则实数m 的取值范围是 ▲ .14.已知数列{}n a 满足11a =-,21a a >,*1||2()n n n a a n N +-=∈,若数列{}21n a -单调递减,数列{}2n a 单调递增,则数列{}n a 的通项公式为n a = ▲ .二、解答题(本大题共6小题,计90分.解答应写出必要的文字说明,证明过程或演算步骤,并把答案写在答题纸的指定区域内)15.在平面直角坐标系xOy 中,设锐角α的始边与x 轴的非负半轴重合,终边与单位圆交于点11(,)P x y ,将射线OP 绕坐标原点O 按逆时针方向旋转2π后与单位圆交于点22(,)Q x y . 记12()f y y α=+. (1)求函数()f α的值域;(2)设ABC ∆的角,,A B C 所对的边分别为,,a b c ,若()f C =a =1c =,求b .16.(本小题满分14分)如图,在正方体1111ABCD A BC D -中,,O E 分别为1,B D AB 的中点. (1)求证://OE 平面11BCC B ; (2)求证:平面1B DC ⊥平面1B DE .第15题图BACDB 1A 1C 1D 1E第16题图O17.在平面直角坐标系xOy 中,椭圆2222:1(0)x y C a b a b+=>>的右准线方程为4x =,右顶点为A ,上顶点为B ,右焦点为F ,斜率为2的直线l 经过点A ,且点F 到直线l的距离为5.(1)求椭圆C 的标准方程;(2)将直线l 绕点A 旋转,它与椭圆C 相交于另一点P ,当,,B F P 三点共线时,试确定直线l 的斜率.18.某地拟模仿图甲建造一座大型体育馆,其设计方案侧面的外轮廓线如图乙所示:曲线AB 是以点E 为圆心的圆的一部分,其中(0,)E t (025t <≤,单位:米);曲线BC 是抛物线250(0)y ax a =-+>的一部分;CD AD ⊥,且CD 恰好等于圆E 的半径. 假定拟建体育馆的高50OB =米.(1)若要求30CD =米,AD=t 与a 的值;(2)若要求体育馆侧面的最大宽度DF 不超过75米,求a 的取值范围;(3)若125a =,求AD 的最大值.(参考公式:若()f x()f x '=)第17题图第18题-甲第18题-乙19.设数列{}n a 是各项均为正数的等比数列,其前n 项和为n S ,若1564a a =,5348S S -=.(1)求数列{}n a 的通项公式;(2)对于正整数,,k m l (k m l <<),求证:“1m k =+且3l k =+”是“5,,k m l a a a 这三项经适当排序后能构成等差数列”成立的充要条件;(3)设数列{}n b 满足:对任意的正整数n ,都有121321n n n n a b a b a b a b --++++13246n n +=⋅--,且集合*|,n n b M n n N a λ⎧⎫=≥∈⎨⎬⎩⎭中有且仅有3个元素,试求λ的取值范围.20.已知函数()xf x e =,()g x mx n =+.(1)设()()()h x f x g x =-.① 若函数()h x 在0x =处的切线过点(1,0),求m n +的值;② 当0n =时,若函数()h x 在(1,)-+∞上没有零点,求m 的取值范围; (2)设函数1()()()nx r x f x g x =+,且4(0)n m m =>,求证:当0x ≥时,()1r x ≥.附加题21. A 、(选修4—1:几何证明选讲)如图,已知点P 为Rt ABC ∆的斜边AB 的延长线上一点,且PC 与Rt ABC ∆的外接圆相切,过点C 作AB 的垂线,垂足为D ,若18PA =,6PC =,求线段CD 的长. B 、(选修4—2:矩阵与变换)求直线10x y --=在矩阵22M -⎢⎥=⎥⎥⎦的变换下所得曲线的方程.C 、(选修4—4:坐标系与参数方程)在极坐标系中,求圆2cos ρθ=的圆心到直线2sin()13πρθ+=的距离.D 、解不等式124x x ++-<.22.(本小题满分10分)如图,在直三棱柱111ABC A B C -中,AB AC ⊥,3AB =,4AC =,动点P 满足1(0)CP CC λλ=>,当12λ=时,1AB BP ⊥. (1)求棱1CC 的长;(2)若二面角1B AB P --的大小为3π,求λ的值.23.设集合{}*1,2,3,,(,2)S n n N n =∈≥L ,,A B 是S 的两个非空子集,且满足集合A 中的最大数小于集合B 中的最小数,记满足条件的集合对(,)A B 的个数为n P . (1)求23,P P 的值; (2)求n P 的表达式.CAB D P第21-A 题图CABPB 1C 1A 1第22题图南京市、盐城市2015届高三年级第一次模拟考试数学试题参考答案和评分标准一、填空题:本大题共14小题,每小题5分,计70分.1.设集合{}2,0,M x =,集合{}0,1N =,若N M ⊆,则x = ▲ . 答案:1 2.若复数a iz i+=(其中i 为虚数单位)的实部与虚部相等,则实数a = ▲ . 答案:-13.在一次射箭比赛中,某运动员5次射箭的环数依次是9,10,9,7,10,则该组数据的方差是 ▲ . 答案:654.甲、乙两位同学下棋,若甲获胜的概率为0.2,甲、乙下和棋的概率为0.5,则乙获胜的概率为 ▲ . 答案:0.3解读:为了体现新的《考试说明》,此题选择了互斥事件,选材于课本中的习题。

5.若双曲线222(0)x y a a -=>的右焦点与抛物线24y x =的焦点重合,则a = ▲ .答案:26.运行如图所示的程序后,输出的结果为 ▲ . 答案:42解读:此题的答案容易错为22。

7.若变量,x y 满足202300x y x y x -≤⎧⎪-+≥⎨⎪≥⎩,则2x y+的最大值为 ▲ .答案:88.若一个圆锥的底面半径为1,侧面积是底面积的2倍,则该圆锥的体积为 ▲ .9.若函数()sin()(0)6f x x πωω=+>图象的两条相邻的对称轴之间的距离为2π,且该函数图象关于点0(,0)x 成中心对称,0[0,]2x π∈,则0x = ▲ .答案:512π10.若实数,x y 满足0x y >>,且22log log 1x y +=,则22x y x y+-的最小值为 ▲ .答案:4第6题图11.设向量(sin 2,cos )θθ=a ,(cos ,1)θ=b ,则“//a b ”是“1tan 2θ=”成立的 ▲ 条件 (选填“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”) . 答案:必要不充分12.在平面直角坐标系xOy 中,设直线2y x =-+与圆222(0)x y r r +=>交于,A B 两点,O 为坐标原点,若圆上一点C 满足5344OC OA OB =+,则r = ▲ .解读:方法1:(平面向量数量积入手)22225325539244164416OC OA OB OA OA OB OB ⎛⎫=+=+⋅⋅+ ⎪⎝⎭,即:222225159+cos 16816r r r AOB r =∠+,整理化简得:3cos 5AOB ∠=-,过点O 作AB 的垂线交AB 于D ,则23c o s2c o s 15A O B A O D ∠=∠-=-,得21c o s 5A O D ∠=,又圆心到直线的距离为OD ==222212cos 5OD AOD r r ∠===,所以210r =,r =方法2:(平面向量坐标化入手)设()11,A x y ,()22,B x y ,(),C x y ,由5344OC OA OB =+得125344x x x =+,125344y y y =+,则22222222121211112222535325251525251544441616816168x y x x y y x y x y x y x y ⎛⎫⎛⎫+=+++=+++++ ⎪ ⎪⎝⎭⎝⎭由题意得,()222112225251516168r r r x y x y =+++,联立直线2y x =-+与圆222(0)x y r r +=>的方程,由韦达定理可解得:r =.方法3:(平面向量共线定理入手)由5344OC OA OB =+得153288OC OA OB =+,设OC 与AB 交于点M ,则A M B 、、三点共线。

相关文档
最新文档