2有理数的混合运算练习题
有理数的混合运算练习题
有理数的混合运算练习题一、题目描述本文档包含了一系列有理数的混合运算练习题,旨在帮助学生巩固和强化对有理数运算规则的理解和应用。
每个练习题都配有详细解答,以便学生自我评估和纠正错误。
请阅读每个题目,并尝试通过计算得出正确的答案。
二、题目列表1. 题目一计算下列算式的值:$$ 3 + \\frac{1}{2} \\times \\left(4 - \\frac{3}{5}\\right) $$解答:首先,我们来计算括号中的部分:$$ 4 - \\frac{3}{5} = \\frac{20}{5} - \\frac{3}{5} =\\frac{17}{5} $$然后,我们将这个结果带入到整个算式中进行计算:$$ 3 + \\frac{1}{2} \\times \\left(\\frac{17}{5}\\right) = 3 + \\frac{1}{2} \\times \\frac{17}{5} = 3 + \\frac{17}{10} =\\frac{30}{10} + \\frac{17}{10} = \\frac{47}{10} $$所以,算式的值为 $ \frac{47}{10} $。
2. 题目二计算下列算式的值:$$ \\left(\\frac{2}{3} - \\frac{1}{4}\\right) \\times\\frac{5}{6} $$解答:首先,我们来计算括号中的部分:$$ \\frac{2}{3} - \\frac{1}{4} = \\frac{8}{12} - \\frac{3}{12} = \\frac{5}{12} $$然后,我们将这个结果乘以 $ \frac{5}{6} $:$$ \\frac{5}{12} \\times \\frac{5}{6} = \\frac{25}{72} $$所以,算式的值为 $ \frac{25}{72} $。
3. 题目三计算下列算式的值:$$ \\frac{2}{3} \\div \\left(\\frac{1}{4} -\\frac{1}{6}\\right) $$解答:首先,我们来计算括号中的部分:$$ \\frac{1}{4} - \\frac{1}{6} = \\frac{3}{12} - \\frac{2}{12} = \\frac{1}{12} $$然后,我们将 $ \frac{2}{3} $ 除以 $ \frac{1}{12} $:$$ \\frac{2}{3} \\div \\frac{1}{12} = \\frac{2}{3} \\times \\frac{12}{1} = \\frac{24}{3} = 8 $$所以,算式的值为 8。
有理数的混合运算练习题(含答案)(大综合17套)
【素质优化训练】
1.(1)>,>; (2)24,-576; (3)2 或 6.[提示:∵ x =2 ∴x2=4,x=±2]. 2.(1)-31; (2)-8 19 ; 27
【生活实际运用】 B
(3)224
有理数的四则混合运算练习 第 2 套
◆warmup
知识点 有理数的混合运算(一)
1.计算:(1)(-8)×5-40=_____;(2)(-1.2)÷(- 1 )-(-2)=______. 3
有理数的混合运算练习题(含答案)(大综合 17 套)
有理数混合运算练习题及答案 第 1 套
同步练习(满分 100 分) 1.计算题:(10′×5=50′)
(1)3.28-4.76+1 1 - 3 ; 24
(2)2.75-2 1 -3 3 +1 2 ; 64 3
(3)42÷(-1 1 )-1 3 ÷(-0.125); 24
53
25
=(- 2 )×( )+1+ 1 - 1
5
25
=____+1+ 5 2 10
=_______.
◆Exersising
7.(1)若-1<a<0,则 a______ 1 ; (2)当 a>1,则 a_______ 1 ;
a
a
(3)若 0<a≤1,则 a______ 1 . a
8.a,b 互为相反数,c,d 互为倒数,m 的绝对值为 2,则 | a b | +2m2-3cd 值是( )
(3)-1 1 ×[1-3×(- 2 )2]-( 1 )2×(-2)3÷(- 3 )3
2
34
4
(4)(0.12+0.32) ÷ 1 [-22+(-3)2-3 1 × 8 ];
2有理数的混合运算 竞赛(含答案)
初一年级计算题能力竞赛 一、选择题1.计算:(-12)2-1=( )A .-54B .-34C .-14D .02.下列各式中,计算结果等于0的是( )A .(-2)2-(-22)B .-22-22C .-22+(-2)2D .-22-(-2)23.计算:4+(-2)2×5=( )A .-16B .16C .20D .244.下列运算结果最小的是( )A .(-3)×(-2)B .(-3)2÷(-2)2C .(-3)2×(-2)D .-(-3-2)25.计算12-7×(-4)+8÷(-2)2的结果是( )A .-24B .-20C .6D .426.有理数a ,b ,c 在数轴上的对应点的位置如图所示,有如下四个结论:①3a >;②0ab >;③0b c +<;④0b a ->. 上述结论中,所有正确结论的序号是A .①②B .②③C .②④D .③④7.计算-2×32-(3÷12)2的结果是( )A .0B .-54C .-18D .188.现定义一种新运算:a※b=b 2-ab ,如: 1※2=22-1×2=2,则(-1※2)※3等于( ) A .-9 B .-6 C .6 D .9 二、填空题9.计算-32+5-8×(-2)时,应该先算____,再算____,最后算____.正确的结果为____.10.计算(-9)2-2×(-9)+12的结果是____.11.按照如图的操作步骤,若输入x 的值为2,则输出的值是________________.输入x →平方→乘3→减去10→输出12.请你只在“加、减、乘、除和括号”中选择使用,可以重复,将四个数-2,4,-6,8组成算式(四个数都用且每个数只能用一次),使运算结果为24,你列出的算式是____________________________.(只写一种)13.观察下列等式:21=2,22=4,23=8,24=16,25=32,26=64,…,根据这个规律,则21+22+23+24+25+…+22 021的末尾数字是____.14.按如图所示程序计算,若开始输入的x 值为6,我们第一次发现得到的结果为3,第二次得到的结果为10,第三次得到的结果为5,…请你探索第2019次得到的结果为 .15.观察下列单项式,0、﹣3x 2、8x 3、﹣15x 4、24x 5…按此规律写出第14个代数式是 .16. 某同学模仿二维码的方式为学校设计了一个身份识别图案系统:在4×4的正方形网格中,黑色正方形表示数字1,白色正方形表示数字0.如图1是某个学生的身份识别图案.约定如下:把第i 行,第j 列表示的数字记为ij a (其中i ,j =1,2,3,4),如图1中第2行第1列的数字210a =;对第i行使用公式1234842i i i i i A a a a a =+++进行计算,所得结果1A 表示所在年级,2A 表示所在班级,3A 表示学号的十位数字,4A 表示学号的个位数字.如图1中,第二行280412015A =⨯+⨯+⨯+=,说明这个学生在5班.图2(1)图1代表的学生所在年级是__________年级,他的学号是__________;(2)请仿照图1,在图2中画出八年级4班学号是36的同学的身份识别图案.三、计算题(1) 4×(-3)2-5×(-2)3+6;(2) (-2)3+12×8;(3) -14-16×[2-(-3)2];(4) (-3)2-112×29-6÷|-23|2;(5) 2×[5+(-2)3]-(-|-4|÷12).(6) -22×14÷(-12)2×(-2)3.(7)(-2)3×8-8×(12)3+8×18;(8)(-3)2-16×5+16×(-32);(9) [1-(1-0.5×13)]×(-10+9);(10) -23-[-3+(-3)2÷(-15)];(11) -43÷(-32)-[(-23)3×(-32)+(-113)].(12).观察下面三行数: 2,-4,8,-16,…;① -1,2,-4,8,…;② 3,-3,9,-15,….③ (1)第①行数按什么规律排列?(2)第②③行数与第①行数分别有什么关系?(3)取每行数的第9个数,计算这三个数的和.参考答案 一、选择题1.计算:(-12)2-1=(B )A .-54B .-34C .-14D .02.下列各式中,计算结果等于0的是(C ) A .(-2)2-(-22) B .-22-22 C .-22+(-2)2D .-22-(-2)2 3.计算:4+(-2)2×5=(D ) A .-16 B .16C .20 D .24 4.下列运算结果最小的是(D ) A .(-3)×(-2) B .(-3)2÷(-2)2 C .(-3)2×(-2) D .-(-3-2)2 5.计算12-7×(-4)+8÷(-2)2的结果是(D ) A .-24 B .-20C .6 D .426.填在下面各正方形中四个数之间都有相同的规律,根据这种规律m 的值为(C )1 5 3 14 3 7 5 32 5 9 7 58 …11 mA .180B .182C .184D .186 7.计算-2×32-(3÷12)2的结果是(B )A .0B .-54C .-18D .188.现定义一种新运算:a ※b =b 2-ab ,如:1※2=22-1×2=2,则(-1※2)※3等于(A) A .-9 B .-6 C .6 D .9 二、填空题9.计算-32+5-8×(-2)时,应该先算乘方,再算乘法,最后算加减.正确的结果为12. 10.计算(-9)2-2×(-9)+12的结果是100. 11.按照如图的操作步骤,若输入x 的值为2,则输出的值是2.(用科学计算器计算或笔算) 输入x →平方→乘3→减去10→输出12.请你只在“加、减、乘、除和括号”中选择使用,可以重复,将四个数-2,4,-6,8组成算式(四个数都用且每个数只能用一次),使运算结果为24,你列出的算式是答案不唯一,如:4×8+(-2)+(-6)=24.(只写一种)13.观察下列等式:21=2,22=4,23=8,24=16,25=32,26=64,…,根据这个规律,则21+22+23+24+25+…+22 021的末尾数字是2. 三、解答题 14.计算:(1)4×(-3)2-5×(-2)3+6; 解:原式=4×9-5×(-8)+6 =36+40+6 =82.(2)(-2)3+12×8;解:原式=-8+4 =-4.(3)-14-16×[2-(-3)2];解:原式=-1-16×(2-9)=-1-16×(-7)=-1+76=16.(4)(-3)2-112×29-6÷|-23|2;解:原式=9-13-6÷49=9-13-272=-456.(5)2×[5+(-2)3]-(-|-4|÷12).解:原式=2×(5-8)-(-4×2) =2×(-3)-(-8) =2.(6)-22×14÷(-12)2×(-2)3.解:原式=-4×14÷14×(-8)=4×14×4×8=32.15.计算:(1)(-2)3×8-8×(12)3+8×18;解:原式=-8×8-8×18+8×18=-64.(2)(-3)2-16×5+16×(-32);解:原式=9-56+16×(-9)=9-56-96=203.(3)[1-(1-0.5×13)]×(-10+9);解:原式=[1-(1-12×13)]×(-10+9)=(1-56)×(-1)=-16.(4)-23-[-3+(-3)2÷(-15)];解:原式=-8-[-3+9÷(-15)]=-8-(-3-45)=-8-(-48)=40.(5)-43÷(-32)-[(-23)3×(-32)+(-113)].解:原式=-64÷(-32)-[-827×(-9)-113] =2-(83-113)=2-(-1) =3.16.观察下面三行数: 2,-4,8,-16,…;① -1,2,-4,8,…;② 3,-3,9,-15,….③ (1)第①行数按什么规律排列?(2)第②③行数与第①行数分别有什么关系? (3)取每行数的第9个数,计算这三个数的和. 解:(1)第①行数的规律是21,-22,23,-24,25,…. (2)第②行每个数是第①行每个数除以-2得到的;第③行每个数是第①行每个数加1得到的. (3)29+29÷(-2)+29+1=2×(-2)8-(-2)8+2×(-2)8+1 =(2-1+2)×(-2)8+1 =3×28+1=3×256+1=768+1=769.。
有理数的混合运算练习题(含答案)(大综合17套)
有理数的混合运算练习题(含答案)有理数混合运算练习题及答案 第1套同步练习(满分100分)1.计算题:(10′×5=50′)(1)3.28-4.76+121-43;(2)2.75-261-343+132;(3)42÷(-121)-143÷(-0.125);(4)(-48) ÷82-(-25) ÷(-6)2; (5)-52+(1276185+-)×(-2.4).2.计算题:(10′×5=50′)(1)-23÷153×(-131)2÷(132)2;(2)-14-(2-0.5)×31×[(21)2-(21)3];(3)-121×[1-3×(-32)2]-( 41)2×(-2)3÷(-43)3(4)(0.12+0.32) ÷101[-22+(-3)2-321×78];(5)-6.24×32+31.2×(-2)3+(-0.51) ×624.【素质优化训练】1.填空题:(1)如是0,0>>cbb a ,那么ac 0;如果0,0<<cbb a ,那么ac 0;(2)若042=-++++c c b a ,则abc=; -a 2b 2c 2=;(3)已知a ,b 互为相反数,c ,d 互为倒数,x 的绝对值等于2,那么x 2-(a+b)+cdx=.2.计算:(1)-32-;)3(18)52()5(223--÷--⨯-(2){1+[3)43(41--]×(-2)4}÷(-5.043101--);(3)5-3×{-2+4×[-3×(-2)2-(-4) ÷(-1)3]-7}.【生活实际运用】甲用1000元人民币购买了一手股票,随即他将这手股票转卖给乙,获利10%,而后乙又将这手股票反卖给甲,但乙损失了10%.最后甲按乙卖给甲的价格的九折将这手股票卖给了乙,在上述股票交易中( )A .甲刚好亏盈平衡;B .甲盈利1元;C .甲盈利9元;D .甲亏本1.1元.参考答案【同步达纲练习】1.(1)-0.73 (2)-121; (3)-14; (4)-181; (5)-2.9 2.(1)-351 (2)-1161; (3)- 5437; (4)1; (5)-624.【素质优化训练】1.(1)>,>; (2)24,-576; (3)2或6.[提示:∵x =2 ∴x 2=4,x=±2]. 2.(1)-31;(2)-8;2719(3)224 【生活实际运用】 B有理数的四则混合运算练习 第2套◆warmup知识点 有理数的混合运算(一)1.计算:(1)(-8)×5-40=_____;(2)(-1.2)÷(-13)-(-2)=______. 2.计算:(1)-4÷4×14=_____;(2)-212÷114×(-4)=______. 3.当||a a=1,则a____0;若||a a =-1,则a______0.4.(教材变式题)若a<b<0,那么下列式子成立的是( ) A .1a <1b B .ab<1 C .a b <1 D .ab>15.下列各数互为倒数的是()A.-0.13和-13100B.-525和-275C.-111和-11 D.-414和4116.(体验探究题)完成下列计算过程:(-25)÷113-(-112+15)解:原式=(-25)÷43-(-1-12+15)=(-25)×()+1+12-15=____+1+52 10 -=_______.◆Exersising7.(1)若-1<a<0,则a______1a;(2)当a>1,则a_______1a;(3)若0<a≤1,则a______1a.8.a,b互为相反数,c,d互为倒数,m的绝对值为2,则||4a bm++2m2-3cd值是()A.1 B.5 C.11 D.与a,b,c,d值无关9.下列运算正确的个数为()(1)(+34)+(-434)+(-6)=-10 (2)(-56)+1+(-16)=0(3)0.25+(-0.75)+(-314)+34=-3(4)1+(-3)+5+(-7)+9+(-1)=4A.3个 B.4个 C.2个 D.1个10.a,b为有理数,在数轴上的位置如右上图所示,则()A.1a>1b>1 B.1a>1>-1bC.1>-1a>1bD.1>1a>1b11.计算:(1)-20÷5×14+5×(-3)÷15 (2)-3[-5+(1-0.2÷35)÷(-2)]ob a(3)[124÷(-114)]×(-56)÷(-316)-0.25÷14◆Updating 12.(经典题)对1,2,3,4可作运算(1+2+3)×4=24,现有有理数3,4,-6,10,请运用加,减,乘,除法则写出三种不同的计算算式,使其结果为24. (1)____________ (2)____________ (3)____________ 答案: 课堂测控1.(1)-80 (2)535 2.(1)-14(2)8 3.>,< 4.D 5.C 6.34,-310,1[总结反思]先乘除,后加减,有括号先算括号内的.课后测控 7.(1)> (2)> (3)≤ 8.B 9.B 10.B11.解:(1)原式=-20×15×14+5×(-3)×115=-1-1=-2 (2)原式=124×(-45)×(-56)×(-619)-14÷14=124×(-419)-1=-1114-1=-11114(3)原式=-3[-5+(1-15×53)÷(-2)]=-3[-5+23×(-12)]=-3[-5-13]=15+1=16[解题技巧]除法转化为乘法,先乘除,后加减,有括号先算括号内的. 拓展测控 12.解:(1)4-(-6)÷3×10 (2)(10-6+4)×3 (3)(10-4)×3-(-6)[解题思路]运用加,减,乘除四种运算拼凑得24点.有理数的混合运算习题 第3套一.选择题1. 计算3(25)-⨯=( )A.1000B.-1000C.30D.-302. 计算2223(23)-⨯--⨯=( )A.0B.-54C.-72D.-183. 计算11(5)()555⨯-÷-⨯=A.1B.25C.-5D.354. 下列式子中正确的是( )A.4232(2)(2)-<-<- B. 342(2)2(2)-<-<- C. 4322(2)(2)-<-<-D. 234(2)(3)2-<-<-5. 422(2)-÷-的结果是( )A.4B.-4C.2D.-26. 如果210,(3)0a b -=+=,那么1ba+的值是( ) A.-2 B.-3 C.-4 D.4二.填空题1.有理数的运算顺序是先算 ,再算 ,最算 ;如果有括号,那么先算 。
有理数的混合运算练习题(含答案)(共17套)
有理数的混合运算练习题(含答案)(共17套)有理数混合运算练习题及答案第1套同步练习(满分100分)1.计算题:(10′×5=50′)(1)3.28-4.76+1-;(2)2.75-2-3+1;(3)42÷(-1)-1÷(-0.125);(4)(-48) ÷82-(-25) ÷(-6)2;(5)-+()×(-2.4).2.计算题:(10′×5=50′)(1)-23÷1×(-1)2÷(1)2;(2)-14-(2-0.5)××[()2-()3];(3)-1×[1-3×(-)2]-( )2×(-2)3÷(-)3(4)(0.12+0.32) ÷[-22+(-3)2-3×];(5)-6.24×32+31.2×(-2)3+(-0.51) ×624.【素质优化训练】1.填空题:(1)如是,那么ac 0;如果,那么ac 0;(2)若,则abc= ; -a2b2= ;(3)已知a,b互为相反数,c,d互为倒数,x的绝对值等于2,那么x2-(a+b)+cdx=.2.计算:(1)-32-(2){1+[]×(-2)4}÷(-);(3)5-3×{-2+4×[-3×(-2)2-(-4) ÷(-1)3]-7}.【生活实际运用】甲用1000元人民币购买了一手股票,随即他将这手股票转卖给乙,获利10%,而后乙又将这手股票反卖给甲,但乙损失了10%.最后甲按乙卖给甲的价格的九折将这手股票卖给了乙,在上述股票交易中()A.甲刚好亏盈平衡;B.甲盈利1元;C.甲盈利9元;D.甲亏本1.1元.参考答案【同步达纲练习】1.(1)-0.73 (2)-1; (3)-14; (4)-; (5)-2.92.(1)-3 (2)-1; (3)- ; (4)1; (5)-624.【素质优化训练】1.(1)>,>; (2)24,-576; (3)2或6.[提示:∵=2 ∴x2=4,x=±2].2.(1)-31; (2)-8 (3)224【生活实际运用】B有理数的四则混合运算练习第2套◆warmup知识点有理数的混合运算(一)1.计算:(1)(-8)×5-40=_____;(2)(-1.2)÷(-)-(-2)=______.2.计算:(1)-4÷4×=_____;(2)-2÷1×(-4)=______.3.当=1,则a____0;若=-1,则a______0.4.(教材变式题)若a<b<0,那么下列式子成立的是()A.< B.ab<.<1 D.>15.下列各数互为倒数的是()A.-0.13和- B.-5和- C.-和-11 D.-4和6.(体验探究题)完成下列计算过程:(-)÷1-(-1+)解:原式=(-)÷-(-1-+)=(-)×()+1+-=____+1+=_______.◆Exersising7.(1)若-1<a<0,则a______;(2)当a>1,则a_______;(3)若0<a≤1,则a______.8.a,b互为相反数,c,d互为倒数,m的绝对值为2,则+-3cd值是()A.1 B..11 D.与a,b,c,d值无关9.下列运算正确的个数为()(1)(+)+(-4)+(-6)=-10 (2)(-)+1+(-)=0(3)0.25+(-0.75)+(-3)+=-3(4)1+(-3)+5+(-7)+9+(-1)=4A.3个B.4个C.2个D.1个10.a,b为有理数,在数轴上的位置如右上图所示,则()A.>>1 B.>1>- C.1>-> D.1>>11.计算:(1)-20÷5×+5×(-3)÷15 (2)-3[-5+(1-0.2÷)÷(-2)](3)[÷(-1)]×(-)÷(-3)-0.25÷◆Updating 12.(经典题)对1,2,3,4可作运算(1+2+3)×4=24,现有有理数3,4,-6,10,请运用加,减,乘,除法则写出三种不同的计算算式,使其结果为24. (1)____________ (2)____________ (3)____________ 答案: 课堂测控 1.(1)-80 (2)5 2.(1)- (2)8 3.>,< 4.D 5.C 6.,-,1[总结反思]先乘除,后加减,有括号先算括号内的. 课后测控 7.(1)> (2)> (3)≤ 8.B 9.B 10.B 11.解:(1)原式=-20××+5×(-3)×=-1-1=-2 (2)原式=×(-)×(-)×(-)-÷ =×(-)-1=--1=-1 (3)原式=-3[-5+(1-×)÷(-2)] =-3[-5+×(-)] =-3[-5-] =15+1=16[解题技巧]除法转化为乘法,先乘除,后加减,有括号先算括号内的. 拓展测控 12.解:(1)4-(-6)÷3×10 (2)(10-6+4)×3 (3)(10-4)×3-(-6)[解题思路]运用加,减,乘除四种运算拼凑得24点.有理数的混合运算习题 第3套一.选择题1. 计算3(25)-⨯=( ) A.1000 B.-1000 C.30 D.-302. 计算2223(23)-⨯--⨯=( ) A.0B.-54C.-72D.-18 3. 计算11(5)()555⨯-÷-⨯=A.1B.25C.-5D.354. 下列式子中正确的是( ) A.4232(2)(2)-<-<- B. 342(2)2(2)-<-<- C. 4322(2)(2)-<-<-D. 234(2)(3)2-<-<-5. 422(2)-÷-的结果是( ) A.4B.-4C.2D.-26. 如果210,(3)0a b -=+=,那么1ba+的值是( )A.-2B.-3C.-4D.4二.填空题1.有理数的运算顺序是先算 ,再算 ,最算 ;如果有括号,那么先算 。
有理数的混合运算练习题(含答案)(大综合17套)
有理数的混合运算练习题(含答案)(大综合17套)友情提示:一、认真对待每一次复习及考试。
.二、遇到不懂的题目或者知识点就是并解决它就是进步的机会。
三、试题卷中所有试题的答案填涂或书写在答题卷的相应位置,写在试题卷上无效. 四、请仔细审题,细心答题,相信你一定会有出色的表现!有理数混合运算练习题及答案 第1套同步练习(满分100分)1.计算题:(10′×5=50′)(1)3.28-4.76+121-43;(2)2.75-261-343+132;(3)42÷(-121)-143÷(-0.125);(4)(-48) ÷82-(-25) ÷(-6)2; (5)-52+(1276185+-)×(-2.4).2.计算题:(10′×5=50′)(1)-23÷153×(-131)2÷(132)2;(2)-14-(2-0.5)×31×[(21)2-(21)3];(3)-121×[1-3×(-32)2]-( 41)2×(-2)3÷(-43)3(4)(0.12+0.32) ÷101[-22+(-3)2-321×78];(5)-6.24×32+31.2×(-2)3+(-0.51) ×624.【素质优化训练】1.填空题:(1)如是0,0>>cbb a ,那么ac 0;如果0,0<<cbb a ,那么ac 0;(2)若042=-++++c c b a ,则abc=; -a 2b 2c 2=;(3)已知a ,b 互为相反数,c ,d 互为倒数,x 的绝对值等于2,那么x 2-(a+b)+cdx= .2.计算:(1)-32-;)3(18)52()5(223--÷--⨯-(2){1+[3)43(41--]×(-2)4}÷(-5.043101--);(3)5-3×{-2+4×[-3×(-2)2-(-4) ÷(-1)3]-7}.【生活实际运用】甲用1000元人民币购买了一手股票,随即他将这手股票转卖给乙,获利10%,而后乙又将这手股票反卖给甲,但乙损失了10%.最后甲按乙卖给甲的价格的九折将这手股票卖给了乙,在上述股票交易中( )A .甲刚好亏盈平衡;B .甲盈利1元;C .甲盈利9元;D .甲亏本1.1元.参考答案【同步达纲练习】1.(1)-0.73 (2)-121; (3)-14; (4)-181; (5)-2.9 2.(1)-351 (2)-1161; (3)- 5437; (4)1; (5)-624.【素质优化训练】1.(1)>,>; (2)24,-576; (3)2或6.[提示:∵x =2 ∴x 2=4,x=±2].2.(1)-31; (2)-8;2719(3)224【生活实际运用】 B有理数的四则混合运算练习 第2套◆warmup知识点 有理数的混合运算(一)1.计算:(1)(-8)×5-40=_____;(2)(-1.2)÷(-13)-(-2)=______. 2.计算:(1)-4÷4×14=_____;(2)-212÷114×(-4)=______. 3.当||a a=1,则a____0;若||a a =-1,则a______0.4.(教材变式题)若a<b<0,那么下列式子成立的是()A.1a<1bB.ab<1 C.ab<1 D.ab>15.下列各数互为倒数的是()A.-0.13和-13100B.-525和-275C.-111和-11 D.-414和4116.(体验探究题)完成下列计算过程:(-25)÷113-(-112+15)解:原式=(-25)÷43-(-1-12+15)=(-25)×()+1+12-15=____+1+52 10 -=_______.◆Exersising7.(1)若-1<a<0,则a______1a;(2)当a>1,则a_______1a;(3)若0<a≤1,则a______1a.8.a,b互为相反数,c,d互为倒数,m的绝对值为2,则||4a bm++2m2-3cd值是()A.1 B.5 C.11 D.与a,b,c,d值无关9.下列运算正确的个数为()(1)(+34)+(-434)+(-6)=-10 (2)(-56)+1+(-16)=0(3)0.25+(-0.75)+(-314)+34=-3(4)1+(-3)+5+(-7)+9+(-1)=4A.3个 B.4个 C.2个 D.1个10.a,b为有理数,在数轴上的位置如右上图所示,则()A.1a>1b>1 B.1a>1>-1bC.1>-1a>1bD.1>1a>1b11.计算:(1)-20÷5×14+5×(-3)÷15 (2)-3[-5+(1-0.2÷35)÷(-2)]ob a(3)[124÷(-114)]×(-56)÷(-316)-0.25÷14◆Updating12.(经典题)对1,2,3,4可作运算(1+2+3)×4=24,现有有理数3,4,-6,10,请运用加,减,乘,除法则写出三种不同的计算算式,使其结果为24.(1)____________ (2)____________ (3)____________答案:课堂测控1.(1)-80 (2)5352.(1)-14(2)83.>,< 4.D 5.C 6.34,-310,1[总结反思]先乘除,后加减,有括号先算括号内的.课后测控7.(1)> (2)> (3)≤ 8.B 9.B 10.B11.解:(1)原式=-20×15×14+5×(-3)×115=-1-1=-2(2)原式=124×(-45)×(-56)×(-619)-14÷14=124×(-419)-1=-1114-1=-11114(3)原式=-3[-5+(1-15×53)÷(-2)]=-3[-5+23×(-12)]=-3[-5-13]=15+1=16[解题技巧]除法转化为乘法,先乘除,后加减,有括号先算括号内的.拓展测控12.解:(1)4-(-6)÷3×10 (2)(10-6+4)×3(3)(10-4)×3-(-6)[解题思路]运用加,减,乘除四种运算拼凑得24点.有理数的混合运算习题 第3套一.选择题1. 计算3(25)-⨯=( )A.1000B.-1000C.30D.-302. 计算2223(23)-⨯--⨯=( )A.0B.-54C.-72D.-183. 计算11(5)()555⨯-÷-⨯=A.1B.25C.-5D.354. 下列式子中正确的是( )A.4232(2)(2)-<-<- B. 342(2)2(2)-<-<- C. 4322(2)(2)-<-<-D. 234(2)(3)2-<-<-5. 422(2)-÷-的结果是( )A.4B.-4C.2D.-26. 如果210,(3)0a b -=+=,那么1ba+的值是( ) A.-2 B.-3C.-4D.4二.填空题1.有理数的运算顺序是先算 ,再算 ,最算 ;如果有括号,那么先算 。
有理数的混合运算练习题
有理数的混合运算练习题一、选择题1. 计算:(3)×(2)的结果是()。
A. 6B. 6C. 5D. 52. 下列运算中,结果为正数的是()。
A. (2) + (3)B. (2) × (3)C. (2) ÷ (3)D. (2)(3)3. 计算:5 2 × 3 + 4 ÷ 2 的结果是()。
A. 1B. 2C. 3D. 44. 已知 a = 2,b = 3,则a × b 的结果是()。
A. 6B. 6C. 5D. 5二、填空题1. 计算:(4)÷(2)= ______。
2. 已知 a = 3,b = 4,则 a + b = ______。
3. 计算:5 + 7 × 2 4 ÷ 2 = ______。
4. 已知 x = 1,y = 2,则x × y = ______。
三、解答题1. 计算:(3)+ 4 ×(2)5 ÷(1)。
2. 已知 a = 5,b = 6,c = 2,计算:a × b c ÷ a。
3. 计算:(7)×(8)+ 4 ÷(2)(5)。
4. 已知 x = 3,y = 4,z = 2,计算:(x y)× z + x ÷ y。
5. 计算:(9)÷ 3 + 2 ×(6)(8)÷ 4。
四、简答题1. 如果一个数是负数,另一个数是正数,它们的乘积是正数还是负数?2. 有理数的除法可以转化为乘法来计算,这是为什么?3. 当你进行有理数的混合运算时,如果不使用括号,运算的顺序是怎样的?五、应用题1. 小明有5元钱,他每天花去2元,问经过多少天后,小明手中的钱会变成负数?2. 一辆汽车以每小时80公里的速度行驶,它在逆风中行驶了3小时,风速为每小时20公里。
汽车实际上行驶了多少公里?3. 一家商店进行打折活动,原价商品打8折,然后在此基础上再减去50元。
有理数的混合运算练习题
有理数的混合运算一.选择题(共5小题)1.蜜雪冰城进行促销活动,奶茶的优惠措施是“第二杯半价”.现购买两杯奶茶,这两杯奶茶共打了()折.A.7.5B.8C.8.5D.92.周六,小巧和同学一行共10人相约一起去看电影,电影院的价目表显示,电影票45元/张,也可以购买套餐,套餐价格如下表所示.不论是单买或购买套餐,购买一定金额还可参加“满减”的优惠活动.套餐内容价格(元)优惠活动套餐A1张电影票+1桶爆米花60消费满300元,减25元消费满600元,减60元套餐B1张电影票+1桶爆米花+1个主题纪念70币若全部同学都要进场看电影,其中有5位同学每人需要一个主题纪念币,还需要一些爆米花一起共享,则最少需要支付()A.530元B.540元C.545元D.550元3.干支纪年法是中国自古以来就一直使用的纪年方法,干支是天干和地支的总称.干支纪年法的组合方式是天干在前,地支在后,以十天干和十二地支循环配合,每个组合代表××年,60年为一个循环.我们把天干、地支按顺序排列,且给它们编上序号.天干的计算方法是:年份减3,除以10所得的余数;地支的计算方法是:年份减3,除以12所得的余数.以2024年为例:天干为:(2024﹣3)÷10=202…1;地支为:(2024﹣3)÷12=168…5;对照天干地支表得出,2024年为农历甲辰年.123456789101112天干甲乙丙丁戊己庚辛壬癸地支子丑寅卯辰巳午未申酉戌亥依据上述规律推断,2044年应为()A.癸亥年B.癸酉年C.甲辰年D.甲子年4.对于任意有理数m,n,定义新运算“⊗”:m⊗n=(2+m)2﹣n,例如:3⊗4=(2+3)2﹣4=21,则(﹣3)⊗(﹣2)的值为()A.﹣1B.2C.3D.275.在计算(﹣2)3+(﹣2)3+(﹣2)3+(﹣2)3时,结果可表示为()A.﹣25B.﹣26C.﹣24D.﹣24二.填空题(共3小题)6.按照如图所示的操作步骤,若输入的值为2,则输出的值为.7.将1,2,3,4,5,6,7,8,9,10十个数划分成两组,使得两组数中没有重复的数,将这两组数分别按照从小到大排列,这样的操作称为这十个数的一种分割,例如(1,3,5,7)和(2,4,6,8,9,10)就是这十个数的一种分割,并且规定(2,4,6,8,9,10)和(1,3,5,7)这样交换顺序和前一种分割是同种分割.若某次分割成的两组数满足其中一组数的积等于另一组数的和,那么我们就称这样的分割为完美分割,例如(1,2,3,7)和(4,5,6,8,9,10)为这十个数的一种完美分割,则在这十个数的所有分割中,完美分割共有种.8.计算:(﹣1)20+(﹣1)19=.三.解答题(共3小题)9.计算:.10.计算:(1)(﹣+)÷(﹣);(2)(﹣2)3×(﹣)﹣|﹣1﹣5|.11.计算:(﹣3)2÷[2﹣(﹣7)]+6×.。
有理数的混合运算练习题含答案大综合套
精心整理有理数的混合运算练习题(含答案)(大综合17套)有理数混合运算练习题及答案第1套同步练习(满分100分)1.计算题:(10′×5=50′) (1)3.28-4.76+121-43;((((2.((((1.(1)如是0,0>>cb ba,那么ac 0;如果0,0<<cb ba ,那么ac 0; (2)若042=-++++c cb a ,则abc= ;-a 2b 2c 2= ;(3)已知a ,b 互为相反数,c ,d 互为倒数,x 的绝对值等于2,那么x 2-(a+b)+cdx= .2.计算:(1)-32-;)3(18)52()5(223--÷--⨯- (2){1+[3)43(41--]×(-2)4}÷(-5.043101--); (3)5-3×{-2+4×[-3×(-2)2-(-4)÷(-1)3]-7}. 【生活实际运用】甲用1000元人民币购买了一手股票,随即他将这手股票转卖给乙,获利10%,A C 12x=±◆warmup知识点有理数的混合运算(一)1.计算:(1)(-8)×5-40=_____;(2)(-1.2)÷(-13)-(-2)=______. 2.计算:(1)-4÷4×14=_____;(2)-212÷114×(-4)=______.3.当||aa =1,则a____0;若||aa=-1,则a______0.4.(教材变式题)若a<b<0,那么下列式子成立的是()A.1a <1bB.ab<1 C.ab<1D.ab>15.下列各数互为倒数的是()A.-0.13和-13B.-52和-27C.-1和-11D.-41和46.(-25=(-25◆7.(1(38.a,A.1B.5 C.11D.与a,b,c,d值无关9.下列运算正确的个数为()(1)(+34)+(-434)+(-6)=-10(2)(-56)+1+(-16)=0(3)0.25+(-0.75)+(-314)+34=-3(4)1+(-3)+5+(-7)+9+(-1)=4A.3个B.4个C.2个D.1个10.a,b为有理数,在数轴上的位置如右上图所示,则()A.1a >1b>1B.1a>1>-1bC.1>-1a>1bD.1>1a>1b11.计算:(1)-20÷5×14+5×(-3)÷15(2)-3[-5+(1-0.2÷35)÷(-2)](3)◆12.,10,(1)答案1.(13.>[7.(111.解:(1)原式=-20×15×14+5×(-3)×115=-1-1=-2(2)原式=124×(-45)×(-56)×(-619)-14÷14=1 24×(-419)-1=-1114-1=-11114(3)原式=-3[-5+(1-15×53)÷(-2)]=-3[-5+23×(-12)]=-3[-5-13] =15+1=16[解题技巧]除法转化为乘法,先乘除,后加减,有括号先算括号内的. 拓展测控12.解:(1)4-(-6)÷3×10(2)(10-6+4)×3 (3)([1. 计算(-2. 3. 计算-4. A.0 5. 计算156. A.1 7. 8. A.42-9. C.42-10. 2-11. A.4 B.-4 C.2 D.-2 12. 如果210,(3)0a b -=+=,那么1b a+的值是() 13.A.-2B.-3C.-4D.4二.填空题1.有理数的运算顺序是先算,再算,最算;如果有括号,那么先算。
有理数的混合运算专项训练(100题)
专题2.4 有理数的混合运算专项训练(100题)参考答案与试题解析一.解答题(共25小题,满分100分,每小题4分)1.(4分)(2022•黄冈开学)计算:(1)(−514)+(−3.5); (2)23+(−15)+(−1)+13;(3)−22÷(−12)−(138+213−334)×48; (4)(﹣2)2×3+(﹣3)3÷9.【分析】(1)先通分,然后根据有理数的加法法则计算即可;(2)根据加法的交换律和结合律解答即可;(3)先算乘方,然后算乘除法,最后算加减法即可;(4)先算乘方,再算乘除法,最后算加法即可.【解答】解:(1)(−514)+(−3.5)=(﹣514)+(﹣324) =﹣834; (2)23+(−15)+(−1)+13=(23+13)+[(−15)+(﹣1)] =1+(﹣115)=−15;(3)−22÷(−12)−(138+213−334)×48 =﹣4×(﹣2)−118×48−73×48+154×48=8﹣66﹣112+180=10;(4)(﹣2)2×3+(﹣3)3÷9=4×3+(﹣27)÷9=12+(﹣3)=9.2.(4分)(2022•垦利区期末)计算:(1)(﹣5)+(﹣4)﹣(+101)﹣(﹣9);(2)−12021×[4−(−3)2]+3÷(−34);(3)(512−79+23)÷136;(4)−316×7−316×(−9)+(−196)×(−8).【分析】(1)先把减法转化为加法,然后根据有理数的加法法则计算即可;(2)先算乘方和括号内的式子,然后计算括号外的乘除法、最后算加法即可;(3)先把除法转化为乘法、然后根据乘法分配律计算即可;(4)先将带分数化为假分数,然后根据乘法分配律计算即可.【解答】解:(1)(﹣5)+(﹣4)﹣(+101)﹣(﹣9)=(﹣5)+(﹣4)+(﹣101)+9=﹣101;(2)−12021×[4−(−3)2]+3÷(−34)=﹣1×(4﹣9)+3×(−43)=﹣1×(﹣5)+(﹣4)=5+(﹣4)=1;(3)(512−79+23)÷136=(512−79+23)×36=512×36−79×36+23×36=15﹣28+24=11;(4)−316×7−316×(−9)+(−196)×(−8)=−196×7−196×(﹣9)−196×(﹣8)=−196×[7+(﹣9)+(﹣8)]=−196×(﹣10)=953.3.(4分)(2022•呼和浩特期末)计算:(1)(﹣8)×(﹣7)÷(−12);(2)(23−34+16)÷(−124);(3)﹣14﹣(1﹣)×13−|1﹣(﹣5)2|;(4)|13−12|÷(−112)−18×(−2)3.【分析】(1)先把除法统一成乘法,按乘法法则计算即可;(2)利用乘法的分配律计算比较简便;(3)先算乘方,再算绝对值和括号里面的,最后算乘法和加减;(4)先算乘方和绝对值里面的,再算乘除,最后算加减.【解答】解:(1)(﹣8)×(﹣7)÷(−12)=﹣8×7×2=﹣112;(2)(23−34+16)÷(−124)=(23−34+16)×(﹣24)=23×(﹣24)−34×(﹣24)+16×(﹣24)=﹣16+18﹣4=﹣2;(3)﹣14﹣(1﹣)×13−|1﹣(﹣5)2|=﹣1−12×13−|1﹣25|=﹣1−16−24=﹣2516;(4)|13−12|÷(−112)−18×(−2)3 =|−16|×(﹣12)−18×(﹣8)=16×(﹣12)+1=﹣2+1=﹣1.4.(4分)(2022•重庆期末)计算:(1)3+(﹣6)﹣(﹣7);(2)(﹣22)×(﹣114)÷13;(3)(34−13−56)×(﹣12); (4)﹣12023﹣(−13)×(﹣22+3)+12×|3﹣1|.【分析】(1)先把减法转化为加法,然后根据有理数加法法则计算即可;(2)先算乘方、再算乘除法即可;(3)根据乘法分配律可以解答本题;(4)先算乘方和括号内的式子,再算括号外的乘法和加减法即可.【解答】解:(1)3+(﹣6)﹣(﹣7)=3+(﹣6)+7=4;(2)(﹣22)×(﹣114)÷13 =(﹣4)×(−54)×3=15;(3)(34−13−56)×(﹣12)=34×(﹣12)−13×(﹣12)−56×(﹣12)=(﹣9)+4+10=5;(4)﹣12023﹣(−13)×(﹣22+3)+12×|3﹣1|=﹣1﹣(−13)×(﹣4+3)+12×2 =﹣1+13×(﹣1)+1=﹣1+(−13)+1=−13.5.(4分)(2022•镇平县校级期末)计算:(1)|﹣2|÷(−12)+(﹣5)×(﹣2); (2)(23−12+56)×(﹣24); (3)15÷(−32+56);(4)(﹣2)2﹣|﹣7|﹣3÷(−14)+(﹣3)3×(−13)2.【分析】(1)首先计算绝对值,然后计算除法、乘法,最后计算加法即可.(2)根据乘法分配律计算即可.(3)首先计算小括号里面的加法,然后计算小括号外面的除法即可.(4)首先计算乘方、绝对值,然后计算除法、乘法,最后从左向右依次计算即可.【解答】解:(1)|﹣2|÷(−12)+(﹣5)×(﹣2)=2×(﹣2)+10=﹣4+10=6.(2)(23−12+56)×(﹣24)=23×(﹣24)−12×(﹣24)+56×(﹣24)=﹣16+12﹣20=﹣24.(3)15÷(−32+56)=15÷(−23)=15×(−32)=﹣.(4)(﹣2)2﹣|﹣7|﹣3÷(−14)+(﹣3)3×(−13)2 =4﹣7﹣3×(﹣4)+(﹣27)×19=4﹣7+12+(﹣3)=﹣3+12+(﹣3)=9+(﹣3)=6.6.(4分)(2022•高青县期末)计算:(1)(14+38−712)÷124; (2)﹣23÷8−14×(﹣2)2;(3)﹣24+(3﹣7)2﹣2×(﹣1)2;(4)[(﹣2)3+43]÷4+(−23). 【分析】(1)运用乘法对加法的分配律,简化计算.(2)先算乘方,再算乘除,最后算加减.(3)先算乘方,再算乘除,最后算加减.(4)先算乘方,再算中括号里的,再算除法,再算加法.【解答】解:(1)原式=(14+38−712)×24=14×24+38×24−712×24=6+9﹣14=1.(2)原式=−8÷8−14×4 =﹣1﹣1=﹣2.(3)原式=﹣16+(﹣4)2﹣2×1=﹣16+16﹣2=﹣2.(4)原式=(−8+43)÷4+(−23) =−203÷4+(−23) =−53+(−23)=−73.7.(4分)(2022•莱西市期末)计算:(1)﹣﹣﹣;(2)(−613)+(−713)﹣5; (3)25×34−(﹣25)×12+25×;(4)5×(﹣6)﹣(﹣4)2÷(﹣8).【分析】(1)利用有理数的加减运算的法则进行求解即可;(2)利用加减运算的法则进行求解即可;(3)先把式子进行整理,再利用乘法的分配律进行求解即可;(4)先算乘方,再算乘法与除法,最后算加法即可.【解答】解:(1)﹣﹣﹣=﹣﹣=﹣=﹣12;(2)(−613)+(−713)﹣5 =﹣1﹣5=﹣6;(3)25×34−(﹣25)×12+25× =25×0.75+25×0.5+25×=25×()=25×=;(4)5×(﹣6)﹣(﹣4)2÷(﹣8)=5×(﹣6)﹣16÷(﹣8)=﹣30+2=﹣28.8.(4分)(2022•越城区校级月考)计算(1)10﹣1÷(16−13)÷112(2)﹣12﹣6×(−13)2+(﹣5)×(﹣3)(3)32÷(﹣22)×(﹣114)+(﹣5)6×(−125)3 (4)[1﹣(38+16−34)×24]÷5.【分析】(1)先算括号里面的,再算除法,最后算减法即可;(2)先算乘方,再算乘法,最后算加减即可;(3)先算乘方,再算除法和乘法,最后算加减即可;(4)先算乘法,再算加减,最后算除法即可.【解答】解: (1)原式=10﹣1÷(−16)×12=10+72=82;(2)原式=﹣1﹣6×19+15 =﹣1−23+15 =1313;(3)原式=32÷(﹣4)×(−54)+(﹣1)=10﹣1=9;(4)[1﹣(38+16−34)×24]÷5.=[1﹣(9+4﹣18)]÷5=[1﹣(﹣5)]÷5=6÷5=.9.(4分)(2022•宜兴市期中)计算:(1)﹣10﹣(﹣16)+(﹣24);(2)5÷(−35)×53; (3)﹣22×7﹣(﹣3)×6+5;(4)(113+18−2.75)×(﹣24)+(﹣1)2014+(﹣3)3. 【分析】(1)根据有理数的加减混合运算进行计算即可;(2)根据有理数的乘除法进行计算即可;(3)根据有理数的混合运算进行计算即可;(4)根据有理数的混合运算进行计算即可.【解答】解:(1)原式=﹣10+16﹣24=﹣18;(2)原式=﹣5×53×53=−1259;(3)原式=﹣4×7+18+5=﹣28+18+5=﹣5;(4)原式=−43×24−18×24+114×24+1﹣27 =﹣32﹣3+66﹣26=5.10.(4分)(2022•镇平县月考)计算:(1)(−58)÷143×(−165)÷(−67)(2)﹣3﹣[﹣5+(1﹣×35)÷(﹣2)](3)(413−312)×(﹣2)﹣223÷(−12) (4)[50﹣(79−1112+16)×(﹣6)2]÷(﹣7)2.【分析】(1)原式从左到右依次计算即可得到结果;(2)原式先计算乘除运算,再计算加减运算即可得到结果;(3)原式先计算乘除运算,再计算加减运算即可得到结果;(4)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解:(1)原式=−58×314×165×76=−12; (2)原式=﹣3+5+(1−325)×12=−3+5+1125=21125; (3)原式=−263+7+163=323;(4)原式=(50﹣28+33﹣6)×149=49×149=1.11.(4分)(2022•饶平县校级期中)计算:(1)2﹣5+4﹣(﹣7)+(﹣6)(2)(﹣2467)÷6 (3)(﹣18)÷214×49÷(﹣16)(4)43−{(−3)4−[(−1)÷2.5+214×(−4)]÷(24815−27815)}.【分析】(1)原式利用减法法则变形,计算即可得到结果;(2)原式变形后,利用乘法分配律计算即可得到结果;(3)原式利用除法法则变形,约分即可得到结果;(4)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解:(1)原式=2﹣5+4+7﹣6=2;(2)原式=(﹣24−67)×16=−4−17=−417;(3)原式=﹣18×49×49×(−116)=29;(4)原式=64﹣81+(﹣925)÷(﹣3)=64﹣81+4715=−131315. 12.(4分)(2022•定陶区期中)计算:(1)23﹣6×(﹣3)+2×(﹣4);(2)(﹣134)﹣(+613)﹣+103; (3)214×(−67)÷(12−2);(4)(﹣5)3×(−35)+32÷(﹣22)×(﹣114).【分析】(1)根据有理数的乘法和加减法可以解答本题;(2)根据有理数的加减法可以解答本题;(3)根据有理数的乘除法和减法可以解答本题;(4)根据有理数的乘方、有理数的乘除法和加法可以解答本题.【解答】解:(1)23﹣6×(﹣3)+2×(﹣4)=23+18+(﹣8)=33;(2)(﹣134)﹣(+613)﹣+103=(﹣134)+(﹣613)+(﹣214)+313 =[(﹣134)+(﹣214)]+[(﹣613)+313] =(﹣4)+(﹣3)=﹣7;(3)214×(−67)÷(12−2) =94×(−67)÷(−32) =94×67×23=97; (4)(﹣5)3×(−35)+32÷(﹣22)×(﹣114)=(﹣125)×(−35)+32÷(﹣4)×(−54)=75+(﹣8)×(−54)=75+10=85.13.(4分)(2022•甘州区期末)计算:(1)(18−13+16)×(−24); (2)|−2|×(−1)2023−3÷12×2;(3)−12−(1−0.5)×13×[2−(−3)]2;(4)7×(−36)×(−87)×16. 【分析】(1)原式利用乘法分配律计算即可得到结果;(2)原式先计算绝对值及乘方运算,再计算乘除运算,最后算加减运算,即可得到结果;(3)原式先计算乘方及括号中的运算,再计算乘法运算,最后算加减运算,即可得到结果;(4)原式约分即可得到结果.【解答】解:(1)原式=18×(﹣24)−13×(﹣24)+16×(﹣24)=﹣3+8﹣4=1;(2)原式=2×(﹣1)﹣3×2×2=﹣2﹣12=﹣14;(3)原式=﹣1−12×13×25 =﹣1+76 =−316; (4)原式=48.14.(4分)(2022•江都区期中)计算(1)0﹣(+3)+(﹣5)﹣(﹣7)﹣(﹣3)(2)48×(−23)﹣(﹣48)÷(﹣8) (3)﹣12×(12−34+112)(4)﹣12﹣(1﹣)×13×[3﹣(﹣3)2].【分析】(1)先将减法转化为加法,再利用加法法则计算;(2)先算乘除,再算加法即可;(3)利用分配律计算即可;(4)先算乘方,再算乘除,最后算加减,有括号,要先做括号内的运算.【解答】解:(1)原式=0﹣3﹣5+7+3=﹣8+10=2;(2)原式=﹣32﹣6=﹣38;(3)原式=﹣12×12+12×34−12×112=﹣6+9﹣1=﹣7+9=2;(4)原式=﹣1−12×13×(3﹣9) =﹣1−12×13×(﹣6) =﹣1+1=0.15.(4分)(2022•铁力市校级期中)计算:(1)25−|−112|−(+214)+(−2.75) (2)[(−12)2+(−14)×16+42]×[(−32)−3](3)−13−(1−0.5)×13×[2−(−3)2](4)(−5)×313+2×313+(−6)×313.【分析】(1)先计算绝对值、将减法转化为加法,再根据法则计算可得;(2)根据有理数混合运算顺序和运算法则计算可得;(3)根据有理数混合运算顺序和运算法则计算可得;(4)逆用乘法分配律提取313,再计算括号内的,最后计算乘法即可得.【解答】解:(1)原式=25−32−94−114=−1110−5=﹣6110;(2)原式=(14−4+16)×(−92)=494×(−92)8(3)原式=﹣1−12×13×(﹣7)=﹣1+76=16;(4)原式=103×(﹣5+2﹣6) =103×(﹣9)=﹣30.16.(4分)(2022•禄丰县校级期中)计算(1)23﹣17﹣(﹣7)+(﹣16)(2)(﹣4)+|﹣8|+(﹣3)3﹣(﹣3)(3)﹣24÷(223)2﹣312×(−14)(4)×(﹣2)3﹣[4÷(−23)2+1]+(﹣1)2022.【分析】(1)根据有理数的加法法则计算即可;(2)先计算乘方、绝对值即可;(3)先算乘方,再算乘除,最后算加减即可;(4)先算乘方,再算乘除,最后算加减即可;【解答】解:(1)23﹣17﹣(﹣7)+(﹣16)=23﹣17+7﹣16=﹣3(2)(﹣4)+|﹣8|+(﹣3)3﹣(﹣3)=﹣4+8﹣27+3=﹣20(3)﹣24÷(223)2﹣312×(−14)=﹣24×964+72×14=−278+788=−52 (4)×(﹣2)3﹣[4÷(−23)2+1]+(﹣1)2022.=﹣2﹣(9+1)+1=﹣1117.(4分)(2022•高新区校级期中)计算:(1)12﹣(﹣18)+(﹣12)﹣15(2)(−13)﹣(−25)+(−23)+35(3)(14−12+16)×(﹣24)(4)﹣14+(﹣2)3×(−12)﹣(﹣32)【分析】(1)减法转化为加法,依据法则计算可得;(2)减法转化为加法,运用加法的交换律和运算法则计算可得;(3)运用乘法分配律计算可得;(4)根据有理数混合运算顺序和运算法则计算可得.【解答】解:(1)原式=12+18﹣12﹣15=30﹣27=3;(2)原式=−13−23+25+35=−1+1=0;(3)原式=14×(﹣24)−12×(﹣24)+16×(﹣24)=﹣6+12﹣4=2;(4)原式=﹣1+8×12+9=﹣1+4+9=12.18.(4分)(2022•如皋市校级月考)计算:(1)11+(﹣22)﹣3×(﹣11)(2)(−36911)÷9(3)3.52×(−47)+2.48×(−47)−13×(−47) (4)(13−12)×(−6)+(−14)÷(−18).【分析】(1)先计算乘法,再计算加减可得;(2)将除法转化为乘法,再计算乘法可得;(3)逆用乘法分配律提取公因数−47,再计算括号内的,最后计算乘法即可得;(4)先计算乘法、除法,然后计算加减可得.【解答】解:(1)原式=11﹣22+33=22;(2)原式=﹣(36+911)×19=−4−111=−4111;(3)原式=(−47)×(﹣13)=(−47)×(﹣7)=4;(4)原式=﹣2+3+2=3.19.(4分)(2022•郯城县月考)计算(1)1+(﹣2)+|﹣2﹣3|﹣5﹣(﹣9)(2)113×(13−12)×311÷54(3)(512+23−34)×(﹣12)(4)﹣3﹣[﹣5+(1﹣2×35)÷(﹣2)].【分析】(1)原式利用减法法则变形,计算即可求出值;(2)原式先计算括号中的运算,再计算乘除运算即可求出值;(3)原式利用乘法分配律计算即可求出值;(4)原式先计算乘除运算,再计算加减运算即可求出值.【解答】解:(1)原式=1﹣2+5﹣5+9=8;(2)原式=113×(−16)×311×45=−215; (3)原式=512×(﹣12)+23×(﹣12)−34×(﹣12)=﹣5﹣8+9=﹣4;(4)原式=﹣3+5−110=.20.(4分)(2022•南川区校级月考)计算(1)(+45)﹣91+5+(﹣9)(2)(−34)×113÷(﹣112) (3)(−74)÷78−23×(−6)(4)[1124−(38+16−34)×24]÷5.【分析】(1)根据加法交换律和结合律简便计算;(2)将除法变为乘法,再约分计算即可求解;(3)先算乘除法,再算加法即可求解;(4)先算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.注意乘法分配律的运用.【解答】解:(1)(+45)﹣91+5+(﹣9)=(45+5)+(﹣91﹣9)=50﹣100=﹣50;(2)(−34)×113÷(﹣112) =34×43×23 =23;(3)(−74)÷78−23×(−6)=﹣2+4=2;(4)[1124−(38+16−34)×24]÷5 =[1124−9﹣4+18]÷5=6124÷5=1524. 21.(4分)(2022•凉州区校级月考)计算:(1)74÷78−23×(﹣6)(2)(−34−59+712)÷136(3)(﹣)+(﹣)﹣(﹣)﹣|﹣5.7|(4)113×(13−12)×311÷54.【分析】(1)根据有理数的乘除法和减法可以解答本题;(2)先把除法转化为乘法,再根据乘法分配律即可解答本题;(3)根据有理数的加减法可以解答本题;(4)根据有理数的乘除法和减法可以解答本题.【解答】解:(1)74÷78−23×(﹣6)=74×87+4=2+4=6;(2)(−34−59+712)÷136=(−34−59+712)×36=﹣27﹣15+21=﹣21;(3)(﹣)+(﹣)﹣(﹣)﹣|﹣5.7|=(﹣)+(﹣)+2.5+(﹣)=﹣;(4)113×(13−12)×311÷54=113×(−16)×311×45=−215.22.(4分)(2022•凉州区校级月考)计算:(1)74÷78−23×(﹣6)(2)(−34−59+712)÷136(3)(﹣)+(﹣)﹣(﹣)﹣|﹣5.7|(4)113×(13−12)×311÷54.【分析】(1)根据有理数的乘除法和减法可以解答本题;(2)先把除法转化为乘法,再根据乘法分配律即可解答本题;(3)根据有理数的加减法可以解答本题;(4)根据有理数的乘除法和减法可以解答本题.【解答】解:(1)74÷78−23×(﹣6)=74×87+4=2+4=6;(2)(−34−59+712)÷136=(−34−59+712)×36=﹣27﹣15+21=﹣21;(3)(﹣)+(﹣)﹣(﹣)﹣|﹣5.7|=(﹣)+(﹣)+2.5+(﹣)=﹣;(4)113×(13−12)×311÷54=113×(−16)×311×45=−215.23.(4分)(2022•兴隆台区校级月考)计算(1)(1−38+712)×(﹣24)(2)25×16+25×13−25×12(3)(﹣1)4−17×[2﹣(﹣4)2](4)﹣32+16÷(﹣2)×12−(﹣1)2015.【分析】(1)原式利用乘法分配律计算即可得到结果;(2)原式逆用乘法分配律计算即可得到结果;(3)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果;(4)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解: (1)原式=﹣24+9﹣14=﹣29;(2)原式=25×(16+13−12)=25×0=0;(3)原式=1−17×(﹣14)=1+2=3; (4)原式=﹣9﹣4+1=﹣12.24.(4分)(2022•苏仙区校级期中)计算(1)23+(﹣37)﹣23+7(2)﹣10+8÷(﹣2)2﹣(﹣4)×(﹣3)(3)(23−112−415)×(﹣60).(4)﹣12022+|﹣5|×(−85)﹣(﹣4)2÷(﹣8).【分析】(1)原式结合后,相加即可得到结果;(2)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果;(3)原式利用乘法分配律计算即可得到结果;(4)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解:(1)原式=23﹣23﹣37+7=﹣30;(2)原式=﹣10+2﹣12=﹣20;(3)原式=﹣40+5+16=﹣19;(4)原式=﹣1﹣8+2=﹣7.25.(4分)(2022•立山区期中)计算题(1)﹣81÷(﹣214)×49÷(﹣16);(2)(−124)÷(123−54+76);(3)﹣32÷(﹣2)3×|﹣113|×6+(﹣2)4;(4)﹣(23)2×18﹣2×(−15)÷25+|﹣8|×2+179×(﹣112)2.【分析】(1)原式从左到右依次计算即可求出值;(2)原式被除式与除式调换求出值,即可求出所求;(3)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值;(4)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值.【解答】解:(1)原式=﹣81×49×49×116=﹣1;(2)(123−54+76)÷(−124)=(123−54+76)×(﹣24)=53×(﹣24)−54×(﹣24)+76×(﹣24)=﹣40+30﹣28=﹣38,则原式=−138;(3)原式=﹣9÷(﹣8)×43×6+16=98×43×6+16=9+16=25;(4)原式=−49×18﹣2×(−15)×52+8×+169×94=﹣8+1+2+4=﹣1.。