§9 空间线面关系的判定(二)
高中数学空间中的线面关系
空间中的线面关系知识框架空间中的线面关系要求层次重难点空间线、面的位置关系 B ①理解空间直线、平面位置关系的定义,并了解如下可以作为推理依据的公理和定理.◆公理1:如果一条直线上的两点在一个平面内,那么这条直线上所有的点在此平面内.◆公理2:过不在同一条直线上的三点,有且只有一个平面.◆公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.◆公理4:平行于同一条直线的两条直线互相平行.◆定理:空间中如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补.②以立体几何的上述定义、公理和定理为出发点,认识和理解空间中线面平行、垂直的有关性质与判定.理解以下判定定理.◆如果平面外一条直线与此平面内的一条直线平行,那么该直线与此平面平行.◆如果一个平面内的两条相交直线与另一个平面都平行,那么这两个平面平行.◆如果一条直线与一个平面内的两条相交直线都垂直,那么该直线与此平面垂直.◆如果一个平面经过另一个平面的垂线,那么这两个平面互相垂直.理解以下性质定理,并能够证明.◆如果一条直线与一个平面平行,经过该直线的任一个平面与此平面相交,那么这条直线就和交线平行.◆如果两个平行平面同时和第三个平面相交,那么它们的交线相互平行.◆垂直于同一个平面的两条直线平行.◆如果两个平面垂直,那么一个平面内垂直于它们交线的直线与另一个平面垂直.③能运用公理、定理和已获得的结论证公理1,公理2,公理3,公理4,定理*A高考要求明一些空间位置关系的简单命题.*公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内. 公理2:过不在一条直线上的三点,有且只有一个平面.公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线. 公理4:平行于同一条直线的两条直线平行.定理:空间中如果两个角的两条边分别对应平行,那么这两个角相等或互补.(一) 知识内容线面垂直1.线线垂直:如果两条直线相交于一点或经过平移后相交于一点,并且交角为直角,则称 这两条直线互相垂直.由定义知,垂直有相交垂直和异面垂直. 2.直线与平面垂直:⑴概念:如果一条直线和一个平面相交于点O ,并且和这个平面内过交点的任何直线都垂直,则称这条直线与这个平面互相垂直.这条直线叫做平面的垂线,这个平面叫做直线的垂面,交点叫垂足.垂线上任意一点到垂足间的线段,叫做这个点到这个平面的垂线段.垂线段的长度叫做这个点到平面的距离.如果一条直线垂直于一个平面,那么它就和平面内的任意一条直线垂直.画直线与平面垂直时,通常把直线画成和表示平面的平行四边形的一边垂直,如右图.αl直线l 与平面α互相垂直,记作l α⊥.⑵线面垂直的判定定理:如果一条直线与平面内的两条相交直线垂直,则这条直线与这个平面垂直. 推论:如果在两条平行直线中,有一条垂直于平面,那么另一条直线也垂直于这个平面. ⑶线面垂直的性质定理:如果两条直线垂直于同一个平面,那么这两条直线平行.<教师备案>1.如果定义了异面直线所成角,则异面垂直即异面直线所成角为90︒.2.线面垂直的判定定理把定义中的与任意一条直线垂直这个很强的命题,转化为只需证明与两条相交直线垂直这个问题,从而大大简化了线面垂直的判断.例题精讲板块三:线线垂直与线面垂直n mA'EDCB Aβα要证明判定定理,只能用定义,若',',AA m AA n m n B ⊥⊥=,,m n α⊂,要证'AA α⊥,在平面α内任选一条直线g ,去证'AA g ⊥,结合右图,通过全等三角形的证明可得到,从而得到判定定理,具体的证法略.3.线面垂直的性质定理,可以用同一法证明, 如图:laABm'mβα直线,l m αα⊥⊥,若直线,l m 不平行,则过直线l 与平面α的交点B 作直线'//m l ,从而有'm α⊥.又相交直线,'m m 可以确定一个平面β,记a αβ=,则因为,'m m 都垂直于平面α,故,'m m 都垂直于交线a .这与在一个平面内,过直线上一点有且只有一条直线与已知直线垂直相矛盾.故,'m m 重合,//m l ,性质定理得证. 由同一法还可以证明:过一点与已知平面垂直的直线只有一条.(三)典例分析:【例1】 直线和平面所成的角为α,则( )A .090α︒<<︒B .090α︒︒≤≤C .090α︒<︒≤D .090α︒<︒≤【例2】 m ,n 是空间两条不同直线,α,β是空间两条不同平面,下面有四个命题:①,;m n m n αβαβ⊥⇒⊥, ②,,;m n m n αβαβ⊥⊥⇒ ③,,;m n m n αβαβ⊥⇒⊥ ③,,;m m n n ααββ⊥⇒⊥ 其中真命题的编号是________(写出所有真命题的编号).【例3】 室内有一根直尺,无论怎么放置,在地面上总有这样的直线,它与直尺所在的直线A .异面B .相交C .平行D .垂直【例4】 (2007湖南文6)如图,在正四棱柱 1111ABCD A B C D -中,E 、F 分别是1AB 、1BC 的中点,则以下结论中不成立的是( ) A .EF 与1BB 垂直 B .EF 与BD 垂直 C .EF 与CD 异面D .EF 与11A C 异面AB CDE F A 1B 1C 1D 1【例5】 (2008辽宁卷11)在正方体1111ABCD A B C D -中,E F ,分别为棱1AA ,1CC 的中点,则在空间中与三条直线11A D ,EF ,CD 都相交的直线( ) A .不存在 B .有且只有两条C .有且只有三条D .有无数条【例6】 如图所示,在正方体1111ABCD A B C D -中..求证:1BD ⊥面1AB C .A 1D 1C 1B 1DCBA【例7】 在长方体1111ABCD A B C D -中,点E ,F 分别在1AA ,1CC 上且1BE A B ⊥,1BF BC ⊥,求证:1BD ⊥面BEF【解析】 FEC 1B 1D 1A 1AB C D【例8】 如图O 是正方体下底面ABCD 中心,B H D O ''⊥,H 为垂足.求证:B H '⊥平面AD C '.【解析】OH DCBAD'C'B'A'【例9】 已知三棱锥P ABC -中,PC ⊥底面ABC ,AB BC =,D F ,分别为AC PC ,的中点,DE AP⊥于E .⑴求证:AP ⊥平面BDE ;⑵求证:平面BDE ⊥平面BDF ;⑶若:1:2AE EP =,求截面BEF 分三棱锥P ABC -所成两部分的体积比.【解析】 FEBDCAP【例10】 在正方体1111ABCD A B C D -中,P 为1DD 的中点,O 为底面ABCD 的中心.求证:1B O ⊥面PAC . 【解析】 P OA 1D 1C 1B 1D CB A【例11】 (2000全国,文19)如图已知平行六面体1111ABCD A B C D -的底面ABCD 是菱形,且11C CB C CD BCD ∠=∠=∠. ⑴ 证明1C C BD ⊥; ⑵ 当1CDCD 的值为多少时,能使1A C ⊥平面1C BD ?请给出证明.图 9-2-284D 1A 1C 1B 1DCBA【例12】 已知平行六面体1111ABCD A B C D -的底面是菱形,且1160A AB A AD ∠=∠=.求证:1CC ⊥BDOABCD A 1B 1C 1D 1【例13】 在四棱锥P ABCD -中,底面ABCD 为矩形,PA ⊥底面ABCD ,M ,N 分别为PC ,AB 的中点.(1)求证:MN ∥平面PAD ;(2)若45PDA ∠=,求证:MN ⊥面PCD .QPD BCAMN【例14】 如图,四面体P ABC -,PA ⊥面ABC ,AB ⊥BC ,过A 作AE ⊥PB 交PB 于E ,过A 作AF⊥PC 交PC 于F .求证:PC ⊥EF .【例15】 下列说法正确的有__________.①过一点有且只有一条直线垂直于已知直线.②若一条直线与平面内无数条直线垂直,则这条直线与这个平面垂直. ③若一条直线平行于一个平面,则垂直于这个平面的直线必垂直于这条直线. ④若一条直线垂直于一个平面,则垂直于这条直线的另一条直线必平行于这个平面. ⑤若一条直线平行于一个平面,则它和这个平面内的任何直线都不垂直. ⑥平行于同一个平面的两条直线可能垂直.【例16】 (2009安徽,理15)对于四面体ABCD ,下列命题正确的是_____ (写出所有正确命题的编号).①相对棱AB 与CD 所在的直线异面;②由顶点A 做四面体的高,其垂足是BCD ∆三条高线的交点;③若分别作ABC ∆和ABD ∆的边AB 上的高,则这两条高线所在的直线异面;④分别做三组相对棱中点的连线,所得的三条线段相交于一点; ⑤最长棱必有某个端点,由它引出的另两条棱的长度之和大于最长棱.【例17】 在正方体1111ABCD A B C D -中,P Q ,分别是棱1AA ,1CC 的中点,则过点B P Q ,,的截面( ) A .邻边不等的平行四边形 B .菱形但不是正方形C .邻边不等的矩形D .正方形【例18】 如图,在侧棱和底面垂直的四棱柱1111ABCD A B C D -中,当底面ABCD 满足条件时,有11AC B D ⊥(写出你认为正确的一种条件即可.)ABCD 是菱形或是正方形或是对角线互相垂直的四边形D 1C 1B 1A 1A DCB【例19】 如图,A 、B 、C 、D 是空间四点,在ABC △中,2AB =,AC BC ==ADB △所在的平面以AB 为轴可转动.当ADB △转动过程中,是否总有AB CD ⊥?请证明你的结论ABC DO【例20】 在正方体1111ABCD A B C D -中,M 是1AA 的中点,问当点N 位于AB 上何处时,1MN MC ⊥?【例21】 如图,已知P 为ABC ∆外一点,PO ⊥平面ABC ,垂足为O ,⑴若PA 、PB 、PC 两两垂直,求证:O 为ABC ∆的垂心;⑵若PA PB PC ==,求证:O 为ABC ∆的外心.⑶若PA 、PB 、PC 两两垂直,且PA PB PC a ===,求P 点到平面ABC 的距离.OCBAP【例22】 在空间四面体的四个面中,为直角三角形的最多有_________个.【例23】 如图,A 、B 、C 、D 是空间四点,在ABC △中,2AB =,AC BC ==ADB △所在的平面以AB 为轴可转动.当ADB △转动过程中,是否总有AB CD ⊥?请证明你的结论.ABC DO【例24】 如右图,是一个边长为a 的正方体1111ABCD A B C D -,⑴求证:1AC ⊥平面1A BD ; ⑵求A 点到平面1A BD 的距离.AA 1【例25】 如图所示,直角ABC ∆所在平面外一点S ,且SA SB SC ==,D 为AC 中点,连结SD ,BD .⑴求证:SD ⊥面ABC ;⑵若直角边BA BC =,求证:BD ⊥面SAC .SABD【例26】 如图,已知111A B C ABC -是正三棱柱,D 是AC的中点,11AB ==,⑴证明:BD ⊥平面11ACC A ,1//AB 平面1BDC ; ⑵求点D 到平面11BCC B 的距离. ⑶证明:11AB BC ⊥.D CBA A 1B 1C 1【例27】 如图,在正方体1111ABCD A B C D -中,EF ⊥1A D ,EF ⊥AC ,求证:⑴1BD ⊥平面11A C D ;⑵1//EF BD .FE ABCDA 1B 1C 1D 1【例28】 已知四面体ABCD ,①若棱AB CD ⊥,求证2222AC BD AD BC +=+ ②若2222AC BD AD BC +=+,求证棱AB CD ⊥.【例29】 设a b ,为两条直线,αβ,为两个平面,下列四个命题中,正确的命题是( )A .若a b ,与α所成的角相等,则a b ∥B .若a α∥,b β∥,αβ∥,则a b ∥C .若a α⊂,b β⊂,a b ∥,则αβ∥D .若a α⊥,b β⊥,αβ⊥,则a b ⊥【例30】 已知在三棱锥A BCD -中AC AD =,BD BC =,求证:AB ⊥CDABCDE【例31】 如图,正方体1111ABCD A B C D -的棱长为1,E 是11A B 的中点.求E 到平面11ABC D 的距离.A 1D 1CA【例32】 (07全国2文7)已知正三棱锥的侧棱长的底面边长的2倍,则侧棱与底面所成角的余弦值等于( ) ABC.2D【例33】 (2007湖北文5)在棱长为1的正方体1111ABCD A B C D -中,E 、F 分别为棱1AA 、1BB 的中点,G 为棱11A B 上的一点,且()101AG λλ=≤≤,则点G 到平面1DEF 的距离为( ) ABCD ABCDE【例34】 (2007江苏14)正三棱锥P ABC -高为2,侧棱与底面所成角为45︒,则点A 到侧面PBC 的距离是 .【例35】 (2008福建卷6)如图,在长方体ABCD 1111A B C D -中,2AB BC ==,11AA =,则1BC 与平面11BB D D所成角的正弦值为( ) A.3B .5C .5D .5DCBAA 1D 1B 1C 1【例36】 如图,已知四棱锥S ABCD -的底面ABCD 是正方形,SA ⊥底面ABCD ,E 是SC 上的一点.求证:平面EBD ⊥平面SACE DCBAS【例37】 正方体1111ABCD A B C D -中,作截面1BDC ,求二面角1B DC C --的正切值的大小.O A 1D 1C 1B 1D CBA【例38】 如图,正方体1111ABCD A B C D -中.求平面1A BD 和平面1C BD 相交所组成的二面角11A BD C --的余弦值.OA 1D 1C 1B 1DCBA【例39】 在长方体1111ABCD A B C D -中,点E ,F 分别在1AA ,1CC 上且1BE A B ⊥,1BF BC ⊥,求证:1BD ⊥面BEF【解析】 FEC 1B 1D 1A 1AB C D【例40】 如图,在梯形ABCD 中,AB ∥CD ,90DAB ∠=,AD a =,PD ⊥面ABCD ,PD a =,求点D 到平面PAB 的距离.HACBDP【例41】 如图,正方体1111ABCD A B C D -的棱长为1,P 是AB 的中点.⑴求二面角1A BC A --的大小; ⑵求二面角1B AC P --的大小. PF E A 1D 1C 1B 1DCBA【例42】 已知空间四边形ABCD ,E 、F 、G 分别是AB 、BC 、CD 的中点,求证://AC 平面EFG ,//BD 平面EFG .【解析】 GFEBA【例43】 (2006年湖南高考题·理3)过平行六面体1111ABCD A B C D -任意两条棱的中点作直线,其中与平面11DBB D 平行的直线共有( ). A .4条B .6条C .8条D .12条【例44】 下列命题中,真命题有_______.①若,,//a b a b αβ⊂⊂,则//αβ; ②若//,//,//,//a a b b αβαβ,则//αβ; ③若,,//a b a αββ⊂⊂,则a b =∅; ④若//,//,//,//,a a b b a b A αβαβ=,则αβ=∅;【例45】 已知正方体1111-ABCD A B C D ,求证:平面11//AB D 平面1C BD .ABCDA 1B 1C 1D 1【例46】 判断下面命题的正误:⑴一条直线和一个平面平行,它就和这个平面内的任何直线平行. ⑵如果一条直线垂直于平面内的两条直线,那么这条直线和这个平面垂直. ⑶垂直于三角形两边的直线必垂直于第三边.⑷过点A 垂直于直线a 的所有直线都在过点A 垂直于α的平面内.⑸如果三条共点直线两两垂直,那么其中一条直线垂直于另两条直线确定的平面.【例47】 如图,四边形ABCD 是矩形,P ∉面ABCD ,过BC 作平面BCEF 交AP 于E ,交DP 于F ,求证:四边形BCEF 是梯形.PFE DCBA【例48】 设,P Q 是单位正方体1AC 的面11AA D D 、1111A B C D 的中心,如图,⑴证明://PQ 平面11AA B B ;⑵求线段PQ 的长.AB CDA 1B 1C 1D 1PQ【例49】 如图,ABCD 是正方形,SA 垂直于平面ABCD ,过A 且垂直于SC 的平面交SB 、SC 、SD 分别于点E 、F 、G , 求证:AE SB ⊥,AG SD ⊥.EBCFDGSA【例50】 已知:四棱锥P ABCD -,PA ⊥平面ABCD ,底面ABCD 是直角梯形,90A ∠=,且AB CD ∥,12AB CD =,点F 为线段PC 的中点.EFDCBAP⑴求证:BF ∥平面PAD ; ⑵求证:BF CD ⊥.(一) 知识内容线线关系与线面平行1.平行线:在同一个平面内不相交的两条直线.平行公理:过直线外一点有且只有一条直线与这条直线平行. 公理4(空间平行线的传递性):平行于同一条直线的两条直线互相平行;等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等. 2.空间中两直线的位置关系:⑴共面直线:平行直线与相交直线;⑵异面直线:不同在任一平面内的两条直线. 3.空间四边形:顺次连结不共面的四点所构成的图形.这四个点叫做空间四边形的顶点;所连结的相邻顶点间的线段叫做空间四边形的边;连结不相邻的顶点的线段叫做空间四边形的对角线.如右图中的空间四边形ABCD ,它有四条边,,,AB BC CD DA ,两条对角线,AC BD . 其中,AB CD ;,AC BD ;,AD BC 是三对异面直线.DCBA4.直线与平面的位置关系:⑴直线l 在平面α内:直线上所有的点都在平面内,记作l α⊂,如图⑴;⑵直线l 与平面α相交:直线与平面有一个公共点A ;记作l A α=,如图⑵;⑶直线l 与平面α平行:直线与平面没有公共点,记作//l α,如图⑶.l3()2()1()lAαααl5.直线与平面平行的判定定理:如果不在一个平面内的一条直线和平面内的一条直线平行,那么这条直线和这个平面平行.符号语言表述:,,////l m l m l ααα⊄⊂⇒. 图象语言表述:如右图:mlα6.直线与平面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相板块二:空间中的平行关系交,那么这条直线和两平面的交线平行.符号语言表述://,,//l l m l m αβαβ⊂=⇒. 图象语言表述:如右图:βαl m<教师备案>1.画线面平行时,常常把直线画成与平面的一条边平行; 2.等角定理证明:已知:如图所示,BAC ∠和B A C '''∠的边//AB A B '',//AC A C '',且射线AB 与A B ''同向,射线AC 与A C ''同向. 求证:BAC B A C '''∠=∠证明:对于BAC ∠和B A C '''∠在同一平面内的情形,在初中几何中已经证明,下面证明两个角不在同一平面内的情形.分别在BAC ∠的两边和B A C '''∠的两边上截取线段AD AE 、和A D A E ''''、,使,AD A D AE A E ''''==,因为//''AD A D ,所以AA D D ''是平行四边形所以//AA DD ''.同理可得//AA EE '',因此//DD EE ''. 所以DD E E ''是平行四边形. 因此DE D E ''=.于是ADE A D E '''∆≅∆. 所以BAC B A C '''∠=∠.E'E DC BAA'D 'B 'C '3.根据等角定理可以定义异面直线所成的角的概念:过空间一点作两异面直线的平行线,得到两条相交直线,这两条相交直线成的直角或锐角叫做两异面直线成的角.异面直线所成角的范围是π(0,]24.线面平行判定定理(,,////l m l m l ααα⊄⊂⇒),即线线平面,则线面平行. 要证明这个定理可以考虑用反证法,因为线线平行(//l m ),所以它们可以确定一个平面β,β与已知平面α的交线恰为m ,若线面不平行,则线面相交于一点,此点必在两个平面的交线m 上,从而得到l 与m 相交,与已知矛盾.5.线面平行性质定理,即线面平行,则线线平行,这平行的定义立即可得(共面且无交点).面面平行的判定与性质1.两个平面的位置关系⑴两个平面,αβ平行:没有公共点,记为//αβ;画两个平行平面时,一般把表示平面的平行四边形画成对应边平行,如右图:⑵两个平面,αβ相交,有一条交线,l αβ=.2.两个平面平行的判定定理:如果一个平面内有两条相交直线平行于另一个平面, 那么这两个平面平行.符号语言表述:,,,//,////a b a b A a b ααββαβ⊂⊂=⇒.推论:如果一个平面内有两条相交直线分别平行于另一个平面内的两条相交直线,则这两个平面平行. 3.两个平面平行的性质定理:如果两个平面同时与第三个平面相交,那么它们的交线平行. 符号语言表述://,,//a b a b αβαγβγ==⇒. 图象语言表述:如右图:γbaβα<教师备案>1.画两个平面相交时,可以先画出交线,再补充其它,平面被遮住的部分画成虚线或不画. 如右图所示:2.面面平行的判定定理可以由线面平行的性质直接得到,如果满足定理条件的两个平面相交,则这两条相交直线都平行于平面的交线,与过直线外一点只能作一条直线与已知直线平行的公理矛盾.故这两个平面不相交,是平行平面. 3.面面平行的性质定理可以直接由两条交线无交点且共面得到.4.在证明线面平行,线线平行和面面平行的题时,常常遇到平行关系的转化,要灵活运用两个性质定理与两个判定定理,证明要求的结论.(二)主要方法:由于空间中平行关系与垂直关系是高考的核心内容,因此在出题时经常会有所结合,本板块专门就平行知识的题目类型归纳,更综合的题目会在第十一讲中详细讲解.由于线面与面面问题之间都是互相转化的,因此本板块中的面面平行题目较少,多数都为线面平行问题.本板块题目多采用两种方法,事实上就是两种思路证明线面平行,一种方法线线平行⇒线面平行,另一种方法是面面平行⇒线面平行.(三)典例分析:【例1】 (2005湖北,理10)如图,在三棱柱ABC A B C '''-中,点E 、F 、H 、K 分别为AC '、CB '、A B '、B C ''的中点,G 为ABC ∆的重心.从K 、H 、G 、B '中取一点作为P ,使得该棱柱恰有2条棱与平面PEF 平行,则P 为( ) A .K B .H C .G D .B 'A'B【例2】 如图,三棱柱111ABC A B C -中,D 是BC 的中点. 求证:1A C //平面1AB D .EABCA 1B 1C 1D【例3】 如图,在四棱锥P ABCD -中,90ABC BCD ︒∠=∠=,12DC AB =,E 是PB 的中点. 求证:EC ∥平面APD .E PDABC【例4】 如图,四棱锥P ABCD -中,四边形ABCD 是平行四边形,E 、F 分别是AB 、PD 的中点.求证:AF ∥平面PCE .CBADEFP【例5】 已知PA 垂直于正方形ABCD 所在的平面, ,E F 分别是PB 和AC 的中点,求证:①EF ∥平面PAD ;②EF AB ⊥I H G FE DCBA P【例6】 如图,在底面是平行四边形的四棱锥P ABCD -中,点E 在PD 上,且:2:1PE ED =,F 为棱PC 的中点.求证:BF ∥平面AECE PDABCF【例7】 如图,在五面体ABCDEF 中,点O 是平行四边形ABCD 的对角线的交点,面CDE 是等边三角形,棱1//2EF BC . 求证:FO ∥平面CDEFEDCBAO【例8】 如图,正方体1111ABCD A B C D -中,,,,M N E F 分别是11111111,,,A B A D B C C D 的中点.求证:平面AMN ∥平面EFDB .【例9】 如图,在底面是平行四边形的四棱锥P ABCD -中,点E 在PD 上,且:2:1PE ED =,F 为棱PC 的中点.求证:BF ∥平面AECE PDABCF【例10】 如图,在五面体ABCDEF 中,点O 是平行四边形ABCD 的对角线的交点,面CDE 是等边三角形,棱1//2EF BC . 求证:FO ∥平面CDE【解析】FEDCBAO【例11】 如图所示,正方体1111ABCD A B C D -中,棱长为a ,,M N 分别为1AB 和11A C 上的点,1A N AM =.N MF EAB 1C 1D 1DCBA 1⑴求证:MN ∥平面11BB C C ; ⑵求MN 的最小值.【例12】 如图所示,正方体1111ABCD A B C D -中,棱长为a ,,M N 分别为1AB 和11A C 上的点,1A N AM =.⑴求证:MN ∥平面11BB C C ; ⑵求MN 的最小值.N MFEAB 1C 1D 1DC B A 1【例13】 已知,,,E F G H 为空间四边形ABCD 的边,,,AB BC CD DA 上的点,⑴若,,,E F G H 都分别是所在边的中点,求证:四边形EFGH 为平行四边形; ⑵若//EH FG ,求证://EH BD .H GFE D CBA【例14】 已知,,,E F G M 分别是四面体的棱,,,AD CD BD BC 的中点,G FEDCB AMN求证://AM 面EFG .【例15】 平行于平面α的a ,b 是两异面直线,且分别在平面α的两侧,,,,A B a C D b ∈∈,若AC 与α平面交于点M ,BD 与α平面交于点N .求证:AM BNMC ND=. ABCDαabMN【例16】 如图,正方体1AC 中,点N 在BD 上,点M 在1B C 上,且CM DN =,求证://MN 平面11AA B B .D 1C 1B 1M B NFECDA 1A【例17】 已知空间四边形ABCD ,P 、Q 分别是ABC ∆和BCD ∆的重心,求证://PQ 平面ACD .【例18】 下列命题中,真命题有_______.①若,,//a b a b αβ⊂⊂,则//αβ; ②若//,//,//,//a a b b αβαβ,则//αβ; ③若,,//a b a αββ⊂⊂,则a b =∅; ④若//,//,//,//,a a b b a b A αβαβ=,则αβ=∅;【例19】 如图,B 为ACD ∆所在平面外一点,M ,N ,G 分别为ABC ∆,ABD ∆,BCD ∆的重心,⑴求证:平面MNG ∥平面ACD ; ⑵求:MNG ADC S S ∆∆GFDC BAMNPH【例20】 已知平面//αβ,AB ,CD 为夹在a ,β间的异面线段,E 、F 分别为AB 、CD 的中点.求证://EF α,//EF β.【解析】βBGDFEαCA【例21】 如图,线段PQ 分别交两个平行平面α、β于A 、B 两点,线段PD 分别交α、β于C 、D 两点,线段QF 分别交α、β于F 、E 两点,若9PA =,12AB =,12BQ =,ACF ∆的面积为72,求BDE ∆的面积.βD QB EαPC AF【例22】 已知长方体''''ABCD A B C D -中,,E F 分别是','AA CC 的中点.求证:平面//BDF 平面''B D E .AA'BB'CC'DD'E F【例23】 如图,在正方体1111ABCD A B C D -中,E 、F 、G 分别是11B C 、11A D 、11A B 的中点,求证:平面EBD ∥平面FGA .D 1C 1B 1A 1GF ED CBA【例24】 正方体1111ABCD A B C D -中,E 、G 分别是BC 、11C D 的中点,如下图.求证://EG 平面11BB D D .D 1C 1B 1A 1GEDCBA【例25】 (2008新课标海南宁夏)如下的三个图中,上面的是一个长方体截去一个角所得多面体的直观图,它的正视图和侧视图在下面画出(单位:cm ).⑴在正视图下面,按照画三视图的要求画出该多面体的俯视图; ⑵按照给出的尺寸,求该多面体的体积;⑶在所给直观图中连结BC ',证明:BC '∥面EFG .侧视图正视图D'C'B'GFE DCBA【解析】⑴如图俯视图正视图侧视图。
2018版高中数学苏教版选修2-1学案:3.2.2空间线面关系的判定(二)
3.2.2空间线面关系的判定(二)【学习目标】1•能用向量法判断一些简单的线线、线面、面面垂直关系2能用向量语言表述直线与直线、直线与平面、平面与平面的垂直关系3能用向量方法证明空间线面垂直关系的有关定理•ET问题导学 ------------------------- 知识点一向量法判断线线垂直思考若直线l i的方向向量为山=(1,3,2),直线12的方向向量为犷(1, —1,1),那么两直线是否垂直?用向量法判断两条直线垂直的一般方法是什么?梳理设直线I的方向向量为a = (a1, a2, a3),直线m的方向向量为b= (b1, b2, b3),则I丄m知识点二向量法判断线面垂直思考若直线I的方向向量为p1 =(2, 4, 1 j,平面a的法向量为(12= [3, 2, 3'',则直线I与平面a的位置关系是怎样的?如何用向量法判断直线与平面的位置关系?梳理设直线I的方向向量a= (a1, b1, C1),平面a的法向量尸(a2, b2, C2),则I丄o? a// 1知识点三向量法判断面面垂直思考平面a, B的法向量分别为11=(X1, y1, z”, 1=(X2, y2 , Z2),用向量坐标法表示两平面a, B垂直的关系式是什么?梳理右平面a的法向量为(1= (a i, b i, c i),平面B的法向量为v= (a2, b2, C2),贝V a丄3?□丄V i v= 0? _________________题型探究类型一证明线线垂直例1已知正三棱柱ABC-A i B i C i的各棱长都为1,M是底面上BC边的中点,N是侧棱CC i上的点,且CN =〔CC i.求证:AB i丄MN.H M C反思与感悟证明两直线垂直的基本步骤:建立空间直角坐标系T写出点的坐标T求直线的方向向量T证明向量垂直T得到两直线垂直.跟踪训练i 如图,在直三棱柱ABC —A i B i C i中,AC = 3, BC = 4, AB= 5, AA i = 4,求证:AC 丄BC i.类型二证明线面垂直例2如图所示,正三棱柱ABC —A i B i C i的所有棱长都为2, D为CC i的中点.求证:AB」平面A I BD.反思与感悟用坐标法证明线面垂直的方法及步骤方法一:(1)建立空间直角坐标系.(2) 将直线的方向向量用坐标表示.⑶找出平面内两条相交直线,并用坐标表示它们的方向向量(4)分别计算两组向量的数量积,得到数量积为0.方法二:(1)建立空间直角坐标系.(2) 将直线的方向向量用坐标表示.(3) 求出平面的法向量.(4) 判断直线的方向向量与平面的法向量平行跟踪训练2 如图,在长方体ABCD-A I B I C I D I中,AB= AD = 1 , AA i= 2,点P为DD i的中点. 求证:直线PB1±平面FAC.类型三证明面面垂直例 3 在三棱柱ABC —A i B i C i 中,AA i 丄平面ABC , AB丄BC, AB = BC = 2, AA i= 1 , E 为BB i的中点,求证:平面AEC i丄平面AA i C i C.反思与感悟证明面面垂直的两种方法(1) 常规法:利用面面垂直的判定定理转化为线面垂直、线线垂直去证明(2) 向量法:证明两个平面的法向量互相垂直跟踪训练3 如图,底面ABCD是正方形,AS丄平面ABCD,且AS= AB, E是SC的中点.当堂训练求证:平面BDE丄平面ABCD.1.有如下四个命题①若n i, n2分别是平面a, B的法向量,则n i//敗?a//厲②若山,n2分别是平面a, B的法向量,贝U a丄价n i n2 = 0;③若n是平面a的法向量,a与平面a平行,则n a= 0;④若两个平面的法向量不垂直,则这两个平面不垂直其中为真命题的是 _________ .2•若直线l i的方向向量为a= (2 , - 4,4), 12的方向向量为b= (4,6,4),贝V l i与“的位置关系是3•若直线I的方向向量为a = (i,0,2),平面a的法向量为尸(-2,0,- 4),则I与a的位置关玄阜系是 ________ -4. 平面a的一个法向量为m = (i,2,0),平面B的一个法向量为n = (2 , - i,0),则平面a与平面B的位置关系是 _________ .5. _____________ 已知平面a与平面B垂直,若平面a与平面B的法向量分别为[i= (— 1,0,5), v= (t,5,1),则t的值为 _____ .厂《规律与方法------------------------------- 1空间垂直关系的解决策略答案精析问题导学知识点一思考11与12垂直,因为w -(J2= 1一 3 + 2= 0,所以山丄卩2,又w ,血是两直线的方向向量,所以I,与12垂直.判断两条直线是否垂直的方法:(1)在两直线上分别取两点A、B与C、D,计算向量AB与CDX的坐标,若AB CD = 0,则两直线垂直,否则不垂直.(2)判断两直线的方向向量的数量积是否为零,若数量积为零,则两直线垂直,否则不垂直.梳理 a b= 0 a i b i + a2b2 + a3b3 = 0知识点二2思考垂直,因为21 = £2,所以2〃2,即直线的方向向量与平面的法向量平行,所以直线I与平面a垂直.判断直线与平面的位置关系的方法:(1)直线I的方向向量与平面a的法向量共线? I丄a(2)直线的方向向量与平面的法向量垂直?直线与平面平行或直线在平面内.⑶直线I的方向向量与平面a内的两相交直线的方向向量垂直? I丄a梳理 a = k2k€ R)知识点三思考X1X2+ y1y2+ Z1Z2= 0.梳理玄但2 + b1 b2+ C1 C2= 0题型探究例1证明设AB中点为O,连结OC,作OOJ/ AA1.以O为坐标原点,OB为x轴,OC为y轴,OO1为z轴建立如图所示的空间直角坐标系.:T由已知得A —1, 0, 0 ,B l 2, 0, 1 , ••• M 为BC 中点,•••赢=-4,屮AB i =(1,0,1),••• MN A B i =- 2+ 0 + 2= 0.4 4• MN 丄 AB i , • AB i 丄 MN.跟踪训练1 证明 •••直三棱柱 ABC — A i B i C i 底面三边长 AC = 3,BC = 4,AB = 5, • AC 丄BC , AC 、BC 、C i C 两两垂直.如图,以C 为坐标原点,CA 、CB 、CC i 所在直线分别为 x 轴、y 轴、z 轴建立空间直角坐标 系.则 C(0,0,0), A(3,0,0), C i (0,0,4) , B(0,4,0),BC i = (0, — 4,4),BC i = 0, • AC 丄 BC i .例2证明如图所示,取BC 的中点0,连结AO.C 0,空1,因为△ ABC为正三角形,所以AO丄BC.因为在正三棱柱ABC —A i B i C i中,平面ABC丄平面BCC i B i,且平面ABC门平面BCC i B i= BC,所以A0丄平面BCC i B i.取B i C i的中点O i,连结OO i,以0为原点,以OB, OO i, 0A分别为x轴,y轴,z轴的正方向建立空间直角坐标系,则B(i,0,0),D(—i,i,0),A i(0,2,.3),A(0,0,,3),B i(i,2,0).所以A B i= (i,2 , —.3),BA i = (—i,2 , . 3),B D = (—2,i,0).因为A B i B A i= i X (—i) + 2X 2+ (—. 3)X .3= 0.AB i BD = i X (—2) + 2 X i + (—3) X 0= 0.所以A B i±B A i, AB i丄BD ,即AB i 丄BA i, AB i 丄BD.又因为BA i n BD = B,所以AB i丄平面A i BD.跟踪训练 2 证明如图建系,C(i,0,0), A(0,i,0), P(0,0,i), B i(i,i,2), PC= (i,0,—i),PA= (0,i, —i), PB i= (i,i,i),4jB i C= (0, —1 , — 2),B i A= (—1,0 , —2).PB i PC = (1,1,1) (1,•,- 1) = 0, 所以見1丄PC,即PB1丄PC.又PB1 PA = (1,1,1) (0,1 , —1) = 0, 所以P B1± P A,即PB1 丄FA.又FA n PC= P,所以PB1丄平面PAC.例3证明由题意知直线AB, BC, B1B两两垂直,以点B为原点,分别以BA, BC, BB1所在直线为x,y, z轴,建立如图所示的空间直角坐标系,则A(2,0,0),A1(2,0,1),C(0,2,0),C1(0,2,1),E(0,0,扌),AC1= (—2,2,1),AC= (—2,2,0),故AA1= (0,0,1),AE= (—2,0 , 设平面AA1C1C的法向量为m = (x, y, z),令 x = 1,得 y = 1,故 n i = (1,1,0).设平面AEC 1的法向量为 n 2 = (a , b , c),| — 2a + 2b + c = 0, 即 1| — 2a + ^c = 0. 令 c = 4,得 a = 1, b =— 1,故 n 2= (1, — 1,4).因为 n 1 n 2= 1x 1+ 1 x (— 1) + 0 x 4= 0,所以 n 1 丄n 2 所以平面AEC 1丄平面AA 1C 1C. 跟踪训练3 证明 设AB = BC = CD = DA = AS = 1,建立如图所示的空间直角坐标系A — xyz ,1 1 1则 B(1,0,0), D(0,1,0), A(0,0,0), S(0,0,1), E (2, © 2),连结 AC ,设 AC 与 BD 相交于点 O ,1 1连结OE ,则点O 的坐标为g , 2 0).因为AS = (0,0,1), oE = (0,0, 2, 所以 OE =2AS ,所以 OE // A S.又因为 AS 丄平面ABCD ,所以OE 丄平面ABCD ,又OE?平面BDE ,所以平面 BDE 丄平面ABCD.当堂训练1.②③④2.垂直3.垂直4.垂直5.5[n i AA i = 0, 则f TI n i AC = 0, z = 0, 即 —2x + 2y = 0.仏 AC 1= 0,则n 2 AE = 0, S。
空间线面关系知识点总结
空间线面关系知识点总结空间线面关系是立体几何中的一个重要概念,它描述了空间中不同几何元素(点、线、面)之间的位置、相交、平行、垂直等关系。
在现实生活和工程技术中,了解空间线面关系的知识对于设计、建造、测量等工作至关重要。
本篇文章将介绍空间线面关系的相关知识,包括空间中点、直线、平面的性质和相互关系,以及空间中直线与面之间的位置关系、相交关系等内容。
希望通过本文的介绍,读者能够深入了解空间线面关系的基本概念和理论知识。
一、空间中点的性质和判断方法1. 点的基本性质:点是空间中最基本的几何元素,没有长度、面积和体积,只有位置。
任意两个点之间都有唯一确定的直线。
2. 点的判断方法:在空间中确定一个点的位置,通常可以使用坐标、投影、距离等方法进行判断。
3. 点的投影:点在不同平面上的投影是唯一确定的,可以通过点的投影确定点在不同平面上的位置关系。
二、空间中直线的性质和判断方法1. 直线的基本性质:直线是空间中的一条无限延伸的几何元素,没有宽度、厚度,只有长度。
两点确定一条直线,两条直线要么相交,要么平行。
2. 直线的判断方法:在空间中确定一条直线的位置,通常可以使用两点坐标、点斜式、截距式等方法进行判断。
3. 直线的位置关系:两条直线之间可能相交、平行、重合、垂直等不同的位置关系,这需要通过直线的方向、倾斜度、截距等参数来判断。
三、空间中平面的性质和判断方法1. 平面的基本性质:平面是空间中的一个二维几何元素,具有面积和形状,可以用三个非共线点来唯一确定一个平面。
平面可以用方程或者法向量来确定。
2. 平面的判断方法:在空间中确定一个平面的位置,通常可以使用三点确定法、一般方程、点法向式、截距式等方法进行判断。
3. 平面的位置关系:不同平面之间可能相交、平行、重合、垂直等不同的位置关系,这需要通过平面的法向量、倾斜度、截距等参数来判断。
四、空间中直线与平面的位置关系1. 直线与平面的相对位置:在空间中,一条直线与一个平面之间可能存在不同的位置关系,这需要通过直线的方向、平面的法向量等参数来判断。
内蒙古北重公司第三中学2025届高三3月份第一次模拟考试数学试卷含解析
内蒙古北重公司第三中学2025届高三3月份第一次模拟考试数学试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知函数21()log 1||f x x ⎛⎫=+ ⎪⎝⎭(lg )3f x >的解集为( ) A .1,1010⎛⎫ ⎪⎝⎭ B .1,(10,)10⎛⎫-∞⋃+∞ ⎪⎝⎭ C .(1,10) D .1,1(1,10)10⎛⎫⋃ ⎪⎝⎭2.△ABC 的内角A ,B ,C 的对边分别为,,a b c ,已知1,30a b B ===,则A 为( )A .60B .120C .60或150D .60或1203.已知直线,m n 和平面α,若m α⊥,则“m n ⊥”是“//n α”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .不充分不必要4.在明代程大位所著的《算法统宗》中有这样一首歌谣,“放牧人粗心大意,三畜偷偷吃苗青,苗主扣住牛马羊,要求赔偿五斗粮,三畜户主愿赔偿,牛马羊吃得异样.马吃了牛的一半,羊吃了马的一半.”请问各畜赔多少?它的大意是放牧人放牧时粗心大意,牛、马、羊偷吃青苗,青苗主人扣住牛、马、羊向其主人要求赔偿五斗粮食(1斗=10升),三畜的主人同意赔偿,但牛、马、羊吃的青苗量各不相同.马吃的青苗是牛的一半,羊吃的青苗是马的一半.问羊、马、牛的主人应该分别向青苗主人赔偿多少升粮食?( )A .2550100,,777B .252550,,1477C .100200400,,777D .50100200,,7775.如图是一个算法流程图,则输出的结果是( )A .3B .4C .5D .66.已知函数()()0x e f x x a a=->,若函数()y f x =的图象恒在x 轴的上方,则实数a 的取值范围为( ) A .1,e ⎛⎫+∞ ⎪⎝⎭ B .()0,e C .(),e +∞ D .1,1e ⎛⎫⎪⎝⎭7.已知,αβ是空间中两个不同的平面,,m n 是空间中两条不同的直线,则下列说法正确的是( )A .若,m n αβ⊂⊂,且αβ⊥,则 m n ⊥B .若,m n αα⊂⊂,且//,//m n ββ,则//αβC .若,//m n αβ⊥,且αβ⊥,则 m n ⊥D .若,//m n αβ⊥,且//αβ,则m n ⊥8.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有刍甍,下广三丈,袤四丈,上袤二丈,无广,高二丈,问:积几何?”其意思为:“今有底面为矩形的屋脊状的楔体,下底面宽3丈,长4丈,上棱长2丈,高2丈,问:它的体积是多少?”已知l 丈为10尺,该楔体的三视图如图所示,其中网格纸上小正方形边长为1,则该楔体的体积为( )A .10000立方尺B .11000立方尺C .12000立方尺D .13000立方尺9.某三棱锥的三视图如图所示,则该三棱锥的体积为A .23B .43C .2D .8310.已知命题p :任意4x ≥,都有2log 2x ≥;命题q :a b >,则有22a b >.则下列命题为真命题的是( )A .p q ∧B .()p q ∧⌝C .()()p q ⌝∧⌝D .()p q ⌝∨11.已知点2F 为双曲线222:1(0)4x y C a a -=>的右焦点,直线y kx =与双曲线交于A ,B 两点,若223AF B π∠=,则2AF B 的面积为( )A .22B .23C .2D .312.把函数2()sin f x x =的图象向右平移12π个单位,得到函数()g x 的图象.给出下列四个命题 ①()g x 的值域为(0,1]②()g x 的一个对称轴是12x π=③()g x 的一个对称中心是1,32π⎛⎫ ⎪⎝⎭④()g x 存在两条互相垂直的切线其中正确的命题个数是( )A .1B .2C .3D .4二、填空题:本题共4小题,每小题5分,共20分。
立体几何(线、面平行、垂直的有关结论)必修2 立体几何线面关系的判定与性质
立体几何(线面平行、垂直的有关结论)空间中线面平行、垂直关系有关的定理:1、【线面平行的判定】平面外的一条直线和平面内的一条直线平行,则这条直线和这个平面平行。
2、【线面平行的性质】如果一条直线和一个平面平行,经过这条直线的平面和这平面相交,那么这条直线就和两平面的交线平行。
3、如果一个平面内有两条相交直线分别平行于另一个平面,那么这两个平面平行。
4、如果两个平面平行,其中一个平面内的任意一条直线平行于另一个平面。
5、如果一个平面内的两条相交直线分别平行于另一个平面内的两条相交直线,那么这两个平面平行。
6、如果两个平行平面同时与第三个平面相交,那么它们的交线平行。
7、一条直线与两条平行直线中的一条直线相垂直,则这条直线也与另一条直线垂直。
8、与同一条直线都垂直的两条直线相互平行。
()9、与同一个平面都垂直的两条直线相互平行。
10、两条平行直线中的一条直线与一个平面相垂直,则另一条直线也垂直于这个平面。
11、两条相互垂直的直线中的一条平行于一个平面,则另一条直线垂直于这个平面。
()12、两条相互垂直的直线中的一条垂直于以个平面,则另一条直线平行于这个平面。
()13、平面外的两条相互垂直的直线中的一条垂直于一个平面,则另一条直线平行于这个平面。
14、一条直线垂直于两个平行平面中的一个平面,那么该直线也垂直于另一个平面。
15、如果两个平面垂直于同一条直线,那么这两个平面平行。
16、两个平面都与另一个平面相垂直,则这两个平面平行。
()17、一个平面垂直于两平行平面中的一个平面,则此平面也垂直于另一个平面。
18、如果一条直线与平面内的两条相交直线都垂直,则这条直线与这个平面垂直。
19、如果一条直线垂直于一个平面,那么这条直线垂直于该平面内的任意一条直线。
20、如果一个平面过另一个平面的一条垂线,则这两个平面互相垂直。
21、如果两个平面互相垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面。
【知识归纳】:【典型例题】:【高考小题】:。
空间线面关系的判定(2)
课题:空间线面关系的判定〔2〕主讲人 X 伟锋教学目标:1.能用向量语言描述线线、线面、面面的平行与垂直关系; 2.能用向量方法判断空间线面平行与垂直关系。
教学重点:用向量方法判断空间线面平行与垂直关系 教学难点:用向量方法判断空间线面平行与垂直关系 教学过程 一、复习引入1、用向量研究空间线面关系,设空间两条直线21,l l 的方向向量分别为21,e e ,两个平面21,αα的法向量分别为21,n n ,那么由如下结论二、数学运用 1、例 4 如图,矩形ABCD 和矩形ADEF 所在平面互相垂直,点N M ,分别在对角线AE BD ,上,且AE AN BD BM 31,31==,求证://MN 平面CDE证明:建立如下图空间坐标系,设AB,AD,AF 长分别为3a ,3b ,3c),0,2(c a BM AB NA NM -=++=又平面CDE 的一个法向量)0,3,0(b AD = 由0=⋅AD NM得到AD NM⊥因为MN 不在平面CDE 内 所以NM//平面CDE2、例5在正方体1111D C B A ABCD -中,E,F 分别是BB 1,,CD 中点,求证:D 1F ⊥平面ADE证明:设正方体棱长为1,建立如下图坐标系D -xyz)0,0,1(=DA ,)21,,1,1(=DE因为)1,21,0(1-=F D所以0,011=⋅=⋅DE F D DA F DDE F D DA F D ⊥⊥11,D DA DE =所以⊥FD 1平面ADE3、补充 (2004年某某高考理科试题)如图,在底面是菱形的四棱锥P —ABCD 中,︒=∠60ABC ,,2,a PD PB a AC PA ====点E 在PD 上,且PE :ED = 2: 1.(Ⅲ)在棱PC 上是否存在一点F, 使BF ∥平面AEC?证明你的结论.该问为探索性问题,作为高考立体几何解答题的最后一问,用传统方法求解有相当难度,但使如果我们建立如下图空间坐标系,借助空间向量研究该问题,不难得到如下解答:根据题设条件,结合图形容易得到:)3,32,0(,),,0(,)0,2,23(a a E a a D a a B - ),0,0(,)0,2,23(a P a a C),2,23(a aa CP --=假设存在点FCP CF λ=),2,23(a aa λλλ--=。
空间点线面位置关系及平行判定及性质
空间点线面位置关系及平行判定及性质【知识点梳理】1.平面的基本性质公理1 如果一条直线上的两个点都在一个平面内,那么这条直线上的所有点都在这个平面内A,B llA,B2.平面的基本性质公理2(确定平面的依据)经过不在一条直线上的三个点,有且只有一个平面3.平面的基本性质公理2 的推论(1)经过一条直线和直线外的一点,有且只有一个平面(2)经过两条相交直线,有且只有一个平面(3)经过两条平行直线,有且只有一个平面4.平面的基本性质公理3如果两个不重合的平面有一个公共点,那么它们还有其他公共点,这些公共点的集合是一条直线A I lA A l5.异面直线的定义与判定(1)定义:不同在任何一个平面内的两条直线,既不相交也不平行(2)判定:过平面外一点与平面内一点的直线,与平面内不经过该点的直线是异面直线6.直线与直线平行(1)平行四边形ABCD (矩形,菱形,正方形)对边平行且相等,AB//CD ,BC//AD(2)三角形的中位线E, F分别是AB, AC的中点中位线平行且等于底边的一半,EF//BC(3)线面平行的性质定理如果一条直线和一个平面平行,经过这条直线的一个平面和这个平面相交,那么这条直线和交线平行l // ,l ,I m l //m(4)面面平行的性质定理如果两个平行的平面同时与第三个平面相交,则它们的交线平行/ / ,I a ,I b a/ /b5)线面垂直的性质定理如果两条直线同垂直于一个平面,则这两条直线平行a ,b a//b7.直线与平面平行(1)线面平行的判定定理如果不在平面内的一条直线和平面内的一条直线平行,那么这条直线和这个平面平行a ,b ,a//b a//(2)面面平行的性质定理如果两个平面互相平行,那么一个平面内的任一直线都平行于另一个平面/ / ,a a/ /8.平面与平面平行(1)面面平行的判定定理如果一个平面内有两条相交直线,分别平行于另一个平面,那么这两个平面平行a ,b ,aI b A,a// ,b// //(2)垂直于同一直线的两个平面互相平行a ,a / /【典型例题】题型一:点线面的关系用符号表示、判断异面直线例1.给定下列四个命题①a, b ,a// , b////②a,a③丨m, 丨 nm/ /n④,I丨, a , a 丨a其中,为真命题的是A. ①和②B. ②和③C. ③和④D. ②和④变式1.给出下列关于互不相同的直线l,m, n和平面, , 的三个命题①若l, m为异面直线,丨m ,则/ / ;②若/ / , 丨, m,则丨 / /m ;③若I 丨, I m,I n, 丨 / /,则m/ /n其中真命题的个数为A.3 B.2C.1D.0题型二:以中位线为突破口的平行证明问题例2 .如图,在四面体PABC中, AP, AC,BC, PB的中点,求证:PC AB, PA BC,点D, E, F, G分别是棱DE//平面BCP变式1.如图,在四面体PABC中,PC AP, AC , BC, PB的中点,求证:四边形行四边形AB, PAEEFG为平BC,点D, E, F, G分别是棱变式2.如图,在直三棱柱ABC A1B1C1中, BAC 90°, AB AC AA1 1 ,延长AG 至点P,使C1P A1C1,连接AP交棱CC1于D •求证:PB //平面BDA1;题型三:以平行四边形为突破口的平行证明问题例3•如图,正方形ABCD和四边形ACEF所在的平面互相垂直,EF//AC , AB ,2 ,CE EF 1,求证:AF //平面BDE变式1 •在三棱柱ABC A1B1C1中,直线AA与底面ABC所成的角是直角,直线AB与3G所成的角为45°, BAC 90°,且AB AA1, D,E,F分别为BA C®, BC的中点.求证:DE //平面ABC ;题型四:三种平行之间的相互关系与转化例4.如图所示,圆柱的高为2, PA是圆柱的母线,ABCD为矩形,AB 2, BC 4 ,E,F,G分别是线段PA, PD, CD的中点,求证:PB//面EFG ;C变式1如图,在长方体ABCD A, B1C1D1中,E, P分别是BC’AQ的中点,M,N分别是AE,D i C 的中点,AB 2a , AD AA i a,求证:MN //面ADD i A i题型五:探究性问题例5.如图所示,直棱柱ABCD A1B1C1D1中,底面ABCD是直角梯形,BAD 90°, AB 2 , AD CD 1,在线段AB上是否存在点P (异于A, B两点),使得CP//平面ABiGD i ?证明你的结论变式1.如图,直三棱柱ABB1 DCC1中,ABB i 90°, AB 4, BC 2, CC i 1 , DC 上有一动点P , CC i上有一动点Q,讨论:无论P,Q在何处,都有PQ//平面ABB i,并证明你的结论【方法与技巧总结】1.熟记立体几何证明中的多个公理,推理,判定定理以及性质定理2.熟练掌握空间中点线面的位置关系的符号表示,并能够适当灵活转化为中文以便理解,在此建立空间的想象能力和空间感,进一步把符号转化为立体图象加以记忆3.熟记平行证明中常用的判定定理和性质定理,特别重视三角形中位线定理和平行四边形性质定理的应用4.应用三角形中位线定理和平行四边形性质定理,证明线线平行,从而得出线面平行或面面平行,重视线线平行证明的重要性5.掌握线性平行,线面平行,面面平行三者之间的相互转化【巩固练习】1.下面命题中正确的是( ).①若一个平面内有两条直线与另一个平面平行,则这两个平面平行;②若一个平面内有无数条直线与另一个平面平行,则这两个平面平行;③若一个平面内任何一条直线都平行于另一个平面,则这两个平面平行;④若一个平面内的两条相交直线分别与另一个平面平行,则这两个平面平行.A •①③B •②④C •②③④ D•③④2. 平面a//平面B, a? a, b? B,贝U直线a,b的位置关系是().A .平行B .相交C .异面D .平行或异面3. 在空间中,下列命题正确的是( ).A.若a / a, b/ a,则b/ aB.若a/ a, b/ a, a? B b? B 贝U aC.若all B b / a,则b / BD.若all B a? a,则a / B4. 已知m、n为两条不同的直线,a、B为两个不同的平面,贝U下列命题中正确的是( ).A. m l n, m l a? n丄aB. all B, m? a, n? B? m/ nC. m± a, m±n? n// aD. m? a, n? a, m// B, n// B? all B5. 在正方体ABCDA i B i C i D i中,E是DD i的中点,贝U BD i与平面ACE的位置关系为_________ .解答题:1、如图,在四棱锥PABCD中,底面ABCD为平行四边形,0为AC的中点,M为PD的中点.求证:PB//平面ACM.2、如图,若PA丄平面ABCD,四边形ABCD是矩形,E、F分别是AB、PD的中点,求证:AF//平面PCE.3、如图,在正方体ABCDA i B i C i D i中,M、N、P分别为所在边的中点. 求证:平面MNP //平面A i C i B;岛__________ U4、如图,在三棱柱ABCA i B i C i 中,E, F, G, H 分别是AB, AC, A1B1, A1C1 的中点,求证:(1)B, C, H , G四点共面;(2)平面EFA i II平面BCHG.5、如图所示,在三棱柱ABCA i B i C i中,A i A丄平面ABC,若D是棱CC i的中点, 问在棱AB上是否存在一点E,使DE I平面AB i C i?若存在,请确定点E的位置; 若不存在,请说明理由.6如图,在四棱锥FABCD中,底面是平行四边形,PA丄平面ABCD,点M、N 分别为BC、FA的中点•在线段PD上是否存在一点E,使NM I平面ACE? 若存在,请确定点E的位置;若不存在,请说明理由.。
3.2.1直线的方向向量、平面的法向量以及空间线面关系的判定
e
A
B
二、平面的法向量
由于垂直于同一平面的直线是互相平行的, 所以,可以 用垂直于平面的直线的方向向量来刻画平面的“方向”。 平面的法向量:如果表示向量 n 的有向线段所在直线垂 直于平面 ,则称这个向量垂直于平面 ,记作 n ⊥ , 如果 n⊥ ,那 么 向 量 n 叫做平面 的法向量.
线面平行 l1 // 1 e1 n1 e1 n1 0 ;
面面平行 1 // 2 n1 // n2 n1 n2 .
注意:这里的线线平行包括线线重合,线面平行 法向量为n (a2 , b2 , c2 ),则 包括线在面内,面面平行包括面面重合 .
设直线l的方向向量为e (a1 , b1 , c1 ), 平面的
1 2 2 求平面ABC的单位法向量为 ( , - ,) 3 3 3
1 n ( , 1,1), 2
3 | n | 2
练习 , 在 空 间 直 角 坐 标 系 中 , 已 知 A(3, 0, 0), B(0, 4, 0) , C (0,0, 2) ,试求平面 ABC 的一个法 向量.
由两个三元一次方程 组成的方程组的解是 解:设平面的法向量为n (x,y,z), 不惟一的,为方便起 见,取z=1较合理。 则n AB , n AC 其实平面的法向量不 是惟一的。 (x,y,z) (2, 2,1) 0,
单位法向量。
(x,y,z) (4,5,3) 0,
1 2 x 2 y z 0 x 即 , 取z 1,得 2 4 x 5 y 3 z 0 y 1
l // e n 0 a1a2 b1b2 c1c2 0;
l1
e1
e2
空间中的平行与垂直专题
空间中的平行与垂直专题[考情考向分析] 1.以选择题、填空题的形式考查,主要利用平面的基本性质及线线、线面和面面平行和垂直的判定定理与性质定理对命题的真假进行判断,属于基础题.2.以解答题的形式考查,主要是对线线、线面与面面平行和垂直关系的交汇综合命题,且多以棱柱、棱锥、棱台或其简单组合体为载体进行考查,难度中档.热点一空间线面位置关系的判定空间线面位置关系判断的常用方法(1)根据空间线面平行、垂直关系的判定定理和性质定理逐项判断来解决问题.(2)必要时可以借助空间几何模型,如从长方体、四面体等模型中观察线面位置关系,并结合有关定理来进行判断.例1 (1)已知直线l,m与平面α,β,l⊂α,m⊂β,则下列命题中正确的是( ) A.若l∥m,则必有α∥βB.若l⊥m,则必有α⊥βC.若l⊥β,则必有α⊥βD.若α⊥β,则必有m⊥αB,C,D∉直线l,M,N分别是线段AB,CD的中点.下列判断正确的是( )A.当CD=2AB时,M,N两点不可能重合B.M,N两点可能重合,但此时直线AC与l不可能相交C.当AB与CD相交,直线AC平行于l时,直线BD可以与l相交D.当AB,CD是异面直线时,直线MN可能与l平行跟踪演练1 (1)(2018·揭阳模拟)已知直线a,b,平面α,β,γ,下列命题正确的是( ) A.若α⊥γ,β⊥γ,α∩β=a,则a⊥γB.若α∩β=a,α∩γ=b,β∩γ=c,则a∥b∥cC.若α∩β=a,b∥a,则b∥αD.若α⊥β,α∩β=a,b∥α,则b∥a(2)若直线l1和l2是异面直线,l1在平面α内,l2在平面β内,l是平面α与平面β的交线,则下列命题正确的是A.l与l1,l2都相交 B.l与l1,l2都不相交C.l至少与l1,l2中的一条相交 D.l至多与l1,l2中的一条相交热点二空间平行、垂直关系的证明空间平行、垂直关系证明的主要思想是转化,即通过判定定理、性质定理将线线、线面、面面之间的平行、垂直关系相互转化.例2 (1)如图,三棱柱ABC-A1B1C1的各棱长均为2,AA1⊥平面ABC,E,F分别为棱A1B1,BC 的中点.①求证:直线BE∥平面A1FC1;②平面A1FC1与直线AB交于点M,指出点M的位置,说明理由,并求三棱锥B-EFM的体积.(2)如图,在四棱锥P-ABCD中,底面ABCD是边长为a的菱形,PD⊥平面ABCD,∠BAD=60°,PD=2a,O为AC与BD的交点,E为棱PB上一点.①证明:平面EAC⊥平面PBD;②若PD∥平面EAC,三棱锥P-EAD的体积为183,求a的值.思维升华垂直、平行关系的基础是线线垂直和线线平行,常用方法如下:(1)证明线线平行常用的方法:一是利用平行公理,即证两直线同时和第三条直线平行;二是利用平行四边形进行平行转换;三是利用三角形的中位线定理证明线线平行;四是利用线面平行、面面平行的性质定理进行平行转换.(2)证明线线垂直常用的方法:①利用等腰三角形底边中线即高线的性质;②勾股定理;③线面垂直的性质,即要证线线垂直,只需证明一条直线垂直于另一条直线所在的平面即可,l ⊥α,a⊂α⇒l⊥a.跟踪演练2 如图,在四棱锥P-ABCD中,∠ADB=90°,CB=CD,点E为棱PB的中点.(1)若PB=PD,求证:PC⊥BD;(2)求证:CE∥平面PAD.热点三平面图形的翻折问题平面图形经过翻折成为空间图形后,原有的性质有的发生变化,有的没有发生变化,这些发生变化和没有发生变化的性质是解决问题的关键.一般地,在翻折后还在一个平面上的性质不发生变化,不在同一个平面上的性质发生变化,解决这类问题就是要根据这些变与不变,去研究翻折以后的空间图形中的线面关系和各类几何量的度量值,这是解决翻折问题的主要方法.例3 (2018·北京海淀区期末)如图1,已知菱形AECD 的对角线AC ,DE 交于点F ,点E 为AB 中点.将△ADE 沿线段DE 折起到△PDE 的位置,如图2所示.(1)求证:DE ⊥平面PCF ; (2)求证:平面PBC ⊥平面PCF ;(3)在线段PD ,BC 上是否分别存在点M ,N ,使得平面CFM ∥平面PEN ?若存在,请指出点M ,N 的位置,并证明;若不存在,请说明理由.思维升华 (1)折叠问题中不变的数量和位置关系是解题的突破口.(2)存在探索性问题可先假设存在,然后在此前提下进行逻辑推理,得出矛盾则否定假设,否则给出肯定结论.跟踪演练3 (2018·北京朝阳区模拟)如图,在△PBE 中,AB ⊥PE ,D 是AE 的中点,C 是线段BE 上的一点,且AC =5,AB =AP =12AE =2,将△PBA 沿AB 折起使得二面角P -AB -E 是直二面角.(1)求证:CD ∥平面PAB ; (2)求三棱锥E -PAC 的体积.真题体验1.如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直线AB与平面MNQ不平行的是________.(填序号)2.如图,在三棱锥A—BCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,点E,F(E与A,D 不重合)分别在棱AD,BD上,且EF⊥AD.求证:(1)EF∥平面ABC;(2)AD⊥AC.押题预测1.不重合的两条直线m,n分别在不重合的两个平面α,β内,下列为真命题的是( ) A.m⊥n⇒m⊥βB.m⊥n⇒α⊥βC.α∥β⇒m∥βD.m∥n⇒α∥β2.如图(1),在正△ABC中,E,F分别是AB,AC边上的点,且BE=AF=2CF.点P为边BC上的点,将△AEF沿EF折起到△A1EF的位置,使平面A1EF⊥平面BEFC,连接A1B,A1P,EP,如图(2)所示.(1)求证:A1E⊥FP;(2)若BP=BE,点K为棱A1F的中点,则在平面A1FP上是否存在过点K的直线与平面A1BE平行,若存在,请给予证明;若不存在,请说明理由.押题依据以平面图形的翻折为背景,探索空间直线与平面位置关系,可以考查考生的空间想象能力和逻辑推理能力,预计将成为今年高考的命题方向.A组专题通关1.(2018·北京朝阳区模拟)已知α,β是两个不同的平面,l是一条直线,给出下列说法:①若l⊥α,α⊥β,则l∥β;②若l∥α,α∥β,则l∥β;③若l⊥α,α∥β,则l⊥β;④若l∥α,α⊥β,则l⊥β.其中说法正确的个数为( )A.3 B.2 C.1 D.42.如图,G,H,M,N分别是正三棱柱的顶点或所在棱的中点,则表示GH,MN是异面直线的图形的序号为( )A .①②B .③④C .①③D .②④3.(2018·抚顺模拟)给出下列四个命题:①如果平面α外一条直线a 与平面α内一条直线b 平行,那么a ∥α;②过空间一定点有且只有一条直线与已知平面垂直;③如果一条直线垂直于一个平面内的无数条直线,那么这条直线与这个平面垂直; ④若两个相交平面都垂直于第三个平面,则这两个平面的交线垂直于第三个平面. 其中真命题的个数为( )A .1B .2C .3D .44.在长方体ABCD -A 1B 1C 1D 1中,AB =BC =1,AA 1=3,则异面直线AD 1与DB 1所成角的余弦值为( )A.15B.56C.55D.225.对于四面体A —BCD ,有以下命题:①若AB =AC =AD ,则AB ,AC ,AD 与底面所成的角相等;②若AB ⊥CD ,AC ⊥BD ,则点A 在底面BCD 内的射影是△BCD 的内心;③四面体A —BCD 的四个面中最多有四个直角三角形;④若四面体A —BCD 的6条棱长都为1,则它的内切球的表面积为π6. 其中正确的命题是( )A .①③B .③④C .①②③D .①③④6.已知m ,n ,l 1,l 2表示不同的直线,α,β表示不同的平面,若m ⊂α,n ⊂α,l 1⊂β,l 2⊂β,l 1∩l 2=M ,则α∥β的一个充分条件是( )A .m ∥β且l 1∥αB .m ∥β且n ∥βC .m ∥β且n ∥l 2D .m ∥l 1且n ∥l 27.长方体的体对角线与过同一个顶点的三个表面所成的角分别为α,β,γ,则cos2α+cos2β+cos2γ=________.8.如图,在三棱柱ABC-A1B1C1中,侧棱AA1⊥底面ABC,底面是以∠ABC为直角的等腰直角三角形,AC=2a,BB1=3a,点D是A1C1的中点,点F在线段AA1上,当AF=________时,CF⊥平面B1DF.9.如图所示的多面体中,底面ABCD为正方形,△GAD为等边三角形,BF⊥平面ABCD,∠GDC =90°,点E是线段GC上除两端点外的一点,若点P为线段GD的中点.(1)求证:AP⊥平面GCD;(2)求证:平面ADG∥平面FBC.10.在梯形ABCD中(图1),AB∥CD,AB=2,CD=5,过A,B分别作CD的垂线,垂足分别为E,F,已知DE=1,AE=2,将梯形ABCD沿AE,BF同侧折起,使得AF⊥BD,DE∥CF,得空间几何体ADE-BCF(图2).(1)证明:BE∥平面ACD;(2)求三棱锥E-ACD的体积.B组能力提高11.已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为( )A.334B.233C.324D.3212.已知正三棱柱ABC-A1B1C1的所有棱长都相等,M,N分别为B1C1,BB1的中点.现有下列四个结论:p1:AC1∥MN;p2:A1C⊥C1N;p3:B1C⊥平面AMN;p4:异面直线AB与MN所成角的余弦值为24.其中正确的结论是( )A.p1,p2 B.p2,p3 C.p2,p4 D.p3,p413.如图,多面体ABCB1C1D是由三棱柱ABC-A1B1C1截去一部分后而成,D是AA1的中点.(1)若F在CC1上,且CC1=4CF,E为AB的中点,求证:直线EF∥平面C1DB1;(2)若AD=AC=1,AD⊥平面ABC,BC⊥AC,求点C到平面B1C1D的距离.14.如图,矩形AB′DE(AE=6,DE=5),被截去一角(即△BB′C),AB=3,∠ABC=135°,平面PAE⊥平面ABCDE,PA+PE=10.(1)求五棱锥P-ABCDE的体积的最大值;(2)在(1)的情况下,证明:BC⊥PB.答案热点一空间线面位置关系的判定空间线面位置关系判断的常用方法(1)根据空间线面平行、垂直关系的判定定理和性质定理逐项判断来解决问题.(2)必要时可以借助空间几何模型,如从长方体、四面体等模型中观察线面位置关系,并结合有关定理来进行判断.例1 (1)已知直线l,m与平面α,β,l⊂α,m⊂β,则下列命题中正确的是( ) A.若l∥m,则必有α∥βB.若l⊥m,则必有α⊥βC.若l⊥β,则必有α⊥βD.若α⊥β,则必有m⊥α答案 C解析对于选项A,平面α和平面β还有可能相交,所以选项A错误;对于选项B,平面α和平面β还有可能相交且不垂直或平行,所以选项B错误;对于选项C,因为l⊂α,l⊥β,所以α⊥β,所以选项C正确;对于选项D,直线m可能和平面α平行或相交,所以选项D 错误.(2)如图,平面α⊥平面β,α∩β=l,A,C是α内不同的两点,B,D是β内不同的两点,且A,B,C,D∉直线l,M,N分别是线段AB,CD的中点.下列判断正确的是( )A.当CD=2AB时,M,N两点不可能重合B.M,N两点可能重合,但此时直线AC与l不可能相交C.当AB与CD相交,直线AC平行于l时,直线BD可以与l相交D.当AB,CD是异面直线时,直线MN可能与l平行答案 B解析由于直线CD的两个端点都可以动,所以M,N两点可能重合,此时两条直线AB,CD 共面,由于两条线段互相平分,所以四边形ACBD是平行四边形,因此AC∥BD,而BD⊂β,AC⊄B,所以由线面平行的判定定理可得AC∥β,又因为AC⊂α,α∩β=l,所以由线面平行的性质定理可得AC∥l,故选B.思维升华解决空间点、线、面位置关系的组合判断题,主要是根据平面的基本性质、空间位置关系的各种情况,以及空间线面垂直、平行关系的判定定理和性质定理进行判断,必要时可以利用正方体、长方体、棱锥等几何模型辅助判断,同时要注意平面几何中的结论不能完全引用到立体几何中.跟踪演练1 (1)(2018·揭阳模拟)已知直线a,b,平面α,β,γ,下列命题正确的是( ) A.若α⊥γ,β⊥γ,α∩β=a,则a⊥γB.若α∩β=a,α∩γ=b,β∩γ=c,则a∥b∥cC.若α∩β=a,b∥a,则b∥αD.若α⊥β,α∩β=a,b∥α,则b∥a答案 A解析A中,若α⊥γ,β⊥γ,α∩β=a,则a⊥γ,该说法正确;B中,若α∩β=a,α∩γ=b,β∩γ=c,在三棱锥P-ABC中,令平面α,β,γ分别为平面PAB,PAC,PBC,交线a,b,c为PA,PB,PC,不满足a∥b∥c,该说法错误;C中,若α∩β=a,b∥a,有可能b⊂α,不满足b∥α,该说法错误;D中,若α⊥β,α∩β=a,b∥α,正方体ABCD-A1B1C1D1中,取平面α,β为平面ABCD,ADD1A1,直线b为A1C1,满足b∥α,不满足b∥a,该说法错误.(2)(2018·上海市长宁、嘉定区调研)若直线l1和l2是异面直线,l1在平面α内,l2在平面β内,l是平面α与平面β的交线,则下列命题正确的是A.l与l1,l2都相交B.l与l1,l2都不相交C.l至少与l1,l2中的一条相交D.l至多与l1,l2中的一条相交答案 C解析方法一如图1,l1与l2是异面直线,l1与l平行,l2与l相交,故A,B不正确;如图2,l1与l2是异面直线,l1,l2都与l相交,故D不正确,故选C.方法二因为l分别与l1,l2共面,故l与l1,l2要么都不相交,要么至少与l1,l2中的一条相交.若l与l1,l2都不相交,则l∥l1,l∥l2,从而l1∥l2,与l1,l2是异面直线矛盾,故l至少与l1,l2中的一条相交,故选C.热点二空间平行、垂直关系的证明空间平行、垂直关系证明的主要思想是转化,即通过判定定理、性质定理将线线、线面、面面之间的平行、垂直关系相互转化.例2 (1)(2018·资阳模拟)如图,三棱柱ABC-A1B1C1的各棱长均为2,AA1⊥平面ABC,E,F 分别为棱A1B1,BC的中点.①求证:直线BE∥平面A1FC1;②平面A1FC1与直线AB交于点M,指出点M的位置,说明理由,并求三棱锥B-EFM的体积.①证明取A1C1的中点G,连接EG,FG,∵点E 为A 1B 1的中点, ∴EG ∥B 1C 1 且EG =12B 1C 1,∵F 为BC 中点, ∴BF ∥B 1C 1且BF =12B 1C 1,所以BF ∥EG 且BF =EG .所以四边形BFGE 是平行四边形, 所以BE ∥FG ,又BE ⊄平面A 1FC 1,FG ⊂平面A 1FC 1, 所以直线BE ∥平面A 1FC 1. ②解 M 为棱AB 的中点. 理由如下:因为AC ∥A 1C 1,AC ⊄平面A 1FC 1,A 1C 1⊂平面A 1FC 1, 所以直线AC ∥平面A 1FC 1, 又平面A 1FC 1∩平面ABC =FM , 所以AC ∥FM . 又F 为棱BC 的中点, 所以M 为棱AB 的中点. △BFM 的面积S △BFM =14S △ABC=14×12×2×2×sin 60°=34,所以三棱锥B-EFM的体积V B-EFM=V E-BFM=13×34×2=36.(2)(2018·衡水调研)如图,在四棱锥P-ABCD中,底面ABCD是边长为a的菱形,PD⊥平面ABCD,∠BAD=60°,PD=2a,O为AC与BD的交点,E为棱PB上一点.①证明:平面EAC⊥平面PBD;②若PD∥平面EAC,三棱锥P-EAD的体积为183,求a的值.①证明因为PD⊥平面ABCD,AC⊂平面ABCD,所以PD⊥AC.又四边形ABCD为菱形,所以AC⊥BD,又PD∩BD=D,PD,BD⊂平面PBD,所以AC⊥平面PBD.又AC⊂平面EAC,所以平面EAC⊥平面PBD.②解连接OE.因为PD ∥平面EAC ,平面EAC ∩平面PBD =OE , 所以PD ∥OE . 又AC ∩BD =O ,所以O 是BD 的中点,所以E 是PB 的中点. 因为四边形ABCD 是菱形,且∠BAD =60°, 所以取AD 的中点H ,连接BH , 可知BH ⊥AD ,又因为PD ⊥平面ABCD ,BH ⊂平面ABCD , 所以PD ⊥BH .又PD ∩AD =D ,PD ,AD ⊂平面PAD , 所以BH ⊥平面PAD . 由于AB =a ,所以BH =32a . 因此点E 到平面PAD 的距离d =12BH =12×32a =34a , 所以V P -EAD =V E -PAD =13S △PAD ×d =13×12×a ×2a ×34a =312a 3=18 3.解得a =6.思维升华 垂直、平行关系的基础是线线垂直和线线平行,常用方法如下:(1)证明线线平行常用的方法:一是利用平行公理,即证两直线同时和第三条直线平行;二是利用平行四边形进行平行转换;三是利用三角形的中位线定理证明线线平行;四是利用线面平行、面面平行的性质定理进行平行转换.(2)证明线线垂直常用的方法:①利用等腰三角形底边中线即高线的性质;②勾股定理;③线面垂直的性质,即要证线线垂直,只需证明一条直线垂直于另一条直线所在的平面即可,l ⊥α,a⊂α⇒l⊥a.跟踪演练2 如图,在四棱锥P-ABCD中,∠ADB=90°,CB=CD,点E为棱PB的中点.(1)若PB=PD,求证:PC⊥BD;(2)求证:CE∥平面PAD.证明(1)取BD的中点O,连接CO,PO,因为CD=CB,所以△CBD为等腰三角形,所以BD⊥CO.因为PB=PD,所以△PBD为等腰三角形,所以BD⊥PO.又PO∩CO=O,PO,CO⊂平面PCO,所以BD⊥平面PCO.因为PC⊂平面PCO,所以PC⊥BD.(2)由E为PB的中点,连接EO,则EO∥PD,又EO⊄平面PAD,PD⊂平面PAD,所以EO∥平面PAD.由∠ADB=90°及BD⊥CO,可得CO∥AD,又CO⊄平面PAD,AD⊂平面PAD,所以CO∥平面PAD.又CO∩EO=O,CO,EO⊂平面COE,所以平面CEO∥平面PAD,而CE⊂平面CEO,所以CE∥平面PAD.热点三平面图形的翻折问题平面图形经过翻折成为空间图形后,原有的性质有的发生变化,有的没有发生变化,这些发生变化和没有发生变化的性质是解决问题的关键.一般地,在翻折后还在一个平面上的性质不发生变化,不在同一个平面上的性质发生变化,解决这类问题就是要根据这些变与不变,去研究翻折以后的空间图形中的线面关系和各类几何量的度量值,这是解决翻折问题的主要方法.例3 (2018·北京海淀区期末)如图1,已知菱形AECD的对角线AC,DE交于点F,点E为AB 中点.将△ADE沿线段DE折起到△PDE的位置,如图2所示.(1)求证:DE⊥平面PCF;(2)求证:平面PBC⊥平面PCF;(3)在线段PD,BC上是否分别存在点M,N,使得平面CFM∥平面PEN?若存在,请指出点M,N的位置,并证明;若不存在,请说明理由.(1)证明折叠前,因为四边形AECD为菱形,所以AC⊥DE,所以折叠后,DE⊥PF,DE⊥CF,又PF∩CF=F,PF,CF⊂平面PCF,所以DE⊥平面PCF.(2)证明因为四边形AECD为菱形,所以DC∥AE,DC=AE.又点E为AB的中点,所以DC∥EB,DC=EB,所以四边形DEBC为平行四边形,所以CB∥DE.又由(1)得,DE⊥平面PCF,所以CB⊥平面PCF.因为CB⊂平面PBC,所以平面PBC⊥平面PCF.(3)解存在满足条件的点M,N,且M,N分别是PD和BC的中点.如图,分别取PD和BC的中点M,N.连接EN,PN,MF,CM.因为四边形DEBC为平行四边形,所以EF∥CN,EF=12BC=CN,所以四边形ENCF为平行四边形,所以FC ∥EN .在△PDE 中,M ,F 分别为PD ,DE 的中点, 所以MF ∥PE .又EN ,PE ⊂平面PEN ,PE ∩EN =E ,MF ,CF ⊂平面CFM ,MF ∩CF =F , 所以平面CFM ∥平面PEN .思维升华 (1)折叠问题中不变的数量和位置关系是解题的突破口.(2)存在探索性问题可先假设存在,然后在此前提下进行逻辑推理,得出矛盾则否定假设,否则给出肯定结论.跟踪演练3 (2018·北京朝阳区模拟)如图,在△PBE 中,AB ⊥PE ,D 是AE 的中点,C 是线段BE 上的一点,且AC =5,AB =AP =12AE =2,将△PBA 沿AB 折起使得二面角P -AB-E 是直二面角.(1)求证:CD ∥平面PAB ; (2)求三棱锥E -PAC 的体积. (1)证明 因为12AE =2,所以AE =4,又AB =2,AB ⊥PE , 所以BE =AB 2+AE 2=22+42=25,又因为AC =5=12BE ,所以AC 是Rt △ABE 的斜边BE 上的中线, 所以C 是BE 的中点, 又因为D 是AE 的中点, 所以CD 是Rt △ABE 的中位线, 所以CD ∥AB ,又因为CD ⊄平面PAB ,AB ⊂平面PAB , 所以CD ∥平面PAB .(2)解 由(1)知,直线CD 是Rt △ABE 的中位线, 所以CD =12AB =1,因为二面角P -AB -E 是直二面角,平面PAB ∩平面EAB =AB ,PA ⊂平面PAB ,PA ⊥AB , 所以PA ⊥平面ABE , 又因为AP =2,所以V E -PAC =V P -ACE =13×12×AE ×CD ×AP=13×12×4×1×2=43.真题体验1.(2017·全国Ⅰ改编)如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q 为所在棱的中点,则在这四个正方体中,直线AB与平面MNQ不平行的是________.(填序号)答案(1)解析对于(1),作如图①所示的辅助线,其中D为BC的中点,则QD∥AB. ∵QD∩平面MNQ=Q,∴QD与平面MNQ相交,∴直线AB与平面MNQ相交;对于(2),作如图②所示的辅助线,则AB∥CD,CD∥MQ,∴AB∥MQ,又AB⊄平面MNQ,MQ⊂平面MNQ,∴AB∥平面MNQ;对于(3),作如图③所示的辅助线,则AB∥CD,CD∥MQ,∴AB∥MQ,又AB⊄平面MNQ,MQ⊂平面MNQ,∴AB∥平面MNQ;对于(4),作如图④所示的辅助线,则AB∥CD,CD∥NQ,∴AB∥NQ,又AB⊄平面MNQ,NQ⊂平面MNQ,∴AB∥平面MNQ.2.(2017·江苏)如图,在三棱锥A—BCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,点E,F(E与A,D不重合)分别在棱AD,BD上,且EF⊥AD.求证:(1)EF∥平面ABC;(2)AD⊥AC.证明(1)在平面ABD内,因为AB⊥AD,EF⊥AD,所以AB∥EF.又EF⊄平面ABC,AB⊂平面ABC,所以EF∥平面ABC.(2)因为平面ABD⊥平面BCD,平面ABD∩平面BCD=BD,BC⊂平面BCD,BC⊥BD,所以BC⊥平面ABD.因为AD⊂平面ABD,所以BC⊥AD.又AB⊥AD,BC∩AB=B,AB⊂平面ABC,BC⊂平面ABC,所以AD⊥平面ABC.又AC⊂平面ABC,所以AD⊥AC.押题预测1.不重合的两条直线m,n分别在不重合的两个平面α,β内,下列为真命题的是() A.m⊥n⇒m⊥βB.m⊥n⇒α⊥βC.α∥β⇒m∥βD.m∥n⇒α∥β押题依据空间两条直线、两个平面之间的平行与垂直的判定是立体几何的重点内容,也是高考命题的热点.此类题常与命题的真假性、充分条件和必要条件等知识相交汇,意在考查考生的空间想象能力、逻辑推理能力.答案 C解析构造长方体,如图所示.因为A1C1⊥AA1,A1C1⊂平面AA1C1C,AA1⊂平面AA1B1B,但A1C1与平面AA1B1B不垂直,平面AA1C1C与平面AA1B1B也不垂直,所以选项A,B都是假命题.CC1∥AA1,但平面AA1C1C与平面AA1B1B相交而不平行,所以选项D为假命题.“若两平面平行,则一个平面内任何一条直线必平行于另一个平面”是真命题,故选C. 2.如图(1),在正△ABC中,E,F分别是AB,AC边上的点,且BE=AF=2CF.点P为边BC上的点,将△AEF沿EF折起到△A1EF的位置,使平面A1EF⊥平面BEFC,连接A1B,A1P,EP,如图(2)所示.(1)求证:A1E⊥FP;(2)若BP=BE,点K为棱A1F的中点,则在平面A1FP上是否存在过点K的直线与平面A1BE 平行,若存在,请给予证明;若不存在,请说明理由.押题依据以平面图形的翻折为背景,探索空间直线与平面位置关系,可以考查考生的空间想象能力和逻辑推理能力,预计将成为今年高考的命题方向.(1)证明在正△ABC中,取BE的中点D,连接DF,如图所示.因为BE=AF=2CF,所以AF=AD,AE=DE,而∠A=60°,所以△ADF为正三角形.又AE=DE,所以EF⊥AD.所以在题图(2)中,A1E⊥EF,又A1E⊂平面A1EF,平面A1EF⊥平面BEFC,且平面A1EF∩平面BEFC=EF,所以A1E⊥平面BEFC.因为FP⊂平面BEFC,所以A1E⊥FP.(2)解在平面A1FP上存在过点K的直线与平面A1BE平行.理由如下:如题图(1),在正△ABC中,因为BP=BE,BE=AF,所以BP=AF,所以FP∥AB,所以FP∥BE.如图所示,取A1P的中点M,连接MK,因为点K为棱A1F的中点,所以MK∥FP.因为FP∥BE,所以MK∥BE.因为MK⊄平面A1BE,BE⊂平面A1BE,所以MK∥平面A1BE.故在平面A1FP上存在过点K的直线MK与平面A1BE平行.A组专题通关1.(2018·北京朝阳区模拟)已知α,β是两个不同的平面,l是一条直线,给出下列说法:①若l⊥α,α⊥β,则l∥β;②若l∥α,α∥β,则l∥β;③若l⊥α,α∥β,则l⊥β;④若l∥α,α⊥β,则l⊥β.其中说法正确的个数为()A.3 B.2 C.1 D.4答案 C解析①若l⊥α,α⊥β,则l∥β或l⊂β,不正确;②若l∥α,α∥β,则l∥β或l⊂β,不正确;③若l⊥α,α∥β,则l⊥β,正确;④若l∥α,α⊥β,则l⊥β或l∥β或l与β相交且l 与β不垂直,不正确,故选C.2.如图,G,H,M,N分别是正三棱柱的顶点或所在棱的中点,则表示GH,MN是异面直线的图形的序号为()A.①②B.③④C.①③D.②④答案 D解析由题意可得图①中GH与MN平行,不合题意;图②中GH 与MN 异面,符合题意; 图③中GH 与MN 相交,不合题意; 图④中GH 与MN 异面,符合题意.则表示GH ,MN 是异面直线的图形的序号为②④. 3.(2018·抚顺模拟)给出下列四个命题:①如果平面α外一条直线a 与平面α内一条直线b 平行,那么a ∥α; ②过空间一定点有且只有一条直线与已知平面垂直;③如果一条直线垂直于一个平面内的无数条直线,那么这条直线与这个平面垂直; ④若两个相交平面都垂直于第三个平面,则这两个平面的交线垂直于第三个平面. 其中真命题的个数为( ) A .1 B .2 C .3 D .4 答案 C解析 对于①,根据线面平行的判定定理,如果平面外一条直线a 与平面α内一条直线b 平行,那么a ∥α,故正确;对于②,因为垂直于同一平面的两直线平行,所以过空间一定点有且只有一条直线与已知平面垂直,故正确;对于③,平面内无数条直线均为平行线时,不能得出直线与这个平面垂直,故不正确;对于④,因为两个相交平面都垂直于第三个平面,所以在两个相交平面内各取一条直线垂直于第三个平面,可得这两条直线平行,则其中一条直线平行于另一条直线所在的平面,可得这条直线平行于这两个相交平面的交线,从而交线垂直于第三个平面,故正确.4.(2018·全国Ⅱ)在长方体ABCD -A 1B 1C 1D 1中,AB =BC =1,AA 1=3,则异面直线AD 1与DB 1所成角的余弦值为( ) A.15 B.56 C.55 D.22 答案 C解析 方法一 如图,在长方体ABCD-A1B1C1D1的一侧补上一个相同的长方体A′B′BA-A1′B1′B1A1.连接B1B′,由长方体性质可知,B1B′∥AD1,所以∠DB1B′为异面直线AD1与DB1所成的角或其补角.连接DB′,由题意,得DB′=12+(1+1)2=5,B′B1=12+(3)2=2,DB1=12+12+(3)2= 5.在△DB′B1中,由余弦定理,得DB′2=B′B21+DB21-2B′B1·DB1·cos∠DB1B′,即5=4+5-2×25cos∠DB1B′,∴cos∠DB1B′=55.故选C.方法二如图,以点D为坐标原点,分别以DA,DC,DD1所在直线为x,y,z轴建立空间直角坐标系D-xyz.由题意,得A (1,0,0),D (0,0,0), D 1(0,0,3),B 1(1,1,3), ∴AD 1→=(-1,0,3), DB 1→=(1,1,3),∴AD 1→·DB 1→=-1×1+0×1+(3)2=2, |AD 1→|=2,|DB 1→|=5,∴cos 〈AD 1→,DB 1→〉=AD 1→·DB 1→|AD 1→||DB 1→|=225=55.故选C.5.对于四面体A —BCD ,有以下命题:①若AB =AC =AD ,则AB ,AC ,AD 与底面所成的角相等;②若AB ⊥CD ,AC ⊥BD ,则点A 在底面BCD 内的射影是△BCD 的内心; ③四面体A —BCD 的四个面中最多有四个直角三角形;④若四面体A —BCD 的6条棱长都为1,则它的内切球的表面积为π6.其中正确的命题是( ) A .①③ B .③④ C .①②③ D .①③④答案 D解析 ①正确,若AB =AC =AD ,则AB ,AC ,AD 在底面上的射影相等,即与底面所成角相等;②不正确,如图,点A在平面BCD内的射影为点O,连接BO,CO,可得BO⊥CD,CO⊥BD,所以点O是△BCD的垂心;③正确,如图,AB⊥平面BCD,∠BCD=90°,其中有4个直角三角形;④正确,设正四面体的内切球的半径为r,棱长为1,高为63,根据等体积公式13×S△BCD×63=13×4×S△BCD×r,解得r=612,那么内切球的表面积S=4πr2=π6,故选D.6.已知m,n,l1,l2表示不同的直线,α,β表示不同的平面,若m⊂α,n⊂α,l1⊂β,l2⊂β,l1∩l2=M,则α∥β的一个充分条件是()A.m∥β且l1∥αB.m∥β且n∥βC.m∥β且n∥l2D.m∥l1且n∥l2答案 D解析 对于选项A ,当m ∥β且l 1∥α时,α,β可能平行也可能相交,故A 不是α∥β的充分条件;对于选项B ,当m ∥β且n ∥β时,若m ∥n ,则α,β可能平行也可能相交,故B 不是α∥β的充分条件;对于选项C ,当m ∥β且n ∥l 2时,α,β可能平行也可能相交,故C 不是α∥β的充分条件;对于选项D ,当m ∥l 1,n ∥l 2时,由线面平行的判定定理可得l 1∥α,l 2∥α,又l 1∩l 2=M ,由面面平行的判定定理可以得到α∥β,但α∥β时,m ∥l 1且n ∥l 2不一定成立,故D 是α∥β的一个充分条件.故选D.7.(2018·上海虹口区模拟)长方体的体对角线与过同一个顶点的三个表面所成的角分别为α,β,γ,则cos 2α+cos 2β+cos 2γ=________. 答案 2解析 设长方体的长、宽、高分别为a ,b ,c ,则体对角线长d =a 2+b 2+c 2,所以cos 2α+cos 2β+cos 2γ=⎝ ⎛⎭⎪⎫b 2+c 2d 2+⎝ ⎛⎭⎪⎫a 2+c 2d 2+⎝ ⎛⎭⎪⎫a 2+b 2d 2=2()a 2+b 2+c 2d 2=2.8.如图,在三棱柱ABC -A 1B 1C 1中,侧棱AA 1⊥底面ABC ,底面是以∠ABC 为直角的等腰直角三角形,AC =2a ,BB 1=3a ,点D 是A 1C 1的中点,点F 在线段AA 1上,当AF =________时,CF ⊥平面B 1DF .答案 a 或2a解析 由题意易知,B 1D ⊥平面ACC 1A 1, 又CF ⊂平面ACC 1A 1, 所以B 1D ⊥CF .要使CF ⊥平面B 1DF ,只需CF ⊥DF 即可. 令CF ⊥DF ,设AF =x ,则A 1F =3a -x . 易知Rt △CAF ∽Rt △FA 1D , 得AC A 1F =AF A 1D ,即2a 3a -x=x a , 整理得x 2-3ax +2a 2=0, 解得x =a 或x =2a .9.如图所示的多面体中,底面ABCD 为正方形,△GAD 为等边三角形,BF ⊥平面ABCD ,∠GDC =90°,点E 是线段GC 上除两端点外的一点,若点P 为线段GD 的中点.(1)求证:AP⊥平面GCD;(2)求证:平面ADG∥平面FBC.证明(1)因为△GAD是等边三角形,点P为线段GD的中点,所以AP⊥GD.因为AD⊥CD,GD⊥CD,且AD∩GD=D,AD,GD⊂平面GAD,故CD⊥平面GAD,又AP⊂平面GAD,故CD⊥AP,又CD∩GD=D,CD,GD⊂平面GCD,故AP⊥平面GCD.(2)因为BF⊥平面ABCD,CD⊂平面ABCD,所以BF⊥CD,因为BC⊥CD,BF∩BC=B,BF,BC⊂平面FBC,所以CD⊥平面FBC,由(1)知CD⊥平面GAD,所以平面ADG∥平面FBC.10.(2018·张掖检测)在梯形ABCD中(图1),AB∥CD,AB=2,CD=5,过A,B分别作CD 的垂线,垂足分别为E,F,已知DE=1,AE=2,将梯形ABCD沿AE,BF同侧折起,使得AF⊥BD,DE∥CF,得空间几何体ADE-BCF(图2).(1)证明:BE∥平面ACD;(2)求三棱锥E-ACD的体积.(1)证明连接BE交AF于点O,取AC的中点H,连接OH,DH,则OH是△AFC的中位线,所以OH∥CF且OH=12CF,由已知得DE∥CF且DE=12CF,所以DE∥OH且DE=OH,所以四边形DEOH为平行四边形,DH∥EO,又因为EO⊄平面ACD,DH⊂平面ACD,所以EO ∥平面ACD ,即BE ∥平面ACD . (2)解 由已知得,四边形ABFE 为正方形, 且边长为2,则AF ⊥BE ,由已知AF ⊥BD ,BE ∩BD =B ,BE ,BD ⊂平面BDE , 可得AF ⊥平面BDE , 又DE ⊂平面BDE , 所以AF ⊥DE ,又AE ⊥DE ,AF ∩AE =A ,AF ,AE ⊂平面ABFE , 所以DE ⊥平面ABFE , 又EF ⊂平面ABEF ,所以DE ⊥EF ,四边形DEFC 是直角梯形, 又AE ⊥EF ,DE ∩EF =E ,DE ,EF ⊂平面CDE , 所以AE ⊥平面CDE ,所以AE 是三棱锥A -DEC 的高, V E -ACD =V A -ECD =V A -EFD =13×AE ×12×DE ×EF =23. B 组 能力提高11.(2018·全国Ⅰ)已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为( ) A.334B.233C.324D.32答案 A解析 如图所示,在正方体ABCD -A 1B 1C 1D 1中,平面AB 1D 1与棱A 1A ,A 1B 1,A 1D 1所成的角都相等,又正方体的其余棱都分别与A 1A ,A 1B 1,A 1D 1平行,故正方体ABCD -A 1B 1C 1D 1的每条棱所在直线与平面AB 1D 1所成的角都相等.取棱AB ,BB 1,B 1C 1,C 1D 1,DD 1,AD 的中点E ,F ,G ,H ,M ,N ,则正六边形EFGHMN 所在平面与平面AB 1D 1平行且面积最大,此截面面积为S 正六边形EFGHMN =6×12×22×22sin 60°=334.故选A.12.(2018·泉州质检)已知正三棱柱ABC -A 1B 1C 1的所有棱长都相等,M ,N 分别为B 1C 1,BB 1的中点.现有下列四个结论: p 1:AC 1∥MN ; p 2:A 1C ⊥C 1N ; p 3:B 1C ⊥平面AMN ;p 4:异面直线AB 与MN 所成角的余弦值为24. 其中正确的结论是( ) A .p 1,p 2 B .p 2,p 3 C .p 2,p 4 D .p 3,p 4答案 C解析 正三棱柱ABC -A 1B 1C 1的所有棱长都相等, M ,N 分别为B 1C 1,BB 1的中点. 对于p 1:如图①所示, MN ∥BC 1,BC 1∩AC 1=C 1,。
高中数学第六章立体几何初步3.2刻画空间点线面位置关系的公理二课件北师大版必修第二册
探究四
当堂检测
延伸探究将本例中的条件“M,M1分别是棱AD和A1D1的中点”改为
“M,N分别是棱CD,AD的中点”,其他条件不变,求证:
(1)四边形MNA1C1是梯形;
(2)∠DNM=∠D1A1C1.
探究一
探究二
探究三
探究四
当堂检测
证明(1)如图,连接AC,
在△ACD中,因为M,N分别是CD,AD的中点,所以MN是△ACD的中
.
解析因为E,F,G分别为BC,AD,DB的中点,所以FG∥AB,EG∥DC,所以
∠FGE=60°或120°.
答案60°或120°
探究一
探究二
探究三
探究四
当堂检测
基本事实4的应用
例1如图所示,点P是△ABC所在平面外一点,点D,E分别是△PAB和
1
△PBC的重心.求证:DE∥AC,DE= AC.
3
提示不一定,它们可能相交,可能平行,也可能异面.
微判断
判断(正确的打“√”,错误的打“×”).
(1)没有公共点的两条直线是异面直线.(
)
(2)两直线若不是异面直线,则必相交或平行.(
)
(3)如果直线a与直线b是异面直线,直线b与直线c也是异面直线,那么
直线a与直线c也一定是异面直线.(
)
(4)四个顶点不在同一平面内,且边长相等的四边形是不存在的.(
刻画空间点、线、面位置关系的公理(二)
课标阐释
1.掌握基本事实4及等角定理的含义及作用,能解决有关平行或角
度的证明问题.(数学抽象、逻辑推理)
2.掌握异面直线所成角的概念,能求出一些较特殊的异面直线所成
的角.(数学运算、几何直观)
3.理解空间四边形的结构特点,并能找出与平面四边形的异同.(几
用空间向量研究空间中直线、平面的平行(第2课时)(课件)高二数学选择性必修第一册(人教A版2019)
n
应用新知
例 1: 如图,在正方体 ABCD A1B1C1D1 中, E, F 分别为 DD1 和 BB1 的中点.
求证:四边形 AEC1 F 是平行四边形.
分析:要证明四边形 AEC1F 是平行四边形,只需证明对边
平行要证明四边形 AEC1F 的对边平行,只需证明其
对边的方向向量共线即可.
【详解】如下图,以点 D 为坐标原点建立如图所示的空间直角坐标系,
(2)在建立空间直角坐标系后,主要问题是求出空间两直线的方向向量的
坐标.
应用新知
规律小结
利用空间向量证明线线平行的方法步骤
(1)建立适当的空间直角坐标系,求出相应点的坐标.
(2)求出直线的方向向量.
(3)证明两向量共线.
(4)证明其中一个向量所在直线上的一点不在另一个向量所在的直线上,
即表示方向向量的有向线段不共线,从而得证.
1
1
不妨设正方体的棱长为 1,则 A 1, 0, 0 , E 0, 0, , C1 0,1,1 , F 1,1, ,
2
2
1
1
1
1
所以 AE 1, 0, , FC1 1, 0, , EC1 0,1, , AF 0,1, ,
个法向量平行.
(2)转化的思路:根据两个平面平行的判定定理,把证明两个平面平行转化
为证明线面平行或线线平行,再利用空间向量证明.
应用新知
变式训练:
2. 如 图 , 在 直 四 棱 柱 ABCD A1B1C1D1 中 , 底 面 ABCD为 等 腰 梯 形 , AB / /CD ,
(二)向量方法证明空间线面垂直关系
学习目标 1.能用向量法判断一些简单线线、线面、面面垂直关系.2.能用向量语言表述直线与直线、直线与平面、平面与平面的垂直关系.3.能用向量方法证明空间线面垂直关系的有关定理.知识点一 向量法判断线线垂直思考 若直线l 1的方向向量为μ1=(1,3,2),直线l 2的方向向量为μ2=(1,-1,1),那么两直线是否垂直?用向量法判断两条直线垂直的一般方法是什么?答案 l 1与l 2垂直,因为μ1·μ2=1-3+2=0,所以μ1⊥μ2,又μ1,μ2是两直线的方向向量,所以l 1与l 2垂直.判断两条直线是否垂直的方法:(1)在两直线上分别取两点A 、B 与C 、D ,计算向量AB →与CD →的坐标,若AB →·CD →=0,则两直线垂直,否则不垂直.(2)判断两直线的方向向量的数量积是否为零,若数量积为零,则两直线垂直,否则不垂直. 梳理 设直线l 的方向向量为a =(a 1,a 2,a 3),直线m 的方向向量为b =(b 1,b 2,b 3),则l ⊥m ⇔a·b =0⇔a 1b 1+a 2b 2+a 3b 3=0. 知识点二 向量法判断线面垂直思考 若直线l 的方向向量为μ1=⎝⎛⎭⎫2,43,1,平面α的法向量为μ2=⎝⎛⎭⎫3,2,32,则直线l 与平面α的位置关系是怎样的?如何用向量法判断直线与平面的位置关系?答案 垂直,因为μ1=23μ2,所以μ1∥μ2,即直线的方向向量与平面的法向量平行,所以直线l 与平面α垂直.判断直线与平面的位置关系的方法:(1)直线l 的方向向量与平面α的法向量共线⇒l ⊥α.(2)直线的方向向量与平面的法向量垂直⇒直线与平面平行或直线在平面内. (3)直线l 的方向向量与平面α内的两相交直线的方向向量垂直⇒l ⊥α.梳理 设直线l 的方向向量a =(a 1,b 1,c 1),平面α的法向量μ=(a 2,b 2,c 2),则l ⊥α⇔a ∥μ⇔a =k μ(k ∈R ).知识点三 向量法判断面面垂直思考 平面α,β的法向量分别为μ1=(x 1,y 1,z 1),μ2=(x 2,y 2,z 2),用向量坐标法表示两平面α,β垂直的关系式是什么? 答案 x 1x 2+y 1y 2+z 1z 2=0.梳理 若平面α的法向量为μ=(a 1,b 1,c 1),平面β的法向量为ν=(a 2,b 2,c 2),则α⊥β⇔μ⊥ν⇔μ·ν=0⇔a 1a 2+b 1b 2+c 1c 2=0.类型一 证明线线垂直例1 已知正三棱柱ABC -A 1B 1C 1的各棱长都为1,M 是底面上BC 边的中点,N 是侧棱CC 1上的点,且CN =14CC 1.求证:AB 1⊥MN .证明 设AB 中点为O ,作OO 1∥AA 1.以O 为坐标原点,OB 为x 轴,OC 为y 轴,OO 1为z 轴建立如图所示的空间直角坐标系.由已知得A ⎝⎛⎭⎫-12,0,0,B ⎝⎛⎭⎫12,0,0,C ⎝⎛⎭⎫0,32,0,N ⎝⎛⎭⎫0,32,14,B 1⎝⎛⎭⎫12,0,1, ∵M 为BC 中点, ∴M ⎝⎛⎭⎫14,34,0.∴MN →=⎝⎛⎭⎫-14,34,14,AB 1→=(1,0,1),∴MN →·AB 1→=-14+0+14=0.∴MN →⊥AB 1→, ∴AB 1⊥MN .反思与感悟 证明两直线垂直的基本步骤:建立空间直角坐标系→写出点的坐标→求直线的方向向量→证明向量垂直→得到两直线垂直.跟踪训练1 如图,在直三棱柱ABC -A 1B 1C 1中,AC =3,BC =4,AB =5,AA 1=4,求证:AC ⊥BC 1.证明 ∵直三棱柱ABC -A 1B 1C 1底面三边长AC =3,BC =4,AB =5, ∴AC 、BC 、C 1C 两两垂直.如图,以C 为坐标原点,CA 、CB 、CC 1所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系.则C (0,0,0),A (3,0,0),C 1(0,0,4),B (0,4,0), ∵AC →=(-3,0,0),BC 1→=(0,-4,4), ∴AC →·BC 1→=0.∴AC ⊥BC 1. 类型二 证明线面垂直例2 如图所示,正三棱柱ABC -A 1B 1C 1的所有棱长都为2,D 为CC 1的中点.求证:AB 1⊥平面A 1BD .证明 如图所示,取BC 的中点O ,连接AO .因为△ABC 为正三角形,所以AO ⊥BC .因为在正三棱柱ABC -A 1B 1C 1中,平面ABC ⊥平面BCC 1B 1, 所以AO ⊥平面BCC 1B 1.取B 1C 1的中点O 1,以O 为原点,以OB →,OO 1→,OA →分别为x 轴,y 轴,z 轴的正方向建立空间直角坐标系,则B (1,0,0),D (-1,1,0),A 1(0,2,3),A (0,0,3),B 1(1,2,0). 所以AB 1→=(1,2,-3),BA 1→=(-1,2,3),BD →=(-2,1,0). 因为AB 1→·BA 1→=1×(-1)+2×2+(-3)×3=0. AB 1→·BD →=1×(-2)+2×1+(-3)×0=0.所以AB 1→⊥BA 1→,AB 1→⊥BD →,即AB 1⊥BA 1,AB 1⊥BD . 又因为BA 1∩BD =B ,所以AB 1⊥平面A 1BD . 反思与感悟 用坐标法证明线面垂直的方法及步骤 方法一:(1)建立空间直角坐标系. (2)将直线的方向向量用坐标表示.(3)找出平面内两条相交直线,并用坐标表示它们的方向向量. (4)分别计算两组向量的数量积,得到数量积为0. 方法二:(1)建立空间直角坐标系. (2)将直线的方向向量用坐标表示. (3)求出平面的法向量.(4)判断直线的方向向量与平面的法向量平行.跟踪训练2 如图,在长方体ABCD -A 1B 1C 1D 1中,AB =AD =1,AA 1=2,点P 为DD 1的中点.求证:直线PB 1⊥平面P AC .证明 如图建系,C (1,0,0),A (0,1,0),P (0,0,1),B 1(1,1,2),PC →=(1,0,-1),P A →=(0,1,-1),PB 1→=(1,1,1),B 1C →=(0,-1,-2),B 1A →=(-1,0,-2).PB 1→·PC →=(1,1,1)·(1,0,-1)=0, 所以PB 1→⊥PC →,即PB 1⊥PC .又PB 1→·P A →=(1,1,1)·(0,1,-1)=0, 所以PB 1→⊥P A →,即PB 1⊥P A .又P A ∩PC =P ,所以PB 1⊥平面P AC . 类型三 证明面面垂直例3 在三棱柱ABC -A 1B 1C 1中,AA 1⊥平面ABC ,AB ⊥BC ,AB =BC =2,AA 1=1,E 为BB 1的中点,求证:平面AEC 1⊥平面AA 1C 1C .证明 由题意知直线AB ,BC ,B 1B 两两垂直,以点B 为原点,分别以BA ,BC ,BB 1所在直线为x ,y ,z 轴,建立如图所示的空间直角坐标系,则A (2,0,0),A 1(2,0,1),C (0,2,0),C 1(0,2,1),E (0,0,12),故AA 1→=(0,0,1),AC →=(-2,2,0),AC 1→=(-2,2,1),AE →=(-2,0,12).设平面AA 1C 1C 的法向量为n 1=(x ,y ,z ),则⎩⎪⎨⎪⎧n 1·AA 1→=0,n 1·AC →=0,即⎩⎪⎨⎪⎧z =0,-2x +2y =0.令x =1,得y =1,故n 1=(1,1,0). 设平面AEC 1的法向量为n 2=(a ,b ,c ), 则⎩⎪⎨⎪⎧ n 2·AC 1→=0,n 2·AE →=0,即⎩⎪⎨⎪⎧-2a +2b +c =0,-2a +12c =0. 令c =4,得a =1,b =-1,故n 2=(1,-1,4). 因为n 1·n 2=1×1+1×(-1)+0×4=0, 所以n 1⊥n 2.所以平面AEC 1⊥平面AA 1C 1C . 反思与感悟 证明面面垂直的两种方法(1)常规法:利用面面垂直的判定定理转化为线面垂直、线线垂直去证明. (2)向量法:证明两个平面的法向量互相垂直.跟踪训练3 在四面体ABCD 中,AB ⊥平面BCD ,BC =CD ,∠BCD =90°,∠ADB =30°,E 、F 分别是AC 、AD 的中点,求证:平面BEF ⊥平面ABC .证明 以B 为原点建立如图所示的空间直角坐标系,设A (0,0,a ),则易得B (0,0,0),C ⎝⎛⎭⎫32a ,32a ,0,D (0,3a ,0),E ⎝⎛⎭⎫34a ,34a ,a 2,F (0,32a ,a 2),故AB →=(0,0,-a ),BC →=⎝⎛⎭⎫32a ,32a ,0.设平面ABC 的法向量为n 1=(x 1,y 1,z 1), 则⎩⎪⎨⎪⎧n 1·AB →=0,n 1·BC →=0,即⎩⎪⎨⎪⎧-az 1=0,x 1+y 1=0,取x 1=1,∴n 1=(1,-1,0)为平面ABC 的一个法向量. 设n 2=(x 2,y 2,z 2)为平面BEF 的一个法向量, 同理可得n 2=(1,1,-3).∵n 1·n 2=(1,-1,0)·(1,1,-3)=0,∴平面BEF⊥平面ABC.1.下列命题中,正确命题的个数为()①若n1,n2分别是平面α,β的法向量,则n1∥n2⇔α∥β;②若n1,n2分别是平面α,β的法向量,则α⊥β⇔n1·n2=0;③若n是平面α的法向量,a与平面α平行,则n·a=0;④若两个平面的法向量不垂直,则这两个平面不垂直.A.1B.2C.3D.4答案 C解析①中平面α,β可能平行,也可能重合,结合平面法向量的概念,易知②③④正确.2.已知两直线的方向向量为a,b,则下列选项中能使两直线垂直的为()A.a=(1,0,0),b=(-3,0,0)B.a=(0,1,0),b=(1,0,1)C.a=(0,1,-1),b=(0,-1,1)D.a=(1,0,0),b=(-1,0,0)答案 B解析因为a=(0,1,0),b=(1,0,1),所以a·b=0×1+1×0+0×1=0,所以a⊥b,故选B.3.若直线l的方向向量为a=(1,0,2),平面α的法向量为μ=(-2,0,-4),则()A.l∥αB.l⊥αC.l⊂αD.l与α斜交答案 B解析∵a∥μ,∴l⊥α.4.平面α的一个法向量为m=(1,2,0),平面β的一个法向量为n=(2,-1,0),则平面α与平面β的位置关系是()A.平行B.相交但不垂直C.垂直D.不能确定答案 C解析∵(1,2,0)·(2,-1,0)=0,∴两法向量垂直,从而两平面垂直.5.已知平面α与平面β垂直,若平面α与平面β的法向量分别为μ=(-1,0,5),ν=(t,5,1),则t的值为________.答案 5解析∵平面α与平面β垂直,∴平面α的法向量μ与平面β的法向量ν垂直,∴μ·ν=0,即(-1)×t+0×5+5×1=0,解得t=5.空间垂直关系的解决策略40分钟课时作业一、选择题1.设直线l1,l2的方向向量分别为a=(-2,2,1),b=(3,-2,m),若l1⊥l2,则m等于()A.-2B.2C.6D.10答案 D解析因为a⊥b,故a·b=0,即-2×3+2×(-2)+m=0,解得m=10.2.若平面α,β的法向量分别为a=(-1,2,4),b=(x,-1,-2),并且α⊥β,则x的值为( )A.10B.-10C.12D.-12答案 B解析 因为α⊥β,则它们的法向量也互相垂直, 所以a ·b =(-1,2,4)·(x ,-1,-2)=0, 解得x =-10.3.已知点A (0,1,0),B (-1,0,-1),C (2,1,1),P (x ,0,z ),若P A ⊥平面ABC ,则点P 的坐标为( )A.(1,0,-2)B.(1,0,2)C.(-1,0,2)D.(2,0,-1) 答案 C解析 由题意知AB →=(-1,-1,-1),AC →=(2,0,1),AP →=(x ,-1,z ),又P A ⊥平面ABC ,所以有AB →·AP →=(-1,-1,-1)·(x ,-1,z )=0,得-x +1-z =0, ① AC →·AP →=(2,0,1)·(x ,-1,z )=0,得2x +z =0,②联立①②得x =-1,z =2,故点P 的坐标为(-1,0,2).4.在正方体ABCD -A 1B 1C 1D 1中,若E 为A 1C 1的中点,则直线CE 垂直于( ) A.AC B.BD C.A 1D D.A 1A 答案 B解析 建立如图所示的空间直角坐标系.设正方体的棱长为1,则A (0,1,0),B (1,1,0),C (1,0,0),D (0,0,0),A 1(0,1,1),C 1(1,0,1),E ⎝⎛⎭⎫12,12,1,∴CE →=⎝⎛⎭⎫-12,12,1,AC →=(1,-1,0), BD →=(-1,-1,0),A 1D →=(0,-1,-1),A 1A →=(0,0,-1), ∵CE →·BD →=(-1)×(-12)+(-1)×12+0×1=0,∴CE ⊥BD .5.若平面α,β垂直,则下面可以作为这两个平面的法向量的是( ) A.n 1=(1,2,1),n 2=(-3,1,1) B.n 1=(1,1,2),n 2=(-2,1,1)C.n 1=(1,1,1),n 2=(-1,2,1)D.n 1=(1,2,1),n 2=(0,-2,-2) 答案 A解析 ∵1×(-3)+2×1+1×1=0, ∴n 1·n 2=0,故选A.6.两平面α,β的法向量分别为μ=(3,-1,z ),v =(-2,-y ,1),若α⊥β,则y +z 的值是( )A.-3B.6C.-6D.-12 答案 B解析 α⊥β⇒μ·v =0⇒-6+y +z =0,即y +z =6. 二、填空题7.在三棱锥S -ABC 中,∠SAB =∠SAC =∠ACB =90°,AC =2,BC =13,SB =29,则异面直线SC 与BC 是否垂直________.(填“是”或“否”) 答案 是解析 如图,以A 为原点,AB ,AS 分别为y 轴,z 轴建立空间直角坐标系,则由AC =2,BC =13,SB =29, 得B (0,17,0),S (0,0,23),C ⎝ ⎛⎭⎪⎫21317,417,0, SC →=⎝⎛⎭⎪⎫21317,417,-23,CB →=⎝⎛⎭⎪⎫-21317,1317,0. 因为SC →·CB →=0,所以SC ⊥BC .8.已知点P 是平行四边形ABCD 所在的平面外一点,如果AB →=(2,-1,-4),AD →=(4,2,0),AP →=(-1,2,-1).对于结论:①AP ⊥AB ;②AP ⊥AD ;③AP →是平面ABCD 的法向量;④AP →∥BD →.其中正确的是________.(填序号) 答案 ①②③解析 ∵AP →·AB →=(-1,2,-1)·(2,-1,-4)=-1×2+2×(-1)+(-1)×(-4)=0,∴AP ⊥AB ,即①正确;∵AP →·AD →=(-1,2,-1)·(4,2,0)=(-1)×4+2×2+(-1)×0=0,∴AP ⊥AD ,即②正确; 又∵AB ∩AD =A ,∴AP ⊥平面ABCD ,即AP →是平面ABCD 的一个法向量,即③正确;∵AP →是平面ABCD 的法向量,∴AP →⊥BD →,即④不正确.9.在空间直角坐标系Oxyz 中,已知点P (2cos x +1,2cos 2x +2,0)和点Q (cos x ,-1,3),其中x ∈[0,π].若直线OP 与直线OQ 垂直,则x 的值为________.答案 π2或π3解析 由题意得OP →⊥OQ →,∴cos x ·(2cos x +1)-(2cos 2x +2)=0.∴2cos 2x -cos x =0,∴cos x =0或cos x =12. 又x ∈[0,π],∴x =π2或x =π3. 10.在△ABC 中,A (1,-2,-1),B (0,-3,1),C (2,-2,1).若向量n 与平面ABC 垂直,且|n |=21,则n 的坐标为________________.答案 (-2,4,1)或(2,-4,-1)解析 据题意,得AB →=(-1,-1,2),AC →=(1,0,2).设n =(x ,y ,z ),∵n 与平面ABC 垂直,∴⎩⎪⎨⎪⎧ n ·AB →=0,n ·AC →=0,即⎩⎪⎨⎪⎧ -x -y +2z =0,x +2z =0,可得⎩⎪⎨⎪⎧y =4z ,y =-2x . ∵|n |=21,∴x 2+y 2+z 2=21,解得y =4或y =-4.当y =4时,x =-2,z =1;当y =-4时,x =2,z =-1.三、解答题11.如图,在四棱锥P -ABCD 中,P A ⊥平面ABCD ,AB =4,BC =3,AD =5,∠DAB =∠ABC =90°,E 是CD 的中点.证明:CD ⊥平面P AE .证明 如图,以A 为坐标原点,AB ,AD ,AP 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系.设P A =h ,则相关各点的坐标为A (0,0,0),B (4,0,0),C (4,3,0),D (0,5,0),E (2,4,0),P (0,0,h ).易知CD →=(-4,2,0),AE →=(2,4,0),AP →=(0,0,h ).因为CD →·AE →=-8+8+0=0,CD →·AP →=0,所以CD ⊥AE ,CD ⊥AP ,而AP ,AE 是平面P AE 内的两条相交直线,所以CD ⊥平面P AE .12.如图,在四棱锥P -ABCD 中,底面ABCD 是矩形,P A ⊥底面ABCD ,P A =AB =1,AD =3,点F 是PB 的中点,点E 在边BC 上移动.求证:无论点E 在BC 边的何处,都有PE ⊥AF .证明 建立如图所示空间直角坐标系,则P (0,0,1),B (0,1,0),F ⎝⎛⎭⎫0,12,12,D ()3,0,0,设BE =x (0≤x ≤3),则E (x ,1,0),PE →·AF →=(x ,1,-1)·⎝⎛⎭⎫0,12,12=0, 所以x ∈[0, 3 ]时都有PE ⊥AF ,即无论点E 在BC 边的何处,都有PE ⊥AF .13.已知正方体ABCDA 1B 1C 1D 1中,E 为棱CC 1上的动点.(1)求证:A 1E ⊥BD ;(2)若平面A 1BD ⊥平面EBD ,试确定E 点的位置.(1)证明 以D 为坐标原点,以DA ,DC ,DD 1所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系.设正方体棱长为a ,则 A (a ,0,0),B (a ,a ,0),C (0,a ,0),A 1(a ,0,a ),C 1(0,a ,a ).设E (0,a ,e ) (0≤e ≤a ),A 1E →=(-a ,a ,e -a ),BD →=(-a ,-a ,0),A 1E →·BD →=a 2-a 2+(e -a )·0=0,∴A 1E →⊥BD →,即A 1E ⊥BD .(2)解 设平面A 1BD ,平面EBD 的法向量分别为n 1=(x 1,y 1,z 1),n 2=(x 2,y 2,z 2). ∵DB →=(a ,a ,0),DA 1→=(a ,0,a ),DE →=(0,a ,e ),∴⎩⎪⎨⎪⎧ ax 1+ay 1=0,ax 1+az 1=0,⎩⎪⎨⎪⎧ax 2+ay 2=0,ay 2+ez 2=0. 取x 1=x 2=1,得n 1=(1,-1,-1),n 2=(1,-1,a e), 由平面A 1BD ⊥平面EBD 得n 1⊥n 2,∴2-a e=0,即e =a 2.∴当E 为CC 1的中点时,平面A 1BD ⊥平面EBD .。
空间线面关系经典讲义
基础回顾
立体几何基础知识
一、平面的基本性质
公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内。
公理2:过不在一条直线上的三点,有且只有一个平面。
公理3:如果两个不重合的平面有一个公共点,那么他们有且只有一条过该点的公共直线。
二、空间中线、面的位置关系
1.线线关系
公理示,平面PAD⊥平面ABCD,ABCD为正方形,△PAD是直角三角形,且PA=AD=2,E、F、G分别是线段PA、PD、CD的中点.
求证:PB∥平面EFG.
3.如图所示,在四棱锥PABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中点.
证明:(1)AE⊥CD;(2)PD⊥平面ABE.
定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补。
2.线面关系
直线与平面相交或平行的情况统称为直线在平面外。
3.面面关系
平行与垂直
一、直线、平面平行(垂直)的判定及其性质
1.平面与平面的位置关系有、两种情况.
2.直线和平面平行的判定
(1)定义:直线和平面没有公共点,则称直线平行于平面;
(2)直线和平面垂直的性质
①直线垂直于平面,则垂直于平面内直线.
②垂直于同一个平面的两条直线。
③垂直于同一直线的两平面。
8.斜线和平面所成的角
斜线和它在平面内的射影所成的锐角,叫斜线和平面所成的角.
9.平面与平面垂直
(1)平面与平面垂直的判定方法
①定义法
②利用判定定理:如果一个平面过另一个平面的,则这两个平面互相垂直.
(4)设平面α和β的法向量分别为u1,u2,则α∥β⇔u1∥u2.
考点:空间点线面之间的关系(完整版)
理解空间直线、平面位置关系的定义,并了解如下可以作为推理依据的公理和定理.·公理1:如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在此平面内.·公理2:过不在同一条直线上的三点,有且只有一个平面.·公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.·公理4:平行于同一条直线的两条直线互相平行.·定理:空间中如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补.一、平面的基本性质及应用1.平面的基本性质名称图形文字语言符号语言公理1 如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在此平面内A∈l,B∈l,且A∈α,B∈α⇒l⊂α公理2过不在同一条直线上的三点,有且只有一个平面A,B,C三点不共线⇒有且只有一个平面α,使A∈α,B∈α,C∈α公理2的推论推论1经过一条直线和直线外的一点,有且只有一个平面若点A∉直线a,则A和a确定一个平面α推论2经过两条相交直线,有且只有一个平面a b P=⇒有且只有一个平面α,使aα⊂,bα⊂推论3经过两条平行直线,有且只有一个平面∥a b ⇒有且只有一个平面α,使a α⊂,b α⊂公理3如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线P ∈α,且P ∈β⇒α∩β=l ,P ∈l ,且l 是唯一的公理4———l 1———l 2———l平行于同一条直线的两条直线互相平行l 1∥l ,l 2∥l ⇒l 1∥l 22.等角定理(1)自然语言:空间中如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补. (2)符号语言: 如图(1)、(2)所示,在∠AOB 与∠A ′O ′B ′中,,OA O A OB O B ''''∥∥,则AOB A O B ∠=∠'''或180AOB A O B ∠+∠'''=︒.图(1) 图(2)二、空间两直线的位置关系 1.空间两直线位置关系的分类空间中两条直线的位置关系有以下两种分类方式: (1)从有无公共点的角度分类:⎧⎪⎨⎪⎩⎩⎧⎨两条直线有且仅有一个公共点:相交直线平行直线两条直线无公共点:异面直线直线 (2)从是否共面的角度分类:⎧⎧⎪⎨⎨⎩⎪⎩相交直线共面直线直线平行直线不共面直线:异面直线【注意】异面直线:不同在任何一个平面内,没有公共点.2.异面直线所成的角(1)异面直线所成角的定义如图,已知两异面直线a ,b ,经过空间任一点O ,分别作直线a ′∥a ,b ′∥b ,相交直线a ′,b ′所成的锐角(或直角)叫做异面直线a 与b 所成的角(或夹角).(2)异面直线所成角的范围异面直线所成的角必须是锐角或直角,异面直线所成角的范围是π(0,]2. (3)两条异面直线垂直的定义如果两条异面直线所成的角是直角,那么我们就说这两条直线互相垂直.两条互相垂直的异面直线a ,b ,记作a ⊥b .三、空间直线与平面、平面与平面的位置关系 1.直线与平面、平面与平面位置关系的分类 (1)直线和平面位置关系的分类 ①按公共点个数分类:⎧⎪⎨⎪⎩直线和平面相交—有且只有一个公共点直线和平面平行—没有公共点直线在平面内—有无数个公共点 ②按是否平行分类:⎧⎪⎧⎨⎨⎪⎩⎩直线与平面平行直线与平面相交直线与平面不平行直线在平面内③按直线是否在平面内分类:⎧⎪⎧⎨⎨⎪⎩⎩直线在平面内直线和平面相交直线不在平面内(直线在平面外)直线和平面平行(2)平面和平面位置关系的分类两个平面之间的位置关系有且只有以下两种:(1)两个平面平行——没有公共点;(2)两个平面相交——有一条公共直线.2.直线与平面的位置关系的符号表示和图形表示图形语言符号语言公共点α=1个直线a与平面α相交a A∥0个直线a与平面α平行aα⊂无数个直线a在平面α内aα∥0个平面α与平面β平行αβαβ=无数个平面α与平面β相交l3.常用结论(1)唯一性定理①过直线外一点有且只有一条直线与已知直线平行.②过直线外一点有且只有一个平面与已知直线垂直.③过平面外一点有且只有一个平面与已知平面平行.④过平面外一点有且只有一条直线与已知平面垂直.(2)异面直线的判定方法经过平面内一点的直线与平面内不经过该点的直线互为异面直线.考向一平面的基本性质及应用(1)证明点共线问题,就是证明三个或三个以上的点在同一条直线上,主要依据是公理3.常用方法有:①首先找出两个平面,然后证明这些点都是这两个平面的公共点,根据公理3知这些点都在这两个平面的交线上;学#②选择其中两点确定一条直线,然后证明其他点也在这条直线上.(2)证明三线共点问题,一般先证明待证的三条直线中的两条相交于一点,再证明第三条直线也过该点.常结合公理3,证明该点在不重合的两个平面内,故该点在它们的交线(第三条直线)上,从而证明三线共点.(3)证明点或线共面问题,主要有两种方法:①首先由所给条件中的部分线(或点)确定一个平面,然后再证其余的线(或点)在这个平面内;②将所有条件分为两部分,然后分别确定平面,再证两平面重合.典例1(1)在下列命题中,不是公理的是A.平行于同一个平面的两个平面相互平行B.过不在同一条直线上的三点,有且只有一个平面C.如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在此平面内D.如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线(2)给出以下四个命题:①不共面的四点中,其中任意三点不共线;②若点A、B、C、D共面,点A、B、C、E共面,则A、B、C、D、E共面;③若直线a、b共面,直线a、c共面,则直线b、c共面;④依次首尾相接的四条线段必共面.其中正确命题的个数是A.0 B.1C.2 D.3【答案】(1)A (2)B1.如图所示,正方体ABCD-A1B1C1D1中,E,F分别是AB,AA1的中点.求证:(1)E,C,D1,F四点共面;(2)CE,D1F,DA三线共点.考向二 空间线面位置关系的判断两条直线位置关系判断的策略:(1)异面直线的判定常用到的是反证法,先假设两条直线不是异面直线,即两条直线平行或相交,由假设的条件出发,经过严格的推理,导出矛盾,从而否定假设肯定两条直线异面.此法在异面直线的判定中经常用到.(2)点、线、面之间的位置关系可借助正方体为模型,以正方体为主线,直观感知并认识空间点、线、面的位置关系,准确判定线线平行、线线垂直、线面平行、线面垂直、面面平行、面面垂直. (3)对于异面直线的条数问题,可以根据异面直线的定义逐一排查. 学@典例2 如图,在正方体1111ABCD A BC D 中,M 、N 分别为棱C 1D 1、C 1C 的中点,有以下四个结论: ①直线AM 与CC 1是相交直线; ②直线AM 与BN 是平行直线; ③直线BN 与MB 1是异面直线;④直线AM 与DD 1是异面直线.其中正确的结论为 A .③④ B .①② C .①③D .②④【答案】A故选A .2.若直线l与平面α相交,则A.平面α内存在直线与l异面B.平面α内存在唯一一条直线与l平行C.平面α内存在唯一一条直线与l垂直D.平面α内的直线与l都相交典例3如图所示,正方体ABCD-A1B1C1D1中,M,N分别是A1B1,B1C1的中点.问:(1)AM和CN是否是异面直线?说明理由.(2)D1B和CC1是否是异面直线?说明理由.3.如图,平面,,,a b b a A c αβαβ=⊂=⊂平面,且c a ∥,求证:b ,c 是异面直线.考向三 异面直线所成的角求异面直线所成的角的常见策略: (1)求异面直线所成的角常用平移法.平移法有三种类型,利用图中已有的平行线平移,利用特殊点(线段的端点或中点)作平行线平移,利用补形平移.(2)求异面直线所成角的步骤①一作:即根据定义作平行线,作出异面直线所成的角; ②二证:即证明作出的角是异面直线所成的角; ③三求:解三角形,求出作出的角.如果求出的角是锐角或直角,则它就是要求的角;如果求出的角是钝角,则它的补角才是要求的角. (3)判定空间两条直线是异面直线的方法①判定定理:平面外一点A 与平面内一点B 的连线和平面内不经过点B 的直线是异面直线. ②反证法:证明两线不可能平行、相交或证明两线不可能共面,从而可得两线异面.典例4 如图,四棱锥P ABCD -中,90ABC BAD ∠=∠=,2BC AD =,PAB △和PAD △都是等边三角形,则异面直线CD 和PB 所成角的大小为A .90B .75C .60D .45【答案】A则222AG GH AH =+,所以90AEF ∠=,故选A. #网【方法点睛】本题主要考查了空间几何体的结构特征及空间中异面直线所成角的求解,其中根据空间几何体的结构特征,把空间中异面直线CD 和PB 所成的角转化为平面角AEF ∠,放置在三角形中,利用解三角形的知识求解是解答本题的关键,着重考查了转化与化归思想和学生的推理、运算能力,试题属于基础题.4.如图,已知棱长为a的正方体ABCD-A1B1C1D1,设M,N分别是A1B1,BC的中点.(1)求MN与A1C1所成角的正切值;(2)求B1D与A1C1所成角的大小.1.在正方体中,与成异面直线的棱共有A.条B.条C.条D.条2.下面四个条件中,能确定一个平面的条件是A.空间中任意三点B.空间中两条直线C.一条直线和一个点D.两条平行直线3.已知直线平面,直线平面,则A.B.异面C.相交D.无公共点4.若直线a α,给出下列结论:①α内的所有直线与a异面;②α内的直线与a都相交;③α内存在唯一的直线与a平行;④α内不存在与a平行的直线其中成立的个数是A.0 B.1C.2 D.35.如图,在四面体中,若直线和相交,则它们的交点一定A .在直线上B .在直线上C .在直线上D .都不对6.在空间中,下列命题正确的是A .若平面内有无数条直线与直线l 平行,则l α∥B .若平面内有无数条直线与平面平行,则αβ∥C .若平面内有无数条直线与直线l 垂直,则l α⊥D .若平面内有无数条直线与平面垂直,则αβ⊥ 7.给出下列四种说法:①两个相交平面有不在同一直线上的三个公共点; ②一条直线和一个点确定一个平面; ③若四点不共面, 则每三点一定不共线; ④三条平行线确定三个平面. 正确说法的个数为 A .1 B .2 C .3D .48.已知,m n 为异面直线,平面平面,直线满足,则A .αβ∥且l α∥B .且C .与相交,且交线垂直于D .与相交,且交线平行于9.若空间中四条两两不同的直线1234,,,l l l l ,满足12l l ⊥,23l l ∥,34l l ⊥,则下列结论一定正确的是 A .14l l ⊥ B .14l l ∥C .1l 与4l 既不垂直也不平行D .1l 与4l 的位置关系不确定 10.在如图所示的正方体1111ABCD A BC D -中分别是棱的中点,则异面直线与所成角的余弦值为A .147 B .57C .105D .25511.已知在正方体1111ABCD A BC D -中(如图),l ⊂平面1111A B C D ,且l 与11B C 不平行,则下列一定不可能的是A .l 与AD 平行B .l 与AB 异面C .l 与CD 所成的角为30°D .l 与BD 垂直12.在空间四边形ABCD 中,,,,E F G H 分别是,,,AB BC CD DA 的中点.若AC BD a ==,且AC 与BD所成的角为60,则四边形EFGH 的面积为A .238a B .234a C .232a D .23a13.我国古代《九章算术》里,记载了一个例子:今有羡除,下广六尺,上广一丈,深三尺,末广八尺,无深,袤七尺,问积几何?”该问题中的羡除是如图所示的五面体,其三个侧面皆为等腰梯形,两个底面为直角三角形,其中尺,尺,尺,间的距离为尺,间的距离为尺,则异面直线与所成角的正弦值为A .B .C .D .14.如图是正四面体的平面展开图,分别是的中点,在这个正四面体中:①与平行;②与为异面直线;③与成60°角;④与垂直.以上四个命题中,正确命题的个数是A .1B .2C .3D .415.若直线和平面平行,且直线,则两直线和的位置关系为 _____ .16.如图所示,1111ABCD A BC D 是长方体,O 是B 1D 1的中点,直线A 1C 交平面AB 1D 1于点M ,给出下列结论:①A 、M 、O 三点共线;②A 、M 、O 、A 1不共面;③A 、M 、C 、O 共面;④B 、B 1、O 、M 共面. 其中正确结论的序号为____________.17.已知m ,n 是两条不同的直线,,β是两个不同的平面,给出下列命题:①若⊥β,∩β=m ,n ⊥m ,则n ⊥α或n ⊥β; ②若α∩β=m ,n //α,n //β,则n //m ;③若m 不垂直于平面α,则m 不可能垂直于α内的无数条直线; ④若m ⊥α,n ⊥β, α//β,则m //n .其中正确的是__________.(填上所有正确的序号) 18.在四面体中,分别是的中点,若所成的角为,且,则的长度为__________. 19.如图,已知四棱锥中,底面为菱形,分别是的中点,在上,且13PG PD.证明:点四点共面.20.已知空间四边形ABCD中,E,H分别是边AB,AD的中点,F,G分别是边BC,CD的中点.(1)求证:BC与AD是异面直线;(2)求证:EG与FH相交.21.如图,等腰直角三角形ABC中,∠A=90°,BC=,DA⊥AC,DA⊥AB,若DA=1,且E为DA的中点.求异面直线BE与CD所成角的余弦值.1.(2018新课标全国Ⅱ理科)在长方体1111ABCD A B C D -中,1AB BC ==,13AA 1AD 与1DB 所成角的余弦值为A .15B 5C 5D 2 2.(2017新课标全国Ⅱ理科)已知直三棱柱111ABC A B C -中,120ABC ∠=︒,2AB =,11BC CC ==,则异面直线1AB 与1BC 所成角的余弦值为A .32B .155C .105D .333.(2015安徽理科)已知m ,n 是两条不同直线,α,β是两个不同平面,则下列命题正确的是 A .若α,β垂直于同一平面,则α与β平行 B .若m ,n 平行于同一平面,则m 与n 平行C .若α,β不平行,则在α内不存在与β平行的直线D .若m ,n 不平行,则m 与n 不可能垂直于同一平面 4.(2016新课标全国Ⅰ理科)平面α过正方体ABCDA 1B 1C 1D 1的顶点A ,α//平面CB 1D 1,α平面ABCD =m ,α平面ABB 1 A 1=n ,则m ,n 所成角的正弦值为A 3B .22C 3D .135.(2017新课标全国Ⅲ理科) a ,b 为空间中两条互相垂直的直线,等腰直角三角形ABC 的直角边AC 所在直线与a ,b 都垂直,斜边AB 以直线AC 为旋转轴旋转,有下列结论:①当直线AB 与a 成60°角时,AB 与b 成30°角; ②当直线AB 与a 成60°角时,AB 与b 成60°角; ③直线AB 与a 所成角的最小值为45°; ④直线AB 与a 所成角的最大值为60°.其中正确的是________.(填写所有正确结论的编号)6.(2015浙江理科)如图,三棱锥A BCD -中,3,2AB AC BD CD AD BC ======,点,M N 分别是,AD BC 的中点,则异面直线AN ,CM 所成的角的余弦值是 .7.(2016上海理科)将边长为1的正方形11AAOO (及其内部)绕1OO 旋转一周形成圆柱,如图,AC 长为2π3,11A B 长为π3,其中1B 与C 在平面11AAOO 的同侧.(1)求三棱锥111C O A B -的体积;(2)求异面直线1B C 与1AA 所成的角的大小.1.【解析】(1)如图,连接EF ,CD 1,BA 1.因为E ,F 分别是AB ,AA 1的中点,所以EF ∥BA 1. 又BA 1∥CD 1,所以EF ∥CD 1. 所以E ,C ,D 1,F 四点共面.(2)因为EF ∥CD 1,EF <CD 1,所以CE 与D 1F 必相交,设交点为P ,如图所示.2.【答案】A【解析】当直线l 与平面α相交时,这条直线与该平面内任意一条不过交点的直线均为异面直线,故A 正确;该平面内不存在与直线l 平行的直线,故B 错误;该平面内有无数条直线与直线l 垂直,所以C 错误;平面α内的直线与l 可能异面,故D 错误,故选A . 学@ 3.【解析】反证法:若b 与c 不是异面直线,则或b 与c 相交.①若,∵,∴,这与矛盾. ②若b ,c 相交于点B ,则.∵,∴,∴AB β⊂,即b β⊂,这与矛盾.∴b ,c 是异面直线.变式拓展4.【解析】(1)如图,取B1C1的中点Q,连接MQ,∵M是A1B1的中点,∴MQ//A1C1,∴MQ与MN所成的角为MN与A1C1所成的角,即∠NMQ.连接QN,则QN⊥平面A1B1C1D1,而MQ⊂平面A1B1C1D1,∴QN⊥MQ.在Rt△MQN中,QN=a,MQ =a,∴tan∠NMQ =.即MN与A1C1所成角的正切值为.(2)如图,连接BD,B1D1.∵DD1⊥平面A1B1C1D1,A1C1⊂平面A1B1C1D1,∴DD1⊥A1C1.又A1C1⊥B1D1,DD1∩B1D1=D1,∴A1C1⊥平面BDD1B1.∵B1D⊂平面BDD1B1,∴A1C1⊥B1D,∴B1D与A1C1所成角的大小为90°.考点冲关1.【答案】A【解析】如图,与成异面直线的棱有、、、,共4条.故选A.2.【答案】D3.【答案】D【解析】若直线平面,直线平面,则或异面,即无公共点.故选D.4.【答案】A【解析】∵直线a α,∴a∥α或a∩α=A.如图,显然①②③④都有反例,所以应选A.【名师点睛】判断一个命题是否正确要善于找出空间模型(长方体是常用的空间模型),另外,考虑问题要全面,即注意发散思维.5.【答案】A【解析】根据条件可知,和的交点都在平面ABD与平面BCD中,故和相交于两平面的交线BD上.故选A.6.【答案】D【解析】由题可得,要使直线与平面平行,则直线应平行于平面内的一条直线,且该直线在平面外,由此可得,选项A错误;要使平面与平面平行,则只需平面内两条相交直线与平面平行即可,选项B中,没说明直线是否相交,所以结论不一定成立,所以选项B错误;要使直线垂直平面,则直线垂直于平面内的任意一条直线,而无数条直线不能代表任意条,所以选项C错误,所以正确的选项是D.7.【答案】A8.【答案】D【解析】若,则由平面,知平面,而平面,所以,与为异面直线矛盾,所以平面与平面相交.由平面,且,可知,,同理可知,所以与两平面的交线平行.故选D . 9.【答案】D【解析】如下图所示,在正方体1111ABCD A BC D -中,取1AA 为2l ,1BB 为3l .若取AD 为1l ,BC 为4l ,则14l l ∥;若取AD 为1l ,AB 为4l ,则14l l ⊥;若取AD 为1l ,11A B 为4l ,则1l 与4l 异面,因此14,l l 的位置关系不确定,故选D.D 1C 1B 1A 1DCBA10.【答案】D【解析】取DD 1的中点G ,连接BG,FG ,易知四边形BED 1G 是平行四边形,则BG //ED 1,则∠FBG 是异面直线与所成的角或其补角,令正方体的棱长为2,则BF =FG =BG =3,cos ∠FBG 255235=⨯⨯. 11.【答案】A【解析】假设l AD ∥,则由11AD BC B C ∥∥,可得11l B C ∥,这与“l 与11B C 不平行”矛盾,所以l 与AD 不平行. 12.【答案】A13.【答案】B【解析】过点作,如图:根据题意知,所以是异面直线与所成的角,又因为尺,尺,且侧面为等腰梯形,则尺,间的距离为尺,故尺,由勾股定理得尺,所以,故选B.14.【答案】C【解析】将正四面体的平面展开图复原为正四面体A(B、C)﹣DEF,如图:15.【答案】平行或异面【解析】由条件可知直线和没有公共点,故直线和的位置关系为平行或异面. 学……16.【答案】①③【解析】连接A1C1、AC,则A1C1∥AC,∴A1、C1、C、A四点共面,∴A1C⊂平面ACC1A1.∵M∈A1C,∴M∈平面ACC1A1,又M∈平面AB1D1,∴M在平面ACC1A1与平面AB1D1的交线上,同理O、A在平面ACC1A1与平面AB1D1的交线上,∴A、M、O三点共线,故①正确.由①易知②错误,③正确.易知OM与BB1为异面直线,故④错误.17.【答案】②④【解析】若,则与的位置关系不确定,即①错误;由线面平行的性质和平行公理可得②正确;若不垂直于平面,则可垂直于内的无数条直线,即③错误;若,则,又,所以,即④正确.故填②④.18.【答案】19.【解析】在平面内,连接并延长,交的延长线于点,则有, 在平面内,连接并延长,交于点.取中点,连接,AF,20.【解析】(1)假设BC与AD共面,不妨设它们所共平面为,则.所以四边形ABCD为平面图形,这与四边形ABCD为空间四边形相矛盾. @网所以BC与AD是异面直线.(2),因此;同理,则EFGH为平行四边形.又EG,FH是平行四边形的对角线,所以EG与HF相交.21.【解析】取AC的中点F,连接BF、EF,1.【答案】C【解析】用一个与原长方体相同的长方体拼到原长方体的前面,如图,则11B P AD ∥,连接DP ,易求得1=5DB DP =,12B P =,则1DB P ∠是异面直线1AD 与1DB 所成的角,由余弦定理可得222111115455cos 2545DB B P DP DB P DB PB +-+-∠===⋅.故选C.2.【答案】C直通高考【解析】如图所示,补成直四棱柱1111ABCD A BC D -, 则所求角为21111,2,21221cos 603,5BC D BC BDC D AB ∠==+-⨯⨯⨯︒===,易得22211C D BD BC =+,因此111210cos 55BC BC D C D ∠===,故选C .【名师点睛】平移法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面问题化归为共面问题来解决,具体步骤如下:①平移:平移异面直线中的一条或两条,作出异面直线所成的角; ②认定:证明作出的角就是所求异面直线所成的角; ③计算:求该角的值,常利用解三角形; 学@④取舍:由异面直线所成的角的取值范围是(0,]2π,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.求异面直线所成的角要特别注意异面直线之间所成角的范围. 3.【答案】D4.【答案】A【解析】如图,设平面11CB D 平面ABCD ='m ,平面11CB D 平面11ABB A ='n ,因为α∥平面11CB D ,所以','m m n n ∥∥,则,m n 所成的角等于','m n 所成的角. 过1D 作11D E B C ∥,交AD 的延长线于点E ,连接CE ,则CE 为'm . 连接1A B ,过B 1作111B F A B ∥,交1AA 的延长线于点1F ,则11BF 为'n .连接BD ,则111,BD CE B F A B ∥∥,则','m n 所成的角即为1,A B BD 所成的角,为60 , 故,m n 所成角的正弦值为32,选A.【名师点睛】求解本题的关键是作出异面直线所成的角,求异面直线所成角的步骤是:平移定角、连线成形、解形求角、得钝求补. 5.【答案】②③【名师点睛】(1)平移直线法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面问题化归为共面问题来解决,具体步骤如下:①平移:平移异面直线中的一条或两条,作出异面直线所成的角;②认定:证明作出的角就是所求异面直线所成的角;③计算:求该角的值,常利用解三角形;④取舍:由异面直线所成的角的取值范围是π0,2⎛⎤⎥⎝⎦,可知当求出的角为钝角时,应取它的补角作为两条异面直线所成的角.(2)求异面直线所成的角要特别注意异面直线之间所成角的范围.6.【答案】87【解析】如下图,连接DN,取DN中点E,连接EM,EC,则可知EMC∠即为异面直线AN,CM 所成角(或其补角),易得122EM AN==22213EC EN CN+=+2222=-=AMACCM,∴7 cos82222EMC∠==⨯⨯,31 即异面直线AN ,CM 所成角的余弦值为87. 7.【解析】(1)由题意可知,圆柱的高1h =,底面半径1r =.由11A B 长为π3,可知111π3ΑΟΒ∠=. 111111111113sin 24ΟΑΒS ΟΑΟΒA ΟΒ=⋅⋅∠=△, 11111113312C O A B ΟΑΒV S h -=⋅=△.【名师点睛】此类题目是立体几何中的常见问题.解答本题时,关键在于能利用直线与直线、直线与平面、平面与平面位置关系的相互转化,将空间问题转化成平面问题.立体几何中的角与距离的计算问题,往往可以利用几何法、空间向量方法求解,应根据题目条件,灵活选择方法.本题能较好地考查考生的空间想象能力、逻辑推理能力、转化与化归思想及基本运算能力等.。
空间线面关系的判定
6
AM 于点 O 分析:连结 AC 1 交
因为 A 1B AC 1 CB 所以,要证 A 1B AM 0 就是证
1
M
B
1
90
O
30
A
A C CB AM 0
C
即证 AC AM CB CM 0 1
1、利用 ACM 和A 相似可以证明 AC AM , 1 1 AC
解:以点C为坐标原点建立空间直角坐标
1 1 1 A(1, 0, 0), B (0,1, 0), F1 ( , 0,1), D1 ( , ,1) 2 2 2
平移到A1B1C1位置,已知 BC CA CC1, 取A1B1、AC 的中 1 1 取A1B1、AC 的中点D1、F1,求BD1与AF1所成的角的余弦值. 1 1 z
CD中点,求证:D1F 平面ADE 以DA, DC,DD1为单位正交 证明:设正方体棱长为1, 基底,建立如图所示坐标系D-xyz,则可得:
1 DA (1, 0, 0), DE (1,1, , ) 2 设平面ADE的一个法向量
D1
z
C1 B1 E
A1 D A
x
为n=(x,y,z) 则由n DA 0, n DE 0得
例1 如图,已知矩形 ABCD 和矩形 ADEF 所在平面互相垂直,点 1 1 M , N 分别在对角线 BD, AE 上,且 BM BD, AN AE, 3 3 求证:MN // 平面CDE
F
z
N
E
A
D M
y
B
x
C
例2.在正方体 ABCD A1 B1C1 D1 中,E、F分别是BB1,,
系C xyz,如图所示,设CC1 1则: F1
3.2.2 空间线面关系的判定(二)
3.2.2 空间线面关系的判定(二)——垂直关系的判定一、基础过关1. 已知平面α和平面β的法向量分别为a =(1,1,2),b =(x ,-2,3),且α⊥β,则x =___. 2. 已知a =(1,1,0),b =(1,1,1),若b =b 1+b 2,且b 1∥a ,b 2⊥a ,则b 1,b 2分别为________________.3. 已知AB →=(1,5,-2),BC →=(3,1,z ),若AB →⊥BC →,BP →=(x -1, y ,-3),且BP ⊥平面ABC ,则BP →=______________. 4. 下列命题中,正确的命题是________(填序号).①若a 是平面α的斜线,直线b 垂直于a 在α内的射影,则a ⊥b ;②若a 是平面α的斜线,平面β内的直线b 垂直于a 在α内的射影,则a ⊥b ; ③若a 是平面α的斜线,b 是平面α内的一条直线,且b 垂直于a 在α内的射影,则a ⊥b ; ④若a 是平面α的射线,直线b 平行于平面α,且b 垂直于a 在另一平面β内的射影,则a ⊥b .5. 已知点P 是平行四边形ABCD 所在的平面外一点,如果AB →=(2,-1,-4),AD →=(4,2,0),AP →=(-1,2,-1).对于结论:①AP ⊥AB ;②AP ⊥AD ;③AP →是平面ABCD 的法向量;④AP →∥BD →.其中正确的是________(填序号). 6.如图所示,在直四棱柱A 1B 1C 1D 1—ABCD 中,当底面四边形ABCD 满足条件________时,有A 1C ⊥B 1D 1.(注:填上你认为正确的一个条件即可,不必考虑所有可能情形) 二、能力提升 7.如图,在四棱锥P —ABCD 中,P A ⊥底面ABCD ,底面各边都相等,M 是PC 上的一动点,当点M 满足______时,平面MBD ⊥平面PCD .(注:只要填写一个你认为正确的即可)8.如图所示,在直三棱柱ABC —A 1B 1C 1中,底面是以∠ABC 为直角的等腰三角形,AC =2a ,BB 1=3a ,D 是A 1C 1的中点,点E 在棱AA 1上,要使CE ⊥面B 1DE ,则AE =________. 9. 在棱长为a 的正方体OABC —O 1A 1B 1C 1中,E 、F 分别是AB 、BC 上的动点,且AE =BF ,求证:A 1F ⊥C 1E . 10.如图,已知正三棱柱ABC —A 1B 1C 1的各棱长都为1,M 是底面上BC 边的中点,N 是侧棱CC 1上的点,且CN =14CC 1.求证:AB 1⊥MN .11.如图所示,△ABC 是一个正三角形,EC ⊥平面ABC ,BD ∥CE ,且CE =CA =2BD ,M 是EA 的中点.求证:平面DEA ⊥平面ECA . 三、探究与拓展 12.如图所示,正方形ABCD 所在平面与四边形ABEF 所在平面互相垂直,△ABE 是等腰直角三角形,AB =AE ,F A =FE ,∠AEF =45°. (1)求证:EF ⊥平面BCE ;(2)设线段CD 、AE 的中点分别为P 、M ,求证:PM ∥平面BCE .答案1.-4 2.(1,1,0),(0,0,1) 3.⎝⎛⎭⎫337,-157,-3 4.③ 5.①②③ 6.AC ⊥BD 7.DM ⊥PC 8.a 或2a 9.证明以O 为坐标原点建立如图所示的空间直角坐标系, 则A 1(a,0,a ),C 1(0,a ,a ). 设AE =BF =x ,∴E (a ,x,0),F (a -x ,a,0).∴A 1F →=(-x ,a ,-a ), C 1E →=(a ,x -a ,-a ). ∵A 1F →·C 1E →=(-x ,a ,-a )·(a ,x -a ,-a )=-ax +ax -a 2+a 2=0, ∴A 1F →⊥C 1E →,即A 1F ⊥C 1E . 10.证明 设AB 中点为O ,作OO 1∥AA 1,以O 为坐标原点,OB 为x 轴,OC 为y 轴,OO 1为z 轴建立如图所示的空间直角坐标系.由已知得A ⎝⎛⎭⎫-12,0,0,B ⎝⎛⎭⎫12,0,0, C ⎝⎛⎭⎫0,32,0,N ⎝⎛⎭⎫0,32,14,B 1⎝⎛⎭⎫12,0,1.∵M 为BC 中点, ∴M ⎝⎛⎭⎫14,34,0.∴MN →=⎝⎛⎭⎫-14,34,14,AB 1→=(1,0,1),∴MN →·AB 1→=-14+0+14=0.∴MN →⊥AB 1→,∴AB 1⊥MN . 11.证明 建立如图所示的空间直角坐标系C —xyz ,不妨设CA =2, 则CE =2,BD =1,C (0,0,0),A (3,1,0),B (0,2,0),E (0,0,2),D (0,2,1).所以EA →=(3,1,-2),CE →=(0,0,2),ED →=(0,2,-1).分别设面ECA 与面DEA 的法向量是n 1=(x 1,y 1,z 1),n 2=(x 2,y 2,z 2),则⎩⎪⎨⎪⎧n 1·EA →=0,n 1·CE →=0,即⎩⎨⎧ 3x 1+y 1-2z 1=0,2z 1=0.解得⎩⎨⎧y 1=-3x 1,z 1=0. ⎩⎪⎨⎪⎧n 2·EA →=0,n 2·ED →=0,即⎩⎨⎧3x 2+y 2-2z 2=0,2y 2-z 2=0.解得⎩⎨⎧x 2=3y 2,z 2=2y 2.不妨取n 1=(1,-3,0),n 2=(3,1,2),因为n 1·n 2=0,所以两个法向量相互垂直. 所以平面DEA ⊥平面ECA .12.证明 (1)∵△ABE 是等腰直角三角形,AB =AE ,∴AE ⊥AB ,又∵平面ABEF ⊥平面ABCD 且平面ABEF ∩平面ABCD =AB ,∴AE ⊥平面ABCD , ∴AE ⊥AD .即AD 、AB 、AE 两两垂直.故建立如图所示的空间直角坐标系,设AB =1,则AE =1,B (0,1,0),D (1,0,0),E (0,0,1),C (1,1,0).∵F A =FE ,∠AEF =45°, ∴∠AFE =90°,从而F ⎝⎛⎭⎫0,-12,12,EF →=⎝⎛⎭⎫0,-12,-12, BE →=(0,-1,1),BC →=(1,0,0). ∴EF →·BE →=0,EF →·BC →=0, ∴EF ⊥BE ,EF ⊥BC ,又∵BE ∩BC =B ,∴EF ⊥平面BCE .(2)M ⎝⎛⎭⎫0,0,12,P ⎝⎛⎭⎫1,12,0, 从而PM →=⎝⎛⎭⎫-1,-12,12. 于是PM →·EF →=⎝⎛⎭⎫-1,-12,12·⎝⎛⎭⎫0,-12,-12=0+14-14=0. ∴PM ⊥EF .又EF ⊥平面BCE ,直线PM 不在平面BCE 内,故PM ∥平面BCE .。
空间线面位置关系的判定
空间线面位置关系的判定作者:来源:《数学金刊·高考版》2015年第03期本考点考查同学们对定义、定理的深刻理解,以及对符号语言、图形语言、文字语言三者之间转换的能力. 考查主要以选择题、填空题的形式出现,题目难度不大,主要是判断命题真假、判断充要关系等.(1)理解空间中点、线、面的位置关系.(2)熟练运用平行、垂直关系的判定定理和性质定理,判定较复杂的平行、垂直问题.(3)通过大量图形的观察、实验,实现平面图形到立体图形的飞跃,培养空间想象能力.该知识点的重点、难点是:符号语言、图形语言、文字语言三者之间的转换,异面直线的定义及其所成角的求法.(1)借助空间线面位置关系的线面平行、面面平行、线面垂直、面面垂直的判定定理和性质定理来解决问题.(2)借助空间几何模型,如从长方体模型、四面体模型等中观察线面位置关系,结合有关定理,肯定或否定某些选项,并作出选择.(3)注意反例和生活中的图例的应用.例1 若m,n是平面α内的两条不同直线,l1,l2是平面β内的两条相交直线,则α∥β的一个充分而不必要条件是()A. m∥β且l1∥αB. m∥l1且n∥l2C. m∥β且n∥βD. m∥β且n∥l2破解思路要得到两个平面平行,必须是一个平面内的两条相交直线分别与另外一个平面平行. 若两个平面平行,则一个平面内的任一直线必平行于另一个平面. 其实解决此类问题更好的办法是利用数学模型,比如正方体模型,把相关直线、平面的关系在正方体上表示出来再进行判定.答案详解对于选项A,不是同一平面的两条直线,显然既不充分也不必要. 对于选项B,由于l1与l2是相交直线,且l1∥m,m?奂α,l1?埭α,所以l1∥α,同理得l2∥α,且l1与l2相交,故可得α∥β,充分性成立;而α∥β不一定能得到l1∥m,它们也可以异面,故必要性不成立. 对于选项C,由于m,n不一定是相交直线,故是必要非充分条件. 对于选项D,由n∥l2可转化为C,故不符合题意. 综上所述,正确答案为B.例2 如图9,在正方体ABCD-A1B1C1D1中,E,F,G分别是棱A1B1,BB1,B1C1的中点,给出下列结论:①FG⊥BD;②B1D⊥平面EFG;③平面EFG∥平面ACC1A1;④EF∥平面CDD1C1. 正确结论的序号是?摇______.图9破解思路本题考查空间中直线与直线、直线与平面、平面与平面的位置关系,属于基础知识的考查. 可利用中位线的性质把有关量转移到正方体的对角线或对角面考虑.答案详解对于①,FG∥BC1,BC 与BD成60°角,所以①错;对于③,只能得到直线EG∥平面ACC1A1,而判定面面平行需有两相交直线的条件,所以③错;②和④正确. 故答案为②④.1. 设l,m,n表示三条不同的直线,α,β表示两个不同的平面,则下列说法正确的是()A. 若l∥m,m?奂α,则l∥αB. 若l⊥m,l⊥n,m,n?奂α,则l⊥αC. 若l∥α,l∥β,α∩β=m,则l∥mD. 若l?奂α,m?奂β,l⊥m,则α⊥β2. 如图10,在正方体ABCD-A1B1C1D1中,E,F分别是线段BC,C1D的中点,则直线A1B与直线EF的位置关系是()A. 相交B. 平行C. 异面D. 以上都有可能图103. 四棱锥P-ABCD的顶点P在底面ABCD上的投影恰好是点A,其正视图与侧视图都是腰长为a的等腰直角三角形(如图11所示),则在四棱锥P-ABCD的任意两个顶点的连线中,互相垂直的异面直线共有______对.图11。
空间向量的线面关系的判定
目录
• 空间向量的基本概念 • 空间向量的线性关系 • 空间向量的平面关系 • 空间向量的线面关系判定定理 • 空间向量线面关系的应用
01
空间向量的基本概念
向量的表示
几何表示
在空间中,向量可以用有向线段 来表示,起点为向量的尾部,终 点为向量的头部。
坐标表示
在三维直角坐标系中,一个向量 可以用三个分量来表示,即 $overset{longrightarrow}{a} = (a_1, a_2, a_3)$。
VS
性质
向量加法满足交换律和结合律,即 $overset{longrightarrow}{a} + overset{longrightarrow}{b} = overset{longrightarrow}{b} + overset{longrightarrow}{a}$,并且 $(overset{longrightarrow}{a} + overset{longrightarrow}{b}) + overset{longrightarrow}{c} = overset{longrightarrow}{a} + (overset{longrightarrow}{b} + overset{longrightarrow}{c})$。
详细描述
根据空间向量的垂直性质,如果一个向量与平面内任意两个不共线的向量都垂直,则该向量与该平面垂直。这是 因为平面的方向由其内的任意两个不共线的向量确定,若一个向量与这两个向量在平面内,且与该平面的法线向 量垂直,则该向量在该平面上。
详细描述
解决物理问题
向量可以用于解决物理问题,如牛顿第二定律、动量 定理等,以及解决物理现象中的位置关系问题。
第14练 空间线面关系的判断
第14练空间线面关系的判断[明考情]空间线面关系的判断是高考的必考内容,主要以选择题形式出现,属于基础题;立体几何中的动态问题是新高考的热点,难度中等偏上.[知考向]1.空间线面位置关系的判断.2.空间中的平行、垂直关系.3.空间角的求解.4.立体几何中的动态问题.考点一空间线面位置关系的判断方法技巧(1)判定两直线异面的方法:①反证法;②利用结论:过平面外一点和平面内一点的直线和平面内不过该点的直线是异面直线.(2)模型法判断线面关系:借助空间几何模型,如长方体、四面体等观察线面关系,再结合定理进行判断.1.若直线l1和l2是异面直线,l1在平面α内,l2在平面β内,l是平面α与平面β的交线,则下列命题中正确的是()A.l与l1,l2都不相交B.l与l1,l2都相交C.l至多与l1,l2中的一条相交D.l至少与l1,l2中的一条相交答案 D解析若l与l1,l2都不相交,则l∥l1,l∥l2,∴l1∥l2,这与l1和l2异面矛盾,∴l至少与l1,l2中的一条相交.2.(2017·常德一中模拟)已知α,β是两个不同的平面,l,m是两条不同的直线,且l⊂α,m⊂β,则()A.若α∥β,则l∥m B.若l∥m,则α∥βC.若α⊥β,则l⊥m D.若l⊥β,则α⊥β答案 D解析选项A,若α∥β,则直线l,m平行或异面,错误;选项B,若l∥m,则平面α,β平行或相交,错误;选项C,若α⊥β,则直线l,m平行、相交或异面,错误;选项D,若l⊥β,则由面面垂直的判定定理可得α⊥β,正确,故选D.3.已知直线a与平面α,β,α∥β,a⊂α,点B∈β,则在β内过点B的所有直线中() A.不一定存在与a平行的直线B.只有两条a平行的直线C.存在无数条与a平行的直线D.存在唯一一条与a平行的直线答案 D解析在平面内过一点只能作一条直线与已知直线平行.4.将正方体的纸盒展开如图,直线AB,CD在原正方体的位置关系是()A.平行B.垂直C.相交成60°角D.异面且成60°角答案 D解析如图,直线AB,CD异面.因为CE∥AB,所以∠ECD即为直线AB,CD所成的角,因为△CDE为等边三角形,故∠ECD=60°.5.已知α,β表示平面,m,n表示直线,m⊥β,α⊥β,给出下列四个结论:①任意n⊂α,n⊥β;②任意n⊂β,m⊥n;③任意n⊂α,m∥n;④存在n⊂α,m⊥n.则上述结论中正确的个数为()A.1 B.2 C.3 D.4解析由于m⊥β,α⊥β,所以m⊂α或m∥α.任意n⊂α,n⊥β或n与β斜交或n∥β,所以①不正确;任意n⊂β,m⊥n,所以②正确;任意n⊂α,m与n可能平行、相交或异面,所以③不正确;当m⊂α或m∥α时,存在n⊂α,m⊥n,所以④正确.考点二空间中的平行、垂直关系方法技巧(1)利用平面图形中的线的平行判断平行关系:①比例线求证平行,特别是三角形中位线定理;②平行四边形的对边互相平行;③同一平面内垂直于同一直线的两直线互相平行.(2)熟练把握平面图形中的垂直关系:①等腰三角形的底边上的中线和高重合;②菱形的对角线互相垂直;③圆的直径所对的圆周角为直角;④勾股定理得垂直.(3)空间中平行与垂直的实质是转化与化归思想在空间中的体现.6.(2016·浙江)已知互相垂直的平面α,β交于直线l.若直线m,n满足m∥α,n⊥β,则() A.m∥l B.m∥nC.n⊥l D.m⊥n答案 C解析由已知,α∩β=l,∴l⊂β.又n⊥β,∴n⊥l,故选C.7.已知两个不同的平面α,β和两条不重合的直线m,n,则下列四个命题中不正确的是() A.若m∥n,m⊥α,则n⊥αB.若m⊥α,m⊥β,则α∥βC.若m⊥α,m∥n,n⊂β,则α⊥βD.若m∥α,α∩β=n,则m∥n答案 D解析易知A,B正确;对于C,因为m⊥α,m∥n,所以n⊥α.又n⊂β,所以β⊥α,即C 正确;对于D,因为m∥α,α∩β=n,所以m∥n或m与n是异面直线,故D不正确.8.(2017·全国Ⅲ)在正方体ABCD-A1B1C1D1中,E为棱CD的中点,则()A.A1E⊥DC1B.A1E⊥BDC.A1E⊥BC1D.A1E⊥AC解析 方法一 如图,∵A 1E 在平面ABCD 上的射影为AE ,而AE 不与AC ,BD 垂直,∴B ,D 错;∵A 1E 在平面BCC 1B 1上的射影为B 1C ,且B 1C ⊥BC 1, ∴A 1E ⊥BC 1,故C 正确;(证明:由条件易知,BC 1⊥B 1C ,BC 1⊥CE , ∵CE ∩B 1C =C , ∴BC 1⊥平面CEA 1B 1. 又A 1E ⊂平面CEA 1B 1, ∴A 1E ⊥BC 1.)∵A 1E 在平面DCC 1D 1上的射影为D 1E ,而D 1E 不与DC 1垂直,故A 错. 故选C.方法二 (空间向量法)建立如图所示的空间直角坐标系,设正方体的棱长为1,则A (1,0,0),B (1,1,0),C (0,1,0),D (0,0,0),A 1(1,0,1),C 1(0,1,1),E ⎝⎛⎭⎫0,12,0, ∴A 1E →=⎝⎛⎭⎫-1,12,-1,DC 1→=(0,1,1), BD →=(-1,-1,0),BC 1→=(-1,0,1),AC →=(-1,1,0), ∴A 1E →·DC 1→≠0,A 1E →·BD →≠0, A 1E →·BC 1→=0,A 1E →·AC →≠0, ∴A 1E ⊥BC 1.故选C.9.如图,在直三棱柱ABC —A 1B 1C 1中,AA 1=2,AB =BC =1,∠ABC =90°,外接球的球心为O ,点E 是侧棱BB 1上的一个动点.有下列判断:①直线AC 与直线C 1E 是异面直线;②A 1E 一定不垂直于AC 1;③三棱锥E —AA 1O 的体积为定值;④AE +EC 1的最小值为2 2.其中正确的个数是()A.1 B.2C.3 D.4答案 C解析①因为点A∉平面BB1C1C,所以直线AC与直线C1E是异面直线;②当A1E⊥AB1时,直线A1E⊥平面AB1C1,所以A1E⊥AC1,错误;③球心O是直线AC1,A1C的交点,底面OAA1面积不变,直线BB1∥平面AA1O,所以点E到底面的距离不变,体积为定值;④将矩形AA1B1B 和矩形BB1C1C展开到一个面内,当点E为AC1与BB1的交点时,AE+EC1取得最小值22,故选C.10.如图,三棱柱ABC—A1B1C1中,侧面BB1C1C为菱形,B1C的中点为O,且AO⊥平面BB1C1C,则B1C与AB的位置关系为________.答案异面垂直解析∵AO⊥平面BB1C1C,B1C⊂平面BB1C1C,∴AO⊥B1C.又侧面BB1C1C为菱形,∴B1C⊥BO,又AO∩BO=O,∴B1C⊥平面ABO.∵AB⊂平面ABO,∴B1C⊥AB.考点三空间角的求解方法技巧(1)对于两条异面直线所成的角,可固定一条,平移另一条,或两条同时平移到某个特殊的位置.(2)直线和平面所成的角的求解关键是找出或作出过斜线上一点的平面的垂线,得到斜线在平面内的射影.11.已知在四面体ABCD中,E,F分别是AC,BD的中点,若AB=2,CD=4,EF⊥AB,则EF与CD所成的角的大小为()A .90°B .45°C .60°D .30°答案 D解析 设G 为AD 的中点,连接GF ,GE ,则GF ,GE 分别为△ABD ,△ACD 的中线.由此可得GF ∥AB ,且GF =12AB =1,GE ∥CD ,且GE =12CD =2,∴∠FEG 或其补角即为EF 与CD 所成的角. 又EF ⊥AB ,GF ∥AB ,∴EF ⊥GF . 因此,在Rt △EFG 中,GF =1,GE =2, 由正弦的定义,得sin ∠GEF =GF GE =12,可得∠GEF =30°.∴EF 与CD 所成的角的大小为30°.12.(2016·全国Ⅰ)平面α过正方体ABCD -A 1B 1C 1D 1的顶点A ,α∥平面CB 1D 1,α∩平面ABCD =m ,α∩平面ABB 1A 1=n ,则m ,n 所成角的正弦值为( ) A.32 B.22 C.33 D.13答案 A解析 如图所示,设平面CB 1D 1∩平面ABCD =m 1,∵α∥平面CB 1D 1,则m 1∥m , 又∵平面ABCD ∥平面A 1B 1C 1D 1, 平面CB 1D 1∩平面A 1B 1C 1D 1=B 1D 1,∴B 1D 1∥m 1,∴B 1D 1∥m ,同理可得CD 1∥n .故m ,n 所成角的大小与B 1D 1,CD 1所成角的大小相等,即∠CD 1B 1的大小. 而B 1C =B 1D 1=CD 1(均为面对角线),因此∠CD 1B 1=π3,得sin ∠CD 1B 1=32,故选A.13.如图,已知E ,F 分别是正方体ABCD -A 1B 1C 1D 1的棱BB 1,AD 的中点,则直线EF 和平面BDD 1B 1所成的角的正弦值是( )A.26B.36C.13D.66答案 B解析 连接BD ,AE ,过点F 作FH ⊥BD 交BD 于H ,连接EH ,易证FH ⊥平面BDD 1B 1, ∴∠FEH 是直线EF 和平面BDD 1B 1所成的角.设正方体ABCD -A 1B 1C 1D 1的棱长为2, ∵E ,F 分别是棱BB 1,AD 的中点, ∴在Rt △DFH 中,DF =1,∠FDH =45°, 可得FH =22DF =22. 在Rt △AEF 中,AF =1,AE =AB 2+BE 2=5,可得EF =AF 2+AE 2= 6.在Rt △EFH 中,sin ∠FEH =FH EF =36,即直线EF 和平面BDD 1B 1所成的角的正弦值是36. 14.如图,设E ,F 分别是正方形ABCD 中CD ,AB 边的中点,将△ADC 沿对角线AC 对折,使得直线EF 与AC 异面,记直线EF 与平面ABC 所成的角为α,与异面直线AC 所成的角为β,则当tan β=12时,tan α等于( )A.3516B.55C.5117D.5719 答案 C解析 分别连接BD 交AC 于点O ,连接D ′O . 因为AD ′=CD ′,所以D ′O ⊥AC ,又因为AC ⊥BD ,BD ∩D ′O =O ,所以AC ⊥平面BDD ′, 又BD ′⊂平面BDD ′,所以AC ⊥BD ′. 取BC 的中点S ,连接FS ,ES , 则FS ∥AC ,ES ∥BD ′,所以FS ⊥ES , 又因为∠EFS 为异面直线AC 与EF 所成的角, 所以tan β=ES FS =12,设ES =1,则FS =2,AC =4,取CO 的中点G ,连接EG ,SG ,则EG =SG =1,所以△EGS 为等边三角形,过点E 作EH ⊥GS , 由上可知AC ⊥EG ,AC ⊥SG 且EG ∩SG =G , 则AC ⊥平面EGS .又EH ⊂平面EGS ,所以EH ⊥AC , 又GS ∩AC =G ,所以EH ⊥平面ABCD , 所以∠EFH 为EF 与平面ABCD 所成的角, 因为EH =32,FH = 4+14=172, 所以tan ∠EFH =EH FH =5117,故选C.考点四立体几何中的动态问题方法技巧(1)考虑动态问题中点线面的变化引起的一些量的变化,建立目标函数,用代数方法解决几何问题.(2)运动变化中的轨迹问题的实质是寻求运动变化过程中的所有情况,发现动点的运动规律.(3)运动过程中端点的情况影响问题的思考,可以利用极限思想考虑运动变化的极限位置.15.如图,△ABC是等腰直角三角形,其中∠A=90°,且DB⊥BC,∠BCD=30°,现将△ABC 沿边BC折起,使得二面角A-BC-D的大小为30°,则异面直线BC与AD所成的角为()A.30°B.45°C.60°D.90°答案 A解析过点D作DE∥BC,过点C作CE∥BD,则∠ADE为异面直线BC和AD所成的角.取BC,DE的中点F,G,连接AF,GF,AG,则由题意可得AF⊥BC,GF⊥BC,所以∠AFG是二面角A-BC-D的平面角,则∠AFG=30°,BC⊥平面AFG,则DG⊥平面AFG,所以DG⊥AG.不妨设BD=1,则BC=DE=3,AB=AC=62,AF=32,FG=1,在△AFG 中,由余弦定理,可得AG2=34+1-2×32×1×32=14,AG =12,在Rt △ADG 中,DG =32, 所以tan ∠ADG =AG DG =1232=33,则∠ADG =30°,即异面直线BC 和AD 所成的角为30°, 故选A.16.已知在平行六面体ABCD -A 1B 1C 1D 1中,AA 1与平面A 1B 1C 1D 1垂直,且AD =AB ,E 为CC 1的中点,P 在对角面BB 1D 1D 所在平面内运动,若EP 与AC 成30°角,则点P 的轨迹为( ) A .圆 B .抛物线 C .双曲线 D .椭圆答案 A解析 因为在平行六面体ABCD -A 1B 1C 1D 1中,AA 1与平面A 1B 1C 1D 1垂直,且AD =AB ,所以该平面六面体ABCD -A 1B 1C 1D 1是一个底面为菱形的直四棱柱,所以对角面BB 1D 1D ⊥底面ABCD ,AC ⊥对角面BB 1D 1D .取AA 1的中点F ,则EF ∥AC ,因为EP 与AC 成30°角,所以EP 与EF 成30°角.设EF 与对角面BB 1D 1D 的交点为O ,则EO ⊥对角面BB 1D 1D ,所以点P 的轨迹是以EO 为轴的一个圆锥的底面,故选A.17.(2017·温州九校联考)如图在正四面体(所有棱长都相等)D -ABC 中,动点P 在平面BCD 上,且满足∠P AD =30°,若点P 在平面ABC 上的射影为P ′,则sin ∠P ′AB 的最大值为( )A.6+24 B.6-24C.32D.12答案 A解析以AD为轴,∠DAP=30°,AP为母线,围绕AD旋转一周,在平面BCD内形成的轨迹为椭圆,当且仅当点P位于椭圆的长轴端点(图中点M的位置)时,∠P′AB最大,此时AD⊥DM,且DM∥BC.设正四面体D-ABC的各棱长为2,在Rt△ADM中,AD=2,∠MAD=30°,则MD=23,AM=43.过点D作正四面体D-ABC的高DO,O为底面正三角形ABC的中心,连接AO,作MP′⊥平面ABC于点P′,连接P′O,并延长交AB于点N,因为DM∥BC,MP′⊥平面ABC,DO⊥平面ABC,所以MP′綊DO,四边形MP′OD为矩形,所以P′O=DM=23,ON=23,所以P′N=23+23.又在正四面体D-ABC中,AO=32×2×23=233,所以DO=AD2-AO2=263,所以MP′=263.在Rt△AOP′中,AP′=AM2-MP′2=263,于是在△AP′N中,由正弦定理可得23+23sin∠P′AB=26332,解得sin∠P′AB=6+24,故选A.18.如图,四边形ABCD和ADPQ均为正方形,它们所在的平面互相垂直,动点M在线段PQ上,E,F分别为AB,BC的中点.设异面直线EM与AF所成的角为θ,则cos θ的最大值为________.答案2 5解析如图,建立空间直角坐标系Axyz,设AB =2,QM =m (0≤m ≤2),则F (2,1,0),E (1,0,0),M (0,m,2)(0≤m ≤2).AF →=(2,1,0),ME →=(1,-m ,-2), cos θ=|cos AF →,ME →|=|AF →·ME →||AF →||ME →|=|2-m |5·m 2+5=|m -2|5m 2+25.设y =(m -2)25m 2+25,则y ′=2(m -2)(5m 2+25)-(m -2)2·10m(5m 2+25)2=(m -2)[(10m 2+50)-(m -2)·10m ](5m 2+25)2=(m -2)(50+20m )(5m 2+25)2.当0<m <2时,y ′<0, ∴y =(m -2)25m 2+25在(0,2)上单调递减.∴当m =0时,y 取最大值,此时cos θ取最大值, (cos θ)max =|0-2|5×02+25=25.1.给出下列命题:①若平面α上的直线a 与平面β上的直线b 为异面直线,直线c 是α与β的交线,那么c 至多与a ,b 中的一条相交;②若直线a 与b 异面,直线b 与c 异面,则直线a 与c 异面; ③一定存在平面α同时和异面直线a ,b 都平行. 其中正确的命题为( ) A .① B .② C .③ D .①③答案 C解析 ①错,c 可与a ,b 都相交;②错,因为a ,c 也可能相交或平行;③正确,例如过异面直线a ,b 的公垂线段的中点且与公垂线垂直的平面即满足条件. 2.已知m ,n 表示两条不同的直线,α表示平面,下列说法正确的是( ) A .若m ∥α,n ∥α,则m ∥n B .若m ⊥α,n ⊂α,则m ⊥n C .若m ⊥α,m ⊥n ,则n ∥α D .若m ∥α,m ⊥n ,则n ⊥α 答案 B解析 对A ,m ,n 还可能异面、相交,故A 不正确; 对C ,n 还可能在平面α内,故C 不正确;对D ,n 可能平行于平面α,还可能在平面α内,故D 不正确; 对B ,由线面垂直的定义可知正确.3.(2017·河北张家口期末)在三棱柱ABC —A 1B 1C 1中,△ABC 为等边三角形,AA 1⊥平面ABC ,AA 1=AB ,M ,N 分别是A 1B 1,A 1C 1的中点,则BM 与AN 所成角的余弦值为( ) A.110 B.35 C.710 D.45 答案 C解析 如图所示,取AC 的中点D ,建立空间直角坐标系.不妨设AC =2,则A (0,-1,0),N (0,0,2),B (-3,0,0),M ⎝⎛⎭⎫-32,-12,2, AN →=(0,1,2), BM →=⎝⎛⎭⎫32,-12,2,∴cos 〈AN →,BM →〉=AN →·BM →|AN →||BM →|=725×5=710,故选C.4.(2017届杭州一模)在等腰直角△ABC 中,AB ⊥AC ,BC =2,M 为BC 的中点,N 为AC 的中点,D 为BC 边上一个动点,△ABD 沿AD 翻折使BD ⊥DC ,点A 在平面BCD 上的投影为点O ,当点D 在BC 上运动时,以下说法错误的是( )A .线段NO 为定长B .CO ∈[1,2)C .∠AMO +∠ADB >180°D .点O 的轨迹是圆弧 答案 C解析 如图所示,对于A ,△AOC 为直角三角形,ON 为斜边AC 上的中线,ON =12AC 为定长,即A 正确;对于B ,D 在M 时,AO =1,CO =1, ∴CO ∈[1,2),即B 正确;对于D ,由A 可知,点O 的轨迹是圆弧,即D 正确,故选C.解题秘籍(1)平面的基本性质公理是几何作图的重要工具.(2)两条异面直线所成角的范围是(0°,90°].(3)线面关系的判断要结合空间模型或实例,以定理或结论为依据进行推理,绝不能主观判断.(4)立体几何中的动态问题要搞清运动的实质,选用恰当的方法解题.1.已知直线a∥平面α,则“直线a⊥平面β”是“平面α⊥平面β”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案 A解析若直线a⊥平面β,直线a∥平面α,可得平面α⊥平面β;若平面α⊥平面β,又直线a∥平面α,那么直线a⊂平面β,直线a⊄平面β都可能成立.如正方体ABCD—A1B1C1D1中,平面ABCD⊥平面BCC1B1,直线AD∥平面BCC1B1,但直线AD⊂平面ABCD;直线AD1∥平面BCC1B1,但直线AD1与平面ABCD不垂直.综上,“直线a⊥平面β”是“平面α⊥平面β”的充分不必要条件.2.正方体ABCD-A1B1C1D1中,E,F分别是AD,DD1的中点,AB=4,则过B,E,F的平面截该正方体所得的截面周长为()A.62+4 5 B.62+2 5C.32+4 5 D.32+2 5答案 A解析∵正方体ABCD-A1B1C1D1中,E,F分别是棱AD,DD1的中点,∴EF∥AD1∥BC1.∵EF⊄平面BCC1,BC1⊂平面BCC1,∴EF∥平面BCC1.由正方体的边长为4,可得截面是以BE=C1F=25为腰,EF=22为上底,BC1=2EF=42为下底的等腰梯形,故周长为62+4 5.故选A.3.(2017届唐山一模)下列命题正确的是()A.若两条直线和同一个平面平行,则这两条直线平行B.若一直线与两个平面所成的角相等,则这两个平面平行C.若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D.若两个平面垂直于同一个平面,则这两个平面平行答案 C解析A选项中两条直线可能平行也可能异面或相交;B选项中两垂直平面与l所成的角都是45°;D选项中两平面也可能相交.C正确.4.在如图所示的正四棱柱ABCD-A1B1C1D1中,E,F分别是棱B1B,AD的中点,直线BF 与平面AD1E的位置关系是()A.平行B.相交但不垂直C.垂直D.异面答案 A解析取AD1的中点O,连接OE,OF,则OF平行且等于BE,∴BFOE是平行四边形,∴BF∥EO.∵BF⊄平面AD1E,OE⊂平面AD1E,∴BF∥平面AD1E.5.如图,在四边形ABCD中,AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°.将△ADB沿BD折起,使CD⊥平面ABD,构成三棱锥A-BCD.则在三棱锥A-BCD中,下列结论正确的是()A.AD⊥平面BCDB.AB⊥平面BCDC.平面BCD⊥平面ABCD.平面ADC⊥平面ABC答案 D解析∵在四边形ABCD中,AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°,∴BD⊥CD.又CD⊥平面ABD,则CD⊥AB.又AD⊥AB,AD∩CD=D,∴AB⊥平面ADC,∴平面ABC⊥平面ADC.6.已知α,β是两个不同的平面,给出下列四个条件:①存在一条直线a,a⊥α,a⊥β;②存在一个平面γ,γ⊥α,γ⊥β;③存在两条平行直线a,b,a⊂α,b⊂β,a∥β,b∥α;④存在两条异面直线a,b,a⊂α,b⊂β,a∥β,b∥α,可以推出α∥β的是()A.①③B.②④C.①④D.②③答案 C解析对于②,平面α与β还可以相交;对于③,当a ∥b 时,不一定能推出α∥β, 所以②③是错误的,易知①④正确,故选C.7.如图,四边形ABCD 为矩形,平面PCD ⊥平面ABCD ,且PC =PD =CD =2,BC =22,O ,M 分别为CD ,BC 的中点,则异面直线OM 与PD 所成角的余弦值为( )A.64 B.63 C.36 D.33答案 C解析 连接BD ,OB ,则OM ∥DB ,∴∠PDB 或其补角为异面直线OM 与PD 所成的角. 由条件PO ⊥平面ABCD 可知,OB =3,PO =3,BD =23,PB =23, 在△PBD 中,由余弦定理可得 cos ∠PDB =4+12-122·2·23=36.8.(2017·诸暨模拟)已知三棱锥A -BCD 的所有棱长都相等,若AB 与平面α所成的角等于π3,则平面ACD 与平面α所成角的正弦值的取值范围是( ) A.⎣⎢⎡⎦⎥⎤3-66,3+66B.⎣⎢⎡⎦⎥⎤3-66,1C.⎣⎡⎦⎤22-36,22+36 D.⎣⎡⎦⎤22-36,1 答案 A解析 如图,在三棱锥A -BCD 中,E 是CD 的中点,不妨设其边长为2,则AB =AC =AD=BC =BD =CD =2,CE =DE =1,∴AE =BE = 3. 由余弦定理,得cos ∠BAE =BA 2+AE 2-BE 22BA ·AE =22+3-32×2×3=33,∴sin ∠BAE =1-cos 2∠BAE =1-13=63, ∴π4<∠BAE <π3. 由题可知,当平面ACD 与平面α所成二面角的平面角θ取最值时,平面α⊥平面ABE . 当θ最小时,AB 与平面α所成的角为π3,则AB 与平面α的法向量n 1所成的角为π2-π3=π6,∴AE 与n 1所成的角为∠BAE +π6,而平面ACD 与平面α所成的角为θmin =π2-⎝⎛⎭⎫∠BAE +π6, ∴(sin θ)min =cos ⎝⎛⎭⎫∠BAE +π6 =cos ∠BAE cos π6-sin ∠BAE sin π6=33×32-63×12=3-66; 当θ最大时,AB 与平面α所成的角为π3,则AB 与平面α的法向量n 2所成的角为π2-π3=π6,∴AE 与n 2所成的角为∠BAE -π6,而平面ACD 与平面α所成的角为 θmax =π2-⎝⎛⎭⎫∠BAE -π6<π2, ∴(sin θ)max =cos ⎝⎛⎭⎫∠BAE -π6 =cos ∠BAE cos π6+sin ∠BAE sin π6=33×32+63×12=3+66,∴平面ACD 与平面α所成角的正弦值的取值范围为⎣⎢⎡⎦⎥⎤3-66,3+66,故选A.9.如图,在空间四边形ABCD 中,点M ∈AB ,点N ∈AD ,若AM MB =ANND ,则直线MN 与平面BDC 的位置关系是________.答案 平行解析 由AM MB =ANND ,得MN ∥BD .而BD ⊂平面BDC ,MN ⊄平面BDC , 所以MN ∥平面BDC .10.如图,在正方体ABCD —A 1B 1C 1D 1中,E ,F ,G ,H 分别为棱AA 1,B 1C 1,C 1D 1,DD 1的中点,则GH 与平面EFH 所成角的余弦值为______.答案31010解析 连接B 1E ,HC 1, 平面EFH 即平面B 1C 1HE .在正方体AC1中,B1C1⊥平面CDD1C1,故平面B1C1HE⊥平面CDD1C1,过点G作GM⊥C1H于M,则GM⊥平面B1C1HE,则∠C1HG 即为GH与平面EFH所成的角,设正方体棱长为2,则GH=2,GC1=1,HC1=5,∴cos∠C1HG=5+2-12×5×2=31010.11.(2016·全国Ⅱ)α,β是两个平面,m,n是两条直线,有下列四个命题:①如果m⊥n,m⊥α,n∥β,那么α⊥β;②如果m⊥α,n∥α,那么m⊥n;③如果α∥β,m⊂α,那么m∥β;④如果m∥n,α∥β,那么m与α所成的角和n与β所成的角相等.其中正确的命题有________.(填写所有正确命题的序号)答案②③④解析当m⊥n,m⊥α,n∥β时,两个平面的位置关系不确定,故①错误,经判断知②③④均正确,故正确答案为②③④.12.如图,△ABC是等腰直角三角形,AB=AC,∠BCD=90°,且BC=3CD=3.将△ABC 沿BC边翻折,设点A在平面BCD上的射影为点M,若点M在△BCD的内部(含边界),则点M的轨迹的最大长度为________;在翻折过程中,当点M位于线段BD上时,直线AB和CD所成角的余弦值为________.答案3266解析当平面ABC⊥平面BCD时,点A在平面BCD上的射影为BC的中点M,当点A在平面BCD上的射影M在BD上时,因为AB=AC,所以BM=MC,因为BC=3CD=3,所以∠DBC=30°,所以由∠BCD=90°,得BM=MD,点M的轨迹的最大长度等于12CD=32,将其补为四棱锥,由已知条件得其为正四棱锥,所以AB =322,AE =AM 2+EM 2=322. 又因为∠EBA 为直线AB 和CD 所成的角,所以cos ∠EBA =AB 2+BE 2-AE 22AB ·BE =66.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§9 空间线面关系的判定(二)
教学目标: 1、能用向量语言表述线线、线面、面面的平行和垂直关系;
2、能用向量方法判定空间线面的平行和垂直关系;
3、能用向量的坐标运算判定线面的平行和垂直关系。
教学重点:重点是构建向量和转化为坐标运算;
教学难点:向量方法证明空间线面位置关系的一些定理以及体会向量的思想方法。
教学过程:
一.复习:垂直关系的证明:(1)转化为易计算的关系来证;
(2)取适当的基底;
(3)建系转化为坐标运算。
二.新授课:平行关系的证明: 1、证线线平行:
2、证线面平行:
3、证面面平行:
三.数学应用: 例1:如图,已知矩形ABCD 和ADEF 所在平面互相垂直,点M,N 分别在对角线BD,AE 上,且13BM BD =,1
3
AN AE =。
求证:MN ∥平面CDE.
例2:已知正方体1111ABCD A B C D -中,E,F 分别为BB 1、
CD 的中点,
求证:D 1F ⊥面ADE 。
B
A
C
D
A
B C
D
F E
例3:在四棱椎P-ABCD 中,底面ABCD 是一直角梯形,90BAD ∠=︒,AD ∥BC ,
AB=BC=a , AD=2a ,且PA ⊥底面ABCD ,PD 与底面成30o 角,AE ⊥PD ,E 为垂足,试建立恰当的空间直角坐标系:
(1)求证:BE ⊥PD ;(2)设(1,,)n p q =
,满足PCD n ⊥ 平面,求n 的坐标。
例4:在棱长为1的正方体1111ABCD A B C D —中,E 、F 分别为棱AB 和BC 的中点,
试在1BB 上找一点M ,使得11D M EFB ⊥平面。
四.课堂小结:
§9 空间线面关系的判定的作业(二)
班级 姓名 学号 得分
1.若(0,1,1)a =- ,(1,1,0)b = ,且()a b a λ+⊥
,则实数λ的值为 ;
2.已知(1,0,3),(2,,)A B y z -,且直线AB 的一个方向向量是(1,1,2)a =-
,
则y = x =
3.已知(3,,1)a y = 是直线l 的一个方向向量,(1,2,1)n =-
是ABC ∆所在平面的一个法
向量,若直线//l 平面ABC ,则y =
4.已知(0,2,3),(2,1,6),(1,1,5)A B C --,
若||a 且,a A B a A C ⊥⊥
,则向量a
的坐标为
5.若(1,1,1),(2,1,3)a b =-=-- ,则,a b
都垂直的单位向量为
6.若平面,αβ的法向量分别为(1,2,2),(3,6,6)μν=-=--
,则平面,αβ的位置关系为
7.设平面α的法向量为(1,2,2)-,平面β的法向量为(2,4,)k --,若//αβ, 则k =
8.已知直线,a b 和平面α,则下列命题错误的是 ①,, a b a b αα⊥⊥则∥ ②,,a a b b αα⊥⊥若∥则 ③, ,a b a b αα⊥⊥若∥则 ④, , a a b b αα⊥⊥若则∥
9.ABC ∆为边长等于a 的正三角形,AE 和
2A E A B C D ==,F 是BE 的中点 (1) 求证://DF ABC 平面 (2) 求证:AF BD ⊥
10.在正方体1111D C B A ABCD -中,求证:平面//1BD A 平面11D CB
11.在正方体1111D C B A ABCD -中,E F G H 、、、分别是111CC BC CD AC 、、、中
点,求证:(1)1AB EH ⊥;(2)1
AG ⊥平面EFD
12.在直三棱柱111C B A ABC -中,BC AB ⊥,,2==BC AB 11=BB ,E 为1BB 中点, 证明:面⊥1AEC 面C C AA 11。