较大功率直流电机驱动电路的设计方案
直流电机驱动与控制电路设计报告MMZ
直流电机驱动与控制电路设计报告MMZ 摘要
本文主要介绍了直流电机驱动和控制电路的设计,该电路应用于基于MMZ系列直流电机的应用。
在电源连接之后,通过控制器连接电机和接收端,在控制器中的PWM调速模式控制直流电机的转速。
通过对电路图的分析,可以知道该电路可以实现直流电机的变频控制和调速控制功能。
该电
路的优点包括低成本,高可靠性,简单的操作等。
关键词:MMZ系列直流电机,变频控制,控制器,PWM调速
1绪论
随着信息技术的发展和人们生活水平的提高,各行业对电机的要求越
来越高,直流电机的应用非常广泛。
直流电机有很多优点,首先它的功耗低,其次它的抗干扰性强,可以承受比较大的风扇或水泵负荷,同时它还
具有可调速度和方向控制的特性,这使其在工业生产中起到了重要作用。
MMZ系列直流电机是一种新型的高性能直流电机,它具有较高的功率
和较低的噪声,大大降低了系统损耗,而且还具有良好的稳定性和可靠性,所以在工业自动化控制领域有着广泛的应用。
为了使电机具有良好的方向
控制特性和速度控制的功能,必须进行变频控制和调速控制,这就要求电
机配备有电源模块、控制器模块和接收端模块。
一种直流电机H桥驱动电路设计
一种直流电机H桥驱动电路设计
该电路采用NMOS 场效应管作为功率输出器件,设计并实现了较大功率的直流电机H 桥驱动电路,并对额定电压为24 伏,额定电流为3.8A 的
25D60-24A 直流电机进行闭环控制,电路的抗干扰能力强,在工业控制领域
具有较强的适用性。
许多半导体公司推出了直流电机专用驱动芯片,但这些芯片多数只适合小功率直流电机,对于大功率直流电机的驱动,其集成芯片价格昂贵。
在直流电机驱动电路的设计中,主要考虑一下几点:
1. 功能:电机是单向还是双向转动?需不需要调速?对于单向的电机驱动,只要用一个大功率三极管或场效应管或继电器直接带动电机
即可,当电机需要双向转动时,可以使用由4 个功率元件组成的H 桥电路或者使用一个双刀双掷的继电器。
如果不需要调速,只要使
用继电器即可;但如果需要调速,可以使用三极管,场效应管等开关元件实现PWM(脉冲宽度调制)调速。
2. 性能:对于PWM 调速的电机驱动电路,主要有以下性能指标。
1)输出电流和电压范围,它决定着电路能驱动多大功率的电机。
2)效率,高的效率不仅意味着节省电源,也会减少驱动电路的发热。
要提高
电路的效率,可以从保证功率器件的开关工作状态和防
止共态导通(H 桥或推挽电路可能出现的一个问题,即两个功率器件同时导通使电源短路)入手。
3)对控制输入端的影响。
功率电路对其输入端应有良好的信号隔离,防止有
高电压大电流进入主控电路,这可以用高的输入阻抗或
光电耦合器实现隔离。
详解直流电机驱动电路设计
详解直流电机驱动电路设计
直流电机驱动电路设计概述
电机驱动电路是控制电机运行的电路,也称作动力源电路,它的主要
作用是提供电机所需要的适当电压和频率的电能,以控制电机的转速和转
动方向。
一般讲,电机驱动电路包括三个部分:驱动器,控制器和电源电路。
一、直流电机驱动电路的设计
1、驱动器的设计
直流电机驱动电路主要由驱动器、控制器和电源电路组成。
在这里,
驱动器主要负责将控制器的控制信号转换为适合电机工作的电流。
现在,
基于IGBT的驱动器已经成为直流电机驱动电路中的主要组成部分。
驱动
器电路很复杂,包括用于驱动电机的晶体管,用于传输控制信号的晶体管,以及调节电流的电阻等。
2、控制器的设计
控制器是电机驱动电路的核心部分,它负责接收外部输入信号,并根
据设定的参数来调整电机的转速、转向和加速等。
控制器设计非常复杂,
一般包括两个主要部分:控制电路和放大路由部分。
控制电路负责检测电
机的运行状态和外部输入,并根据这些信息来调整电机的转速。
放大部分
负责将控制电路的输出信号放大,并将其转换为能够驱动电机的标准控制
信号。
3、电源电路的设计。
较大功率直流电机驱动电路的设计方案
1 引言直流电机具有优良的调速特性,调速平滑、方便、调速范围广,过载能力强,可以实现频繁的无级快速启动、制动和反转,能满足生产过程中自动化系统各种不同的特殊运行要求,因此在工业控制领域,直流电机得到了广泛的应用。
许多半导体公司推出了直流电机专用驱动芯片,但这些芯片多数只适合小功率直流电机,对于大功率直流电机的驱动,其集成芯片价格昂贵。
基于此,本文详细分析和探讨了较大功率直流电机驱动电路设计中可能出现的各种问题,有针对性设计和实现了一款基于25D60-24A 的直流电机驱动电路。
该电路驱动功率大,抗干扰能力强,具有广泛的应用前景。
2 H 桥功率驱动电路的设计在直流电机中,可以采用GTR 集电极输出型和射极输出性驱动电路实现电机的驱动,但是它们都属于不可逆变速控制,其电流不能反向,无制动能力,也不能反向驱动,电机只能单方向旋转,因此这种驱动电路受到了很大的限制。
对于可逆变速控制, H 桥型互补对称式驱动电路使用最为广泛。
可逆驱动允许电流反向,可以实现直流电机的四象限运行,有效实现电机的正、反转控制。
而电机速度的控制主要有三种,调节电枢电压、减弱励磁磁通、改变电枢回路电阻。
三种方法各有优缺点,改变电枢回路电阻只能实现有级调速,减弱磁通虽然能实现平滑调速,但这种方法的调速范围不大,一般都是配合变压调速使用。
因此在直流调速系统中,都是以变压调速为主,通过PWM(Pulse Width Mo dulation)信号占空比的调节改变电枢电压的大小,从而实现电机的平滑调速。
2.1 H 桥驱动原理要控制电机的正反转,需要给电机提供正反向电压,这就需要四路开关去控制电机两个输入端的电压。
当开关S1 和S4 闭合时,电流从电机左端流向电机的右端,电机沿一个方向旋转;当开关S2 和S3 闭合时,电流从电机右端流向电机左端,电机沿另一个方向旋转, H 桥驱动原理等效电路图如图1 所示。
图1 H 桥驱动原理电路图2.2 开关器件的选择及H 桥电路设计常用的电子开关器件有继电器,三极管, MOS 管, IGBT 等。
基于VNH3SP30的大电流直流电机驱动器的设计_侯清锋
5 结束语
实验证明,基于 VNH3SP30 组件的大电流直流电机驱动器
在某伺服控制系统中得到了很好的应用,驱动器由于采用了大
开关频率可达 10MHz,远远大于 PWM 的 10KHz 最大载波频 率,在传输速度上能完全满足要求。
基于 VNH3SP30 组件的大电流直流电机驱动器及在某伺 服控制系统中的应用原理图如图 2 所示。
3 驱动器电路设计
3.1 PWM 信号调节方式 PWM(脉宽调制)信号是 VNH3SP30 最重要的控制信号,其 最大工作频率为 10KHz。PWM 信号通过控制 H 桥上的功率管 的导通时间,从而实现对输出负载平均电压的调节。PWM 信号 的一个低电平状态将会关闭两个下桥臂开关,而当 PWM 输入 端由低电平变为高电平时,下桥臂 LSA 和 LSB 导通与否取决于 输入信号 INA 和 INB,只有输入信号从低电平变为高电平时, 下桥臂 LSA 和 LSB 才能重新导通。 3.2 方向控制信号和桥臂使能信号 INA 和 INB 为电机转向控制信号,控制电机的转向和刹车; ENA/DIAGA 和 ENB/DIAGB 为桥臂使能信号,当这两个信号都 为低电平时,H 桥将不能导通。当驱动芯片过热,过压、欠压及过 流 时 ,ENA/DIAGA 和 ENB/DIAGB 为 故 障 诊 断 反 馈 信 号 ,这 两个信号返回一个低电平,同时 H 桥输出被封锁。 3.3 驱动器保护电路设计 一个性能优越的电机驱动器,无论加上何种控制信号,何种 无源负载,电路都应该是安全的。因此,保护电路的设计非常重 要。本文在某一伺服控制系统中,设计如下保护电路: a) 电源反向保护:当给驱动器施加一个高于 1.5V 反向电压 时,续流二极管就会被施加一个正向偏压,如果流过电桥的大 电流不加以限制,可能会击穿内置二极管,显然,会毁坏电源开 关。故此可以使用以下几种保护措施:(1)在芯片电源串一个保险 丝并反接一个二极管;(2) 给电源主线串联一个肖特基二极管; (3) 在器件与接地信号之间放置一个小通态电阻的 N 沟道场效 应 MOS 晶体管。当在电路中加入 N 沟道场效应管时,它能够在 电源反向时保护电机,但也限定了驱动器的操作电压最大只能 达到 20V。因此,本文采用第二种保护方式 。 b) 控制器保护:当 ENA/DIAGA 和 ENB/DIAGB 输出一个低 电平信号给控制器,可知驱动 器出现故障,控制器会立刻封锁 PWM 输出,同时,VNH3S P30 也会封锁输出,从而使驱动器得到双重保护。 3.4 驱动器电路设计 本文在某一伺服控制系统中,选用 TI 公司的专用电机控制 DSP 芯片 TMS320LF2407A 作为核心控制单元。它是 16 位的定 点 DSP,频率最高达到 40MHz,可提供 16 路任意频率、占空比 随意可调的 PWM 输出信号,使得电机的调速范围大,使用方 便。由 DSP 输出 PWM 信号、方向信号、H 桥使能信号。电机采用 直流力矩电机,峰值堵转电压 27V,峰值堵转电流 7.6A。由于电 机的控制信号直接由 DSP 产生,而直流电机的驱动电路直接引 入 27V 的电压,如果驱动电路出现了故障,电流可能会串入 DSP,对 DSP 造成损害,所以要对所有的控制信号以及反馈信号 进行 隔离,使电机驱动电路同 电 机 控 制 电 路 完 全 隔 离 。 这 样,即使电路出现问题,也不会对整个系统造成很大的损害。 因此本设计选用了超高速光电耦合器 HCPL2630。 HCPL2630 是双通道超快速型光电耦合器,响应时间仅为 45ns,
基于场效应管的大功率直流电机驱动电路设计
基于场效应管的大功率直流电机驱动电路设计随着工业自动化技术的不断发展,直流电机在现代工业中得到了广泛的应用。
其高效率、高控制精度、低噪声等特点,使得直流电机成为了各种工业设备中的重要部件。
然而,直流电机的驱动电路一直以来都是一个难以解决的问题。
基于场效应管的大功率直流电机驱动电路是解决这一问题的一个有效方法,本文将对其进行详细的介绍和分析。
一、基本原理场效应管是一种基于场效应的半导体器件,其主要特点是输入电阻高、带宽宽、阈值电压低、驱动电压低、体积小等。
这种器件可以在很小的控制电压下,实现大功率的开关控制。
因此,利用场效应管来设计大功率直流电机驱动电路,可以有效地提高电机的效率和控制精度。
二、电路设计基于场效应管的大功率直流电机驱动电路的设计需要根据具体的需求而定。
下面我们以一个C速率驱动电路为例来进行介绍。
1、整体设计整个电路由驱动电源、控制信号处理、驱动电路和电机负载等部分组成。
其中,驱动电路主要由N沟道场效应管和P沟道场效应管组成。
控制信号处理主要是通过单片机控制信号,以控制场效应管的通断和时间控制等。
电机负载部分则由直流电机和机械负载器件组成,直接产生动力。
2、驱动电路部分设计驱动电路是基于场效应管大功率直流电机驱动电路的核心部分。
其设计需要做到以下几个方面:①选择适当的场效应管在设计驱动电路时,需要根据具体的电机负载特点和驱动电路所需的电压电流等参数,选择适当的场效应管。
通常情况下,能承受大电流的MOSFET管具有更好的驱动特性和开关速度,这对于电机的控制非常重要。
②优化电路结构在设计过程中,还需要优化电路的结构,保证电路的稳定性和可靠性。
在本设计中,采用了H桥结构和电流采样电路等。
③加入保护电路在实际应用过程中,直流电机会承受很大的负载,如果没有保护电路,就可能会导致电机的损坏。
因此,在电路设计过程中,需要加入过压保护、过流保护等保护电路,保证电路的安全运行。
3、控制信号处理部分设计控制信号处理部分主要负责将控制信号进行放大和变形,以满足不同的驱动器控制要求。
单片机 直流电机的驱动电路
单片机直流电机的驱动电路
直流电机是常用的电机类型之一,其驱动电路的设计对于电机的正常运行和控制至关重要。
对于单片机的直流电机驱动电路,一般可以采用H桥电路或PWM控制电路。
首先,简要介绍一下H桥电路。
H桥电路的形状类似于字母“H”,它由四个开关器件(如晶体管或MOSFET)组成。
通过控制开关器件的通断状态,可以改变电机两端的电压极性,从而实现电机的正转和反转。
在H桥电路中,可以采用单片机控制开关器件的通断状态,实现电机的启动、停止、正转和反转等操作。
另外,PWM控制也是一种常见的直流电机控制方法。
PWM控制通过调节电机两端的平均电压值来改变电机的转速,从而达到调速的目的。
在PWM控制电路中,可以采用单片机内部的PWM模块或者利用数字GPIO口进行PWM信号的输出。
通过调节PWM信号的占空比,可以控制电机两端的平均电压值,从而改变电机的转速。
综上所述,单片机在直流电机驱动电路中扮演着重要的角色,通过H桥电路或PWM控制电路可以实现电机的灵活控制。
在实际应用中,可以根据具体需求选择合适的驱动电路和控制方法。
大功率直流电机驱动电路设计与实现研究
大功率直流电机驱动电路设计与实现研究[摘要] 以MSK4205芯片为核心,基于H桥脉宽调制(PWM)控制原理,采用速度环、位置环设计了一种大功率直流电机驱动控制电路,该电路能够很好的满足直流电机正、反转控制和调速的需要。
工程应用表明该驱动控制电路具有性能稳定、驱动能力大、抗干扰强等特点,有较高的工程应用价值。
[关键词] PWM控制电机驱动MSK4205引言直流电机具有优良的调速特性,调速平滑、方便、调速范围广,过载能力强,可以实现频繁的无级快速启动、制动和反转,能满足生产过程中自动化系统各种不同的特殊运行要求,因此在工业控制领域,直接电机得到了广泛的应用。
采用智能功率模块驱动电机是伺服系统设计趋势,与分立元件组成的功率驱动电路相比,功率模块体积小、可靠性高、电路设计简单明了。
MSK4205芯片是一款新型的驱动模块,内部采用H桥设计来产生PWM信号,具有驱动能力大,开关频率高、可外部控制刹车等功能,本文以MSK4205芯片为核心,介绍其外围速度环、电流环的设计原理和方法,工程应用表明设计的直流电机驱动电路有广泛的工程应用前景。
1.系统构成及工作原理1.1 系统构成本系统以MSK4205芯片为核心,外围辅以速度环、电流环对速度给定信号进行调节以满足MSK4205芯片PWM控制的需要。
系统构成如图1所示:1.2 工作原理接收外部的速度信号,先进入速度调节环,将速度信号调节到PWM信号限定的范围内。
调节后的信号送入电流调节环,将送入驱动芯片的PWM信号限定在0~10V的范围内。
驱动电路通过取样电阻将电机电流转化为电压信号,经过滤波后反馈到电流PI调节环的输入端与给定的速度输入控制信号进行比对,以产生新的PWM控制信号来控制电机的正反转及转速快慢变化。
同时可以设计一个驱动检测电路来供外部的控制系统以检测驱动芯片是否正常工作。
刹车信号可以在电机飞车的状态下强制电机停转。
2.系统硬件设计按照系统结构图可将电路分为调节电路部分、驱动电路部分、驱动检测及刹车部分,下面将详述各部分电路的设计原理。
直流电机控制电路设计
直流电机控制电路设计1.电阻控制电路:电阻控制电路是最简单的直流电机控制电路。
通过在直流电机的电源电路中串接一个可调节的电阻,可以改变电机的供电电压,从而控制电机的转速。
这种方法简单易行,但效率低下,能耗较大。
2.利用PWM信号控制电机速度:PWM(脉宽调制)信号是一种控制电子设备的常用方法。
在直流电机控制中,可以通过改变PWM信号的脉宽来控制电机的转速。
脉宽越宽,电机供电时间越长,转速越快;脉宽越窄,电机供电时间越短,转速越慢。
通过控制PWM信号的频率,可以实现更精确的速度控制。
3.使用驱动器芯片控制电机:驱动器芯片是一种专门用于控制电机的集成电路。
它提供了多种控制电机速度和方向的功能。
通过输入控制信号,驱动器芯片可以精确地控制电机的转速和转向。
驱动器芯片通常由功率放大器、逻辑电路和电源电路组成。
4.使用微控制器控制电机:微控制器是一种具有处理能力的单片机,可以通过编程设置来控制电机的运动。
通过连接微控制器和电机驱动电路,可以实现对电机转速、方向等参数的精确控制。
微控制器不仅能实现速度控制,还可以实现与其他设备的通信和协调工作。
在直流电机控制电路设计中1.电机的功率需求和特性:根据电机的功率需求,选择适当的电源和电源电压。
同时,需要了解电机的特性,如额定电流、额定电压等参数。
2.控制方法选择:根据实际应用需求,选择合适的控制方法。
比如,需要精确的速度控制可以选择PWM控制;需要简单控制可以选择电阻控制。
3.控制电路的稳定性和可靠性:设计的电路应具有良好的稳定性和可靠性,避免由于电路设计不合理导致的电机运动异常或损坏。
4.电路的成本和尺寸:根据实际应用需求和预算,选择合适的电路设计方案。
有时需要考虑电路尺寸的限制,如嵌入式设备中需要小巧的电路。
总之,直流电机控制电路设计需要根据具体应用需求选择合适的控制方法,并考虑电机的功率需求、特性、稳定性、可靠性、成本和尺寸等因素。
通过合理的设计和调试,可以实现对直流电机运动的精确控制。
基于drv8871芯片的直流电动机驱动电路系统设计_概述说明
基于drv8871芯片的直流电动机驱动电路系统设计概述说明1. 引言1.1 概述:本文旨在介绍基于drv8871芯片的直流电动机驱动电路系统设计。
该设计旨在通过合理选择和匹配驱动器、设计保护回路以及优化控制策略,实现对直流电动机的高效驱动和精确控制。
通过详细阐述DRV8871芯片的功能特点和工作原理,深入讲解直流电动机的基本原理和常见应用场景,以及直流电动机驱动电路设计要点,读者将能够全面了解这个系统的构成和关键设计考虑因素。
1.2 文章结构:本文共分为六个章节。
引言部分首先介绍了整篇文章的概述,并简要概括了各章节的内容。
第二节将详细介绍DRV8871芯片的功能特点、工作原理以及相关参数规格。
第三节将重点讲解直流电动机的基本原理,包括其结构、工作原理以及常见类型和应用场景。
第四节将详细阐述直流电动机驱动电路设计的要点,包括合适的驱动器选择与匹配、保护回路设计以及控制策略选择与优化。
第五节将通过一个基于DRV8871芯片的直流电动机驱动电路系统设计实例进行分析,包括系统框架设计与硬件选型说明、关键组件参数计算与选择方法描述以及驱动电路连接图与控制策略详细说明。
最后一节为结论与展望部分,总结了设计效果,并提出了进一步研究的方向和潜在问题。
1.3 目的:本文旨在帮助读者深入理解基于drv8871芯片的直流电动机驱动电路系统设计。
通过对DRV8871芯片的介绍和直流电动机原理的讲解,读者将能够掌握该系统的核心原理和相关关键技术。
同时,通过实例分析和具体设计考虑因素的阐述,读者将能够学习到实际应用中如何进行具体电路设计以及如何根据需求选择合适的控制策略。
本文旨在为工程师和研究人员提供有关直流电动机驱动电路系统设计方面的知识与参考,并为进一步研究和应用提供启示和指导。
2. DRV8871芯片简介2.1 芯片功能特点:DRV8871是一款高性能、集成化的直流电动机驱动器芯片。
它具有以下功能特点:- 高性能运算放大器:内置多个运算放大器,用于实现电机控制回路的精确测量和调节。
基于较大功率的直流电机H桥驱动电路方案
基于较大功率的直流电机H桥驱动电路方案
该电路采用NMOS场效应管作为功率输出器件,设计并实现了较大功率的直流电机H 桥驱动电路,并对额定电压为24 伏,额定电流为3.8A 的25D60-24A 直流电机进行闭环控制,电路的抗干扰能力强,在工业控制领域具有较强的适用性。
许多半导体公司推出了直流电机专用驱动芯片,但这些芯片多数只适合小功率直流电机,对于大功率直流电机的驱动,其集成芯片价格昂贵。
在直流电机驱动电路的设计中,主要考虑一下几点:
1. 功能:电机是单向还是双向转动?需不需要调速?对于单向的电机驱动,只要用一个大功率三极管或场效应管或继电器直接带动电机
即可,当电机需要双向转动时,可以使用由4 个功率元件组成的H 桥电路或者使用一个双刀双掷的继电器。
如果不需要调速,只要使
用继电器即可;但如果需要调速,可以使用三极管,场效应管等开关元件实现PWM(脉冲宽度调制)调速。
电机驱动电路(详细)
电机驱动电路一、直流电机驱动电路的设计目标在直流电机驱动电路的设计中,主要考虑一下几点:1.功能:电机是单向还是双向转动?需不需要调速?对于单向的电机驱动,只要用一个大功率三极管或场效应管或继电器直接带动电机即可,当电机需要双向转动时,可以使用由4个功率元件组成的H桥电路或者使用一个双刀双掷的继电器。
如果不需要调速,只要使用继电器即可;但如果需要调速,可以使用三极管,场效应管等开关元件实现PWM(脉冲宽度调制)调速。
2.性能:对于PWM调速的电机驱动电路,主要有以下性能指标。
1)输出电流和电压范围,它决定着电路能驱动多大功率的电机。
2)效率,高的效率不仅意味着节省电源,也会减少驱动电路的发热。
要提高电路的效率,可以从保证功率器件的开关工作状态和防止共态导通(H桥或推挽电路可能出现的一个问题,即两个功率器件同时导通使电源短路)入手。
3)对控制输入端的影响。
功率电路对其输入端应有良好的信号隔离,防止有高电压大电流进入主控电路,这可以用高的输入阻抗或者光电耦合器实现隔离。
4)对电源的影响。
共态导通可以引起电源电压的瞬间下降造成高频电源污染;大的电流可能导致地线电位浮动。
5)可靠性。
电机驱动电路应该尽可能做到,无论加上何种控制信号,何种无源负载,电路都是安全的。
二、三极管-电阻作栅极驱动1.输入与电平转换部分:输入信号线由DATA引入,1脚是地线,其余是信号线。
注意1脚对地连接了一个2K 欧的电阻。
当驱动板与单片机分别供电时,这个电阻可以提供信号电流回流的通路。
当驱动板与单片机共用一组电源时,这个电阻可以防止大电流沿着连线流入单片机主板的地线造成干扰。
或者说,相当于把驱动板的地线与单片机的地线隔开,实现“一点接地”。
高速运放KF347(也可以用TL084)的作用是比较器,把输入逻辑信号同来自指示灯和一个二极管的2.7V基准电压比较,转换成接近功率电源电压幅度的方波信号。
KF347的输入电压范围不能接近负电源电压,否则会出错。
直流电机的驱动
直流电机驱动电路设计时间:2007-04-23 来源: 作者: 点击:32646 字体大小:【大中小】一、直流电机驱动电路的设计目标在直流电机驱动电路的设计中,主要考虑一下几点:1.功能:电机是单向还是双向转动?需不需要调速?对于单向的电机驱动,只要用一个大功率三极管或场效应管或继电器直接带动电机即可,当电机需要双向转动时,可以使用由4个功率元件组成的H桥电路或者使用一个双刀双掷的继电器。
如果不需要调速,只要使用继电器即可;但如果需要调速,可以使用三极管,场效应管等开关元件实现PWM(脉冲宽度调制)调速。
2.性能:对于PWM调速的电机驱动电路,主要有以下性能指标。
1)输出电流和电压范围,它决定着电路能驱动多大功率的电机。
2)效率,高的效率不仅意味着节省电源,也会减少驱动电路的发热。
要提高电路的效率,可以从保证功率器件的开关工作状态和防止共态导通(H桥或推挽电路可能出现的一个问题,即两个功率器件同时导通使电源短路)入手。
3)对控制输入端的影响。
功率电路对其输入端应有良好的信号隔离,防止有高电压大电流进入主控电路,这可以用高的输入阻抗或者光电耦合器实现隔离。
4)对电源的影响。
共态导通可以引起电源电压的瞬间下降造成高频电源污染;大的电流可能导致地线电位浮动。
5)可靠性。
电机驱动电路应该尽可能做到,无论加上何种控制信号,何种无源负载,电路都是安全的。
二、三极管-电阻作栅极驱动1.输入与电平转换部分:输入信号线由DATA引入,1脚是地线,其余是信号线。
注意1脚对地连接了一个2K欧的电阻。
当驱动板与单片机分别供电时,这个电阻可以提供信号电流回流的通路。
当驱动板与单片机共用一组电源时,这个电阻可以防止大电流沿着连线流入单片机主板的地线造成干扰。
或者说,相当于把驱动板的地线与单片机的地线隔开,实现“一点接地”。
高速运放KF347(也可以用TL084)的作用是比较器,把输入逻辑信号同来自指示灯和一个二极管的2.7V基准电压比较,转换成接近功率电源电压幅度的方波信号。
直流无刷电机驱动电路设计
直流无刷电机驱动电路设计提纲:一、直流无刷电机驱动电路的基础原理及设计要点分析二、直流无刷电机驱动电路的设计方法及其优缺点探讨三、直流无刷电机驱动电路中的功率因素控制技术研究四、直流无刷电机驱动电路的实际应用案例分析五、直流无刷电机驱动电路的未来发展方向预测一、直流无刷电机驱动电路的基础原理及设计要点分析直流无刷电机驱动电路的主要原理基于于磁场相互作用的电动力学基本规律,即当电流经过线圈时,可激发磁场,从而推动马达的转动。
基本的驱动电路由电源、电机控制器和无刷直流电动机组成。
在电机控制器中,通常采用功率半导体器件(IGBT、MOSFET等)作为开关元件,通过PWM、SPWM 等调制方式将电机的速度、扭矩控制在合理的范围内,从而实现直流无刷电动机的转速调控。
在电路设计中,应优先考虑功率半导体元件的选择、功率因素的控制、电流保护等方面。
二、直流无刷电机驱动电路的设计方法及其优缺点探讨直流无刷电机驱动电路的设计根据不同的应用场景和工作特点采用不同的控制方法。
目前常见的方法包括四种:1. 电压调制(V/F)控制方法:调节电机控制器输出的交流电压和频率,来控制电机的转速和扭矩。
2. 电流控制方法:通过控制电机控制器中的感应电流、换向电流等来控制电机转速和扭矩。
3. 磁场定向控制方法:通过调节电机控制器中所激励的电流方向和大小来控制磁场的方向和大小,进而控制电机的转速和扭矩。
4. 磁场反转控制方法:通过调节电机控制器中的电流,将电机磁场相反转,从而达到正反转换和调速的目的。
不同的控制方法各具优缺点,应根据实际应用需求选择适当的控制策略。
三、直流无刷电机驱动电路中的功率因素控制技术研究在直流无刷电机驱动电路实际应用中,由于诸多因素影响,在实际运行中往往存在较大的滞后现象,导致功率因素较低,从而降低了电路效率、增加了电能消耗。
针对这一问题,可以采用计算机数值控制技术、电容电感等附加校正芯片、电流同步控制器等手段来进一步提高电路功率因素,从而进一步提高电路效率和稳定性。
较大功率直流电机驱动电路的设计方案
1 引言直流电机具有优良的调速特性,调速平滑、方便、调速范围广,过载能力强,可以实现频繁的无级快速启动、制动和反转,能满足生产过程中自动化系统各种不同的特殊运行要求,因此在工业领域,直流电机得到了广泛的应用。
许多公司推出了直流电机专用驱动芯片,但这些芯片多数只适合小功率直流电机,对于大功率直流电机的驱动,其集成芯片价格昂贵。
基于此,本文详细分析和探讨了较大功率直流电机驱动电路设计中可能出现的各种问题,有针对性设计和实现了一款基于25D60-24A 的直流电机驱动电路。
该电路驱动功率大,抗干扰能力强,具有广泛的应用前景。
2 H 桥功率驱动电路的设计在直流电机中,可以采用GTR 集电极输出型和射极输出性驱动电路实现电机的驱动,但是它们都属于不可逆变速,其电流不能反向,无制动能力,也不能反向驱动,电机只能单方向旋转,因此这种驱动电路受到了很大的限制。
对于可逆变速, H 桥型互补对称式驱动电路使用最为广泛。
可逆驱动允许电流反向,可以实现直流电机的四象限运行,有效实现电机的正、反转。
而电机速度的主要有三种,调节电枢、减弱励磁磁通、改变电枢回路电阻。
三种方法各有优缺点,改变电枢回路电阻只能实现有级调速,减弱磁通虽然能实现平滑调速,但这种方法的调速范围不大,一般都是配合变压调速使用。
因此在直流调速系统中,都是以变压调速为主,通过PWM(Pulse Widthdulation)信号占空比的调节改变电枢的大小,从而实现电机的平滑调速。
H 桥驱动原理要电机的正反转,需要给电机提供正反向,这就需要四路开关去控制电机两个输入端的。
当开关S1 和S4 闭合时,电流从电机左端流向电机的右端,电机沿一个方向旋转;当开关S2 和S3 闭合时,电流从电机右端流向电机左端,电机沿另一个方向旋转, H 桥驱动原理等效电路图如图1 所示。
图1 H 桥驱动原理电路图开关器件的选择及H 桥电路设计常用的电子开关器件有继电器,三极管, MOS 管, IGBT 等。
详解直流电机驱动电路的设计
详解直流电机驱动电路的设计直流电机驱动电路是将直流电源的电能转换为电机机械能的关键部分。
设计一个高效、可控的直流电机驱动电路需要考虑多个因素,包括电源选择、控制电路设计、保护电路设计等。
首先,在设计直流电机驱动电路之前,需要确定所需的电源电压和电流。
一般来说,直流电机的额定电压和额定电流是由电机制造商给出的,可以根据这些参数来选择合适的电源。
其次,设计直流电机驱动电路需要考虑电机的控制方式。
常见的电机控制方式包括电压控制和PWM控制。
电压控制方式是通过改变电源电压的大小来控制电机的转速,而PWM控制是通过改变电源电压的脉宽来控制电机的转速。
选择适当的控制方式取决于具体的应用需求。
接下来,需要设计电机的控制电路。
控制电路主要包括接口电路、驱动电路和保护电路。
接口电路用于接收控制信号,将其转换为适合驱动电路的信号。
驱动电路则根据接口电路的信号来控制电机的功率开关。
保护电路用于保护电机和驱动电路免受过电流、过电压等不良因素的损害。
另外,还需要考虑闭环控制系统的设计。
闭环控制系统可以通过反馈信号来调整驱动电路的输出,使得电机的转速能够达到预期的目标。
闭环控制系统通常包括传感器(如转速传感器、位置传感器等)、比较器、PID控制器等组成。
最后,需要进行模拟和数字电路的设计和电路优化。
模拟电路设计应考虑信号放大、滤波、隔离等问题。
数字电路设计涉及到处理器的选择和接口设计等。
总之,直流电机驱动电路的设计需要综合考虑电源、控制电路、保护电路以及闭环控制系统的设计,并进行模拟和数字电路的优化。
通过合理地设计和优化,可以实现高效、可控的直流电机驱动。
直流电机驱动电路设计的一些知识
直流电机驱动电路设计的一些知识
1、直流电机驱动电路设计简介
直流电机驱动电路是自动控制系统的主要控制元件,它能够通过改变
输入电压来调节输出功率,从而改变直流电机的转速和输出功率。
直流电
机驱动电路的设计要求全面考虑各种因素,以确保设备的可靠性、安全性
和稳定性。
直流电机驱动电路的设计与组态包括电源栅格设计、控制构成、系统电压控制及系统功率控制四大部分。
2、电源栅格设计
电源栅格设计是设计直流电机驱动电路的基础,是驱动系统的最重要
的部分。
它必须考虑驱动系统的电压等级、负载类型、负载电流大小和驱
动器的输出特性,以确保驱动系统的可靠性、安全性和稳定性。
经典的栅
格设计可以划分为触发部分、稳压部分和过渡部分,其中触发部分的电压
应尽可能高,以充分考虑系统噪声和外部干扰;稳压部分的电压设置由于
系统参数的不确定性,应选取一定的安全倍数;过渡部分应补充补偿改变
负载时产生的不稳定。
3、控制构成
控制构成是改变输入电压来控制直流电机转速和输出功率的核心部分,常用的控制方式有直流分量控制、串级控制、母线控制和反馈控制。
(1)直流分量控制是最基本的控制方式。
详解直流电机驱动电路设计
直流电机(direct current machine)是指能将直流电能转换成机械能(直流电动机)或将机械能转换成直流电能(直流发电机)的旋转电机。
它是能实现直流电能和机械能互相转换的电机。
当它作电动机运行时是直流电动机,将电能转换为机械能;作发电机运行时是直流发电机,将机械能转换为电能。
直流电机的基本构成直流电机由定子和转子两部分组成,其间有一定的气隙。
直流电机的定子由机座、主磁极、换向磁极、前后端盖和刷架等部件组成。
其中主磁极是产生直流电机气隙磁场的主要部件,由永磁体或带有直流励磁绕组的叠片铁心构成。
直流电机的转子则由电枢、换向器(又称整流子)和转轴等部件构成。
其中电枢由电枢铁心和电枢绕组两部分组成。
电枢铁心由硅钢片叠成,在其外圆处均匀分布着齿槽,电枢绕组则嵌置于这些槽中。
换向器是一种机械整流部件。
由换向片叠成圆筒形后,以金属夹件或塑料成型为一个整体。
各换向片间互相绝缘。
换向器质量对运行可靠性有很大影响。
直流电机的组成结构直流电机的结构应由定子和转子两大部分组成。
直流电机运行时静止不动的部分称为定子,定子的主要作用是产生磁场,由机座、主磁极、换向极、端盖、轴承和电刷装置等组成。
运行时转动的部分称为转子,其主要作用是产生电磁转矩和感应电动势,是直流电机进行能量转换的枢纽,所以通常又称为电枢,由转轴、电枢铁心、电枢绕组、换向器和风扇等组成。
01定子主磁极主磁极的作用是产生气隙磁场。
主磁极由主磁极铁心和励磁绕组两部分组成铁心一般用0.5mm~1.5mm厚的硅钢板冲片叠压铆紧而成,分为极身和极靴两部分,上面套励磁绕组的部分称为极身,下面扩宽的部分称为极靴,极靴宽于极身,既可以调整气隙中磁场的分布,又便于固定励磁绕组。
励磁绕组用绝缘铜线绕制而成,套在主磁极铁心上。
整个主磁极用螺钉固定在机座上。
换向极换向极的作用是改善换向,减小电机运行时电刷与换向器之间可能产生的换向火花,一般装在两个相邻主磁极之间,由换向极铁心和换向极绕组组成。
无刷直流电动机功率驱动电路设计
无刷直流电动机功率驱动电路设计
一、概述
无刷直流电动机(BLDC)是一种特殊的直流电动机,其转子上没有刷子
起到对电压的分割作用,主要依靠逆变器来模拟驱动直流电动机的三相交
流电压和频率,从而实现电动机的驱动,相比于直流电动机,BLDC电动
机具有更高的效率、更高的扭矩,更小的体积和更高的转速,由此成为伺
服控制应用的优先考虑的电动机之一
因此,本文关注如何设计一款以BLDC为驱动的电动机功率驱动电路,以达到BLDC电动机的最佳工作效果,下面将首先介绍BLDC电动机的工作
原理,然后介绍功率驱动电路的设计,最后讨论功率驱动电路的原理和特点。
二、BLDC驱动电机工作原理
BLDC驱动电机的工作原理是,逆变器将交流电源的输入转换为正弦
波形的三相电流,经过逆变器的每个通道的低频调制和半桥可控整流组件
输出,将可控直流电压的正弦波输出给无刷直流电机,实现无刷直流电机
的控制以及调速和位置控制。
BLDC驱动电机的驱动电路能够调整电流的强度和相位,以便控制电
机的状态,如转速、加速度和位置,并能够提高电机的效率和功率。
无刷
直流电机在低速下具有较大的转矩,在高速下具有较高的功率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 引言直流电机具有优良的调速特性,调速平滑、方便、调速围广,过载能力强,可以实现频繁的无级快速启动、制动和反转,能满足生产过程中自动化系统各种不同的特殊运行要求,因此在工业控制领域,直流电机得到了广泛的应用。
许多半导体公司推出了直流电机专用驱动芯片,但这些芯片多数只适合小功率直流电机,对于大功率直流电机的驱动,其集成芯片价格昂贵。
基于此,本文详细分析和探讨了较大功率直流电机驱动电路设计中可能出现的各种问题,有针对性设计和实现了一款基于25D60-24A 的直流电机驱动电路。
该电路驱动功率大,抗干扰能力强,具有广泛的应用前景。
2 H 桥功率驱动电路的设计在直流电机中,可以采用GTR 集电极输出型和射极输出性驱动电路实现电机的驱动,但是它们都属于不可逆变速控制,其电流不能反向,无制动能力,也不能反向驱动,电机只能单方向旋转,因此这种驱动电路受到了很大的限制。
对于可逆变速控制, H 桥型互补对称式驱动电路使用最为广泛。
可逆驱动允许电流反向,可以实现直流电机的四象限运行,有效实现电机的正、反转控制。
而电机速度的控制主要有三种,调节电枢电压、减弱励磁磁通、改变电枢回路电阻。
三种方法各有优缺点,改变电枢回路电阻只能实现有级调速,减弱磁通虽然能实现平滑调速,但这种方法的调速围不大,一般都是配合变压调速使用。
因此在直流调速系统中,都是以变压调速为主,通过PWM(Pulse Width Mo dulation)信号占空比的调节改变电枢电压的大小,从而实现电机的平滑调速。
2.1 H 桥驱动原理要控制电机的正反转,需要给电机提供正反向电压,这就需要四路开关去控制电机两个输入端的电压。
当开关S1 和S4 闭合时,电流从电机左端流向电机的右端,电机沿一个方向旋转;当开关S2 和S3 闭合时,电流从电机右端流向电机左端,电机沿另一个方向旋转, H 桥驱动原理等效电路图如图1 所示。
图1 H 桥驱动原理电路图2.2 开关器件的选择及H 桥电路设计常用的电子开关器件有继电器,三极管, MOS 管, IGBT 等。
普通继电器属机械器件,开关次数有限,开关速度比较慢。
而且继电器部为感性负载,对电路的干扰比较大。
但继电器可以把控制部分与被控制部分分开,实现由小信号控制大信号,高压控制中经常会用到继电器。
三极管属于电流驱动型器件,设基极电流为IB, 集电极电流为IC, 三极管的放大系数为β,如果, IB*β>=IC, 则三极管处于饱和状态,可以当作开关使用。
要使三极管处于开关状态, IB= IC/β,三极管驱动管的电流跟三极管输出端的电流成正比,如果三极管输出端电流比较大,对三极管驱动端的要求也比较高。
MOS 管属于电压驱动型器件,对于NMOS 来说,只要栅极电压高于源极电压即可实现NMOS 的饱和导通, MOS 管开启与关断的能量损失仅是对栅极和源极之间的寄生电容的充放电,对MOS管驱动端要求不高。
同时MOS 端可以做到很大的电流输出,因此一般用于需要大电流的场所。
IGBT 则是结合了三极管和MOS 管的优点制造的器件,一般用于200V 以上的情况。
在本设计中,电机工作电流为3.8A, 工作电压24V, 电机驱动的控制端为51 系列单片机,最大灌电流为30mA. 因此采用MOS管作为H桥的开关器件。
MOS管又有NMOS和PMOS 之分,两种管子的制造工艺不同,控制方法也不同。
NMOS 导通要求栅极电压大于源极电压(10V-15V),而PMOS 的导通要求栅极电压小于源极电压(10V-15V)。
在本设计中,采用24V 单电源供电,采用NMOS 管的通断控制的接线如图2 所示,只要G 极电压在10-15V 的围, NMOS 即可饱和导通, G 极电压为0 时, NMOS 管关断。
图2 NMOS 接线图采用PMOS 管实现通断控制时,其接线如图3 所示, G 极电压等于电源电压VCC 时PMOS 关断。
图3 PMOS 接线图10V15V 时,要使PMOS 导通则G 极电压为VCC-15V. PMOS 的导通与关断,是在电源电压VCC 与VCC-15V 之间切换,当电源电压VCC 较大时控制不方便。
比较图2 图3 可知:NMOS位于负载的下方,而PMOS 位于负载的上方,用NMOS 和PMOS, 替换掉图1 中的开关,就可以组成由MOS 管组成的H 桥,如图4 所示。
图4 PMOS 和NMOS 管构成的H 桥Q1 和Q4 导通,电机沿一个方向旋转, Q2 和Q3 导通电机沿另一个方向旋转。
在本系统中,电机的工作电压为24V, 即电源电压为24V, 则要控制H 桥的上管(PMOS)导通和关断的电压分别为24V-15V=9V 和24V, 而对于下管(NMOS)来说,导通与关断电压分别为15V 和0V, 要想同时打开与关断上、下两管,所用的控制电路比较复杂。
而且,相同工艺做出的PMOS 要比NMOS 的工作电流小, PMOS 的成本高。
分别用PMOS 和NMOS 做上管与下管,电路的对称性不好。
由于上述问题,在构建H 桥的时候仅采用NMOS 作为功率开关器件。
用NMOS 搭建出的H 桥如图5 所示:图5 NMOS 管构成的H 桥图5NMOS 管组成的H 桥中,首先分析由Q1 和Q4 组成的通路,当Q1 和Q4 关断时,A 点的电位处于"悬浮"状态(不确定电位为多少)(Q2 和Q3 也关断)。
在打开Q4 之前,先打开Q1, 给Q1 的G 极15V 的电压,由于A 点"悬浮"状态,则A 点可以是任何电平,这样可能导致Q1 打开失败;在打开Q4 之后,尝试打开Q1, 在Q1 打开之前, A 点为低电位,给Q1 的G 极加上15V 电压, Q1 打开,由于Q1 饱和导通, A 点的电平等于电源电压(本系统中电源电压为24V),此时Q1 的G 极电压小于Q1 的S 极电压, Q1 关断, Q1 打开失败。
Q2 和Q3 的情况与Q1 和Q4 相似。
要打开由NMOS 构成的H 桥的上管,必须处理好A 点(也就是上管的S 极)"悬浮"的问题。
由于NMOS的S 极一般接地,被称为"浮地". 要使上管NMOS 打开,必须使上管的G 极相对于浮地有10-15V 的电压差,这就需要采用升压电路。
2.3 H 桥控制器在H桥的驱动中,除了考虑上管的升压电路外,还要考虑到在H桥同臂的上管和下管(如图5 中的Q1 和Q3)不能同时导通。
如果上管和下管同时导通,相当于从电源到地短路,可能会烧毁MOS 管或电源,即使很短时间的短路现象也会造成MOS的发热。
在功率控制中一般采用在两次状态转变中插入"死区"的方法来防止瞬时的短路。
在选择H 桥控制器的时候最好满足上述两种逻辑条件,又用足够大的驱动电流来驱动NMOS。
本系统中采用IR2103 作为NMOS 控制器, IR2103 部集成升压电路,外部仅需要一个自举电容和一个自举二极管即可完成自举升压。
IR2103 部集成死区升成器,可以在每次状态转换时插入"死区", 同时可以保证上、下两管的状态相反。
IR2103 和NMOS 组成的H 桥半桥电路如下图6 所示:图6 IR2103 和NMOS 管构成的H 桥半桥电路由IR2103 的应用手册中得知自举电容选择取决于以下几个因素:1. 要求增强 MGT 的门电压, 2. 用于高端驱动电路的 IQBS –静态电流, 3. 电平转换器的部电流, 4. MGT-栅-源正向漏电流, 5. 自举电容漏电流。
其中因素 5 仅与自举电容是电解电容时有关,如果采用其他类型的电容,则可以忽略。
最小自举电容值可以通过以下公式(1)计算得到:其中: Qg = 高端 FET 的门电荷, f = 工作频率, ICbs (leak) =自举电容漏电流,Iqbs (max) = 最大 VBS 静态电流,VCC = 逻辑电路部分的电压源, Vf = 自举二极管的正向压降, VLS = 低端 FET 或者负载上的压降, VMin = VB 与VS 之间的最小电压, Qls = 每个周期的电平转换所需要的电荷(对于 500V/600V MGD 来说,通常为 5nC, 而1200 V MGD 为 20 nC。
图中D1 为自举二极管, C4 为自举电容。
并不是电容的值越大就越好,电容的取值和IR2103 的工作频率密切相关,电容取值越大工作频率越低。
电容的漏电流对系统的性能有很大影响。
自举二极管要承受系统所有的电压,自举二极管的前向压降也影响着自举电容的选择,同时自举二极管的开关速度也直接影响系统的工作频率,一般选用超快恢复二极管。
由示波器获得自举电路升压波形如下图7 所示:图7 自举电路升压波形图中B部分为自举升压后VB端的电压,图中A部分是由于在上管关断的过程中,由于下管中的寄生二极管,会产后续流,使VS 端产生负电压,从而使电容过充。
要削弱电容的过充可采用0.47uF 以上的自举电容,同时可以在地与VS 端加入续流二极管。
如下图所示:图8 在IR2103 中加入续流二极管电路。
图中D2即为续流二极管,续流二极管采用普通二极管即可,但VS电压恢复越快,自举电容过充现象越不明显,本系统采用1N4148 作为续流二极管。
由于驱动器和MOSFET栅极之间的引线、地回路的引线等所产生的电感,以及IC 和FET 部的寄生电感,在开启时会在MOSFET栅极出现振铃,一方面增加MOSFET的开关损耗,同时EMC 方面不好控制。
在MOSFET的栅极和驱动IC 的输出之间串联一个电阻(如图9 中B 所示)。
这个电阻称为"栅极电阻", 其作用是调节MOSFET的开关速度,减少栅极出现的振铃现象,减小EMI, 也可以对栅极电容充放电起限流作用。
该电阻的引入减慢了MOS 管的开关速度,但却能减少EMI, 使栅极稳定。
图9 消除振铃电路。
MOS 管的关断时间要比开启时间慢(开启充电,关断放电),因此就要改变MOS 管的关断速度,可以在栅极电阻上反向并联一个二极管(如图9 中A 所示),当MOS 管关断时,二极管导通,将栅极电阻短路从而减少放电时间。
由于VS 端可能出现负电压,在VS 端串入一个合适的电阻,可以在产生负电压时起到限流作用,针对负载电机为感性器件,在H 桥的输出端并一个小电容,并在局部供电部分加一个去藕电容十分必要。
其电路如下图所示:图10 限流去耦电路。
图中C7 为局部去藕电容,可以取100uF, C6 为输出电容,根据负载取值。
由于采用电容式自举电路,电容在工作的过程中会自行放电,所以PWM波的占空比接近100%但不能达到100%. 但这不影响电机的正常工作,因为电机本身固有的特性,电机有一个较小的饱和区,即或占空比增大,其转速也不会有明显的变化。