对桥梁结构一些经典概念的探讨(阅)

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

对桥梁结构一些“经典概念”的探讨

对桥梁结构一些“经典概念”的探讨

文/徐栋

6 R. P& A& [% A% r0 ]

作者的话:

非常感谢《桥梁》杂志的约稿,我所理解“重点实验室”栏目中的“实验”是广义的,并不仅仅指真材实料的实验,也可以包括新理论,甚至新

设想的实验性研究成果,或是研究过程中的探讨。

笔者近年来对混凝土桥梁结构的分析和配筋理论等方面做了一些较为深入的研究,借此机会分享一些研究成果,也将一些思考、困惑及感兴趣的问题拿出与业界同仁探讨。由于笔者水平有限,如有条理不清、错误甚至是谬误的地方请大家不吝指正。

综合现状

经过近三十年的大规模建设,我国的桥梁工程师已经具备丰富的设计经验和较高的知识水平。复杂桥梁或复杂截面的桥梁在我国得到了非常普遍的运用,在课堂上学的分析方法和针对简单桥梁的现行规范体系由于不能完全解决问题,往往出现“安全度不足造成的早期破坏和蜕化所带来的损失,或者因过于保守造成的浪费”[1]的现象。在工程实践中发生的许多令桥梁工程师困惑却客观存在的问题使他们不断寻求解答,甚至可以说,由于混凝土桥梁的大规模实践,世界上或许没有哪个国家的工程师像中国工程师那样渴望彻底了解复杂桥梁的受力状况。/ m4 C( q% c5 q7 V2 d/ T+

c2 ^

桥梁结构理论发展的动力来自工程实践中出现的问题,同时我国对过去新建桥梁的维修加固也在日益增多,但指导维修加固的思想仍然停留在现行桥梁常用计算方法和规程上,现在已经到了应该对过去常用的分析理论和设计思想进行反思和重新梳理的时候。

对于桥梁结构的分析方法,发达国家由于受到来自国家强力发展方向的推动,如航空航天、新材料、机械等,所以发展迅猛,出现了一批水平很高的通用大型有限元分析软件,这些大型通用软件有些甚至已经有几十年的历史。这些软件对于桥梁结构的影响是深远的,使桥梁工程师对于桥梁结构的局部和微观受力情况的认知达到了前所未有的高度和水平。但是,桥梁结构,特别是混凝土桥梁结构具有的几大特征,如桥梁施工、收缩徐变效应、预应力、活载计算等,这些大型软件并不能完全满足要求。8 x5 H$ V# v, Q+ F# i8 y 对于混凝土构件的配筋配束方法,是涵盖受弯、受剪、受扭、受拉(压)的不同方向和不同组合的设计原理,内容非常丰富,也是很早(甚至将近100年)以来发展起来的经典学科。国内外相关规范虽然经过几轮发展,其基本思想仍然停留在“窄梁”范畴。同时,由于各时期的发展和内容补充,里面也留存有大量各时期的,有些甚至已经早已过时的痕迹。所以虽然规范有时显得越来越厚,但实际上并不代表越来越好。1 a; f0 h };

Y* @9 q" [

作者近年来通过参与我国桥梁规范的最新修订,深刻体会到目前飞速发展的结构分析方法与“蜗行”的桥梁构件设计规范之间的矛盾,就像一个人拥有一条长和一条短的两条腿,其前行速度仍受制约。具体的表现便是结构分析的方法越来越精细,而配筋配束设计理论却仍停留在简单结构范畴,造成了虽然能对复杂桥梁结构进行非常精细的分析,却无法建立与配筋设计方法紧密联系的尴尬情况。

对桥梁结构分析方面一些“经典概念”的探讨

横向分布

桥梁空间结构的近似计算方法,实质上是在一定的误差范围内,寻求一个近似的方法把一个复杂的空间问题转化成平面问题进行求解。早期工程师们采用将空间问题转化为平面问题的横向分布理论,来对多梁式桥梁进行分析验算。横向分布理论的研究,加深了工程师们对桥梁各种上部结构形式的力学性能(纵、横向分配荷载的性能)的理解。如图1为一座常见的多梁式简支梁桥。

图1 多梁式简支梁桥

在横向分布的计算方法中,刚性横梁法和比拟正交各向异性板法(又称G-M法)为最为常用的方法。众所周知,其基本前提是纵横向影响面具有相似的图形[2]。为了简化计算,剪力采用了杠杆法近似考虑。% X9 }) A& u; O, S" ^

对于箱梁结构,特别是如图2的宽箱梁结构,同样存在各道腹板的荷载横向分配问题。在单梁模型计算中,往往借用“横向分布”的概念,将各道腹板看成一根梁,采用与多道梁式结构同样的横向分布计算方法来计算。) f2 l- ?0 R2 r x* w9 h8 F

图2 多室宽箱梁截面

对图2截面而言,一般一排仅采用2个支座,不会每道腹板下面均设支座,而桥梁结构一般也为连续梁结构。可见,其力学图式与图1的计算原

型结构相差甚远,特别是简支支撑条件已完全改变。

图3是一个4跨连续梁采用的单箱多室箱梁截面及其梁格分割线,中间向两边的腹板编号为0#、1#和2#。该桥的支座布置见图4。图5~7分别为采用梁格计算和传统G-M法计算的3车道活载的0#、1#和2#腹板的剪力横向分布系数。

图3 单箱多室截面宽箱梁

图4 纵桥向支座布置

图5 0号腹板剪力横向分布系数沿半跨长变化图图6 1号腹板剪力横向分布系数沿半跨长变化图图7 2号腹板剪力横向分布系数沿半跨长

变化图

梁格模型和有效分布宽度

宽箱梁的空间效应主要为各道腹板的荷载分配和腹板较宽时本身的剪力滞效应。在现行桥梁规范中好像也并没有梳理清楚。6 R9 ]% w0 f+ K3 C8 x6

|

针对图2的宽箱梁,可以采用图8的稀疏划分方式来计算,即可以划分为B1~B4的4道主梁。采用这个计算模型,可以计算出各道腹板的弯矩和剪力更为精确的“横向分布系数”。由于划分出来的结构仍然是梁,所以当不考虑剪力滞效应时,虽然各道划分梁上的应力都不相同,但本身的应力分布是均匀的。当考虑剪力滞效应时,尚需要根据规范公式计算B1~B4各道梁的剪力滞效应。

所以说,规范中的剪力滞系数并不适合于独立宽箱梁,而仅适合于划分开后的工字形梁,——而T形梁(或工字形梁)正是规范中剪力滞效

应基本图示的来源。

图8 采用稀疏划分的宽箱梁截面(可能还需要考虑剪力滞效应)

针对图2的宽箱梁,也可以采用图9的致密划分方式来计算,b1~b4为4道腹板位置。

图9 采用致密划分的宽箱梁截面(剪力滞效应无需单独考虑)

这个计算模型中划分出来的结构仍然也还是梁,每道梁的应力本身是均匀的,但各道梁应力的不同分布直接反映出各道腹板受力的“横向分布”。同时由于划分致密,剪力滞效应在计算模型中由各道梁的应力差异反映出来。也就是对于致密划分的宽箱梁,不再存在“有效分布宽度”的基础。

梁格模型实质上是采用阶梯状的应力来表达原来的光滑分布的应力。图10为一个单箱单室截面的阶梯状应力分布来表达原来光滑的、包括

剪力滞效应的应力分布。

相关文档
最新文档