人教版 高中数学 选修2-2 课时作业2
高中数学选修2-2各章节配套课时作业及答案详解
课时作业(一)一、选择题1.函数y=x2+x在x=1到x=1+Δx之间的平均变化率为( )A.Δx+2 B.2Δx+(Δx)2C.Δx+3 D.3Δx+(Δx)2答案 C2.物体做直线运动所经过的路程s可表示为时间t的函数s=s(t)=2t2+2,则在一小段时间[2,2+Δt]上的平均速度为( )A.8+2Δt B.4+2ΔtC.7+2Δt D.-8+2Δt答案 A3.设函数y=f(x),当自变量x由x0改变到x0+Δx时,函数的改变量Δy为( ) A.f(x0+Δx) B.f(x0)+ΔxC.f(x0)·Δx D.f(x0+Δx)-f(x0)答案 D4.已知函数f(x)=2x2-4的图像上一点(1,2)及邻近一点(1+Δx,2+Δy),则Δy Δx等于( )A.4 B.4xC.4+2Δx D.4+2(Δx)2答案 C解析Δy=f(1+Δx)-f(1)=[2(1+Δx)2-4]-(2·12-4)=[2(Δx)2+4Δx-2]-(-2)=2(Δx)2+4Δx.∴ΔyΔx=2Δx2+4ΔxΔx=2Δx+4.5.某质点沿直线运动的方程为y=-2t2+1,则该质点从t=1到t=2时的平均速度为( )A.-4 B.-8C.6 D.-6答案 D解析 v =y 2-y 1t 2-t 1=-6.6.已知函数f (x )=-x 2+x ,则f (x )从-1到-0.9的平均变化率为( ) A .3 B .0.29 C .2.09 D .2.9答案 D7.在x =1附近,取Δx =0.3,在四个函数①y =x 、②y =x 2、③y =x 3、④y =1x中,平均变化率最大的是( )A .④B .③C .②D .①答案 B8.已知曲线y =14x 2和这条曲线上的一点P (1,14),Q 是曲线上点P 附近的一点,则点Q的坐标为( )A .(1+Δx ,14(Δx )2)B .(Δx ,14(Δx )2)C .(1+Δx ,14(Δx +1)2)D .(Δx ,14(1+Δx )2)答案 C 二、填空题9.将半径为R 的球加热,若球的半径增加ΔR ,则球的表面积增加量ΔS 等于________. 答案 8πRΔR +4π(ΔR )210.一质点的运动方程是s =4-2t 2,则在时间段[1,1+Δt ]上相应的平均速度v 与Δt 满足的关系式为________.答案 v =-2Δt -4解析 Δs =[4-2(1+Δt )2]-(4-2·12) =4-2-4Δt -2(Δt )2-4+2 =-4Δt -2(Δt )2,v =Δs Δt =-4Δt -2Δt2Δt=-4-2Δt .11.某物体按照s (t )=3t 2+2t +4的规律作直线运动,则自运动始到4 s 时,物体的平均速度为________.答案 15解析 v (t )=s t t =3t +2+4t, ∴v (4)=3×4+2+44=15.12.已知函数f (x )=1x,则此函数在[1,1+Δx ]上的平均变化率为________.答案 -11+Δx解析Δy Δx =f 1+Δx -f 1Δx=11+Δx -1Δx =-11+Δx.13.已知圆的面积S 与其半径r 之间的函数关系为S =πr 2,其中r ∈(0,+∞),则当半径r ∈[1,1+Δr ]时,圆面积S 的平均变化率为________.答案 2π+πΔr 三、解答题 14.甲、乙两人走过的路程s 1(t ),s 2(t )与时间t 的关系如图,试比较两人的平均速度哪个大?解析 由图像可知s 1(t 0)=s 2(t 0),s 1(0)>s 2(0),则s 1t 0-s 10t 0<s 2t 0-s 20t 0,所以在从0到t 0这段时间内乙的平均速度大.15.婴儿从出生到第24个月的体重变化如图,试分别计算第一年与第二年婴儿体重的平均变化率.解析第一年婴儿体重平均变化率为11.25-3.7512-0=0.625(千克/月);第二年婴儿体重平均变化率为14.25-11.2524-12=0.25(千克/月).16.已知函数f(x)=2x+1,g(x)=-2x,分别计算在下列区间上f(x)及g(x)的平均变化率.(1)[-3,-1];(2)[0,5].答案(1)f(x)在区间[-3,-1]上的平均变化率为2,g(x)在区间[-3,-1]上的平均变化率为-2.(2)f(x)在区间[0,5]上的平均变化率为2,g(x)在区间[0,5]上的平均变化率为-2.►重点班·选做题17.动点P沿x轴运动,运动方程为x=10t+5t2,式中t表示时间(单位:s),x表示距离(单位:m),求在20≤t≤20+Δt时间段内动点的平均速度,其中(1)Δt=1,(2)Δt=0.1;(3)Δt=0.01.答案(1)215 m/s (2)210.5 m/s (3)210.05 m/s课时作业(二)一、选择题1.已知函数y=f(x)在x=x0处的导数为11,则lim Δx→0f x0-Δx-f x0Δx=( )A.11 B.-11C.111D.-111答案 B2.函数f(x)在x=0可导,则limh→a f h-f ah-a=( )A.f(a) B.f′(a) C.f′(h) D.f(h) 答案 B3.已知函数y=x2+1的图像上一点(1,2)及邻近点(1+Δx,2+Δy),则limΔx→0Δy Δx=( )A.2 B.2xC.2+Δx D.2+Δx2答案 A4.设f(x)为可导函数,且满足limx→0f1-f1-2x2x=-1,则f′(1)的值为( )A.2 B.-1C.1 D.-2答案 B二、填空题5.一个物体的运动方程为S=1-t+t2,其中S的单位是米,t的单位是秒,那么物体在3秒末的瞬时速度是________.答案5米/秒6.函数y=(3x-1)2在x=x0处的导数为0,则x0=________.答案1 3解析Δy=f(x0+Δx)-f(x0)=(3x0+3Δx-1)2-(3x0-1)2=18x0Δx+9(Δx)2-6Δx,∴ΔyΔx=18x0+9Δx-6.∴li mΔx→0ΔyΔx=18x0-6=0,∴x0=13.7.设f(x)=ax+4,若f′(1)=2,则a=________. 答案 2解析 Δy =f (1+Δx )-f (1) =a (1+Δx )+4-a -4=aΔx . ∴f ′(1)=li m Δx →0ΔyΔx=li m Δx →0a =a . 又f ′(1)=2,∴a =2.8.质点M 按规律s =2t 2+3做直线运动(位移单位:m ,时间单位:s),则质点M 的瞬时速度等于8 m/s 时的时刻t 的值为________.答案 2解析 设时刻t 的值为t 0,则Δs =s (t 0+Δt )-s (t 0)=2(t 0+Δt )2+3-2t 20-3=4t 0·Δt +2·(Δt )2,Δs Δt =4t 0+2Δt ,lim Δt →0ΔsΔt=4t 0=8,∴t 0=2(s). 9.已知f (x )=1x ,则lim Δx →0f 2+Δx -f 2Δx的值是________.答案 -1410.如图,函数f (x )的图像是折线段ABC ,其中A ,B ,C 的坐标分别为(0,4),(2,0),(6,4),则f (f (0))=________;lim Δx →0f 1+Δx -f 1Δx=______.答案 2;-2 三、解答题11.设f (x )=x 2,求f ′(x 0),f ′(-1),f ′(2). 答案 f ′(x 0)=2x 0,f ′(-1)=-2,f ′(2)=412.某物体运动规律是S =t 2-4t +5,问什么时候此物体的瞬时速度为0? 答案 t =2解析 ΔS =(t +Δt )2-4(t +Δt )+5-(t 2-4t +5) =2tΔt +(Δt )2-4Δt ,v =li m Δt →0ΔSΔt=2t -4=0,∴t =2.13.若f ′(x 0)=2,求li m k →0f x 0-k -f x 02k的值.解析 令-k =Δx ,∵k →0,∴Δx →0. 则原式可变形为li m Δx →0f x 0+Δx -f x 0-2Δx=-12li m Δx →0f x 0+Δx -f x 0Δx=-12f ′(x 0)=-12×2=-1.►重点班·选做题14.若一物体运动方程如下:(位移:m ,时间:s)s =⎩⎪⎨⎪⎧3t 2+2 t ≥3, ①29+3t -320≤t <3. ②求:(1)物体在t ∈[3,5]内的平均速度; (2)物体的初速度v 0;(3)物体在t =1时的瞬时速度.解析 (1)∵物体在t ∈[3,5]内的时间变化量为Δt =5-3=2, 物体在t ∈[3,5]内的位移变化量为Δs =3×52+2-(3×32+2)=3×(52-32)=48,∴物体在t ∈[3,5]上的平均速度为Δs Δt =482=24(m/s). (2)求物体的初速度v 0即求物体在t =0时的瞬时速度.∵物体在t =0附近的平均变化率为Δs Δt =f 0+Δt -f 0Δt=29+3[0+Δt -3]2-29-30-32Δt=3Δt -18,∴物体在t =0处的瞬时变化率为lim Δt →0ΔsΔt=lim Δt →0(3Δt -18)=-18,即物体的初速度为-18 m/s.(3)物体在t =1时的瞬时速度即为函数在t =1处的瞬时变化率. ∵物体在t =1附近的平均变化率为Δs Δt =f 1+Δt -f 1Δt=29+3[1+Δt -3]2-29-31-32Δt=3Δt -12,∴物体在t =1处的瞬时变化率为 lim Δt →0ΔsΔt=lim Δt →0(3Δt -12)=-12. 即物体在t =1时的速度为-12 m/s.课时作业(三)一、选择题1.设f ′(x 0)=0,则曲线y =f (x )在点(x 0,f (x 0))处的切线( ) A .不存在 B .与x 轴平行或重合 C .与x 轴垂直 D .与x 轴斜交答案 B 2.已知函数y =f (x )的图像如右图所示,则f ′(x A )与f ′(x B )的大小关系是( ) A .f ′(x A )>f ′(x B ) B .f ′(x A )<f ′(x B ) C .f ′(x A )=f ′(x B ) D .不能确定 答案 B3.已知曲线y =f (x )在点P (x 0,f (x 0))处的切线方程为2x +y +1=0,那么( ) A .f ′(x 0)=0B .f ′(x 0)<0C .f ′(x 0)>0D .f ′(x 0)不能确定答案 B4.设曲线y =ax 2在点(1,a )处的切线与直线2x -y -6=0平行,则a 等于( ) A .1 B.12 C .-12D .-1答案 A5.如果曲线y =f (x )在点(x 0,f (x 0))处的切线方程为x +2y -3=0,那么( ) A .f ′(x 0)>0 B .f ′(x 0)<0 C .f ′(x 0)=0 D .f ′(x 0)不存在 答案 B6.下列说法正确的是( )A .曲线的切线和曲线有交点,这点一定是切点B .过曲线上一点作曲线的切线,这点一定是切点C .若f ′(x 0)不存在,则曲线y =f (x )在点(x 0,f (x 0))处无切线D .若曲线y =f (x )在点(x 0,f (x 0))处有切线,则f ′(x 0)不一定存在 答案 D7.在曲线y =x 2上切线的倾斜角为π4的点是( )A .(0,0)B .(2,4)C .(14,116)D .(12,14)答案 D8.设f (x )=2x,则lim x →afx -f aa -x等于( )A .-2aB.2aC .-2a2 D.2a2答案 D解析 lim x →a2x -2a a -x =lim x →a2ax =2a2.9.若f (x )=x 3+x -1,f ′(x 0)=4,则x 0的值为( ) A .1B .-1C .±1D .±3 3答案 C解析 f ′(x 0)=lim Δx →0f x 0+Δx -f x 0Δx=lim Δx →0x 0+Δx3+x 0+Δx -1-x 30+x 0-1Δx=lim Δx →0[3x 20+1+3x 0·Δx +(Δx )2]=3x 20+1=4.解得x 0=±1.10.已知曲线y =2x 3上一点A (1,2),则A 处的切线斜率等于( ) A .2B .4C .6+6·Δx +2·(Δx )2D .6答案 D 二、填空题11.已知函数y =f (x )的图像在点M (1,f (1))处的切线方程是y =12x +2,则f (1)+f ′(1)=________.答案 3解析 f ′(1)=12,f (1)=12×1+2=52,∴f (1)+f ′(1)=3.三、解答题12.求曲线y =2x -x 3在点(-1,-1)处的切线的方程及此切线与x 轴、y 轴所围成的平面图形的面积.答案 x +y +2=0;213.若曲线y =2x 3上某点切线的斜率等于6,求此点的坐标. 解析 ∵y ′|x =x 0=lim Δx →02x 0+Δx 3-2x 30Δx=6x 20,∴6x 20=6.∴x 0=±1.故(1,2),(-1,-2)为所求.14.已知曲线C :y =x 3,求在曲线C 上横坐标为1的点处的切线方程. 解析 将x =1代入曲线C 的方程得y =1, ∴切点P (1,1).∵y ′=lim Δx →0Δy Δx =lim Δx →0x +Δx 3-x 3Δx=lim Δx →03x 2Δx +3x Δx 2+Δx3Δx=lim Δx →0[3x 2+3xΔx +(Δx )2]=3x 2,∴y ′|x =1=3.∴过P 点的切线方程为y -1=3(x -1), 即3x -y -2=0. ►重点班·选做题15.点P 在曲线y =f (x )=x 2+1上,且曲线在点P 处的切线与曲线y =-2x 2-1相切,求点P 的坐标.解析 设P (x 0,y 0),则y 0=x 20+1.f ′(x 0)=lim Δx →0x 0+Δx2+1-x 20+1Δx=2x 0.所以过点P 的切线方程为y -y 0=2x 0(x -x 0), 即y =2x 0x +1-x 20.而此直线与曲线y =-2x 2-1相切,所以切线与曲线y =-2x 2-1只有一个公共点. 由{ y =2x 0x +1-x 20,y =-2x 2-1,得2x 2+2x 0x +2-x 20=0. 即Δ=4x 20-8(2-x 20)=0. 解得x 0=±233,y 0=73.所以点P 的坐标为(233,73)或(-233,73).课时作业(四)一、选择题1.下列结论中不正确的是( ) A .若y =x 4,则y ′|x =2=32 B .若y =1x,则y ′|x =2=-22C .若y =1x 2x,则y ′|x =1=-52D .若y =cos x ,则y ′|x =π2=-1 答案 B 解析 ∵y =1x =x -12,∴y ′=-12·x -32=-12x x.∴y ′|x =2=-142=-28.2.若曲线y =x 4的一条切线l 与直线x +4y -8=0垂直,则l 的方程为( ) A .4x -y -3=0 B .x +4y -5=0 C .4x -y +3=0 D .x +4y +3=0答案 A解析 ∵l 与直线x +4y -8=0垂直, ∴l 的斜率为4.∵y ′=4x 3,∴由切线l 的斜率是4,得4x 3=4,∴x =1. ∴切点坐标为(1,1).∴切线方程为y -1=4(x -1), 即4x -y -3=0.故选A.3.已知曲线y =x 24-3ln x 的一条切线的斜率为12,则切点的横坐标为( )A .3B .2C .1 D.12答案 A解析 y ′=12x -31x ,由12x -3x =12.得x =3或x =-2.由于x >0,所以x =3.4.在下列函数中,值域不是[-2,2]的函数共有( ) ①y =(sin x )′+(cos x )′ ②y =(sin x )′+cos x ③y =sin x +(cos x )′ ④y =(sin x )′·(cos x )′ A .1个 B .2个 C .3个 D .4个 答案 C解析 ②、③、④不是.5.质点沿直线运动的路程和时间的关系是s =5t ,则质点在t =4时的速度是( )A.12523 B.110523C.125523D.1110523答案 B6.已知物体的运动方程是s =14t 4-4t 3+16t 2(t 表示时间,s 表示位移),则瞬时速度为0的时刻是( )A .0秒、2秒或4秒B .0秒、2秒或16秒C .2秒、8秒或16秒D .0秒、4秒或8秒答案 D 二、填空题7.下列结论中正确的是________. ①y =ln2,则y ′=12②y =1x 2,则y ′|x =3=-227③y =2x ,则y ′=2xln2 ④y =log 2x ,则y ′=1x ln2答案 ②③④8.设f (x )=x 3-3x 2-9x +1,则不等式f ′(x )<0的解集为________. 答案 (-1,3)9.设直线y =12x +b 是曲线y =ln x (x >0)的一条切线,则实数b 的值为________.答案 ln2-110.过原点作曲线y =e x的切线,则切点的坐标为________,切线的斜率为________. 答案 (1,e),e11.已知P (-1,1),Q (2,4)是曲线y =x 2上的两点,则与直线PQ 平行的曲线y =x 2的切线方程是________.答案 4x -4y -1=0解析 k =4-12--1=1,又y ′=2x ,令2x =1,得x =12,进而y =14,∴切线方程为y -14=1·(x -12),即4x -4y -1=0.12.已知f (x )=cos x ,g (x )=x ,解不等式f ′(x )+g ′(x )≤0的解集为________. 答案 {x |x =2k π+π2,k ∈Z }解析 f ′(x )=-sin x, g ′(x )=1,∴不等式f ′(x )+g ′(x )≤0,即-sin x +1≤0. ∴sin x ≥1,又sin x ≤1,∴sin x =1. ∴x =2k π+π2,k ∈Z .三、解答题13.如果曲线y =x 2+x -3的某一条切线与直线y =3x +4平行,求切点坐标与切线方程.答案 切点坐标为(1,-1),切线方程为3x -y -4=0 14.求曲线y =sin x 在点A (π6,12)处的切线方程.解析 ∵y =sin x ,∴y ′=cos x . ∴y ′|x =π6=cos π6=32,k =32.∴切线方程为y -12=32(x -π6).化简得63x -12y +6-3π=0.15.(1)求过曲线y =e x上点P (1,e)且与曲线在该点处的切线垂直的直线方程; (2)曲线y =15x 5上一点M 处的切线与直线y =-x +3垂直,求此切线方程.解析 (1)∵y ′=e x,∴曲线在点P (1,e)处的切线斜率是y ′|x =1=e. ∴过点P 且与切线垂直的直线的斜率为k =-1e .∴所求直线方程为y -e =-1e (x -1),即x +e y -e 2-1=0.(2)∵切线与y =-x +3垂直,∴切线斜率为1. 又y ′=x 4,令x 4=1,∴x =±1.∴切线方程为5x -5y -4=0或5x -5y +4=0.►重点班·选做题16.下列命题中正确的是________. ①若f ′(x )=cos x ,则f (x )=sin x ②若f ′(x )=0,则f (x )=1 ③若f (x )=sin x ,则f ′(x )=cos x 答案 ③解析 当f (x )=sin x +1时,f ′(x )=cos x , 当f (x )=2时,f ′(x )=0.17.已知曲线方程为y =x 2,求过A (3,5)点且与曲线相切的直线方程.解析 解法一 设过A (3,5)与曲线y =x 2相切的直线方程为y -5=k (x -3),即y =kx +5-3k .由⎩⎪⎨⎪⎧y =kx +5-3k y =x 2,得x 2-kx +3k -5=0.Δ=k 2-4(3k -5)=0,整理得(k -2)(k -10)=0. ∴k =2或k =10. 所求的直线方程为2x -y -1=0,10x -y -25=0. 解法二 设切点P 的坐标为(x 0,y 0), 由y =x 2,得y ′=2x . ∴y ′|x =x 0=2x 0.由已知kPA =2x 0,即5-y 03-x 0=2x 0.又y 0=2x 0,代入上式整理,得x 0=1或x 0=5. ∴切点坐标为(1,1),(5,25).∴所求直线方程为2x -y -1=0,10x -y -25=0.课时作业(五)一、选择题1.函数y =2sin x cos x 的导数为( ) A .y ′=cos x B .y ′=2cos2x C .y ′=2(sin 2x -cos 2x )D .y ′=-sin2x答案 B解析 y ′=(2sin x cos x )′ =2(sin x )′·cos x +2sin x (cos x )′ =2cos 2x -2sin 2x =2cos2x . 2.函数f (x )=1x 3+2x +1的导数是( )A.1x 3+2x +12B.3x 2+2x 3+2x +12C.-3x 2-2x 3+2x +12D.-3x 2x 3+2x +12答案 C 解析 f ′(x )=-x 3+2x +1′x 3+2x +12=-3x 2-2x 3+2x +12.3.函数y =(x -a )(x -b )在x =a 处的导数为( ) A .ab B .-a (a -b ) C .0 D .a -b答案 D解析 y ′=(x -a )′(x -b )+(x -a )·(x -b )′, ∴y ′=2x -(a +b ),y ′|x =a =2a -a -b =a -b . 4.函数y =x ·ln x 的导数是( ) A .x B.1xC .ln x +1D .ln x +x答案 C解析 y ′=x ′·ln x +x ·(ln x )′=ln x +x ·1x=ln x +1.5.函数y =cos xx的导数是( )A .-sin x x2B .-sin xC .-x sin x +cos xx 2D .-x cos x +cos xx 2答案 C解析 y ′=(cos x x )′=cos x ′x -cos x ·x ′x2=-x sin x -cos xx2.6.曲线y =xx -2在点(1,-1)处的切线方程为( )A .y =x -2B .y =-3x +2C .y =2x -3D .y =-2x +1答案 D7.已知f (x )=ax 3+3x 2+2,若f ′(-1)=4,则a 的值是( ) A.193 B.163 C.133D.103答案 D解析 f ′(x )=3ax 2+6x ,f ′(-1)=3a -6=4,a =103.8.设点P 是曲线y =x 3-3x +23上的任意一点,点P 处切线倾斜角为α,则角α的取值范围是( )A.⎣⎢⎡⎭⎪⎫23π,πB.⎝⎛⎦⎥⎤π2,56πC.⎣⎢⎡⎭⎪⎫0,π2∪⎝ ⎛⎭⎪⎫56π,πD.⎣⎢⎡⎭⎪⎫0,π2∪⎣⎢⎡⎭⎪⎫23π,π答案 D解析 由y ′=3x 2-3,易知y ′≥-3,即tan α≥- 3. ∴0≤α<π2或23π≤α<π.9.函数y =xcos x 的导数是( )A.1+xcos x B.cos x -x sin xcos 2x C.cos x +xcos 2xD.cos x +x sin xcos 2x答案 D 解析 y ′=x ′cos x -x cos x ′cos 2x =cos x +x sin xcos 2x. 10.已知f (x )=x 2+2xf ′(1),则f ′(0)等于( ) A .0 B .-4 C .-2 D .2答案 B解析 f ′(x )=2x +2f ′(1),令x =1,得f ′(1)=2+2f ′(1),∴f ′(1)=-2. ∴f ′(0)=2f ′(1)=-4.11.已知f (1x )=x1+x ,则f ′(x )=( )A.11+x B .-11+xC.11+x2D .-11+x2答案 D解析 ∵f (1x )=x 1+x =11x+1, ∴f (x )=1x +1.∴f ′(x )=-11+x2.12.设函数f (x )=g (x )+x 2,曲线y =g (x )在点(1,g (1))处的切线方程为y =2x +1,则曲线y =f (x )在点(1,f (1))处的切线的斜率为( )A .4B .-14C .2D .-12答案 A解析 依题意得f ′(x )=g ′(x )+2x ,f ′(1)=g ′(1)+2=4,选A. 二、填空题13.曲线y =x 3+3x 2+6x -10的切线中,斜率最小的切线方程为______________. 答案 3x -y -11=0解析 y ′=3x 2+6x +6=3(x +1)2+3≥3, 当且仅当x =-1时取等号,当x =-1,时y =-14. ∴切线方程为y +14=3(x +1),即3x -y -11=0.14.设f (x )=ax 2-b sin x ,且f ′(0)=1,f ′(π3)=12,则a =________,b =________.答案 0 -1解析 f ′(x )=2ax -b cos x , ∴f ′(0)=-b =1.f ′(π3)=2a ·π3-b ·cos π3=12,得a =0,b =-1.三、解答题15.求下列函数的导数. (1)f (x )=(x 3+1)(2x 2+8x -5); (2)f (x )=1+x 1-x +1-x1+x ;(3)f (x )=ln x +2xx2. 解析 (1)∵f ′(x )=[2x 5+8x 4-5x 3+2x 2+8x -5]′, ∴f ′(x )=10x 4+32x 3-15x 2+4x +8. (2)∵f (x )=1+x 1-x +1-x 1+x =1+x 21-x +1-x 21-x=2+2x 1-x =41-x-2, ∴f ′(x )=(41-x -2)′=-41-x ′1-x 2=41-x2.(3)f ′(x )=(ln x x 2+2xx 2)′=(ln x x 2)′+(2xx2)′=1x ·x 2-ln x ·2x x 4+2x ln2·x 2-2xx 4=1-2ln x x +ln2·x 2-2x ·2xx 4=1-2ln x +ln2·x -22xx 3.16.已知函数f (x )=2x 3+ax 与g (x )=bx 2+c 的图像都过点P (2,0),且在点P 处有公共切线,求f (x )、g (x )的表达式.解析 ∵f (x )=2x 3+ax 的图像过点P (2,0), ∴a =-8.∴f (x )=2x 3-8x .∴f ′(x )=6x 2-8. 对于g (x )=bx 2+c 的图像过点P (2,0),则4b +c =0. 又g ′(x )=2bx ,∴g ′(2)=4b =f ′(2)=16. ∴b =4.∴c =-16. ∴g (x )=4x 2-16. 综上可知,f (x )=2x 3-8x ,g (x )=4x 2-16.17.若直线y =kx 与曲线y =x 3-3x 2+2x 相切,求k 的值. 解析 设切点坐标为(x 0,y 0),y ′|x =x 0=3x 20-6x 0+2=k . 若x 0=0,则k =2.若x 0≠0,由y 0=kx 0,得k =y 0x 0.∴3x 20-6x 0+2=y 0x 0,即3x 2-6x 0+2=x 30-3x 20+2x 0x 0.解之,得x 0=32.∴k =3×(32)2-6×32+2=-14.综上,k =2或k =-14.►重点班·选做题18.已知曲线S :y =3x -x 3及点P (2,2),则过点P 可向S 引切线,其切线条数为( ) A .0 B .1 C .2 D .3答案 D解析 显然P 不在S 上,设切点为(x 0,y 0), 由y ′=3-3x 2,得y ′|x =x 0=3-3x 20. 切线方程为y -(3x 0-x 30)=(3-3x 20)(x -x 0). ∵P (2,2)在切线上,∴2-(3x 0-x 30)=(3-3x 20)(2-x 0), 即x 30-3x 20+2=0. ∴(x 0-1)(x 20-2x 0-2)=0. 由x 0-1=0,得x 0=1.由x 20-2x 0-2=0,得x 0=1± 3.∵有三个切点,∴由P 向S 作切线可以作3条.19.曲线y =x (x +1)(2-x )有两条平行于y =x 的切线,则两切线之间的距离为________. 答案16272 解析 y =x (x +1)(2-x )=-x 3+x 2+2x ,y ′=-3x 2+2x +2,令-3x 2+2x +2=1,得 x 1=1或x 2=-13.∴两个切点分别为(1,2)和(-13,-1427).切线方程为x -y +1=0和x -y -527=0.∴d =|1+527|2=16227.1.已知直线l 1为曲线y =x 2+x -2在点(1,0)处的切线,l 2为该曲线的另一条切线,且l 1⊥l 2.(1)求直线l 1,l 2的方程;(2)求由直线l 1,l 2和x 轴所围成的三角形的面积.分析 (1)求曲线在某点处的切线方程的步骤:先求曲线在这点处的导数,这点对应的导数值即为过此点切线的斜率,再用点斜式写出直线方程;(2)求面积用S =12a ·h 即可完成.解析 (1)因为y ′=2x +1,则直线l 1的斜率k 1=2×1+1=3,则直线l 1的方程为y =3x -3,设直线l 2过曲线y =x 2+x -2上的点B (b ,b 2+b -2),则l 2的方程为y =(2b +1)x -b 2-2.因为l 1⊥l 2,则有2b +1=-13,b =-23.所以直线l 2的方程为y =-13x -229.(2)解方程组⎩⎪⎨⎪⎧y =3x -3y =-13x -229,得⎩⎪⎨⎪⎧x =16y =-52.所以直线l 1和l 2的交点坐标为(16,-52),l 1,l 2与x 轴交点的坐标分别为(1,0),(-223,0).所以所求三角形的面积S =12×253×|-52|=12512. 课时作业(六)一、选择题1.若f (x )=(x +1)4,则f ′(0)等于( ) A .0 B .1 C .3 D .4答案 D2.若f (x )=sin(2x +π6),则f ′(π6)等于( )A .0B .1C .2D .3答案 A3.y =cos 3(2x +3)的导数是( ) A .y ′=3cos 2(2x +3) B .y ′=6cos 2(2x +3)C .y ′=-3cos 2(2x +3)·sin(2x +3)D .y ′=-6cos 2(2x +3)·sin(2x +3) 答案 D4.函数y =sin 2x 的图像在⎝ ⎛⎭⎪⎫π6,14处的切线的斜率是( )A. 3B.33C.12D.32答案 D分析 将函数y =sin 2x 看作是由函数y =u 2,u =sin x 复合而成的. 解析 ∵y ′=2sin x cos x , ∴y ′|x =π6=2sin π6cos π6=32.5.y =sin 31x的导数是( )A .-3x 2sin 21xB .-32x 2sin 22xC .-3x2cos 1x ·sin 21xD.32x 2sin 1x ·sin 2x答案 C6.曲线y =ln(2x -1)上的点到直线2x -y +3=0的最短距离是( ) A. 5 B .2 5 C .3 5 D .0答案 A解析 y ′=22x -1=2,∴x =1.∴切点坐标为(1,0).由点到直线的距离公式,得d =|2×1-0+3|22+12= 5. 7.设y =f (2-x)可导,则y ′等于( ) A .f ′(2-x)ln2B .2-x ·f ′(2-x)ln2C .-2-x ·f ′(2-x)ln2 D .-2-x ·f ′(2-x)log2e答案 C8.曲线y =e 12 x 在点(4,e 2)处的切线与坐标轴所围三角形的面积为( ) A.92e 2B .4e 2C .2e 2D .e 2答案 D解析 ∵y ′=12·e 12 x ,∴切线的斜率k =y ′|x =4=12e 2.∴切线方程为y -e 2=12e 2(x -4).∴横纵截距分别为2,-e 2,∴S =e 2,故选D.9.若函数f (x )的导函数f ′(x )=x 2-4x +3,则函数f (x +1)的单调递减区间是( ) A .(2,4) B .(-3,-1) C .(1,3) D .(0,2)答案 D解析 由f ′(x )=x 2-4x +3=(x -1)(x -3)知,当x ∈(1,3)时,f ′(x )<0.函数f (x )在(1,3)上为减函数,函数f (x +1)的图像是由函数y =f (x )图像向左平移1个单位长度得到的,所以(0,2)为函数y =f (x +1)的单调减区间.10.函数f (x )=a sin ax (a ∈R )的图像过点P (2π,0),并且在点P 处的切线斜率为4,则f (x )的最小正周期为( )A .2πB .π C.π2D.π4答案 B解析 f ′(x )=a 2cos ax ,∴f ′(2π)=a 2cos2πa . 又a sin2πa =0,∴2πa =k π,k ∈Z . ∴f ′(2π)=a 2cos k π=4,∴a =±2. ∴T =2π|a |=π.二、填空题11.函数y =ln(2x 2-4)的导函数是y ′=________.答案2xx 2-212.设函数f (x )=(1-2x 3)10,则f ′(1)=________. 答案 6013.若f (x )=(x -1)·e x -1,则f ′(x )=________.答案 x ·ex -114.设曲线y =e ax在点(0,1)处的切线与直线x +2y +1=0垂直,则a =________. 答案 2解析 由题意得y ′=a e ax,y ′|x =0=a ea ×0=2,a =2.15.一物体作阻尼运动,运动规律为x =e -2tsin(3t +π6),则物体在时刻t =0时,速度为________,加速度为________.答案332-1;63-52三、解答题16.已知f (x )=(x +1+x 2)10,求f ′0f 0.解析 (1+x 2)′=[(1+x 2) 12 ]′ =12(1+x 2) - 12 ·2x =x (1+x 2) - 12 ,∴f ′(x )=10(x +1+x 2)9·[1+x (1+x 2) - 12 ]=10·x +1+x 2101+x2.∴f ′(0)=10.又f (0)=1,∴f ′0f 0=10.17.求证:双曲线C 1:x 2-y 2=5与椭圆C 2:4x 2+9y 2=72在第一象限交点处的切线互相垂直.证明 联立两曲线的方程,求得它们在第一象限交点为(3,2).C 1在第一象限的部分对应的函数解析式为y =x 2-5,于是有:y ′=[(x 2-5) 12 ]′=x 2-5′2x 2-5=x x 2-5,∴k 1=y ′|x =3=32.C 2在第一象限的部分对应的函数解析式为 y =8-49x 2.∴y ′=-89x 28-49x 2=-2x318-x 2. ∴k 2=y ′|x =3=-23.∵k 1·k 2=-1,∴两切线互相垂直. ►重点班·选做题18.曲线y =e 2xcos3x 在(0,1)处的切线与l 的距离为5,求l 的方程. 解析 由题意知y ′=(e 2x )′cos3x +e 2x (cos3x )′=2e 2xcos3x +3(-sin3x )·e 2x=2e 2xcos3x -3e 2xsin3x ,∴曲线在(0,1)处的切线的斜率为k =y ′|x =0=2. ∴该切线方程为y -1=2x ⇒y =2x +1. 设l 的方程为y =2x +m , 则d =|m -1|5= 5.解得m =-4或m =6.当m =-4时,l 的方程为y =2x -4; 当m =6时,l 的方程为y =2x +6.综上,可知l 的方程为y =2x -4或y =2x +6.课时作业(七)一、选择题1.函数f (x )=2x -sin x 在(-∞,+∞)上( ) A .是增函数 B .是减函数 C .有最大值 D .有最小值答案 A2.函数f (x )=5x 2-2x 的单调递减区间是( )A .(15,+∞)B .(-∞,15)C .(-15,+∞)D .(-∞,-15)答案 B3.函数y =x ln x 在区间(0,1)上是( ) A .单调增函数 B .单调减函数C .在(0,1e )上是减函数,在(1e ,1)上是增函数D .在(0,1e )上是增函数,在(1e ,1)上是减函数答案 C解析 f ′(x )=ln x +1,当0<x <1e 时,f ′(0)<0;当1e<x <1时,f ′(x )>0. 4.函数y =4x 2+1x的单调增区间为( )A .(0,+∞)B .(12,+∞)C .(-∞,-1)D .(-∞,-12)答案 B解析 y ′=8x -1x 2,令y ′>0,得8x -1x2>0,即x 3>18, ∴x >12.5.若函数y =a (x 3-x )的递减区间为(-33,33),则a 的取值范围是( ) A .a >0 B .-1<a <0 C .a >1 D .0<a <1答案 A解析 y ′=a (3x 2-1),解3x 2-1<0,得-33<x <33. ∴f (x )=x 3-x 在(-33,33)上为减函数.又y =a ·(x 3-x )的递减区间为(-33,33). ∴a >0. 6.已知f ′(x )是f (x )的导函数,y =f ′(x )的图像如图所示,则f (x )的图像只可能是( )答案 D解析 从y =f ′(x )的图像可以看出,在区间(a ,a +b2)内,导数值递增;在区(a +b2,b )内,导数值递减,即函数f (x )的图像在(a ,a +b 2)内越来越陡峭,在(a +b2,b )内越来越平缓.7.函数f (x )=(x -3)e x的单调递增区间是( ) A .(-∞,2) B .(0,3) C .(1,4) D .(2,+∞)答案 D解析 f ′(x )=e x+(x -3)e x=e x(x -2),由f ′(x )>0,得x >2.∴f (x )在(2,+∞)上是增函数. 二、填空题8.若函数y =-43x 3+bx 有三个单调区间,则b 的取值范围是________.答案 (0,+∞)解析 若函数y =-43x 3+bx 有三个单调区间,则其导数y ′=-4x 2+b =0有两个不相等的实数根,所以b >0.9.若函数f (x )=x -p x +p2在(1,+∞)上是增函数,则实数p 的取值范围是________.答案 [-1,+∞)解析 f ′(x )=1+px2≥0对x >1恒成立,即x 2+p ≥0对x >1恒成立,∴p ≥-x 2(x >1).∴p ≥-1.10.若函数y =13ax 3-12ax 2-2ax (a ≠0)在[-1,2]上为增函数,则a ∈________.答案 (-∞,0)解析 y ′=ax 2-ax -2a =a (x +1)(x -2)>0, ∵当x ∈(-1,2)时,(x +1)(x -2)<0, ∴a <0.11.f (x )=2x -ax 2+2(x ∈R )在区间[-1,1]上是增函数,则a ∈________.答案 [-1,1]解析 y ′=2·-x 2+ax +2x 2+22,∵f (x )在[-1,1]上是增函数,∴y ′在(-1,1)上大于等于0,即2·-x 2+ax +2x 2+22≥0.∵(x 2+2)2>0,∴x 2-ax -2≤0对x ∈(-1,1)恒成立. 令g (x )=x 2-ax -2,则⎩⎪⎨⎪⎧g -1≤0g1≤0,即⎩⎪⎨⎪⎧1+a -2≤01-a -2≤0,∴-1≤a ≤1.即a 的取值范围是[-1,1]. 三、解答题12.已知f (x )=ax 3+3x 2-x -1在R 上是减函数,求a 的取值范围. 解析 ∵f ′(x )=3ax 2+6x -1,又f (x )在R 上递减,∴f ′(x )≤0对x ∈R 恒成立.即3ax 2+6x -1≤0对x ∈R 恒成立,显然a ≠0.∴⎩⎪⎨⎪⎧3a <0Δ=36+12a ≤0,∴a ≤-3.即a 的取值范围为(-∞,-3].13.已知函数f (x )=x 2+ax(x ≠0,常数a ∈R ).若函数f (x )在[2,+∞)上是单调递增的,求a 的取值范围. 解析 f ′(x )=2x -a x 2=2x 3-ax2,要使f (x )在[2,+∞)上是单调递增的, 则f ′(x )≥0在x ∈[2,+∞)时恒成立, 即2x 3-ax2≥0在x ∈[2,+∞)时恒成立. ∵x >0,∴2x 3-a ≥0,∴a ≤2x 3在x ∈[2,+∞)上恒成立. ∴a ≤(2x 3)min .∵x ∈[2,+∞),y =2x 3是单调递增的, ∴(2x 3)min =16,∴a ≤16. 当a =16时,f ′(x )=2x 3-16x2≥0(x ∈[2,+∞))有且只有f ′(2)=0. ∴a 的取值范围是a ≤16.14.已知函数f (x )=x 3+ax 2+1,a ∈R . (1)讨论函数f (x )的单调区间;(2)设函数f (x )在区间(-23,-13)内是减函数,求a 的取值范围.解析 (1)对f (x )求导,得f ′(x )=3x 2+2ax =3x (x +23a ).①当a =0时,f ′(x )=3x 2≥0恒成立. ∴f (x )的递增区间是(-∞,+∞);②当a >0时,由于f ′(x )分别在(-∞,-23α)和(0,+∞)上都恒为正,所以f (x )的递增区间是(-∞,-23a ),(0,+∞);由于f ′(x )在(-23a,0)上恒为负,所以f (x )的递减区间是(-23a,0);③当a <0时,在x ∈(-∞,0)和x ∈(-23a ,+∞)上均有f ′(x )>0,∴f (x )的递增区间是(-∞,0),(-23a ,+∞);在(0,-23a )上,f ′(x )<0,f (x )的递减区间是(0,-23a ).(2)由(1)知,(-23,-13)⊆(-23a,0),∴-23a ≤-23.∴a ≥1.15.若函数f (x )=13x 3-12ax 2+(a -1)x +1在区间(1,4)上为减函数,在区间(6,+∞)上为增函数,试求实数a 的取值范围.分析 本题主要考查借助函数的单调性来求导的能力及解不等式的能力. 解析 ∵f ′(x )=x 2-ax +a -1,令f ′(x )=0, 解得x =1或x =a -1.当a -1≤1,即a ≤2时,函数f (x )在(1,+∞)上为增函数,不符合题意.当a -1>1,即a >2时,函数f (x )在(-∞,1)上为增函数,在(1,a -1)上为减函数,在(a -1,+∞)上为增函数.而当x ∈(1,4)时,f ′(x )<0; 当x ∈(6,+∞)时,f ′(x )>0. ∴4≤a -1≤6,即5≤a ≤7. ∴a 的取值范围是[5,7].16.已知f (x )=2x 2+ax -2a2x 在区间[1,+∞)上是增函数,求实数a 的取值范围.解析 因为f (x )=x -a x +a 2,所以f ′(x )=1+ax 2.又f (x )在[1,+∞)上是增函数,所以当x ∈[1,+∞)时,恒有f ′(x )=1+ax 2≥0,即a ≥-x 2,x ∈[1,+∞).所以a ≥-1. 故所求a 的取值范围是[-1,+∞).17.已知函数f (x )=13x 3+ax 2+bx ,且f ′(-1)=0.(1)试用含a 代数式表示b ; (2)求f (x )的单调区间.分析 可先求f ′(x ),再由f ′(-1)=0,可得用含a 的代数式表示b ,这时f (x )中只含一个参数a ,然后令f ′(x )=0,求得两根,通过列表,求得f (x )的单调区间,并注意分类讨论.解析 (1)依题意,得f ′(x )=x 2+2ax +b . 由f ′(-1)=0,得1-2a +b =0.∴b =2a -1. (2)由(1),得f (x )=13x 3+ax 2+(2a -1)x .故f ′(x )=x 2+2ax +2a -1=(x +1)(x +2a -1). 令f ′(x )=0,则x =-1或x =1-2a . ①当a >1时,1-2a <-1.当x 变化时,f ′(x )与f (x )的变化情况如下表:(1-2a ,-1).②当a =1时,1-2a =-1,此时f ′(x )≥0恒成立,且仅在x =-1处f ′(x )=0,故函数f (x )的单调增区间为R .③当a <1时,1-2a >-1,同理可得函数f (x )的单调增区间为(-∞,-1)和(1-2a ,+∞),单调减区间(-1,1-2a ).综上:当a >1时,函数f (x )的单调增区间为(-∞,1-2a )和(-1,+∞),单调减区间为(1-2a ,-1);当a =1时,函数f (x )的单调增区间为R ;当a <1时,函数f (x )的单调增区间为(-∞,-1)和(1-2a ,+∞),单调减区间为(-1,1-2a ).►重点班·选做题 18.设函数f (x )=1x ln x(x >0且x ≠1). (1)求函数f (x )的单调区间;(2)已知21x >x a对任意x ∈(0,1)成立,求实数a 的取值范围. 解析 (1)f ′(x )=-ln x +1x 2ln 2x .若f ′(x )=0,则x =1e.当f ′(x )>0,即0<x <1e 时,f (x )为增函数;当f ′(x )<0,即1e <x <1或x >1时,f (x )为减函数.所以f (x )的单调增区间为(0,1e ),单调减区间为[1e ,1)和(1,+∞).(2)在21x >x a 两边取对数,得1xln2>a ln x .由于0<x <1,所以a ln2>1x ln x.①由(1)的结果知:当x ∈(0,1)时,f (x )≤f (1e )=-e.为使①式对所有x ∈(0,1)成立, 当且仅当aln2>-e ,即a >-eln2.课时作业(九)一、选择题1.函数f (x )=x 3+3x 2+3x -a 的极值点的个数( ) A .2 B .1 C .0 D .由a 确定答案 C解析 f ′(x )=3x 2+6x +3=3(x 2+2x +1)=3(x +1)2≥0恒成立.f (x )单调,故无极值点.2.函数f (x )的定义域为开区间(a ,b ),导数f ′(x )在(a ,b )内的图像如图所示,则函数f (x )在开区间(a ,b )内有极小值点( )A .1个B .2个C .3个D .4个答案 A解析 导数的图像看符号,先负后正的分界点为极小值点. 3.若函数y =e x+mx 有极值,则实数m 的取值范围( ) A .m >0 B .m <0 C .m >1 D .m <1答案 B解析 y ′=e x+m ,则e x+m =0必有根,∴m =-e x<0. 4.当函数y =x ·2x取极小值时,x =( ) A.1ln2B .-1ln2C .-ln2D .ln2答案 B解析 由y =x ·2x ,得y ′=2x +x ·2x·ln2. 令y ′=0,得2x(1+x ·ln2)=0. ∵2x>0,∴x =-1ln2.5.函数f (x )=x 3-3bx +3b 在(0,1)内有极小值,则( ) A .0<b <1 B .b <1 C .b >0 D .b <12答案 A解析 f (x )在(0,1)内有极小值,则f ′(x )=3x 2-3b 在(0,1)上先负后正,∴f ′(0)=-3b <0.∴b >0,f ′(1)=3-3b >0,∴b <1. 综上,b 的范围为0<b <1.6.已知f (x )=x 3+ax 2+(a +6)x +1有极大值和极小值,则a 的取值范围为( ) A .-1<a <2 B .-3<a <0 C .a <-1或a >2 D .a <-3或a >6答案 D解析 f ′(x )=3x 2+2ax +(a +6), ∵f (x )有极大值和极小值, ∴f ′(x )=0有两个不等实根.∴Δ=4a 2-4·3(a +6)>0,即(a -6)(a +3)>0,解得a >6或a <-3.7.已知函数f (x )=x 3-px 2-qx 的图像与x 轴相切于(1,0),则极小值为( ) A .0 B .-427C .-527D .1答案 A解析 f ′(x )=3x 2-2px -q , 由题知f ′(1)=3-2p -q =0. 又f (1)=1-p -q =0,联立方程组,解得p =2,q =-1.∴f (x )=x 3-2x 2+x ,f ′(x )=3x 2-4x +1. 由f ′(x )=3x 2-4x +1=0, 解得x =1或x =13.经检验知x =1是函数的极小值点. ∴f (x )极小值=f (1)=0.8.三次函数当x =1时,有极大值4,当x =3时,有极小值0,且函数图像过原点,则此函数可能是( )A .y =x 3+6x 2+9x B .y =x 3-6x 2+9x C .y =x 3-6x 2-9x D .y =x 3+6x 2-9x答案 B解析 三次函数过原点,且四个选项中函数的最高次项系数均为1, ∴此函数可设为f (x )=x 3+bx 2+cx . 则f ′(x )=3x 2+2bx +c .由题设知⎩⎪⎨⎪⎧f ′1=3+2b +c =0,f ′3=27+6b +c =0.解得⎩⎪⎨⎪⎧b =-6,c =9.∴f (x )=x 3-6x 2+9x .∴f ′(x )=3x 2-12x +9=3(x -1)(x -3).可以验证当x =1时,函数取得极大值4;当x =3时,函数取得极小值0,满足条件. 9.设f (x )=x (ax 2+bx +c )(a ≠0)在x =1和x =-1处均有极值,则下列点中一定在x 轴上的是( )A .(a ,b )B .(a ,c )C .(b ,c )D .(a +b ,c )答案 A解析 f ′(x )=3ax 2+2bx +c ,由题意知x =1和x =-1是方程3ax 2+2bx +c =0的两根,则1-1=-2b3a,得b =0.二、填空题10.若函数f (x )=x 2+ax +1在x =1处取得极值,则a =________.答案 3解析 f ′(x )=x 2+a ′·x +1-x 2+a ·x +1′x +12=2x ·x +1-x 2+a ·1x +12=x 2+2x -a x +12,因为函数f (x )在x =1处取得极值, 所以f ′(1)=3-a4=0,解得a =3.11.设函数f (x )=x ·(x -c )2在x =2处有极大值,则c =________. 答案 6解析 f ′(x )=3x 2-4cx +c 2,∵f (x )在x =2处有极大值,∴f ′(2)=0,即c 2-8c +12=0,解得c 1=2,c 2=6.当c =2时,则f ′(x )=3x 2-8x +4=(3x -2)(x -2). 当x >2时,f ′(x )>0,f (x )递增不合题意, ∴c ≠2,∴c =6.12.已知函数f (x )=x 3+bx 2+cx ,其导函数y =f ′(x )的图像经过点(1,0),(2,0),如图所示,则下列说法中不正确的编号是________.(写出所有不正确说法的编号)(1)当x =32时函数取得极小值;。
人教新课标版-数学-高二(人教B版)选修2-2课时作业 2.2.1 综合法与分析法
§2.2 直接证明与间接证明2.2.1 综合法与分析法一、选择题1.若实数x ,y 满足不等式xy >1,x +y ≥0,则( )A .x >0,y >0B .x <0,y <0C .x >0,y <0D .x <0,y >02.在非等边三角形ABC 中,A 为钝角,则三边a ,b ,c 满足的条件是( )A .b 2+c 2≥a 2B .b 2+c 2>a 2C .b 2+c 2≤a 2D .b 2+c 2<a 23.若P =a +a +7,Q =a +3+a +4 (a ≥0),则P 与Q 的大小关系为( )A .P >QB .P =QC .P <QD .由a 的取值确定4.设a ,b ∈R ,且a ≠b ,a +b =2,则必有( )A .1≤ab ≤a 2+b 22B .ab <1<a 2+b 22C .ab <a 2+b 22<1 D.a 2+b 22<ab <1 5.分析法又叫执果索因法,若使用分析法证明:设a >b >c ,且a +b +c =0,求证:b 2-ac <3a 索的因应是( )A .a -b >0B .a -c >0C .(a -b )(a -c )>0D .(a -b )(a -c )<06.若A 、B 为△ABC 的内角,则A >B 是sin A >sin B 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件7.若x >0,y >0,且x +y ≤a x +y 恒成立,则a 的最小值是( )A .2 2 B.2 C .2D .1二、填空题8.设a =3-2,b =6-5,c =7-6,则a 、b 、c 的大小顺序是________.9.如图所示,SA ⊥平面ABC ,AB ⊥BC ,过A 作SB 的垂线,垂足为E ,过E 作SC 的垂线,垂足为F .求证:AF ⊥SC .证明:要证AF ⊥SC ,只需证SC ⊥平面AEF ,只需证AE ⊥SC (因为____________),只需证____________,只需证AE ⊥BC (因为__________),只需证BC ⊥平面SAB ,只需证BC ⊥SA (因为______________).由SA ⊥平面ABC 可知,上式成立.10.设a >0,b >0,则下面两式的大小关系为ln(1+ab )________12. 三、解答题11.设f (x )=ln x +x -1,证明:当x >1时,f (x )<32(x -1).12.如果a ,b 都是正数,且a ≠b ,求证:a b +b a>a +b .13.在△ABC 中,三边a ,b ,c 成等比数列,求证:a cos 2C 2+c cos 2A 2≥32b .四、探究与拓展14.如图所示,在直四棱柱A 1B 1C 1D 1-ABCD 中,当底面四边形ABCD 满足条件________时,有A 1C ⊥B 1D 1.(注:填上你认为正确的一个条件即可,不必考虑所有可能的情形)15.已知a,b,c,d∈R,求证:ac+bd≤(a2+b2)(c2+d2).(你能用几种方法证明?)答案精析1.A 2.D 3.C 4.B 5.C 6.C 7.B8.a >b >c9.EF ⊥SC AE ⊥平面SBC AE ⊥SB AB ⊥BC10.≤11.证明 记g (x )=ln x +x -1-32(x -1), 则当x >1时,g ′(x )=1x +12x -32<0. 又g (1)=0,故当x >1时,g (x )<0,即f (x )<32(x -1). 12.证明 方法一 (综合法)a b +b a -a -b =a a +b b -a b -b a ab =(a -b )(a -b )ab=(a -b )2(a +b )ab>0, 故a b +b a>a +b . 方法二 (分析法)要证a b +b a >a +b , 只需证a 2b +b 2a+2ab >a +b +2ab , 即证a 3+b 3>a 2b +ab 2,只需证(a +b )(a 2-ab +b 2)>ab (a +b ),即需证a 2-ab +b 2>ab ,只需证(a -b )2>0,因为a ≠b ,所以(a -b )2>0恒成立,所以a b +b a>a +b 成立.13.证明 ∵左边=a (1+cos C )2+c (1+cos A )2=12(a +c )+12(a cos C +c cos A ) =12(a +c )+12(a ·a 2+b 2-c 22ab +c ·b 2+c 2-a 22bc) =12(a +c )+12b ≥ac +b 2=b +b 2=32b =右边. ∴a cos 2C 2+c cos 2A 2≥32b . 14.对角线互相垂直(答案不唯一)15.证明 方法一 (分析法)①当ac +bd ≤0时,显然成立.②当ac +bd >0时,欲证原不等式成立,只需证(ac +bd )2≤(a 2+b 2)(c 2+d 2).即证a 2c 2+2abcd +b 2d 2≤a 2c 2+a 2d 2+b 2c 2+b 2d 2.即证2abcd ≤b 2c 2+a 2d 2,即证0≤(bc -ad )2.因为a ,b ,c ,d ∈R ,所以上式恒成立.故原不等式成立,综合①②知,命题得证.方法二 (综合法)(a 2+b 2)(c 2+d 2)=a 2c 2+a 2d 2+b 2c 2+b 2d 2=(a 2c 2+2acbd +b 2d 2)+(b 2c 2-2bcad +a 2d 2)=(ac +bd )2+(bc -ad )2≥(ac +bd )2. ∴(a 2+b 2)(c 2+d 2)≥|ac +bd |≥ac +bd .方法三 (比较法)∵(a 2+b 2)(c 2+d 2)-(ac +bd )2=(bc -ad )2≥0,∴(a 2+b 2)(c 2+d 2)≥(ac +bd )2, ∴(a 2+b 2)(c 2+d 2)≥|ac +bd |≥ac +bd .方法四 (放缩法)为了避免讨论,由ac +bd ≤|ac +bd |,可以试证(ac +bd )2≤ (a 2+b 2)(c 2+d 2).由方法一知上式成立,从而方法四可行.方法五 (构造向量法)设m =(a ,b ),n =(c ,d ),∴m·n=ac+bd,|m|=a2+b2,|n|=c2+d2.∵m·n≤|m|·|n|=a2+b2·c2+d2.故ac+bd≤(a2+b2)(c2+d2).。
人教版高中数学高二选修2-2课时作业1-2导数的计算
课时作业2 导数的计算一、选择题1.若对任意x 属于R ,f ′(x )=4x 3,f (1)=-1,则f (x )是( )A .f (x )=x 4B .f (x )=x 4-2C .f (x )=4x 3-5D .f (x )=x 4+2设f (x )=x 4+b ,∵f (1)=-1,∴b =-2,∴f (x )=x 4-2.故应选B.B2.函数y =12(e x +e -x )的导数是( ) A.12(e x -e -x ) B.12(e x +e -x ) C .e x -e -x D .e x +e -xy ′=⎣⎢⎡⎦⎥⎤12(e x +e -x )′=12(e x -e -x ). 故应选A.A3.若函数y =x 2+a 2x (a >0)的导数为0,则实数x 是( )A .aB .±aC .-aD .a 2y ′=⎝ ⎛⎭⎪⎪⎫x 2+a 2x ′=2x ·x -(x 2+a 2)x 2=x 2-a 2x 2,由x 2-a 2=0得x =±a .故应选B.B4.函数f (x )=2a 3+5a 2x 2-x 6的导数为( )A .6a 2+10ax 2-x 6B .2a 3+10a 2x -6x 5C .10a 2x -6x 5D .5a 2x -6x 5f ′(x )=(2a 3+5a 2x 2-x 6)′=10a 2x -6x 5.故应选C.C5.下列函数在x =0处没有切线的是( )A .y =3x 2+cos xB .y =x sin xC .y =1x +2xD .y =1cos x∵y ′=⎝ ⎛⎭⎪⎫1x +2x ′=⎝ ⎛⎭⎪⎫1x ′+(2x )′=-1x 2+2, ∴当x =0时,函数无定义,且y ′不存在,故该函数在x =0处没有切线.故应选C.C6.若曲线y =x n 在x =2处的导数为12,则n =( )A .1B .2C .3D .4y ′=(x n )′=n ·x n -1.由n ·2n -1=12得n =3.故应选C.C7.已知函数f (x )在x =1处的导数为3,则f (x )的解析式可能为( )A .f (x )=(x -1)3+3(x -1)B .f (x )=2(x -1)C .f (x )=2(x -1)2D .f (x )=x -1f (x )=(x -1)3+3(x -1),∵f ′(x )=3(x -1)2+3,∴f ′(1)=3.故应选A.A8.设函数y =f (x )是线性函数,已知f (0)=1,f (1)=-3,则f ′(x )=( )A .4xB .-4C .-2D .6由f (x )是线性函数,可设f (x )=ax +b (a ,b 为常数,且a ≠0),由f (0)=1,f (1)=-3,解得a =-4,b =1,∴f (x )=-4x +1,∴f ′(x )=-4.故应选B.B二、填空题9.曲线y =4x 3在点Q (16,8)处的切线的斜率是________.∵y =x 34 ,∴y ′=34x 34 -1 =34x -14 , ∴y ′| x =16=38.3810.曲线y =x 3+x +1在点(1,3)处的切线方程是________.令f (x )=x 3+x +1,由导数的几何意义知在点(1,3)处的切线斜率k =f ′(1)=3×12+1=4.所以由点斜式得切线方程为y -3=4(x -1),即4x -y -1=0.4x -y -1=1011.曲线y =x 3在点(1,1)处的切线与x 轴、直线x =2所围成的三角形的面积为________.y ′=3x 2,所以k =y ′⎪⎪x =1=3,所以切线方程为y -1=3(x -1),即y =3x -2.由⎩⎨⎧ y =3x -2x =2,解得⎩⎨⎧ x =2y =4,所以S =12×43×4=83. 83 12.曲线y =x 3在点(a ,a 3)(a ≠0)处的切线与x 轴、直线x =a 所围成的三角形的面积为16,则a =________. y ′=3x 2,所以切线方程为y -a 3=3a 2(x -a ),即y =3a 2x -2a 3.可求得切线与x 轴的交点为⎝ ⎛⎭⎪⎫23a ,0,与直线x =a 的交点为(a ,a 3),所以三角形面积为S =12×a 3×a 3=16,解得a =±1. ±1三、解答题13.已知抛物线y =ax 2+bx +c 通过点P (1,1),且在点Q (2,-1)处与直线y =x -3相切,求实数a ,b ,c 的值.∵曲线y =ax 2+bx +c 过点P (1,1),∴a +b +c =1. ① ∵y ′=2ax +b ,∴y ′|x =2=4a +b ,∴4a +b =1. ②又曲线过点Q (2,-1),∴4a +2b +c =-1. ③ 联立①②③解得a =3,b =-11,c =9.14.(1)求曲线y =2x x 2+1在点(1,1)处的切线方程; (2)运动曲线方程为S =t -1t 2+2t 2,求t =3时的速度. (1)∵y ′=2(x 2+1)-2x ·2x (x 2+1)2 =2-2x 2(x 2+1)2,y ′| x =1=2-24=0, 即曲线在点(1,1)处的切线斜率k =0,因此曲线y =2x x 2+1在(1,1)处的切线方程为y =1.(2)S ′=⎝ ⎛⎭⎪⎪⎫t -1t 2′+(2t 2)′ =t 2-2t (t -1)t 4+4t=-1t 2+2t 3+4t . S ′| t =3=-19+227+12=112627. 15.已知函数f (x )=ax 4+bx 3+cx 2+dx +e 为偶函数,它的图象过点A (0,-1),且在x =1处的切线方程为2x +y -2=0,求函数y =f (x )的表达式.∵f (x )是偶函数,f (-x )=f (x ),∴b =d =0,f (x )=ax 4+cx 2+e ,又∵图象过点A (0,-1),∴e =-1,∴f (x )=ax 4+cx 2-1,f ′(x )=4ax 3+2cx ,当x =1时,f ′(1)=4a +2c =-2, ①对于2x +y -2=0,当x =1时,y =0.∴点(1,0)在f (x )图象上,∴a +c -1=0. ②由①②解得a =-2,c =3,因此f (x )=-2x 4+3x 2-1.16.已知曲线C 1:y =x 2与C 2:y =-(x -2)2,直线l 与C 1,C 2都相切,求直线l 的方程.设l 与C 1相切于点P (x 1,x 21),与C 2相切于点Q (x 2,-(x 2-2)2).对C 1:y ′=2x ,则与C 1相切于点P 的切线方程为y -x 21=2x 1(x-x 1),即y =2x 1x -x 21. ①对C 2:y ′=-2(x -2),则与C 2相切于点Q 的切线方程为y +(x 2-2)2=-2(x 2-2)(x -x 2),即y =-2(x 2-2)x +x 22-4.② ∵两切线重合,∴⎩⎨⎧ 2x 1=-2(x 2-2)-x 21=x 22-4,解得⎩⎨⎧ x 1=0x 2=2或⎩⎨⎧ x 1=2x 2=0,∴直线方程为y =0或y =4x -4.。
高中数学(人教A版选修2-2)课时作业 2.1.1 合情推理资料
课时提升作业(十四)合情推理一、选择题(每小题3分,共18分)1.某同学在电脑上打下了一串黑白圆,如图所示,,按这种规律往下排,那么第36个圆的颜色应是( )A.白色B.黑色C.白色可能性大D.黑色可能性大【解析】选A.由题干图知,图形是三白二黑的圆周而复始相继排列,是一个周期为5的三白二黑的圆列,因为36÷5=7余1,所以第36个圆应与第1个圆颜色相同,即白色.2.已知数列{a n}满足a0=1,a n=a0+a1+a2+…+a n-1(n≥1),则当n≥1时,a n等于( )A.2nB.n(n+1)C.2n-1D.2n-1【解析】选C.a0=1,a1=a0=1,a2=a0+a1=2a1=2,a3=a0+a1+a2=2a2=4,a4=a0+a1+a2+a3=2a3=8,…,猜想n≥1时,a n=2n-1.3.给出下列三个类比结论:①类比a x·a y=a x+y,则有a x÷a y=a x-y;②类比log a(xy)=log a x+log a y,则有sin(α+β)=sinαsinβ;③类比(a+b)2=a2+2ab+b2,则有(a+b)2=a2+2a·b+b2.其中结论正确的个数是( )A.0B.1C.2D.3【解析】选C.根据指数的运算法则知a x÷a y=a x-y,故①正确;根据三角函数的运算法则知:sin(α+β)≠sinαsinβ,②不正确;根据向量的运算法则知:(a+b)2=a2+2a·b+b2,③正确.4.设n棱柱有f(n)个对角面,则(n+1)棱柱的对角面的个数f(n+1)等于( )A.f(n)+n+1B.f(n)+nC.f(n)+n-1D.f(n)+n-2【解题指南】因为过不相邻两条侧棱的截面为对角面,过每一条侧棱与它不相邻的一条侧棱都能作对角面,可作(n-3)个对角面,n条侧棱可作n(n-3)个对角面,由于这些对角面是相互之间重复计算了,所以共有n(n-3)÷2个对角面,从而得出f(n+1)与f(n)的关系.【解析】选C.因为过不相邻两条侧棱的截面为对角面,过每一条侧棱与它不相邻的一条侧棱都能作对角面,可作(n-3)个对角面,n条侧棱可作n(n-3)个对角面,由于这些对角面是相互之间重复计算了,所以共有n(n-3)÷2个对角面,所以可得f(n+1)-f(n)=(n+1)(n+1-3)÷2-n(n-3)÷2=n-1,故f(n+1)=f(n)+n-1.5.古希腊人常用小石子在沙滩上摆成各种形状来研究数.比如:他们研究过图1中的1,3,6,10,…,由于这些数能够表示成三角形,将其称为三角形数;类似地,称图2中的1,4,9,16,…,这样的数为正方形数.下列数中既是三角形数又是正方形数的是( )A.289B.1024C.1225D.1378【解析】选C.观察三角形数:1,3,6,10,…,记该数列为{a n},则a1=1,a2=a1+2,a3=a2+3,…a n=a n-1+n.所以a1+a2+…+a n=(a1+a2+…+a n-1)+(1+2+3+…+n)⇒a n=1+2+3+…+n=,观察正方形数:1,4,9,16,…,记该数列为{b n},则b n=n2.把四个选项的数字,分别代入上述两个通项公式,可知使得n都为正整数的只有1225.6.(2014·枣庄高二检测)将正奇数按如图所示的规律排列,则第21行从左向右的第5个数为( )13 5 79 11 13 15 1719 21 23 25 27 29 31…A.809B.853C.785D.893【解析】选A.前20行共有正奇数1+3+5+…+39=202=400个,则第21行从左向右的第5个数是第405个正奇数,所以这个数是2×405-1=809.二、填空题(每小题4分,共12分)7.在平面上,若两个正三角形的边长的比为1∶2,则它们的面积比为1∶4.类似地,在空间中,若两个正四面体的棱长的比为1∶2,则它们的体积比为________.【解析】==·=×=.答案:8.(2014·石家庄高二检测)设n为正整数,f(n)=1+++…+,计算得f(2)=,f(4)>2,f(8)>,f(16)>3,观察上述结果,可推测一般的结论为________. 【解析】由前四个式子可得,第n个不等式的左边应当为f(2n),右边应当为,即可得一般的结论为f(2n)≥.答案:f(2n)≥9.(2014·杭州高二检测)对于命题“如果O是线段AB上一点,则||·+||·=0”将它类比到平面的情形是:若O是△ABC内一点,有S+S△OCA·+S△OBA·=0,将它类比到空间的情形应为:若O是四面体ABCD △OBC·内一点,则有____________________________.【解析】根据类比的特点和规律,所得结论形式上一致,又线段类比平面,平面类比到空间,又线段长类比为三角形面积,再类比成四面体的体积,故可以类比为V O-BCD·+V O-ACD·+V O-ABD·+V O-ABC·=0.答案:V O-BCD·+V O-ACD·+V O-ABD·+V O-ABC·=0三、解答题(每小题10分,共20分)10.平面中的三角形和空间中的四面体有很多相类似的性质,例如在三角形中:(1)三角形两边之和大于第三边.(2)三角形的面积S=×底×高.(3)三角形的中位线平行于第三边且第于第三边的.…请类比上述性质,写出空间中四面体的相关结论.【解析】由三角形的性质,可类比得空间四面体的相关性质为:(1)四面体的任意三个面的面积之和大于第四个面的面积.(2)四面体的体积V=×底面积×高.(3)四面体的中位面平行于第四个面且面积等于第四个面的面积的.11.在平面几何中研究正三角形内任意一点与三边的关系时,我们有真命题:边长为a的正三角形内任意一点到各边的距离之和是定值a,类比上述命题,请你写出关于正四面体内任意一点与四个面的关系的一个真命题,并给出简要的证明.【解题指南】利用类比推理时,正三角形可类比成正四面体,归纳出结论再给予证明.【解析】类比所得的真命题是:棱长为a的正四面体内任意一点到四个面的距离之和是定值 a.证明:设M是正四面体P-ABC内任一点,M到面ABC,面PAB,面PAC,面PBC的距离分别为d1,d2,d3,d4.由于正四面体四个面的面积相等,故有:V P-ABC=V M-ABC+V M-PAB+V M-PAC+V M-PBC=·S△ABC·(d1+d2+d3+d4),而S△ABC=a2,V P-ABC=a3,故d1+d2+d3+d4=a(定值).【变式训练】设f(x)=,先分别求f(0)+f(1),f(-1)+f(2),f(-2)+f(3),然后归纳出一个一般结论,并给出证明.【解析】f(0)+f(1)=+=+=+=.同理f(-1)+f(2)=,f(-2)+f(3)=.由此猜想:当x1+x2=1时,f(x1)+f(x2)=.证明:设x1+x2=1,则f(x1)+f(x2)=+====.故猜想成立.一、选择题(每小题4分,共16分)1.(2014·厦门高二检测)定义A*B,B*C,C*D,D*A的运算分别对应下图中的(1),(2),(3),(4),那么下图中的(A),(B)所对应的运算结果可能是( )A.B*D,A*DB.B*D,A*CC.B*C,A*DD.C*D,A*D【解析】选B.由(1)(2)(3)(4)图得A表示|,B表示□,C表示—,D表示○,故图(A)(B)表示B*D和A*C.2.(2014·西安高二检测)已知“整数对”按如下规律排成一列:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),…,则第60个数对是( )A.(7,5)B.(5,7)C.(2,10)D.(10,1)【解析】选B.依题意,由和相同的“整数对”分为一组不难得知,第n组“整数对”的和为n+1,且有n个“整数对”.这样前n组一共有个“整数对”.注意到<60<.因此第60个“整数对”处于第11组的第5个位置,可得为(5,7).3.(2014·汕头高二检测)观察下列各式: 1=12, 2+3+4=32, 3+4+5+6+7=52, 4+5+6+7+8+9+10=72, …,可以得出的一般结论是( ) A.n+(n+1)+(n+2)+…+(3n-2)=n 2 B.n+(n+1)+(n+2)+…+(3n-2)=(2n-1)2 C.n+(n+1)+(n+2)+…+(3n-1)=n 2 D.n+(n+1)+(n+2)+…+(3n-1)=(2n-1)2【解析】选B.可以发现:第一个式子的第一个数是1,第二个式子的第一个数是2,…故第n 个式子的第一个数是n ;第一个式子中有1个数相加,第二个式子中有3个数相加,…故第n 个式子中有2n-1个数相加;第一个式子的结果是1的平方,第二个式子的结果是3的平方,…故第n 个式子应该是2n-1的平方,故可以得到n+(n+1)+(n+2)+…+(3n-2)=(2n-1)2.4.(2014·临沂高二检测)已知x>0,由不等式x+≥2=2,x+=++≥3=3,…我们可以得出推广结论:x+≥n+1(n ∈N *),则a=( )A.2nB.n 2C.3nD.n n【解析】选D.再续写一个不等式:x+=+++≥4=4,由此可得a=n n.二、填空题(每小题5分,共10分)5.已知经过计算和验证有下列正确的不等式:+<2,+<2,+<2,根据以上不等式的规律,请写出一个对正实数m,n 都成立的条件不等式_____________________.【解析】观察所给不等式可以发现:不等式左边两个根式的被开方数的和等于20,不等式的右边都是2,因此对正实数m,n都成立的条件不等式是:若m>0,n>0,则当m+n=20时,有+<2.答案:若m>0,n>0,则当m+n=20时,有+<26.在Rt△ABC中,若∠C=90°,AC=b,BC=a,则△ABC外接圆半径r=.运用类比方法,若三棱锥的三条侧棱两两互相垂直且长度分别为a,b,c,则其外接球的半径R=________.【解题指南】解题时题设条件若是三条线两两互相垂直,就要考虑到构造正方体或长方体.【解析】(构造法)通过类比可得R=.证明:作一个在同一个顶点处棱长分别为a,b,c的长方体,则这个长方体的体对角线的长度是,故这个长方体的外接球的半径是,这也是所求的三棱锥的外接球的半径.答案:【变式训练】在平面几何里,有“若△ABC的三边长分别为a,b,c,内切圆半径为r,则三角形面积为S△ABC=(a+b+c)r”,拓展到空间,类比上述结论,“若四面体ABCD的四个面的面积分别为S1,S2,S3,S4,内切球的半径为R,则四面体的体积为________”.【解题指南】注意发现其中的规律总结出共性加以推广,或将结论类比到其他方面,得出结论.【解析】三角形的面积类比为四面体的体积,三角形的边长类比为四面体四个面的面积,内切圆半径类比为内切球的半径.二维图形中类比为三维图形中的,得V四面体ABCD=(S1+S2+S3+S4)R.答案:V四面体ABCD=(S1+S2+S3+S4)R三、解答题(每小题12分,共24分)7.观察下列等式:①sin210°+cos240°+sin10°cos40°=;②sin26°+cos236°+sin6°cos36°=.由上面两题的结构规律,你能否提出一个猜想?并证明你的猜想.【解析】由①②可看出,两角差为30°,则它们的相关形式的函数运算式的值均为.猜想:若β-α=30°,则β=30°+α,sin2α+cos2β+sinαcosβ=,也可直接写成sin2α+cos2(α+30°)+sinαcos(α+30°)=.下面进行证明:左边=++sinαcos(α+30°)=++sinα·(cosα·cos30°-sinαsin30°)=-cos2α++cos2α-sin2α+sin2α-==右边.故sin2α+cos2(α+30°)+sinαcos(α+30°)=.8.某少数民族的刺绣有着悠久的历史,如图(1),(2),(3),(4)为最简单的四个图案,这些图案都是由小正方形构成,小正方形数越多刺绣越漂亮.现按同样的规律刺绣(小正方形的摆放规律相同),设第n个图形包含f(n)个小正方形.(1)求出f(5)的值.(2)利用合情推理的“归纳推理思想”,归纳出f(n+1)与f(n)之间的关系式,并根据你得到的关系式求出f(n)的表达式. (3)求+++…+的值. 【解析】(1)f(5)=41.(2)因为f(2)-f(1)=4=4×1,f(3)-f(2)=8=4×2,f(4)-f(3)=12=4×3,f(5)-f(4)=16=4×4,…由上式规律,所以得出f(n+1)-f(n)=4n.因为f(n+1)-f(n)=4n⇒f(n+1)=f(n)+4n⇒f(n)=f(n-1)+4(n-1)=f(n-2)+4(n-1)+4(n-2)=f(n-3)+4(n-1)+4(n-2)+4(n-3)=…=f(1)+4(n-1)+4(n-2)+4(n-3)+…+4=2n2-2n+1.(3)当n≥2时,==.所以+++…+=1+×=1+=-.关闭Word文档返回原板块。
高中数学人教A版选修2-2同步课时作业:2.1.2 Word版含解析
第二章 2.1 2.1.2一、选择题(每小题5分,共20分)1.下面说法:①演绎推理是由一般到特殊的推理;②演绎推理得到的结论一定是正确的;③演绎推理的一般模式是“三段论”的形式;④演绎推理得到结论的正确与否与大前提、小前提和推理形式有关;⑤运用三段论推理时,大前提和小前提都不可以省略.其中正确的有()A.1个B.2个C.3个D.4个解析:①③④都正确.答案: C2.下列推理过程属于演绎推理的有()①数列{a n}为等比数列,所以数列{a n}的各项不为0;②由1=12,1+3=22,1+3+5=32,…,得出1+3+5+…+(2n-1)=n2;③由三角形的三条中线交于一点联想到四面体四条中线(四面体每一个顶点与对面重心的连线)交于一点;④通项公式形如a n=cq n(cq≠0)的数列{a n}为等比数列,则数列{-2n}为等比数列.A.0个B.1个C.2个D.3个解析:由演绎推理的定义知①、④两个推理为演绎推理,②为归纳推理,③为类比推理.故选C.答案: C3.推理过程“大前提:________,小前提:四边形ABCD是矩形.结论:四边形ABCD的对角线相等.”应补充的大前提是()A.正方形的对角线相等B.矩形的对角线相等C.等腰梯形的对角线相等D.矩形的对边平行且相等解析:由三段论的一般模式知应选B.答案: B4.命题“有理数是无限循环小数,整数是有理数,所以整数是无限循环小数”是假命题,推理错误的原因是()A.使用了归纳推理B.使用了类比推理C.使用了“三段论”,但大前提错误D .使用了“三段论”,但小前提错误解析: 使用了“三段论”,大前提“有理数是无限循环小数”是错误的. 答案: C二、填空题(每小题5分,共10分)5.给出下列推理过程:因为2和3都是无理数,而无理数与无理数的和是无理数,所以2+3也是无理数,这个推理过程________(填“正确”或“不正确”).解析: 结论虽然正确,但证明是错误的,这里使用的论据(即大前提)“无理数与无理数的和是无理数”是假命题.答案: 不正确6.函数y =2x +5的图象是一条直线,用三段论表示为:大前提:_______________________________________________________. 小前提:___________________________________________________. 结论:____________________________________________________.解析: 本题忽略了大前提和小前提.大前提为:一次函数的图象是一条直线.小前提为:函数y =2x +5为一次函数.结论为:函数y =2x +5的图象是一条直线.答案: ①一次函数的图象是一条直线 ②y =2x +5是一次函数 ③函数y =2x +5的图象是一条直线 三、解答题(每小题10分,共20分) 7.把下列演绎推理写成三段论的形式.(1)循环小数是有理数,0.332·是循环小数,所以0.332·是有理数; (2)矩形的对角线相等,正方形是矩形,所以正方形的对角线相等; (3)通项公式a n =2n +3表示的数列{a n }为等差数列. 解析: (1)所有的循环小数是有理数,(大前提) 0.332·是循环小数,(小前提) 所以,0.332·是有理数.(结论) (2)因为每一个矩形的对角线相等, (大前提) 而正方形是矩形,(小前提)所以正方形的对角线相等.(结论)(3)数列{a n }中,如果当n ≥2时,a n -a n -1为常数,则{a n }为等差数列, (大前提) 通项公式a n =2n +3时,若n ≥2,则a n -a n -1=2n +3-[2(n -1)+3]=2(常数), (小前提) 所以,通项公式a n =2n +3表示的数列为等差数列. (结论)8.已知在梯形ABCD 中,如图,AB =CD =AD ,AC 和BD 是梯形的对角线,求证:AC 平分∠BCD ,DB 平分∠CBA .证明: ∵等腰三角形的两底角相等,(大前提) △DAC 是等腰三角形,∠1和∠2是两个底角, (小前提) ∴∠1=∠2.(结论) ∵两条平行线被第三条直线截得的内错角相等,(大前提)∠1和∠3是平行线AD ,BC 被AC 截得的内错角, (小前提) ∴∠1=∠3. (结论) ∵等于同一个角的两个角相等, (大前提) ∠2=∠1,∠3=∠1, (小前提) ∴∠2=∠3,即AC 平分∠BCD . (结论) 同理可证DB 平分∠CBA . 尖子生题库☆☆☆(10分)已知a ,b ,m 均为正实数,b <a ,用三段论形式证明b a <b +ma +m.证明: 因为不等式(两边)同乘以一个正数,不等号不改变方向, (大前提) b <a ,m >0, (小前提) 所以,mb <ma . (结论) 因为不等式两边同加上一个数,不等号不改变方向, (大前提) mb <ma , (小前提) 所以,mb +ab <ma +ab ,即b (a +m )<a (b +m ). (结论) 因为不等式两边同除以一个正数,不等号不改变方向, (大前提) b (a +m )<a (b +m ),a (a +m )>0, (小前提) 所以,b (a +m )a (a +m )<a (b +m )a (a +m ),即b a <b +m a +m . (结论)。
最新人教版高中数学选修2-2课时同步作业(全册 共21课时 共87页)
最新人教版高中数学选修2-2课时同步作业
(全册共21课时共87页)
目录
课时作业1变化率问题导数的概念
课时作业2导数的几何意义
课时作业3几个常用函数的导数
课时作业4基本初等函数的导数公式及导数的运算法则(二)
课时作业5函数的单调性与导数
课时作业6函数的极值与导数
课时作业7函数的最大(小)值与导数
课时作业8生活中的优化问题举例
课时作业9曲边梯形的面积汽车行驶的路程
课时作业10定积分的概念
课时作业11微积分基本定理
课时作业12定积分在几何中的应用
课时作业13合情推理
课时作业14演绎推理
课时作业15综合法和分析法
课时作业16反证法
课时作业17数学归纳法
课时作业18数系的扩充和复数的概念
课时作业19复数的几何意义
课时作业20复数代数形式的加、减运算及其几何意义
课时作业21复数代数形式的乘除运算。
高中数学新人教版选修2-2课时作业:第二章推理与证明章末检测卷Word版含解析
由于 a,b, c 为一个三角形的三条边,所以上式成立.于是原命题成立.
1
n n+ 1
21. (12 分 ) 数列 { an} 满足 a1 =6,前 n 项和 Sn= 2 an .
(1) 写出 a2, a3, a4;
(2) 猜出 an 的表达式,并用数学归纳法证明.
2f 2 2 2
当
x= 2 时, f (3)
=f
2
== ; + 2 4 3+ 1
2f 3 2 2 当 x= 3 时, f (4) = f 3 + 2= 5= 4+ 1,
2 故可猜想 f ( x) =x+ 1,故选 B.
7.已知 f ( x+ y) = f ( x) +f ( y) 且 f (1) = 2,则 f (1) + f (2) +…+ f ( n) 不能等于 ( ) A. f (1) + 2f (1) +…+ nf (1)
故第 n 个图案中有白色地面砖的块数是 4n+ 2.
方法二 ( 特殊值代入排除法 )
或由图可知,当 n= 1 时, a1= 6,可排除 B 答案
当 n= 2 时, a2= 10,可排除 C、 D 答案.
二、填空题 ( 本大题共 4 小题,每小题 5 分,共 20 分)
13.从 1= 12,2+ 3+ 4= 32, 3+ 4+ 5+ 6+ 7=52 中,可得到一般规律为 ____________ .
) EF 为
2.由 1= 12, 1+ 3= 22, 1+3+ 5= 32, 1+3+ 5+ 7= 42,…,得到 1+ 3+…+ (2 n- 1) = n2 用的是
()
A.归纳推理
B.演绎推理
C.类比推理
D.特殊推理
答案 A
3.对大于或等于 2 的自然数的正整数幂运算有如下分解方式:
高中数学人教A版选修2-2同步课时作业:2.2.1 Word版含解析
第二章 2.2 2.2.1一、选择题(每小题5分,共20分)1.欲证不等式3-5<6-8成立,只需证( )A .(3-5)2<(6-8)2B .(3-6)2<(5-8)2C .(3+8)2<(6+5)2D .(3-5-6)2<(-8)2解析: 要证3-5<6-8成立,只需证3+8<6+5成立,只需证(3+8)2<(6+5)2成立. 答案: C2.使不等式1a <1b成立的条件是( ) A .a >bB .a <bC .a >b 且ab <0D .a >b 且ab >0解析: 要使1a <1b ,须使1a -1b <0,即b -a ab<0. 若a >b ,则b -a <0,ab >0.若a <b ,则b -a >0,ab <0.答案: D3.已知a ≥0,b ≥0,且a +b =2,则( )A .a ≤12B .ab ≥12C .a 2+b 2≥2D .a 2+b 2≤3 解析: ∵a +b =2≥2ab ,∴ab ≤1.∵a 2+b 2=4-2ab ,∴a 2+b 2≥2.答案: C4.已知p =a +1a -2(a >2),q =2-x 2+4x -2(x >0),则( ) A .p >qB .p <qC .p ≥qD .p ≤q 解析: p =a +1a -2=(a -2)+1a -2+2≥2(a -2)·⎝⎛⎭⎫1a -2+2=4.q =2-x 2+4x -2=2-(x -2)2+2≤4.答案: C二、填空题(每小题5分,共10分)5.命题“函数f (x )=x -x ln x 在区间(0,1)上是增函数”的证明过程“对函数f (x )=x -x ln x 取导得f ′(x )=-ln x ,当x ∈(0,1)时,f ′(x )=-ln x >0,故函数f (x )在区间(0,1)上是增函数”应用了________的证明方法.解析: 该证明过程符合综合法的特点.答案: 综合法6.如果a a +b b >a b +b a ,则实数a ,b 应满足的条件是__________ .解析: a a +b b >a b +b a ⇔a a -a b >b a -b b⇔a (a -b )>b (a -b )⇔(a -b )(a -b )>0⇔(a +b )(a -b )2>0,故只需a ≠b 且a ,b 都不小于零即可.答案: a ≥0,b ≥0且a ≠b三、解答题(每小题10分,共20分)7.在△ABC 中,AC AB =cos B cos C,证明:B =C . 证明: 在△ABC 中,由正弦定理及已知得sin B sin C =cos B cos C. 于是sin B cos C -cos B sin C =0,因sin(B -C )=0,因为-π<B -C <π,从而B -C =0,所以B =C .8.已知a >0,b >0,求证:a b +b a ≥a +b . 证明: 方法一:(综合法)因为a >0,b >0,所以a b +b a -a -b =⎝⎛⎭⎫a b -b +⎝⎛⎭⎫b a -a =a -b b +b -a a =(a -b )⎝⎛⎭⎫1b -1a =(a -b )2(a +b )ab ≥0,所以a b +b a ≥a +b . 方法二:(分析法)要证a b +b a≥a +b ,只需证a a +b b ≥a b +b a ,即证(a -b )(a -b )≥0,因为a >0,b >0,所以a -b 与a -b 符合相同,不等式(a -b )(a -b )≥0成立,所以原不等式成立.尖子生题库 ☆☆☆(10分)已知a ,b ,c 是全不相等的正实数,求证:b +c -a a +a +c -b b +a +b -c c>3. 证明: 证法一:(分析法) 要证b +c -a a +a +c -b b +a +b -c c>3. 只需证明b a +c a -1+c b +a b -1+a c +b c -1>3, 即证b a +c a +c b +a b +a c +b c>6, 而事实上,由a ,b ,c 是全不相等的正实数,∴b a +a b >2,c a +a c >2,c b +b c>2. ∴b a +c a +c b +a b +a c +b c>6. ∴b +c -a a +a +c -b b +a +b -c c>3得证. 证法二:(综合法)∵a ,b ,c 全不相等∴b a 与a b ,c a 与a c ,c b 与b c全不相等. ∴b a +a b >2,c a +a c >2,c b +b c>2, 三式相加得b a +c a +c b +a b +a c +b c>6, ∴⎝⎛⎭⎫b a +c a -1+⎝⎛⎭⎫c b +a b -1+⎝⎛⎭⎫a c +b c -1>3. 即b +c -a a +a +c -b b +a +b -c c>3.。
人教版数学高二选修2-2课时作业2.2直接证明与间接证明(2)
(限时:10分钟)1.欲证2-3<6-7,只需证明( )A.(2-3)2<(6-7)2B.(2-6)2<(3-7)2C.(2+7)2<(6+3)2D.(2-3-6)2<(-7)2解析:由分析法知欲证2-3<6-7,只需证2+7<3+6,即证(2+7)2<(3+6)2.答案:C2.要证明a+a+7<a+3+a+4(a≥0)可选择的方法有多种,其中最合理的是( )A.综合法B.类比法C.分析法 D.归纳法解析:直接证明很难入手,由分析法的特点知用分析法最合理.答案:C3.函数f(x)=ax+b在(-∞,+∞)上是减函数,则a的取值范围是__________.解析:要使f(x)=ax+b在R上是减函数,只需f′(x)≤0在R上恒成立.因为f′(x)=a,所以a≤0.又因为a=0时f(x)=b为常函数,故a<0.答案:(-∞,0)4.若x∈[1,2],x2+a≥0恒成立,则a的取值范围是__________.解析:要使x2+a≥0在x∈[1,2]上恒成立,只需a≥-x2在[1,2]上恒成立.令f(x)=-x2,x∈[1,2],所以-4≤f(x)≤-1,故a≥-1.答案:[-1,+∞)5.当a≥2时,求证a+1-a<a-1-a-2.证明:要证a+1-a<a-1-a-2,只需证a+1+a-2<a+a-1,只需证(a+1+a-2)2<(a+a-1)2,只需证a+1a-2<a a-1,只需证(a+1)(a-2)<a(a-1),只需证-2<0,而-2<0显然成立,所以a+1-a<a-1-a-2成立.(限时:30分钟)1.命题“对于任意角θ,cos4θ-sin4θ=cos2θ”的证明:“cos4θ-sin4θ=(cos2θ-sin2θ)(cos2θ+sin2θ)=cos2θ-sin2θ=cos2θ”,其过程应用了( ) A.分析法 B.综合法C.综合法、分析法综合使用 D.间接证法解析:从证明过程来看,是从已知条件入手,经过推导得出结论,符合综合法的证明思路.答案:B2.设P=2,Q=7-3,R=6-2,那么P,Q,R的大小关系是( )A.P>Q>R B.P>R>QC.Q>P>R D.Q>R>P解析:先比较R,Q的大小,可对R,Q作差,即Q-R=7-3-(6-2)=(7+2)-(3+6).又(7+2)2-(3+6)2=214-218<0,∴Q<R,由排除法可知,选B.答案:B3.要证3a-3b<3a-b成立,a,b应满足的条件是( )A.ab<0且a>bB.ab>0且a>bC.ab<0有a<bD.ab>0且a>b或ab<0且a<b解析:要证3a-3b<3a-b,只需证(3a-3b)3<(3a-b)3,即证a-b-33a2b+33ab2<a-b,即证3ab2<3a2b,只需证ab2<a2b,即证ab(b-a)<0.只需ab>0且b-a<0或ab<0,且b-a>0.故选D.答案:D4.已知a,b,c为不全相等的实数,P=a2+b2+c2+3,Q=2(a+b+c),则P与Q的大小关系是( )A.P>Q B.P≥QC.P<Q D.P≤Q解析:要比较P,Q的大小,只需比较P-Q与0的关系.因为P-Q=a2+b2+c2+3-2(a +b+c)=a2-2a+1+b2-2b+1+c2-2c+1=(a-1)2+(b-1)2+(c-1)2,又a,b,c不全相等,所以P-Q>0,即P>Q.答案:A5.下列不等式不成立的是( )A.a2+b2+c2≥ab+bc+caB.a+b>a+b(a>0,b>0)C.a-a-1<a-2-a-3(a≥3)D.2+10>2 6解析:对A,因为a2+b2≥2ab,b2+c2≥2bc,a2+c2≥2ac,所以a2+b2+c2≥ab+bc+ca;对B,因为(a+b)2=a+b+2ab,(a+b)2=a+b,所以a+b>a+b;对C,要证a-a-1<a-2-a-3(a≥3)成立,只需证明a+a-3<a-2+a-1,两边平方得2a-3+2a a-3<2a-3+2a-2a-1,即证a a-3<a-2a-1,两边平方得a2-3a<a2-3a+2,即0<2.因为0<2显然成立,所以原不等式成立;对于D,(2+10)2-(26)2=12+45-24=4(5-3)<0,所以2+10<26,故D错误.答案:D6.如果a a+b b>a b+b a,则实数a,b应满足的条件是__________.解析:a a+b b>a b+b a⇔a a-a b>b a-b b⇔a(a-b)>b(a-b)⇔(a -b)(a-b)>0⇔(a+b)(a-b)2>0,只需a≠b且a,b都不小于零即可.答案:a≠b且a≥0,b≥07.设a >0,b >0,c >0,若a +b +c =1,则1a +1b +1c的最小值为__________.解析:根据条件可知,欲求1a +1b +1c的最小值.只需求(a +b +c )⎝ ⎛⎭⎪⎫1a +1b +1c 的最小值,因为(a +b +c )⎝ ⎛⎭⎪⎫1a +1b +1c =3+⎝ ⎛⎭⎪⎫b a +a b +⎝ ⎛⎭⎪⎫c a +a c +⎝ ⎛⎭⎪⎫c b +b c ≥3+2+2+2=9(当且仅当a =b=c 时取“=”).答案:98.如图所示,四棱柱ABCD -A 1B 1C 1D 1的侧棱垂直于底面,满足__________时,BD ⊥A 1C (写上一个条件即可).解析:要证BD ⊥A 1C ,只需证BD ⊥平面AA 1C . 因为AA 1⊥BD ,只要再添加条件AC ⊥BD , 即可证明BD ⊥平面AA 1C ,从而有BD ⊥A 1C . 答案:AC ⊥BD (答案不唯一)9.若a ,b ,c 为不全相等的正数,求证:lg a +b2+lgb +c2+lgc +a2>lg a +lg b +lg c .证明:要证lg a +b2+lgb +c2+lgc +a2>lg a +lg b +lg c ,只需证lg ⎝⎛⎭⎪⎫a +b 2·b +c 2·c +a 2>lg(a ·b ·c ),即证a +b 2·b +c 2·c +a2>abc .因为a ,b ,c 为不全相等的正数, 所以a +b2≥ab >0,b +c2≥bc >0,c +a2≥ac >0,且上述三式中等号不能同时成立, 所以a +b 2·b +c 2·c +a2>abc 成立,所以lga +b2+lgb +c2+lgc +a2>lg a +lg b +lg c 成立.10.求证:2cos(α-β)-sin2α-βsin α=sin βsin α.证明:要证原等式,只需证:2cos(α-β)sin α-sin(2α-β)=sin β,① 因为①左边=2cos(α-β)sin α-sin[(α-β)+α] =2cos(α-β)sin α-sin(α-β)cos α-cos(α-β)sin α =cos(α-β)sin α-sin(α-β)cos α =sin β.所以①成立,所以原等式成立.11.已知函数f (x )=tan x ,x ∈⎝ ⎛⎭⎪⎫0,π2,若x 1,x 2∈⎝ ⎛⎭⎪⎫0,π2,且x 1≠x 2,求证:12[f (x 1)+f (x 2)]>f ⎝⎛⎭⎪⎫x 1+x 22.证明:要证12[f (x 1)+f (x 2)]>f ⎝ ⎛⎭⎪⎫x 1+x 22,只需证12(tan x 1+tan x 2)>tan x 1+x 22,只需证12⎝ ⎛⎭⎪⎫sin x 1cos x 1+sin x 2cos x 2>sin x 1+x 21+cos x 1+x 2(“化切为弦”), 只需证sin x 1+x 22cos x 1cos x 2>sin x 1+x 21+cos x 1+x 2,只需证sin x 1+x 2cosx 1+x 2+cos x 1-x 2>sin x 1+x 21+cos x 1+x 2,只需证明0<cos(x 1-x 2)<1.由x 1,x 2∈⎝⎛⎭⎪⎫0,π2,且x 1≠x 2可知0<cos(x 1-x 2)<1成立. 所以12[f (x 1)+f (x 2)]>f ⎝ ⎛⎭⎪⎫x 1+x 22.。
人教版高中数学高二选修2-2课时作业2-2直接证明与间接证明
课时作业8 直接证明与间接证明一、选择题1.分析法是从要证明的结论出发,逐步寻求使结论成立的( ) A .充分条件 B .必要条件 C .充要条件 D .等价条件由分析法定义知选A . 故应选A. A2.若f (n )=n 2+1-n ,g (n )=n -n 2-1,φ(n )=12n,n ∈N *,则f (n ),g (n ),φ(n )的大小关系为( )A .f (n )<g (n )<φ(n )B .f (n )<φ(n )<g (n )C .g (n )<φ(n )<f (n )D .g (n )<f (n )<φ(n )方法一:f (n ),g (n )可用分子有理化进行变形,然后与φ(n )进行比较.f (n )=1n 2+1+n <12n ,g (n )=1n +n 2-1>12n,∴f (n )<φ(n )<g (n ).方法二:特殊值法.取n =1,则f (1)=2-1,g (1)=1, φ(1)=12.故应选B. B3.已知|x |<1,|y |<1,下列各式成立的是( )A .|x +y |+|x -y |≥2B .x =yC .xy +1>x +yD .|x |=|y |令x =y =12知A 错,令x =12,y =13知B 错,D 错.对C :xy+1-x -y =x (y -1)+(1-y )=(x -1)(y -1),∵|x |<1,|y |<1,∴x <1,y <1,∴x -1<0,y -1<0,∴(x -1)(y -1)>0, ∴xy +1>x +y . 故应选C. C4.已知f (x )=3x 2-x +1,g (x )=2x 2+x -1,则有( ) A .f (x )>g (x ) B .f (x )=g (x ) C .f (x )<g (x )D .f (x ),g (x )的大小关系不确定f (x )-g (x )=x 2-2x +2=(x -1)2+1>0, ∴f (x )>g (x ). 故应选A. A5.用反证法证明命题“三角形的内角中至少有一个不大于60°”时,反设正确的是( )A .假设三内角都不大于60°B .假设三内角都大于60°C.假设三内角至多有一个大于60°D.假设三内角至多有两个大于60°“至少有一个不”的否定是“都”.故应选B.B6.有甲、乙、丙、丁四位歌手参加比赛,其中一位获奖,有人走访了四位歌手,甲说:“是乙或丙获奖.”乙说:“甲、丙都未获奖.”丙说:“我获奖了.”丁说:“是乙获奖.”四位歌手的话只有两句是对的,则获奖的歌手是()A.甲B.乙C.丙D.丁若甲获奖,则甲、乙、丙、丁说的话都是假的,同理可推出乙、丙、丁获奖的情况,最后可知获奖的歌手是丙.故应选C.C7.已知α∩β=l,a⊆α,b⊆β,若a,b为异面直线,则() A.a,b都与l相交B.a,b中至少有一条与l相交C.a,b中至多有一条与l相交D.a,b都不与l相交逐一从假设选择项成立入手分析,易得B是正确选项.故应选B.B8.若函数f(x)为奇函数,且在(0,+∞)内是增函数,又f(-3)=0,则不等式x·f(x)<0的解集是()A.{x|-3<x<0或x>3}B.{x|x<-3或0<x<3}C.{x|x<-3或x>3}D.{x|-3<x<0或0<x<3}画一个符合题意的函数的草图,如图,知选D.故应选D.D二、填空题9.命题“三角形中最多只有一个内角是直角”的结论的否定是________.“至多一个”的否定是“至少两个”,∴否定为:三角形中至少有两个内角是直角.三角形中至少有两个内角是直角10.设a=2,b=7-3,c=6- 2.则a,b,c的大小关系是________.若比较b与c的大小,只需比较7+2与3+6的大小,只需比较(7+2)2与(3+6)2的大小,即比较14与18的大小,显然14<18,从而7-3<6-2,即b <c ,类似可得a >c ,∴a >c >b . a >b >c11.如图所示,在直四棱柱A 1B 1C 1D 1-ABCD 中,当底面四边形ABCD 满足条件________时,有A 1C ⊥B 1D 1(注:填上你认为正确的一种条件即可,不必考虑所有可能的情形).由空间中的垂直关系知:对角线互相垂直. BD ⊥AC12.对于函数f (x )定义域中任意的x 1,x 2(x 1≠x 2),有如下结论: ①f (x 1+x 2)=f (x 1)·f (x 2); ②f (x 1·x 2)=f (x 1)+f (x 2); ③f (x 1)-f (x 2)x 1-x 2>0;④f ⎝ ⎛⎭⎪⎫x 1+x 22<f (x 1)+f (x 2)2.当f (x )=lg x 时,上述结论中正确的序号是________. 当x 1=1,x 2=10时,f (x 1+x 2)=lg(x 1+x 2)=lg11>1.f (x 1)·f (x 2)=lg x 1·lg x 2=lg1·lg10=0.所以f (x 1+x 2)≠f (x 1)·f (x 2),故①错误;根据对数运算法则,lg(x 1·x 2)=lg x 1+lg x 2,即f (x 1·x 2)=f (x 1)+f (x 2),故②正确;因为f (x )=lg x 在(0,+∞)上单调递增,所以x 1<x 2时,f (x 1)<f (x 2);x 1>x 2时,f (x 1)>f (x 2).所以f (x 1)-f (x 2)与x 1-x 2同正负,即f (x 1)-f (x 2)x 1-x 2>0,故③正确;令x 1=1,x 2=10,f ⎝ ⎛⎭⎪⎪⎫x 1+x 22=lg x 1+x 22=lg 112,而f (x 1)+f (x 2)2=lg x 1+lg x 22=12, 又因为lg 112>lg 10=12,所以f ⎝ ⎛⎭⎪⎪⎫x 1+x 22>f (x 1)+f (x 2)2,故④错误. ②③ 三、解答题13.如果3sin β=sin(2α+β),求证:tan(α+β)=2tan α. ∵3sin β=sin(2α+β),∴3sin[(α+β)-α]=sin[(α+β)+α],∴3[sin(α+β)cos α-cos(α+β)sin α]=sin(α+β)cos α+cos(α+β)sin α,∴sin(α+β)cos α=2cos(α+β)sin α,两边同除以cos(α+β)cos α,得tan(α+β)=2tan α. 14.已知a ,b ,c ∈R *,且a +b +c =1,求证:⎝ ⎛⎭⎪⎫1a -1⎝ ⎛⎭⎪⎫1b -1⎝ ⎛⎭⎪⎫1c -1≥8. ⎝ ⎛⎭⎪⎫1a -1⎝ ⎛⎭⎪⎫1b -1⎝ ⎛⎭⎪⎫1c -1 =⎝ ⎛⎭⎪⎪⎫a +b +c a -1⎝ ⎛⎭⎪⎪⎫a +b +c b -1⎝ ⎛⎭⎪⎪⎫a +b +c c -1 =b +c a · a +c b · a +b c =(b +c )(a +c )(a +b )abc ≥2bc ·2ac ·2ab abc =8, 当且仅当a =b =c 时取等号.15.已知函数f (x )=a x+x -2x +1(a >1).用反证法证明方程f (x )=0没有负数根.证法一:假设存在x 0<0(x 0≠-1), 满足f (x 0)=0,则ax 0=-x 0-2x 0+1,且0<ax 0<1,∴0<-x 0-2x 0+1<1,即12<x 0<2.与假设x 0<0矛盾,故方程f (x )=0没有负数根.证法二:假设存在x 0<0(x 0≠-1),满足f (x 0)=0, (1)若-1<x 0<0,则x 0-2x 0+1<-2,ax 0<1.∴f (x 0)<-1,与f (x 0)=0矛盾; (2)若x 0<-1,则x 0-2x 0+1>0,ax 0>0,∴f (x 0)>0,与f (x 0)=0矛盾. 故方程f (x )=0没有负数根.16.如图,已知P 是△ABC 所在平面外一点,PA ,PB ,PC 两两垂直,PH ⊥平面ABC 于H .求证:1PA 2+1PB 2+1PC 2=1PH2.连结CH 并延长交AB 于D ,连结PD .∵PC⊥PA,PC⊥PB,PA∩PB=P,根据直线和平面垂直的判定定理有PC⊥平面PAB. 又∵AB⊂平面PAB,∴PC⊥AB.又PH⊥平面ABC,∴PH⊥AB.∴AB⊥平面PCH,∴PD⊥AB.又∵PA⊥PB,根据三角形面积公式有PA·PB=PD·AB.∴1 PD =AB PA·PB,∴1 PD2=AB2 PA2·PB2.又∵AB2=PA2+PB2,∴1 PD2=1PA2+1PB2.同理1PH2=1PC2+1PD2.∴1 PA2+1PB2+1PC2=1PH2.。
高中数学新人教版选修2-2课时作业:第二章 推理与证明章末复习课 Word版含解析
【创新设计】2016-2017学年高中数学第二章推理与证明章末复习课新人教版选修2-2题型一合情推理与演绎推理1.归纳和类比都是合情推理,前者是由特殊到一般,部分到整体的推理,后者是由特殊到特殊的推理,但二者都能由已知推测未知,都能用于猜想,推理的结论不一定为真,有待进一步证明.2.演绎推理与合情推理不同,它是由一般到特殊的推理,是数学中证明的基本推理形式,也是公理化体系所采用的推理形式.另一方面,合情推理与演绎推理又是相辅相成的,前者是后者的前提,后者论证前者的可靠性.例1 (1)有一个奇数列1,3,5,7,9,…,现在进行如下分组:第一组含一个数{1};第二组含两个数{3,5};第三组含三个数{7,9,11};第四组含四个数{13,15,17,19};…试观察每组内各数之和f(n)(n∈N*)与组的编号数n的关系式为________.(2)在平面几何中,对于Rt△ABC,AC⊥BC,设AB=c,AC=b,BC=a,则①a2+b2=c2;②cos2A+cos2B=1;③Rt△ABC的外接圆半径为r=a2+b2 2.把上面的结论类比到空间写出相类似的结论;如果你能证明,写出证明过程;如果在直角三角形中你还发现了异于上面的结论,试试看能否类比到空间?(1)答案f(n)=n3解析 由于1=13,3+5=8=23,7+9+11=27=33,13+15+17+19=64=43,…,猜想第n 组内各数之和f (n )与组的编号数n 的关系式为f (n )=n 3.(2)解 选取3个侧面两两垂直的四面体作为直角三角形的类比对象.①设3个两两垂直的侧面的面积分别为S 1,S 2,S 3,底面面积为S ,则S 21+S 22+S 23=S 2. ②设3个两两垂直的侧面与底面所成的角分别为α,β,γ,则cos 2α+cos 2β+cos 2γ=1. ③设3个两两垂直的侧面形成的侧棱长分别为a ,b ,c ,则这个四面体的外接球的半径为R =a 2+b 2+c 22.反思与感悟 (1)归纳推理中有很大一部分题目是数列内容,通过观察给定的规律,得到一些简单数列的通项公式是数列中的常见方法.(2)类比推理重在考查观察和比较的能力,题目一般情况下较为新颖,也有一定的探索性. 跟踪训练1 (1)下列推理是归纳推理的是________,是类比推理的是________. ①A 、B 为定点,若动点P 满足|PA |+|PB |=2a >|AB |,则点P 的轨迹是椭圆; ②由a 1=1,a n +1=3a n -1,求出S 1,S 2,S 3,猜想出数列的通项a n 和S n 的表达式; ③由圆x 2+y 2=1的面积S =πr 2,猜想出椭圆的面积S =πab ; ④科学家利用鱼的沉浮原理制造潜艇. 答案 ② ③④(2)设等差数列{a n }的前n 项和为S n ,则S 4,S 8-S 4,S 12-S 8,S 16-S 12成等差数列.类比以上结论有:设等比数列{b n }的前n 项积为T n, 则T 4,______,______,T 16T 12成等比数列. 答案T 8T 4 T 12T 8解析 等差数列类比于等比数列时,和类比于积,减法类比于除法,可得类比结论为:设等比数列{b n }的前n 项积为T n ,则T 4,T 8T 4,T 12T 8,T 16T 12成等比数列. 题型二 综合法与分析法综合法和分析法是直接证明中的两种最基本的证明方法,但两种证明方法思路截然相反,分析法既可用于寻找解题思路,也可以是完整的证明过程,分析法与综合法可相互转换,相互渗透,要充分利用这一辩证关系,在解题中综合法和分析法联合运用,转换解题思路,增加解题途径.一般以分析法为主寻求解题思路,再用综合法有条理地表示证明过程. 例2 用综合法和分析法证明. 已知α∈(0,π),求证:2sin 2α≤sin α1-cos α.证明 (分析法)要证明2sin 2α≤sin α1-cos α成立.只要证明4sin αcos α≤sin α1-cos α.∵α∈(0,π),∴sin α>0. 只要证明4cos α≤11-cos α.上式可变形为4≤11-cos α+4(1-cos α). ∵1-cos α>0, ∴11-cos α+4(1-cos α)≥211-cos α·4(1-cos α)=4,当且仅当cos α=12,即α=π3时取等号.∴4≤11-cos α+4(1-cos α)成立.∴不等式2sin 2α≤sin α1-cos α成立.(综合法) ∵11-cos α+4(1-cos α)≥4,(1-cos α>0,当且仅当cos α=12,即α=π3时取等号)∴4cos α≤11-cos α.∵α∈(0,π),∴sin α>0. ∴4sin αcos α≤sin α1-cos α.∴2sin 2α≤sin α1-cos α.跟踪训练2 求证:sin (2α+β)sin α-2cos(α+β)=sin βsin α.证明 ∵sin(2α+β)-2cos(α+β)sin α =sin(α+β)+α]-2cos(α+β)sin α=sin(α+β)cos α+cos(α+β)sin α-2cos(α+β)sin α =sin(α+β)cos α-cos(α+β)sin α =sin(α+β)-α]=sin β,两边同除以sin α得sin (2α+β)sin α-2cos(α+β)=sin βsin α.题型三 反证法反证法是一种间接证明命题的方法,它从命题结论的反面出发引出矛盾,从而肯定命题的结论.反证法的理论基础是互为逆否命题的等价性,从逻辑角度看,命题:“若p 则q ”的否定是“若p 则綈q ”,由此进行推理,如果发生矛盾,那么就说明“若p 则綈q ”为假,从而可以导出“若p 则q ”为真,从而达到证明的目的.例3 若x ,y 都是正实数,且x +y >2,求证:1+x y <2或1+y x<2中至少有一个成立.证明 假设1+x y <2和1+y x<2都不成立,则有1+x y ≥2和1+y x≥2同时成立.因为x >0且y >0,所以1+x ≥2y 且1+y ≥2x , 两式相加,得2+x +y ≥2x +2y , 所以x +y ≤2.这与已知x +y >2矛盾. 故1+x y <2与1+yx<2至少有一个成立.反思与感悟 反证法常用于直接证明困难或以否定形式出现的命题;涉及“都是……”“都不是……”“至少……”“至多……”等形式的命题时,也常用反证法. 跟踪训练3 已知:ac ≥2(b +d ).求证:方程x 2+ax +b =0与方程x 2+cx +d =0中至少有一个方程有实数根. 证明 假设两方程都没有实数根,则Δ1=a 2-4b <0与Δ2=c 2-4d <0,有a 2+c 2<4(b +d ),而a 2+c 2≥2ac ,从而有4(b +d )>2ac ,即ac <2(b +d ),与已知矛盾,故原命题成立. 题型四 数学归纳法数学归纳法是推理逻辑,它的第一步称为奠基步骤,是论证的基础保证,即通过验证落实传递的起点,这个基础必须真实可靠;它的第二步称为递推步骤,是命题具有后继传递性的保证,两步合在一起为完全归纳步骤,这两步缺一不可,第二步中证明“当n =k +1时结论正确”的过程中,必须用“归纳假设”,否则就是错误的.例4 用数学归纳法证明当n ∈N *时,1·n +2·(n -1)+3·(n -2)+…+(n -2)·3+(n -1)·2+n ·1=16n (n +1)·(n +2).证明 (1)当n =1时,1=16·1·2·3,结论成立.(2)假设n =k 时结论成立,即1·k +2·(k -1)+3·(k -2)+…+(k -2)·3+(k -1)·2+k ·1=16k (k +1)(k +2).当n =k +1时,则1·(k +1)+2·k +3·(k -1)+…+(k -1)·3+k ·2+(k +1)·1 =1·k +2·(k -1)+…+(k -1)·2+k ·1+1+2+3+…+k +(k +1)] =16k (k +1)(k +2)+12(k +1)(k +2) =16(k +1)(k +2)(k +3), 即当n =k +1时结论也成立.综合上述,可知结论对一切n ∈N *都成立. 跟踪训练4 数列{a n }满足:a 1=1,a n +1=12a n +1.(1)写出a 2,a 3,a 4. (2)求数列{a n }的通项公式.解 (1)因为a 1=1,a n +1=12a n +1,所以a 2=12a 1+1=12+1=32.a 3=12a 2+1=12·32+1=74. a 4=12a 3+1=12·74+1=158.(2)证明 方法一 猜想a n =2n-12n -1.下面用数学归纳法证明,(1)当n =1时,a 1=21-121-1=1,满足上式,显然成立;(2)假设当n =k 时a k =2k-12k -1,那么当n =k +1时,a k +1=12a k +1=12·2k -12k -1+1=2k -12k +1=2k -1+2k 2k =2k +1-12k满足上式, 即当n =k +1时猜想也成立,由(1)(2)可知,对于n ∈N *都有a n =2n-12n -1.方法二 因为a n +1=12a n +1,所以a n +1-2=12a n +1-2,即a n +1-2=12(a n -2),设b n =a n -2,则b n +1=12b n ,即{b n }是以b 1=-1,12为公比的等比数列,所以b n =b 1·qn -1=-12n -1,所以a n =b n +2=2n-12n -1.呈重点、现规律]1.归纳和类比都是合情推理,前者是由特殊到一般,部分到整体的推理,后者是由特殊到特殊的推理,但二者都能由已知推测未知,都能用于猜想,推理的结论不一定为真,有待进一步证明.2.演绎推理与合情推理不同,是由一般到特殊的推理,是数学中证明的基本推理形式.也是公理化体系所采用的推理形式,另一方面,合情推理与演绎推理又是相辅相成的,前者是后者的前提,后者论证前者的可靠性.3.直接证明和间接证明是数学证明的两类基本证明方法.直接证明的两类基本方法是综合法和分析法:综合法是从已知条件推导出结论的证明方法;分析法是由结论追溯到条件的证明方法,在解决数学问题时,常把它们结合起来使用,间接证法的一种方法是反证法,反证法是从结论反面成立出发,推出矛盾的证明方法.4.数学归纳法主要用于解决与正整数有关的数学问题.证明时,它的两个步骤缺一不可.它的第一步(归纳奠基)n =n 0时结论成立.第二步(归纳递推)假设n =k 时,结论成立,推得n =k +1时结论也成立.数学归纳法原理建立在归纳公理的基础上,它可用有限的步骤(两步)证明出无限的命题成立.。
2019年人教版 高中数学 选修2-2作业及测试:课时作业2导数的几何意义
4.若曲线f(x)=x2的一条切线l与直线x+4y-8=0垂直,则l的方程为()
A.4x-y-4=0 B.x+4y-5=0
C.4x-y+3=0 D.x+4y+3=0
解析:设切点为(x0,y0),∵f′(x)=li =li (2x+Δx)=2x.由题意可知,切线斜率k=4,即f′(x0)=2x0=4,∴x0=2.∴切点坐标为(2,4),切线方程为y-4=4(x-2),即4x-y-4=0,故选A.
即2x0=-1,得x0=- ,y0= ,
即P .
|
11.设曲线y=ax2在点(1,a)处的切线与直线2x-y-6=0平行,则a等于()
A.1 B.
C.- D.-1
解析:∵y′|x=1=li
=li =li (2a+aΔx)=2a,
∴2a=2,∴a=1.
答案:A
12.已知曲线f(x)= ,g(x)= 过两曲线交点作两条曲线的切线,则曲线f(x)在交点处的切线方程为__________________.
答案:A
5.与直线2x-y+4=0平行的抛物线y=x2的切线方程为()
A.2x-y+3=0 B.2x-y-3=0
C.2x-y+1=0 D.2x-y-1=0
解析:由导数定义求得y′=2x,
∵抛物线y=x2的切线与直线2x-y+4=0平行,
∴y′=2x=2⇒x=1,即切点为(1,1),
∴所求切线方程为y-1=2(x-1),
解析:由 得
∴两曲线的交点坐标为(1,1).
由f(x)= ,
得f′(x)=li =li = ,
∴y=f(x)在点(1,1)处的切线方程为
y-1= (x-1).
即x-2y+1=0.
答案:x-2y+1=0
高中数学新人教版选修2-2课时作业:第二章 推理与证明2.3数学归纳法 Word版含解析
【创新设计】2016-2017学年高中数学第二章推理与证明 2.3 数学归纳法课时作业新人教版选修2-2明目标、知重点1.了解数学归纳法的原理.2.能用数学归纳法证明一些简单的数学命题.1.数学归纳法证明一个与正整数n有关的命题,可按下列步骤进行:①(归纳奠基)证明当n取第一个值n0(n0∈N*)时命题成立;②(归纳递推)假设当n=k(k≥n0,k∈N*)时命题成立,证明当n=k+1时命题也成立.2.应用数学归纳法时特别注意:(1)用数学归纳法证明的对象是与正整数n有关的命题.(2)在用数学归纳法证明中,两个基本步骤缺一不可.(3)步骤②的证明必须以“假设当n=k(k≥n0,k∈N*)时命题成立”为条件.情境导学]多米诺骨牌游戏是一种用木制、骨制或塑料制成的长方形骨牌,玩时将骨牌按一定间距排列成行,保证任意两相邻的两块骨牌,若前一块骨牌倒下,则一定导致后一块骨牌倒下.只要推倒第一块骨牌,就必然导致第二块骨牌倒下;而第二块骨牌倒下,就必然导致第三块骨牌倒下…,最后不论有多少块骨牌都能全部倒下.请同学们思考所有的骨牌都一一倒下蕴涵怎样的原理?探究点一数学归纳法的原理思考1 多米诺骨牌游戏给你什么启示?你认为一个骨牌链能够被成功推倒,靠的是什么?答(1)第一张牌被推倒;(2)任意相邻两块骨牌,前一块倒下一定导致后一块倒下.结论:多米诺骨牌会全部倒下.所有的骨牌都倒下,条件(2)给出了一个递推关系,条件(1)给出了骨牌倒下的基础.思考2 对于数列{a n},已知a1=1,a n+1=a n1+a n,试写出a1,a2,a3,a4,并由此作出猜想.请问这个结论正确吗?怎样证明?答 a 1=1,a 2=12,a 3=13,a 4=14,猜想a n =1n(n ∈N *).以下为证明过程:(1)当n =1时,a 1=1=11,所以结论成立.(2)假设当n =k (k ∈N *)时,结论成立,即a k =1k,则当n =k +1时a k +1=a k1+a k(已知)=1k1+1k(代入假设) =1kk +1k(变形)=1k +1(目标) 即当n =k +1时,结论也成立.由(1)(2)可得,对任意的正整数n 都有a n =1n成立.思考3 你能否总结出上述证明方法的一般模式?答 一般地,证明一个与正整数n 有关的命题P (n ),可按下列步骤进行: (1)(归纳奠基)证明当n 取第一个值n 0(n 0∈N *)时命题成立;(2)(归纳递推)假设当n =k (k ≥n 0,k ∈N *)时命题成立,证明当n =k +1时命题也成立. 只要完成这两个步骤,就可以断定命题对从n 0开始的所有正整数n 都成立. 上述证明方法叫做数学归纳法.思考4 用数学归纳法证明1+3+5+…+(2n -1)=n 2,如采用下面的证法,对吗?若不对请改正.证明:(1)n =1时,左边=1,右边=12=1,等式成立. (2)假设n =k 时等式成立,即1+3+5+…+(2k -1)=k 2,则当n =k +1时,1+3+5+…+(2k +1)=(k +1)×[1+(2k +1)]2=(k +1)2等式也成立.由(1)和(2)可知对任何n ∈N *等式都成立.答 证明方法不是数学归纳法,因为第二步证明时,未用到归纳假设.从形式上看这种证法,用的是数学归纳法,实质上不是,因为证明n =k +1正确时,未用到归纳假设,而用的是等差数列求和公式.探究点二 用数学归纳法证明等式 例1 用数学归纳法证明 12+22+…+n 2=n (n +1)(2n +1)6(n ∈N *).证明 (1)当n =1时,左边=12=1, 右边=1×(1+1)×(2×1+1)6=1,等式成立.(2)假设当n =k (k ∈N *)时等式成立,即 12+22+…+k 2=k (k +1)(2k +1)6,那么,12+22+…+k 2+(k +1)2=k (k +1)(2k +1)6+(k +1)2=k (k +1)(2k +1)+6(k +1)26=(k +1)(2k 2+7k +6)6=(k +1)(k +2)(2k +3)6=(k +1)[(k +1)+1][2(k +1)+1]6,即当n =k +1时等式也成立.根据(1)和(2),可知等式对任何n ∈N *都成立.反思与感悟 (1)用数学归纳法证明与正整数有关的一些等式命题,关键在于“先看项”,弄清等式两边的构成规律,等式的两边各有多少项,项的多少与n 的取值是否有关.由n =k 到n =k +1时,等式的两边会增加多少项,增加怎样的项.跟踪训练1 求证:1-12+13-14+…+12n -1-12n =1n +1+1n +2+…+12n (n ∈N *).证明 当n =1时,左边=1-12=12,右边=12,所以等式成立. 假设n =k (k ∈N *)时,1-12+13-14+…+12k -1-12k =1k +1+1k +2+…+12k成立. 那么当n =k +1时,1-12+13-14+…+12k -1-12k +12(k +1)-1-12(k +1)=1k +1+1k +2+…+12k +12k +1-12(k +1) =1k +2+1k +3+…+12k +12k +1+1k +1-12(k +1)] =1(k +1)+1+1(k +1)+2+…+1(k +1)+k +12(k +1),所以n =k +1时,等式也成立.综上所述,对于任何n ∈N *,等式都成立. 探究点三 用数学归纳法证明数列问题例2 已知数列11×4,14×7,17×10,…,1(3n -2)(3n +1),…,计算S 1,S 2,S 3,S 4,根据计算结果,猜想S n 的表达式,并用数学归纳法进行证明. 解 S 1=11×4=14;S 2=14+14×7=27; S 3=27+17×10=310; S 4=310+110×13=413. 可以看出,上面表示四个结果的分数中,分子与项数n 一致,分母可用项数n 表示为3n +1. 于是可以猜想S n =n3n +1.下面我们用数学归纳法证明这个猜想. (1)当n =1时,左边=S 1=14,右边=n 3n +1=13×1+1=14,猜想成立.(2)假设当n =k (k ∈N *)时猜想成立,即11×4+14×7+17×10+…+1(3k -2)(3k +1)=k 3k +1, 那么,11×4+14×7+17×10+…+1(3k -2)(3k +1)+1[3(k +1)-2][3(k +1)+1] =k 3k +1+1(3k +1)(3k +4)=3k 2+4k +1(3k +1)(3k +4) =(3k +1)(k +1)(3k +1)(3k +4)=k +13(k +1)+1,所以,当n =k +1时猜想也成立.根据(1)和(2),可知猜想对任何n ∈N *都成立.反思与感悟 归纳法分为不完全归纳法和完全归纳法,数学归纳法是“完全归纳”的一种科学方法,对于无穷尽的事例,常用不完全归纳法去发现规律,得出结论,并设法给予证明,这就是“归纳——猜想——证明”的基本思想.跟踪训练2 数列{a n }满足S n =2n -a n (S n 为数列{a n }的前n 项和),先计算数列的前4项,再猜想a n ,并证明. 解 由a 1=2-a 1, 得a 1=1;由a 1+a 2=2×2-a 2, 得a 2=32;由a 1+a 2+a 3=2×3-a 3, 得a 3=74;由a 1+a 2+a 3+a 4=2×4-a 4, 得a 4=158.猜想a n =2n-12n -1.下面证明猜想正确:(1)当n =1时,由上面的计算可知猜想成立. (2)假设当n =k 时猜想成立, 则有a k =2k -12k -1,当n =k +1时,S k +a k +1=2(k +1)-a k +1,∴a k +1=122(k +1)-S k ]=k +1-12(2k -2k-12k -1)=2k +1-12(k +1)-1, 所以,当n =k +1时,等式也成立.由(1)和(2)可知,a n =2n-12n -1对任意正整数n 都成立.1.若命题A (n )(n ∈N *)在n =k (k ∈N *)时命题成立,则有n =k +1时命题成立.现知命题对n =n 0(n 0∈N *)时命题成立,则有( ) A .命题对所有正整数都成立B .命题对小于n 0的正整数不成立,对大于或等于n 0的正整数都成立C .命题对小于n 0的正整数成立与否不能确定,对大于或等于n 0的正整数都成立D .以上说法都不正确 答案 C解析 由已知得n =n 0(n 0∈N *)时命题成立,则有n =n 0+1时命题成立;在n =n 0+1时命题成立的前提下,又可推得n =(n 0+1)+1时命题也成立,依此类推,可知选C. 2.用数学归纳法证明“1+a +a 2+…+a 2n +1=1-a 2n +21-a(a ≠1)”.在验证n =1时,左端计算所得项为( ) A .1+a B .1+a +a 2C .1+a +a 2+a 3D .1+a +a 2+a 3+a 4答案 C解析 将n =1代入a2n +1得a 3,故选C.3.用数学归纳法证明1+2+22+…+2n -1=2n -1(n ∈N *)的过程如下:(1)当n =1时,左边=1,右边=21-1=1,等式成立. (2)假设当n =k (k ∈N *)时等式成立,即1+2+22+…+2k -1=2k-1,则当n =k +1时,1+2+22+…+2k -1+2k=1-2k +11-2=2k +1-1.所以当n =k +1时等式也成立.由此可知对于任何n ∈N *,等式都成立.上述证明的错误是________. 答案 未用归纳假设解析 本题在由n =k 成立, 证n =k +1成立时, 应用了等比数列的求和公式, 而未用上假设条件, 这与数学归纳法的要求不符.4.用数学归纳法证明1+n 2≤1+12+13+…+12n ≤12+n (n ∈N *)证明 (1)当n =1时,左式=1+12,右式=12+1,所以32≤1+12≤32,命题成立.(2)假设当n =k (k ∈N *)时,命题成立,即1+k 2≤1+12+13+…+12k ≤12+k ,则当n =k +1时,1+12+13+…+12k +12k +1+12k +2+…+12k +2k >1+k 2+2k ·12k +1=1+k +12. 又1+12+13+…+12k +12k +1+12k +2+…+12k +2k <12+k +2k ·12k =12+(k +1),即当n =k +1时,命题成立.由(1)和(2)可知,命题对所有的n ∈N *都成立. 呈重点、现规律]在应用数学归纳法证题时应注意以下几点:(1)验证是基础:找准起点,奠基要稳,有些问题中验证的初始值不一定为1;(2)递推是关键:正确分析由n =k 到n =k +1时式子项数的变化是应用数学归纳法成功证明问题的保障;(3)利用假设是核心:在第二步证明中一定要利用归纳假设,这是数学归纳法证明的核心环节,否则这样的证明就不是数学归纳法证明.一、基础过关1.某个命题与正整数有关,如果当n =k (k ∈N *)时,该命题成立,那么可推得n =k +1时,该命题也成立.现在已知当n =5时,该命题成立,那么可推导出( )A .当n =6时命题不成立B .当n =6时命题成立C .当n =4时命题不成立D .当n =4时命题成立 答案 B2.一个与正整数n 有关的命题,当n =2时命题成立,且由n =k 时命题成立可以推得n =k +2时命题也成立,则( ) A .该命题对于n >2的自然数n 都成立 B .该命题对于所有的正偶数都成立 C .该命题何时成立与k 取值无关 D .以上答案都不对 答案 B解析 由n =k 时命题成立可以推出n =k +2时命题也成立.且n =2,故对所有的正偶数都成立.3.在应用数学归纳法证明凸n 边形的对角线为12n (n -3)条时,第一步验证n 等于( )A .1B .2C .3D .0 答案 C解析 因为是证凸n 边形,所以应先验证三角形,故选C.4.若f (n )=1+12+13+…+12n +1(n ∈N *),则n =1时f (n )是( )A .1 B.13C .1+12+13D .以上答案均不正确答案 C5.已知f (n )=1n +1n +1+1n +2+…+1n 2,则( )A .f (n )中共有n 项,当n =2时,f (2)=12+13B .f (n )中共有n +1项,当n =2时,f (2)=12+13+14C .f (n )中共有n 2-n 项,当n =2时,f (2)=12+13D .f (n )中共有n 2-n +1项,当n =2时,f (2)=12+13+14答案 D解析 观察分母的首项为n ,最后一项为n 2,公差为1, ∴项数为n 2-n +1.6.在数列{a n }中,a 1=2,a n +1=a n3a n +1(n ∈N *),依次计算a 2,a 3,a 4,归纳推测出a n 的通项表达式为( ) A.24n -3 B.26n -5 C.24n +3D.22n-1答案 B解析 a 1=2,a 2=27,a 3=213,a 4=219,…,可推测a n =26n -5,故选B.7.用数学归纳法证明(1-13)(1-14)(1-15)…(1-1n +2)=2n +2(n ∈N *).证明 (1)当n =1时,左边=1-13=23,右边=21+2=23,等式成立.(2)假设当n =k (k ≥1,k ∈N *)时等式成立,即 (1-13)(1-14)(1-15)…(1-1k +2)=2k +2,当n =k +1时,(1-13)(1-14)(1-15)…(1-1k +2)·(1-1k +3)=2k +2(1-1k +3)=2(k +2)(k +2)(k +3)=2k +3=2(k +1)+2, 所以当n =k +1时等式也成立.由(1)(2)可知,对于任意n ∈N *等式都成立. 二、能力提升8.用数学归纳法证明等式(n +1)(n +2)…(n +n )=2n·1·3·…·(2n -1)(n ∈N *),从k 到k +1左端需要增乘的代数式为( ) A .2k +1 B .2(2k +1) C.2k +1k +1D.2k +3k +1答案 B解析 n =k +1时,左端为(k +2)(k +3)…(k +1)+(k -1)]·(k +1)+k ]·(2k +2)=(k +1)(k +2)…(k +k )·(2k +1)·2,∴应增乘2(2k +1).9.已知f (n )=1n +1+1n +2+…+13n -1(n ∈N *),则f (k +1)=________. 答案 f (k )+13k +13k +1+13k +2-1k +110.证明:假设当n =k (k ∈N *)时等式成立,即2+4+…+2k =k 2+k ,那么2+4+…+2k +2(k +1)=k 2+k +2(k +1)=(k +1)2+(k +1),即当n =k +1时等式也成立.因此对于任何n ∈N *等式都成立.以上用数学归纳法证明“2+4+…+2n =n 2+n (n ∈N *)”的过程中的错误为________. 答案 缺少步骤归纳奠基11.用数学归纳法证明12-22+32-42+…+(-1)n -1·n 2=(-1)n -1·n (n +1)2.证明 (1)当n =1时,左边=1, 右边=(-1)1-1×1×22=1,结论成立.(2)假设当n =k 时,结论成立. 即12-22+32-42+…+(-1)k -1k 2=(-1)k -1·k (k +1)2,那么当n =k +1时, 12-22+32-42+…+(-1)k -1k 2+(-1)k (k +1)2=(-1)k -1·k (k +1)2+(-1)k(k +1)2=(-1)k·(k +1)-k +2k +22=(-1)k·(k +1)(k +2)2.即n =k +1时结论也成立.由(1)(2)可知,对一切正整数n 都有此结论成立.12.已知数列{a n }的第一项a 1=5且S n -1=a n (n ≥2,n ∈N *),S n 为数列{a n }的前n 项和. (1)求a 2,a 3,a 4,并由此猜想a n 的表达式; (2)用数学归纳法证明{a n }的通项公式. (1)解 a 2=S 1=a 1=5,a 3=S 2=a 1+a 2=10,a 4=S 3=a 1+a 2+a 3=5+5+10=20,猜想a n =⎩⎪⎨⎪⎧5 (n =1)5×2n -2, (n ≥2,n ∈N *).(2)证明 ①当n =2时,a 2=5×22-2=5,公式成立.林老师网络编辑整理林老师网络编辑整理 ②假设n =k (k ≥2,k ∈N *)时成立, 即a k =5×2k -2,当n =k +1时,由已知条件和假设有 a k +1=S k =a 1+a 2+a 3+…+a k =5+5+10+…+5×2k -2. =5+5(1-2k -1)1-2=5×2k -1. 故n =k +1时公式也成立.由①②可知,对n ≥2,n ∈N *,有a n =5×2n -2. 所以数列{a n }的通项公式为 a n =⎩⎪⎨⎪⎧ 5 (n =1)5×2n -2 (n ≥2,n ∈N *).三、探究与拓展13.已知数列{a n }的前n 项和S n =1-na n (n ∈N *).(1)计算a 1,a 2,a 3,a 4;(2)猜想a n 的表达式,并用数学归纳法证明你的结论.解 (1)计算得a 1=12;a 2=16;a 3=112;a 4=120. (2)猜想:a n =1n (n +1). 下面用数学归纳法证明①当n =1时,猜想显然成立.②假设n =k (k ∈N *)时,猜想成立,即a k =1k (k +1). 那么,当n =k +1时S k +1=1-(k +1)a k +1, 即S k +a k +1=1-(k +1)a k +1. 又S k =1-ka k =k k +1, 所以kk +1+a k +1=1-(k +1)a k +1,从而a k +1=1(k +1)(k +2)=1(k +1)[(k +1)+1]. 即n =k +1时,猜想也成立. 故由①和②,可知猜想成立.。
人教新课标版数学高二-A版选修2-2课时作业 2-1-1-1归纳推理
课时作业(十九)一、选择题1.关于归纳推理,下列说法正确的是( ) A .归纳推理是一般到一般的推理 B .归纳推理是一般到个别的推理 C .归纳推理的结论一定是正确的 D .归纳推理的结论未必是正确的 答案 D2.在数列{a n }中,a 1=0,a n +1=2a n +2,则猜想a n 是( ) A .2n -2-12B .2n -2C .2n -1+1D .2n +1-4答案 B3.观察图示图形规律,在其右下角的空格内画上合适的图形为( )A .■■B .△ C. D .○答案 A4.数列{a n }:2,5,11,20,x,47,…中的x 等于( ) A .28 B .32 C .33D .127答案 B5.n个连续自然数按规律排列下表:根据规律,从2 010到2 012箭头的方向依次为()A.↓→B.→↑C.↑→D.→↓答案 C6.已知数列{a n}的前n项和S n=n2a n(n≥2),而a1=1,通过计算a2,a3,a4,猜想a n等于()A.2(n+1)2B.2n(n+1)C.22n-1D.2 2n-1答案 B7.(2010·山东卷)观察(x2)′=2x,(x4)′=4x3,(cos x)′=-sin x,由归纳推理可得:若定义在R上的函数f(x)满足f(-x)=f(x),记g(x)为f(x)的导函数,则g(-x)=()A.f(x) B.-f(x)C.g(x) D.-g(x)答案 D8.根据给出的数塔猜测123 456×9+7等于()1×9+2=1112×9+3=111123×9+4=1 1111 234×9+5=11 11112 345×9+6=111 111…A.1 111 110 B.1 111 111C.1 111 112 D.1 111 113答案 B9.把1、3、6、10、15、21、…这些数叫做三角形数,这是因为这些数目的点子可以排成一个正三角形(如下图),试求第七个三角形数是()A.27 B.28C.29 D.30答案 B二、填空题10.观察下列由火柴杆拼成的一列图形中,第n个图形由n个正方形组成:通过观察可以发现:第4个图形中,火柴杆有________根;第n 个图形中,火柴杆有________根.答案133n+111.(2012·陕西卷)观察下列不等式1+122<3 2,1+122+132<53,1+122+132+142<74,……照此规律,第五个...不等式为________.答案1+122+132+142+152+162<11612.下面是一系列有机物的结构简图,图中的“小黑点”表示原子,两黑点间的“连线”表示化学键,按图中结构第n个图有________个原子,有________个化学键.答案4n+25n+113.从1=12,2+3+4=32,3+4+5+6+7=52中,可得一般规律是________.答案n+(n+1)+(n+2)+…+(3n-2)=(2n-1)214.观察下图中各正方形图案,每条边上有n(n≥2)个圆圈,每个图案中圆圈的总数是S,按此规律推出S与n的关系式为________.答案 S =4(n -1)(n ≥2) 三、解答题15.证明下列等式,并从中归纳出一个一般性的结论. 2cos π4=2, 2cos π8=2+2, 2cos π16=2+2+2, ……解析 2cos π2n +1=2+2+2+……16.在△ABC 中,不等式1A +1B +1C ≥9π成立; 在四边形ABCD 中,不等式1A +1B +1C +1D ≥162π成立; 在五边形ABCDE 中,不等式1A +1B +1C +1D +1E ≥253π成立; 猜想在n 边形A 1A 2…A n 中,有怎样的不等式成立?解析 在n 边形A 1A 2…A n 中,有不等式1A 1+1A 2+…+1An≥n 2(n -2)π·(n ≥3) 17.设f (x )=13x +3,先分别求出f (0)+f (1),f (-1)+f (2),f (-2)+f(3),然后归纳出一个一般结论,并给出证明.解析当x1+x2=1时,f(x1)+f(x2)=3 3.证明:f(x1)+f(x2)=13x1+3+13x2+3=13x1+3+131-x1+3=13x1+3+3x13+3·3x1=13x1+3+3x13(3+3x1)=(3+3x1) 3(3x1+3)=33.►重点班·选做题18.已知:①tan10°tan20+tan20°tan60°+tan60°tan10°=1.②tan5°tan10°+tan10°tan75°+tan75°tan5°=1.③tan20°tan30°+tan30°tan40°+tan40°tan20°=1成立,由此得到一个由特殊到一般的推广,此推广是什么?解析α+β+γ=90°,且α、β、γ都不为90°+γ·180°(γ∈Z),则tanαtanβ+tanβ·tanγ+tanα·tanγ=1.证明(略)。
人教版数学高二-人教B版选修2-2课时作业 2.3.2 数学归纳法应用举例
第二章 §2.3 课时作业211.证明不等式1+12+13+ (1)<2n (n ∈N *). 证明:(1)当n =1时,左边=1,右边=2.左边<右边,不等式成立.(2)假设当n =k (k ≥1且k ∈N *)时,不等式成立,即1+12+13+ (1)<2k . 则当n =k +1时,1+12+13+…+1k +1k +1<2k +1k +1=2k k +1+1k +1 <(k )2+(k +1)2+1k +1=2(k +1)k +1=2k +1. ∴当n =k +1时,不等式成立.由(1)(2)可知,原不等式对任意n ∈N *都成立. 2.已知数列{a n }中,a 1=1,a n +1=a n 1+a n(n ∈N *). (1)计算a 2,a 3,a 4;(2)猜想a n 的表达式,并用数学归纳法证明.解:(1)a 1=1,a 2=a 11+a 1=12, a 3=a 21+a 2=13, a 4=a 31+a 3=14. (2)由(1)的计算猜想:a n =1n. 下面用数学归纳法进行证明①当n =1时,a 1=1,等式成立.②假设当n =k 时等式成立,即a k =1k,那么a k +1=a k 1+a k =1k1+1k =1k +1, 即当n =k +1时等式也成立.由①②可知,对任意n ∈N *都有a n =1n. 3.证明凸n 边形的对角线的条数f (n )=12n (n -3)(n ≥4,n ∈N *). 证明:(1)当n =4时,f (4)=12×4×(4-3)=2,凸四边形有两条对角线,命题成立. (2)假设n =k (k ≥4且k ∈N *)时命题成立.即凸k 边形的对角线的条数f (k )=12k (k -3)(k ≥4),当n =k +1时,凸(k +1)边形是在k 边形基础上增加了一边,增加了一个顶点,设为A k +1,增加的对角线是顶点A k +1与不相邻顶点的连线再加上原k 边形一边A 1A k ,共增加了对角线的条数为k -2+1=k -1.∴f (k +1)=12k (k -3)+k -1 =12(k 2-k -2) =12(k +1)(k -2) =12(k +1). 故当n =k +1时命题成立.由(1)(2)知,对任意n ≥4,n ∈N *,命题成立.4.设实数c >0,整数p >1,n ∈N *.(1)证明:当x >-1且x ≠0时,(1+x )p >1+px ;(2)数列{a n }满足a 1>c 1p , a n +1=p -1p a n +c pa 1-p n . 证明:a n >a n +1>c 1p . 解:(1)证明:用数学归纳法证明:①当p =2时,(1+x )2=1+2x +x 2>1+2x ,原不等式成立.②假设p =k (k ≥2,k ∈N *)时,不等式(1+x )k >1+kx 成立.当p =k +1时,(1+x )k +1=(1+x )(1+x )k >(1+x )(1+kx )=1+(k +1)x +kx 2>1+(k +1)x . 所以p =k +1时,原不等式也成立.综合①②可得,当x >-1,x ≠0时,对一切整数p >1,不等式(1+x )p >1+px 均成立.(2)证法一:先用数学归纳法证明a n >c 1p .①当n =1时,由题设a 1>c 1p 知a n >c 1p 成立.②假设n =k (k ≥1,k ∈N *)时,不等式a k >c 1p 成立.由a n +1=p -1p a n +c pa 1-p n 易知a n >0,n ∈N *. 当n =k +1时,a k +1a k =p -1p +c p a -p k =1+1p (c a p k-1). 由a k >c 1p >0得-1<-1p <1p (c a p k-1)<0. 由(1)中的结论得(a k +1a k )p =p >1+p ·1p (c a p k -1)=c a p k. 因此a p k +1>c ,即a k +1>c 1p .所以n =k +1时,不等式a n >c 1p 也成立.综合①②可得,对一切正整数n ,不等式a n >c 1p 均成立.再由a n +1a n =1+1p (c a p n -1)可得a n +1a n<1,即a n +1<a n . 综上所述,a n >a n +1>c 1p ,n ∈N *.证法二:设f (x )=p -1p x +c p x 1-p ,x ≥c 1p ,则x p ≥c ,并且f ′(x )=p -1p +c p (1-p )x -p =p -1p(1-c x p )>0,x >c 1p . 由此可得,f (x )在1+1p (c a p 1-1)hslx3y3h<a 1,并且a 2=f (a 1)>c 1p ,从而a 1>a 2>c 1p . 故当n =1时,不等式a n >a n +1>c 1p 成立.②假设n =k (k ≥1,k ∈N *)时,不等式a k >a k +1>c 1p 成立,则 当n =k +1时,f (a k )>f (a k +1)>f (c 1p ),即有a k +1>a k +2>c 1p .所以n =k +1时,原不等式也成立.综合①②可得,对一切正整数n ,不等式a n >a n +1>c 1p 均成立.。
高中数学新人教版选修2-2课时作业:第二章 推理与证明2.3数学归纳法习题课
习题课 数学归纳法明目标、知重点1.进一步掌握数学归纳法的实质与步骤,掌握用数学归纳法证明等式、不等式、整除问题、几何问题等数学命题.2.掌握证明n =k +1成立的常见变形技巧:提公因式、添项、拆项、合并项、配方等.1.归纳法归纳法是一种由特殊到一般的推理方法,分完全归纳法和不完全归纳法两种,而不完全归纳法得出的结论不具有可靠性,必须用数学归纳法进行严格证明. 2.数学归纳法(1)应用范围:作为一种证明方法,用于证明一些与正整数n 有关的数学命题; (2)基本要求:它的证明过程必须是两步,最后还有结论,缺一不可; (3)注意点:在第二步递推归纳时,从n =k 到n =k +1必须用上归纳假设.题型一 用数学归纳法证明不等式思考 用数学归纳法证明不等式的关键是什么?答 用数学归纳法证明不等式,首先要清楚由n =k 到n =k +1时不等式两边项的变化;其次推证中可以利用放缩、比较、配凑分析等方法,利用归纳假设证明n =k +1时的结论. 例1 已知数列{b n }的通项公式为b n =2n ,求证:对任意的n ∈N *,不等式b 1+1b 1·b 2+1b 2·…·b n +1b n>n +1都成立. 证明 由b n =2n ,得b n +1b n =2n +12n, 所以b 1+1b 1·b 2+1b 2·…·b n +1b n =32·54·76·…·2n +12n. 下面用数学归纳法证明不等式b 1+1b 1·b 2+1b 2·…·b n +1b n =32·54·76·…·2n +12n>n +1成立. (1)当n =1时,左边=32,右边=2,因为32>2,所以不等式成立.(2)假设当n =k (k ≥1且k ∈N *)时不等式成立, 即b 1+1b 1·b 2+1b 2·…·b k +1b k =32·54·76·…·2k +12k>k +1成立.则当n =k +1时,左边=b 1+1b 1·b 2+1b 2·…·b k +1b k ·b k +1+1b k +1=32·54·76·…·2k +12k ·2k +32k +2>k +1·2k +32k +2=(2k +3)24(k +1)=4k 2+12k +94(k +1)>4k 2+12k +84(k +1)=4(k 2+3k +2)4(k +1)=4(k +1)(k +2)4(k +1)=k +2=(k +1)+1. 所以当n =k +1时, 不等式也成立. 由(1)、(2)可得不等式b 1+1b 1·b 2+1b 2·…·b n +1b n =32·54·76·…·2n +12n>n +1对任意的n ∈N *都成立.反思与感悟 用数学归纳法证明不等式时要注意两凑:一凑归纳假设;二凑证明目标.在凑证明目标时,比较法、综合法、分析法都可选用.跟踪训练1 用数学归纳法证明122+132+142+…+1n 2<1-1n (n ≥2,n ∈N *).证明 当n =2时,左式=122=14,右式=1-12=12,因为14<12,所以不等式成立.假设n =k (k ≥2,k ∈N *)时,不等式成立, 即122+132+142+…+1k 2<1-1k , 则当n =k +1时,122+132+142+…+1k 2+1(k +1)2<1-1k +1(k +1)2 =1-(k +1)2-k k (k +1)2=1-k 2+k +1k (k +1)2<1-k (k +1)k (k +1)2 =1-1k +1, 所以当n =k +1时,不等式也成立.综上所述,对任意n ≥2的正整数,不等式都成立. 题型二 利用数学归纳法证明整除问题 例2 求证:an +1+(a +1)2n -1能被a 2+a +1整除,n ∈N *.证明 (1)当n =1时,a1+1+(a +1)2×1-1=a 2+a +1,命题显然成立.(2)假设当n =k (k ∈N *)时,a k +1+(a +1)2k -1能被a 2+a +1整除,则当n =k +1时,a k +2+(a +1)2k +1=a ·a k +1+(a +1)2·(a +1)2k -1=aa k +1+(a +1)2k -1]+(a +1)2(a +1)2k -1-a (a +1)2k -1=aak +1+(a +1)2k -1]+(a 2+a +1)(a +1)2k -1.由归纳假设,上式中的两项均能被a 2+a +1整除, 故n =k +1时命题成立.由(1)(2)知,对任意n ∈N *, 命题成立.反思与感悟 证明整除性问题的关键是“凑项”,先采用增项、减项、拆项和因式分解等手段,凑成n =k 时的情形,再利用归纳假设使问题获证. 跟踪训练2 证明x2n -1+y2n -1(n ∈N *)能被x +y 整除.证明 (1)当n =1时,x2n -1+y 2n -1=x +y ,能被x +y 整除.(2)假设当n =k (k ∈N *)时,命题成立, 即x2k -1+y2k -1能被x +y 整除.那么当n =k +1时,x 2(k +1)-1+y 2(k +1)-1=x2k +1+y2k +1=x2k -1+2+y2k -1+2=x 2·x 2k -1+y 2·y2k -1+x 2·y2k -1-x 2·y2k -1=x 2(x 2k -1+y 2k -1)+y2k -1(y 2-x 2).∵x2k -1+y2k -1能被x +y 整除,y 2-x 2=(y +x )(y -x )也能被x +y 整除,∴当n =k +1时,x2(k +1)-1+y2(k +1)-1能被x +y 整除.由(1),(2)可知原命题成立. 题型三 利用数学归纳法证明几何问题思考 用数学归纳法证明几何问题的关键是什么?答 用数学归纳法证明几何问题的关键是“找项”,即几何元素从k 个变成k +1个时,所证的几何量将增加多少,还需用到几何知识或借助于几何图形来分析,实在分析不出来的情况下,将n =k +1和n =k 分别代入所证的式子,然后作差,即可求出增加量,然后只需稍加说明即可,这也是用数学归纳法证明几何命题的一大技巧.例3 平面内有n (n ∈N *,n ≥2)条直线,其中任何两条不平行,任何三条不过同一点,证明:交点的个数f (n )=n (n -1)2.证明 (1)当n =2时,两条直线的交点只有一个, 又f (2)=12×2×(2-1)=1,∴当n =2时,命题成立. (2)假设n =k (k >2)时,命题成立, 即平面内满足题设的任何k 条直线交点个数f (k )=12k (k -1),那么,当n =k +1时,任取一条直线l ,除l 以外其他k 条直线交点个数为f (k )=12k (k -1),l 与其他k 条直线交点个数为k ,从而k +1条直线共有f (k )+k 个交点, 即f (k +1)=f (k )+k =12k (k -1)+k=12k (k -1+2) =12k (k +1)=12(k +1)(k +1)-1], ∴当n =k +1时,命题成立.由(1)(2)可知,对任意n ∈N *(n ≥2)命题都成立.反思与感悟 用数学归纳法证明几何问题时,一要注意数形结合,二要注意有必要的文字说明.跟踪训练3 有n 个圆,其中每两个圆相交于两点,并且每三个圆都不相交于同一点,求证:这n 个圆把平面分成f (n )=n 2-n +2部分. 证明 (1)n =1时,分为2块,f (1)=2,命题成立; (2)假设n =k (k ∈N *)时, 被分成f (k )=k 2-k +2部分; 那么当n =k +1时,依题意,第k +1个圆与前k 个圆产生2k 个交点,第k +1个圆被截为2k 段弧,每段弧把所经过的区域分为两部分,所以平面上净增加了2k 个区域. ∴f (k +1)=f (k )+2k =k 2-k +2+2k =(k +1)2-(k +1)+2,即n =k +1时命题成立,由(1)(2)知命题成立. 呈重点、现规律]1.数学归纳法证明与正整数有关的命题,包括等式、不等式、数列问题、整除问题、几何问题等.2.证明问题的初始值n 0不一定,可根据题目要求和问题实际确定n 0.3.从n =k 到n =k +1要搞清“项”的变化,不论是几何元素,还是式子;一定要用到归纳假设.一、基础过关1.用数学归纳法证明等式1+2+3+…+(n +3)=(n +3)(n +4)2 (n ∈N *),验证n =1时,左边应取的项是( ) A .1 B .1+2 C .1+2+3 D .1+2+3+4答案 D解析 等式左边的数是从1加到n +3.当n =1时,n +3=4,故此时左边的数为从1加到4.2.用数学归纳法证明“2n>n 2+1对于n ≥n 0的自然数n 都成立”时,第一步证明中的起始值n 0应取( )A .2B .3C .5D .6答案 C解析 当n 取1、2、3、4时2n>n 2+1不成立,当n =5时,25=32>52+1=26,第一个能使2n >n 2+1的n 值为5,故选C.3.已知f (n )=1+12+13+…+1n (n ∈N *),证明不等式f (2n )>n 2时,f (2k +1)比f (2k)多的项数是( ) A .2k -1项 B .2k +1项C .2k项 D .以上都不对答案 C解析 观察f (n )的表达式可知,右端分母是连续的正整数,f (2k )=1+12+…+12k ,而f (2k +1)=1+12+…+12k +12k +1+12k +2+…+12k +2k .因此f (2k +1)比f (2k)多了2k项.4.用数学归纳法证明不等式1n +1+1n +2+…+12n >1124(n ∈N *)的过程中,由n =k 递推到n =k+1时,下列说法正确的是( ) A .增加了一项12(k +1)B .增加了两项12k +1和12(k +1)C .增加了B 中的两项,但又减少了一项1k +1D .增加了A 中的一项,但又减少了一项1k +1答案 C解析 当n =k 时,不等式左边为1k +1+1k +2+ (12), 当n =k +1时,不等式左边为1k +2+1k +3+…+12k +12k +1+12k +2,故选C. 5.用数学归纳法证明“n 3+(n +1)3+(n +2)3(n ∈N *)能被9整除”,要利用归纳假设证n =k +1时的情况,只需展开( ) A .(k +3)3B .(k +2)3C .(k +1)3D .(k +1)3+(k +2)3答案 A解析 假设当n =k 时,原式能被9整除, 即k 3+(k +1)3+(k +2)3能被9整除.当n =k +1时,(k +1)3+(k +2)3+(k +3)3为了能用上面的归纳假设,只需将(k +3)3展开,让其出现k 3即可.6.已知数列{a n }的前n 项和为S n ,且a 1=1,S n =n 2a n (n ∈N *).依次计算出S 1,S 2,S 3,S 4后,可猜想S n 的表达式为________________. 答案 S n =2nn +1解析 S 1=1,S 2=43,S 3=32=64,S 4=85,猜想S n =2n n +1. 7.已知正数数列{a n }(n ∈N *)中,前n 项和为S n ,且2S n =a n +1a n,用数学归纳法证明:a n =n-n -1.证明 (1)当n =1时,a 1=S 1=12(a 1+1a 1),∴a 21=1(a n >0),∴a1=1,又1-0=1,∴n=1时,结论成立.(2)假设n=k(k∈N*)时,结论成立,即a k=k-k-1. 当n=k+1时,a k+1=S k+1-S k=12(a k+1+1a k+1)-12(a k+1a k)=12(a k+1+1a k+1)-12(k-k-1+1k-k-1)=12(a k+1+1a k+1)-k.∴a2k+1+2ka k+1-1=0,解得a k+1=k+1-k(a n>0),∴n=k+1时,结论成立.由(1)(2)可知,对n∈N*都有a n=n-n-1.二、能力提升8.对于不等式n2+n≤n+1 (n∈N*),某学生的证明过程如下:①当n=1时,12+1≤1+1,不等式成立.②假设n=k (n∈N*)时,不等式成立,即k2+k≤k+1,则n=k+1时,(k+1)2+(k+1)=k2+3k+2<k2+3k+2+(k+2)=(k+2)2=(k+1)+1,所以当n=k+1时,不等式成立,上述证法( )A.过程全部正确B.n=1验证不正确C.归纳假设不正确D.从n=k到n=k+1的推理不正确答案 D解析从n=k到n=k+1的推理中没有使用归纳假设,不符合数学归纳法的证题要求.9.用数学归纳法证明122+132+…+1(n+1)2>12-1n+2.假设n=k时,不等式成立.则当n=k+1时,应推证的目标不等式是__________________________.答案122+132+…+1k2+1(k+1)2+1(k+2)2>12-1k+3解析观察不等式中的分母变化知,122+132+…+1k2+1(k+1)2+1(k+2)2>12-1k+3.10.证明:62n-1+1能被7整除(n∈N*).证明(1)当n=1时,62-1+1=7能被7整除.(2)假设当n=k(k∈N*)时,62k-1+1能被7整除.那么当n=k+1时,62(k+1)-1+1=62k-1+2+1=36×(62k -1+1)-35.∵62k -1+1能被7整除,35也能被7整除,∴当n =k +1时,62(k +1)-1+1能被7整除.由(1),(2)知命题成立. 11.求证:1n +1+1n +2+…+13n >56(n ≥2,n ∈N *). 证明 (1)当n =2时,左边=13+14+15+16>56,不等式成立.(2)假设当n =k (k ≥2,k ∈N *)时命题成立, 即1k +1+1k +2+…+13k >56. 则当n =k +1时,1(k +1)+1+1(k +1)+2+…+13k +13k +1+13k +2+13(k +1)=1k +1+1k +2+…+13k +(13k +1+13k +2+13k +3-1k +1)>56+(13k +1+13k +2+13k +3-1k +1)>56+(3×13k +3-1k +1)=56, 所以当n =k +1时不等式也成立.由(1)和(2)可知,原不等式对一切n ≥2,n ∈N *均成立.12.已知数列{a n }中,a 1=-23,其前n 项和S n 满足a n =S n +1S n +2(n ≥2),计算S 1,S 2,S 3,S 4,猜想S n 的表达式,并用数学归纳法加以证明. 解 当n ≥2时,a n =S n -S n -1=S n +1S n+2.∴S n =-1S n -1+2(n ≥2).则有:S 1=a 1=-23,S 2=-1S 1+2=-34,S 3=-1S 2+2=-45, S 4=-1S 3+2=-56, 由此猜想:S n =-n +1n +2(n ∈N *). 用数学归纳法证明:(1)当n =1时,S 1=-23=a 1,猜想成立.(2)假设n =k (k ∈N *)猜想成立, 即S k =-k +1k +2成立, 那么n =k +1时,S k +1=-1S k +2=-1-k +1k +2+2=-k +2k +3=-(k +1)+1(k +1)+2. 即n =k +1时猜想成立.由(1)(2)可知,对任意正整数n ,猜想结论均成立. 三、探究与拓展13.已知递增等差数列{a n }满足:a 1=1,且a 1,a 2,a 4成等比数列. (1)求数列{a n }的通项公式a n ;(2)若不等式(1-12a 1)·(1-12a 2)·…·(1-12a n )≤m 2a n +1对任意n ∈N *,试猜想出实数m 的最小值,并证明.解 (1)设数列{a n }公差为d (d >0),由题意可知a 1·a 4=a 22,即1(1+3d )=(1+d )2, 解得d =1或d =0(舍去).所以a n =1+(n -1)·1=n . (2)不等式等价于12·34·56·…·2n -12n ≤m2n +1,当n =1时,m ≥32;当n =2时,m ≥358; 而32>358,所以猜想,m 的最小值为32. 下面证不等式12·34·56·…·2n -12n ≤322n +1对任意n ∈N *恒成立.下面用数学归纳法证明:证明 (1)当n =1时,12≤323=12,命题成立.(2)假设当n =k 时,不等式,12·34·56·…·2k -12k ≤322k +1成立,当n =k +1时,12·34·56·…·2k -12k ·2k +12k +2≤322k +1·2k +12k +2,只要证322k +1·2k +12k +2≤ 322k +3, 只要证2k +12k +2≤12k +3,只要证2k +12k +3≤2k +2, 只要证4k 2+8k +3≤4k 2+8k +4,只要证3≤4,显然成立.所以,对任意n ∈N *,不等式12·34·56·…·2n -12n ≤322n +1恒成立.小课堂:如何培养中学生的自主学习能力?自主学习是与传统的接受学习相对应的一种现代化学习方式。
人教新课标版数学高二选修2-2课时卷2.2.1综合法(第1课时)
课时提升卷(十六)综合法(45分钟 100分)一、选择题(每小题6分,共30分)1.与a>b等价的不等式是( )A.|a|>|b|B.a2>b2C.>1D.a3>b32.(2013·天水高二检测)对任意的锐角α,β,下列不等式中正确的是( )A.sin(α+β)>sinα+sinβB.sin(α+β)>cosα+cosβC.cos(α+β)>sinα+sinβD.cos(α+β)<cosα+cosβ3.如果x>0,y>0,x+y+xy=2,则x+y的最小值是( )A. B.2-2 C.1+ D.2-4.不相等的三个正数a,b,c成等差数列,并且x是a,b的等比中项,y 是b,c的等比中项,则x2,b2,y2三数( )A.成等比数列而非等差数列B.成等差数列而非等比数列C.既成等差数列又成等比数列D.既非等差数列又非等比数列5.已知关于x的方程x2+(k-3)x+k2=0的一根小于1,另一根大于1,则k的取值范围是( )A.(-1,2)B.(-2,1)C.(-∞,-1)∪(2,+∞)D.(-∞,-2)∪(1,+∞)二、填空题(每小题8分,共24分)6.设a>0,b>0,则下面两式的大小关系为lg(1+)[lg(1+a)+lg(1+b)].7.已知sinα+sinβ+sinr=0,cosα+cosβ+cosr=0,则cos(α-β)的值为.8.(2013·石家庄高二检测)若不等式(-1)n a<2+对任意正整数n 恒成立,则实数a的范围是.三、解答题(9~10题各14分,11题18分)9.设a,b,c为不全相等的正数,且abc=1,求证:++>++.10.已知向量a=(sin,cos-),b=(sin,cos+).其中A,B是△ABC的内角,a⊥b,求证:tanA·tanB为定值.11.(能力挑战题)若实数x,y,m满足|x-m|<|y-m|,则称x比y接近m.(1)若x2-1比3接近0,求x的取值范围.(2)对任意两个不相等的正数a,b,证明:a2b+ab2比a3+b3接近2ab.答案解析1.【解析】选D.由于a,b的正负不确定,所以结合不等式的性质知A,B,C 均不正确.2.【解析】选D.因为α,β为锐角,所以0<α<α+β<π,所以cosα>cos(α+β).又cosβ>0,所以cosα+cosβ>cos(α+β).3.【解析】选B.由x>0,y>0,x+y+xy=2,则2-(x+y)=xy≤()2,所以(x+y)2+4(x+y)-8≥0,所以x+y≥2-2或x+y≤-2-2.因为x>0,y>0,所以x+y的最小值为2-2.【举一反三】在本题条件不变的条件下,求xy的最大值.【解析】由x>0,y>0得x+y≥2.因为x+y+xy=2,所以2-xy≥2,所以()2+2-2≤0.因为>0,解得0<≤-1,即0<xy≤4-2,所以xy的最大值是4-2.4.【解析】选B.由已知条件,可得由②③得代入①,得+=2b,即x2+y2=2b2.故x2,b2,y2成等差数列.5.【解题指南】根据方程与函数图象的关系,可知f(1)<0.【解析】选B.令f(x)=x2+(k-3)x+k2.因为其图象开口向上,由题意可知f(1)<0,Δ=(k-3)2-4×1×k2>0,即解得-2<k<1.6.【解题指南】要比较两者大小,可先比较(1+)与的大小,又需先比较(1+)2与(1+a)(1+b)的大小.【解析】因为(1+)2-(1+a)(1+b)=1+2+ab-1-a-b-ab=2-(a+b)=-(-)2≤0,所以(1+)2≤(1+a)(1+b),所以lg(1+)≤[lg(1+a)+lg(1+b)].答案:≤【变式备选】若a≠b,a≠0,b≠0,则比较大小关系:++.【解析】可比较|a|+|b|与|a|+|b|的大小,进而比较|a|-|a|与|b|-|b|的大小,从而可比较出大小.因为(|a|-|a|)-(|b|-|b|)=|a|(-)-|b|(-)=(+)(-)2.因为a≠b,a≠0,b≠0,所以上式>0,故+>+.答案:>7.【解析】由sinα+sinβ+sinr=0,cosα+cosβ+cosr=0,得sinα+sinβ=-sinr,cosα+cosβ=-cosr,两式分别平方,相加得2+2(sinαsinβ+cosαcosβ)=1,所以cos(α-β)=-.答案:-8.【解题指南】分离参数a转化为最值问题,注意两边同除以(-1)n时应根据符号分类讨论.【解析】当n为偶数时,a<2-,而2-≥2-=,所以a<,当n为奇数时,a>-2-,而-2-<-2,所以a≥-2.综上可得,-2≤a<.答案:[-2,)9.【证明】因为a,b,c为不全相等的正数,且abc=1,所以++=bc+ca+ab.又bc+ca≥2·=2,ca+ab≥2·=2,ab+bc≥2·=2,且a,b,c不全相等,所以上述三个不等式中的“=”不能同时成立.所以2(bc+ca+ab)>2(++),即bc+ca+ab>++.故++>++.10.【解题指南】由a⊥b⇔a·b=0,然后结合三角公式进行化简,即可证得结论.【证明】由a⊥b得a·b=0,所以sin2+cos2-=0,即[1-cos(A+B)]+[1+cos(A-B)]-=0.化简得4cos(A-B)-5cos(A+B)=0,所以4cosA·cosB+4sinA·sinB-5cosA·cosB+5sinA·sinB=0,所以9sinA·sinB=cosAcosB,即tanA·tanB=,为定值.11.【解析】(1)由题意得|x2-1|<3.即-3<x2-1<3,所以-2<x<2,所以x的取值范围是(-2,2).(2)当a,b是不相等的正数时,a3+b3-(a2b+ab2)=(a-b)2(a+b)>0.又a2b+ab2=ab(a+b)>2ab,所以a3+b3>a2b+ab2>2ab>0,所以a 3+b3-2ab>a2b+ab2-2ab>0,所以|a 2b+ab2-2ab|<|a3+b3-2ab|,所以a 2b+ab2比a3+b3接近2ab.。
高中数学新人教版选修2-2课时作业:第二章 推理与证明2.2.1习题课 Word版含解析
习题课综合法和分析法明目标、知重点加深对综合法、分析法的理解,应用两种方法证明数学问题.1.综合法综合法是中学数学证明中最常用的方法,它是从已知到未知,从题设到结论的逻辑推理方法,即从题设中的已知条件或已证的真实判断出发,经过一系列的中间推理,最后导出所要求证的命题.综合法是一种由因导果的证明方法.综合法的证明步骤用符号表示是:P0(已知)⇒P1⇒P2⇒…⇒P n(结论)2.分析法分析法是指从需证的问题出发,分析出使这个问题成立的充分条件,使问题转化为判定那些条件是否具备,其特点可以描述为“执果索因”,即从未知看需知,逐步靠拢已知.分析法的书写形式一般为“因为……,为了证明……,只需证明……,即……,因此,只需证明……,因为……成立,所以……,结论成立”.分析法的证明步骤用符号表示是:P0(已知)⇐…⇐P n-2⇐P n-1⇐P n(结论)分析法属逻辑方法范畴,它的严谨体现在分析过程步步可逆.题型一选择恰当的方法证明不等式例1 设a,b,c为任意三角形三边长,I=a+b+c,S=ab+bc+ca,试证:3S≤I2<4S.证明I2=(a+b+c)2=a2+b2+c2+2ab+2bc+2ca=a2+b2+c2+2S.欲证3S≤I2<4S,即证ab+bc+ca≤a2+b2+c2<2ab+2bc+2ca.先证明ab+bc+ca≤a2+b2+c2,只需证2a2+2b2+2c2≥2ab+2bc+2ca,即(a-b)2+(a-c)2+(b-c)2≥0,显然成立;再证明a2+b2+c2<2ab+2bc+2ca,只需证a2-ab-ac+b2-ab-bc+c2-bc-ca<0,即a(a-b-c)+b(b-a-c)+c(c-b-a)<0,只需证a<b+c,且b<c+a,且c<b+a,由于a、b、c为三角形的三边长,上述三式显然成立,故有3S ≤I 2<4S .反思与感悟 本题要证明的结论要先进行转化,可以使用分析法.对于连续不等式的证明,可以分段来证,使证明过程层次清晰.证明不等式所依赖的主要是不等式的基本性质和已知的重要不等式,其中常用的有如下几个: (1)a 2≥0(a ∈R ).(2)(a -b )2≥0(a 、b ∈R ),其变形有a 2+b 2≥2ab ,(a +b2)2≥ab ,a 2+b 2≥(a +b )22.(3)若a ,b ∈(0,+∞),则a +b2≥ab ,特别地b a +a b≥2.(4)a 2+b 2+c 2≥ab +bc +ca (a ,b ,c ∈R ).跟踪训练1 已知a ,b 是正数,且a +b =1,求证:1a +1b≤4.证明 方法一 ∵a ,b 是正数且a +b =1, ∴a +b ≥2ab ,∴ab ≤12,∴1a +1b =a +b ab =1ab ≥4.方法二 ∵a ,b 是正数,∴a +b ≥2ab >0, 1a +1b ≥21ab>0,∴(a +b )(1a +1b)≥4.又a +b =1,∴1a +1b ≥4.方法三 1a +1b =a +b a+a +b b =1+b a +ab+1≥2+2b a ·ab=4.当且仅当a =b 时,取“=”号. 题型二 选择恰当的方法证明等式例2 已知△ABC 的三个内角A ,B ,C 成等差数列,对应的三边为a ,b ,c ,求证:1a +b +1b +c=3a +b +c.证明 要证原式,只需证a +b +c a +b +a +b +cb +c=3, 即证ca +b +ab +c =1,即只需证bc +c 2+a 2+abab +b 2+ac +bc=1,而由题意知A +C =2B , ∴B =π3,∴b 2=a 2+c 2-ac ,∴bc +c 2+a 2+ab ab +b 2+ac +bc =bc +c 2+a 2+ab ab +a 2+c 2-ac +ac +bc=bc +c 2+a 2+ab ab +a 2+c 2+bc=1, ∴原等式成立,即1a +b +1b +c =3a +b +c. 反思与感悟 综合法推理清晰,易于书写,分析法从结论入手易于寻找解题思路.在实际证明命题时,常把分析法与综合法结合起来使用,称为分析综合法,其结构特点是:根据条件的结构特点去转化结论,得到中间结论Q ;根据结论的结构特点去转化条件,得到中间结论P ;若由P 可推出Q ,即可得证.跟踪训练2 设实数a ,b ,c 成等比数列,非零实数x ,y 分别为a 与b ,b 与c 的等差中项,试证:a x +c y=2. 证明 由已知条件得b 2=ac ,①2x =a +b,2y =b +c .② 要证a x +c y=2, 只要证ay +cx =2xy , 只要证2ay +2cx =4xy .由①②得2ay +2cx =a (b +c )+c (a +b )=ab +2ac +bc , 4xy =(a +b )(b +c )=ab +b 2+ac +bc =ab +2ac +bc , 所以2ay +2cx =4xy .命题得证. 题型三 立体几何中位置关系的证明例3 如图,在四棱锥P -ABCD 中,PA ⊥底面ABCD ,AB ⊥AD ,AC ⊥CD ,∠ABC =60°,PA =AB =BC ,E 是PC 的中点.(1)证明:CD ⊥AE ; (2)证明:PD ⊥平面ABE . 证明 (1)在四棱锥P -ABCD 中, ∵PA ⊥底面ABCD ,CD ⊂底面ABCD , ∴PA ⊥CD .∵AC ⊥CD ,PA ∩AC =A , ∴CD ⊥平面PAC ,而AE ⊂平面PAC , ∴CD ⊥AE .(2)由PA =AB =BC ,∠ABC =60°, 可得AC =PA ,∵E 是PC 的中点,∴AE ⊥PC . 由(1)知,AE ⊥CD ,且PC ∩CD =C , 所以AE ⊥平面PCD .而PD ⊂平面PCD , ∴AE ⊥PD .∵PA ⊥底面ABCD ,∴PA ⊥AB ,又AB ⊥AD ,∴AB ⊥平面PAD , ∴AB ⊥PD ,又AB ∩AE =A ,综上得PD ⊥平面ABE .反思与感悟 综合法证明线面之间的垂直关系是高考考查的重点,利用垂直的判定定理和性质定理可以进行线线、线面以及面面之间垂直关系的转化.另外,利用一些常见的结论还常常可以将线面间的垂直与平行进行转化.比如:两条平行线中一条垂直于平面α,则另外一条也垂直于平面α;垂直于同一条直线的两个平面相互平行等.跟踪训练3 如图,正方形ABCD 和四边形ACEF 所在的平面互相垂直,EF ∥AC ,AB =2,CE =EF =1.(1)求证:AF ∥平面BDE ; (2)求证:CF ⊥平面BDE .证明 (1)如图,设AC 与BD 交于点G .因为EF ∥AG ,且EF =1,AG =12AC =1,所以四边形AGEF 为平行四边形. 所以AF ∥EG . 因为EG ⊂平面BDE ,AF ⊄平面BDE ,所以AF ∥平面BDE .(2)连接FG .因为EF ∥CG ,EF =CG =1,且CE =1,所以四边形CEFG 为菱形. 所以CF ⊥EG .因为四边形ABCD 为正方形,所以BD ⊥AC .又因为平面ACEF ⊥平面ABCD ,且平面ACEF ∩平面ABCD =AC , 所以BD ⊥平面ACEF . 所以CF ⊥BD .又BD ∩EG =G , 所以CF ⊥平面BDE . 呈重点、现规律]1.综合法的特点是:从已知看可知,逐步推出未知. 2.分析法的特点是:从未知看需知,逐步靠拢已知.3.分析法和综合法各有优缺点.分析法思考起来比较自然,容易寻找到解题的思路和方法,缺点是思路逆行,叙述较繁;综合法从条件推出结论,较简捷地解决问题,但不便于思考.实际证题时常常两法兼用,先用分析法探索证明途径,然后再用综合法叙述出来.一、基础过关1.已知a ≥0,b ≥0,且a +b =2,则( ) A .a ≤12B .ab ≥12C .a 2+b 2≥2 D .a 2+b 2≤3答案 C解析 ∵a +b =2≥2ab ,∴ab ≤1. ∵a 2+b 2=4-2ab ,∴a 2+b 2≥2.2.已知a 、b 、c 、d ∈{正实数},且a b <c d,则( ) A.a b <a +cb +d <cd B.a +cb +d <a b <cdC.a b <c d <a +cb +dD .以上均可能答案 A解析 方法一 特值检验,∵a b <c d, 可取a =1,b =3,c =1,d =2, 则a +cb +d =25,满足a b <a +c b +d <cd.∴B、C 、D 不正确. 方法二 要证a b <a +cb +d,∵a 、b 、c 、d ∈{正实数}, ∴只需证a (b +d )<b (a +c ),即证ad <bc .只需证a b <c d .而a b <c d成立, ∴a b <a +cb +d .同理可证a +c b +d <cd. 3.下面四个不等式:①a 2+b 2+c 2≥ab +bc +ac ;②a (1-a )≤14;③b a +a b≥2;④(a 2+b 2)(c 2+d 2)≥(ac +bd )2. 其中恒成立的有( )A .1个B .2个C .3个D .4个 答案 C解析 a 2+b 2+c 2=a 2+b 22+a 2+c 22+b 2+c 22≥ab +ac +bc ;a (1-a )≤(a +1-a2)2=14;(a 2+b 2)(c2+d 2)=a 2c 2+a 2d 2+b 2c 2+b 2d 2≥a 2c 2+2abcd +b 2d 2=(ac +bd )2;当ba <0时,b a +a b≥2不成立. 4.若实数a ,b 满足0<a <b ,且a +b =1,则下列四个数中最大的是( ) A.12 B .2ab C .a 2+b 2D .a 答案 C解析 ∵a +b =1,a +b >2ab ,∴2ab <12,由a 2+b 2>(a +b )22=12,又∵0<a <b ,且a +b =1,∴a <12,∴a 2+b 2最大.5.设a =3-2,b =6-5,c =7-6,则a 、b 、c 的大小顺序是________. 答案 a >b >c 解析 a =13+2,b =16+5,c =17+6.∴a >b >c . 6.如图所示,SA ⊥平面ABC ,AB ⊥BC ,过A 作SB 的垂线,垂足为E ,过E 作SC 的垂线,垂足为F .求证:AF ⊥SC .证明:要证AF ⊥SC ,只需证SC ⊥平面AEF ,只需证AE ⊥SC (因为______),只需证______,只需证AE ⊥BC (因为________),只需证BC ⊥平面SAB ,只需证BC ⊥SA (因为______).由SA ⊥平面ABC 可知,上式成立.答案 EF ⊥SC AE ⊥平面SBC AE ⊥SB AB ⊥BC解析 要证线线垂直,可先证线面垂直,要证线面垂直,还需线线垂直,通过证明BC ⊥平面SAB ,可得AE ⊥BC ,进而AE ⊥平面SBC ,SC ⊥平面AEF ,问题得证.7.如果a ,b 都是正数,且a ≠b ,求证:a b +ba>a +b . 证明 方法一 用综合法a b +b a -a -b =a a +b b -a b -b aab=(a -b )(a -b )ab=(a -b )2(a +b )ab>0,∴a b +ba>a +b . 方法二 用分析法 要证a b +ba>a +b , 只要证a 2b +b 2a+2ab >a +b +2ab ,即要证a 3+b 3>a 2b +ab 2,只需证(a +b )(a 2-ab +b 2)>ab (a +b ), 即需证a 2-ab +b 2>ab , 只需证(a -b )2>0,因为a ≠b ,所以(a -b )2>0恒成立, 所以a b +ba>a +b 成立. 二、能力提升8.命题甲:(14)x 、2-x 、2x -4成等比数列;命题乙:lg x 、lg(x +2)、lg(2x +1)成等差数列,则甲是乙的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件答案 C解析 由(14)x 、2-x 、2x -4成等比数列可得:(2-x )2=(14)x ·2x -4,解得x =4;由lg x 、lg(x +2)、lg(2x +1)成等差数列得:2lg(x +2)=lg x +lg(2x +1),可解得x =4(x =-1舍去),所以甲是乙的充要条件.9.若a >b >1,P =lg a ·lg b ,Q =12(lg a +lg b ),R =lg(a +b2),则( )A .R <P <QB .P <Q <RC .Q <P <RD .P <R <Q答案 B解析 a >b >1⇒lg a >0,lg b >0,Q =12(lg a +lg b )>lg a ·lg b =P ,R >lg ab =12(lg a +lg b )=Q ⇒R >Q >P .10.已知α、β为实数,给出下列三个论断:①αβ>0;②|α+β|>5;③|α|>22,|β|>2 2.以其中的两个论断为条件,另一个论断为结论,你认为正确的命题是________. 答案 ①③⇒②解析 ∵αβ>0,|α|>22,|β|>2 2.∴|α+β|2=α2+β2+2αβ>8+8+2×8=32>25. ∴|α+β|>5. 11.已知a >0,求证: a 2+1a 2-2≥a +1a-2.证明 要证 a 2+1a 2-2≥a +1a-2,只要证a 2+1a 2+2≥a +1a+ 2. ∵a >0,故只要证 ⎝ ⎛⎭⎪⎫a 2+1a 2+22≥⎝⎛⎭⎪⎫a +1a +22,即a 2+1a2+4a 2+1a 2+4≥a 2+2+1a 2+22⎝ ⎛⎭⎪⎫a +1a +2, 从而只要证2a 2+1a 2≥2⎝ ⎛⎭⎪⎫a +1a , 只要证4⎝ ⎛⎭⎪⎫a 2+1a 2≥2⎝ ⎛⎭⎪⎫a 2+2+1a2,即a 2+1a2≥2,而该不等式显然成立,故原不等式成立.12.已知a 、b 、c ∈R ,且a +b +c =1,求证:(1a -1)(1b -1)·(1c-1)≥8.证明 方法一 (分析法)要证(1a -1)(1b -1)(1c-1)≥8成立,只需证1-a a ·1-b b ·1-c c≥8成立.因为a +b +c =1,所以只需证(a +b +c )-a a ·(a +b +c )-b b ·(a +b +c )-c c≥8成立,即证b +c a ·a +c b ·a +bc≥8成立. 而b +c a ·a +c b ·a +b c ≥2bc a ·2ac b ·2ab c =8成立. ∴(1a-1)(1b-1)(1c-1)≥8成立. 方法二 (综合法) (1a -1)(1b -1)(1c-1)=(a +b +c a -1)(a +b +c b -1)(a +b +cc-1) =b +c a ·a +c b ·a +b c =(b +c )(a +c )(a +b )abc≥2bc ·2ac ·2ababc=8,当且仅当a =b =c 时取等号,所以原不等式成立.13.设数列{a n }的前n 项和为S n ,已知a 1=1,2S n n =a n +1-13n 2-n -23,n ∈N *.(1)求a 2的值;(2)求数列{a n }的通项公式;(3)证明:对一切正整数n ,有1a 1+1a 2+…+1a n <74.(1)解 2S 1=a 2-13-1-23,又S 1=a 1=1,所以a 2=4.(2)解 当n ≥2时,2S n =na n +1-13n 3-n 2-23n ,2S n -1=(n -1)a n -13(n -1)3-(n -1)2-23(n -1),两式相减得2a n =na n +1-(n -1)a n -13(3n 2-3n +1)-(2n -1)-23,整理得(n +1)a n =na n +1-n (n +1), 即a n +1n +1-a n n =1,又a 22-a 11=1, 故数列⎩⎨⎧⎭⎬⎫a n n 是首项为a 11=1,公差为1的等差数列,所以a nn=1+(n -1)×1=n ,所以a n =n 2. 所以数列{a n }的通项公式为a n =n 2,n ∈N *. (3)证明1a 1+1a 2+1a 3+…+1a n =1+14+132+142+…+1n 2<1+14+12×3+13×4+…+1n (n -1) =1+14+⎝ ⎛⎭⎪⎫12-13+⎝ ⎛⎭⎪⎫13-14+…+⎝ ⎛⎭⎪⎫1n -1-1n =54+12-1n =74-1n <74, 所以对一切正整数n ,有1a 1+1a 2+…+1a n <74.三、探究与拓展14.已知a ,b ,c ,d ∈R ,求证:ac +bd ≤(a 2+b 2)(c 2+d 2).(你能用几种方法证明?)证明 方法一 (用分析法) ①当ac +bd ≤0时,显然成立.②当ac +bd >0时,欲证原不等式成立,只需证 (ac +bd )2≤(a 2+b 2)(c 2+d 2).即证a 2c 2+2abcd +b 2d 2≤a 2c 2+a 2d 2+b 2c 2+b 2d 2. 即证2abcd ≤b 2c 2+a 2d 2即证0≤(bc -ad )2. 因为a ,b ,c ,d ∈R ,所以上式恒成立. 故原不等式成立,综合①②知,命题得证. 方法二 (用综合法)(a 2+b 2)(c 2+d 2)=a 2c 2+a 2d 2+b 2c 2+b 2d 2=(a 2c 2+2acbd +b 2d 2)+(b 2c 2-2bcad +a 2d 2) =(ac +bd )2+(bc -ad )2≥(ac +bd )2. ∴(a 2+b 2)(c 2+d 2)≥|ac +bd |≥ac +bd . 方法三 (用比较法)∵(a 2+b 2)(c 2+d 2)-(ac +bd )2=(bc -ad )2≥0, ∴(a 2+b 2)(c 2+d 2)≥(ac +bd )2, ∴(a 2+b 2)(c 2+d 2)≥|ac +bd |≥ac +bd .方法四(用放缩法)为了避免讨论,由ac+bd≤|ac+bd|,可以试证(ac+bd)2≤ (a2+b2)(c2+d2).由方法一知上式成立,从而方法四可行.方法五(构造向量法)设m=(a,b),n=(c,d),∴m·n=ac+bd,|m|=a2+b2,|n|=c2+d2.∵m·n≤|m|·|n|=a2+b2·c2+d2.故ac+bd≤(a2+b2)(c2+d2).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版高中数学精品资料
课时作业(二)
一、选择题
1.已知函数y=f(x)在x=x0处的导数为11,则
lim Δx→0f x0-Δx-f x0
Δx
=( )
A.11 B.-11
C.1
11
D.-
1
11
答案 B
2.函数f(x)在x=0可导,则lim
h→a f h-f a
h-a
=( )
A.f(a) B.f′(a) C.f′(h) D.f(h) 答案 B
3.已知函数y=x2+1的图像上一点(1,2)及邻近点(1+Δx,2+Δy),则lim
Δx→0Δy
Δx
=( )
A.2 B.2x C.2+Δx D.2+Δx2答案 A
4.设f(x)为可导函数,且满足lim
x→0f-f-2x
2x
=-1,则f′(1)的值为( )
A.2 B.-1
C.1 D.-2
答案 B
二、填空题
5.一个物体的运动方程为S=1-t+t2,其中S的单位是米,t的单位是秒,那么物体在3秒末的瞬时速度是________.
答案5米/秒
6.函数y=(3x-1)2在x=x0处的导数为0,则x0=________.
答案1 3
解析 Δy =f (x 0+Δx )-f (x 0)=(3x 0+3Δx -1)2-(3x 0-1)2=18x 0Δx +9(Δx )2
-6Δx ,
∴
Δy
Δx
=18x 0+9Δx -6. ∴li m Δx →0
Δy Δx =18x 0-6=0,∴x 0=1
3
.
7.设f (x )=ax +4,若f ′(1)=2,则a =________. 答案 2
解析 Δy =f (1+Δx )-f (1) =a (1+Δx )+4-a -4=a Δx . ∴f ′(1)=li m Δx →0
Δy
Δx
=li m Δx →0
a =a .
又f ′(1)=2,∴a =2.
8.质点M 按规律s =2t 2
+3做直线运动(位移单位:m ,时间单位:s),则质点M 的瞬时速度等于8 m/s 时的时刻t 的值为________.
答案 2
解析 设时刻t 的值为t 0,则
Δs =s (t 0+Δt )-s (t 0)=2(t 0+Δt )2
+3-2t 2
0-3 =4t 0·Δt +2·(Δt )2
,
Δs Δt =4t 0+2Δt ,lim Δt →0
Δs
Δt
=4t 0=8,∴t 0=2(s). 9.已知f (x )=1x
,则lim Δx →0
f +Δx -f
Δx
的值是________.
答案 -1
4
10.
如图,函数f (x )的图像是折线段ABC ,其中A ,B ,C 的坐标分别为(0,4),(2,0),(6,4),
则
f (f (0))=________;
lim Δx →0
f
+Δx -f
Δx
=______.
答案 2;-2 三、解答题
11.设f (x )=x 2
,求f ′(x 0),f ′(-1),f ′(2). 答案 f ′(x 0)=2x 0,f ′(-1)=-2,f ′(2)=4
12.某物体运动规律是S =t 2
-4t +5,问什么时候此物体的瞬时速度为0? 答案 t =2
解析 ΔS =(t +Δt )2
-4(t +Δt )+5-(t 2
-4t +5) =2t Δt +(Δt )2
-4Δt ,
v =li m Δt →0
ΔS
Δt
=2t -4=0,∴t =2. 13.若f ′(x 0)=2,求li m k →0
f x 0-k -f x 0
2k
的值.
解析 令-k =Δx ,∵k →0,∴Δx →0.
则原式可变形为li m Δx →0
f x 0+Δx -f x 0
-2Δx
=-12
li m Δx →0
f x 0+Δx -f x 0
Δx
=-12f ′(x 0)=-1
2×2=-1.
►重点班·选做题
14.若一物体运动方程如下:(位移:m ,时间:s)
s =⎩⎪⎨
⎪⎧
3t 2
+2 t , ①
29+
t -2 t ②
求:(1)物体在t ∈[3,5]内的平均速度; (2)物体的初速度v 0;
(3)物体在t =1时的瞬时速度.
解析 (1)∵物体在t ∈[3,5]内的时间变化量为Δt =5-3=2, 物体在t ∈[3,5]内的位移变化量为
Δs =3×52
+2-(3×32
+2)=3×(52
-32
)=48,
∴物体在t ∈[3,5]上的平均速度为Δs Δt =48
2
=24(m/s).
(2)求物体的初速度v 0即求物体在t =0时的瞬时速度.∵物体在t =0附近的平均变化率为
Δs Δt =f +Δt -f
Δt
=29+
+Δt -3]2
-29-
-
2
Δt
=3Δt -18,
∴物体在t =0处的瞬时变化率为lim Δt →0
Δs
Δt
=lim Δt →0
(3Δt -18)=-18,即物体的初速度为
-18 m/s.
(3)物体在t =1时的瞬时速度即为函数在t =1处的瞬时变化率. ∵物体在t =1附近的平均变化率为 Δs Δt =f +Δt -f
Δt
=29+
+Δt -3]2
-29-
-
2
Δt
=3Δt -12,
∴物体在t =1处的瞬时变化率为 lim Δt →0
Δs
Δt
=lim Δt →0
(3Δt -12)=-12.
即物体在t =1时的速度为-12 m/s.。