反比例函数图像与性质 ppt

合集下载

反比例函数的图像和性质课件

反比例函数的图像和性质课件

曲线运动问题
通过给定物体的速度和运 动轨迹的曲率半径,利用 反比例关系求解物体在不 同位置的速度。
浓度问题建模与求解
溶液稀释问题
通过给定溶液的初始浓度 和稀释后的体积,利用反 比例关系求解稀释后的浓 度。
溶液混合问题
通过给定两种不同浓度的 溶液的体积和浓度,利用 反比例关系求解混合后的 浓度。
物质溶解问题
通过给定三角形的面积和底边长度,利用反比例关系求解高。
平行四边形面积问题
03
通过给定平行四边形的面积和一组对边的长度,利用反比例关
系求解另一组对边的长度。
速度问题建模与求解
01
02
03
匀速直线运动问题
通过给定物体的速度和运 动时间,利用反比例关系 求解物体运动的距离。
变速直线运动问题
通过给定物体的加速度和 运动时间,利用反比例关 系求解物体在不同时间点 的速度。
在第一象限和第三象限内,随着 $x$ 的增大 ,$y$ 值逐渐减小。
函数图像关于原点对称。
函数值变化规律
01
当 $k < 0$ 时
在第二象限和第四象限内,随着 $x$ 的增大,$y$ 值逐渐增大。
无论 $k$ 取何值,反比例函数 在其定义域内总是连续的,且在 其定义域内没有极值点。
02
03
04
函数图像关于原点对称。
2
反比例型复合函数图像
反比例型复合函数的图像形状和位置取 决于 $f(x)$ 的性质和取值范围。一般来 说,其图像可能不再是双曲线,但仍然 具有一些反比例函数的特性。
3 反比例型复合函数性质
反比例型复合函数具有一些特殊的性质 ,如单调性、奇偶性等,这些性质与 $f(x)$ 的性质和取值范围密切相关。在 实际应用中,需要根据具体情况进行分 析和判断。

反比例函数的图像和性质ppt课件

反比例函数的图像和性质ppt课件

7、若点(-2,y1)、(-1,y2)、(2,y3)在
反比例函数 y = - 1 0 0 的图象上,则(
xቤተ መጻሕፍቲ ባይዱ
B

A、y1>y2>y3 C、y3>y1>y2
B、y2>y1>y3 D、y3>y2>y1
资金是运动的价值,资金的价值是随 时间变 化而变 化的, 是时间 的函数 ,随时 间的推 移而增 值,其 增值的 这部分 资金就 是原有 资金的 时间价 值
已知点A(2,y1), B(5,y2)C是(反-3比,y例3)函是数y 象上的两点.请比较y1,y2的,y大3的小大.小.
4 x

y
⑴代入求值
y1 A B
-3 y2 O2 5
C y3
⑵利用增减性
⑶根据图象判断
x
资金是运动的价值,资金的价值是随 时间变 化而变 化的, 是时间 的函数 ,随时 间的推 移而增 值,其 增值的 这部分 资金就 是原有 资金的 时间价 值
1、反比例函数y= - 5 的图象大致是( D )
y
x
y
A:
o
x
B:
o
x
y
C:
o
x
D:
y
o x
资金是运动的价值,资金的价值是随 时间变 化而变 化的, 是时间 的函数 ,随时 间的推 移而增 值,其 增值的 这部分 资金就 是原有 资金的 时间价 值
2、我校食堂有5吨煤,用y表示可以用的天数
,用x表示每天的烧煤量,则y关于x的函数的
10
1、这几个函数图象有 8 什么共同点?
2、函数图象分别位于 6 哪几个象限?
4
3、y随的x变化有怎

反比例函数的图像与性质 课件

反比例函数的图像与性质 课件
理解反比例函数在几何上的含义和意义。
反比例函数图像的特点
探索反比例函数图像的形状和特征。
反比例函数的运算和应用
学习如何进行反比例函数的运算,并了解其在 实际问题中Байду номын сангаас应用。
参考资料
1 参考书目
- 反比例函数的进一步学习
2 参考链接
- 更多关于反比例函数的信息
反比例函数的图像与性质
欢迎来到本课件,我们将介绍反比例函数的图像和性质。了解什么是反比例 函数及其表示方法。
什么是反比例函数
定义
反比例函数是一种数学函数关系,当其中一个变量的值增大时,另一个变量的值相应地减小。
表示方法
通常用y=k/x来表示,其中k是非零实数。
反比例函数的图像
性质
反比例函数的图像呈现出一个下凹的曲线,且经过 第一象限和第三象限。
比例线性关系
反比例函数的图像与比例函数的图像之间存在线性 关系。
比例函数的应用
1
实际问题
反比例函数可以用于解决实际问题,例
参考例题
2
如时间和速度之间的关系。
我们将提供一些参考例题,以加深对反 比例函数的理解和应用。
总结
反比例函数的定义和性质
了解反比例函数是如何定义的以及其特点。
反比例函数的几何意义
图像特点
图像的特点是有两条渐近线,即x轴和y轴,它们分 别称为垂直渐近线和水平渐近线。
反比例函数的几何意义
1 越来越快地接近x轴和y轴
2 与比例函数的区别
随着x值的增大或减小,函数的值会越来越接 近y轴或x轴。
相比之下,比例函数的图像是通过原点的直 线。
反比例函数的运算
乘除法反转
当两个变量成反比例关系时,乘积保持不变。

26.1.2反比例函数的图像和性质课件(共31张PPT)

26.1.2反比例函数的图像和性质课件(共31张PPT)

(1)y 2 (2)y 2x
3x
3
(5)y 2x 3
(3)y 2 3x
(4)y 2x 3
2、如图,这是下列四个函数中哪一个函数的图象
(A)y=5x (B)y=2x+3
(C) y 4 x
(D) y 3 x
练一练 2
已知反比例函数 y 4 k x
-6
-5 -4 -3 -2 -1 0 1 -1
23 4
5
6x
-2
的特征?
-3
-4
-5
再让我们仔细看看,这两个
-6
函数图象在位置上有什么关系?
操作二:
比一比:
同桌两人分别画出函数 y 8 , y 8 或
x
x
的图象,看谁画得又快又好.
y 3,y3
x
x
找一找: 根据大家所画出的函数图象,从以下几个方面出发,你
增减性 当k>0时,在每一象限内,y随x的增大而减小;
当k<0时,在每一象限内,y随x的增大而增大.
图象的发展趋势
反比例函数的图象无限接近于x,y轴,但永远不能到达x,y轴
对称性 ⑴反比例函数的图象是轴对称图形.直线y=x和y=-x
都是它的对称轴; ⑵反比例函数 y 与k
x
轴对称。
y 的 k图象关于x轴对称,也关于y
速度x(km/h)的函数,则这个函数的图象大致是( C )
思前想后
2﹑已知 k<0, 则函数 y1=kx,y2=
k
x

同一坐标系中的图象大致是 ( D )
y
y
(A)
(B)
x
0
x

反比例函数的图象与性质-ppt课件

反比例函数的图象与性质-ppt课件
方 ■ 方法:利用数形结合思想解决反比例函数与几何的综

技 合问题

解决这类问题,一般先设出几何图形中未知边的长,然

拨 后结合函数图象,用含未知数的代数式表示出几何图形与
图象的交点坐标,再由函数表达式及几何图形的性质列方
程(组)求几何图形中的未知量或函数表达式.
6.2 反比例函数的图象与性质

如图,在平面直角坐标系中,菱形 ABCD 的边
B. y2<y3<y1
C. y1<y2<y3
D. y1<y3<y2
6.2 反比例函数的图象与性质
[解析]


∵k=-6<0,∴ 图象位于第二、四象限,在每一象限内

混 ,y 随 x 的增大而增大,∵x >x >0,∴y <y <0,∵x
1
3
3
1
2

析 <0,∴y2>0,∴y3<y1<y2.
[答案] A
6.2 反比例函数的图象与性质






■考点一
反比例函数图象的画法
1. 反比例函数图象的画法(描点法)
6.2 反比例函数的图象与性质






2. 反比例函数图象的特点
反比例函数 y=

(k

为常数,且 k≠0)的图象由
双曲线 分别位于两个象限内的两条曲线组成,这样的曲线
叫做双曲线
(1)轴对称图形,对称轴分别是①第二、四象限

读 算;
(2)需要注意的是,画反比例函数图象时应尽量多取一
些点,描点越多,图象越准确.
6.2 反比例函数的图象与性质

人教版九年级下册第26章反比例函数的图象和性质(共68张PPT)

人教版九年级下册第26章反比例函数的图象和性质(共68张PPT)

x
练一练
1. 如图,过反比例函数 y k 图象上的一点 P,作 x
PA⊥x 轴于A. 若△POA 的面积为 6,则 k = -12 .
提示:当反比例函数图象 在第二、四象限时,注意
y
k
P
y= x
k<0.
AO
x
2. 若点 P 是反比例函数图象上的一点,过点 P 分别向 x 轴、y 轴作垂线,垂足分别为点 M,N,若四边形 PMON 的面积为 3,则这个反比例函数的关系式是
O
x
y
y 4 x
O
xห้องสมุดไป่ตู้
归纳:
反比例函数 y k (k<0) 的图象和性质:
x
●由两条曲线组成,且分别位于第二、四象限 它们与x轴、y轴都不相交;
●在每个象限内,y随x的增大而增大.
一般地,反比例函数 y k 的图象是双曲线, x
它具有以下性质:
(1) 当 k > 0 时,双曲线的两支分别位于第一、三 象限,在每一象限内,y 随 x 的增大而减小;
S△OFE = S1 = S2,而 S3>S△OFE, 所以 S1,S2,S3的大小关系为
S1 = S2 < S3
S1 S3
F S2
例8 如图,点 A 是反比例函数 y 2 (x>0)的图象

x y


3
任意一点,AB//x 轴交反比例函数
x (x<0) 的
图象于点 B,以 AB 为边作平行四边形 A5 BCD,其中
-6-5-4-3-2-1O -1
1 2 3 4 5 6 x (2) 在每一个象限内,
-2
随着x的增大,y 如何
-3 -4

初中数学反比例函数ppt课件

初中数学反比例函数ppt课件

03
反比例函数的应用
生活中的反比例函数
总结词
在日常生活中,反比例函数的应用十 分广泛。
详细描述
例如,在购物时,商品的单价与购买 数量成反比,购买数量越多,单价越 低;在交通中,距离和时间成反比, 行驶的距离越远,所需的时间越长。
物理中的反比例函数
总结词
反比例函数在物理学中也有着广泛的应用。
详细描述
难点
如何正确绘制反比例函数的图像,以及如何理解和应用函数的性质。
THANKS。
定义域和值域:x≠0,y≠0
反比例函数的基本形式
y=k/x(k为常数,k≠0)
图像:双曲线
变化规律:当k>0时,图像在第一、三象限,y值随x的增大而减小;当k<0时,图像在第二 、四象限,y值随x的增大而增大。
反比例函数的意义
01
02
03
04
描述两个量之间的关系
反映函数关系和自变量、因变 量的关系
简单应用
给出一些简单的反比例函数表达式和图像,让学 生指出其性质和意义。
判断题
给出一些反比例函数的表达式和图像,让学生判 断是否正确。
中等难度练习
给定一个反比例函数的图像, 让学生求出其表达式。
给定一个反比例函数的表达式 ,让学生作出其图像。
利用反比例函数解决实际问题 :如根据两个城市之间的距离 和速度关系,计算时间。
初中数学反比例函数ppt课件
目录
• 反比例函数概述 • 反比例函数的图像和性质 • 反比例函数的应用 • 反比例函数的难点与易错点 • 练习与巩固 • 总结与回顾
01
反比例函数概述
反比例函数的定义
反比例函数的定义:一般地,形如y=k/x(k为常数,k≠0)的函数叫做反比例函数 。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

6
描点
5 4●
3
2

1
ห้องสมุดไป่ตู้
● ●

连线
-8●–7–6 –5–4 –3 -2-1 O 1 2 3 4 5 6 7 8

-1

x
● -2
-3
● -4
-5
-6
-7
-●8
议一议
你认为作反比例函数图象时应注意哪些问题?
1.列表时,选取的自变量的值,既要易于计算,又要便于描点, 尽量多取一些数值(取互为相反数的一对一对的数),多描 一些点,这样既可以方便连线 ,又可以使图象精确。
的图象在第 一、三 象限。
x
2. 双曲线 y =
1 3x
经过点(-3,__91_)
3.函数
y
=
m-2 x
的图像在二、四象限,则m的
取值范围是 _m__<_2 .
4.对于函数 y = ___一__、__三_象限.
1 2x
,这部分图像在第
回顾:
驶向胜利 的彼岸
小结 拓展
1:形状
反比反因比此例例称函反函数比数的例图函的象数是的图由图象两象支为和曲双线曲性组线质成; 的.
随堂练习
“双胞胎”之间的差

下面给出了反比例函数y=
2 x
的图象,你能知道哪一个是 y=
为什么?
和-2y图=象-吗x2 ? x
y
y
y 2 x
y2 x
ox
ox
1、反比例函数y= - 5
x
的图象大致是( D

y
y
A:
o
x
B:
o
x
y
C:
o
x
D:
y
o x
测一测
y=
5
1.函数 y =
5 x
的图像在第_二_,_四__象限,函数

-5
-6

形状:
图像分别都是由两支曲线组成,因此称反比例函 数的图象为双曲线。
位置:
函数
y=
4 x
的两支曲线分别位于第一、三象限
内.函数 y = —-x4 的 两支曲线分别位于第二、四
象限内.
k 2.反比例函数 y x
的图象在哪两个象限,由什么确定?
答:由k决定。
当k>0时,两支双曲线分别位于一,三象限内; 当k<0时,两支双曲线分别位于二,四象限内;
复习提问
1. 下列函数中哪些是反比例函数?
① y = 3x-1 ② y = 2x2
③y=
1 x

y
=
2x 3
⑤ y = 3x
⑥ y=
1 x

y
=
1 3x

y
=
3 2x
2. 上节课我们学的反比例函数关系式是什么? y = k (k ≠0,k是常数)
x
自变量x的取值范围是什么? 函数y的取值范围是什么?
y4 x

1 2
1
4 3
2
4
2
8
…1 12 2
… -8 -4 -2
3
4 3
48
-1
1 2
… …
. y
6
y = —-x4
5
.4
3

. ..
2 1
-6 -5 -4 -3 -2 -1 0 -1 -2
-3 -4 -5 -6
1 2 .3 4. .5 6 x . .


驶向胜 利的彼

想一想
1.观察函数y
4 x
和 y=-x—4
的图象,有什么相同点和不同点.
y
6
5 4
. y=—4x
3 2
...
1
. -6-5 .-4.-3-.2 --10 1 2 3 4 5 6 x
1-
.-3-2
-4 -5
6
.
y
6
y = —-x4
.
5 4
3

...
2 1
-6 -5 -4 -3 -2 -1-10 -2
1
2
.
.3 4.
5
6
x
-34
独立
作业
知识的升华
P52习题18.4 第3、5题.
祝你成功!
驶向胜利 的彼岸
知识的综合运用:
课外探索与交流:
在同一坐标系中,函数 y
k1 x
和y=k2x+b的
图像大致如下,则 k1 、k2、b各应满足什么条 件?说明理由。
A
B
C
D
x
… -8 -4 -3 -2 -1 1 2

1 2
1
2
3
4
8
y = —-x4 …
1 2
1
4 3
2
4
8

-8 -4
-2
4 3
-1
1 2
2.描点:以表中各组对应值作为点的坐标,在直角坐 标系内描出相应的点.
3.连线:用光滑的曲线顺次连接各点,就可得到 图象.
x … -8 -4 -3 -2 -1 1
2 .描点时要严格按照表中所列的对应值描点,绝对不能把 点的位置描错。
3.一定要养成按自变量从小到大的顺序依次画线,连线时必 须用光滑的曲线连接各点,不能用折线连接。
4.图像是延伸的,注意不要画成有明确端点。
5.曲线的发展趋势只能靠近坐标轴,但不能和坐标轴相交.
驶向胜利 的彼岸
1.画出函数 y = -x—4 的图象(直接画在课本上) 解:1.列表:
解: 1.列表:
x
y 4 x
… -8
-4
-3
-2
-1
1 2


1 2
-1 4 3
-2
-4
-8 …
1 2
1
84
2 2
3
4 3
4 1
8
1 2
列表(在自变量取值范围内取一些值,并计算相应的函数值)
x
-8
-4
-3
-2
-1
1 2
1 2
12348
y
1 2
-1 4
3
-2 -4 y -8
8
4
2
4 3
11
2
8● 7
x≠0
,y≠0
已知一次函数y=kx+b(k≠0)的图象是
k
大家想不想知道:反比例函数 y (k≠0)的
图象是什么样子呢?
x
让我们一起画个反比例函数的图象看一看。
例题
请画出函数 y = —4x 的图象。
思考:
(1)还记得作函数图象的三个步骤是什么?
列表、描点、连线。
注意: ① x≠0 ②列表时自变量 取值易于计算, 易于描点
2:位置 当k>0时,两支双曲线分别位于第一,三象限内; 当k<0时,两支双曲线分别位于第二,四象限内;
3注意事项: (1)因k≠0,x≠0故y≠0,所以它们都不与坐标轴相交。 (2)画图时注意其美观性(对称性、延伸性):反比例函数
的图象既是中心对称图形,又是轴对称图形。它们各自都有 一个对称中心两条对称轴;图象分别都是由两支曲线组成的, 两个分支都无限趋近但永远不能与x轴和y轴相交。
相关文档
最新文档