最新人教版初中七年级数学上册3.2 第1课时 用合并同类项的方法解一元一次方程学案

合集下载

七年级数学 第三章 一元一次方程3.2 解一元一次方程(一)合并同类项与移项第2课时 移项

七年级数学 第三章 一元一次方程3.2 解一元一次方程(一)合并同类项与移项第2课时 移项
3x – 4x = –xi2àn5ɡ)– 20
移项变号
合并(hébìng)同 类项
– x = – 45
系数化为1
x = 45
第八页,共二十三页。
回顾(huígù)本题列方程的过程,可以发 现:“表示同一个量的两个不同的式子相 等”是一个基本的相等关系.
第九页,共二十三页。
思考(sīkǎo)
上面解方程中“移项(yí xiànɡ)”起了什么作用?
解:设她们采摘(cǎizhāi)用了x小时,则 8x – 0.25 = 7x + 0.25. 解得 x = 0.5.
答:她们采摘用了0.5小时.
第十七页,共二十三页。
随堂演练(yǎn liàn)
基础(jīchǔ) 1. 巩对固于方程– 3x – 7=12x+6,下列移项正确的是( )A
A. – 3x – 12x=6+7 B. – 3x+12x= – 7+6 C. – 3x – 12x=7-6 D.12x – 3x=6+7
表示这批书的总数的两个代数式相等. 3x + 20 = 4x – 25
第五页,共二十三页。
思考(sīkǎo)
方程3x + 20 = 4x – 25的两边都有含x的项 (3x与4x)和不含字母(zìmǔ)的常数项(20与– 25),怎样才能使它向x=a(常数)的形式 转化呢?
第六页,共二十三页。
为了使方程的右边没有含x的项,等号两边减 4x;为了使左边(zuǒ bian)没有常数项,等号两边减20.
排量各是多少?
分析:因为新、旧工艺的废水(fèishuǐ)排量之比 为2∶5,所以可设它们分别为2x t和5x t,再根据它
们与环保限制的最大量之间的关系列方程.

人教版数学七年级上册3-2-1 解一元一次方程—合并同类项 教案

人教版数学七年级上册3-2-1 解一元一次方程—合并同类项 教案

3.2.1 解一元一次方程—合并同类项【教学目标】1.会根据实际问题找相等关系列一元一次方程,会利用合并同类项解一元一次方程。

2.体会方程中的化归思想,会用合并同类项解决“ax+bx=c”型方程,进一步认识如何用方程解决实际问题。

3.通过对实际问题的分析,体会一元一次方程作为实际问题的数学模型的作用。

【教学重、难点】会列一元一次方程解决实际问题,并会合并同类项解一元一次方程。

【教学准备】课本、练习本、练习册【教学过程】一、忆旧识新再设疑——新课导入1.复习回顾(1)同类项:所含字母____,并且_____的指数也分别相同的项叫____。

(2)合并同类项:合并同类项时,只把_____相加减,字母与字母的指数_____。

2.创设情境,提出问题约公元820年,中亚细亚数学家阿尔—花拉子米写了一本代数书,重点论述怎样解方程。

这本书的拉丁文译本取名为《对消与原》。

“对消”与“还原”是什么意思呢?【设计意图】学生通过复习旧知识,进一步巩固了同类项的相关概念,为准备本课的学习做好铺垫。

二、曲径通幽细探寻——问题探究某校近三年共购买计算机140台,去年的购买量是前年的2倍,今年的购买量又是去年的2倍,前年这个学校购买了多少台计算机? 活动1:推理验证问题1:可以怎样设未知数?【学生活动】独立思考,同桌交流归纳。

分析:设前年购买计算机x台。

则去年购买计算机2x台,今年购买计算机4x台。

问题2:题目中的等量关系是什么?【学生活动】独立思考,小组交流归纳。

前年购买量+去年购买量+今年购买量=140台问题3:如何根据等量关系列方程?由题意得,x+2x+4x=140活动2:集思广益,寻找解一元一次方程的办法问题1:怎样解这个方程?如何将这个方程转化为x=a的形式?合并同类项,得7x=140系数化为1,得x=20答:所以前年这个学校购买了20台计算机。

思考:以上解方程中的“合并”起了什么作用?它把含未知数的项合并为一项,从而向x=a的形式迈进了一步,起到了化简的作用。

人教版七年级数学上册《3-2 第1课时 合并同类项解一元一次方程》作业同步练习题及参考答案

人教版七年级数学上册《3-2 第1课时 合并同类项解一元一次方程》作业同步练习题及参考答案

3.2 解一元一次方程(一)——合并同类项与移项第 1 课时合并同类项解一元一次方程1.方程�+x+2x=210 的解为( )2A.x=20B.x=40C.x=60D.x=802.解下列一元一次方程时,合并同类项正确的是( )A.已知x+7x-6x=2-5,则-2x=-3B.已知0.5x+0.9x+0.1=0.4+0.9x,则1.5x=1.3C.已知25x+4x=6-3,则29x=3D.已知5x+9x=4x+7,则18x=73.方程-3x-3x=5-1 的解为( )2 2A.x=-3B.x=-13C.x=3 D.x=134.如果x=m 是方程1x-m=1 的解,那么m 的值是( )2A.0B.2C.-2D.-65.某人有三种邮票共180 枚,它们的数量比为1∶2∶3,则这三种邮票的数量分别为.6.如果5x-6x=-9+11,那么1-x= .7.小明在做作业时,不小心把方程中的一个常数弄脏了看不清楚,被弄脏的方程为2y-1y=1-■,怎么办?2 2小明想了想,便翻看了书后的答案,此方程的解为y=-5,于是,他很快知道了这个常数,则这个常数3是.8.解下列方程:(1)8y-7y-12y=-5;(2)2.5z-7.5z+6z=32.9.(2018 安徽中考)《孙子算经》中有这样一道题,原文如下:今有百鹿入城,家取一鹿,不尽,又三家共一鹿,适尽.问:城中家几何?大意为:今有100 头鹿进城,每家取一头鹿,没有取完,剩下的鹿每3 家共取一头,恰好取完.问:城中有多少户人家?请解答上述问题.10.解下列方程:(1)11x-2x=9; (2)-4+16=�.211.甲、乙、丙三辆卡车所运货物的吨数比为6∶7∶4.5,已知甲车比乙车少运货物12 t,则三辆卡车共运货物多少吨?12.足球的表面是由若干个黑色五边形和白色六边形皮块围成的,黑白皮块的数目比为3∶5,一个足球表面一共有32 块皮,黑色皮块和白色皮块各有多少?★13.海宝在研究一元一次方程应用时,被这样一个问题难住了:神厨小福贵对另一个厨师说:“我做的面包不是100 个,我现在的面包加上和我现在的面包数目相等的面包,再加上现在面包数目一半的面包,再加上现在面包数目一半的一半的面包,另外再加上一个面包, 就恰好是100 个面包了.请你算算我做了多少个面包?”请你帮忙算一下小福贵做了多少个面包?★14.太阳下山晚霞红,我把鸭子赶回笼.一半在外闹哄哄,一半的一半进笼中,剩下十五围着我,请问共有多少只鸭子?你能列出方程来解决这个问题吗?3★15.已知 1 + 1 + 1 +…+ 1 =1-1 + 1 − 1 + 1 − 1+…+ 1 − 1 =1- 1 , 则 方 程 � + � + � + 1×2 2×3 3×499×100 2 2 3 3 4 99 100 100 1×2 2×3 3×4�+…+ � =2 017 的解是多少?4×5 2 017×2 018答案与解析夯基达标1.C2.C 选项 A 中,合并同类项,得 2x=-3;选项 B 中,0.1 与 0.5x+0.9x 不是同类项,不能合并;0.4 与 0.9x 不是同类项,不能合并;选项 D 中,5x+9x 与 4x 不在方程的同一边,不能直接合并,所以选项 A,B,D 错误,故选 C .3.B4.C5.30 枚、60 枚、90 枚 设三种邮票的数量分别为 x ,2x ,3x ,则x+2x+3x=180,(1+2+3)x=180,6x=180,x=30(枚),2x=60(枚),3x=90(枚). 6.3解方程 5x-6x=-9+11,得-x=2.所以 1-x=1+2=3.7.38.解 (1)合并同类项,得-11y=-5,系数化为 1,得 5y=11. (2)合并同类项,得 z=32.9. 解 设城中有 x 户人家,依题意得 x+�=100,解得 x=75. 答:城中有 75 户人家.培优促能10. 解 (1)合并同类项,得 9x=9,系数化为 1,得 x=1.2 4 x=99, × (2)合并同类项,得�=12, 系数化为 1,得 y=24. 11. 解 设甲、乙、丙三辆卡车所运货物的吨数分别为 6x ,7x ,4.5x ,则 7x-6x=12,解得 x=12.6x+7x+4.5x=17.5x=17.5×12=210(t).答:三辆卡车共运货物 210 t .12. 解 设黑色皮有 3x 块,白色皮有 5x 块. 根据“足球表面一共有 32 块皮”, 可得 3x+5x=32,解得 x=4.所以 3x=3×4=12,5x=5×4=20.答:黑色皮有 12 块,白色皮有 20 块.13. 解 设现在面包数为 x ,根据题意,得 1 1 x+x+2x+4x=100-1,合并同类项,得11系数化为 1,得 x=36.答:小福贵做了 36 个面包.14. 解 设共有 x 只鸭子,根据题意, 1 得 x+ 11x+15=x ,2 2 2解得 x=60.答:共有 60 只鸭子.创新应用 15. 解 原方程可变为 + 1 + 1 + 1 +…+ 12 017,2×3 3×4 4×5 2 017×2 0181- 1 + 1 − 1 + 1 − 1 + 1 − 1+…+ 1 − 1x=2 017, 2 2 3 3 4 4 5 2 017 2 018- 12 018 x=2 017,x=2 018.1 1×2 1。

人教版2024-2025学年七年级数学上册第1课时 利用合并同类项解一元一次方程(课件)

人教版2024-2025学年七年级数学上册第1课时 利用合并同类项解一元一次方程(课件)
a
例 题 【教材P121】
例 2 有一列数 1,-3,9,-27,81,-243,···,
其中第 n 个数是 (-3)n-1 (n>1),如果这列数中某三个
相邻数的和是 -1701,那么这三个数各是多少?
分析:从符号和绝对值两方面观察,可发现这列数的 排列规律,后面的数是它前面的数与 -3 的乘积.
巩固练习
1. 王芳和姐姐、妈妈一起包馄饨,妈妈包馄饨的个数是
王芳的
4
倍,姐姐包馄饨的个数是妈妈的
1 2
,已知
三人一共包了 70 个馄饨,则王芳包了___1_0___个馄饨.
思路分析
设王芳包了
x 个混沌
4倍
王芳
妈妈
x
+ 4x
1 2
姐姐
+
2x = 70
2. 某种中成药由甘草、党参、苏叶三种材料组成,其中 甘草、党参、苏叶三种材料的质量之比为 1∶2∶4. 若生产 210 kg 这种中成药,则需要用到甘草、党参、 苏叶的质量分别是多少千克?
利用合并同类项解一元一次方程的步骤:
(1)合并同类项:把等号同侧的含未知数的项、
常数项分别合并,把方程转化为 ax = b( a ≠ 0, a,b 为常数)的形式;
(2)系数化为 1:利用等式的性质 2,在方程两边 除以未知数的系数或乘未知数系数的倒数,将未知
数的系数化为 1,得到 x = b .
第 1 课时 利用合并同类项解一元一次方程
人教版·七年级上册
学习目标
1. 会利用合并同类项的方法解一元一次方程, 体会等式变形中的化归思想.
2. 能够从实际问题中列出一元一次方程,进 一步体会方程模型思想的作用及应用价值.

人教版初中数学七年级上册精品教学课件 第3章一元一次方程 3.2 第1课时 合并同类项解一元一次方程

人教版初中数学七年级上册精品教学课件 第3章一元一次方程 3.2 第1课时 合并同类项解一元一次方程
三个小组,且使甲、乙、丙三个小组的人数之比是2∶3∶5,求各小
组的人数.
解: 由题意可设甲、乙、丙三个小组的人数分别为2x,3x,5x,则
2x+3x+5x=60,解得x=6.
答:甲、乙、丙三个小组的人数分别为12,18,30.
解:设这家商场第一季度共销售了x台LED电视,根据题意,得
x+2x+4x=2 800,
合并同类项,得7x=2 800,系数化为1,得x=400.
答:这家商场第一季度共销售400台LED电视.
快乐预习感知
1.下列变形中错误的是( C )
A.由3x-2x=1,得x=1
B.由2x-3x=8,得-x=8
C.由5x-2x+3x=12,得x=-2
C.2
1 3
x-2x=2 ,
1
1- 2
D.3
3 1 3
x=2 , 2x=2,x=3.
4.已知三个连续偶数的和为54,则中间的偶数为
18
.
解析:设中间的偶数为x,根据题意,得x-2+x+x+2=54,即3x=54,解得
x=18.
y=-3
5.方程-y-y=6的解为
.
快乐预习感知
6.如果5x-6x=-9+11,那么1-x=
合并同类项
,
互动课堂理解
1.合并同类项解一元一次方程
【例1】 解方程:2x+(-7x)=3-(-12).
分析:2x与-7x是同类项,3与-(-12)也是同类项,先把它们分别合并,
再把x的系数化为1,即可求解.
解:合并同类项,得-5x=15,
系数化为1,得x=-3.
互动课堂理解

2020年七年级数学上册 第3章 一元一次方程 3.2 解一元一次方程(一)—合并同类项与移项 第1课时 合并同类

2020年七年级数学上册 第3章 一元一次方程 3.2 解一元一次方程(一)—合并同类项与移项 第1课时 合并同类

1.下列各方程合并同类项不正确的是( C )
A.由3x-2x=4,合并同类项,得x=4
B.由2x-3x=3,合并同类项,得-x=3
C.由5x-2x+3x=-10-2,合并同类项,得6x=-8.
D.由-7x+2x=5,合并同类项,得-5x=5
2.下列解为x=4方程是( B )
A.7x-3x=-4
B.x+x=5+3
7.若关于x的方程2mx-3m=3x+2的解是8,则m的值为( A )
A.2
B.8
C.-2
D.-8
8.关于x的方程3-x=2a与方程x+3x=28的解相同,则a的值为( B )
A.2
B.-2
C.5
D.-5
9. (长沙中考)中国古代数学著作《算法统宗》中有这样一段记载:“三百
七十八里关,初健步不为难,次日脚痛减一半,六朝才得到其关.”其大
C.x=-1+3
D.-2x=8
3.挖一条长1210m的水渠,由甲、乙两队从两头同时施工.甲队每天挖
130m,乙队每天挖90m,需几天才能挖好?设需用x天才能挖好,则所列方
程正确的是( A )
A.130x+90x=1210
B.130+90x=1210
C.130x+90=1210
D.(130-90)x=1210
除以a
,从而得到x=
b a
.
自我诊断1. 方程2x+x=-6的解是( D )
A.x=0
B.x=1
C.x=2
D.x=-2
利用总分关系列方程
总量=各部分量的 和 .
自我诊断2. 若三个连续奇数的和是15,则它们的积为( A )
A.105
B.15
C.35
D.75

初中数学教学课件:3.2 解一元一次方程(一)——合并同类项与移项 第1课时(人教版七年级上)

初中数学教学课件:3.2  解一元一次方程(一)——合并同类项与移项  第1课时(人教版七年级上)
合并同类项,得17x 25500
系数化为1,得x 1500
答:Ⅰ型1 500台,Ⅱ型3 000台,Ⅲ型21 000台.
3.在遗留下来的古埃及草卷中, 记载着一些数学问题.其
中一个翻译过来就是“啊哈,它的全部,它的七分之一,
其和等于19”.你能求出问题中的“它”吗?请你根据题 意列出方程. 解:设 “它”为x,列出方程:x+ x
8 x=19, 7 133 . x= 8
1 7
=19,
4.太阳下山晚霞红,我把鸭子赶回笼;一半在外闹哄哄, 一半的一半进笼中;剩下十五围着我,共有多少请算清. 你能列出方程来解决这个问题吗? 解:设鸭子一共有x只. 1 1 x x x 15, 2 4 1 x 15, 4 x 60. 答:鸭子一共有60只.
某校三年共购买计算机140台,去年购买的数量是前年
的2倍,今年购买的数量又是去年的2倍,前年这个学校购 买了多少台计算机? 设前年购买了x台.可以表示出:去年购买计算机_____ 2x 台,今年购买计算机 关系吗?
4x
台.你能找出问题中的相等
前年购买量+去年购买量+今年购买量=140台
思考:怎样解
么意思呢?
合 (1) x+2x+4x =(1+2+4)x 并
同 =7x
(2)5y-3y-4y =(5-3-4)y =-2y
类 (3)4a-1.5a-2.5a 项 =(4-1.5-2.5)a
=0
设未知数 实际问题
列方程 一元一次方程
分析实际问题中的数量关系,利用其中的相等
关系列出方程,是解决实际问题的一种数学方法.
x+2x+4x=140

初中数学人教版七年级上册《第1课时利用合并同类项解一元一次方程》课件

初中数学人教版七年级上册《第1课时利用合并同类项解一元一次方程》课件

3.若三个连续偶数的和是24,则它们的积是( B )
A.48 B.480 C.240 D.120
4.有一列数按一定规律排成:1,-4,16,-64,256,…,其中某三个 相邻的数的和是3328,则这三个数各是多少?
解:设这三个相邻数中的第一个数是x,则 x+(-4x)+16x=3328 解得x=256
下面的框图表示了解这个方程的流程: x+2x+4x=140
合并同类项
7x=140
系数化为1
x=20
由上可知前年这个学校购买了20台计算机
利用合并同类项解一元一次方程
想一想: 上述解方程中的“合并”起了什么作用?
解方程中“合并”起了化简作用,把含有未知数的项合 并为一项,从而到达把方程转化为ax = b的情势,其中a,b 是常数,“合并”的根据是逆用分配律.
第1课时
利用合并同类 项解一元一次 方程
人教版 七年级数学上
1.利用合并同类项解一元一次方程 2.列方程解决“总量=各部分量之和”问题
练一练:根据所学知识,完成下面内容。 用合并同类项进行化简: (1) 3x -15x = _-__1_2_x___; (2) -13x + 7x = _-__6_x____;
算机的数量是( C )
A.25台 B.50台 C.75台 D.100台
1.解下面方程时,既要合并含未知数的项,又要合并常数项的是
(B )
A.3x+2x=5 B.x-2x=1+2 C.-2x-3x=-1 D.2x=6+2
2.下列解为x=4的方程是( B )
A.7x-3x=-4 B.x+x=5+3 C.x=-1+3 D.-2x=8

人教版七年级上册解一元一次方程——合并同类项与移项(第1课时)课件x

人教版七年级上册解一元一次方程——合并同类项与移项(第1课时)课件x
2
2 7 − 2.5 + 3 − 1.5 = −15 × 4 − 6 × 3
1
2
解:(1)合并同类项,得− = −2,系数化为1,得 = 4
(2)合并同类项,得6 = -78.系数化为1,得 = -13
教学新知
例2 有一列数,按一定规律排列成1,-3,9,-27,81,-243……
课堂练习
解:设原两位数十位上数为
则原两位数为10 + 2 = 12,新两位数为10 × 2 + = 21.
根据题意知21 − 12=36.合并同类项,得9 = 36.
系数化为1,得 = 4.12 × 4 = 48.
答:原两位数为48.
3.一条环形跑道长400米,甲练习骑自行车平均每分钟550米,乙练习
3.2 一元一次方程
3.2 解一元一次方程(一)
——合并同类项与移项(1)

2 4 = 140
课题引入
问题1:约公元820年,中亚细亚数学家阿尔一花拉子米
写了一本代数书,重点论述怎样解方程.这本书的拉丁文译本
取名为《对消与还原》.“对消”与“还原”是什么意思呢?
通过下面几节课的学习讨论,相信同学们一定能回答这个问题.
10
180吨
量为1800吨,那么1月份的产量为_________________.
6.某超市的收银员在记帐时发现现金少了153.9元,查帐后得知是一
笔支出款的小数点被看错了一位,则她查出这笔看错了的支出款实际
17.1
是_______元.
知识拓展
如图,将一列数按如图的方式排列成一个方阵,用一个长方形框
白皮块数目比为3:5,一个足球表面一共有32个皮块,黑色皮块和白色

解一元一次方程(一)(第一课时)教学设计人教版数学七年级上册

解一元一次方程(一)(第一课时)教学设计人教版数学七年级上册

集体备课教学设计分析:解方程,就是把方程变形,化归为x=a(a为常数)的形式。

思考:上述解方程中的“合并”起了什么作用?解方程中“合并”起了化简作用,把含有未知数的项合并为一项,从而达到把方程转化为ax=b的形式,其中ab是常数。

回顾本题列方程的过程,可以发现:“总量=各部分的和”是一个基本的相等关系。

三、典例精析合并同类项解方程例1.解下列方程:x=68;(2)7x2.5x+3x1.5x=15×46×3(1)2x52解:(1)合并同类项,得1x=22系数化为1,得x=4(2)合并同类项,得6x=78系数化为1,得x=13实际应用例2.有一列数,按一定规律排列成1,3,9,27,81,243,....,其中某三个相邻数的和是1701,这三个数各是多少?分析:依题意得从符号和绝对值两方面观察,可发现这列数的排列规律:后面的数是它前面的数与3的乘积.如果三个相邻数中的第1个记为x,则后两个数分别是3x,9x.解:设所求三个数分别是x, 3x,9x.由三个数的和是1701,得x3x+9x=1701合并同类项,得7x=1701 系数化为1,得x=243,所以3x=729,9x=2187答:这三个数是243,729,2187。

四、巩固练习1.解下列方程:(1)5x2x=9; (2)x 2+ 3x2=7;(3)3x+0.5x=10; (4)7x4.5x=2.5×35.2.某工厂的产值连续增长,去年是前年的1.5倍,今年是去年的2倍,这三年的总产值为550万元,前年的产值是多少?五、课堂小结1.你今天学习的解方程有哪些步骤?2.合并同类项在解方程的过程中起到了什么作用?3.解方程的过程中合并同类项和系数化为1的依据分别是什么?_板书设计 3.2 解一元一次方程(一)合并同类项与移项把一元一次方程转化为x=a 的形式 作业布置 书上第91页第1,3题 同步练习册 教学反思。

人教版七年级上册数学作业课件 第三章 一元一次方程 第1课时 用合并同类项的方法解一元一次方程

人教版七年级上册数学作业课件 第三章 一元一次方程 第1课时 用合并同类项的方法解一元一次方程
3.2 解一元一次方程(一)——合 并同类项与移项
第1课时 用合并同类项的方法解 一元一次方程
知识点一 利用合并同类项解一元一次方程
1.对于方程 2y+3y-4y=1,合并同类项正确的是
(A)
A.y=1
B.-y=1
C.9y=1
D.-9y=1
2.方程-a-3a=8 的解为( A )
A.a=-2
B.a=2
如下,正确的是( A )
A.130x+90x=1 210 B.130+90x=1 210
C.130x+90=1 210
D.(130-90)x=1 210
7.若三个连续奇数的和是 15,则它们的积是( A )
A.105
B.15
C.35
D.75
8.(2021-2022·北京期中)学校合唱组的男同学人数是
女同学的1,女同学人数比男同学多 4
42
人.合唱组有
女同学和男同学各多少人?
解:设合唱组有女同学 x 人,则有男同学 14x 人. 根据题意得 x-14x=42,解得 x=56.所以14×56=14(人). 答:合唱组有女同学 56 人,男同学 14 人.
9.(教材 P91 习题 T7 变式)小红把 140 cm 长的铁丝分 成 2 段,分别做成两个正方形的数学模型.如果两个 正方形的边长比是 3∶4,那么这两个正方形的边长 分别是多少? 解:设这两个正方形的边长分别为 3x cm,4x cm, 则 4×3x+4×4x=140.解得 x=5. 所以 3x=15,4x=20. 答:这两个正方形的边长分别为 15 cm,20 cm.
C.a=-3
D.a=3
3.如果 x=m 是方程 12x-m=1 的解,那么 m 的值是

人教版七年级数学上册《合并同类项解一元一次方程(一)》教学设计

人教版七年级数学上册《合并同类项解一元一次方程(一)》教学设计

解一元一次方程(一)——合并同类项一、内容及内容解析人教版义务教育课程标准实验教科书,七年级上册《3.2一元一次方程——合并同类项与移项》第1课时.方程是应用广泛的数学工具,生活中,很多问题借助于方程来解决.一元一次方程是最简单的方程,也是所有代数方程的基础.二元一次方程组(七年级下)和一元二次方程(九年级上)都是将其化归为一元一次方程来解决.因此它在义务教育阶段的数学课程中占重要地位。

而本节课用合并同类项解一元一次方程是解一元一次方程的基本步骤之一,为后面解一元一次方程奠定基础.在解方程的过程中,渗透转化的数学思想。

经历用方程解决实际问题,体会方程的应用价值.二、目标及目标解析1.目标:(1)掌握利用合并同类项解一元一次方程.(2)应用一元一次方程解决实际问题.2.目标解析:目标(1)是通过观察、类比、自主探究出利用合并同类项解一元一次方程的方法,渗透转化的数学思想,培养学生归纳、概括的能力.目标(2)是进一步让学生感受并尝试多角度解决问题的方法,初步体会方程的应用价值.通过学生之间相互交流,培养他们的合作意识.三、教学问题诊断分析在之前,学生已经学习了合并同类项和利用等式的性质解方程,这两个知识点综合到一起,就是本节用合并同类项解一元一次方程,故学生容易掌握.但学生在小学阶段习惯于列算式解决实际问题,用方程的思想来解决问题比较陌生,因此是本节的难点.由上确定本节课的重、难点如下:教学重点:1 合并同类项解一元一次方程.2列方程解决实际问题的思想方法.教学难点:分析实际问题中的已知量和未知量,找出相等关系,列出方程。

使学生逐步建立列方程解决实际问题的思想方法.四、教学支持条件分析利用多媒体展示教学的部分环节,如创设情境等,支持课堂教学.五、教学方法:引导发现法,合作学习与自主探究相结合.教学流程:六、教学过程:(一) 创设情境,提出问题活动一练习: 1将下列各式合并同类项(1)5x —2x=_____(2)-x+23 x+21x =______ 2一个正方形的周长为24cm ,问:边长是多少?【设计意图】:由练习1复习合并同类项,为进一步学习利用合并同类项解一元一次方程做铺垫.利用练习2引出用方程解决问题,为问题1做准备.播放2015年阅兵视频【设计意图】:对学生进行爱国主义教育,同时借助阅兵式中,空中梯队、文艺表演方队、群众游行方队之间的数量间的关系,编写应用题,引入新知.(二)自主探索,获取新知问题1 阅兵式中,空中梯队的个数是文艺表演方队个数的2倍,而群众游行方队的个数是空中梯队个数的3倍。

人教版数学七年级上册3.2第1课时用合并同类项的方法解一元一次方程[1]-课件

人教版数学七年级上册3.2第1课时用合并同类项的方法解一元一次方程[1]-课件
优翼 课件
七年级数学上(RJ) 教学课件
第三章 一元一次方程
3.2 解一元一次方程(一) ——合并同类项与移项
第1课时 用合并同类项的方法解一元一次方程
导入新课
讲授新课
当堂练习
课堂小结
学习目标
1. 学会运用合并同类项解形如ax+bx=c类型的一元 一 次方程,进一步体会方程中的“化归”思想. (重点)
解:设所求的三个数分别是 x,3x,9x. 由三个数的和是-1701,得
x 3 x 9 x 1 7 0 1 . 合并同类项,得
7x1701.
系数化为1,得
所以
x243. 3x729.
9x2187.
答:这三个数是 -243,729,-2187.
归纳:用方程解决实际问题的过程
实际问题
设未知数 列方程
(2) 合并同类项时,把各同类项的_系__数__相加减,字 母和字母的指数_不__变__.
用合并同类项进行化简: (1) 3x -5x = __-__2_x___; (2) -3x + 7x = ___4_x____;
(3) y + 5y- 2y =___4_y____; (4) 1y2y2y___-__y__.
一元一次方程 解方程
作答
分析实际问题中的数量关系,利用其中的 相等关系列出方程,是解决实际问题的一种数 学方法.
当堂练习
1. 下列方程合并同类项正确的是
A. 由 3x-x=-1+3,得 2x =4 B. 由 2x+x=-7-4,得 3x =-3 C. 由 15-2=-2x+ x,得 3=x D. 由 6x-2-4x+2=0,得 2x=0
解:设黑色皮块有3x个,则白色皮块有5x个. 根据题意列方程 3x + 5x = 32, 解得 x = 4, 则黑色皮块有 3x = 12 (个), 白色皮块有 5x = 20 (个). 答:黑色皮块有12个,白色皮块有20个.

七年级数学人教版(上册)第1课时利用合并同类项解一元一次方程

七年级数学人教版(上册)第1课时利用合并同类项解一元一次方程

B.x=3
1 C.x=-3
1 D.x=3
3.解方程:8x+9x-12x=11+3.
解:合并同类项,得 5x=14

14
系数化为 1,得 x= 5 .
4.解下列方程: (1)5x-6x=3. 解:合并同类项,得-x=3. 系数化为 1,得 x=-3. (2)-x+3x=7-1. 解:合并同类项,得 2x=6. 系数化为 1,得 x=3.
第三章 一元一次方程
3.2 解一元一次方程(一)——合并同类项与移项 第1课时 利用合并同类项解一元一次方程
知识点 利用合并同类项解一元一次方程
1.对方程 5x-3x+x=4 合并同类项正确的是( C )
ቤተ መጻሕፍቲ ባይዱ
A.x=4
B.2x=4
C.3x=4
D.-3x=4
2.方程 4x-x=1 的解是( D )
A.x=-3
7 7…可知,10x=7.777 7…,所以 10x-x=7,解方程,得 x=9,于
是得
0.7·=79.请仿照例子将
0.3··6写成分数的形式:
4 11

3 (3)x-2x=5-8.
1 解:合并同类项,得-2x=-3. 系数化为 1,得 x=6. (4)6y+12y-9y=10+2+6. 解:合并同类项,得 9y=18. 系数化为 1,得 y=2.
5.已知关于 x 的方程 4x-3m=2 的解是 x=m,则 m 的值为( A )
A.2
B.-2
2 C.7
6 解:合并同类项,得5x=1.8. 系数化为 1,得 x=1.5.
(3)16x-3.5x-6.5x=7-(-5). 解:合并同类项,得 6x=12. 系数化为 1,得 x=2.

人教版七年级初一数学上册 3.2解一元一次方程(一)合并同类项与移项第1课时

人教版七年级初一数学上册 3.2解一元一次方程(一)合并同类项与移项第1课时

9/13/2019
5
6.解下列方程: (1)3x-5x=10-8; 解:x=-1
(2)4x-1.5x+2.5x=-15; 解:x=-3 (3)x2+x3+x4=26. 解:x=24
9/13/2019
6
知识点2:根据“总量=各部分分量之和”列方程解决问题
7.挖一条长为1200米的水渠,由甲、乙两队从两头同时施工,
甲队每天挖150米,乙队每天挖90米,需要几天才能挖好?设
需要x天才能挖好,则列出的方程为( A )
A.150x+90x=1200
B.150+90x=1200
C.150x+90=1200
D.150x-90x=1200
9/13/2019
7
8.学校机房今年和去年共购置了100台计算机.已知今年购置
计算机数量是去年购置计算机数量的3倍,今年购置计算机的
解:设这两个正方形的边长分别为3x cm,4x cm,则4×3x+ 4×4x=140.解得x=5,所以3x=15,4x=20,即这两个正方 形的边长分别为15 cm,20 cm
9/13/2019
9
9/13/2019
10
11.某数的 5 倍比这个数的 8 倍少 12,则这个数是( A )
A.4
B.-4
第3章 一元一次方程
3.2 解一元一次方程(一) ——合并同类项与移项
第1课时 利用合并同类项 解一元一次方程
9/13/2019
1
9/13/2019
2
知识点1:利用合并同类项解一元一次方程 1.下列解方程合并同类项不正确的是( D ) A.由3x-2x=4得x=4 B.由2x-3x=3得-x=3 C.由-7x+2x=-1+5得-5x=4 D.由5x-2x+3x=-10-2得6x=-8

【人教版七年级上册数学上册】3.2解一元一次方程(一)——合并同类项与移项课时3

【人教版七年级上册数学上册】3.2解一元一次方程(一)——合并同类项与移项课时3

注意:1. 移项必须是由等号的一边移到另一边,而不
是在等号的同一边交换位置.
2. 方程中的各项均包括它们前面的符号,如x-2=1中,
方程左边的项有x,-2,移项时所移动的项一定要变号.
3.移项时,一般都习惯把含未知数的项移到等号左边,
把常数项移到等号右边.
移项与加法交换律的区别
移项是在等式中,把某些项从等号的一边移到另一边,
(3) 已知整式-3x+2 与2x-1的值互为相反数,求x的值.
解:(2) 列方程,得 -3y=y+1.移项,得 -3y-y=1.
合并同类项,得 -4y=1.
系数化为1,得
1
y=4
.
3.利用方程解答下列问题:
(1) x的3倍与2的和等于x的2倍与1的差,求x的值;
(2) y与-3的积等于y与1的和,求y的值;
2.解下列方程:
1
−6
2
3
= .
4
1
3
移项,得 −
2
4
(1) 6x-7=4x-5;
(2)
解:(1) 移项,
(2)
得6x-4x=-5+7.
1
合并同类项,得-
4
合并同类项,
得2x=2.
系数化为1,得 x=1.
= 6.
=6.
系数化为1,得 x= -24.
3.利用方程解答下列问题:
(1) x的3倍与2的和等于x的2倍与1的差,求xx+2x=32-7.
(2) 移项,得
合并同类项 ,得
5x=25.
合并同类项,得
系数化为1,得
x=5.
3
x- x=1+3.
2

人教版数学七年级上册:3.2 解一元一次方程(一)——合并同类项与移项 同步练习(附答案)

人教版数学七年级上册:3.2 解一元一次方程(一)——合并同类项与移项  同步练习(附答案)

3.2 解一元一次方程(一)——合并同类项与移项第1课时 利用合并同类项解一元一次方程1.对于方程8x +6x -10x =8,合并同类项正确的是( )A.3x =8B.4x =8C.-4x =8D.2x =82.方程x +2x =-6的解是( )A.x =0B.x=1 C.x =2 D.x=-2 3.方程2x +x +x 2=210的解是( )A.x =20B.x=40 C.x =60 D.x=804.下列各方程中,合并正确的是( )A.由3x -x =-1+3,得2x =4B.由23x +x =-7-4,得53x =-3C.由52-13=-x +23x ,得136=13xD.由6x -4x =-1+1,得2x =05.解下列方程:(1)6x -5x =3; (2)-x +3x =7-1;(3)x 2+5x 2=9; (4)6y +12y -9y =10+2+6.6.解方程:-23x +x =3.7.若式子3x -7和6x +13互为相反数,则x 的值为( )A.23B.32C.-32D.-238.小明在做作业时,不小心把方程中的一个常数污染了看不清楚,被污染的方程为:2y -12y =12-■,怎么办?小明想了想,便翻看了书后的答案,此方程的解为y =-53,于是,他很快知道了这个常数,这个常数是 .9.解下列方程:(1)0.3x -0.4x =0.6; (2)5x -2.5x +3.5x =-10;(3)x -25x =3+6; (4)16x -3.5x -6.5x =7-(-5).第2课时 利用合并同类项解一元一次方程的实际问题1.某数的3倍与这个数的2倍的和是30,这个数为( )A.4B.5C.6D.72.小王的妈妈买回一筐苹果,小王吃了13,弟弟吃了12,还剩下4个苹果,则妈妈买回的这筐苹果共有 个.3.已知3个连续偶数的和为36,则这三个偶数分别是 .4.一条长1 210 m 的水渠,由甲、乙两队从两头同时施工.甲队每天挖130 m ,乙队每天挖90 m ,则挖好水渠需要几天?5.麻商集团三个季度共销售冰箱2 800台,第一季度销售量是第二季度的2倍,第三季度销售量是第一季度的2倍,试问麻商集团第二季度销售冰箱多少台?6.我国是一个淡水资源严重缺乏的国家,有关数据显示,中国人均淡水资源占有量仅为美国人均淡水资源占有量的15,中、美两国人均淡水资源占有量之和为13 800 m 3,问中、美两国人均淡水资源占有量各为多少(单位:m 3)?7.有这样一列数,按一定规律排列成1,2,4,8,16,…,其中某三个相邻数的和是448,则这三个数是 .8.某人把360 cm长的铁丝分成两段,每段分别做成一个正方形,已知两个正方形的边长之比是4∶5,则这两个正方形的边长分别是 .9.在排成每行七天的日历表中取下一个3×3方块.若所有日期数之和为189,则n的值为 .10.足球的表面是由若干个黑色五边形和白色六边形皮块围成的,黑、白皮块的数目比为3∶5,一个足球表面一共有32块皮,黑色皮块和白色皮块各有多少?11.中国古代数学著作《算法统宗》中有这样一段记载:“三百七十八里关,初健步不为难,次日脚痛减一半,六朝才得到其关.”其大意是,有人要去某关口,路程378里,第一天健步行走,第二天起,由于脚痛,每天走的路程都为前一天的一半,一共走了六天才到达目的地,求此人第六天走的路程.第3课时 利用移项解一元一次方程1.解方程2x -5=3x -9时,移项正确的是( )A.2x +3x =9+5B.2x -3x =-9+5C.2x -3x =9+5D.2x -3x =9-52.若式子x +2的值为1,则x 等于( )A.1B.-1C.3D.-33.解方程4x -2=3-x 的步骤是( )①合并同类项,得5x =5;②移项,得4x +x =3+2;③系数化为1,得x =1.A.①②③B.③②①C.②①③D.③①②4.下列四组变形属于移项的是( )A.由x -24=3,得x -2=12 B.由9x -3=x +5,得9x -3=5+xC.由5x =15,得x =3D.由1-7x =2-6x ,得-7x +6x =2-15.若3x +6=4,则3x =4-6,这个过程是 .6.解下列方程:(1)4-35m =7; (2)2x -3=3x +4.7.解方程:x -3=-12x -4.8.已知x =1是关于x 的方程a(x -2)=a +3x 的解,则a 的值等于( )A.32B.-32C.34D.-349.下列方程中与2x -4=x +2的解相同的方程为( )A.3x +4=xB.x -2=3C.3x +6=0D.x +1=2x -510.某同学在解方程5x -1=■x+3时,把■处的数字看错了,解得x =-43,则该同学把■看成了( )A.3B.-1289C.-8D.8 11.对于有理数a ,b ,规定运算※的意义是:a ※b =a +2b ,则方程3x ※x =2-x 的解是x = .12.解下列方程:(1)3x +6=31-2x ; (2)x -2=13x +43.13.当m 为何值时,关于x 的方程4x -2m =3x +1的解是x =2x -3m 的解的2倍?第4课时利用移项解一元一次方程的实际问题1.天平的左边放2个硬币和10克砝码,右边放6个硬币和5克砝码,天平恰好平衡.已知所有硬币的质量都相同,如果设一个硬币的质量为x克,可列出方程为( )A.2x+10=6x+5B.2x-10=6x-5C.2x +10=6x -5D.2x -10=6x +52.甲厂库存钢材100吨,每月用去15吨;乙厂库存钢材82吨,每月用去9吨.经过m 个月,两厂剩余钢材相等,则m 的值应为( )A.2B.3C.4D.53.某部队开展植树活动,甲队35人,乙队27人,现另调28人去支援,使甲队人数与乙队人数相等,则应调往甲队的人数是 ,调往乙队的人数是 .4.七年级某班小组活动中,如果每组5人则余3人,每组6人则缺5人,则该班的学生人数为 人.5.小华的妈妈在25岁时生了小华,现在小华妈妈的年龄是小华的3倍多5岁,求小华现在的年龄.6.中国古代问题:有甲、乙两个牧童,甲对乙说:“把你的羊给我一只,我的羊数就是你的羊数的2倍”.乙回答说:“最好还是把你的羊给我一只,我们羊数就一样了”.若设甲有x 只羊,则下列方程正确的是( )A.x +1=2(x -2)B.x +3=2(x -1)C.x +1=2(x -3)D.x -1=x +12+17.“栖树一群鸦,鸦数不知数,三只栖一树,五只没去处,五只栖一树,闲了一棵树.请你仔细数,鸦树各几何?”在这一问题中,若设树有x棵,通过分析题意,鸦的只数不变,则可列方程:.8.甲、乙两人同时从A地出发去B地,甲骑自行车,骑行速度为10 km/h,乙步行,行走速度为6 km/h.当甲到达B地时,乙距B地还有8 km.甲走了多长时间?A,B两地的路程是多少?9.小明到书店帮同学买书,售货员告诉他,如果用20元钱办理“购书会员卡”,将享受八折优惠.(1)请问在这次买书中,小明在什么情况下办会员卡与不办会员卡一样?(2)当小明买标价为200元的书时,怎样做合算,能省多少钱?10.我市为减少雾霾天气采取了多项措施,如对城区主干道进行绿化.现计划把某一段公路的一侧全部栽上银杏树,要求路的两端各栽一棵,并且每两棵树的间隔相等.如果每隔5米栽1棵,那么树苗缺21棵;如果每隔6米栽1棵,那么树苗正好用完.设原有树苗x棵,则根据题意列出方程正确的是( )A.5(x+21-1)=6(x-1)B.5(x+21)=6(x-1)C.5(x+21-1)=6xD.5(x+21)=6x参考答案:3.2 解一元一次方程(一)——合并同类项与移项第1课时 利用合并同类项解一元一次方程1.B2.D3.C4.D5.(1)6x -5x =3;解:合并同类项,得x =3.(2)-x +3x =7-1;解:合并同类项,得2x =6.系数化为1,得x =3.(3)x 2+5x 2=9;解:合并同类项,得3x =9.系数化为1,得x =3.(4)6y +12y -9y =10+2+6.解:合并同类项,得9y =18.系数化为1,得y =2.6.解方程:-23x +x =3.解:合并同类项,得13x =3.系数化为1,得x =9.7.D8. 3.9.(1)0.3x -0.4x =0.6;解:合并同类项,得-0.1x =0.6.系数化为1,得x =-6.(2)5x -2.5x +3.5x =-10;解:合并同类项,得6x =-10.系数化为1,得x =-53. (3)x -25x =3+6; 解:合并同类项,得35x =9. 系数化为1,得x =15.(4)16x -3.5x -6.5x =7-(-5).解:合并同类项,得6x =12.系数化为1,得x =2.第2课时 利用合并同类项解一元一次方程的实际问题1.C2. 24 .3. 10,12,14.4.解:设需要x天才能挖好水渠,则130x+90x=1 210.解得x=5.5.答:挖好水渠需要5.5天.5.解:设麻商集团第二季度销售冰箱x台,则第一季度销售量为2x台,第三季度销售量为4x台.根据总量等于各分量的和,得x+2x+4x=2 800.解得x=400.答:麻商集团第二季度销售冰箱400台.6.解:设中国人均淡水资源占有量为x m3,美国人均淡水资源占有量为5x m3,根据题意,得x+5x=13 800.解得x=2 300.则5x=11 500.答:中、美两国人均淡水资源占有量各为2 300 m3,11 500 m3.7.64,128,256.8.40__cm,50__cm.9.21.10.解:设黑色皮有3x块,白色皮有5x块.根据“足球表面一共有32块皮”,可得3x +5x =32.解得x =4.所以3x =3×4=12,5x =5×4=20.答:黑色皮有12块,白色皮有20块.11.解:设第一天走的路程为x 里,则后面5天走得路程分别为:12x 里,14x 里,18x 里,116x 里,132x 里.根据题意,得 则x +12x +14x +18x +116x +132x =378. 解得x =192.则132x =132×192=6. 答:此人第六天走的路程为6里.第3课时 利用移项解一元一次方程1.B2.B3.C4.D5. 移项.6.(1)4-35m =7;解:移项,得-35m =7-4.合并同类项,得-35m =3.系数化为1,得m =-5.(2)2x -3=3x +4.解:移项,得2x -3x =3+4.合并同类项,得-x =7.系数化为1,得x =-7.7.解:移项,得x +12x =-4+3.合并同类项,得32x =-1.系数化为1,得x =-23.8.B9.D10.D11. 13.12.(1)3x +6=31-2x ;解:移项,得3x +2x =31-6.合并同类项,得5x =25.系数化为1,得x =5.(2)x -2=13x +43. 解:移项,得x -13x =2+43. 合并同类项,得23x =103. 系数化为1,得x =5.13.解:因为关于x 的方程x =2x -3m 的解为x =3m ,所以关于x 的方程4x -2m =3x +1的解是x =6m.将x =6m 代入4x -2m =3x +1,得24m -2m =18m +1.移项、合并同类项,得4m =1.所以m =14.第4课时 利用移项解一元一次方程的实际问题1.A2.B3. 10, 18.4. 43 .5.解:设小华现在的年龄为x 岁,则妈妈现在的年龄为(x +25)岁.根据题意,得 x +25=3x +5.解得x =10.答:小华现在的年龄为10岁.6.C7. 3x+5=5(x-1).8.解:设甲走了x h,则A,B两地的路程是10x km.根据题意,得10x=6x+8.解得x=2.则10x=20.答:甲走了2 h,A,B两地的路程是20 km.9.解:(1)设小明在买x元的书的情况下办会员卡与不办会员卡一样.则x=20+80%x.解得x=100.答:小明在买100元的书的情况下办会员卡与不办会员卡一样.(2)20+200×80%=180(元).200-180=20(元).答:当小明买标价为200元的书时,应办理会员卡,能省20元钱. 10.A。

人教版七年级上册数学《解一元一次方程》合并同类项与移项说课教学课件复习提高

人教版七年级上册数学《解一元一次方程》合并同类项与移项说课教学课件复习提高

课堂导入 希腊数学家丢番图(公元3~4世纪)的 墓碑上记载着: “他的生命的六分之一是幸福童年; 再活了他生命的十二分之一,两颊长起 了细细的胡须 ; 他结了婚,又度过了一生的七分之一; 再过五年,他有了儿子,感到很幸福; 可是儿子只活了他父亲年龄的一半; 儿子死后,他在极度悲痛中度过了四年, 也与世长辞了.” 根据以上信息,你知道丢番图活了多少岁吗?
解:设买羊的人数为 x 人.根据题意,得5x+45=7x+3. 移项,得5x-7x=3-45. 合并同类项,得-2x= -42. 系数化为1,得x》中有“盈不足术” 的问题,原文如下:“今有共买羊,人出五,不足四 十五;人出七,不足三. 问人数、羊价各几何?”题意 是:若干人共同出资买羊,每人出5元,则差45 元; 每人出7元,则差3元,求人数和羊价各是多少.
系数化为1,得 x=6. 所以所分的银子共有7x+4=42+4 =46(两).
3.列方程解应用题:《九章算术》中有“盈不足术” 的问题,原文如下:“今有共买羊,人出五,不足四 十五;人出七,不足三. 问人数、羊价各几何?”题意 是:若干人共同出资买羊,每人出5元,则差45 元; 每人出7元,则差3元,求人数和羊价各是多少.
例 2 教材补充例题 请按下列步骤制作一个四棱柱. 步骤 1:如图 4-4-2(1),将一张正方形的纸用对折的方式, 折出 16 个大小一样的小正方形; 步骤 2:如图 4-4-2(2),剪下图中的阴影部分; 步骤 3:如图 4-4-2(3),沿折痕折这张纸片,并用胶带纸黏 合.
图 4-4-2
4.4 课题学习 设计制作长方体形状的包装纸盒
例2 在国庆节来临之际,七年级(1)班课外活动小组计 划做一批中国结.如果每人做6个,那么比计划多做7个; 如果每人做5个,那么比计划少做13个.该小组计划做多 少个中国结?

人教版(2024数学七年级上册5.2 第1课时 用合并同类项的方法解一元一次方程

人教版(2024数学七年级上册5.2 第1课时 用合并同类项的方法解一元一次方程
分析: 数字规律:后一个数=-3×前一个数. 某个前面数+某个中间数+某个后面数=-1701.
解:设所求的三个数分别是 x,-3x,9x. 由三个数的和是-1701,得 x - 3x + 9x = -1701. 合并同类项,得 7x = -1701. 系数化为 1,得 x = -243. 所以 -3x = 729, 9x = -2187.
例1 解下列方程: (1)

(2) 7x - 2.5x + 3x - 1.5x = -15×4 - 6×3.
解:(1) 合并同类项,得
(2) 合并同类项,得 6x = -78.
系数化为 1,得 x = 4.
系数化为 1,得 x = -13.
例2 有一列数,按一定规律排列成 1,-3,9,-27, 81,-243 ,···. 其中某三个相邻数的和是-1701,这 三个数各是多少?
( D)
2.利用合并同类项的法则解下列方程: (1) 4x+2x-5x=5+7-1; (2) -3x+9x-12x=8+17-21. 解:(1) 合并同类项,得
x = 11. (2) 合并同类项,得 -6x = 4.
系数化为 1,得
3.某种奶茶,需要茶浓缩液、糖液、牛奶和开水混
合配制,它们在奶茶中的含量比为 1∶2∶20∶60.
知识点:用合并同类项 解一元一次方程
3x - 5x = 6 如何转化为 ax = b 的形式?
3x - 5x = -2x . → 合并同类项
解:合并同类项,得 -2x = 6
系数化为 1,得 x = -3.
问题 1 某校三年共购买计算机 140 台,去年购买数量 是前年的 2 倍,今年购买数量又是去年的 2 倍. 前年这 所学校购买了多少台计算机?

[++初中数学]+第1课时+合并同类项解一元一次方程+课件+人教版数学七年级上册

[++初中数学]+第1课时+合并同类项解一元一次方程+课件+人教版数学七年级上册

合并同类项解方程的步骤和依据:
合并同类项解一元一次方程 例 解方程:2x+4x+5x=76.
解:合并同类项,得19x=76.
20
系数化为1,得x=80.
变式训练 解方程:5x-2.5x-0.5x=-2×2+8. 解:合并同类项,得(5-2.5-0.5)x=-4+8. 化简,得2x=4. 系数化为1,得x=2.
问题:(1)设经过x小时后两车相距40千米,快车行驶的路程为
千米,慢车行驶的路程为
千米.
(2)当两车相距40千米时,分几种情况?
(3)写出解题过程.
解:(1)72x;48x. (2)分两种情况:相遇前相距40千米;相遇后相距40千米.
(3)设经过x小时后两车相距40千米. 当相遇前相距40千米时,依题意得 72x+48x=360-40,解得x=83. 当相遇后相距40千米时,依题意得 72x+48x=360+40, 解得x=130. 答:经过83或130小时后两车相距40千米.
3.已知A=2x+1,B=5x-4,若A比B小1,则x的值为 2 .
4.解下列方程:
(1)152x-4x=13; (2)x-7x=-2-10. 解:(1)合并同类项,得1x=1.
63
系数化为1,得x=2. (2)合并同类项,得-6x=-12. 系数化为1,得x=2.
1.本节中体现列方程的一个基本等量关系是什么? 各部分量之和=总量;如三年共购买计算机140台,等量关系 为“前年购买量+去年购买量+今年购买量=140台”. 2.合并同类项在解方程中起到了什么作用?
合并同类项在解方程中起到了化简的作用.
1.方程4x-2x=6的解为 x=3 . 2.若2x+3x+6x=-2025,则x= -2025 .
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章一元一次方程
3.2 解一元一次方程(一)——合并同类项与移项
第1课时用合并同类项的方法解一元一次方程
教学目标
1.通过运用算术和列方程两种方法解决实际问题的过程,使学生体会到列方程解应
用题的优越性.
2.掌握合并同类项解“ax+bx=c”类型的一元一次方程的方法,能熟练求解一元一次
方程,并判别解得合理性.
3.通过学生间的相互交流、沟通,培养他们的协作意识。

重点:1建立列方程解决实际问题的思想方法。

2.学会合并同类项,会解“ax+bx=c”类型的一元一次方程。

难点:1.分析实际问题中的已知量和未知量,找出相等关系,列出方程。

2.使学生逐步建立列方程解决实际问题的思想方法
使用说明:1.阅读课本P88——89
2.限时20分钟完成本导学案。

然后小组讨论。

一、导学
书中88页问题1:
(1)如何列方程?分哪些步骤?
设未知数:设前年购买计算机x台.则去年购买计算机_____台,今年购买计算机______台.
找相等关系:__________________________________________________
列方程:___________________________________________________
(2)怎样解这个方程?
x+2x+4x=140
合并同类项,得
_____x=140
系数化为1,得
x=_____
(3)本题还有不同的未知数的设法吗?试试看
一、 合作探究
1、
解方程 7x-2.5x+3x-1.5x=-15×4-6×3
2、 练习:解下列方程: (1)23x-5x=9 (2)-3x+0.5x=10
(3)0.28y-0.13y=3 (4)
72
32=+x x
3、小雨、小思的年龄和是25,小雨年龄的2倍比小思的年龄大8岁,小雨、小思的
年龄各是多少岁?
二、总结反思
小组讨论:本节课你学了什么?有哪些收获?
三、作业:课本P93习题3.2第1、4题.。

相关文档
最新文档