2019-04-09高中数学同步练习一-教师用卷

合集下载

2019(秋)教资《高中数学》真题及答案

2019(秋)教资《高中数学》真题及答案

2019下半年全国教师资格统考《数学》高级教师资格证试题科目代码404【来源于网络】一、单项选择题(本大题共8小题,每小题5分,共40分)二、简答题(本大题共5小题,每题7分,共35分)2019年下半年中小学教师资格考试《高中数学学科知识与能力》参考答案及解析一、单项选择题(本大题共8小题,每小题5分,共40分)1.答案:A.2.答案:A.3.答案:B.4.答案:C.5.答案:D.必有个行向量线性无关.6.答案:C.7.答案:D.4条.解析:向量理论具有神格的数学内涵,丰富的物理背景,向量既是代数研究对象也是几何研究对象,是沟通几何与代数的桥梁。

向量是描述直线、曲线、平面、以及高维空间数学问题的基本工具,是进一步学习和研究其他数学领域问题的基础,在解决实际问题中发挥重要作用。

本单元的学习可以帮助学生理解平面向量的几何意义和代数意义,掌握平面向量的概念、运算、向量基本定理以及向量的应用,用向量语言、方法和解决现实生活、数学和物理的问题,故本题选:D。

8.答案:B.演绎推理。

解析:数学归纳法是一种证明方法,是一种演绎推理方法,它的基本思想是递推思想。

故选:B。

二、简答题(本大题共5小题,每题7分,共35分)(2)在该种变换下,不变的性质:都是中心对称图形和轴对称图形,都是在某条件下点的轨迹所形成的对称图形;变化的性质:图形的形态发生了变化,不再以原点为中心点,不再与坐标轴相交,图形距离中心点的距离都相等。

12.参考答案:(1)微积分是数学学习中的重要基础课程,贯穿整个数学学习的始终.故在学习微积分时可以收集有关微积分创立的时代背景和有关人物的资料,并进行交流;体会微积分的建立在人类文化发展中的意义和价值.(2)“杨辉三角”在中国数学文化史中有着特殊的地位,它蕴含了丰富的内容,还科学地揭示了二项展开式的二项式系数的构成规律,由它还可以直观看出二项式定理的性质.故可以在二项式定理中介绍我国古代数学成就“杨辉三角”,有意识地强调数学的科学价值、文化价值、美学价值,从而提高文化素养和创新意识. 13.参考答案:数学建模是数学学习的一种新的方式,它为学生提供了自主学习的空间,有助于学生体验数学在解决实际问题中的价值和作用,体验数学与日常生活和其他学科的联系,体验综合运用知识和方法解决实际问题的过程,增强应用意识;有助于激发学生学习数学的兴趣,发展学生的创新意识和实践能力.数学建模过程大致分为以下几个过程:模型准备:在模型准备的过程中,我们要了解问题的实际背景,明确其实际意义,掌握研究对象的信息,并能够运用数学语言描述研究对象.模型假设:依据研究对象的信息和建模的目的,对研究问题通过间接明了的语言进行问题假设.建立模型:根据假设,对于研究问题通过数学语言、公式依靠数学工具建立各部分之间的联系,能够建立起数学模型结构.解决模型:获取研究对象数据资料,对资料进行分析,对模型的所有参数做出计算.分析模型:对所得的结果进行数学上的分析.检验模型:将模型分析结果与实际情形进行比较,以此来验证模型的准确性、合理性和适用性.如果模型与实际较吻合,则要对计算结果给出其实际含义,并进行解释.如果模型与实际吻合较差,则应该修改假设,再次重复建模过程.三、解答题(本大题1小题,10分)四、论述题(本大题1小题,15分)15.参考答案:数学思维就是以数、形与推理过程为研究对象,以数学语言与符号为思维载体,并以认识和发现数学规律为目的的一种思维.在传统的数学教学中,教师一般采用题海战术,只重视结果,不重视过程,造成学生的思维模式比较固定,虽然对某一类型的题目可以快速解答,但是在遇到新题型的时候,学生就会缺乏数学思维.数学思维作为一种思维品质,教师可以从以下几个方面来培养学生的数学思维:一方面,教师要精心设置需要学生做出逻辑判断的问题情境,设计能够引发学生独立思考的教学过程,创造能引起思维冲突的交流机会,让学生充分运用数学化思维去发现问题、提出问题、分析问题和解决问题,真正将学生的思维活动有机融入学习过程中.另一方面,教师要精心设计可以唤醒学生好奇心的“开放性的问题”,要充分鼓励学生的思维直觉,鼓励学生大胆想象与猜想,将数学结论还原为学生自己经历抽象和归纳的思维过程.与此同时,坚持启发式教学,调动学生思维.启发式教学注重展现知识发生过程,创造情境,启发学生比较、分析、综合、抽象、概括以及判断、推理等,思考问题,发现问题,得出结论,可以培养思维的广阔性和深刻性.总而言之,不仅要让学生学会用数学思维去思考,还要让学生敢于别出心裁地思考,只有这样,才能培养学生的数学思维能力.五、案例分析题(本大题1小题,20分)16.参考答案:(1)①错误之处:学生忽略了直线方程的点斜式存在局限性,只能表示斜率存在的直线方程.因此在计算过程中没有讨论斜率不存在的情况,导致结果缺少一种情况.②原因:对于直线方程的表达形式的细节认识不深刻忽略了直线方程的点斜式存在局限性,只能表示斜率存在的直线方程.而学生根据直线和圆相切是圆心到直线的距离等于半径,设直线的点斜式方程,进行求解,未讨论直线斜率不存在的情况,所以出现错误.(2)设置问题的时候,组要关注学生的学习状态随时调整引导问题的难度做到问题设置难度适中循序渐进并具有启发性.因此在针对该题目的教学时,首先会设置如下几个问题帮助学生梳理解题思路问题1:从几何或代数的角度思考直线和圆相切,具有什么特点呢?预设:从几何的角度出发,是圆心到直线的距离等于圆的半径,且交点只有1个.从代数的角度出发,是圆的方程与直线方程联立后的方程有两个相等的实根距离等于圆的半径.问题2:那么根据大家刚刚的思考结果,大家根据题干作图,观察一下符合条件的直线有几条?分别又具有什么特征呢?预设:2条,一条斜率存在,一条斜率不存在问题3:通过这个结果你得到什么启示,在完成这个题目的解析的时候需要注意什么呢?预设:需要先讨论斜率不存在的时候是否符合题意,再设出直线的点斜式进行求解.六、教学设计题(本大题1小题,30分)17.参考答案(1)教学重点:理解导数概念的建立及其几何意义教学重点之所以这样设计是为了针对本节知识中最重要最核心的问题,结合新课程标准的要求,对于导数概念的学习最重要的就是理解导数的概念和它的几何意义的学习,因此设计了如上的教学重点.(2)导入:通过复习瞬时速度、切线的斜率的求法引导学生从函数的角度思考函数的增量与自变量增量之间比的极限,从而引出导数的本节标题.(设计意图:通过复习导入可以准确地将新旧知识建立联系,并且抽象与具体相结合的好处在于加深对导数概念的理解,在已有的知识水平上有一个新知识的学习可以激发学生对导数的学习兴趣)。

高中数学必修一全册同步练习含参考答案

高中数学必修一全册同步练习含参考答案

高中数学必修一同步练习1.1.1 集合的含义与表示课后作业· 练习案【基础过关】1.若集合中只含一个元素1,则下列格式正确的是A.1=B.0C.1D.12.集合的另一种表示形式是A.{0,1,2,3,4}B.{1,2,3,4}C.{0,1,2,3,4,5}D.{1,2,3,4,5} 3.下列说法正确的有①集合,用列举法表示为{1,0,l};②实数集可以表示为或;③方程组的解集为.A.3个B.2个C.1个D.0个4.直角坐标系中,坐标轴上点的集合可表示为A.B.C.D.5.若集合含有两个元素1,2,集合含有两个元素1,,且,相等,则____. 6.已知集合,,且,则为 . 7.设方程的根组成的集合为,若只含有一个元素,求的值. 8.用适当的方法表示下列集合:(1)所有被3整除的整数;(2)满足方程的所有x的值构成的集合B.【能力提升】集合,,,设,则与集合有什么关系?详细答案【基础过关】1.D【解析】元素与集合之间只存在“∈”与“∉”的关系,故1∈A正确.2.B【解析】由x-2<3得x<5,又,所以x=1,2,3,4,即集合的另一种表示形式是{1,2,3,4}.3.D【解析】对于①,由于x∈N,而-1∉N,故①错误;对于②,由于“{ }”本身就具有“全部”、“所有”的意思,而且实数集不能表示为{R},故②错误;对于③,方程组的解集是点集而非数集,故③错误.4.C【解析】坐标轴上的点分为x轴、y轴上的点,在x轴上的点纵坐标为0,在y轴上的点横坐标为0.5.【解析】由于P,Q相等,故,从而.6.(2,5)【解析】∵a∈A且a∈B,∴a是方程组的解,解方程组,得∴a为(2,5).7.A中只含有一个元素,即方程(a∈R)有且只有一个实根或两个相等的实根.(1)当a=0时,方程的根为;(2)当a≠0时,有△=4-4a=0,即a=1,此时方程的根为.∴a的值为0或1.【备注】误区警示:初学者易自然认为(a∈R)是一元二次方程,而漏掉对a 的讨论,导致漏解.举一反三:若把“若A只含有一个元素”改为“若A含有两个元素”,则结论又如何?由题意知,a≠0,且△=4-4a>0,解得a<1.所以a<1且a≠0.8.(1){x|x=3n,n∈Z};(2)B={x|x=|x|,x∈R}.【能力提升】∵a∈P,b∈M,c=a+b,设,,,,∴,又∴c∈M.1.1.2集合间的基本关系班级:__________姓名:__________设计人__________日期__________课后练习【基础过关】1.设,,若,则的取值范围是A. B. C. D.2.设集合,,则A.M =NB.M⊆NC.M ND.N3.已知集合,,若,求实数的值.4.满足条件{1,2,3}M{1,2,3,4,5,6}的集合的个数是A.8B.7C.6D.55.设集合和,那么与的关系为 .6.含有三个实数的集合,既可表示成,又可表示成,则.7.设集合,,求A∩B.8.已知M={x | x2-2x-3=0},N={x | x2+ax+1=0,a∈R},且N M,求a的取值范围.【能力提升】已知,,是否存在实数,使得对于任意实数,都有?若存在,求出对应的的值;若不存在,说明理由.答案【基础过关】1.D【解析】∵,∴a≥22.D【解析】本题考查集合间的基本关系.,;而;即N.选D.3.由A=B,可得,解得x=1.4.C【解析】本题考查子集.由题意得M={1,2,3,4},{1,2,3,5},{1,2,3,6},{1,2,3,4,5},{1,2,3,4,6},{1,2,3,6,5}共6个.选C. 5.M=P【解析】∵xy>0,∴x,y同号,又x+y<0,∴x<0,y<0,即集合M表示第三象限内的点.而集合P表示第三象限内的点,故M=P.6.-1【解析】本题考查相等集合.由题意得,所以,即;此时,所以,,且,解得.所以.7.,解得;所以.【解析】本题考查集合的基本运算.8.解:M={x | x 2-2x -3=0}={3,-1};∵N M,当N=∅时,N M 成立,N={x | x 2+ax+1=0},∴a 2-4<0, ∴-2<a <2;当N≠∅时,∵N M, ∴3∈N 或 -1∈N;当3∈N 时,32-3a+1=0即a= -310,N={3,31},不满足N M;当-1∈N 时,(-1)2-a+1=0即a=2,N={-1},满足N M;∴a 的取值范围是-2<a ≤2.【解析】本题考查集合间的基本关系. 【能力提升】不存在.要使对任意的实数b 都有,则1,2是A 中的元素,又∵A ={a -4,a +4},∴或这两个方程组均无解,故这样的实数a 不存在.1.1.3 集合的基本运算班级:__________姓名:__________设计人__________日期__________课后作业【基础过关】1.若,,,,则满足上述条件的集合的个数为A.5B.6C.7D.82.已知全集U={1,2,3,4,5,6,7,8},A={3,4,5}, B={1,3,6},那么集合{2,7,8}是A.A∪BB.A∩BC.(∁U A)∩(∁U B)D.(∁U A)∪(∁U B)3.若集合P={x∈N|-1<x<3},Q={x|x=2a,a∈P},则P∩Q=A.⌀B.{x|-2<x<6}C.{x|-1<x<3}D.{0,2}4.设全集U=R,集合M={x|x>1或x<-1},N={x|0<x<2},则N∩(∁U M)=A.{x|-2≤x<1}B.{x|0<x≤1}C.{x|-1≤x≤1}D.{x|x<1}5.某班共30人,其中15人喜爱篮球运动,10人喜爱乒乓球运动,8人对这两项运动都不喜爱,则喜爱篮球运动但不喜爱乒乓球运动的人数为.6.集合A={(x,y)|x+y=0},B={(x,y)|x-y=2},则A∩B= .7.设集合A={x|0<x-m<3},B={x|x≤0,或x≥3},分别求满足下列条件的实数m.(1)A∩B=⌀;(2)A∪B=B.8.已知集合A={x|2≤x<7},B={x|3<x<10},C={x|x<a}.(1)求A∪B,(∁R A)∩B;(2)若A∩C≠⌀,求a的取值范围.【能力提升】已知集合A={x|x2-3x+2=0},B={x|x2-ax+a-1=0},C={x|x2-x+2m=0}.(1)若A∪B=A,求a的值;(2)若A∩C=C,求m的取值范围.详细答案【基础过关】1.D2.C【解析】借助Venn图易得{2,7,8}=∁U(A∪B),即为(∁U A)∩(∁U B).3.D【解析】由已知得P={0,1,2},Q={0,2,4},所以P∩Q={0,2}.4.B【解析】∁U M={x|-1≤x≤1},结合数轴可得N∩(∁U M)={x|0<x≤1}.5.12【解析】设两项运动都喜爱的人数为x,依据题意画出Venn图,得到方程15-x+x+10-x+8=30,解得x=3,∴喜爱篮球运动但不喜爱乒乓球运动的人数为15-3=12.6.{(1,-1)}【解析】A∩B={(x,y)|}={(1,-1)}.7.因为A={x|0<x-m<3},所以A={x|m<x<m+3}.(1)当A∩B=⌀时,需,故m=0.即满足A∩B=⌀时,m的值为0.(2)当A∪B=B时,A⊆B,需m≥3,或m+3≤0,得m≥3,或m≤-3.即满足A∪B=B时,m的取值范围为{m|m≥3,或m≤-3}.8.(1)因为A={x|2≤x<7},B={x|3<x<10},所以A∪B={x|2≤x<10}.因为A={x|2≤x<7},所以∁R A={x|x<2,或x≥7},则(∁R A)∩B={x|7≤x<10}.(2)因为A={x|2≤x<7},C={x|x<a},且A∩C≠⌀,所以a>2.【能力提升】A={1,2}.(1)因为A∪B=A,所以B⊆A,故集合B中至多有两个元素1,2.而方程x2-ax+a-1=0的两根分别为1,a-1,注意到集合中元素的互异性,有①当a-1=2,即a=3时,B={1,2},满足题意;②当a-1=1,即a=2时,B={1},满足题意.综上可知,a=2或a=3.(2)因为A∩C=C,所以C⊆A.①当C=⌀时,方程x2-x+2m=0无实数解,因此其根的判别式Δ=1-8m<0,即m>.②当C={1}(或C={2})时,方程x2-x+2m=0有两个相同的实数解x=1(或x=2),因此其根的判别式Δ=1-8m=0,解得m=,代入方程x2-x+2m=0,解得x=,显然m=不符合要求.③当C={1,2}时,方程x2-x+2m=0有两个不相等的实数解x1=1,x2=2,因此x1+x2=1+2≠1,x1x2=2=2m,显然不符合要求.综上,m>.1.2.1 函数的概念班级:__________姓名:__________设计人__________日期__________课后练习【基础过关】1.下列函数中,值域为(0,+∞)的是( )A.y=B.y=C.y=D.y=x2+12.下列式子中不能表示函数的是A. B. C. D.3.函数y=+的定义域是( )A.(-1,1)B.(-∞,-1)∪(1,+∞)C.(0,1)D.{-1,1}4.若满足,且,,则等于A. B. C. D.5.若为一确定区间,则的取值范围是 .6.函数的图象是曲线,其中点,,的坐标分别为(0,0),(1,2),(3,1),则的值等于 .7.求下列函数的定义域.(1);(2).8.已知.(1)求,的值;(2)求的值. 【能力提升】已知函数f(x)对任意实数a,b,都有f(ab)=f(a)+f(b)成立.(1)求f(0),f(1)的值;(2)若f(2)=p,f(3)=q(p,q为常数),求f(36)的值.答案【基础过关】1.B【解析】y=的值域为[0,+∞),y=的值域为(-∞,0)∪(0,+∞),y=x2+1的值域为[1,+∞).故选B.2.A【解析】一个x对应的y值不唯一.3.D【解析】要使函数式有意义,需满足,解得x=±1,故选D.4.B【解析】f(72)=f(8×9)=f(8)+f(9)=3f(2)+2f(3)=3p+2q.5.【解析】由题意3a-1>a,则.【备注】误区警示:本题易忽略区间概念而得出,则的错误.6.2【解析】由图可知f(3)=1,∴f[f(3)]=f(1)=2.【备注】误区警示:本题在求解过程中会因不理解f[f(3)]的含义而出错.7.(1)由已知得∴函数的定义域为.(2)由已知得:∵|x+2|-1≠0,∴|x+2|≠1,得x≠-3,x≠-1.∴函数的定义域为(-∞,-3)∪(-3,-1)∪(―1,+∞).8.(1),.(2)∵,∴==1+1+1++1(共2012个1相加)=2012.【能力提升】(1)令a=b=0,得f(0)=f(0)+f(0),解得f(0)=0;令a=1,b=0,得f(0)=f(1)+f(0),解得f(1)=0.(2)方法一令a=b=2,得f(4)=f(2)+f(2)=2p,令a=b=3,得f(9)=f(3)+f(3)=2q,令a=4,b=9,得f(36)=f(4)+f(9)=2p+2q.方法二因为36=22×32,所以f(36)=f(22×32)=f(22)+f(32)=f(2×2)+f(3×3)=f(2)+f(2)+f(3)+f(3)=2f(2)+2f(3)=2p+2q .【解析】题设只有一个函数方程,因此考虑特殊值0,1,通过解方程获解.1.2.2函数的表示法班级:__________姓名:__________设计人__________日期__________课后练习【基础过关】1.已知是反比例函数,当时,,则的函数关系式为A. B. C. D.2.已知函数若,则的取值范围是A. B.C. D.3.已知函数f(x)=,则函数f(x)的图象是( )A. B. C. D.4.已知则A.2B.-2C.D.5.已知函数,且,则 .6.已知函数f(x)对于任意实数x满足条件f(x+2)=,若f(1)=-5,则f[f(5)]= .7.已知,为常数,且,,,方程有两个相等的实数根.求函数的解析式.8.如图,是边长为2的正三角形,记位于直线左侧的图形的面积为,试求函数的解析式.【能力提升】下图是一个电子元件在处理数据时的流程图:(1)试确定y与x的函数关系式;(2)求f(-3), f(1)的值;(3)若f(x)=16,求x的值.答案【基础过关】1.C【解析】根据题意可设(k≠0),∵当x=2时,y=1,∴,∴k=2.2.D【解析】若x∈[-1,1],则有f(x)=2∉[-1,1],∴f(2)=2;若x∉[-1,1],则f(x)=x∉[-1,1],∴f[f(x)]=x,此时若f[f(x)]=2,则有x=2.【备注】误区警示:本题易将x∉[-1,1]的情况漏掉而错选B.3.A【解析】当x=-1时,y=0,即图象过点(-1,0),D错;当x=0时,y=1,即图象过点(0,1),C错;当x=1时,y=2,即图象过点(1,2),B错.故选A.4.C【解析】∵,∴.【备注】无5.【解析】,∴,∴,解得.6.-【解析】由已知条件f(x+2)=可得f(x+4)==f(x),所以f(5)=f(1)=-5,所以f[f(5)]=f(-5)=f(-1)===-.7.∵,且方程f(x)=x有两个相等的实数根,∴,∴b=1,又∵f(2)=0,∴4a+2=0,∴,∴.8.OB所在的直线方程为.当t∈(0,1]时,由x=t,求得,所以;当t∈(1,2]时,;当t∈(2,+∞)时,,所以【能力提升】(1)由题意知y=.(2)f(-3)=(-3)2+2=11, f(1)=(1+2)2=9.(3)若x≥1,则(x+2)2=16,解得x=2或x=-6(舍去);若x<1,则x2+2=16,解得x=(舍去)或x=-.综上可得,x=2或x=-.1.3.1单调性与最大(小)值班级:__________姓名:__________设计人__________日期__________课后练习【基础过关】1.若函数在区间上是增函数,在区间上也是增函数,则函数在区间上A.必是增函数B.必是减函数C.先增后减D.无法确定单调性2.下列函数在(0,1)上是增函数的是A. B. C. D.3.函数,在上是A.减函数B.增函数C.先减后增D.无单调性4.下面说法错误的是A.函数的单调区间一定是函数的定义域B.函数的多个单调增区间的并集不一定是其单调增区间C.具有奇偶性的函数的定义域关于原点对称D.关于原点对称的图象一定是奇函数的图象5.已知函数在区间上为减函数,则的取值范围是_____________.6.设奇函数f(x)的定义域为[-5,5],且当x∈[0,5]时,f(x)的图象如图所示,则不等式f(x)<0的解集是.7..已知函数,若.(l)求的值.(2)利用单调性定义证明函数在区间的单调性.8.首届世界低碳经济大会在南昌召开,大会以“节能减排,绿色生态”为主题.某单位在国家科研部门的支持下,进行技术攻关,采用了新工艺,把二氧化碳转化为一种可利用的化工产品.已知该单位每月的处理量最少为400吨,最多为600吨,月处理成本(元)与月处理量(吨)之间的函数关系可近似地表示为,且每处理一吨二氧化碳得到可利用的化工产品价值为100元.(1)该单位每月处理量为多少吨时,才能使每吨的平均处理成本最低?(2)该单位每月能否获利?如果获利,求出最大利润;如果不获利,则国家至少需要补贴多少元才能使该单位不亏损?【能力提升】函数f(x)的图象如图所示.(1)说出f(x)的单调区间,以及在每一个单调区间上它是增函数还是减函数;(2)依据图象说明函数的最值情况.答案【基础过关】1.D【解析】因为(a,b),(c,d)不是两个连续的区间,所以无法确定其单调性.2.B【解析】选项A中y=1-2x为减函数,C中y=5为常数函数,D中的定义域为[1,+∞).3.B【解析】解答本题可先画出函数图象,由图象分析.函数f(x)的图象如图所示,由图结合单调性的定义可知,此函数在R上是增函数.4.A【解析】单调区间是定义域的子集,不一定是定义域,当多个单调区间并起来时,由单调性定义知,不再是单调区间.具有奇偶性的函数的定义域关于原点对称,是函数奇偶性判定的要求.奇函数的图象关于原点对称,反之,关于原点对称的图象一定是奇函数的图象.5.(-∞,1]6.(-2,0)∪(2,5]【解析】由图可知在区间(2,5]上f(x)<0,因为奇函数的图象关于原点对称,所以在(-2,0)上也有f(x)<0.7.(1)由2f(2)=f(3)+5,得,解得a=2.(2)由(1)知.任取x1,x2∈(1,+∞)且x1<x2,,因为1<x1<x2,所以x1-1>0,x2-1>0,x2-x1>0.所以f(x1)-f(x2)>0,即f(x1)>f(x2).所以f(x)在(1,+∞)上是减函数.8.(1)由题意可知,二氧化碳的每吨平均处理成本为令,可以证明t(x)在(0,400)为减函数,在[400,+∞)上是增函数,故每月处理量为400吨时,才能使每吨的平均处理成本最低,最低成本为200元.(2)设该单位每月获利为S,则.因为400≤x≤600,所以当x=400时,S有最大值-40 000.故该单位不获利,需要国家每月至少补贴40 000元,才能不亏损.【能力提升】(1)由题图可知:函数f(x)的单调增区间为[0,];单调减区间为(-∞,0)和(,+∞).(2)观察图象可知,函数没有最大值和最小值.1.3.2奇偶性班级:__________姓名:__________设计人__________日期__________课后练习【基础过关】1.设在[-2,-1]上为减函数,最小值为3,且为偶函数,则在[1,2]上A.为减函数,最大值为3B.为减函数,最小值为-3C.为增函数,最大值为-3D.为增函数,最小值为32.已知函数是偶函数,其图象与轴有四个交点,则方程的所有实根之和是A.4B.2C.1D.03.函数是奇函数,图象上有一点为,则图象必过点A. B.C. D.4.设,其中为常数,若,则的值为A.-7B.7C.17D.-175.已知定义在上的奇函数,当时,,那么时,.6.若函数为区间[-1,1]上的奇函数,则;.7.作出函数的图象,并根据函数的图象找出函数的单调区间.8.已知函数是定义在R上的偶函数,且当时,该函数的值域为,求函数的解析式.【能力提升】已知函数f(x)=-x2+x,是否存在实数m,n(m<n),使得当x∈[m,n]时,函数的值域恰为[2m,2n]?若存在,求出m,n的值;若不存在,说明理由.答案【基础过关】1.D2.D3.C【解析】奇函数f(x)满足f(-x)=-f(x),故有f(-a)=-f(a).因为函数f(x)是奇函数,故点(a,f(a))关于原点的对称点(-a,-f(a))也在y=f(x)上,故选C.4.D【解析】∵,∴27a+3b=-12,∴f(3)=27a+3b-5=-17.5.-x2-|x|+16.0 07.当x-2≥0,即x≥2时,;当x-2<0,即x<2时,=.所以这是分段函数,每段函数图象可根据二次函数图象作出(如图),其中,[2,+∞)是函数的单调增区间;是函数的单调减区间.8.由f(x)为偶函数可知f(x)=f(-x),即,可得恒成立,所以a=c=0,故.当b=0时,由题意知不合题意;当b>0,x∈[1,2]时f(x)单调递增,又f(x)值域为[-2,1],所以当b<0时,同理可得所以或.【能力提升】假设存在实数m,n,使得当x∈[m,n]时,y∈[2m,2n],则在[m,n]上函数的最大值为2n.而f(x)=-x2+x=-(x-1)2+在x∈R上的最大值为,∴2n≤,∴n≤.而f(x)在(-∞,1)上是增函数,∴f(x)在[m,n]上是增函数,∴,即.结合m<n≤,解得m=-2,n=0.∴存在实数m=-2,n=0,使得当x∈[-2,0]时,f(x)的值域为[-4,0].2.1.1指数与指数幂的运算班级:__________姓名:__________设计人__________日期__________课后练习【基础过关】1.化简的结果为A. B. C.- D.2.计算的结果是A. B. C. D.3.设,则有A. B.C. D.4.下列说法中正确的个数是( )(1)49的四次方根为7; (2)=a(a≥0);(3)()5=a5; (4)=(-3.A.1B.2C.3D.45.若10m=2,10n=4,则= . 6.已知x=(2 01-2 01),n∈N*,则(x+)n的值为. 7.化简下列各式:(1)(·)÷;(2)()·(-3)÷().8.求下列各式的值:(1)2; (2)(; (3)+(-π0.【能力提升】已知+=3,求下列各式的值:(1)x+x-1;(2).答案【基础过关】1.A【解析】要使式子有意义,需,故x<0,所以原式.2.A【解析】本题考查指数运算.注意先算中括号内的部分。

高中数学必修1全套同步练习(人教版)

高中数学必修1全套同步练习(人教版)
(1)求 eU B , eU C . (2)若 D { x x A} ,说明 A, B , D 的关系 .
高中数学必修 1 全套同步练习 (人教版 )
§1.3 交集 ·并集( 1)
课后训练
【感受理解 】
1.设全集 U {1,2,3,4,5}, A {1,3,5}, B {2,4,5} ,则 (CU A) I (CU B )
6.集合 A ={ x|x=a2-4a+5, a∈R} , B ={ y|y=4b2+4b+3, b∈ R} 则集合 A 与集合 B 的关系是
________ .
【思考应用 】
7.设 x,y∈ R,B={( x,y)|y-3= x-2} ,A={( x,与 B 的关系是 _______ ____ .
给出下列命题其中的最小值是242x2x11的解可表示为其中正确的命题个数为举法表示下列集合
高中数学必修 1 全套同步练习 (人教版 )
§1.1 集合的含义及其表示( 1)
课后训练
【感受理解 】 1.给出下列命题 (其中 N 为自然数集 ) :
① N 中最小的元素是 1 ②若 a∈ N 则 -a N ③ 若 a∈ N,b∈ N,则 a+b 的最小值是 2
成的集合为 M ,求 C U M .
10.( 1)设全集 U R, A x | x 1 , B x | x a 1 , 且 CU A B ,求 a 的范围 . ( 2)已知全集 U 2,3,a2 2a 3 , A 2, b ,CU A 5 , 求实数 a和 b 的值 .
【拓展提高 】
10 . 已 知 全 集 U { 不大于 5的自然数 } , 集 合 A { 0,1} , B { x x A且x 1} , C { x x 1 A且x U } .

1.1 集合的概念同步练习卷【新教材】人教A版(2019)高中数学必修第一册(含答案)

1.1 集合的概念同步练习卷【新教材】人教A版(2019)高中数学必修第一册(含答案)

1.1 集合的概念同步练习卷【人教A版2019】考试时间:60分钟;满分:100分姓名:___________班级:___________考号:___________考卷信息:本卷试题共22题,单选8题,多选4题,填空4题,解答6题,满分100分,限时60分钟,本卷题型针对性较高,覆盖面广,选题有深度,可衡量学生掌握本节内容的具体情况!一.选择题(共8小题,满分24分,每小题3分)1.(3分)(2020秋•袁州区校级月考)下列四组对象中能构成集合的是()A.宜春市第一中学高一学习好的学生B.在数轴上与原点非常近的点C.很小的实数D.倒数等于本身的数2.(3分)(2020秋•路北区校级期中)下列元素与集合的关系表示正确的是()①﹣1∈N*;②√2∉Z;③32∈Q;④π∈QA.①②B.②③C.①③D.③④3.(3分)(2020•西城区校级期中)已知集合M={﹣2,3},N={﹣4,5,6},依次从集合M,N中各取出一个数分别作为点P的横坐标和纵坐标,则在平面直角坐标系中位于第一、二象限内的点P的个数是()A.4B.5C.6D.74.(3分)(2020春•大武口区校级期中)已知集合M={1,m+2,m2+4},且5∈M,则m的值为()A.1或﹣1B.1或3C.﹣1或3D.1,﹣1或35.(3分)集合A={1,﹣3,5,﹣7,9,﹣11,…},用描述法表示正确的是()①{x|x=2n±1,n∈N};②{x|x=(﹣1)n(2n﹣1),n∈N};③{x|x=(﹣1)n(2n+1),n∈N}.A.③B.①③C.②③D.①②③6.(3分)(2020秋•张店区校级月考)集合A={x∈N∗|63−x∈Z},用列举法可以表示为()A.{1,2,4,9}B.{1,2,4,5,6,9}C.{﹣6,﹣3,﹣2,﹣1,3,6}D.{﹣6,﹣3,﹣2,﹣1,2,3,6}7.(3分)(2020秋•华龙区校级期中)已知集合A={1,2,3,4},B={(x,y)|x∈A,y∈A,y﹣x∈A},则集合B中的元素的个数为()A.4B.5C.6D.78.(3分)(2020秋•汇川区校级月考)设集合A={2,3,a2﹣3a,a+2a+7},B={|a﹣2|,0}.已知4∈A且4∉B,则实数a的取值集合为()A.{﹣1,﹣2}B.{﹣1,2}C.{﹣2,4}D.{4}二.多选题(共4小题,满分16分,每小题4分)9.(4分)(2020秋•中山市校级月考)已知x∈{1,2,x2},则有()A.x=1B.x=2C.x=0D.x=√210.(4分)(2020秋•农安县月考)下面四个说法中错误的是()A.10以内的质数组成的集合是{2,3,5,7}B.由1,2,3组成的集合可表示为{1,2,3}或{3,2,1}C.方程x2﹣2x+1=0的所有解组成的集合是{1,1}D.0与{0}表示同一个集合11.(4分)(2020秋•余姚市校级月考)已知集合A={x|ax2﹣2x+a=0}中至多含有一个元素,则实数a可以取()A.a≥1B.a=0C.a≤﹣1D.﹣1≤a≤112.(4分)若集合A具有以下性质:(1)0∈A,1∈A;(2)若x∈A,y∈A;则x﹣y∈A,且x≠0时,1x∈A.则称集合A是“好集”.下列命题中正确的是()A.集合B={﹣1,0,1}是“好集”B.有理数集Q是“好集”C.整数集Z不是“好集”D.设集合A是“好集”,若x∈A,y∈A,则x+y∈A 三.填空题(共4小题,满分16分,每小题4分)13.(4分)(2020秋•辛集市校级月考)下列关系中,正确的是.①−43∈R;②√3∉Q;③|﹣20|∉N*;④|−√2|∈Q;⑤﹣5∉Z;⑥0∈N.14.(4分)(2020秋•浙江期中)已知集合A={﹣2,2a,a2﹣a},若2∈A,则a=.15.(4分)(2020秋•汇川区校级月考)设集合A中有n个元素,定义|A|=n,若集合P={x∈Z|6x−3∈Z},则|P|=.16.(4分)(2020秋•河东区校级月考)已知a,b,c均为非零实数,集合A={x|x=|a|a+b|b|+ab|ab|},则集合A的元素的个数有个.四.解答题(共6小题,满分44分)17.(6分)下列研究对象能否构成一个集合?如果能,采用适当的方式表示它.(1)小于5的自然数;(2)某班所有个子高的同学;(3)不等式2x+1>7的整数解.18.(6分)已知集合M={﹣2,3x2+3x﹣4,x2+x﹣4},若2∈M,求x的值.19.(8分)用另一种方法表示下列集合.(1){绝对值不大于2的整数};(2){能被3整除,且小于10的正数};(3){x|x=|x|,x<5,且x∈Z};(4){(x,y)|x+y=6,x∈N*,y∈N*};(5){﹣3,﹣1,1,3,5}.20.(8分)(2020秋•黄浦区校级月考)已知集合A={x|kx2﹣8x+16=0,k∈R,x∈R}.(1)若A只有一个元素,试求实数k的值,并用列举法表示集合A;(2)若A至多有两个子集,试求实数k的取值范围.21.(8分)设集合A中含有三个元素3,x,x2﹣2x.(1)求实数x应满足的条件;(2)若﹣2∈A,求实数x.22.(8分)(2020秋•越秀区校级期中)已知不等式ax2+5x﹣2>0的解集是M.(1)若2∈M且3∉M,求a的取值范围;(2)若M={x|12<x<2},求不等式ax2﹣5x+a2﹣1>0的解集.1.1 集合的概念同步练习卷参考答案与试题解析一.选择题(共8小题,满分24分,每小题3分)1.(3分)(2020秋•袁州区校级月考)下列四组对象中能构成集合的是( ) A .宜春市第一中学高一学习好的学生B .在数轴上与原点非常近的点C .很小的实数D .倒数等于本身的数【分析】根据集合的含义分别分析四个选项,A ,B ,C 都不满足函数的确定性故排除,D 确定,满足. 【解答】解:A :宜春市第一中学高一学习好的学生,因为学习好的学生不确定,所以不满足集合的确定性,排除B :在数轴上与原点非常近的点,因为非常近的点不确定,所以不满足集合的确定性,排除C :很小的实数,因为很小的实数不确定,所以不满足集合的确定性,排除D :倒数等于它自身的实数为1与﹣1,∴满足集合的定义,故正确. 故选:D .【点睛】本题考查集合的含义.通过对集合元素三个性质:确定性,无序性,互异性进行考查,属于基础题.2.(3分)(2020秋•路北区校级期中)下列元素与集合的关系表示正确的是( ) ①﹣1∈N *;②√2∉Z ;③32∈Q ;④π∈QA .①②B .②③C .①③D .③④【分析】认识常用数集的表示符号及元素和集合的关系. 【解答】解:对于①:﹣1不是自然数,故﹣1∉N *,故①错误;对于②:√2是无理数不是整数,Z 表示整数集合∴√2∉Z ,故②正确; 对于③:32是有理数,Q 表示有理数集,∴32∈Q ,故③正确;对于④:π是无理数,Q 表示无理数集,∴π∉Q ,故④错误. 故选:B .【点睛】本题考查对数集的认识,属于基础题3.(3分)(2020•西城区校级期中)已知集合M ={﹣2,3},N ={﹣4,5,6},依次从集合M ,N 中各取出一个数分别作为点P的横坐标和纵坐标,则在平面直角坐标系中位于第一、二象限内的点P的个数是()A.4B.5C.6D.7【分析】利用列举法和第一、二象限的点的性质直接求解.【解答】解:集合M={﹣2,3},N={﹣4,5,6},依次从集合M,N中各取出一个数分别作为点P的横坐标和纵坐标,在平面直角坐标系中位于第一、二象限内的点P有:(﹣2,5),(﹣2,6),(3,5),(3,6),共4个.故选:A.【点睛】在平面直角坐标系中位于第一、二象限内的点P的个数的求法,考查列举法和第一、二象限的点的性质等基础知识,考查运算求解能力,是基础题.4.(3分)(2020春•大武口区校级期中)已知集合M={1,m+2,m2+4},且5∈M,则m的值为()A.1或﹣1B.1或3C.﹣1或3D.1,﹣1或3【分析】由5∈{1,m+2,m2+4},得m+2=5或m2+4=5,再由集合中元素的互异性,能求出m的取值集合.【解答】解:∵5∈{1,m+2,m2+4},∴m+2=5或m2+4=5,即m=3或m=±1.当m=3时,M={1,5,13};当m=1时,M={1,3,5};当m=﹣1时,M={1,1,5}不满足互异性,∴m的取值集合为{1,3}.故选:B.【点睛】本题考查实数的取值集合的求法,解题时要认真审题,注意集合性质的合理运用,是基础题.5.(3分)集合A={1,﹣3,5,﹣7,9,﹣11,…},用描述法表示正确的是()①{x|x=2n±1,n∈N};②{x|x=(﹣1)n(2n﹣1),n∈N};③{x|x=(﹣1)n(2n+1),n∈N}.A.③B.①③C.②③D.①②③【分析】取n=0,1,2分别验证三个集合即可.【解答】解:取n=0,{x|x=2n±1,n∈N}={0,1},故①错误;取n=0,{x|x=(﹣1)n(2n﹣1),n∈N}={﹣1},故②错误;取n=0,{x|x=(﹣1)n(2n+1),n∈N}={1},取n=1,{x|x=(﹣1)n(2n+1),n∈N}={﹣3},取n=2,{x|x=(﹣1)n(2n+1),n∈N}={5},……,故③正确;故选:A.【点睛】本题主要考查了集合的表示方法,是基础题.6.(3分)(2020秋•张店区校级月考)集合A={x∈N∗|63−x∈Z},用列举法可以表示为()A.{1,2,4,9}B.{1,2,4,5,6,9}C.{﹣6,﹣3,﹣2,﹣1,3,6}D.{﹣6,﹣3,﹣2,﹣1,2,3,6}【分析】利用已知条件,化简求解即可.【解答】解:集合A={x∈N∗|63−x∈Z},可知63−1=3,63−2=6,63−4=−6,63−5=−3,63−6=−2,63−9=−1,则x=1,2,4,5,6,9.集合A={x∈N∗|63−x∈Z}={1,2,4,5,6,9}.故选:B.【点睛】本题考查集合的表示方法,是基础题.7.(3分)(2020秋•华龙区校级期中)已知集合A={1,2,3,4},B={(x,y)|x∈A,y∈A,y﹣x∈A},则集合B中的元素的个数为()A.4B.5C.6D.7【分析】通过集合B,利用x∈A,y∈A,y﹣x∈A,求出集合B中元素的个数.【解答】解:因为集合A={1,2,3,4},B={(x,y)|x∈A,y∈A,y﹣x∈A},所以当x=1时,y=2或y=3或y=4,当x=2时,y=3或y=4,当x=3时,y=4,所以集合B中的元素个数为6.故选:C.【点睛】本题考查集合的元素与集合的关系,属基础题.8.(3分)(2020秋•汇川区校级月考)设集合A={2,3,a2﹣3a,a+2a+7},B={|a﹣2|,0}.已知4∈A且4∉B ,则实数a 的取值集合为( ) A .{﹣1,﹣2}B .{﹣1,2}C .{﹣2,4}D .{4}【分析】根据题意分a 2﹣3a =4且|a ﹣2|≠4,a +2a +7=4且|a ﹣2|≠4两种情况讨论,求出a 的值,并利用集合的互异性进行验证,即可求得符合题意的a 的值.【解答】解:由题意可得①当a 2﹣3a =4且|a ﹣2|≠4时,解得a =﹣1或4, a =﹣1时,集合A ={2,3,4,4}不满足集合的互异性,故a ≠﹣1, a =4时,集合A ={2,3,4,1112},集合B ={2,0},符合题意.②当a +2a+7=4且|a ﹣2|≠4,解得a =﹣1,由①可得不符合题意. 综上,实数a 的取值集合为{4}. 故选:D .【点睛】本题主要考查元素与集合的关系,考查集合的互异性,属于基础题. 二.多选题(共4小题,满分16分,每小题4分)9.(4分)(2020秋•中山市校级月考)已知x ∈{1,2,x 2},则有( ) A .x =1B .x =2C .x =0D .x =√2【分析】利用元素与集合的关系及集合中元素的互异性即可求解. 【解答】解:因为x ∈{1,2,x 2},所以x =2或x =x 2,解得x =2或x =1或x =0, 当x =2时,x ∈{1,2,4},符合题意;当x =1时,x ∈{1,2,1},不满足集合的互异性; 当x =0时,x ∈{1,2,0},符合题意., 故x =2或x =0. 故选:BC .【点睛】本题主要考查元素与集合间的关系,利用集合中元素的互异性验证结论是否符合题意是解题的关键,属于基础题.10.(4分)(2020秋•农安县月考)下面四个说法中错误的是( ) A .10以内的质数组成的集合是{2,3,5,7}B .由1,2,3组成的集合可表示为{1,2,3}或{3,2,1}C .方程x 2﹣2x +1=0的所有解组成的集合是{1,1}D.0与{0}表示同一个集合【分析】结合集合的表示及元素与集合的基本关系分别检验各选项即可判断.【解答】解:10以内的质数组成的集合是{2,3,5,7},故A正确;由集合中元素的无序性知{1,2,3}和{3,2,1}表示同一集合,故B正确;方程x2﹣2x+1=0的所有解组成的集合是{1},故C错误;由集合的表示方法知0不是集合,故D错误,故选:CD.【点睛】本题主要考查了集合的表示及元素与集合的基本关系的判断,属于基础题.11.(4分)(2020秋•余姚市校级月考)已知集合A={x|ax2﹣2x+a=0}中至多含有一个元素,则实数a可以取()A.a≥1B.a=0C.a≤﹣1D.﹣1≤a≤1【分析】根据集合A={x|ax2﹣2x+a=0}中至多含有一个元素,讨论集合A中的方程ax2﹣2x+a=0的根的情况,求解若ax2﹣2x+a=0为一元一次方程和一元二次方程至多含有一个根的情况,符合题意时可得实数a可以取为:a=0,a≥1或a≤﹣1.【解答】解:已知集合A={x|ax2﹣2x+a=0}中至多含有一个元素,则讨论集合A中的方程ax2﹣2x+a=0的根的情况,①若ax2﹣2x+a=0为一元一次方程,则a=0,解得x=0,符合题意;②若ax2﹣2x+a=0为一元二次方程,则a≠0,方程至多含有一个根,△=4﹣4a2≤0,解得a≥1或a≤﹣1,符合题意;故实数a可以取为:a=0,a≥1或a≤﹣1.故选:ABC.【点睛】本题主要考查元素与集合的关系,一元二次方程根的情况,分类讨论思想,属于基础题.12.(4分)若集合A具有以下性质:(1)0∈A,1∈A;(2)若x∈A,y∈A;则x﹣y∈A,且x≠0时,1x∈A.则称集合A是“好集”.下列命题中正确的是()A.集合B={﹣1,0,1}是“好集”B.有理数集Q是“好集”C .整数集Z 不是“好集”D .设集合A 是“好集”,若x ∈A ,y ∈A ,则x +y ∈A【分析】逐一判断给定的3个集合,是否满足“好集”的定义,最后综合讨论结果,可得答案. 【解答】解:对于A ,假设集合B 是“好集”,因为﹣1∈B ,1∈B ,所以﹣1﹣1=﹣2∈B ,这与﹣2∉B 矛盾,所以集合B 不是“好集”.故A 错误;对于B ,因为0∈Q ,1∈Q ,且对任意的x ∈Q ,y ∈Q 有x ﹣y ∈Q ,且x ≠0时,1x ∈Q ,所以有理数集Q 是“好集”,故B 正确;对于C ,因为2∈Z ,但12∉Z ,所以整数集Z 不是“好集”.故C 正确;因为集合A 是“好集”,所以0∈A ,又y ∈A ,所以0﹣y ∈A ,即﹣y ∈A ,又x ∈A ,所以x ﹣(﹣y )∈A ,即x +y ∈A ,故D 正确. 故选:BCD .【点睛】本题主要考查了元素与集合关系的判断,以及新定义的理解,同时考查了运算求解的能力,属于基础题.三.填空题(共4小题,满分16分,每小题4分)13.(4分)(2020秋•辛集市校级月考)下列关系中,正确的是 ①②⑥ . ①−43∈R ; ②√3∉Q ; ③|﹣20|∉N *; ④|−√2|∈Q ; ⑤﹣5∉Z ; ⑥0∈N .【分析】根据元素与集合的关系进行判断即可. 【解答】解:①−43∈R ,正确; ②√3∉Q ,正确;③因为|﹣20|=20∈N *,则|﹣20|∉N *,错误; ④因为|−√2|=√2∉Q ;则|−√2|∈Q ,错误; ⑤﹣5∉Z ,错误; ⑥0∈N .正确;所以正确的是①②⑥.【点睛】本题主要考查元素与集合的关系,属于基础题.14.(4分)(2020秋•浙江期中)已知集合A ={﹣2,2a ,a 2﹣a },若2∈A ,则a = 1或2 .【分析】根据2是集合中的元素,求出a 值,再验证集合中元素的互异性即可.【解答】解:∵2∈A ,∴2a =2或a 2﹣a =2;当2a =2时,a =1,a 2﹣a =0,A ={﹣2,2,0},符合题意;当a 2﹣a =2时,a =﹣1或a =2,a =2时,A ={﹣2,4,2},符合题意.a =﹣1时,A ={﹣2,﹣2,2},不符合题意.综上a =1或a =2,故答案为:1或2.【点睛】本题考查集合中元素的性质及元素与集合的关系,属于基础题目.15.(4分)(2020秋•汇川区校级月考)设集合A 中有n 个元素,定义|A |=n ,若集合P ={x ∈Z |6x−3∈Z },则|P |= 8 .【分析】通过对集合中元素构成的特点及元素条件求集合P ,即可得到答案.【解答】解:∵集合P ={x ∈Z |6x−3∈Z },∵x ∈Z ,6x−3∈Z ,∴x ﹣3=±1,±2,±3,±6.解得x =4,2,5,1,0,6,9,﹣3,∴P ={﹣3,0,1,2,4,5,6,9}.|P |=8,故答案为:8.【点睛】本题考查集合的元素,通过对集合中元素构成的特点及元素条件求集合,属于基础题.16.(4分)(2020秋•河东区校级月考)已知a ,b ,c 均为非零实数,集合A ={x|x =|a|a +b |b|+ab |ab|},则集合A 的元素的个数有 2 个.【分析】通过对a ,b 的正负的分类讨论,利用绝对值的定义去掉绝对值的符号 然后进行运算,求出集合中的元素.【解答】解:当a >0,b >0时,x =|a|a +b |b|+ab |ab|=1+1+1=3,当a >0,b <0时,x =|a|a +b |b|+ab |ab|=1﹣1﹣1=﹣1,当a <0,b >0时,x =|a|a +b |b|+ab |ab|=−1+1﹣1=﹣1,当a<0,b<0时,x=|a|a+b|b|+ab|ab|=−1﹣1+1=﹣1,故x的所有值组成的集合为{﹣1,3}故答案为:2.【点睛】本题考查了分类讨论的数学思想方法,绝对值的几何意义.考查计算能力,属于基础题.四.解答题(共6小题,满分44分)17.(6分)下列研究对象能否构成一个集合?如果能,采用适当的方式表示它.(1)小于5的自然数;(2)某班所有个子高的同学;(3)不等式2x+1>7的整数解.【分析】根据集合元素的确定性,互异性进行判断即可.【解答】解:(1)小于5的自然数为0,1,2,3,4,元素确定,所以能构成集合.为{0,1,2,3,4}.(2)个子高的标准不确定,所以集合元素无法确定,所以不能构成集合.(3)由2x+1>7得x>3,因为x为整数,集合元素确定,但集合元素个数为无限个,所以用描述法表示为{x|x>3,且x∈Z}.【点睛】本题主要考查集合的含义和表示,利用元素的确定性,互异性是判断元素能否构成集合的条件,比较基础.18.(6分)已知集合M={﹣2,3x2+3x﹣4,x2+x﹣4},若2∈M,求x的值.【分析】由已知2是集合M的元素,分类讨论列出方程,求出x的值,将x的值代入集合,检验集合的元素需满足互异性.【解答】解:当3x2+3x﹣4=2时,3x2+3x﹣6=0,x2+x﹣2=0,x=﹣2或x=1.经检验,x=﹣2,x=1均不合题意.当x2+x﹣4=2时,x2+x﹣6=0,x=﹣3或2.经检验,x=﹣3或x=2均合题意.∴x=﹣3或x=2.【点睛】本题考查解决集合中的参数值时,需将求出的参数值代入集合检验集合的互异性、考查分类讨论的数学思想方法.19.(8分)用另一种方法表示下列集合.(1){绝对值不大于2的整数};(2){能被3整除,且小于10的正数};(3){x|x=|x|,x<5,且x∈Z};(4){(x,y)|x+y=6,x∈N*,y∈N*};(5){﹣3,﹣1,1,3,5}.【分析】根据集合的概念,列举法及描述法的定义,选择适当的方法表示每个集合即可.【解答】解:(1){绝对值不大于2的整数}={﹣2,﹣1,0,1,2}.(2){能被3整除,且小于10的正数}={3,6,9}.(3){x|x=|x|,x<5,且x∈Z}={0,1,2,3,4}.(4){(x,y)|x+y=6,x∈N*,y∈N*}={(1,5),(2,4),(3,3),(4,2),(5,1)}.(5){﹣3,﹣1,1,3,5}={x|x=2k﹣1,﹣1≤k≤3,k∈Z}.【点睛】考查集合的概念,集合的表示方法:列举法,描述法.20.(8分)(2020秋•黄浦区校级月考)已知集合A={x|kx2﹣8x+16=0,k∈R,x∈R}.(1)若A只有一个元素,试求实数k的值,并用列举法表示集合A;(2)若A至多有两个子集,试求实数k的取值范围.【分析】(1)当k=0时,易知符合题意,当k≠0时,利用△=0即可求出k的值;(2)由A至多有两个子集,可知集合A中元素个数最多1个,再分k=0和k≠0两种情况讨论,即可求出实数k的取值范围.【解答】解:(1)①当k=0时,方程化为:﹣8x+16=0,解得x=2,此时集合A={2},满足题意;②当k≠0时,∵方程kx2﹣8x+16=0有一个根,∴△=(﹣8)2﹣4k×16=0,解得:k=1,此时方程为x2﹣8x+16=0,解得x=4,∴集合A={4},符合题意,综上所述,k=0时集合A={2};k=1时集合A={4};(2)∵A至多有两个子集,∴集合A中元素个数最多1个,①当k≠0时,一元二次方程kx2﹣8x+16=0最多有1个实数根,∴△=(﹣8)2﹣4k×16≤0,解得k≥1,②当k=0时,由(1)可知,集合A={2}符合题意,综上所述,实数k 的取值范围为:{0}∪[1,+∞).【点睛】本题主要考查了集合的表示方法,考查了集合的元素个数,是基础题.21.(8分)设集合A 中含有三个元素3,x ,x 2﹣2x .(1)求实数x 应满足的条件;(2)若﹣2∈A ,求实数x .【分析】(1)由集合元素的互异性直接求解.(2)若﹣2∈A ,则x =﹣2或x 2﹣2x =﹣2.由此能出x .【解答】解:(1)由集合元素的互异性可得:x ≠3,x 2﹣2x ≠x 且x 2﹣2x ≠3,解得x ≠﹣1,x ≠0且x ≠3.(2)若﹣2∈A ,则x =﹣2或x 2﹣2x =﹣2.由于x 2﹣2x =(x ﹣1)2﹣1≥﹣1,所以x =﹣2.【点睛】本题考查集合中元素的性质、实数值的求法,是基础题,解题时要认真审题,注意元素与集合的关系的合理运用.22.(8分)(2020秋•越秀区校级期中)已知不等式ax 2+5x ﹣2>0的解集是M .(1)若2∈M 且3∉M ,求a 的取值范围;(2)若M ={x|12<x <2},求不等式ax 2﹣5x +a 2﹣1>0的解集.【分析】(1)由2∈M 且3∉M ,列出不等式组,能求出实数a 的取值范围.(2)推导出12,2是方程ax 2+5x ﹣2=0的两个根,由韦达定理求出a =﹣2,从而不等式ax 2﹣5x +a 2﹣1>0即为2x 2+5x ﹣3<0,由此能求出不等式的解集.【解答】解:(1)∵不等式ax 2+5x ﹣2>0的解集是M .2∈M 且3∉M ,∴{4a +8>09a +13≤0,解得﹣2<a ≤−139, ∴a 的取值范围是(﹣2,−139].(2)∵M ={x|12<x <2},∴12,2是方程ax 2+5x ﹣2=0的两个根,∴由韦达定理得{12+2=−5a 12⋅2=−2a ,解得a =﹣2, ∴不等式ax 2﹣5x +a 2﹣1>0为2x 2+5x ﹣3<0,∴不等式ax 2﹣5x +a 2﹣1>0的解集为{x|−3<x <12}.【点睛】本题考查实数的取值范围的求法,考查不等式的解集的求法,考查运算求解能力,是基础题.。

全国高一高中数学同步测试带答案解析

全国高一高中数学同步测试带答案解析

全国高一高中数学同步测试班级:___________ 姓名:___________ 分数:___________一、选择题1.设任意角α的终边与单位圆的交点为P 1(x ,y ),角α+θ的终边与单位圆的交点为P 2(y ,﹣x ),则下列说法中正确的是( ) A .sin (α+θ)=sinα B .sin (α+θ)=﹣cosα C .cos (α+θ)=﹣cosα D .cos (α+θ)=﹣sinα2.已知角α的终边与单位圆相交于点P (sin ,cos),则sinα=( ) A .﹣B .﹣C .D .3.如图,以Ox 为始边作任意角α,β,它们的终边与单位圆分别交于A ,B 点,则的值等于( )A .sin (α+β)B .sin (α﹣β)C .cos (α+β)D .cos (α﹣β)二、填空题1.如图,在平面直角坐标系xOy 中,钝角α的终边与单位圆交于B 点,且点B 的纵坐标为.若将点B 沿单位圆逆时针旋转到达A 点,则点A 的坐标为 .2.(1)若sin (3π+θ)=,求+的值;(2)已知0<x <,利用单位圆证明:sinx <x <tanx .三、解答题1.如图,A 、B 是单位圆O 上的点,C 是圆O 与x 轴正半轴的交点,点A 的坐标为,三角形AOB 为直角三角形.(1)求sin ∠COA ,cos ∠COA 的值; (2)求cos ∠COB 的值. 2.已知,用单位圆求证下面的不等式:(1)sinx <x <tanx ; (2).3.已知点A (2,0),B (0,2),点C (x ,y )在单位圆上. (1)若|+|=(O 为坐标原点),求与的夹角; (2)若⊥,求点C 的坐标.4.如图,已知A 、B 是单位圆O 上的点,C 是圆与x 轴正半轴的交点,点A 的坐标为,点B 在第二象限,且△AOB 为正三角形.(Ⅰ)求sin ∠COA ; (Ⅱ)求△BOC 的面积.5.如图,以Ox 为始边分别作角α与β(0<α<β<π),它们的终边分别与单位圆相交于点P 、Q ,已知点P 的坐标为(,).(1)求sin2α的值; (2)若β﹣α=,求cos (α+β)的值.全国高一高中数学同步测试答案及解析一、选择题1.设任意角α的终边与单位圆的交点为P 1(x ,y ),角α+θ的终边与单位圆的交点为P 2(y ,﹣x ),则下列说法中正确的是( )A .sin (α+θ)=sinαB .sin (α+θ)=﹣cosαC .cos (α+θ)=﹣cosαD .cos (α+θ)=﹣sinα【答案】B【解析】根据三角函数的定义和题意,分别求出角α、α+θ的正弦值和余弦值,再对比答案项即可. 解:∵任意角α的终边与单位圆的交点为P 1(x ,y ), ∴由三角函数的定义得,sinα=y ,cosα=x , 同理sin (α+θ)=﹣x ,cos (α+θ)=y , 则sin (α+θ)=﹣cosα,cos (α+θ)=sinα, 故选:B .点评:本题考查任意角的三角函数的定义,属于基础题.2.已知角α的终边与单位圆相交于点P (sin ,cos),则sinα=( ) A .﹣B .﹣C .D .【答案】D【解析】利用单位圆的性质求解. 解:∵角α的终边与单位圆相交于点P (sin ,cos),∴sinα=cos =cos (2)=cos=.故选:D .点评:本题考查角的正弦值的求法,是基础题,解题时要认真审题,注意单位圆的性质的灵活运用.3.如图,以Ox 为始边作任意角α,β,它们的终边与单位圆分别交于A ,B 点,则的值等于( )A .sin (α+β)B .sin (α﹣β)C .cos (α+β)D .cos (α﹣β)【答案】D【解析】直接求出A ,B 的坐标,利用向量是数量积求解即可. 解:由题意可知A (cosα,sinα),B (cosβ,sinβ), 所以=cosαcosβ+sinαsinβ=cos (α﹣β). 故选D .点评:本题是基础题,考查向量的数量积的应用,两角差的余弦函数公式的推导过程,考查计算能力.二、填空题1.如图,在平面直角坐标系xOy 中,钝角α的终边与单位圆交于B 点,且点B 的纵坐标为.若将点B 沿单位圆逆时针旋转到达A 点,则点A 的坐标为 .【答案】().【解析】首先求出点B 的坐标,将点B 沿单位圆逆时针旋转到达A 点,利用两角和与差的三角函数即可求出点A 的坐标.解:在平面直角坐标系xOy 中,锐角α的终边与单位圆交于B 点, 且点B 的纵坐标为, ∴sinα=,cosα=将点B 沿单位圆逆时针旋转到达A 点, 点A 的坐标A (cos (),sin ()),即A (﹣sinα,cosα),∴A ()故答案为:().点评:本题主要考查了任意角的三角函数的定义,属于基础题.2.(1)若sin (3π+θ)=,求+的值;(2)已知0<x <,利用单位圆证明:sinx <x <tanx .【答案】(1)32,(2)见解析【解析】(1)利用诱导公式、平方关系对条件和所求的式子化简后,代入值求解; (2)由S △OPA <S 扇形OPA <S △OAE ,分别表示出3个面积,可推得,所以sinx <x <tanx ,据此判断即可.解:(1)由sin (3π+θ)=,可得sinθ=﹣, ∴======32,(2)∵S △OPA <S 扇形OPA <S △OAE ,,,, ∴,∴sinx <x <tanx .点评:本题主要考查了同角三角函数的基本关系,三角函数线,以及单位圆的性质的运用,属于基础题.三、解答题1.如图,A 、B 是单位圆O 上的点,C 是圆O 与x 轴正半轴的交点,点A 的坐标为,三角形AOB 为直角三角形.(1)求sin ∠COA ,cos ∠COA 的值; (2)求cos ∠COB 的值. 【答案】(1),.(2)﹣【解析】(1)利用任意角的三角函数的定义,先找出x ,y ,r ,代入公式计算. (2)利用∠AOB=90°,cos ∠COB=cos (∠COA+90°)=﹣sin ∠COA=﹣. 解:(1)∵A 点的坐标为,根据三角函数定义可知,,r=1;(3分) ∴,.(6分) (2)∵三角形AOB 为直角三角形, ∴∠AOB=90°, 又由(1)知sin ∠COA=,cos ∠COA=;∴cos ∠COB=cos (∠COA+90°)=﹣sin ∠COA=﹣.(12分) 点评:本题考查任意角的三角函数的定义,诱导公式cos (+θ)=﹣sinθ 的应用.2.已知,用单位圆求证下面的不等式:(1)sinx <x <tanx ; (2).【答案】见解析【解析】(1)利用单位圆中的三角函数线,通过面积关系证明sinx <x <tanx ; (2)利用(1)的结论,采用放缩法,求出=推出结果.证明:(1)如图,在单位圆中,有sinx=MA ,cosx=OM , tanx=NT ,连接AN ,则S △OAN <S 扇形OAN <S △ONT , 设的长为l ,则,∴,即MA <x <NT ,又sinx=MA ,cosx=OM ,tanx=NT , ∴sinx <x <tanx ; (2)∵均为小于的正数,由(1)中的sinx <x 得,,将以上2010道式相乘得=,即.点评:本题考查单位圆的应用,不等式的证明的方法,考查分析问题解决问题的能力,是中档题.3.已知点A(2,0),B(0,2),点C(x,y)在单位圆上.(1)若|+|=(O为坐标原点),求与的夹角;(2)若⊥,求点C的坐标.【答案】(1)30°或150°(2)点C的坐标为(,)或().【解析】(1)由已知得,从而cos<>===y=,由此能求出与的夹角.(2)=(x﹣2,y),=(x,y﹣2),由得,由此能求出点C的坐标.解:(1),,.且x2+y2=1,=(2+x,y),由||=,得(2+x)2+y2=7,由,联立解得,x=,y=.(2分)cos<>===y=,(4分)所以与的夹角为30°或150°.(6分)(2)=(x﹣2,y),=(x,y﹣2),由得,=0,由,解得或,(10分)所以点C的坐标为(,)或().(12分)点评:本题考查两向量的夹角的求法,考查点的坐标的求法,解题时要认真审题,注意单位圆的性质的合理运用.4.如图,已知A、B是单位圆O上的点,C是圆与x轴正半轴的交点,点A的坐标为,点B在第二象限,且△AOB为正三角形.(Ⅰ)求sin∠COA;(Ⅱ)求△BOC的面积.【答案】(Ⅰ)(Ⅱ)【解析】(Ⅰ)由三角函数在单位圆中的定义可以知道,当一个角的终边与单位圆的交点坐标时,这个点的纵标就是角的正弦值.(Ⅱ)根据第一问所求的角的正弦值和三角形是一个等边三角形,利用两个角的和的正弦公式摸到的这个角的正弦值,根据正弦定理做出三角形的面积.解:(Ⅰ)由三角函数在单位圆中的定义可以知道,当一个角的终边与单位圆的交点是,∴sin∠COA=,(Ⅱ)∵∠BOC=∠BOA+∠AOC,∴sin∠BOC==∴三角形的面积是点评:本题考查单位圆和三角函数的定义,是一个基础题,这种题目解题的关键是正确使用单位圆,注意数字的运算不要出错.5.如图,以Ox为始边分别作角α与β(0<α<β<π),它们的终边分别与单位圆相交于点P、Q,已知点P的坐标为(,).(1)求sin2α的值;(2)若β﹣α=,求cos(α+β)的值.【答案】(1)(2)﹣【解析】(1)由三角函数的定义,得出cosα、sinα,从而求出sin2α的值;(2)由β﹣α=,求出sinβ,cosβ的值,从而求出cos(α+β)的值.解:(1)由三角函数的定义得,cosα=,sinα=;∴sin2α=2sinαcosα=2××=;(2)∵β﹣α=,∴sinβ=sin(+α)=.cosβ=cos(+α)=﹣sinα=﹣,∴cos(α+β)=cosαcosβ﹣sinαsinβ=×(﹣)﹣×=﹣.点评:本题考查了三角函数的求值与应用问题,解题时应根据三角函数的定义以及三角恒等公式进行计算,是基础题.。

同步练习册必修一数学答案

同步练习册必修一数学答案

同步练习册必修一数学答案一、选择题1. A2. C3. B4. D5. E二、填空题1. \( x = 3 \)2. \( y = -2 \)3. \( \sin \alpha = \frac{\sqrt{3}}{2} \)4. \( \cos \beta = \frac{1}{2} \)5. \( \tan \gamma = 1 \)三、解答题1. 证明题:证明勾股定理。

- 证明:设直角三角形ABC,其中∠C为直角。

根据勾股定理,我们有 \( AB^2 = AC^2 + BC^2 \)。

通过构造辅助线和应用相似三角形的性质,可以证明这一点。

2. 计算题:计算下列极限。

- 极限 \( \lim_{x \to 0} \frac{\sin x}{x} \) 等于1。

3. 应用题:某工厂生产一批产品,每件产品的成本为10元,销售价格为15元。

如果工厂希望获得的利润是总成本的20%,那么每件产品的销售价格应该是多少?- 解:设每件产品的销售价格为P元。

根据题意,我们有 \( (P -10) \times 100\% = 20\% \times 10 \)。

解得 \( P = 12.5 \) 元。

四、综合题1. 函数题:给定函数 \( f(x) = x^2 - 4x + 3 \),求其在区间[0, 4]上的最大值和最小值。

- 解:函数 \( f(x) \) 是一个开口向上的抛物线,对称轴为\( x = 2 \)。

在区间[0, 4]上,最小值出现在对称轴上,即 \( f(2) = -1 \),最大值出现在区间端点,即 \( f(4) = 3 \)。

2. 几何题:在三角形ABC中,已知AB=5,AC=7,BC=6,求∠A的大小。

- 解:根据余弦定理,我们可以求出 \( \cos A = \frac{b^2 +c^2 - a^2}{2bc} \),其中a、b、c分别是三角形的三边。

代入数值得到 \( \cos A = \frac{7^2 + 6^2 - 5^2}{2 \times 7 \times 6}= \frac{1}{2} \),所以 \( A = 60^\circ \)。

1.3 集合的基本运算同步练习卷【新教材】人教A版(2019)高中数学必修第一册(含答案)

1.3 集合的基本运算同步练习卷【新教材】人教A版(2019)高中数学必修第一册(含答案)

1.3 集合的基本运算同步练习卷【人教A版2019】考试时间:60分钟;满分:100分姓名:___________班级:___________考号:___________考卷信息:本卷试题共22题,单选8题,多选4题,填空4题,解答6题,满分100分,限时60分钟,本卷题型针对性较高,覆盖面广,选题有深度,可衡量学生掌握本节内容的具体情况!一.选择题(共8小题,满分24分,每小题3分)1.(3分)(2020秋•泸州期末)设全集U={1,2,3,4,5,6},A={2,3,4},B={1,2},则图中阴影部分表示的集合为()A.{1,2,5,6}B.{1}C.{2}D.{3,4}2.(3分)(2020秋•宁波期末)集合U={1,2,3,4,5},S={1,4,5},T={2,3,4},则S∩(∁U T)=()A.{1,5}B.{1}C.{1,4,5}D.{1,2,3,4,5}3.(3分)(2021春•龙凤区校级期中)设A={x|x2﹣8x+15=0},B={x|ax﹣1=0},若A∩B=B,求实数a组成的集合的子集个数有()A.2B.3C.4D.84.(3分)(2021春•瑶海区月考)已知集合A={x|x2﹣2x﹣3<0},B={x|0<x<m},若A∪B={x|﹣1<x <5},则m=()A.﹣1B.3C.5D.105.(3分)(2021春•五华区校级月考)已知集合A={2,4,a2},B={2,a+6},若A∩B=B,则a=()A.﹣3B.﹣2C.3D.﹣2或36.(3分)(2020秋•鼓楼区校级月考)设集合A={3,m,m﹣1},集合B={3,4},若∁A B={5},则实数m的值为()A.4B.5C.6D.5或67.(3分)(2021春•鼓楼区校级期中)设集合A={2,3,5},B={x∈Z|x2﹣6x+m<0},A∩B={3},则A ∪B=()A.{2,3,4}B.{1,2,3,4,5}C.{2,3,5}D.{2,3,4,5}8.(3分)(2021•香坊区校级三模)如图,U是全集,M、P、S是U的3个子集,则阴影部分所表示的集合是()A.(M∩P)∩S B.(M∩P)∪S C.(M∩P)∩∁U S D.(M∩P)∪∁U S二.多选题(共4小题,满分16分,每小题4分)9.(4分)(2020秋•辽宁期中)已知全集U=R,集合A={x|1≤x≤3或4<x<6},集合B={x|2≤x<5},下列集合运算正确的是()A.∁U A={x|x<1或3<x<4或x>6}B.∁U B={x<2或x≥5}C.A∩(∁U B)={x|1≤x<2或5≤x<6}D.(∁U A)∪B={x|x<1或2<x<5或x>6}10.(4分)(2020秋•长沙月考)已知全集U={0,1,2,3,4},集合M={2,3,4},N={0,1,4},则下列判断正确的是()A.M∪N={0,1,2,3,4}B.(∁U M)∩N={0,1}C.∁U N={1,2,3}D.M∩N={0,4}11.(4分)(2020秋•邵阳县期中)已知全集为U,集合A和集合B的韦恩图如图所示,则图中阴影部分可表示为()A.(∁U A)∩B B.∁U(A∩B)C.[∁U(A∩B)]∩B D.(∁U A)∪(∁U B)12.(4分)(2021春•恩施市校级月考)已知非空集合A、B满足:全集U=A∪B=(﹣1,5],A∩∁U B=[4,5],下列说法不一定正确的有()A.A∩B=∅B.A∩B≠∅C.B=(﹣1,4)D.B∩∁U A=(﹣1,4)三.填空题(共4小题,满分16分,每小题4分)13.(4分)(2020秋•泸县校级月考)已知集合A={1,2,3},B={y|y=2x﹣1},则A∩B=.14.(4分)(2020春•徐汇区校级期中)已知M={(x,y)|y≠x+1},N={(x,y)|y≠﹣x},U={(x,y)|x∈R,y∈R},则∁U(M∪N)=.15.(4分)(2021春•金山区校级期中)已知集合A={x|﹣6≤x≤8},B={x|x≤m},若A∪B≠B且A∩B ≠∅,则m的取值范围是.16.(4分)(2020秋•开福区校级月考)高二某班共有60人,每名学生要从物理、化学、生物、历史、地理、政治这六门课程中选择3门进行学习.已知选择物理、化学、生物的学生各有至少25人,这三门学科均不选的有15人.这三门课程均选的有10人,三门中任选两门课程的均至少有16人.三门中只选物理与只选化学均至少有6人,那么该班选择物理与化学但未选生物的学生至多有人.四.解答题(共6小题,满分44分)17.(6分)(2020秋•莲湖区期中)已知全集U=R,A={x|﹣1≤x≤4},B={x|﹣2≤x≤2},P={x|x≤0或x≥7 2}.(1)求A∪B,A∩B;(2)求(∁U B)∩P,(∁U B)∪P.18.(6分)(2020秋•绍兴期末)已知集合A={x|x<2},B={x|x2﹣4x+3<0}.(1)求集合B;(2)求(∁R A)∩B.19.(8分)(2021春•莲池区校级期中)设集合A={x|3≤x<7},B={x|2<x<10},C={x|5﹣a<x<a}.(1)求A∪B与(∁R A)∩B;(2)若(A∪B)⊆C,求实数a的取值范围.20.(8分)(2021春•朝阳区校级月考)已知集合A={x|﹣2<x+1<3},集合B为整数集,令C=A∩B.(1)求集合C;(2)若集合D={1,a},C∪D={﹣2,﹣1,0,1,2},求实数a的值.21.(8分)(2020秋•番禺区校级期中)已知全集U=R,集合A={x|x>2},B={x|﹣4<x<4}.(Ⅰ)求∁U(A∪B);(Ⅱ)定义A﹣B={x|x∈A,且x∉B},求A﹣B,A﹣(A﹣B).22.(8分)(2020秋•佛山期末)在①A∩B=∅,②A∩(∁R B)=A,③A∩B=A这三个条件中任选一个,补充到下面的问题中,并求解下列问题:已知集合A={x|a﹣1<x<2a+3},B={x|﹣7≤x≤4},若____,求实数a的取值范围.1.3 集合的基本运算同步练习卷参考答案与试题解析一.选择题(共8小题,满分24分,每小题3分)1.(3分)(2020秋•泸州期末)设全集U={1,2,3,4,5,6},A={2,3,4},B={1,2},则图中阴影部分表示的集合为()A.{1,2,5,6}B.{1}C.{2}D.{3,4}【分析】根据Venn图和集合之间的关系进行判断.【解答】解:由Venn图可知,阴影部分的元素为属于A当不属于B的元素构成,所以用集合表示为A ∩(∁U B).∵U={1,2,3,4,5,6},B={1,2},A={2,3,4},∴∁U B={3,4,5,6},则A∩(∁U B)={3,4}故选:D.【点评】本题主要考查Venn图表达集合的关系和运算,比较基础.2.(3分)(2020秋•宁波期末)集合U={1,2,3,4,5},S={1,4,5},T={2,3,4},则S∩(∁U T)=()A.{1,5}B.{1}C.{1,4,5}D.{1,2,3,4,5}【分析】根据补集与交集的定义,计算即可.【解答】解:集合U={1,2,3,4,5},S={1,4,5},T={2,3,4},所以∁U T={1,5},所以S∩(∁U T)={1,5}.故选:A.【点评】本题考查了集合的定义与运算问题,是基础题.3.(3分)(2021春•龙凤区校级期中)设A={x|x2﹣8x+15=0},B={x|ax﹣1=0},若A∩B=B,求实数a组成的集合的子集个数有()A.2B.3C.4D.8【分析】可以求出A={3,5},根据A∩B=B即可得出B⊆A,从而可讨论B是否为空集:B=∅时,a=0;B≠∅时,1a=3或5,解出a,从而得出实数a组成集合的元素个数,进而可求出实数a组成集合的子集个数.【解答】解:A={3,5},B={x|ax=1}∵A∩B=B∴B⊆A,∴①B=∅时,a=0;②B≠∅时,1a =3或1a=5,∴a=13,或15,∴实数a组成的集合的元素有3个,∴实数a组成的集合的子集个数有23=8个.故选:D.【点评】考查描述法、列举法的定义,交集的定义及运算,以及子集、空集的定义,子集个数的计算公式.4.(3分)(2021春•瑶海区月考)已知集合A={x|x2﹣2x﹣3<0},B={x|0<x<m},若A∪B={x|﹣1<x <5},则m=()A.﹣1B.3C.5D.10【分析】求出集合A={x|﹣1<x<3},由B={x|0<x<m},根据A∪B={x|﹣1<x<5},能求出m.【解答】解:∵集合A={x|x2﹣2x﹣3<0}={x|﹣1<x<3},B={x|0<x<m},A∪B={x|﹣1<x<5},∴m=5.故选:C.【点评】本题考查实数值的求法,考查并集定义等基础知识,考查运算求解能力,是基础题.5.(3分)(2021春•五华区校级月考)已知集合A={2,4,a2},B={2,a+6},若A∩B=B,则a=()A.﹣3B.﹣2C.3D.﹣2或3【分析】根据A∩B=B可得出B⊆A,然后即可得出a+6=4或a+6=a2,然后解出a的值,并验证是否满足集合元素的互异性,得出a的值即可.【解答】解:∵A∩B=B,∴B⊆A,若a+6=4,则a=﹣2,a2=4,集合A中的元素不满足互异性,舍去;若a+6=a2,则a=3或﹣2,因为a≠﹣2,所以a=3.故选:C.【点评】本题考查了列举法的定义,交集及其运算,子集的定义,集合元素的互异性,考查了计算能力,属于基础题.6.(3分)(2020秋•鼓楼区校级月考)设集合A={3,m,m﹣1},集合B={3,4},若∁A B={5},则实数m的值为()A.4B.5C.6D.5或6【分析】推导出A=B∪(∁A B)={3,4,5},由此能求出实数m的值.【解答】解:∵集合A={3,m,m﹣1},集合B={3,4},∁A B={5},∴A=B∪(∁A B)={3,4,5},∴实数m=5.故选:B.【点评】本题考查实数值的求法,考查补集、并集的定义等基础知识,考查运算求解能力,是基础题.7.(3分)(2021春•鼓楼区校级期中)设集合A={2,3,5},B={x∈Z|x2﹣6x+m<0},A∩B={3},则A ∪B=()A.{2,3,4}B.{1,2,3,4,5}C.{2,3,5}D.{2,3,4,5}【分析】由A∩B={3},B={x∈Z|x2﹣6x+m<0},结合y=x2﹣6x+m的图象关于x=3对称知,B={x∈Z|x2﹣6x+m<0}={3},从而求得.【解答】解:∵A∩B={3},B={x∈Z|x2﹣6x+m<0},∴3是x2﹣6x+m<0的解,2,5不是x2﹣6x+m<0的解,故△>0,又∵y=x2﹣6x+m的图象关于x=3对称,∴B={x∈Z|x2﹣6x+m<0}={3},故A∪B={2,3,5},故选:C.【点评】本题考查了集合的运算,难点在于确定集合B,注意到x=3是y=x2﹣6x+m的图象的对称轴是关键,属于中档题.8.(3分)(2021•香坊区校级三模)如图,U是全集,M、P、S是U的3个子集,则阴影部分所表示的集合是()A.(M∩P)∩S B.(M∩P)∪S C.(M∩P)∩∁U S D.(M∩P)∪∁U S【分析】利用阴影部分所属的集合写出阴影部分所表示的集合.【解答】解:由图知,阴影部分在集合M中,在集合P中,但不在集合S中故阴影部分所表示的集合是(M∩P)∩∁U S故选:C.【点评】本题考查集合的交集、并集、补集的定义、并利用定义表示出阴影部分的集合.二.多选题(共4小题,满分16分,每小题4分)9.(4分)(2020秋•辽宁期中)已知全集U=R,集合A={x|1≤x≤3或4<x<6},集合B={x|2≤x<5},下列集合运算正确的是()A.∁U A={x|x<1或3<x<4或x>6}B.∁U B={x<2或x≥5}C.A∩(∁U B)={x|1≤x<2或5≤x<6}D.(∁U A)∪B={x|x<1或2<x<5或x>6}【分析】利用补集、交集、并集等定义直接求解.【解答】解:∵全集U=R,集合A={x|1≤x≤3或4<x<6},集合B={x|2≤x<5},∴∁U A={x|x<1或3<x≤4或x≥6},故A错误;∁U B={x|x<2或x≥5},故B正确;A∩(∁U B)={x|1≤x<2或5≤x<6},故C正确;(∁U A)∪B={x|x<1或2<x<5或x≥6},故D错误.故选:BC.【点评】本题考查补集、交集、并集的求法,考查补集、交集、并集的定义等基础知识,考查运算求解能力,是基础题.10.(4分)(2020秋•长沙月考)已知全集U={0,1,2,3,4},集合M={2,3,4},N={0,1,4},则下列判断正确的是()A.M∪N={0,1,2,3,4}B.(∁U M)∩N={0,1}C.∁U N={1,2,3}D.M∩N={0,4}【分析】根据集合的基本运算进行求解即可.【解答】解:M∪N={0,1,2,3,4},故A正确,∁U M={0,1},则(∁U M)∩N={0,1},故B正确,∁U N={2,3},故C错误,M∩N={4},故D错误,故选:AB.【点评】本题主要考查集合的基本运算,结合补集,交集,并集的定义是解决本题的关键,是基础题.11.(4分)(2020秋•邵阳县期中)已知全集为U,集合A和集合B的韦恩图如图所示,则图中阴影部分可表示为()A.(∁U A)∩B B.∁U(A∩B)C.[∁U(A∩B)]∩B D.(∁U A)∪(∁U B)【分析】利用韦恩图能求出图中阴影部分的集合.【解答】解:由韦恩图得图中阴影部分可表示为:(∁U A)∩B或[∁U(A∩B)]∩B,故A和C正确,B和D错误.故选:AC.【点评】本题考查阴影部分的集合的求法,考查韦恩图的性质等基础知识,考查运算求解能力,是基础题.12.(4分)(2021春•恩施市校级月考)已知非空集合A、B满足:全集U=A∪B=(﹣1,5],A∩∁U B =[4,5],下列说法不一定正确的有()A.A∩B=∅B.A∩B≠∅C.B=(﹣1,4)D.B∩∁U A=(﹣1,4)【分析】根据已知求出B,进而得到集合A一定包含[4,5],再由A的特殊值即可解决.【解答】解:∵A ∩∁u B =[4,5],U =A ∪B =(﹣1,5],∴B =U ﹣A ∩∁u B =(﹣1,4),∴C 正确.则集合A 一定包含[4,5],当A =[4,5]时,A ∩B =∅,∴B 错误.当A =(3,5]时,A ∩B =(3,4),∴A 错误.此时∁u A =(﹣1,3],B ∩∁u A =(﹣1,3],∴D 错误.故选:ABD .【点评】此题考查了交、并、补集的混合运算,熟练掌握各自的定义是解本题的关键.三.填空题(共4小题,满分16分,每小题4分)13.(4分)(2020秋•泸县校级月考)已知集合A ={1,2,3},B ={y |y =2x ﹣1},则A ∩B = {1,2,3} .【分析】可求出集合B ,然后进行交集的运算即可.【解答】解:∵A ={1,2,3},B =R ,∴A ∩B ={1,2,3}.故答案为:{1,2,3}.【点评】本题考查了列举法和描述法的定义,交集的定义及运算,考查了计算能力,属于基础题.14.(4分)(2020春•徐汇区校级期中)已知M ={(x ,y )|y ≠x +1},N ={(x ,y )|y ≠﹣x },U ={(x ,y )|x ∈R ,y ∈R },则∁U (M ∪N )= {(−12,12)} .【分析】进行并集和补集的运算即可.【解答】解:M ∪N ={(x ,y )|y ≠x +1或y ≠﹣x },∴∁U (M ∪N)={(x ,y)|{y =x +1y =−x}={(−12,12)}. 故答案为:{(−12,12)}.【点评】本题考查了集合的描述法和列举法的定义,并集和补集的运算,考查了计算能力,属于基础题.15.(4分)(2021春•金山区校级期中)已知集合A ={x |﹣6≤x ≤8},B ={x |x ≤m },若A ∪B ≠B 且A ∩B ≠∅,则m 的取值范围是 [﹣6,8) .【分析】根据集合的并集和集合的交集得到关于m 的不等式组,解出即可.【解答】解:A ={x |﹣6≤x ≤8},B ={x |x ≤m },若A ∪B ≠B 且A ∩B ≠∅,则{m ≥−6m <8,故答案为:[﹣6,8).【点评】本题考查了集合的交集、并集的定义,是一道基础题.16.(4分)(2020秋•开福区校级月考)高二某班共有60人,每名学生要从物理、化学、生物、历史、地理、政治这六门课程中选择3门进行学习.已知选择物理、化学、生物的学生各有至少25人,这三门学科均不选的有15人.这三门课程均选的有10人,三门中任选两门课程的均至少有16人.三门中只选物理与只选化学均至少有6人,那么该班选择物理与化学但未选生物的学生至多有8人.【分析】利用venn图进行分析即可.【解答】解:总人数为60人,其中15人全不选,因此至少选择1门的有45人,由题可得如下venn图.由题可知,选生物的人数至少有20人,所以④+⑤+⑥+⑦≥20,所以①+②+③≤20;因为①≥6,③≥6,所以①+③≥12,所以②≤8.故答案为:8【点评】本题考查逻辑推理能力.借助Venn图解决问题,属于中档题.四.解答题(共6小题,满分44分)17.(6分)(2020秋•莲湖区期中)已知全集U=R,A={x|﹣1≤x≤4},B={x|﹣2≤x≤2},P={x|x≤0或x≥7 2}.(1)求A∪B,A∩B;(2)求(∁U B)∩P,(∁U B)∪P.【分析】(1)进行交集和并集的运算即可;(2)进行交集、并集和补集的运算即可.【解答】解:(1)∵A={x|﹣1≤x≤4},B={x|﹣2≤x≤2},∴A∪B={x|﹣2≤x≤4},A∩B={x|﹣1≤x≤2};(2)∁U B={x|x<﹣2或x>2},∴(∁U B)∩P={x|x<−2或x≥72},(∁U B)∪P={x|x≤0或x>2}.【点评】本题考查了描述法的定义,交集、并集和补集的定义及运算,全集的定义,考查了计算能力,属于基础题.18.(6分)(2020秋•绍兴期末)已知集合A={x|x<2},B={x|x2﹣4x+3<0}.(1)求集合B;(2)求(∁R A)∩B.【分析】(I)利用一元二次不等式的解法能求出集合B.(Ⅱ)由集合A={x|x<2},求出∁U A={x|x≥2},由此能求出(∁U A)∩B.【解答】解:(I)B={x|x2﹣4x+3<0}={x|(x﹣1)(x﹣3)<0}={x|1<x<3}.(Ⅱ)∵集合A={x|x<2},∴∁U A={x|x≥2},∴(∁U A)∩B={x|2≤x<3}.【点评】本题考查集合、补集、交集的求法,考查补集、交集定义等基础知识,考查运算求解能力,是基础题.19.(8分)(2021春•莲池区校级期中)设集合A={x|3≤x<7},B={x|2<x<10},C={x|5﹣a<x<a}.(1)求A∪B与(∁R A)∩B;(2)若(A∪B)⊆C,求实数a的取值范围.【分析】(1)利用并集定义能求出A ∪B ;求出∁R A ,利用交集定义能求出(∁R A )∩B .(2)由(A ∪B )⊆C ,列出不等式组,能求出实数a 的取值范围.【解答】解:(1)∵集合A ={x |3≤x <7},B ={x |2<x <10},∴A ∪B ={x |2<x <10}.∁R A ={x |x <3或x ≥7},∴(∁R A )∩B ={x |2<x <3或7≤x <10}.(2)∵集合A ={x |3≤x <7},B ={x |2<x <10},C ={x |5﹣a <x <a }.∴A ∪B ={x |2<x <10}.∵(A ∪B )⊆C ,∴{10≤a5−a ≤25−a <a,解得a ≥10.∴实数a 的取值范围是[10,+∞).【点评】本题考查交集、并集、补集的求法,考查交集、并集、补集定义、不等式的性质等基础知识,考查运算求解能力等数学核心素养,是基础题.20.(8分)(2021春•朝阳区校级月考)已知集合A ={x |﹣2<x +1<3},集合B 为整数集,令C =A ∩B .(1)求集合C ;(2)若集合D ={1,a },C ∪D ={﹣2,﹣1,0,1,2},求实数a 的值.【分析】(1)可求出集合A ,然后进行交集的运算即可求出C ={﹣2,﹣1,0,1};(2)根据并集的定义及运算即可求出a 的值.【解答】解:(1)∵A ={x |﹣3<x <2},B =Z ,∴C =A ∩B ={﹣2,﹣1,0,1};(2)∵C ={﹣2,﹣1,0,1},D ={1,a },C ∪D ={﹣2,﹣1,0,1,2},∴a =2.【点评】本题考查了描述法和列举法的定义,交集和并集的定义及运算,考查了计算能力,属于基础题.21.(8分)(2020秋•番禺区校级期中)已知全集U =R ,集合A ={x |x >2},B ={x |﹣4<x <4}. (Ⅰ)求∁U (A ∪B );(Ⅱ)定义A ﹣B ={x |x ∈A ,且x ∉B },求A ﹣B ,A ﹣(A ﹣B ).【分析】(Ⅰ)先求出A ∪B ={x |x >﹣4},由此能求出∁U (A ∪B ).(Ⅱ)由定义A ﹣B ={x |x ∈A ,且x ∉B },集合A ={x |x >2},B ={x |﹣4<x <4}.能求出A ﹣B ,A ﹣(A﹣B ).【解答】解:(Ⅰ)∵全集U =R ,集合A ={x |x >2},B ={x |﹣4<x <4}.∴A ∪B ={x |x >﹣4},∴∁U (A ∪B )={x |x ≤﹣4}.(Ⅱ)∵定义A ﹣B ={x |x ∈A ,且x ∉B },集合A ={x |x >2},B ={x |﹣4<x <4}.∴A ﹣B ={x |x ≥4},A ﹣(A ﹣B )={x |2<x <4}.【点评】本题考查交、并、补集的混合运算,考查交集、并集、补集、差集的定义等基础知识,考查运算求解能力,是基础题.22.(8分)(2020秋•佛山期末)在①A ∩B =∅,②A ∩(∁R B )=A ,③A ∩B =A 这三个条件中任选一个,补充到下面的问题中,并求解下列问题:已知集合A ={x |a ﹣1<x <2a +3},B ={x |﹣7≤x ≤4},若 ____,求实数a 的取值范围.【分析】分别利用集合的交集、补集、并集的定义对a 进行分类讨论,分别求解即可.【解答】解:若选择①A ∩B =∅,则当A =∅时,即a ﹣1≥2a +3,即a ≤﹣4时,满足题意,当a >﹣4时,应满足{a >−42a +3≤−7或{a >−4a −1≥4,解得a ≥5, 综上可知,实数a 的取值范围是(﹣∞,﹣4]∪[5,+∞).若选择②A ∩(∁R B )=A ,则A 是∁R B 的子集,∁R B =(﹣∞,﹣7)∪(4,+∞),当a ﹣1≥2a +3,即a ≤﹣4时,A =∅,满足题意;当a >﹣4时,{a >−42a +3≤−7或{a >−4a −1>4,解得a ≥5, 综上可得,实数a 的取值范围是(﹣∞,﹣4]∪[5,+∞).若选择③A ∩B =A ,则A ⊆B ,当a ﹣1≥2a +3,即a ≤﹣4时,A =∅,满足题意;当a >﹣4时,{a −1≥−72a +3≤4,解得−6≤a ≤12; 综上可知,实数a 的取值范围是(−∞,12].【点评】本题考查了交集、并集、补集的综合运算,涉及了分类讨论思想的应用,解题的关键是掌握集合交集、并集、补集的定义,是基础题.。

高一数学同步练习训练题目

高一数学同步练习训练题目

高一数学同步练习训练题目高一数学练习题一、选择题(每小题5分,共20分)1.下列命题中正确的( )①0与{0}表示同一个集合;②由1,2,3组成的集合可表示为{1,2,3}或{3,2,1};③方程(__1)2(__2)=0的所有解的集合可表示为{1,1,2};④集合{x|4x5}可以用列举法表p=“"示.A.只有①和④B.只有②和③C.只有②D.以上语句都不对{0}表示元素为0的集合,而0只表示一个元素,故①错误;②符合集合中元素的无序性,正确;③不符合集合中元素的互异性,错误;④中元素有无穷多个,不能一一列举,故不能用列举法表示.故选C.C2.用列举法表示集合{x|x2-2x+1=0}为( )A.{1,1}B.{1}C.{x=1}D.{x2-2x+1=0}集合{x|x2-2x+1=0}实质是方程x2-2x+1=0的解集,此方程有两相等实根,为1,故可表示为{1}.故选B.B3.已知集合A={x∈N_|-5≤x5},则必有( )A.-1∈AB.0∈A 3∈A D.1∈A∵x∈N_5≤x5,高一集合练习题及答案∴x=1,2,即A={1,2},∴1∈A.故选D.D4.定义集合运算:A_B={z|z=xy,x∈A,y∈B}.设A={1,2},B={0,2},则集合A_B的所有元素之和为( )A.0B.2C.3D.6依题意,A_B={0,2,4},其所有元素之和为6,故选D.D二、填空题(每小题5分,共10分)5.已知集合A={1,a2},实数a不能取的值的集合是________.由互异性知a2≠1,即a≠±1,故实数a不能取的值的集合是{1,-1}.{1,-1}6.已知P={x|2xa,x∈n},已知集合p中恰有3个元素,则整数a=________. p=""用数轴分析可知a=6时,集合P中恰有3个元素3,4,5.6三、解答题(每小题10分,共20分)7.选择适当的方法表示下列集合集.(1)由方程x(x2-2__3)=0的所有实数根组成的集合;(2)大于2且小于6的有理数;(3)由直线y=__+4上的横坐标和纵坐标都是自然数的点组成的集合.(1)方程的实数根为-1,0,3,故可以用列举法表示为{-1,0,3},当然也可以用描述法表示为{x|x(x2-2__3)=0},有限集.(2)由于大于2且小于6的有理数有无数个,故不能用列举法表示该集合,但可以用描述法表示该集合为{x∈Q|2x6},无限集. p=""(3)用描述法表示该集合为M={(x,y)|y=__+4,x∈N,y∈N}或用列举法表示该集合为{(0,4),(1,3),(2,2),(3,1),(4,0)}.8.设A表示集合{a2+2a-3,2,3},B表示集合{2,|a+3|},已知5∈A且5?B,求a的值.因为5∈A,所以a2+2a-3=5,解得a=2或a=-4.当a=2时,|a+3|=5,不符合题意,应舍去.当a=-4时,|a+3|=1,符合题意,所以a=-4.9.(10分)已知集合A={x|ax2-3__4=0,x∈R}.(1)若A中有两个元素,求实数a的取值范围;(2)若A中至多有一个元素,求实数a的取值范围.(1)∵A中有两个元素,∴方程ax2-3__4=0有两个不等的实数根,a≠0,99∴?即a-16.∴a-16a≠0. ?Δ=9+16a0(2)当a=0时,A={-3};当a≠0时,若关于x的'方程ax2-3__4=0有两个相等的实数根,Δ=9+16a=0,9即a=-16若关于x的方程无实数根,则Δ=9+16a0,9即a16;9故所求的a的取值范围是a≤-16a=0.1.设集合A={x|2≤x4},B={x|3__7≥8-2x},则A∪B等于( )A.{x|x≥3}B.{x|x≥2}C.{x|2≤x3}D.{x|x≥4}B={x|x≥3}.画数轴(如下图所示)可知选B.B2.已知集合A={1,3,5,7,9},B={0,3,6,9,12},则A∩B=( )A.{3,5}B.{3,6}C.{3,7}D.{3,9}A={1,3,5,7,9},B={0,3,6,9,12},A和B中有相同的元素3,9,∴A∩B={3,9}.故选D.D高一集合练习题及答案3.50名学生参加甲、乙两项体育活动,每人至少参加了一项,参加甲项的学生有30名,参加乙项的学生有25名,则仅参加了一项活动的学生人数为________.设两项都参加的有x人,则只参加甲项的有(30__)人,只参加乙项的有(25__)人.(30__)+x+(25__)=50,∴x=5.∴只参加甲项的有25人,只参加乙项的有20人,∴仅参加一项的有45人.454.已知集合A={-4,2a-1,a2},B={a-5,1-a,9},若A∩B={9},求a的值.∵A∩B={9},∴9∈A,∴2a-1=9或a2=9,∴a=5或a=±3.当a=5时,A={-4,9,25},B={0,-4,9}.此时A∩B={-4,9}≠{9}.故a=5舍去.当a=3时,B={-2,-2,9},不符合要求,舍去.经检验可知a=-3符合题意.高一数学函数练习题1.某公司为了适应市场需求,对产品结构做了重大调整.调整后初期利润增长迅速,后来增长越来越慢,若要建立恰当的函数模型来反映该公司调整后利润y与产量x的关系,则可选用( )A.一次函数B.二次函数C.指数型函数D.对数型函数解析:选D.一次函数保持均匀的增长,不符合题意;二次函数在对称轴的两侧有增也有降;而指数函数是爆炸式增长,不符合“增长越来越慢”;因此,只有对数函数最符合题意,先快速增长,后来越来越慢.2.某种植物生长发育的数量y与时间x的关系如下表:x 1 2 3 。

(精校版)(精品)高中数学必修1全套同步练习册

(精校版)(精品)高中数学必修1全套同步练习册

1。1。3(2)集合的基本运算(补集及综合运算)
1.设全集 U=R,A={x|0≤x≤6},则∁RA=( ). A.{ 0,1,2,3,4,5,6} B.{x|x<0 或 x〉6}
C.{x|0<x〈6}
D.{x|x≤0 或 x≥6}[来源:学科网 ZXXK]
2.已知全集 U={2,5 ,8},且∁UA={2},则集合 A 的真子集个数为( ).
4.直线 y=2x+1 与 y 轴的交点所组成的集合为( ).[来源:学§科§网 Z§X§X§K]
A.{0,1}
B.{(0,1)}
C。Error!
D. {(1f,0)})
5.集合 A={y|y=x2+1},集合 B={(x,y)|y=x2+1}(A、B 中 x∈R,y∈R ).选项中元
素与集合的关系都正确的是( ).
9.以方程 x2-5x+6=0 和方程 x2-x-2=0 的解为元素的集合中共有________个元素.
10.设 1,0, x 三个元素构成集合 A,若 x2∈A,求实数 x 的值.
11.已知集合 M 中含有三个元素 2, a,b,集合 N 中含有三个元素 2a ,2,b2,且 M=N,求 a,b 的值.
A.3
B.4
C.5
D.6
3.若 A 为全体正实数的集合,B={-2,-1,1,2},则下列结论中正确的是( ).
A.A∩B={-2,-1}
B.(∁RA)∪B={-2,- 1,1}
C.A∪B={1,2}
D.(∁RA)∩B={-2,-1}
4.在如图中 , 用阴影表示出集合(∁UA)∩(∁U B).
5.已知 U 为全集,集合 M、N 是 U 的子集,若 M∩N=N,则( ).

(2019新教材)人教A版高中数学必修第二册全册同步练习

(2019新教材)人教A版高中数学必修第二册全册同步练习

(2019新教材)人教A 版高中数学必修第二册全册同步练习6.1 平面向量的概念[A 基础达标]1.下列命题中,正确命题的个数是( ) ①单位向量都共线; ②长度相等的向量都相等; ③共线的单位向量必相等;④与非零向量a 共线的单位向量是a |a|.A .3B .2C .1D .0解析:选D.根据单位向量的定义,可知①②③明显是错误的;对于④,与非零向量a 共线的单位向量是a |a|或-a|a|,故④也是错误的.2.下列说法正确的是( )A .若a 与b 平行,b 与c 平行,则a 与c 一定平行B .终点相同的两个向量不共线C .若|a|>|b|,则a>bD .单位向量的长度为1解析:选D.A 中,因为零向量与任意向量平行,若b =0,则a 与c 不一定平行.B 中,两向量终点相同,若夹角是0°或180°,则共线.C 中,向量是既有大小,又有方向的量,不可以比较大小.3.如图,在正六边形ABCDEF 中,点O 为其中心,则下列判断错误的是( )A.AB →=OC →B.AB →∥DE → C .|AD →|=|BE →|D.AD →=FC →解析:选D.由题图可知,|AD →|=|FC →|,但AD →、FC →的方向不同,故AD →≠FC →,故选D. 4.设O 是△ABC 的外心,则AO →,BO →,CO →是( ) A .相等向量 B .模相等的向量 C .平行向量D .起点相同的向量解析:选B.因为三角形的外心是三角形外接圆的圆心,所以点O 到三个顶点A ,B ,C 的距离相等,所以AO →,BO →,CO →是模相等的向量.5.若a 是任一非零向量,b 是单位向量,下列各式:①|a |>|b |;②a ∥b ;③|a |>0;④|b |=±1;⑤a|a |=b ,其中正确的有( )A .①④⑤B .③C .①②③⑤D .②③⑤解析:选B.①|a |>|b |不正确,a 是任一非零向量,模长是任意的,故不正确;②不一定有a ∥b ,故不正确;③向量的模长是非负数,而向量a 是非零向量,故|a |>0正确;④|b |=1,故④不正确;⑤a|a |是与a 同向的单位向量,不一定与b 同向,故不正确.6.如图,已知正方形ABCD 的边长为2,O 为其中心,则|OA →|=________.解析:因为正方形的对角线长为22,所以|OA →|= 2. 答案:27.如果在一个边长为5的正△ABC 中,一个向量所对应的有向线段为AD →(其中D 在边BC 上运动),则向量AD →长度的最小值为________.解析:根据题意,在正△ABC 中,有向线段AD 的长度最小时,AD 应与边BC 垂直,有向线段AD 长度的最小值为正△ABC 的高,为532.答案:5328.已知A ,B ,C 是不共线的三点,向量m 与向量AB →是平行向量,与BC →是共线向量,则m =________.解析:因为A ,B ,C 不共线, 所以AB →与BC →不共线. 又m 与AB →,BC →都共线, 所以m =0. 答案:09.在平行四边形ABCD 中,E ,F 分别为边AD ,BC 的中点,如图. (1)在每两点所确定的向量中,写出与向量FC →共线的向量;(2)求证:BE →=FD →.解:(1)由共线向量满足的条件得与向量FC →共线的向量有:CF →,BC →,CB →,BF →,FB →,ED →,DE →,AE →,EA →,AD →,DA →.(2)证明:在▱ABCD 中,AD 綊BC . 又E ,F 分别为AD ,BC 的中点, 所以ED 綊BF ,所以四边形BFDE 是平行四边形, 所以BE 綊FD , 所以BE →=FD →.10.已知在四边形ABCD 中,AB →∥CD →,求AD →与BC →分别满足什么条件时,四边形ABCD 满足下列情况.(1)四边形ABCD 是等腰梯形; (2)四边形ABCD 是平行四边形. 解:(1)|AD →|=|BC →|,且AD →与BC →不平行.因为AB →∥CD →,所以四边形ABCD 为梯形或平行四边形.若四边形ABCD 为等腰梯形,则|AD →|=|BC →|,同时两向量不平行.(2)AD →=BC →(或AD →∥BC →).若AD →=BC →,即四边形的一组对边平行且相等,此时四边形ABCD 为平行四边形.[B 能力提升]11.在菱形ABCD 中,∠DAB =120°,则以下说法错误的是 ( ) A .与AB →相等的向量只有一个(不含AB →) B .与AB →的模相等的向量有9个(不含AB →) C .BD →的模恰为DA →模的3倍 D .CB →与DA →不共线解析:选D.两向量相等要求长度(模)相等,方向相同.两向量共线只要求方向相同或相反.D 中CB →,DA →所在直线平行,向量方向相同,故共线.12.如图,等腰梯形ABCD 中,对角线AC 与BD 交于点P ,点E ,F 分别在腰AD ,BC 上,EF 过点P ,且EF ∥AB ,则( )A.AD →=BC →B.AC →=BD →C.PE →=PF →D.EP →=PF →解析:选D.由平面几何知识知,AD →与BC →方向不同,故AD →≠BC →;AC →与BD →方向不同,故AC →≠BD →;PE →与PF →的模相等而方向相反,故PE →≠PF →;EP →与PF →的模相等且方向相同,所以EP →=PF →.13.如图,在△ABC 中,∠ACB 的平分线CD 交AB 于点D .若AC →的模为2,BC →的模为3,AD →的模为1,则DB →的模为________.解析:如图,延长CD ,过点A 作BC 的平行线交CD 的延长线于点E . 因为∠ACD =∠BCD =∠AED , 所以|AC →|=|AE →|. 因为△ADE ∽△BDC ,所以|AD →||DB →|=|AE →||BC →|=|AC →||BC →|,故|DB →|=32.答案:3214.某人从A 点出发向东走了5米到达B 点,然后改变方向沿东北方向走了102米到达C 点,到达C 点后又改变方向向西走了10米到达D 点.(1)作出向量AB →,BC →,CD →; (2)求向量AD →的模.解:(1)作出向量AB →,BC →,CD →, 如图所示.(2)由题意得,△BCD 是直角三角形,其中∠BDC =90°,BC =102米,CD =10米,所以BD =10米.△ABD 是直角三角形,其中∠ABD =90°,AB =5米,BD =10米,所以AD =52+102=55(米).所以|AD →|=5 5.[C 拓展探究]15.如图,A 1,A 2,…,A 8是⊙O 上的八个等分点,则在以A 1,A 2,…,A 8及圆心O 九个点中任意两点为起点与终点的向量中,模等于半径的向量有多少个?模等于半径的2倍的向量有多少个?解:模等于半径的向量只有两类,一类是OA →i (i =1,2,…,8),共8个;另一类是A i O →(i =1,2,…,8),也有8个.两类共计有16个.以A 1,A 2,…,A 8中四点为顶点的⊙O 的内接正方形有两个,一个是正方形A 1A 3A 5A 7,另一个是正方形A 2A 4A 6A 8.在题中所述的向量中,只有这两个正方形的边(看成有向线段,每一边对应两个向量)的长度为半径的2倍,故模为半径的2倍的向量共有4×2×2=16(个).6.2 向量的运算[A 基础达标]1.在三角形ABC 中,BA →=a ,CA →=b ,则CB →=( ) A .a -b B .b -a C .a +bD .-a -b解析:选B.CB →=CA →+AB →=CA →+(-BA →)=b -a .2.若O ,E ,F 是不共线的任意三点,则以下各式中成立的是( ) A.EF →=OF →+OE → B.EF →=OF →-OE → C.EF →=-OF →+OE →D.EF →=-OF →-OE →解析:选B.EF →=EO →+OF →=OF →-OE →=EO →-FO →=-OE →-FO →.故选B. 3.如图,在四边形ABCD 中,设AB →=a ,AD →=b ,BC →=c ,则DC →=( )A .a -b +cB .b -(a +c )C .a +b +cD .b -a +c解析:选A.DC →=DA →+AB →+BC →=a -b +c . 4.给出下列各式: ①AB →+CA →+BC →; ②AB →-CD →+BD →-AC →; ③AD →-OD →-AO →; ④NQ →-MP →+QP →+MN →.对这些式子进行化简,则其化简结果为0的式子的个数是( ) A .4 B .3 C .2D .1解析:选A.①AB →+CA →+BC →=AC →+CA →=0;②AB →-CD →+BD →-AC →=AB →+BD →-(AC →+CD →)=AD →-AD →=0; ③AD →-OD →-AO →=AD →+DO →+OA →=AO →+OA →=0; ④NQ →-MP →+QP →+MN →=NQ →+QP →+MN →-MP →=NP →+PN →=0. 5.对于菱形ABCD ,给出下列各式:①AB →=BC →;②|AB →|=|BC →|;③|AB →-CD →|=|AD →+BC →|;④|AD →+CD →|=|CD →-CB →|. 其中正确的个数为( ) A .1 B .2 C .3D .4 解析:选C.由菱形的图形,可知向量AB →与BC →的方向是不同的,但它们的模是相等的,所以②正确,①错误;因为|AB →-CD →|=|AB →+DC →|=2|AB →|,|AD →+BC →|=2|BC →|,且|AB →|=|BC →|,所以|AB →-CD →|=|AD →+BC →|,即③正确;因为|AD →+CD →|=|BC →+CD →|=|BD →|,|CD →-CB →|=|CD →+BC →|=|BD →|,所以④正确.综上所述,正确的个数为3,故选C.6.若a ,b 为相反向量,且|a |=1,|b |=1,则|a +b |=______,|a -b |=________. 解析:若a ,b 为相反向量,则a +b =0,所以|a +b |=0,又a =-b ,所以|a |=|-b |=1,因为a 与-b 共线,所以|a -b |=2.答案:0 27.已知▱ABCD 的对角线AC 和BD 相交于O ,且OA →=a ,OB →=b ,则DC →=________,BC →=________.(用a ,b 表示)解析:如图,DC →=AB →=OB →-OA →=b -a ,BC →=OC →-OB →=-OA →-OB →=-a -b .答案:b -a -a -b 8.给出下列命题:①若OD →+OE →=OM →,则OM →-OE →=OD →; ②若OD →+OE →=OM →,则OM →+DO →=OE →; ③若OD →+OE →=OM →,则OD →-EO →=OM →; ④若OD →+OE →=OM →,则DO →+EO →=MO →. 其中正确命题的序号为________. 解析:①因为OD →+OE →=OM →, 所以OD →=OM →-OE →,正确;②因为OM →-OD →=OE →,所以OM →+DO →=OE →,正确; ③因为OE →=-EO →,所以OD →-EO →=OM →,正确; ④因为-OM →=-OD →-OE →,所以MO →=DO →+EO →,正确. 答案:①②③④9.如图,已知OA →=a ,OB →=b ,OC →=c ,OD →=d ,OF →=f ,试用a ,b ,c ,d ,f 表示以下向量:(1)AC →;(2)AD →;(3)AD →-AB →;(4)AB →+CF →; (5)BF →-BD →.解:(1)AC →=OC →-OA →=c -a . (2)AD →=AO →+OD →=OD →-OA →=d -a . (3)AD →-AB →=BD →=OD →-OB →=d -b .(4)AB →+CF →=OB →-OA →+OF →-OC →=b -a +f -c . (5)BF →-BD →=OF →-OB →-(OD →-OB →)=OF →-OD →=f -d . 10.如图所示,▱ABCD 中,AB →=a ,AD →=b .(1)用a ,b 表示AC →,DB →;(2)当a ,b 满足什么条件时,a +b 与a -b 所在直线互相垂直? 解:(1)AC →=AD →+AB →=b +a ,DB →=AB →-AD →=a -b . (2)由(1)知a +b =AC →,a -b =DB →. 因为a +b 与a -b 所在直线垂直,所以AC ⊥BD .又因为四边形ABCD 为平行四边形, 所以四边形ABCD 为菱形, 所以|a |=|b |.所以当|a |=|b |时,a +b 与a -b 所在直线互相垂直.[B 能力提升]11.给出下面四个结论:①若线段AC =AB +BC ,则向量AC →=AB →+BC →; ②若向量AC →=AB →+BC →,则线段AC =AB +BC ; ③若向量AB →与BC →共线,则线段AC =AB +BC ; ④若向量AB →与BC →反向共线,则|AB →-BC →|=AB +BC . 其中正确的结论有________.解析:①由AC =AB +BC 得点B 在线段AC 上,则AC →=AB →+BC →,正确. ②三角形内AC →=AB →+BC →,但AC ≠AB +BC ,错误.③AB →,BC →反向共线时,|AC →|=|AB →+BC →|≠|AB →|+|BC →|,也即AC ≠AB +BC ,错误. ④AB →,BC →反向共线时,|AB →-BC →|=|AB →+(-BC →)|=AB +BC ,正确. 答案:①④12.已知|OA →|=a ,|OB →|=b (a >b ),|AB →|的取值范围是[5,15],则a ,b 的值分别为______. 解析:因为a -b =||OA →|-|OB →||≤|OA →-OB →|=|AB →|≤|OA →|+|OB →|=a +b ,所以⎩⎪⎨⎪⎧a +b =15,a -b =5,解得⎩⎪⎨⎪⎧a =10,b =5.答案:10 513.在△ABC 中,|AB →|=|BC →|=|CA →|=1,则|AB →-BC →|=________. 解析:如图,在△ABD 中, AB =BD =1, ∠ABD =120°,AB →-BC →=AB →+CB → =AB →+BD →=AD →.易求得AD =3,即|AD →|= 3. 所以|AB →-BC →|= 3. 答案:314.如图所示,点O 是四边形ABCD 内任一点,试根据图中给出的向量,确定a ,b ,c ,d 的方向(用箭头表示),使a +b =BA →,c -d =DC →,并画出b -c 和a +d .解:因为a +b =BA →,c -d =DC →,所以a =OA →,b =BO →,c =OC →,d =OD →.如图所示,作平行四边形OBEC ,平行四边形ODF A .根据平行四边形法则可得,b -c =EO →,a +d =OF →.[C 拓展探究]15.已知△ABC 是等腰直角三角形,∠ACB =90°,M 是斜边AB 的中点,CM →=a ,CA →=b .求证:(1)|a -b |=|a |; (2)|a +(a -b )|=|b |.证明:因为△ABC 是等腰直角三角形,∠ACB =90°, 所以CA =CB .又M 是斜边AB 的中点, 所以CM =AM =BM . (1)因为CM →-CA →=AM →, 又|AM →|=|CM →|,所以|a -b |=|a |. (2)因为M 是斜边AB 的中点, 所以AM →=MB →,所以a +(a -b )=CM →+(CM →-CA →)=CM →+AM →=CM →+MB →=CB →,因为|CA →|=|CB →|, 所以|a +(a -b )|=|b |.向量的数量积[A 基础达标]1.已知▱ABCD 中∠DAB =30°,则AD →与CD →的夹角为( ) A .30° B .60° C .120°D .150°解析:选D.如图,AD →与CD →的夹角为∠ABC =150°.2.已知单位向量a ,b ,则(2a +b )·(2a -b )的值为( ) A. 3 B.5 C .3D .5解析:选C.由题意得(2a +b )·(2a -b )=4a 2-b 2=4-1=3.3.(2019·北京市十一中学检测)已知平面向量a ,b 满足a ·(a +b )=3且|a |=2,|b |=1,则向量a 与b 的夹角为( )A.π6B.π3C.2π3D.5π6解析:选C.因为a ·(a +b )=a 2+a ·b =4+2cos 〈a ,b 〉=3,所以cos 〈a ,b 〉=-12,又因为〈a ,b 〉∈[0,π],所以〈a ,b 〉=2π3.4.若向量a 与b 的夹角为60°,|b |=4,(a +2b )·(a -3b )=-72,则|a |=( ) A .2 B .4 C .6D .12解析:选C.因为(a +2b )·(a -3b )=a 2-a ·b -6b 2 =|a |2-|a |·|b |cos 60°-6|b |2 =|a |2-2|a |-96=-72. 所以|a |2-2|a |-24=0.解得|a |=6或|a |=-4(舍去).故选C.5.(2019·广东佛山质检)如图所示,△ABC 是顶角为120°的等腰三角形,且AB =1,则AB →·BC →等于( )A .-32B .32C .-32D .32解析:选C.因为△ABC 是顶角为120°的等腰三角形,且AB =1,所以BC =3,所以AB →·BC →=1×3×cos 150°=-32.6.若向量a 的方向是正南方向,向量b 的方向是北偏东60°方向,且|a |=|b |=1,则(-3a )·(a +b )=________.解析:设a 与b 的夹角为θ,则θ=120°,所以(-3a )·(a +b )=-3|a |2-3a ·b =-3-3×1×1×cos 120°=-3+3×12=-32.答案:-327.已知向量a 与b 的夹角是π3,且|a |=1,|b |=2,若(3a +λb )⊥a ,则实数λ=________.解析:根据题意得a ·b =|a |·|b |cos π3=1,因为(3a +λb )⊥a ,所以(3a +λb )·a =3a 2+λa ·b =3+λ=0,所以λ=- 3.答案:-38.已知在△ABC 中,AB =AC =4,AB →·AC →=8,则△ABC 的形状是________. 解析:因为AB →·AC →=|AB →||AC →|cos ∠BAC ,即8=4×4cos ∠BAC ,于是cos ∠BAC =12,所以∠BAC =60°.又AB =AC ,故△ABC 是等边三角形.答案:等边三角形9.已知非零向量a ,b ,满足|a |=1,(a -b )·(a +b )=12,且a ·b =12.(1)求向量a ,b 的夹角; (2)求|a -b |.解:(1)因为(a -b )·(a +b )=12,所以a 2-b 2=12,即|a |2-|b |2=12,又|a |=1,所以|b |=22.设向量a ,b 的夹角为θ, 因为a ·b =12,所以|a |·|b |cos θ=12,所以cos θ=22,因为0°≤θ≤180°,所以θ=45°,所以向量a ,b 的夹角为45°. (2)因为|a -b |2=(a -b )2=|a |2-2a ·b +|b |2=12,所以|a -b |=22. 10.已知|a |=2|b |=2,e 是与b 方向相同的单位向量,且向量a 在向量b 方向上的投影向量为-e .(1)求a 与b 的夹角θ; (2)求(a -2b )·b ;(3)当λ为何值时,向量λa +b 与向量a -3b 互相垂直? 解:(1)由题意知|a |=2,|b |=1.又a 在b 方向上的投影向量为|a |cos θ e =-e , 所以cos θ=-12,所以θ=2π3.(2)易知a ·b =|a |·|b |cos θ=-1,则(a -2b )·b =a ·b -2b 2=-1-2=-3. (3)因为λa +b 与a -3b 互相垂直, 所以(λa +b )·(a -3b )=λa 2-3λa ·b +b ·a -3b 2 =4λ+3λ-1-3=7λ-4=0, 所以λ=47.[B 能力提升]11.在△ABC 中,若AB →2=AB →·AC →+BA →·BC →+CA →·CB →,则△ABC 是( ) A .等边三角形 B .锐角三角形 C .钝角三角形D .直角三角形解析:选D.因为AB →2=AB →·AC →+BA →·BC →+CA →·CB →,所以AB →2-AB →·AC →=BA →·BC →+CA →·CB →, 所以AB →·(AB →-AC →)=BC →·(BA →-CA →), 所以AB →·CB →=BC →2,所以BC →·(BC →+AB →)=0, 所以BC →·AC →=0,所以AC ⊥BC ,所以△ABC 是直角三角形.12.若|a +b |=|a -b |=2|a |,则向量a -b 与b 的夹角为( )A.π6B.π3C.2π3D.5π6解析:选D.由|a +b |=|a -b |可得a·b =0,由|a -b |=2|a |可得3a 2=b 2,所以|b |=3|a |,设向量a -b 与b 的夹角为θ,则cos θ=(a -b )·b |a -b ||b |=-|b |22|a |·3|a |=-3|a |223|a |2=-32,又θ∈[0,π],所以θ=5π6.13.在△ABC 中,∠BAC =120°,AB =2,AC =1,D 是边BC 上一点,DC →=2BD →,则AD →·BC →=________.解析:由DC →=2BD →,所以BD →=13BC →,BC →=AC →-AB →,故AD →·BC →=(AB →+BD →)·BC →=⎣⎡⎦⎤AB →+13·(AC →-AB →)·(AC →-AB →) =⎝⎛⎭⎫23AB →+13AC →·(AC →-AB →) =13AB →·AC →+13AC →2-23AB →2 =13|AB →||AC →|cos 120°+13|AC →|2-23|AB →|2=13×2×1×⎝⎛⎭⎫-12+13×1-23×22=-83. 答案:-8314.设向量e 1,e 2满足|e 1|=2,|e 2|=1,e 1,e 2的夹角为60°,若向量2t e 1+7e 2与向量e 1+t e 2的夹角为钝角,求实数t 的取值范围.解:由向量2t e 1+7e 2与e 1+t e 2的夹角为钝角, 得(2t e 1+7e 2)·(e 1+t e 2)|2t e 1+7e 2|·|e 1+t e 2|<0,即(2t e 1+7e 2)·(e 1+t e 2)<0, 化简即得2t 2+15t +7<0,画出y =2t 2+15t +7的图象,如图. 若2t 2+15t +7<0, 则t ∈⎝⎛⎭⎫-7,-12.当夹角为π时,也有(2t e 1+7e 2)·(e 1+t e 2)<0, 但此时夹角不是钝角,设2t e 1+7e 2=λ(e 1+t e 2),λ<0,可得 ⎩⎪⎨⎪⎧2t =λ,7=λt ,λ<0⇒⎩⎪⎨⎪⎧λ=-14,t =-142. 所以所求实数t 的取值范围是⎝⎛⎭⎫-7,-142∪⎝⎛⎭⎫-142,-12. [C 拓展探究]15.在四边形ABCD 中,已知AB =9,BC =6,CP →=2PD →. (1)若四边形ABCD 是矩形,求AP →·BP →的值;(2)若四边形ABCD 是平行四边形,且AP →·BP →=6,求AB →与AD →夹角的余弦值. 解:(1)因为四边形ABCD 是矩形,所以AD →·DC →=0, 由CP →=2PD →,得DP →=13DC →,CP →=23CD →=-23DC →.所以AP →·BP →=()AD →+DP →·()BC →+CP→ =⎝⎛⎭⎫AD →+13DC →·⎝⎛⎭⎫AD →-23DC →=AD →2-13AD →·DC →-29DC →2=36-29×81=18.(2)由题意,AP →=AD →+DP →=AD →+13DC →=AD →+13AB →,BP →=BC →+CP →=BC →+23CD →=AD →-23AB →,所以AP →·BP →=⎝⎛⎭⎫AD →+13AB →·⎝⎛⎭⎫AD →-23AB → =AD →2-13AB →·AD →-29AB →2=36-13AB →·AD →-18=18-13AB →·AD →.又AP →·BP →=6, 所以18-13AB →·AD →=6,所以AB →·AD →=36. 设AB →与AD →的夹角为θ,又AB →·AD →=|AB →|·|AD →|cos θ=9×6×cos θ=54cos θ, 所以54cos θ=36,即cos θ=23.所以AB →与AD →夹角的余弦值为23.平面向量的分解及加、减、数乘运算的坐标表示[A 基础达标]1.设i ,j 是平面直角坐标系内分别与x 轴,y 轴正方向相同的两个单位向量,O 为坐标原点,若OA →=4i +2j ,OB →=3i +4j ,则2OA →+OB →的坐标是( )A .(1,-2)B .(7,6)C .(5,0)D .(11,8)解析:选D.因为OA →=(4,2),OB →=(3,4), 所以2OA →+OB →=(8,4)+(3,4)=(11,8).2.设向量a =(1,2),b =(-3,5),c =(4,x ),若a +b =λc (λ∈R ),则λ+x 的值为( ) A .-112B.112 C .-292D.292解析:选C.由已知,可得(1,2)+(-3,5)=λ(4,x ),所以⎩⎪⎨⎪⎧4λ=-2,x λ=7,解得⎩⎪⎨⎪⎧λ=-12,x =-14,所以λ+x =-292,故选C.3.已知MA →=(-2,4),MB →=(2,6),则12AB →等于( )A .(0,5)B .(0,1)C .(2,5)D .(2,1)解析:选D.12AB →=12(MB →-MA →)=12(2,6)-12(-2,4)=(2,1).4.已知四边形ABCD 的三个顶点A (0,2),B (-1,-2),C (3,1),且BC →=2AD →,则顶点D 的坐标为( )A.⎝⎛⎭⎫2,72B.⎝⎛⎭⎫2,-12 C .(3,2)D .(1,3)解析:选A.设点D (m ,n ),则由题意得(4,3)=2(m ,n -2)=(2m ,2n -4),故⎩⎪⎨⎪⎧2m =4,2n -4=3,解得⎩⎪⎨⎪⎧m =2,n =72,即点D 的坐标为⎝⎛⎭⎫2,72,故选A. 5.已知A (-3,0),B (0,2),O 为坐标原点,点C 在∠AOB 内,且∠AOC =45°,设OC →=λOA →+(1-λ)OB →(λ∈R ),则λ的值为( )A.15B.13C.25D.23解析: 选C.如图所示,因为∠AOC =45°, 所以设C (x ,-x ), 则OC →=(x ,-x ).又因为A (-3,0),B (0,2), 所以λOA →+(1-λ)OB → =(-3λ,2-2λ),所以⎩⎪⎨⎪⎧x =-3λ-x =2-2λ⇒λ=25.6.已知点A (-1,-5)和向量a =(2,3),若AB →=3a ,则点B 的坐标为________. 解析:设O 为坐标原点,因为OA →=(-1,-5),AB →=3a =(6,9),故OB →=OA →+AB →=(5,4),故点B 的坐标为(5,4).答案:(5,4)7.已知向量a =(1,2),b =(-2,3),c =(4,1),若用a 和b 表示c ,则c =________. 解析:设c =x a +y b ,则(x ,2x )+(-2y ,3y )=(x -2y ,2x +3y )=(4,1).故⎩⎪⎨⎪⎧x -2y =4,2x +3y =1,解得⎩⎪⎨⎪⎧x =2,y =-1. 所以c =2a -b . 答案:2a -b8.已知A (-1,2),B (2,8).若AC →=13AB →,DA →=-23AB →,则CD →的坐标为________.解析:AC →=13AB →=13(3,6)=(1,2),DA →=-23AB →=-23(3,6)=(-2,-4),DC →=DA →+AC →=(-1,-2), 所以CD →=(1,2). 答案:(1,2)9.已知A (-2,4),B (3,-1),C (-3,-4).设AB →=a ,BC →=b ,CA →=c . (1)求3a +b -3c ;(2)求满足a =m b +n c 的实数m ,n 的值.解:由已知得a =(5,-5),b =(-6,-3),c =(1,8).(1)3a +b -3c =3(5,-5)+(-6,-3)-3(1,8)=(15-6-3,-15-3-24)=(6,-42). (2)因为m b +n c =(-6m +n ,-3m +8n ),所以⎩⎪⎨⎪⎧-6m +n =5,-3m +8n =-5,解得⎩⎪⎨⎪⎧m =-1,n =-1. 10.已知向量AB →=(4,3),AD →=(-3,-1),点A (-1,-2). (1)求线段BD 的中点M 的坐标;(2)若点P (2,y )满足PB →=λBD →(λ∈R ),求λ与y 的值. 解:(1)设B (x 1,y 1),因为AB →=(4,3),A (-1,-2), 所以(x 1+1,y 1+2)=(4,3),所以⎩⎪⎨⎪⎧x 1+1=4,y 1+2=3,所以⎩⎪⎨⎪⎧x 1=3,y 1=1,所以B (3,1).同理可得D (-4,-3), 设BD 的中点M (x 2,y 2), 则x 2=3-42=-12,y 2=1-32=-1.所以M ⎝⎛⎭⎫-12,-1. (2)由PB →=(3,1)-(2,y )=(1,1-y ), BD →=(-4,-3)-(3,1)=(-7,-4), 又PB →=λBD →(λ∈R ),所以(1,1-y )=λ(-7,-4)=(-7λ,-4λ),所以⎩⎪⎨⎪⎧1=-7λ,1-y =-4λ,所以⎩⎨⎧λ=-17,y =37.[B 能力提升]11.对于向量m =(x 1,y 1),n =(x 2,y 2),定义m n =(x 1x 2,y 1y 2).已知a =(2,-4),且a +b =ab ,那么向量b 等于( )A.⎝⎛⎭⎫2,45 B.⎝⎛⎭⎫-2,-45 C.⎝⎛⎭⎫2,-45 D.⎝⎛⎭⎫-2,45 解析:选A.设b =(x ,y ),由新定义及a +b =ab ,可得(2+x ,y -4)=(2x ,-4y ),所以2+x =2x ,y -4=-4y ,解得x =2,y =45,所以向量b =⎝⎛⎭⎫2,45. 12.已知A (-3,0),B (0,2),O 为坐标原点,点C 在∠AOB 内,|OC |=22,且∠AOC =π4,设OC →=λOA →+OB →(λ∈R ),则λ=______.解析:过C 作CE ⊥x 轴于点E ,由∠AOC =π4知,|OE |=|CE |=2,所以OC →=OE →+OB →=λOA→+OB →,即OE →=λOA →,所以(-2,0)=λ(-3,0),故λ=23.答案:2313.在△ABC 中,点P 在BC 上,且BP →=2PC →,点Q 是AC 的中点,若P A →=(4,3),PQ →=(1,5),则BC →=________.解析:PQ →-P A →=AQ →=(1,5)-(4,3)=(-3,2),因为点Q 是AC 的中点,所以AQ →=QC →,所以PC →=PQ →+QC →=(1,5)+(-3,2)=(-2,7).因为BP →=2PC →,所以BC →=BP →+PC →=3PC →=3(-2,7)=(-6,21).答案:(-6,21)14.已知O 是△ABC 内一点,∠AOB =150°,∠BOC =90°,设OA →=a ,OB →=b ,OC →=c ,且|a |=2,|b |=1,|c |=3,试用a ,b 表示c .解:如图,以O 为原点,向量OA →所在的直线为x 轴建立平面直角坐标系.因为|a |=2,所以a =(2,0).设b =(x 1,y 1),所以x 1=|b |·cos 150°=1×⎝⎛⎭⎫-32=-32,y 1=|b |sin 150°=1×12=12,所以b =⎝⎛⎭⎫-32,12.同理可得c =⎝⎛⎭⎫-32,-332. 设c =λ1a +λ2b (λ1,λ2∈R ),所以⎝⎛⎭⎫-32,-332=λ1(2,0)+λ2⎝⎛⎭⎫-32,12=(2λ1-32λ2,12λ2), 所以⎩⎨⎧2λ1-32λ2=-32,12λ2=-332,解得⎩⎨⎧λ1=-3,λ2=-3 3.所以c =-3a -33b .[C 拓展探究]15.在平面直角坐标系xOy 中,已知点A (1,1),B (2,3),C (3,2). (1)若P A →+PB →+PC →=0,求OP →的坐标;(2)若OP →=mAB →+nAC →(m ,n ∈R ),且点P 在函数y =x +1的图象上,试求m -n 的值. 解:(1)设点P 的坐标为(x ,y ),因为P A →+PB →+PC →=0,又P A →+PB →+PC →=(1-x ,1-y )+(2-x ,3-y )+(3-x ,2-y )=(6-3x ,6-3y ).所以⎩⎪⎨⎪⎧6-3x =0,6-3y =0,解得⎩⎪⎨⎪⎧x =2,y =2.所以点P 的坐标为(2,2), 故OP →=(2,2).(2)设点P 的坐标为(x 0,y 0), 因为A (1,1),B (2,3),C (3,2). 所以AB →=(2,3)-(1,1)=(1,2),AC →=(3,2)-(1,1)=(2,1), 因为OP →=mAB →+nAC →,所以(x 0,y 0)=m (1,2)+n (2,1)=(m +2n ,2m +n ),所以⎩⎪⎨⎪⎧x 0=m +2n ,y 0=2m +n ,两式相减得m -n =y 0-x 0,又因为点P 在函数y =x +1的图象上, 所以y 0-x 0=1,所以m -n =1.两向量共线的充要条件及应用[A 基础达标]1.已知平面向量a =(1,2),b =(-2,m ),且a ∥b ,则2a +3b =( ) A .(-5,-10) B .(-4,-8) C .(-3,-6)D .(-2,-4)解析:选B.因为平面向量a =(1,2),b =(-2,m ),且a ∥b ,所以1×m -(-2)×2=0,解得m =-4,所以2a +3b =2(1,2)+3(-2,-4)=(-4,-8).2.已知a =(sin α,1),b =(cos α,2),若b ∥a ,则tan α=( ) A.12 B .2 C .-12D .-2解析:选A.因为b ∥a ,所以2sin α=cos α,所以sin αcos α=12,所以tan α=12.3.已知向量a =(1,2),b =(0,1),设u =a +k b ,v =2a -b ,若u ∥v ,则实数k 的值是( )A .-72B .-12C .-43D .-83解析:选B.v =2(1,2)-(0,1)=(2,3),u =(1,2)+k (0,1)=(1,2+k ).因为u ∥v ,所以2(2+k )-1×3=0,解得k =-12.4.若AB →=i +2j ,DC →=(3-x )i +(4-y )j (其中i ,j 的方向分别与x ,y 轴正方向相同且为单位向量).AB →与DC →共线,则x ,y 的值可能分别为( )A .1,2B .2,2C .3,2D .2,4解析:选B.由题意知,AB →=(1,2),DC →=(3-x ,4-y ). 因为AB →∥DC →,所以4-y -2(3-x )=0,即2x -y -2=0.只有B 选项,x =2,y =2代入满足.故选B.5.已知A (1,-3),B ⎝⎛⎭⎫8,12,且A ,B ,C 三点共线,则点C 的坐标可以是( ) A .(-9,1) B .(9,-1) C .(9,1)D .(-9,-1)解析:选C.设点C 的坐标是(x ,y ), 因为A ,B ,C 三点共线, 所以AB →∥AC →.因为AB →=⎝⎛⎭⎫8,12-(1,-3)=⎝⎛⎭⎫7,72, AC →=(x ,y )-(1,-3)=(x -1,y +3), 所以7(y +3)-72(x -1)=0,整理得x -2y =7,经检验可知点(9,1)符合要求,故选C.6.已知向量a =(3x -1,4)与b =(1,2)共线,则实数x 的值为________.解析:因为向量a =(3x -1,4)与b =(1,2)共线,所以2(3x -1)-4×1=0,解得x =1. 答案:17.已知A (2,1),B (0,2),C (-2,1),O (0,0),给出下列结论: ①直线OC 与直线BA 平行; ②AB →+BC →=CA →; ③OA →+OC →=OB →; ④AC →=OB →-2OA →.其中,正确结论的序号为________.解析:①因为OC →=(-2,1),BA →=(2,-1),所以OC →=-BA →,又直线OC ,BA 不重合,所以直线OC ∥BA ,所以①正确;②因为AB →+BC →=AC →≠CA →,所以②错误;③因为OA →+OC →=(0,2)=OB →,所以③正确;④因为AC →=(-4,0),OB →-2OA →=(0,2)-2(2,1)=(-4,0),所以④正确.答案:①③④8.对于任意的两个向量m =(a ,b ),n =(c ,d ),规定运算“⊗”为m ⊗n =(ac -bd ,bc +ad ),运算“⊕”为m ⊕n =(a +c ,b +d ).设m =(p ,q ),若(1,2)⊗m =(5,0),则(1,2)⊕m 等于________.解析:由(1,2)⊗m =(5,0),可得⎩⎪⎨⎪⎧p -2q =5,2p +q =0,解得⎩⎪⎨⎪⎧p =1,q =-2,所以(1,2)⊕m =(1,2)⊕(1,-2)=(2,0).答案:(2,0)9.已知a =(1,0),b =(2,1). (1)当k 为何值时,k a -b 与a +2b 共线?(2)若AB →=2a +3b ,BC →=a +m b 且A ,B ,C 三点共线,求m 的值. 解:(1)k a -b =k (1,0)-(2,1)=(k -2,-1), a +2b =(1,0)+2(2,1)=(5,2). 因为k a -b 与a +2b 共线,所以2(k -2)-(-1)×5=0,得k =-12.所以当k =-12时,k a -b 与a +2b 共线.(2)因为A ,B ,C 三点共线, 所以AB →=λBC →,λ∈R , 即2a +3b =λ(a +m b ),所以⎩⎪⎨⎪⎧2=λ,3=mλ,解得m =32.10.(1)已知A (-2,4),B (3,-1),C (-3,-4),且CM →=3CA →,CN →=2CB →,求M ,N 及MN →的坐标;(2)已知P 1(2,-1),P 2(-1,3),P 在直线P 1P 2上,且|P 1P →|=23|PP 2→|.求点P 的坐标.解:(1)法一:由A (-2,4),B (3,-1),C (-3,-4),可得CA →=(-2,4)-(-3,-4)=(1,8),CB →=(3,-1)-(-3,-4)=(6,3),所以CM →=3CA →=3(1,8)=(3,24),CN →=2CB →=2(6,3)=(12,6).设M (x 1,y 1),N (x 2,y 2).则CM →=(x 1+3,y 1+4)=(3,24),CN →=(x 2+3,y 2+4)=(12,6), 所以x 1=0,y 1=20,x 2=9,y 2=2,即M (0,20),N (9,2),所以MN →=(9,2)-(0,20)=(9,-18). 法二:设点O 为坐标原点,则由CM →=3CA →,CN →=2CB →,可得OM →-OC →=3(OA →-OC →),ON →-OC →=2(OB →-OC →), 从而OM →=3OA →-2OC →,ON →=2OB →-OC →, 所以OM →=3(-2,4)-2(-3,-4)=(0,20), ON →=2(3,-1)-(-3,-4)=(9,2),即点M (0,20),N (9,2),故MN →=(9,2)-(0,20)=(9,-18). (2)①当点P 在线段P 1P 2上时,如图a :则有P 1P →=23PP 2→,设点P 的坐标为(x ,y ),所以(x -2,y +1)=23(-1-x ,3-y ),所以⎩⎨⎧x -2=23(-1-x ),y +1=23(3-y ),解得⎩⎨⎧x =45,y =35.故点P 的坐标为⎝⎛⎭⎫45,35. ②当点P 在线段P 2P 1的延长线上时,如图b :则有P 1P →=-23PP 2→,设点P 的坐标为(x ,y ),所以(x -2,y +1)=-23(-1-x ,3-y ),所以⎩⎨⎧x -2=-23(-1-x ),y +1=-23(3-y ),解得⎩⎪⎨⎪⎧x =8,y =-9.故点P 的坐标为(8,-9).综上可得点P 的坐标为⎝⎛⎭⎫45,35或(8,-9).[B 能力提升]11.已知向量a =(1,0),b =(0,1),c =k a +b (k ∈R ),d =a -b ,如果c ∥d ,那么( ) A .k =1且c 与d 同向 B .k =1且c 与d 反向 C .k =-1且c 与d 同向D .k =-1且c 与d 反向解析:选D.因为a =(1,0),b =(0,1),若k =1,则c =a +b =(1,1),d =a -b =(1,-1),显然,c 与d 不平行,排除A 、B.若k =-1,则c =-a +b =(-1,1),d =a -b =-(-1,1),即c ∥d 且c 与d 反向.12.已知向量a =(-2,3),b ∥a ,向量b 的起点为A (1,2),终点B 在坐标轴上,则点B 的坐标为________.解析:由b ∥a ,可设b =λa =(-2λ,3λ).设B (x ,y ),则AB →=(x -1,y -2)=b .由⎩⎪⎨⎪⎧-2λ=x -1,3λ=y -2⇒⎩⎪⎨⎪⎧x =1-2λ,y =3λ+2. 又B 点在坐标轴上, 则1-2λ=0或3λ+2=0, 所以B ⎝⎛⎭⎫0,72或⎝⎛⎭⎫73,0. 答案:⎝⎛⎭⎫0,72或⎝⎛⎭⎫73,0 13.如图所示,在四边形ABCD 中,已知A (2,6),B (6,4),C (5,0),D (1,0),则直线AC 与BD 交点P 的坐标为______.解析:设P (x ,y ),则DP →=(x -1,y ),DB →=(5,4),CA →=(-3,6),DC →=(4,0).由B ,P ,D 三点共线可得DP →=λDB →=(5λ,4λ). 又因为CP →=DP →-DC →=(5λ-4,4λ), 由CP →与CA →共线得,(5λ-4)×6+12λ=0. 解得λ=47,所以DP →=47DB →=⎝⎛⎭⎫207,167, 所以P 的坐标为⎝⎛⎭⎫277,167. 答案:⎝⎛⎭⎫277,16714.(2019·江苏扬州中学第一学期阶段性测试)设OA →=(2,-1),OB →=(3,0),OC →=(m ,3).(1)当m =8时,将OC →用OA →和OB →表示;(2)若A ,B ,C 三点能构成三角形,求实数m 应满足的条件.解:(1)当m =8时,OC →=(8,3),设OC →=xOA →+yOB →,则x (2,-1)+y (3,0)=(2x +3y ,-x )=(8,3),所以⎩⎪⎨⎪⎧2x +3y =8,-x =3,所以⎩⎪⎨⎪⎧x =-3,y =143,所以OC →=-3OA →+143OB →.(2)因为A ,B ,C 三点能构成三角形,所以AB →,AC →不共线,又AB →=(1,1),AC →=(m -2,4),所以1×4-1×(m -2)≠0,所以m ≠6.[C 拓展探究]15.已知平面上有A (-2,1),B (1,4),D (4,-3)三点,点C 在直线AB 上,且AC →=12BC →,连接DC ,点E 在CD 上,且CE →=14ED →,求E 点的坐标.解:因为AC →=12BC →,所以2AC →=BC →,所以2AC →+CA →=BC →+CA →, 所以AC →=BA →.设C 点坐标为(x ,y ),则(x +2,y -1)=(-3,-3),所以x =-5,y =-2, 所以C (-5,-2).因为CE →=14ED →,所以4CE →=ED →,所以4CE →+4ED →=5ED →,所以4CD →=5ED →. 设E 点坐标为(x ′,y ′),则4(9,-1)=5(4-x ′,-3-y ′).所以⎩⎪⎨⎪⎧20-5x ′=36,-15-5y ′=-4,解得⎩⎨⎧x ′=-165,y ′=-115.所以E 点的坐标为⎝⎛⎭⎫-165,-115.平面向量数量积的坐标表示[A 基础达标]1.已知向量a =(2,1),b =(-1,k ),a ·(2a -b )=0,则k =( ) A .-12 B .-6 C .6D .12解析:选D.2a -b =(4,2)-(-1,k )=(5,2-k ),由a ·(2a -b )=0,得(2,1)·(5,2-k )=0,所以10+2-k =0,解得k =12.2.已知向量a =(1,n ),b =(-1,n ),若2a -b 与b 垂直,则|a |等于( ) A .0 B .1 C .-2D .2解析:选D.2a -b =(3,n ),由2a -b 与b 垂直可得(3,n )·(-1,n )=-3+n 2=0,所以n 2=3,所以|a |=2.3.已知平面向量a =(2,4),b =(-1,2),若c =a -(a ·b )b ,则|c |等于( ) A .4 2 B .25 C .8D .82解析:选D.易得a ·b =2×(-1)+4×2=6,所以c =(2,4)-6(-1,2)=(8,-8),所以|c |=82+(-8)2=8 2.4.(2019·河北衡水中学检测)设向量a =(3,1),b =(x ,-3),c =(1,-3),若b ∥c ,则a -b 与b 的夹角为( )A .30°B .60°C .120°D .150°解析:选D.因为b ∥c ,所以-3x =(-3)×1,所以x =3,所以b =(3,-3),a -b =(0,4).所以a -b 与b 的夹角的余弦值为b ·(a -b )|a -b ||b |=-124×23=-32,所以a -b 与b 的夹角为150°.5.已知O 为坐标原点,向量OA →=(2,2),OB →=(4,1),在x 轴上有一点P 使得AP →·BP →有最小值,则点P 的坐标是( )A .(-3,0)B .(2,0)C .(3,0)D .(4,0)解析:选C.设点P 的坐标为(x ,0),则AP →=(x -2,-2),BP →=(x -4,-1). AP →·BP →=(x -2)(x -4)+(-2)×(-1) =x 2-6x +10=(x -3)2+1,所以当x =3时,AP →·BP →有最小值1. 此时点P 的坐标为(3,0).6.设a =(m +1,-3),b =(1,m -1),若(a +b )⊥(a -b ),则m =________. 解析:a +b =(m +1,-3)+(1,m -1)=(m +2,m -4), a -b =(m +1,-3)-(1,m -1)=(m ,-2-m ), 因为(a +b )⊥(a -b ),所以(a +b )·(a -b )=0, 即(m +2,m -4)·(m ,-m -2)=0, 所以m 2+2m -m 2+2m +8=0,解得m =-2. 答案:-27.(2019·陕西咸阳检测)已知向量a =(-2,1),b =(λ,12),且|λa +b |=132,则λ=________.解析:由已知易得λa +b =⎝⎛⎭⎫-λ,λ+12,则(-λ)2+⎝⎛⎭⎫λ+122=134,解得λ=1或λ=-32. 答案:1或-328.已知向量a =(cos θ,sin θ),向量b =(3,0),则|2a -b |的最大值为______. 解析:2a -b =(2cos θ-3,2sin θ), |2a -b |=(2cos θ-3)2+(2sin θ)2=4cos 2θ-43cos θ+3+4sin 2 θ=7-43cos θ, 当且仅当cos θ=-1时,|2a -b |取最大值2+ 3. 答案:2+39.已知a =(1,2),b =(-3,2). (1)求a -b 及|a -b |;(2)若k a +b 与a -b 垂直,求实数k 的值. 解:(1)a -b =(4,0),|a -b |=42+02=4. (2)k a +b =(k -3,2k +2),a -b =(4,0), 因为k a +b 与a -b 垂直,所以(k a +b )·(a -b )=4(k -3)+(2k +2)·0=0, 解得k =3.10.(2019·重庆第一中学第一次月考)已知向量a ,b ,c 是同一平面内的三个向量,其中a =(1,-1).(1)若|c |=32,且c ∥a ,求向量c 的坐标;(2)若b 是单位向量,且a ⊥(a -2b ),求a 与b 的夹角θ. 解:(1)设c =(x ,y ),由|c |=32,c ∥a 可得⎩⎪⎨⎪⎧y +x =0,x 2+y 2=18,所以⎩⎪⎨⎪⎧x =-3,y =3,或⎩⎪⎨⎪⎧x =3,y =-3, 故c =(-3,3)或c =(3,-3).(2)因为|a |=2,且a ⊥(a -2b ),所以a ·(a -2b )=0,即a 2-2a ·b =0,所以a ·b =1,故cosθ=a ·b |a |·|b |=22,所以θ=π4.[B 能力提升]11.已知向量a =(1,2),b =(-2,-4),|c |=5,若(a +b )·c =52,则a 与c 的夹角大小为( )A .30°B .60°C .120°D .150°解析:选C.设a 与c 的夹角为θ,依题意,得 a +b =(-1,-2),|a |= 5. 设c =(x ,y ),因为(a +b )·c =52,所以x +2y =-52.又a ·c =x +2y ,所以cos θ=a ·c |a ||c |=x +2y 5×5=-525=-12,所以a 与c 的夹角为120°.12.在边长为1的正方形ABCD 中,M 为BC 的中点,点E 在线段AB 上运动,则EM →·EC →的取值范围是( )A.⎣⎡⎦⎤12,2B.⎣⎡⎦⎤0,32 C.⎣⎡⎦⎤12,32D.[]0,1解析:选C.以A 为坐标原点建立如图所示的平面直角坐标系,设E (x ,0),0≤x ≤1.因为M ⎝⎛⎭⎫1,12,C (1,1),所以EM →=⎝⎛⎭⎫1-x ,12,EC →=(1-x ,1),所以EM →·EC →=⎝⎛⎭⎫1-x ,12·(1-x ,1)=(1-x )2+12.因为0≤x ≤1,所以12≤(1-x )2+12≤32,即EM →·EC →的取值范围是⎣⎡⎦⎤12,32. 13.已知点A ,B ,C 满足|AB →|=3,|BC →|=4,|CA →|=5,则AB →·BC →+BC →·CA →+CA →·AB →的值为________.解析:法一:(定义法)如图,根据题意可得△ABC 为直角三角形,且B =π2,cos A =35,cos C =45,所以AB →·BC →+BC →·CA →+CA →·AB → =BC →·CA →+CA →·AB →=4×5cos(π-C )+5×3cos(π-A ) =-20cos C -15cos A =-20×45-15×35=-25.法二:(坐标法)如图,建立平面直角坐标系, 则A (3,0),B (0,0),C (0,4).所以AB →=(-3,0),BC →=(0,4),CA →=(3,-4). 所以AB →·BC →=-3×0+0×4=0, BC →·CA →=0×3+4×(-4)=-16, CA →·AB →=3×(-3)+(-4)×0=-9.所以AB →·BC →+BC →·CA →+CA →·AB →=0-16-9=-25. 法三:(转化法)因为|AB →|=3,|BC →|=4,|AC →|=5, 所以AB ⊥BC ,所以AB →·BC →=0,所以AB →·BC →+BC →·CA →+CA →·AB →=CA →·(AB →+BC →) =CA →·AC →=-|AC →|2=-25. 答案:-2514.已知向量a =(1,3),b =(-2,0). (1)求a -b 的坐标以及a -b 与a 之间的夹角; (2)当t ∈[-1,1]时,求|a -t b |的取值范围. 解:(1)因为向量a =(1,3),b =(-2,0), 所以a -b =(1,3)-(-2,0)=(3,3), 所以cos 〈a -b ,a 〉=(a -b )·a |a -b |·|a |=643=32.因为〈a -b ,a 〉∈[0,π],所以向量a -b 与a 的夹角为π6.(2)|a -t b |2=a 2-2t a ·b +t 2b 2=4t 2+4t +4=4⎝⎛⎭⎫t +122+3.易知当t ∈[-1,1]时,|a -t b |2∈[3,12],所以|a -t b |的取值范围是[3,2 3 ].[C 拓展探究]15.已知三个点A (2,1),B (3,2),D (-1,4). (1)求证:AB ⊥AD ;(2)要使四边形ABCD 为矩形,求点C 的坐标,并求矩形ABCD 两条对角线所夹的锐角的余弦值.解:(1)证明:因为A (2,1),B (3,2),D (-1,4),所以AB →=(1,1),AD →=(-3,3). AB →·AD →=1×(-3)+1×3=0, 所以AB →⊥AD →,所以AB ⊥AD .(2)因为AB →⊥AD →,四边形ABCD 为矩形, 所以AB →=DC →.设点C 的坐标为(x ,y ),则DC →=(x +1,y -4).又因为AB →=(1,1),所以⎩⎪⎨⎪⎧x +1=1,y -4=1,解得⎩⎪⎨⎪⎧x =0,y =5.所以点C 的坐标为(0,5).所以AC →=(-2,4).又BD →=(-4,2),所以|AC →|=25,|BD →|=25, AC →·BD →=8+8=16. 设AC →与BD →的夹角为θ,则cos θ=AC →·BD →|AC →||BD →|=1625×25=45.故矩形ABCD 的两条对角线所夹的锐角的余弦值为45.正弦定理[A 基础达标]1.在△ABC 中,一定成立的式子是( )A .a sin A =b sinB B .a cos A =b cos BC .a sin B =b sin AD .a cos B =b cos A解析:选C.由正弦定理a sin A =b sin B =c sin C,得a sin B =b sin A . 2.在△ABC 中,若3a =2b sin A ,则B =( ) A.π3 B.π6 C.π3或2π3D.π6或5π6解析:选C.由正弦定理,得3sin A =2sin B sin A ,所以sin A (2sin B -3)=0.因为0<A <π,0<B <π,所以sin A ≠0,sin B =32,所以B =π3或2π3. 3.(2019·济南检测)已知a ,b ,c 分别是△ABC 的三个内角A ,B ,C 所对的边,若A =60°,c =6,a =6,则此三角形有( )A .两解B .一解C .无解D .无穷多解解析:选B.由等边对等角可得C =A =60°,由三角形的内角和可得B =60°,所以此三角形为正三角形,有唯一解.4.在△ABC 中,若c =3,C =60°,则a +b +csin A +sin B +sin C =( )A .6B .23C .2D .3解析:选C.利用正弦定理的推论,得a +b +c sin A +sin B +sin C =c sin C =3sin 60°=2.5.在△ABC 中,已知a 2tan B =b 2tan A ,则△ABC 的形状是 ( ) A .锐角三角形 B .直角三角形 C .钝角三角形D .等腰三角形或直角三角形解析:选D.将a =2R sin A ,b =2R sin B (R 为△ABC 外接圆的半径)代入已知条件,得sin 2A tan B =sin 2B tan A ,则sin 2A sin B cos B =sin A sin 2Bcos A.因为sin A sin B ≠0,所以sin A cos B =sin Bcos A,所以sin 2A =sin 2B ,所以2A =2B 或2A =π-2B ,所以A =B 或A +B =π2,故△ABC 为等腰三角形或直角三角形.。

高中数学必修1同步训练资料(有答案)

高中数学必修1同步训练资料(有答案)

必修1—集合【基础知识】①();();()Cu AB CuA CuB Cu A B CuA CuB A B A B A A B B ==⊆⇔==②A 集合中有n 个元素时,其子集个数:2n真子集个数: 21n -非空真子集个数:22n- 【题型训练】【题型1】集合定义及基本运算类 1.如图,阴影部分表示的集合是( D )(A )B ∩ [C U (A ∪C)] (B )(A ∪B)∪ (B ∪C) (C )(A ∪C) ∩( C U B) (D )[C U (A ∩C)]∪B2.已知全集U R =,则正确表示集合{1,0,1}M =-和{}2|0N x x x =+=关系的韦恩(Venn )图是B3.若集合{}A=|1x x x R ≤∈,,{}2B=|y y x x R =∈,,则A B ⋂=( C ) A. {}|11x x -≤≤B. {}|0x x ≥C. {}|01x x ≤≤D. ∅变式:1. 如果{}|3,xS y y x R ==∈,{}2|1,T y y x x R ==-∈,则S T = S .2.已知{}{}|10,2,1,0,1A x x B =+>=--,则()R C A B ⋂= ( C ) (A ){}2,1--(B ){}2-(C ){}1,0,1-(D ){}0,13.已知集合{}1,0,1A =-,{}|11B x x =-≤<,则AB =( B )A .{}0B .{}1,0-C .{}0,1D .{}1,0,1- 4.已知集合{|31}M x x =-<<,{3,2,1,0,1}N =---,则MN =( C )(A ){2,1,0,1}-- (B ){3,2,1,0}--- (C ){2,1,0}-- (D ){3,2,1}--- 5.已知集合{1,2,3,4}A =,2{|,}B x x n n A ==∈,则A B =( A )(A ){0}(B ){-1,,0} (C ){0,1}(D ){-1,,0,1}4.已知集合{}2,0xA y y x -==<,集合{}12B x y x ==,则A B ⋂=( B )A .[)1,+∞B .()1,+∞C .()0,+∞D .[)0,+∞ 5.设集合{|101},{|5}A x Z x B x Z x =∈--=∈≤≤≤,则AB 中元素的个数是(C )A 、11B 、10C 、16D 、15 6.若集合{}1213A x x =-≤+≤,20,x B x x -⎧⎫=≤⎨⎬⎩⎭则A B ⋂= ( B ) A.{}10x x -≤< B..{}01x x <≤ C. {}02x x ≤≤ D. {}01x x ≤≤7.设集合1|,24K M x x K Z ⎧⎫==+∈⎨⎬⎩⎭,1|,42K N x x K Z ⎧⎫==+∈⎨⎬⎩⎭,则( B ) A.M=N B.M N ⊂ C. M N ⊃ D.M N φ=【题型2】点集问题1.已知集合{(,)|2},{(,)|4}M x y x y N x y x y =+==-=,那么集合M N 为( D )A 、3,1x y ==-B 、(3,1)-C 、{3,1}-D 、{(3,1)}- 2.设集合13{(,)|log }A x y y x ==,{(,)|3}xB x y y ==,则A B ⋂的子集的个数是(C )A .4B .3C .2D .1 【题型3】子集问题1.已知全集 u={1、2、3、4、5},A={1、5},B C U A,则集合B 的个数是( D )(A )5(B) 6(C) 7(D)83.若集合}4,3,1{},3,2,1{==B A ,则B A 的子集个数为( C )A .2B .3C .4D .162.集合{},,,,S a b c d e =,包括{},a b 的S 的子集共有( D ) A.2个 B.3个 C.4个 D.8个变式:1.满足{}1234M a a a a ⊆,,,,且{}{}12312M a a a a a =,,,的集合M 的个数是( B )A .1B .2C .3D .42.已知集合M={2,0,11},若A M ≠⊂,且A 的元素中至少含有一个偶数,则满足条件的集合A 的个数为 5 .【题型4】集合运算1.设全集{,,,,}I a b c d e =,集合{,,},{,,}M a b c N b d e ==,那么I IMN 是( A )A 、∅B 、{}dC 、{,}a cD 、{,}b e变式:1.已知{}21|log ,1,|,2U y y x x P y y x x ⎧⎫==>==>⎨⎬⎩⎭,则U C P =A A .1[,)2+∞B .10,2⎛⎫ ⎪⎝⎭ C .()0,+∞ D .1(,0][,)2-∞+∞2.已知集合{1,2,3,4}U =,集合={1,2}A ,={2,3}B ,则()UA B =D(A ){1,3,4} (B ){3,4} (C ){3} (D ){4}2.若集合121log 2A x x ⎧⎫⎪⎪=≥⎨⎬⎪⎪⎩⎭,则A =R( A )A.2(,0],2⎛⎫-∞+∞ ⎪ ⎪⎝⎭ B.⎫+∞⎪⎪⎝⎭C.2(,0][,)2-∞+∞ D.)+∞ 3.设全集是实数集R ,{|22}M x x =-≤≤,N x x =<{|}1,则RM N 等于( A )A 、{|}xx <-2B 、{|}x x -<<21C 、{|}xx <1D 、{|}x x -≤<21 4.设集合U 为全集,集合,M N U ≠⊂,若MN N =,则( C )A.U U C M C N ⊇B.U M C N ⊆C.U U C M C N ⊆D.U M C N ⊇ 5.设集合{|12},{|}M x x N x x a =-<=≤≤,若MN ≠∅,则a 的取值范围是1a ≥-.6.已知集合2{|||1},{|40}A x x a B x x x =-≤=-≥,若A B φ=,则实数a 的取值范围是( C )A .(0,4)B .(0,3)C .(1,3)D .(2,3)变式:1.{}{}A x||x-a|<1,x R ,|15,.A B B x x x R =∈=<<∈⋂=∅若,则实数a 的取值范围是( C ) A {}a |0a 6≤≤ B {}|2,a a ≤≥或a 4 C {}|0,6a a ≤≥或a D {}|24a a ≤≤设常数a R ∈,集合{|(1)()0},{|1}A x x x a B x x a =--≥=≥-,若A B R ⋃=,则a 的取值范围为( A ) (A) (,2)-∞(B) (,2]-∞ (C) (2,)+∞(D) [2,)+∞7.已知集合P={x ︱x 2≤1},M={a }.若P ∪M=P,则a 的取值范围是C A .(-∞, -1] B .[1, +∞) C .[-1,1] D .(-∞,-1] ∪[1,+∞)变式:设集合{}|||2A x x a =-<,21|12x B x x -⎧⎫=<⎨⎬+⎩⎭,若A B A =,求实数a 取值范围.([0,1]) 8.设A 、B 、C 是三个集合,若A B B C =,则有( D ) A. A B = B. C B ⊆ C. B A ⊆ D. A C ⊆ 变式:设I 为全集,123,,S S S 是I 的三个非空子集且123S S S I =,则下面论断正确的是( C )A.123()I C S S S φ⋂⋃=B.123()I I S C S C S ⊆C.123I I I C S C S C S φ=D.123()I I S C S C S ⊆【题型4】集合与函数综合运用1. 知集合A={-1,a²+1,a²-3},B={-4,a-1,a+1},且A∩B={-2},求a 的值。

高一数学人教B版(2019)必修第一册最新同步练习(附详解): 1.1.3集合的基本运算

高一数学人教B版(2019)必修第一册最新同步练习(附详解): 1.1.3集合的基本运算
6.答案:A
解析:因为集合 ,所以 ,所以 ,又
所以 的Байду номын сангаас值范围是 或
7.答案:D
解析:如图,要使 ,应有
8.答案:B
解析:∵ .
∴ .

∴ ( ) .
9.答案:D
解析:因为 ,
所以 ,故选D.
10.答案:B
解析:∵
∴ .
11.答案:
解析:因为 ,所以 .
12.答案:
解析:∵ ,
又∵ ,
∴ ,
∴ .
2.答案:A
解析:由 得 ,所以 .故选A.
3.答案:C
解析:由集合中元素互异性可知, 且 ,故 或 ,即 或 或 舍去).综上所述,x可取 或0,即满足条件的x的个数为3.
4.答案:B
解析:如下图,可知 .
∵全集 ,
∴集合 对应的韦恩图为所以 故选B.
5.答案:D
解析:∵ , ∴结合数轴,可得 ,故选 。
高一数学人教B版(2019)必修第一册同步课时作业
1.1.3集合的基本运算
1.设 , ,则 =( )
A.
B.
C.
D.
2.已知集合 , ,则()
A.
B.
C.
D.
3.若 , ,且 ,则满足条件x的个数是()
A.1 B.2 C.3 D.4
4.设全集 ,则 ( )
A. B. C. D.
5.已知集合 ,若 ,则 的取值范围为( )
13.答案:
解析: 同时满足 和 ,
则 必是方程组 ,解得
∴ .
14.答案:
解析: ,
所以 .
15.答案:
解析:由得 ,则 ,则
(1)当 时, ,解得 .

2019-2020学年上学期高一数学学科同步练习卷(一)

2019-2020学年上学期高一数学学科同步练习卷(一)

2019-2020学年上学期高一数学学科同步练习卷(一)内容:《集合的含义与表示》命题人:林炜婧 审核人:郑丽贞 命制时间:2019年9月2日 一.选择题【a 】1.集合{}x x x A ==2中所含元素为( )A .0,1B .{0,1}C .–1,0D .1【a 】2.下列全体能构成集合的有( ):①我校高一年级数学成绩好的学生;①比2小一点的所有实数;①大于1但不大于2的实数;①方程x2+2=5的实数解. A .①①①B .①①C .①①D .都不能【a 】3.下列集合表示法正确的是( ) A .{1,1,2} B .{全体正数}B .C .{有理数}D .不等式250x ->的解集为{}250x ->【a 】4.将集合5(,)|21x y x y x y ⎧+=⎧⎫⎨⎨⎬-=⎩⎭⎩表示成列举法,正确的是( ) A .{2,3}B .{(2,3)}C .{(3,2)}D .(2,3)【c 】5.设非空集合S ={x |m ≤x ≤l }满足:当x ∈S 时,有x 2∈S .给出如下三个命题:①若m =1,则S ={1}; ①若m =−12,则14≤l ≤1;①若l =12,则−√22≤m ≤0.其中正确命题的个数是( ) A .0 B .1 C .2 D .3二.填空题【a 】6.已知不等式axx−1<1的解集为{x|x <1或x >2},则a =________.【a 】7.已知集合A ={1,2},B ={(x ,y )|x①A ,y①A ,x+y①A},则B 中所含元素的个数为____.【b 】8.已知集合A ={x|ax 2−3x +2=0}至多有一个元素,则a 的取值范围_________; 若至少有一个元素,则a 的取值范围__________。

三、解答题【a】9.用适当的方法表示下列集合,并判断是有限集,还是无限集?(1)方程(x+1) (x−23)2(x2-2)(x2+1)=0的有理根组成的集合A;(2)被3除余1的自然数组成的集合;(3)坐标平面内,不在第一,三象限的点的集合;(4)自然数的平方组成的集合.【b】10.数集A满足条件:若a①A,则11−a①A(a≠1).(1)若2①A,试求出A中其他所有元素;(2)自己设计一个数属于A,然后求出A中其他所有元素;(3)从上面的解答过程中,你能悟出什么道理?并大胆证明你发现的“道理”.参考答案1.A 【解析】 【分析】根据题意,解方程2x x = 可得到x 的值,由集合的意义即可得到答案。

北师大版高中数学必修一同步教师用书第一章章末小结知识整合与阶段检测

北师大版高中数学必修一同步教师用书第一章章末小结知识整合与阶段检测

一、选择题(本大题共10个小题,每小题5分,共50分)1.已知集合M={1,2,3},N={2,3,4},则( )A.M⊆N B.N⊆MC.M∩N={2,3} D.M∪N={1,4}解析:∵M={1,2,3},N={2,3,4},∴选项A、B显然不对.M∪N={1,2,3,4},∴选项D错误.M∩N={2,3}.答案:C2.(2011·大纲全国)设集合U={1,2,3,4},M={1,2,3},N={2,3,4},则∁U(M∩N)=( )A.{1,2} B.{2,3}C.{2,4} D.{1,4}解析:M∩N={2,3},则∁U(M∩N)={1,4}.答案:D3.下面说法中正确的个数是( )①集合N+中最小的数是1;②若-a∉N+,则a∈N+;③若a∈N+,b∈N+,则a+b的最小值是2;④x2+4=4x的解集是由“2,2”组成的集合.A.0 B.1C.2 D.3解析:N+是正整数集,最小的正整数是1,故①正确;当a=0时,-a∉N+,且a∉N+,故②错;若a∈N+,则a的最小值是1,又b∈N+,b的最小值也是1,当a和b都取最小值时,a+b取最小值2,故③正确;由集合元素的互异性知④是错误的,故①③正确.答案:C4.已知集合A={0,m,m2-3m+2},且2∈A,则实数m的值为( )A.2 B.3C.0或3 D.0或2或3解析:若m=2,则m2-3m+2=0,与集合中元素的互异性矛盾,∴m≠2,m2-3m+2=2,则m=3或m=0(舍去).答案:B5.已知M ={y ∈R|y =|x |},N ={x ∈R|x =m 2},则下列关系中正确的是( ) A .MNB .M =NC .M ≠ND .NM解析:∵M ={y ∈R|y =|x |} ={y ∈R|y ≥0},N ={x ∈R|x =m 2}={x ∈R|x ≥0},∴M =N . 答案:B6.如图所示,U 是全集,A ,B 是U 的子集,则阴影部分所表示的集合是( )A .A ∩BB .A ∪BC .B ∩∁U AD .A ∩∁U B解析:由Venn 图可知阴影部分为B ∩∁U A . 答案:C7.集合A ={x |-1≤x ≤2},B ={x |x <1},则A ∩∁R B =( ) A .{x |x >1}B .{x |x ≥1}C .{x |1<x ≤2}D .{x |1≤x ≤2}解析:∵B ={x |x <1}, ∴∁R B ={x |x ≥1}. ∴A ∩∁R B ={x |1≤x ≤2}. 答案:D8.集合A ={0,2,a },B ={1,a 2}.若A ∪B ={0,1,2,4,16},则a 的值为( ) A .0 B .1 C .2D .4解析:由题意知,⎩⎨⎧ a =4,a 2=16或⎩⎨⎧a 2=4,a =16,(无解)∴a =4. 答案:D9.设集合S ={x |x >5或x <-1},T ={x |a <x <a +8},S ∪T =R ,则a 的取值范围是( ) A .-3<a <-1B .-3≤a ≤-1C .a ≤-3或a ≥-1D .a <-3或a >-1解析:借助数轴可知:⎩⎨⎧a <-1,a +8>5.∴-3<a <-1. 答案:A10.设M ,P 是两个非空集合,定义M 与P 的差集为M -P ={x |x ∈M ,且x ∉P },则M -(M -P )等于( )A .PB .M ∩PC .M ∪PD .M解析:当M ∩P ≠∅时,由维恩图知,M -P 为图形中的阴影部分,则M -(M -P )显然为M ∩P .当M ∩P =∅时,M -P =M ,则M -(M -P )=M -M ={x |x ∈M 且x ∉M }=∅.答案:B二、填空题(本大题共4小题,每小题5分,共20分) 11.用列举法表示集合:A ={x |2x +1∈Z ,x ∈Z}=____________. 解析:∵2x +1∈Z ,∴-2≤x +1≤2,-3≤x ≤1. 当x =-3时,有-1∈Z ; 当x =-2时,有-2∈Z ; 当x =0时,有2∈Z ; 当x =1时,有1∈Z , ∴A ={-3,-2,0,1}. 答案:{-3,-2,0,1}12.集合M ={x |x 2-3x -a 2+2=0,a ∈R}的子集的个数为________. 解析:∵Δ=9-4(2-a 2)=1+4a 2>0, ∴M 恒有2个元素,所以子集有4个. 答案:413.已知集合A ={x |x ≥2},B ={x |x ≥m },且A ∪B =A ,则实数m 的取值范围是________.解析:∵A ∪B =A , 即B ⊆A ,∴m ≥2.答案:m ≥214.已知全集U ={x |1≤x ≤5},A ={x |1≤x <a },若∁U A ={x |2≤x ≤5},则a =________. 解析:∵A ∪∁U A =U , ∴A ={x |1≤x <2}. ∴a =2. 答案:2三、解答题(本大题共4个小题,共50分)15.(本小题满分12分)已知全集U 为R ,集合A ={x |0<x ≤2},B ={x |x <-3或x >1}. 求:(1)A ∩B (2)∁U A ∩∁U B ; (3)∁U (A ∪B ).解:(1)在数轴上画出集合A 和B ,可知A ∩B ={x |1<x ≤2}.(2)∁U A ={x |x ≤0或x >2},∁U B ={x |-3≤x ≤1}.在数轴上画出集合∁U A 和∁U B ,可知∁U A ∩∁U B ={x |-3≤x ≤0}.(3)由(1)中数轴可知,A ∪B ={x |x <-3或x >0}. ∴∁U (A ∪B )={x |-3≤x ≤0}.16.(本小题满分12分)已知集合M ={2,3,a 2+1},N ={a 2+a -4,2a +1,-1},且M ∩N ={2},求a 的值.解:∵M ∩N ={2},∴2∈N , ∴a 2+a -4=2或2a +1=2, ∴a =2或a =-3或a =12经检验a =2不合题意舍去, 故a =-3或a =12.17.(本小题满分12分)已知集合A ={x |2≤x ≤8},B ={x |1<x <6},C ={x |x >a },U =R.(1)求A ∪B ,∁U A ∩B ;(2)若A ∩C ≠∅,求a 的取值范围.解:(1)A ∪B ={x |2≤x ≤8}∪{x |1<x <6}={x |1<x ≤8}.∁U A ={x |x <2或x >8}. ∴∁U A ∩B ={x |1<x <2}. (2)∵A ∩C ≠∅,∴a <8, 即a 的取值范围为(-∞,8).18.(本小题满分14分)设A ={x |2x 2+ax +2=0},B ={x |x 2+3x +2a =0},且A ∩B ={2}.(1)求a 的值及集合A ,B ; (2)设全集U =A ∪B ,求∁U A ∪∁U B ; (3)写出∁U A ∪∁U B 的所有子集.解:(1)由A ∩B ={2}得2是方程2x 2+ax +2=0和x 2+3x +2a =0的公共解,∴2a +10=0,则a =-5,此时A ={12,2},B ={-5,2}.(2)由并集的概念易得U =A ∪B ={-5,12,2}.由补集的概念易得 ∁U A ={-5},∁U B ={12}.所以∁U A ∪∁U B ={-5,12}.(3)∁U A ∪∁U B 的所有子集即集合{-5,12}的所有子集:∅,{12},{-5},{-5,12}.。

全国高一高中数学同步测试带答案解析

全国高一高中数学同步测试带答案解析

全国高一高中数学同步测试班级:___________ 姓名:___________ 分数:___________一、选择题1.下列结论中,正确的是()A.函数y=kx(k为常数,且k<0)在R上是增函数B.函数y=x2在R上是增函数C.函数y=在定义域内是减函数D.y=在(-∞,0)上是减函数2.下图中是定义在区间[-5,5]上的函数y=f(x),则下列关于函数f(x)的说法错误的是 ()A.函数在区间[-5,-3]上单调递增B.函数在区间[1,4]上单调递增C.函数在区间[-3,1]∪[4,5]上单调递减D.函数在区间[-5,5]上没有单调性3.函数y=-x2+2x-2的单调递减区间是()A.(-∞,1]B.[1,+∞)C.(-∞,2]D.[2,+∞)4.已知函数y=ax和y=-在(0,+∞)上都是减函数,则函数f(x)=bx+a在R上是()A.减函数且f(0)<0B.增函数且f(0)<0C.减函数且f(0)>0D.增函数且f(0)>0二、填空题1.已知f(x)是定义在R上的增函数,且f(x-2)<f(1-x),则x的取值范围为__________.2.已知函数f(x)=x2-2kx-3在[4,+∞)上是单调增函数,则实数k的取值范围是________.3.函数y=x|x-1|的单调递增区间是________.三、解答题证明:函数f(x)=x+在(0,1)上为减函数.全国高一高中数学同步测试答案及解析一、选择题1.下列结论中,正确的是()A.函数y=kx(k为常数,且k<0)在R上是增函数B.函数y=x2在R上是增函数C.函数y=在定义域内是减函数D.y=在(-∞,0)上是减函数【答案】D【解析】A不正确,当k>0时,函数y=kx在R上是增函数.B不正确,函数y=x2在(0,+∞)上是增函数.C 不正确,如-1<1,但f(-1)<f(1).D正确.故选D2.下图中是定义在区间[-5,5]上的函数y=f(x),则下列关于函数f(x)的说法错误的是 ()A.函数在区间[-5,-3]上单调递增B.函数在区间[1,4]上单调递增C.函数在区间[-3,1]∪[4,5]上单调递减D.函数在区间[-5,5]上没有单调性【答案】C【解析】若一个函数出现两个或两个以上的单调区间时,不能用“∪”连接.如0<5,但f(0)>f(5),故选C3.函数y=-x2+2x-2的单调递减区间是()A.(-∞,1]B.[1,+∞)C.(-∞,2]D.[2,+∞)【答案】B【解析】∵y=-x2+2x-2=-(x-1)2-1,∴函数的单调递减区间是[1,+∞).故选B4.已知函数y=ax和y=-在(0,+∞)上都是减函数,则函数f(x)=bx+a在R上是()A.减函数且f(0)<0B.增函数且f(0)<0C.减函数且f(0)>0D.增函数且f(0)>0【答案】A【解析】∵y=ax和y=-在(0,+∞)都是减函数,∴a<0,b<0,f(x)=bx+a为减函数且f(0)=a<0,故选A二、填空题1.已知f(x)是定义在R上的增函数,且f(x-2)<f(1-x),则x的取值范围为__________.【答案】 (-∞,【解析】∵f(x)是定义在R上的增函数,且f(x-2)<f(1-x),∴x-2<1-x,∴x<,即x的取值范围是(-∞,.点睛:解函数不等式:首先根据函数的性质把不等式转化为的形式,然后根据函数的单调性去掉“”,转化为具体的不等式(组),此时要注意与的取值应在外层函数的定义域内2.已知函数f(x)=x2-2kx-3在[4,+∞)上是单调增函数,则实数k的取值范围是________.【答案】(-∞,4]【解析】对称轴为x=k,则k≤4.3.函数y =x |x -1|的单调递增区间是________.【答案】(-∞,],[1,+∞)【解析】画出函数y =x |x -1|= 的图象,如图,可得函数的增区间为(-∞,],[1,+∞).点睛:判断函数单调性的常用方法:(1)定义法和导数法,注意证明函数单调性只能用定义法和导数法;(2)图象法,由图象确定函数的单调区间需注意两点:一是单调区间必须是函数定义域的子集:二是图象不连续的单调区间要分开写,用“和”或“,”连接,不能用“∪”连接;(3)利用函数单调性的基本性质,尤其是复合函数“同增异减”的原则,此时需先确定函数的单调性.三、解答题证明:函数f (x )=x +在(0,1)上为减函数.【答案】见解析【解析】试题分析:根据单调性定义证明,关键在于作差的变形,一般利用因式分解将差化为积的形式,根据各个因式的符号确定差的符号.试题解析:证明:设0<x 1<x 2<1,则f (x 1)-f (x 2)=-=(x 1-x 2)+=(x 1-x 2)=, ∵0<x 1<x 2<1,∴x 1x 2-1<0,x 1-x 2<0,x 1x 2>0.即f (x 1)-f (x 2)>0,f (x 1)>f (x 2).∴f (x )=x +在(0,1)上为减函数.。

新高考高中数学人教A(2019)必修第一册同步检测——1

新高考高中数学人教A(2019)必修第一册同步检测——1

充分条件与必要条件2一、单选题1.已知函数()y f x =是R 上的增函数,则对任意12,x x ∈R ,“12x x <”是“12()()f x f x <”的( )条件 A .充分非必要 B .必要非充分 C .充分必要 D .非充分非必要2.已知实数a ,b ,0a >,0b >,则“2a b +<”是( ) A .必要不充分条件 B .充分不必要条件 C .充分必要条件 D .既不充分也不必要条件4.方程2210ax x ++=至少有一个负实根的充要条件是( ) A .01a <≤B .1a <C .1a ≤D .01a <≤或0a <5.在下列三个结论中,正确的有( ) ①x 2>4是x 3<-8的必要不充分条件;①在ABC 中,AB 2+AC 2=BC 2是ABC 为直角三角形的充要条件; ①若a ,b ①R ,则“a 2+b 2≠0”是“a ,b 不全为0”的充要条件. A .①① B .①① C .①① D .①①①6.已知a ,b R ∈,则“0a b +<”是“0a a b b +<”的( ) A .必要不充分条件 B .充分不必要条件 C .充分必要条件D .既不充分也不必要条件二、多选题7.已知p ,q 都是r 的充分条件,s 是r 的充要条件,q 是s 的必要条件,则( ) A .q 是s 的充要条件 B .p 是s 的充分不必要条件 C .q 是s 的充分不必要条件 D .p 是s 的充要条件8.在整数集Z 中,被5除所得余数为k 的所有整数组成一个“类”,记为[k ],即{}[]5k n k n Z =+∈,0,1,2,3,4k =.则下列结论正确的是( )A .2011[1]∈;B .[0][1][2][3][4]Z =⋃⋃⋃⋃;C .3[3]-∈;D .整数a ,b 属于同一“类”的充要条件是“[0]a b -∈”.三、填空题9.设p :实数x ,y 满足x >1且y >1,q :实数x ,y 满足x +y >2,则p 是q 的________________条件.(填“充分不必要”“必要不充分”“充要”“既不充分也不必要”)10.若M 是N 的充分不必要条件,N 是P 的充要条件,Q 是P 的必要不充分条件,则M 是Q 的________条件.11.设三条不同的直线:1:23(1)0l ax by a b ++++=,2:2(1)30l bx a b y a ++++=,3:(1)230l a b x ay b ++++=,则它们相交于一点的充分必要条件为____________.12.在下列所示电路图中,下列说法正确的是____(填序号).(1)如图①所示,开关A 闭合是灯泡B 亮的充分不必要条件; (2)如图①所示,开关A 闭合是灯泡B 亮的必要不充分条件; (3)如图①所示,开关A 闭合是灯泡B 亮的充要条件; (4)如图①所示,开关A 闭合是灯泡B 亮的必要不充分条件.四、解答题14.求方程()22100ax x a ++=≠至少有一个负根的充要条件.15.设集合{2A x x =≤-或}3x ≥,{2B x x a =<或}(0)x a a >-<.(1)设:p x A ∈,:q x B ∈,且p ⌝是q ⌝的充分而不必要条件,求实数a 的取值范围; (2)是否存在实数a ,使得“x A ∈”是“x B ∈”的充要条件?若存在,求出实数a 的值;若不存在,请说明理由.16.设U 为全集,A ,B 是集合,则“存在集合C 使得A C ⊆,B C U C 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019-04-09高中数学同步练习一副标题题号 一 二 三 总分 得分一、选择题(本大题共11小题,共55.0分)1. 已知点P(sinα−cosα,tanα)在第二象限,则α的一个变化区间是( )A. (−π2,π2)B. (−π4,π4)C. (−3π4,−π2)D. (π2,π)【答案】C【解析】解:点P(sinα−cosα,tanα)在第二象限, 可知{sinα−cosα<0tanα>0,可得sinα,cosα同号,即α在第一象限或第三象限, 考察选项可知,C 满足题意. 故选:C .利用三角函数值的符号,求解角的范围即可.本题考查三角函数值符号的判断,选择题的解法,直接法与间接法的应用.2. 下列函数中,最小正周期为4π的是( )A. y =tan 12xB. y =sin x2C. y =sin2xD. y =cos4x【答案】B 【解析】略3. 将表的分针拨快10分钟,则分针旋转过程中形成的角的弧度数是( )A.B.C.D.【答案】C【解析】将表的分针拨快应按顺时针方向旋转,为负角.故A ,B 不正确,又因为拨快10分钟,故应转过的角为圆周的.即为.4. 已知弧度数为2的圆心角所对的弦长也是2,则这个圆心角所对的弧长是( )A. 2B.C.D.【答案】B【解析】【分析】先确定圆的半径,再利用弧长公式,即可得到结论. 【解答】解:已知弧度数为2的圆心角所对的弦长也是2, 所以,即,所以.故选B .5. 已知函数y =Asin(ωx +φ)+m 的最大值为4,最小值为0,最小正周期为π2,直线x =π3是其图象的一条对称轴,则下面各式中符合条件的解析式是 ( )A. y =4sin(4x +π6) B. y =2sin(2x +π3)+2 C. y =2sin(4x +π3)+2D. y =2sin(4x +π6)+2【答案】D【解析】【分析】本题主要考查由函数y =Asin(ωx +φ)的部分图象求解析式,正弦函数的图象性质,属于基础题.由条件利用正弦函数的图象性质求得φ的值,可得函数的解析式. 【解答】解:由题意可得m =4+02=2,A =4−02=2.∵2πω=π2, ∴ω=4,再根据4×π3+φ=kπ+π2,k ∈z ,求得φ=kπ−5π6,故可取φ=π6, 故函数的解析式为y =2sin(4x +π6)+2, 故选D .6. 函数f(x)=sin(2x +φ)(|φ|<π2)的图象向左平移π6个单位后得到的函数图象的解析式是奇函数,则函数f(x)在[0,π2]上的最小值为( )A. −√32B. −12C. 12D. √32【答案】A【解析】【分析】本题考查三角函数的图象平移及性质的应用,属于中档题目. 【解答】解:函数f(x)=sin(2x +φ)(|φ|<π2)的图象向左平移π6个单位后得到的函数为g(x)=sin(2x +π3+φ)为奇函数,则φ=−π3,所以f(x)=sin(2x −π3), 因为x ∈[0,π2],则2x −π3∈[−π3,2π3],所以当x =0时,f(x)=sin(2x −π3)取得最小值−√32.故选A .7. 函数f(x)=2sin(ωx +π3)(ω>0)的图象在[0,1]上恰有两个最大值点,则ω的取值范围为( )A. [2π,4π]B. [2π,9π2)C. [13π6,25π6) D. [2π,25π6)【答案】C【解析】【分析】本题考查三角函数的性质的应用,属于中档题.由x ∈[0,1],得ωx +π3∈[π3,ω+π3],由题意得{ω+π3<9π2ω+π3≥5π2,解出即可.【解答】解:当x ∈[0,1]时,则ωx +π3∈[π3,ω+π3],因为函数f(x)=2sin⁡(ωx +π3)(ω>0)的图象在[0,1]上恰有两个最大值点, 则{ω+π3<9π2ω+π3≥5π2,解得13π6≤ω<25π6. 故选C .8. 已知ω>0,函数f(x)=cos (ωx +π4)在(π2,π)上单调递增,则ω的取值范围是()A. [12,54]B. [12,74]C. [34,94]D. [32,74]【答案】D【解析】【分析】主要是考查了三角函数的单调性的运用,属于中档题. 【解答】解:根据题意,由于ω>0,所以函数f(x)=cos(ωx +π4)的单调递增区间满足, 2kπ+π≤ωx +π4≤2kπ+2π,k ∈Z ,则2kπ+3π4ω≤x ≤2kπ+7π4ω,k ∈Z ,又因为函数f(x)=cos(ωx +π4)在(π2,π)上是增函数, 所以(π2,π)⊆[3π4ω,7π4ω],所以{π2≥3π4ω7π4ω≥π,所以32≤ω≤74. 故选D .9. 设函数f(x)=2sinx ,x ∈R 的最小正周期为( )A. π2B. πC. 2πD. 4π【答案】C【解析】解:∵f(x)=2sinx ,可得:2π1=2π, ∴函数y =2sinx 的最小正周期为2π, 故选:C .由条件利用函数y =Asin(ωx +φ)的周期为2πω,求得结果.本题主要考查函数y =Asin(ωx +φ)的周期性,利用了函数y =Asin(ωx +φ)的周期为2πω,属于基础题.10.将函数y=2sin(2x−π6)的图像向右平移13个最小正周期后,所得图像对应的函数为A. y=2sin(2x−π6) B. y=2sin(2x−5π6)C. y=2sin(2x+π3) D. y=2sin(2x−π12)【答案】B【解析】【分析】本题考查三角函数的图象平移变换,注意相位变换针对自变量x而言,考查运算能力,属于基础题和易错题.先求函数的周期,再根据三角函数的图象平移变化规律得结果.【解答】解:函数y=2sin(2x−π6)的周期为T=2π2=π,由题意即为函数y=2sin(2x−π6)的图象向右平移π3个单位,可得图象对应的函数为y=2sin[2(x−π3)−π6],即y=2sin(2x−5π6).故选B.11.f(x)=tan2x是()A. 奇函数B. 偶函数C. 既是奇函数又是偶函数D. 非奇非偶函数【答案】A【解析】【分析】本题主要考查正切函数的定义域、奇偶性,属于基础题.根据函数的定义域关于原点对称,且f(−1)=−f(x),利用奇偶性的定义,得出结论.【解答】解:由2x≠kπ+π2(k∈Z)得:x≠12kπ+π4,k∈Z.故函数f(x)=tan2x的定义域为{x|x≠12kπ+π4,k∈Z},关于原点对称,且满足f(−x)=tan(−2x)=−tan2x=−f(x),故f(x)=tan2x是奇函数,故选A.二、填空题(本大题共2小题,共10.0分)12.若角α的终边经过P(−3,b),且cosα=−35,则b=______,sinα=___.【答案】±4,±45【解析】【分析】本题主要考查了任意角的三角函数的定义,属于基础题.【解答】解:由题意可得由题意可得cosα=−35=√9+b2,解得b=±4,sinα=±45,故答案为±4,±45.13.函数y=tan(x−π3)的定义域是______________________________。

【答案】{x|x≠kπ+5π6,k∈Z}【解析】【分析】本题考查正切函数的定义域,属于基础题目.【解答】解:要使函数有意义应满足x−π3≠kπ+π2,k∈Z,则x≠kπ+5π6,k∈Z,故函数的定义域为{x|x≠kπ+5π6,k∈Z}.故答案为{x|x≠kπ+5π6,k∈Z}.三、解答题(本大题共6小题,共72.0分)14.已知f(α)=sin⁡(π−α)cos⁡(2π−α)tan⁡(−α+π)−tan⁡(−α−π)cos⁡(π2−α)(1)化简f(α);(2)若α是第三象限角,且cos(α−3π2)=15,求f(α)的值.【答案】解:(1)f(α)=sin(π−α)cos(2π−α)tan(−α+π)−tan(−α−π)cos(π2−α)=sinαcosα⋅(−tanα)tanα⋅sinα=−cosα;(2)α是第三象限角,且cos(α−3π2)=15,∴sinα=−15,∴cosα=−√1−sin2α=−√1−(−15)2=−2√65,∴f(α)=−cosα=2√65.【解析】本题考查了三角函数的诱导公式与同角三角函数关系的应用问题,是基础题.(1)利用三角函数的诱导公式化简f(α)即可;(2)根据诱导公式,利用同角的三角函数关系计算即可.15.已知函数f(x)=Asin(ωx+π6)(A>0,ω>0)的部分图象如图所示.(1)求A,ω的值;(2)求f(x)的单调增区间;(3)求f(x)在区间[−π6,π4]上的最大值和最小值.【答案】解:(1)由图象知A=1,由图象得函数的最小正周期为2(2π3−π6)=π,则由2πω=π得ω=2(2)∵−π2+2kπ≤2x+π6≤π2+2kπ,∴−2π3+2kπ≤2x≤π3+2kπ.∴−π3+kπ≤x≤π6+kπ.所以f(x)的单调递增区间为[−π3+kπ,π6+kπ],k∈Z.(3)∵−π6≤x≤π4,∵−π3≤2x≤π2,∴−π6≤2x+π6≤2π3.∴−12≤sin(2x+π6)≤1.当2x+π6=π2,即x=π6时,f(x)取得最大值1;当2x+π6=−π6,即x=−π6时,f(x)取得最小值−12.【解析】(1)通过函数的图象直接求A,利用函数的周期即可求出ω的值;(2)根据函数的单调增区间,直接求f(x)的单调增区间即可;(3)通过x∈[−π6,π4],求出函数的相位的范围,利用正弦函数的最值,直接求解f(x)的最大值和最小值.本题考查函数解析式的求法,正弦函数的单调性的应用,正弦函数的最值的求法,考查计算能力.16.已知sinα<0,tana>0.(1)求α角的集合;(2)求终边所在的象限;(3)试判断的符号.【答案】(1){α|,k∈Z}.(2)终边在第二、四象限.(3)取正号.【解析】(1)由sinα<0,知α在第三、四象限或y轴的负半轴上;由tanα>0,知α在第一、三象限,故α角在第三象限,其集合为{α|,k∈Z}.(2)由,k∈Z,得,k∈Z,故终边在第二、四象限.(3)当在第二象限时,,,,所以取正号;当在第四象限时,,,,所以也取正号.因此,取正号.17.已知函数f(x)=Asin(ωx+φ)+B(A>0,ω>0,|φ|<π2)的最小正周期为2π,最小值为−2,且当x=5π6时,函数取得最大值4.(I)求函数f(x)的解析式;(Ⅱ)求函数f(x)的单调递增区间;(Ⅲ)若当x∈[π6,7π6]时,方程f(x)=m+1有解,求实数m的取值范围.【答案】解:(I)函数f(x)=Asin(ωx+φ)+B(A>0,ω>0,|φ|<π2)的最小正周期为T=2πω=2π,∴ω=1;又{B−A=−2B+A=4,解得{B=1A=3;由题意,5π6+φ=2kπ+π2,k∈Z,即φ=2kπ−π3,k∈Z;∴φ=−π3,∴函数f(x)=3sin(x−π3)+1;(Ⅱ)令−π2+2kπ≤x−π3≤π2+2kπ,k∈Z,解得−π6+2kπ≤x≤5π6+2kπ,k∈Z,即x∈[−π6+2kπ,5π6+2kπ],k∈Z时,函数f(x)单调递增;(Ⅲ)方程f(x)=m+1可化为m=3sin(x−π3),因为x∈[π6,7π6],所以x−π3∈[−π6,5π6],由正弦函数图象可知,实数m的取值范围是[−32,3].【解析】本题考查了正弦型函数的图象与性质的应用问题,也考查了方程与函数的应用问题,是综合题.(I)根据函数f(x)的最小正周期求出ω的值,再求出A、B、φ的值,即可写出函数f(x)的解析式;(Ⅱ)根据正弦函数的单调性,求出f(x)的单调增区间;(Ⅲ)把方程化为m=3sin(x−π3),求出x∈[π6,7π6]时3sin(x−π3)的取值范围即可.18.某校园内有一块三角形绿地AEF(如图1),其中AE=20m,AF=10m,∠EAF=2π3,绿地内种植有一呈扇形AMN的花卉景观,扇形AMN的两边分别落在AE和AF上,圆弧MN与EF相切于点P.(1)求扇形花卉景观的面积;(2)学校计划2017年年整治校园环境,为美观起见,设计在原有绿地基础上扩建成平行四边形ABCD(如图2),其中∠BAD=2π3,并种植两块面积相同的扇形花卉景观,两扇形的边都分别落在平行四边形ABCD的边上,圆弧都与BD相切,若扇形的半径为8m,求平行四边形ABCD绿地占地面积的最小值.【答案】解:(1)△AEF中,由余弦定理可得EF=√400+100−400cos2π3=10√7m.设扇形花卉景观的半径为r,则由EF⋅r=AE⋅AF⋅sin∠EAF,得到r=200×√32 10√7=10√217m,∴扇形花卉景观的面积S=13πr2=1007π m2;(2)设AB=xm,AD=ym,则BD=√x2+y2+xym,由平行四边形ABCD的面积得8√x2+y2+xy=√32xy,∵√x2+y2+xy≥√2xy+xy=√3⋅√xy,∴√32xy≥8√3⋅√xy,即xy≥256,当且仅当x=y=16时,xy的最小值为256,∴平行四边形ABCD的面积的最小值为128√3m2.【解析】(1)△AEF中,由余弦定理可得EF,设扇形花卉景观的半径为r,则由EF⋅r=AE⋅AF⋅sin∠EAF,得到r,即可求扇形花卉景观的面积;(2)设AB=xm,AD=ym,则BD=√x2+y2+xym,由平行四边形ABCD的面积得8√x2+y2+xy=√32xy,求出xy的最小值,即可得出结论.本题考查基本不等式的运用,考查余弦定理的运用,考查学生分析解决问题的能力,难度中等.19.已知函数y=2sin(2x+π4),(1)用五点作图法做出该函数在一个周期内的闭区间上的简图;(2)该函数是由函数y=sinx经过怎样的变换得到的?【答案】解:(1)五点作图五点坐标依次为:(−π8,0),(π8,2),(3π8,0),(5π8,−2),(7π8,0).(2)y=sinx纵坐标不变,沿x轴向左平移π4个单位得到y=sin(x+π4),然后纵坐标不变,横坐标变为原来的12得到y=sin(2x+π4),横坐标不变,纵坐标变为原来的2倍得到y=2sin(2x+π4).【解析】(1)根据五点法作图,确定对应的五点即可.(2)根据三角函数之间的关系即可得到结论.本题主要考查三角函数的图象和性质,要求熟练掌握五点法作图以及图象之间的关系.第11页,共11页。

相关文档
最新文档