(完整版)椭圆知识点复习总结

合集下载

椭圆知识点总结

椭圆知识点总结

椭圆知识点知识要点小结:知识点一:椭圆的定义平面内一个动点P 到两个定点1F 、2F 的距离之和等于常数)2(2121F F a PF PF >=+ ,这个动点P 的轨迹叫椭圆.这两个定点叫椭圆的焦点,两焦点的距离叫作椭圆的焦距. 注意:若)(2121F F PF PF =+,则动点P 的轨迹为线段21F F ; 若)(2121F F PF PF <+,则动点P 的轨迹无图形.知识点二:椭圆的标准方程1.当焦点在x 轴上时,椭圆的标准方程:12222=+by a x )0(>>b a ,其中222b a c -=2.当焦点在y 轴上时,椭圆的标准方程:12222=+bx a y )0(>>b a ,其中222b a c -=;注意:1.只有当椭圆的中心为坐标原点,对称轴为坐标轴建立直角坐标系时, 才能得到椭圆的标准方程; 2.在椭圆的两种标准方程中,都有)0(>>b a 和222b a c -=;3.椭圆的焦点总在长轴上.当焦点在x 轴上时,椭圆的焦点坐标为)0,(c ,)0,(c -; 当焦点在y 轴上时,椭圆的焦点坐标为),0(c ,),0(c -知识点三:椭圆的简单几何性质椭圆:12222=+by a x )0(>>b a 的简单几何性质(1)对称性:对于椭圆标准方程12222=+b y a x )0(>>b a :说明:把x 换成x -、或把y 换成y -、或把x 、y 同时换成x -、y -、原方程都不变,所以椭圆12222=+by a x 是以x 轴、y 轴为对称轴的轴对称图形,并且是以原点为对称中心的中心对称图形,这个对称中心称为椭圆的中心。

(2)范围:椭圆上所有的点都位于直线a x±=和b y ±=所围成的矩形内,所以椭圆上点的坐标满足a x ≤,b y ≤。

(3)顶点:①椭圆的对称轴与椭圆的交点称为椭圆的顶点。

必修二椭圆知识点总结

必修二椭圆知识点总结

必修二椭圆知识点总结一、椭圆的基本概念1. 定义椭圆是一个点到两个给定点的距离之和等于常数的动点轨迹。

这两个给定点称为焦点,距离之和等于常数称为椭圆的离心率。

2. 公式表示椭圆的一般方程为:$\frac{(x-h)^2}{a^2}+\frac{(y-k)^2}{b^2}=1$其中,$(h,k)$为椭圆的中心,$a$和$b$分别为椭圆长轴、短轴的长度。

二、椭圆的性质1. 焦点、离心率和长短轴之间的关系椭圆上任意一点到两个焦点的距离之和等于长轴的长度,即$2a=2\sqrt{a^2-b^2}$。

离心率$e$的定义为:$e=\frac{c}{a}$其中,$c$为焦点到中心的距离。

2. 椭圆的对称性椭圆以其中心为中心对称,有两个对称轴,分别为长轴和短轴。

长轴上有两个端点,称为顶点;短轴上也有两个端点。

3. 椭圆的参数方程椭圆可以用参数方程表示为:$x=h+a\cos t$$y=k+b\sin t$其中,$(h,k)$为椭圆的中心,$a$和$b$分别为椭圆长轴、短轴的长度。

4. 椭圆的离心角椭圆上任意一点到两个焦点的连线与椭圆长轴的夹角称为椭圆的离心角。

椭圆的离心角范围在0到$\pi$之间。

三、椭圆的相关定理1. 椭圆的偏心率椭圆的偏心率为:$e=\sqrt{1-\frac{b^2}{a^2}}$其中,$a$和$b$分别为椭圆长轴、短轴的长度。

2. 椭圆的焦点、半焦距和离心率的关系椭圆上任意一点到两个焦点的距离之和等于长轴的长度,即$2a=2\sqrt{a^2-b^2}$。

离心率$e$的定义为:$e=\frac{c}{a}$其中,$c$为焦点到中心的距离。

3. 椭圆的切线方程椭圆上一点处的切线方程为:$\frac{xh}{a^2}+\frac{yk}{b^2}=1$四、椭圆的应用1. 物理学中的应用椭圆在天体运动、热力学等领域都有广泛的应用。

例如,行星绕太阳的运动轨迹就是一个椭圆。

2. 工程学中的应用椭圆在工程学中也有着重要的应用,例如在建筑设计、轨道运输等方面。

椭圆的认识知识点总结

椭圆的认识知识点总结

椭圆的认识知识点总结一、椭圆的定义椭圆是平面上到两个固定点F1和F2的距离之和等于常数2a(a>0)的点P的轨迹。

这两个固定点F1和F2称为椭圆的焦点,常数2a称为椭圆的长轴。

椭圆上距离F1和F2的距离之差等于2b(b>0),其中b称为椭圆的短半轴。

椭圆的离心率e定义为e=c/a,其中c是焦距。

二、椭圆的性质1. 椭圆的长轴和短半轴椭圆的长轴是通过两个焦点的直线,而短半轴是垂直于长轴并且通过椭圆中心的直线。

椭圆的长轴和短半轴的长度分别为2a和2b。

2. 椭圆的离心率椭圆的离心率e决定了椭圆形状的“扁平程度”,e的取值范围是0<e<1。

当e=0时,椭圆的形状是一个圆;当e→1时,椭圆的形状趋近于一个长而狭窄的椭圆。

3. 椭圆的焦点和焦准线椭圆上任何一点到两个焦点的距离之和是一个常数2a,这个定理称为定义定理。

椭圆的长轴是两个焦点之间的直线,称为主轴。

两个焦点之间的直线称为焦准线。

4. 椭圆的轴线方程椭圆的长轴和短半轴分别平行于坐标轴,可以通过坐标轴和焦点的位置来确定椭圆的轴线方程,通常有(x-h)²/a²+(y-k)²/b²=1和(x-h)²/b²+(y-k)²/a²=1两种形式。

5. 椭圆的参数方程和焦点方程椭圆的参数方程是一对参数方程x=a*cosθ,y=b*sinθ。

椭圆的焦点方程是通过焦点和参数θ来表示椭圆上的点的坐标方程。

6. 椭圆的面积椭圆的面积可以通过长轴和短半轴的长度计算得出,通常为πab。

7. 椭圆的周长椭圆的周长可以通过参数方程和积分计算得出,通常为4aE(e),其中E(e)是第二类椭圆积分。

8. 椭圆的方程椭圆的方程可以通过焦点、焦准线、长轴和短轴的长度来表示,通常为(x-h)²/a²+(y-k)²/b²=1。

三、椭圆的应用1. 天体运动椭圆的轨迹方程在天文学中有广泛的应用,例如行星的轨道运动就可以用椭圆轨迹方程描述。

(完整版)椭圆知识点归纳总结

(完整版)椭圆知识点归纳总结

(完整版)椭圆知识点归纳总结1. 椭圆的定义椭圆是平面上到两个给定点的距离之和等于常数的点的集合。

这两个给定点称为焦点,而常数称为离心率。

椭圆的形状由焦点之间的距离决定,离心率的大小则决定了椭圆的扁平程度。

2. 椭圆的基本性质- 椭圆的长轴是焦点之间的距离,短轴是长轴的垂直中垂线。

- 椭圆的离心率介于0和1之间,且离心率为0时为圆。

- 椭圆有两个对称轴,分别是长轴和短轴的中垂线。

- 椭圆的焦点和任意一点的距离和等于离心率与该点到椭圆两个焦点的距离之和。

- 椭圆的面积为π * a * b,其中a和b分别是长轴和短轴的一半。

3. 椭圆的方程普通椭圆的方程为:(x-h)²/a² + (y-k)²/b² = 1其中(h,k)是椭圆的中心坐标,a和b分别是椭圆长轴和短轴的一半。

4. 椭圆的参数方程椭圆的参数方程为:x = h + a * cos(t)y = k + b * sin(t)其中(h,k)是椭圆的中心坐标,a和b分别是椭圆长轴和短轴的一半,t是参数。

5. 椭圆的焦点与直径- 焦点到定点的距离等于椭圆的常数离心率。

- 椭圆的两个焦点与椭圆的直径的交点相同。

6. 椭圆与其他几何图形关系- 椭圆与直线的关系:给定一条直线,椭圆上离直线距离之和最小的点在直线的垂直线上。

- 椭圆与双曲线的关系:双曲线可以看作是离心率大于1的椭圆。

- 椭圆与抛物线的关系:抛物线可以看作是离心率等于1的椭圆。

7. 椭圆的应用椭圆在现实生活中有广泛的应用,例如:- 天体运动:行星、卫星等的轨道可以近似看作是椭圆。

- 椭圆滤波器:在信号处理中用于清除噪音。

- 光学器件:如折射球面镜、椭圆镜等。

以上是关于椭圆的常见知识点的归纳总结,希望能对你有所帮助。

椭圆知识点总结

椭圆知识点总结

椭圆知识点知识点一:椭圆的定义平面内一个动点P 到两个定点1F 、2F 的距离之和等于常数)2(2121F F a PF PF >=+ ,这个动点P 的轨迹叫椭圆.这两个定点叫椭圆的焦点,两焦点的距离叫作椭圆的焦距. 注意:若)(2121F F PF PF =+,则动点P 的轨迹为线段21F F ; 若)(2121F F PF PF <+,则动点P 的轨迹无图形.知识点二:椭圆的标准方程 12222=+b y a x 与 12222=+bx a y )0(>>b a 的区别和联系求椭圆标准方程的常用方法:①待定系数法:由已知条件确定焦点的位置,从而确定椭圆方程的类型,设出标准方程,再由条件确定方程中的参数c b a ,,的值。

其主要步骤是“先定型,再定量”;②定义法:由已知条件判断出动点的轨迹是什么图形,然后再根据定义确定方程。

知识点三:直线与椭圆问题(韦达定理的运用)弦长公式:若直线b kx y l +=:与圆锥曲线相交与A 、B 两点,),(),,2211y x B y x A (则 弦长221221)()(y y x x AB -+-=221221)()(kx kx x x -+-= 2121x x k -+=2122124)(1x x x x k-++=1.椭圆11692522=+y x 的焦点坐标是 , 离心率是________,准线方程是_________. 2.已知F 1、F 2是椭圆191622=+y x 的两个焦点,过F 1的直线与椭圆交于M 、N 两点,则△MNF 2的周长为( )A .8B .16C .25D .323.椭圆192522=+y x 上一点P 到一个焦点的距离为5,则P 到另一个焦点的距离为( ) A.5 B.6 C.4 D.104.已知椭圆方程为1112022=+y x ,那么它的焦距是 ( ) A.6 B.3 C.331 D.315.如果方程222=+ky x 表示焦点在y 轴上的椭圆,那么实数k 的取值范围是( )A.(0,+∞)B.(0,2)C.(1,+∞)D.(0,1)6.设21,F F 为定点,|21F F |=6,动点M 满足6||||21=+MF MF ,则动点M 的轨迹是( )A.椭圆B.直线C.圆D.线段7.已知方程12-m x +my -22=1,表示焦点在y 轴上的椭圆,则m 的取值范围为 .8.已知椭圆的两个焦点坐标是F 1(-2,0),F 2(2,0),并且经过点P (23,25-),则椭圆标准方程是 __ ___9.过点A (-1,-2)且与椭圆19622=+y x 的两个焦点相同的椭圆标准方程是__ __10.过点P (3,-2),Q (-23,1)两点的椭圆标准方程是_ __ ___11.若椭圆19822=++y k x 的离心率是21,则k 的值等于 .12.已知△ABC 的顶点B 、C 在椭圆x 23+y 2=1上,顶点A 是椭圆的一个焦点,且椭圆的另外一个焦点在BC边上,则△ABC 的周长是 .13.F 1、F 2分别为椭圆22a x +22b y =1的左、右焦点,点P 在椭圆上,△POF 2是面积为3的正三角形,则b 2的值是14.设M 是椭圆1162522=+y x 上一点,F 1、F 2为焦点,621π=∠MF F ,则=∆21F MF S15.在给定椭圆中,过焦点且垂直于长轴的弦长为2,焦点到相应准线的距离为1,则该椭圆的离心率为(A)2 (B)22 (C) 21 (D)4216.设11229(,),(4,),(,)5A x y B C x y 是右焦点为F 的椭圆221259x y +=上三个不同的点,则“,,AF BF CF 成等差数列”是“128x x +=”的( )(A )充要条件 (B )必要不充分条件 (C )充分不必要条件 (D )既非充分也非必要17.如图,把椭圆2212516x y +=的长轴AB 分成8等份,过每个分点作x 轴的垂线交椭圆的上半部分于1234567,,,,,,P P P P P P P 七个点,F 是椭圆的一个焦点,则1234567PF P F P F P F P F P F P F ++++++=18、已知定点A (a ,0),其中30<<a ,它到椭圆14922=+y x 上的点的距离的最小值为1,求a 的值。

椭圆知识点总结(精选4篇)

椭圆知识点总结(精选4篇)

椭圆知识点总结(精选4篇)椭圆形面积公式篇一圆锥曲线的定义(1)你知道椭圆、双曲线、抛物线的第一定义吗?作答:______________________(2)椭圆、双曲线、抛物线的第二定义你掌握了吗?作答:______________________(1)平面内与两个定点f1,f2的距离之和等于常数(大于f1f2)的点的轨迹叫做椭圆;与两个定点f1,f2的距离之差的绝对值等于常数(小于f1f2)的点的轨迹叫做双曲线;与一个定点f和一条定直线l(l不经过点f)距离相等的点的轨迹叫做抛物线。

(2)已知点f是平面上的一个定点,l是平面上不过点f的一条定直线,动点p到点f 的距离和它到直线l的距离之比是一个常数e.当01时,动点p的轨迹是双曲线;当e=1时,动点p的轨迹是抛物线.椭圆的几何性质(1)你知道椭圆的焦半径公式吗?焦点弦公式还记得吗?作答:______________________(2)如何计算椭圆的焦点三角形的面积?作答:______________________(3)你知道如何求解椭圆的切线方程吗?作答:______________________以方程■+■=1(ab0)为例.(1)①设p(x0,y0),f1,f2分别为其左、右焦点,则pf1=a+ex0,pf2=a-ex0;②过点f1(-c,0)的弦ab长为ab=2a+e(xa+xb),过点f2(c,0)的弦ab长为ab=2a-e (xa+xb),其中xa,xb分别为a,b两点的横坐标.(2)设p点是椭圆上一点,f1,f2分别为其左、右焦点,则s■=b2tan■(θ为pf1,pf2的夹角).特别地,若pf1pf2,此三角形面积为b2.(3)过椭圆■+■=1上一点p(x0,y0)处的切线方程是■+■=1;过椭圆■+■=1外一点p (x0,y0)所引两条切线的切点弦方程是■+■=1.双曲线的几何性质(1)双曲线的焦半径公式还会用吗?作答:______________________(2)如何计算双曲线的焦点三角形的面积?作答:______________________(3)与已知双曲线有同一条渐近线的双曲线方程如何表示?作答:______________________(4)你知道如何求解双曲线的切线方程吗?作答:______________________以方程■-■=1(a0,b0)为例.(1)设p(x0,y0),f1,f2分别为其左、右焦点。

九年级下册《椭圆》知识点总结

九年级下册《椭圆》知识点总结

九年级下册《椭圆》知识点总结
1.椭圆的定义
椭圆是平面上到两个固定点的距离之和等于常数的点的轨迹。

2.椭圆的性质
长轴和短轴:椭圆的两个轴分别为长轴和短轴,长轴的长度大于短轴的长度。

焦点和准线:椭圆的两个焦点是确定椭圆形状的关键点,准线是与焦点垂直且通过椭圆中心的直线。

离心率:椭圆的离心率表示椭圆形状的圆心偏离焦点的程度。

3.椭圆的方程
椭圆的标准方程:(x - h)^2 / a^2 + (y - k)^2 / b^2 = 1,其中 (h。

k) 是椭圆中心的坐标,a 和 b 分别是长轴和短轴的半径长度。

4.椭圆的图像特点
椭圆的图像是一个闭合的曲线,呈现出拉伸的圆形。

焦点在椭圆的长轴上,并且与准线对称。

椭圆的离心率小于1,且离心率越小,椭圆形状越接近圆形。

5.椭圆的应用
椭圆曲线加密:椭圆曲线加密算法是一种公钥加密算法,广泛应用于信息安全领域。

太阳能聚焦器:通过椭圆形状的反射面将太阳光聚焦在一个点上,实现能量的集中利用。

以上是九年级下册《椭圆》的知识点总结。

椭圆是数学中重要的几何图形,在应用中有广泛的用途和意义。

椭圆知识点总结

椭圆知识点总结

椭圆知识点总结椭圆学问点总结1学问点一椭圆的定义平面内到两个定点的距离之和等于常数(大于)的点的集合叫做椭圆。

两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距。

依据椭圆的定义可知:椭圆上的点M满意集合,,且都为常数。

当即时,集合P为椭圆。

当即时,集合P为线段。

当即时,集合P为空集。

学问点二椭圆的标准方程(1),焦点在轴上时,焦点为,焦点。

(2),焦点在轴上时,焦点为,焦点。

学问点三椭圆方程的一般式这种形式的方程在课本中虽然没有明确给出,但在应用中有时比较便利,在此供应出来,作为参考:(其中为同号且不为零的常数,),它包含焦点在轴或轴上两种情形。

方程可变形为。

当时,椭圆的焦点在轴上;当时,椭圆的焦点在轴上。

一般式,通常也设为,应特殊留意均大于0,标准方程为。

学问点四椭圆标准方程的求法1.定义法椭圆标准方程可由定义直接求得,这是求椭圆方程中很重要的方法之一,当问题是以实际问题给出时,肯定要留意使实际问题有意义,因此要恰当地表示椭圆的范围。

例1、在△ABC中,A、B、C所对三边分别为,且B(1,0)C(1,0),求满意,且成等差数列时,顶点A的曲线方程。

变式练习1.在△ABC中,点B(6,0)、C(0,8),且成等差数列。

(1)求证:顶点A在一个椭圆上运动。

(2)指出这个椭圆的焦点坐标以及焦距。

2.待定系数法首先确定标准方程的类型,并将其用有关参数表示出来,然后结合问题的条件,建立参数满意的等式,求得的值,再代入所设方程,即肯定性,二定量,最终写方程。

例2、已知椭圆的中心在原点,且经过点P(3,0),=3b,求椭圆的标准方程。

例3、已知椭圆的中心在原点,以坐标轴为对称轴,且经过两点,求椭圆方程。

变式练习2.求适合以下条件的椭圆的方程;(1)两个焦点分别是(3,0),(3,0)且经过点(5,0).(2)两焦点在坐标轴上,两焦点的中点为坐标原点,焦距为8,椭圆上一点到两焦点的距离之和为12.3.已知椭圆经过点和点,求椭圆的标准方程。

复习椭圆相关知识点总结

复习椭圆相关知识点总结

复习椭圆相关知识点总结一、椭圆的定义椭圆是平面上的一条封闭曲线,其定义为到两个给定点的距离之和等于常数(椭圆的长轴)。

即设两点F1(-c, 0)、F2(c, 0)(c为常数),过F1、F2点分别作两条互相垂直的直线,这两条直线交于一点O,任意取一点M,连接M到两点的距离之和是常数,即|MF1| + |MF2| = 2a(常数),则点M的轨迹称为椭圆。

二、椭圆的性质1.椭圆的离心率椭圆的离心率是指椭圆焦点到中心点的距离与长轴之比,其数值范围在0到1之间。

2.椭圆的焦点和直径椭圆有两个焦点,分别位于椭圆的长轴上,并向短轴的对称位置。

而椭圆的长轴和短轴之间的距离称为椭圆的直径。

3.椭圆的参数方程椭圆的参数方程为:x = a * cos(t),y = b * sin(t)。

其中,a和b分别为椭圆的长短轴长度,t为参数。

4.椭圆的切线和法线椭圆上的切线与法线分别垂直于轨迹曲线,在切点处切线的斜率等于轨迹曲线的斜率,法线的斜率是切线斜率的相反数。

5.椭圆的焦点位置椭圆的焦点位置可以通过以下公式计算得出: c = sqrt(a^2 - b^2)。

三、椭圆的应用椭圆在数学和物理学中都有着广泛的应用,例如在天文学中,椭圆常用来描述行星、卫星和彗星的运动轨迹;在工程学中,椭圆常用来描述电子束的运动轨迹;在通信领域中,椭圆常用来描述无线信号的传播路径等。

四、椭圆的计算1.椭圆的面积椭圆的面积可以通过以下公式计算得出:S = π * a * b。

2.椭圆的周长椭圆的周长可以通过以下公式计算得出:C = 4a * E(e)。

其中,E(e)是椭圆的第二类完全椭圆积分,e是椭圆的离心率。

3.椭圆的焦距椭圆的焦距可以通过以下公式计算得出:f = 2a * e。

五、椭圆的变换椭圆可以通过平移、旋转、缩放等变换来得到新的椭圆,这些变换可以通过矩阵运算来表示,从而方便进行计算和分析。

综上所述,椭圆是一种经典的几何图形,在数学和物理学中有着广泛的应用。

(完整版)椭圆基本知识点总结

(完整版)椭圆基本知识点总结

椭圆知识点知识点一:椭圆的定义平面内一个动点P 到两个定点1F 、2F 的距离之和等于常数)2(2121F F a PF PF >=+ ,这个动点P 的轨迹叫椭圆.这两个定点叫椭圆的焦点,两焦点的距离叫作椭圆的焦距. 注意:若2121F F PF PF =+,则动点P 的轨迹为线段21F F ; 若2121F F PF PF <+,则动点P 的轨迹无图形. 知识点二:椭圆的简单几何性质椭圆:12222=+b y a x )0(>>b a 与 12222=+bx a y )0(>>b a 的简单几何性质标准方程12222=+b y a x )0(>>b a 12222=+b x a y )0(>>b a 图形性质焦点 )0,(1c F -,)0,(2c F),0(1c F -,),0(2c F焦距 c F F 221= c F F 221= 范围 a x ≤,b y ≤ b x ≤,a y ≤对称性关于x 轴、y 轴和原点对称顶点 )0,(a ±,),0(b ±),0(a ±,)0,(b ±轴长 长轴长=a 2,短轴长=b 2离心率)10(<<=e ace c a F A F A -==2211;c a F A F A +==1221;c a PF c a +≤≤-1; (p 是椭圆上一点)1.椭圆标准方程中的三个量c b a ,,的几何意义222c b a +=2.通径:过焦点且垂直于长轴的弦,其长ab 223.最大角:p 是椭圆上一点,当p 是椭圆的短轴端点时,21PF F ∠ 为最大角。

4.焦点三角形的面积2tan221θb S F PF =∆,其中21PF F ∠=θ5. 用待定系数法求椭圆标准方程的步骤.(1)作判断:依据条件判断椭圆的焦点在x 轴上还是在y 轴上. (2)设方程:①依据上述判断设方程为2222by a x +=1)0(>>b a 或2222a y b x +=1)0(>>b a②在不能确定焦点位置的情况下也可设mx 2+ny 2=1(m >0,n >0且m ≠n ). (3)找关系,根据已知条件,建立关于a ,b ,c 或m ,n 的方程组. (4)解方程组,代入所设方程即为所求. 6.点与椭圆的位置关系: 2222b y a x +<1,点在椭圆内,2222b y a x +=1,点在椭圆上,2222b y a x +>1, 点在椭圆外。

高三知识点总结椭圆

高三知识点总结椭圆

高三知识点总结椭圆一、椭圆的定义椭圆是平面上一个动点到两个不同的固定点的距离之和等于常数的轨迹。

这两个固定点分别称为焦点,这个常数称为椭圆的半长轴的长度。

椭圆的定义可以用数学表达式表示为:椭圆的标准方程为:$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1(a>b>0)$其中,a和b分别为椭圆的半长轴和半短轴的长度,且椭圆的长轴在x轴上,短轴在y轴上。

二、椭圆的性质1. 焦点性质:椭圆定义的两个焦点到椭圆曲线上的任意一点的距离之和等于常数2a。

2. 直径性质:椭圆的任意一条直径上任意一点到焦点的距离与到准位线的距离之和等于直径的长。

3. 对称性质:椭圆具有关于x轴、y轴和原点对称的性质。

4. 离心率:椭圆的离心率为$e = \sqrt{1-\frac{b^2}{a^2}}$,它描述了椭圆的扁平程度,离心率越接近于0,椭圆越圆。

三、椭圆的参数方程椭圆的参数方程可以表示为:$x=a \cos t$$y=b \sin t$其中,t为参数,a和b分别为椭圆的半长轴和半短轴的长度。

四、椭圆的焦点与准位线椭圆的焦点和准位线是椭圆的重要性质之一,它们在椭圆的图形、方程和计算中起着重要作用。

1. 焦点的坐标:椭圆的焦点坐标为$(\pm \sqrt{a^2 - b^2},0)$2. 准位线方程:椭圆的准位线方程为$x=\pm a \epsilon$,其中ε为椭圆的离心率。

五、椭圆的相关定理1. 椭圆的直径定理:椭圆的所有直径的长度之和为常数2a。

2. 椭圆的离心率定理:椭圆的离心率e的平方等于1减去b平方除以a平方。

六、椭圆的应用椭圆在生活和工程领域中有着广泛的应用,例如:1. 太阳系中行星的轨迹一般为椭圆,椭圆的性质可以帮助我们更好地理解天体运动规律。

2. 椭圆在工程中的应用:例如建筑、机械、航天等领域都会涉及到椭圆的应用,例如在建筑设计中椭圆形的圆顶结构、在机械制造中椭圆齿轮的设计等等。

椭圆知识点总结

椭圆知识点总结

椭圆知识点知识点一:椭圆的定义平面内一个动点P 到两个定点1F 、2F 的距离之和等于常数)2(2121F F a PF PF >=+ ,这个动点P 的轨迹叫椭圆.这两个定点叫椭圆的焦点,两焦点的距离叫作椭圆的焦距. 注意:若)(2121F F PF PF =+,则动点P 的轨迹为线段21F F ; 若)(2121F F PF PF <+,则动点P 的轨迹无图形.知识点二:椭圆的标准方程1.当焦点在x 轴上时,椭圆的标准方程:12222=+by a x )0(>>b a ,其中222b a c -=2.当焦点在y 轴上时,椭圆的标准方程:12222=+bx a y )0(>>b a ,其中222b a c -=;注意:1.只有当椭圆的中心为坐标原点,对称轴为坐标轴建立直角坐标系时, 才能得到椭圆的标准方程; 2.在椭圆的两种标准方程中,都有)0(>>b a 和222b a c -=;3.椭圆的焦点总在长轴上.当焦点在x 轴上时,椭圆的焦点坐标为)0,(c ,)0,(c -; 当焦点在y 轴上时,椭圆的焦点坐标为),0(c ,),0(c -知识点三:椭圆的简单几何性质椭圆:12222=+by a x )0(>>b a 的简单几何性质1.对称性:对于椭圆标准方程12222=+b y a x )0(>>b a :说明:把x 换成x -、或把y 换成y -、或把x 、y 同时换成x -、y -、原方程都不变,所以椭圆12222=+by a x 是以x 轴、y 轴为对称轴的轴对称图形,并且是以原点为对称中心的中心对称图形,这个对称中心称为椭圆的中心。

2.范围:椭圆上所有的点都位于直线a x±=和b y ±=所围成的矩形内,所以椭圆上点的坐标满足a x ≤,b y ≤。

3.顶点:①椭圆的对称轴与椭圆的交点称为椭圆的顶点。

高中椭圆知识点总结大全

高中椭圆知识点总结大全

高中椭圆知识点总结大全一、椭圆的定义椭圆可以通过一个固定点F(称为焦点)和一个固定线段2a(称为长轴)来定义:对于平面上的任意一点P到F的距离加上到线段上两个端点的距离之和恒为常数2a。

即对于平面上任意一点P(x, y),有PF1 + PF2 = 2a,其中PF1和PF2分别是点P到焦点F1和F2的距离。

椭圆的数学定义为:椭圆是平面上到两个给定点F1和F2的距离之和为定值2a的所有点P(x, y)的集合。

2a称为椭圆的主轴长。

椭圆的中点O为原点,主轴与x轴平行。

a称为半长轴,b称为半短轴。

椭圆的方程通常表示为(x^2)/a^2 + (y^2)/b^2 = 1,当a=b时,椭圆的长轴和短轴相等,称为圆。

二、椭圆的参数方程椭圆还可以通过参数方程来描述。

椭圆的参数方程为x = a*cos(t),y = b*sin(t),其中t为参数,a和b分别为半长轴和半短轴。

参数方程可以将椭圆的轨迹表示为一个参数的函数,很方便进行曲线的分析和运算。

三、椭圆的焦点与离心率椭圆有两个焦点F1和F2,它们在长轴上与中点O等距离。

椭圆的离心率e定义为焦距2c与长轴2a的比值,即e = c/a。

e的取值范围为0<e<1,当e=0时,椭圆为圆,当e逐渐增大时,椭圆的形状变得更加扁平。

四、椭圆的方程与性质1. 椭圆的标准方程椭圆的标准方程为(x^2)/a^2 + (y^2)/b^2 = 1,其中a和b分别为半长轴和半短轴的长度。

一般来说,可以通过椭圆的焦点和长短轴长短求出标准方程。

2. 椭圆的性质(1)椭圆的对称轴:椭圆相对于x轴、y轴或坐标原点都是对称的。

(2)椭圆的离心率:椭圆的形状特征由离心率e决定,e越接近于0,椭圆的形状越接近于圆。

(3)椭圆的焦点与直径:椭圆有两个焦点F1和F2,它们在长轴上与中点O等距离。

它的两个焦点连成的直线叫作椭圆的长轴,而过椭圆中点与垂直于长轴的直线的交点叫作椭圆的短轴。

长轴的长度等于2a,短轴的长度等于2b。

椭圆知识点大总结

椭圆知识点大总结

椭圆知识点大总结一、定义椭圆是平面上所有到两个给定点F1和F2的距离之和等于常数2a的点P的轨迹。

F1和F2称为椭圆的焦点,2a称为椭圆的长轴长度。

二、性质1. 椭圆上任意一点到两个焦点的距离之和等于常数2a。

2. 椭圆上任意一点到两个焦点的距离之差等于常数2c。

3. 椭圆上任意一点到两个焦点的距离之差等于长轴的长度。

4. 椭圆的离心率0<e<1。

5. 椭圆的焦点到中心的距离为c=√(a^2-b^2)。

6. 椭圆的焦距等于2a。

7. 椭圆的面积为πab。

三、方程在直角坐标系中,椭圆的标准方程为(x-h)^2/a^2 + (y-k)^2/b^2 = 1,其中(h,k)为椭圆的中心坐标,a为长轴的长度,b为短轴的长度。

四、焦点椭圆的焦点是一个非常重要的点,它是椭圆定义的核心。

在直角坐标系中,椭圆的焦点为(F1,0)和(-F2,0),其中F1和F2满足c=√(a^2-b^2)。

五、直径椭圆的直径是通过中心并且有两个端点在椭圆上的线段。

椭圆的长直径和短直径分别为长轴的两倍和短轴的两倍。

六、参数方程椭圆的参数方程为x = a*cosθ,y = b*sinθ,其中θ为参数,a和b分别为长轴和短轴的长度。

七、椭圆的标准方程椭圆的标准方程为(x-h)^2/a^2 + (y-k)^2/b^2 = 1,其中(h,k)为椭圆的中心坐标,a为长轴的长度,b为短轴的长度。

八、离心率椭圆的离心率e用来描述椭圆的形状,它的取值范围为0<e<1。

当e=0时,椭圆退化成为一个点;当e=1时,椭圆退化成为一个圆。

九、直角坐标系下的性质1. 如果椭圆的长轴与x轴平行,则椭圆的标准方程为(x-h)^2/a^2 + (y-k)^2/b^2 = 1。

2. 如果椭圆的长轴与y轴平行,则椭圆的标准方程为(x-h)^2/b^2 + (y-k)^2/a^2 = 1。

3. 椭圆对称于x轴、y轴和原点。

4. 椭圆的焦点在x轴上。

(完整版)椭圆知识点总结

(完整版)椭圆知识点总结

椭圆知识点知识要点小结:知识点一:椭圆的定义平面内一个动点P 到两个定点1F 、2F 的距离之和等于常数)2(2121F F a PF PF >=+ ,这个动点P 的轨迹叫椭圆.这两个定点叫椭圆的焦点,两焦点的距离叫作椭圆的焦距. 注意:若)(2121F F PF PF =+,则动点P 的轨迹为线段21F F ; 若)(2121F F PF PF <+,则动点P 的轨迹无图形.知识点二:椭圆的标准方程1.当焦点在x 轴上时,椭圆的标准方程:12222=+by a x )0(>>b a ,其中222b a c -=2.当焦点在y 轴上时,椭圆的标准方程:12222=+bx a y )0(>>b a ,其中222b a c -=;注意:1.只有当椭圆的中心为坐标原点,对称轴为坐标轴建立直角坐标系时, 才能得到椭圆的标准方程; 2.在椭圆的两种标准方程中,都有)0(>>b a 和222b ac -=; 3.椭圆的焦点总在长轴上.当焦点在x 轴上时,椭圆的焦点坐标为)0,(c ,)0,(c -; 当焦点在y 轴上时,椭圆的焦点坐标为),0(c ,),0(c - 知识点三:椭圆的简单几何性质椭圆:12222=+by a x )0(>>b a 的简单几何性质(1)对称性:对于椭圆标准方程12222=+b y a x )0(>>b a :说明:把x 换成x -、或把y 换成y -、或把x 、y 同时换成x -、y -、原方程都不变,所以椭圆12222=+by a x 是以x 轴、y 轴为对称轴的轴对称图形,并且是以原点为对称中心的中心对称图形,这个对称中心称为椭圆的中心。

(2)范围:椭圆上所有的点都位于直线a x ±=和b y ±=所围成的矩形内,所以椭圆上点的坐标满足a x ≤,b y ≤。

(3)顶点:①椭圆的对称轴与椭圆的交点称为椭圆的顶点。

椭圆基础知识点

椭圆基础知识点

椭圆基础知识点椭圆是数学中的重要概念,广泛应用于物理、工程、几何等领域。

本文将介绍椭圆的基础知识点,包括定义、性质、参数方程、焦点与准线等内容。

一、椭圆的定义椭圆是平面上一条封闭曲线,其上各点到两个定点的距离之和恒定。

这两个定点称为焦点,连接两焦点的线段称为主轴,主轴的中点为椭圆的中心,主轴长度的一半称为半长轴,垂直于主轴的线段称为次轴,次轴长度的一半称为半短轴。

二、椭圆的性质1. 弦长定理:椭圆上任意两点连线的长度之和等于两焦点之间的距离。

2. 焦点定理:椭圆上任意一点到两个焦点的距离之和等于两个焦点之间的距离。

3. 反射定理:从椭圆上一点出发的光线经过反射后,会经过另一个焦点。

4. 离心率:椭圆的离心率e是一个0到1之间的实数,定义为焦距与半长轴之间的比值。

三、椭圆的参数方程椭圆的参数方程可以用参数θ表示,如下所示:x = a * cosθy = b * sinθ其中,a和b分别是椭圆的半长轴和半短轴。

四、椭圆的焦点与准线1. 焦点:椭圆上的焦点是满足椭圆定义的两个定点,记为F1和F2。

焦点与椭圆的离心率e有关,可以通过公式e = c / a计算,其中c为焦距,a为半长轴。

2. 准线:椭圆上到两个焦点距离之和等于椭圆长轴长度的两条直线称为准线,记为L1和L2。

五、应用领域1. 天体运动:行星、卫星等天体围绕太阳、行星等轨道呈椭圆形。

2. 光学:椭圆抛物面反射镜和透镜用于天文望远镜、摄影镜头等光学仪器中。

3. 电子学:椭圆偏振器在液晶显示器等领域有广泛应用。

4. 地理测量:在地球上,纬线和经线的组合形成椭圆,用来表示地球的形状。

六、总结椭圆作为一种几何形状,具有丰富的性质和广泛的应用。

本文介绍了椭圆的定义、性质、参数方程以及焦点与准线等内容。

椭圆在数学、物理、工程等领域中都有重要的应用,对于理解和解决相关问题具有重要意义。

希望本文能够帮助读者对椭圆有更深入的了解。

(完整版)椭圆知识点复习总结

(完整版)椭圆知识点复习总结

椭圆知识点总结复习1. 椭圆的定义:(1)椭圆:焦点在x 轴上时12222=+by a x (222a b c =+)⇔{cos sin x a y b ϕϕ==(参数方程,其中ϕ为参数),焦点在y 轴上时2222bx a y +=1(0a b >>)。

方程22Ax By C +=表示椭圆的充要条件是什么?(ABC ≠0,且A ,B ,C 同号,A ≠B )。

例一:已知线段AB 的两个端点A ,B 分别在x 轴,y 轴上,AB=5,M 是AB上的一个点,且AM=2,点M 随AB 的运动而运动,求点M 的运动轨迹方程2. 椭圆的几何性质:(1)椭圆(以12222=+by a x (0a b >>)为例):①范围:,a x a b y b -≤≤-≤≤;②焦点:两个焦点(,0)c ±;③对称性:两条对称轴0,0x y ==,一个对称中心(0,0),四个顶点(,0),(0,)a b ±±,其中长轴长为2a ,短轴长为2b ;④准线:两条准线2a x c =±; ⑤离心率:ce a=,椭圆⇔01e <<,e 越小,椭圆越圆;e越大,椭圆越扁。

⑥通径22b a例二:设椭圆22221(0)x y a b a b+=>>上一点P 作x 轴的垂线,恰好过椭圆的一个焦点1F ,此时椭圆与x 轴交于点A ,与y 轴交于点B ,且A,B 两点所确定的直线AB 与OP平行,求离心率e2.点与椭圆的位置关系:(1)点00(,)P x y 在椭圆外⇔2200221x y a b+>;(2)点00(,)P x y 在椭圆上⇔220220b y a x +=1;(3)点00(,)P x y 在椭圆内⇔2200221x y a b+<3.直线与圆锥曲线的位置关系:(往往设而不求) (1)相交:0∆>⇔直线与椭圆相交;(2)相切:0∆=⇔直线与椭圆相切; (3)相离:0∆<⇔直线与椭圆相离;例三::直线y ―kx ―1=0与椭圆2215x y m+=恒有公共点,则m 的取值范围是_______(答:[1,5)∪(5,+∞));例四:椭圆22221(0)x y a b a b+=>>与过点(2,0),(0,1)A B 的直线有且只有一个公共点T ,且椭圆的离心率2e =(1)求椭圆的方程(2)设12,F F 分别为椭圆的左,右焦点,M 为线段2AF 的中点,求证:1ATM AFT ∠=∠ (3)求证:21212AT AF F =.∆4、焦半径(圆锥曲线上的点P 到焦点F 的距离)的计算方法:利用圆锥曲线的第二定义,转化到相应准线的距离,即焦半径0r ed a ex ==±,其中d 表示P 到与F 所对应的准线的距离。

椭圆有关知识点总结

椭圆有关知识点总结

椭圆有关知识点总结定义:椭圆是平面上一个动点到两个定点的距离之和等于常数的所有点的轨迹。

这两个定点称为椭圆的焦点,常数称为椭圆的长半轴长度,并且常数称为椭圆的短半轴长度。

椭圆的一般方程为:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$性质:1. 椭圆的焦点:椭圆有两个焦点,它们的距离等于椭圆的长轴长度。

2. 椭圆的直径:椭圆有两条直径,它们的长度等于椭圆的长轴长度。

3. 椭圆的离心率:椭圆的离心率等于焦距与长轴长度之比。

4. 椭圆的焦距:椭圆的焦距等于两个焦点之间的距离。

参数方程:椭圆的参数方程为:$x=a\cos t,y=b\sin t,t\in[0,2\pi]$。

其中 $a$ 为椭圆的长半轴长度,$b$ 为椭圆的短半轴长度。

焦点:椭圆的焦点是椭圆的特殊点,它们的距离等于椭圆的长轴长度。

在椭圆的参数方程中,可以通过不同的参数 t 值来确定椭圆上各点的坐标,从而确定椭圆的焦点。

焦点是椭圆的重要性质,它在椭圆的定义和性质中都有重要的作用。

直径:椭圆有两条直径,它们的长度等于椭圆的长轴长度。

椭圆的直径是椭圆的重要性质,它可以用来确定椭圆的位置和形状。

离心率:椭圆的离心率等于焦距与长轴长度之比。

离心率是椭圆的重要参数,它可以用来描述椭圆的形状和特征。

离心率越接近于 1,椭圆就越扁平;离心率越接近于 0,椭圆就越接近于圆形。

焦距:椭圆的焦距等于两个焦点之间的距离。

焦距是椭圆的重要性质,它可以用来确定椭圆的位置和形状。

应用:椭圆在物理学、工程学、天文学、医学等领域都有广泛的应用。

在物理学中,椭圆经常用来描述地球、行星、卫星等天体的轨道;在工程学中,椭圆经常用来设计机械零件、建筑结构等;在天文学中,椭圆经常用来描述星系、星座、行星等;在医学中,椭圆经常用来描述人体器官的形状和结构。

总结:通过本文的内容,我们了解了椭圆的定义、性质、参数方程、焦点、直径、离心率、焦距以及椭圆的应用。

椭圆是一个非常有趣的几何图形,它在数学和物理学中都具有广泛的应用。

(完整word)椭圆知识点总结,推荐文档

(完整word)椭圆知识点总结,推荐文档

椭圆知识点知识点一:椭圆的定义平面内一个动点P 到两个定点1F 、2F 的距离之和等于常数)2(2121F F a PF PF >=+ ,这个动点P 的轨迹叫椭圆.这两个定点叫椭圆的焦点,两焦点的距离叫作椭圆的焦距. 注意:若2121F F PF PF =+,则动点P 的轨迹为线段21F F ; 若2121F F PF PF <+,则动点P 的轨迹无图形. 知识点二:椭圆的简单几何性质椭圆:12222=+b y a x )0(>>b a 与 12222=+bx a y )0(>>b a 的简单几何性质标准方程12222=+b y a x )0(>>b a 12222=+bx a y )0(>>b a 图形性质焦点 )0,(1c F -,)0,(2c F ),0(1c F -,),0(2c F焦距 c F F 221= c F F 221= 范围 a x ≤,b y ≤b x ≤,a y ≤对称性关于x 轴、y 轴和原点对称顶点 )0,(a ±,),0(b ± ),0(a ±,)0,(b ±轴长长轴长=a 2,短轴长=b 2 长半轴长=a ,短半轴长=b (注意看清题目)离心率)10(<<=e ace c a F A F A -==2211;c a F A F A +==1221;c a PF c a +≤≤-1;(p 是椭圆上一点)(不等式告诉我们椭圆上一点到焦点距离的范围)注意:①与坐标系无关的椭圆本身固有的性质,如:长轴长、短轴长、焦距、离心率等;②与坐标系有关的性质,如:顶点坐标、焦点坐标等知识点三:椭圆相关计算1.椭圆标准方程中的三个量c b a ,,的几何意义222c b a +=2.通径:过焦点且垂直于长轴的弦,其长ab22焦点弦:椭圆过焦点的弦。

3.最大角:p 是椭圆上一点,当p 是椭圆的短轴端点时,21PF F ∠为最大角。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

椭圆知识点总结复习
1. 椭圆的定义:
(1)椭圆:焦点在x 轴上时122
22=+b
y a x (222a b c =+)⇔{
cos sin x a y b ϕϕ==(参
数方程,其中ϕ为参数),焦点在y 轴上时22
22b
x a y +=1(0a b >>)。

方程
22Ax By C +=表示椭圆的充要条件是什么?(ABC ≠0,且A ,B ,C 同号,A ≠B )。

例一:已知线段AB 的两个端点A ,B 分别在x 轴,y 轴上,AB=5,M 是AB
上的一个点,且AM=2,点M 随AB 的运动而运动,求点M 的运动轨迹方程
2. 椭圆的几何性质:
(1)椭圆(以122
22=+b
y a x (0a b >>)为例):①范围:,a x a b y b -≤≤-≤≤;
②焦点:两个焦点(,0)c ±;③对称性:两条对称轴0,0x y ==,一个对称中心(0,0),四个顶点(,0),(0,)a b ±±,其中长轴长为2a ,短轴长为2b ;④准线:
两条准线2a x c =±; ⑤离心率:c
e a
=,椭圆⇔01e <<,e 越小,椭圆越圆;e
越大,椭圆越扁。

⑥通径2
2b a
例二:设椭圆22
221(0)x y a b a b
+=>>上一点P 作x 轴的垂线,恰好过椭圆的一个焦
点1F ,此时椭圆与x 轴交于点A ,与y 轴交于点B ,且A,B 两点所确定的直线AB 与OP
平行,求离心率e
2.点与椭圆的位置关系:(1)点00(,)P x y 在椭圆外⇔2200
221x y a b
+>;
(2)点00(,)P x y 在椭圆上⇔220
220b y a x +=1;
(3)点00(,)P x y 在椭圆内⇔2200
221x y a b
+<
3.直线与圆锥曲线的位置关系:(往往设而不求) (1)相交:0∆>⇔直线与椭圆相交;(2)相切:0∆=⇔直线与椭圆相切; (3)相离:0∆<⇔直线与椭圆相离;
例三::直线y ―kx ―1=0与椭圆22
15x y m
+
=恒有公共点,则m 的取值范围是_______(答:[1,5)∪(5,+∞));
例四:椭圆22
221(0)x y a b a b
+=>>与过点(2,0),(0,1)A B 的直线有且只有一个公共
点T ,且椭圆的离心率2
e =
(1)求椭圆的方程
(2)设12,F F 分别为椭圆的左,右焦点,M 为线段2AF 的中点,求证:1ATM AFT ∠=∠ (3)求证:2
121
2
AT AF F =.
∆4、焦半径(圆锥曲线上的点P 到焦点F 的距离)的计算方法:利用圆锥曲线的第二定义,转化到相应准线的距离,即焦半径0r ed a ex ==±,其中d 表示P 到与F 所对应的准线的距离。

例五:已知椭圆22
221x y a b
+=上一点P 到椭圆左焦点的距离为3,则点P 到右
准线的距离为____(答:10/3);
例六:椭圆1342
2=+y x 内有一点)1,1(-P ,F 为右焦点,在椭圆上有一点M ,
使MF MP 2+ 之值最小,则点M 的坐标为_______(答:)1,3
6
2(
-)

5、焦点三角形(椭圆或双曲线上的一点与两焦点所构成的三角形) 问题:0||S c y =,当0||y b =即P 为短轴端点时,m ax S 的最大值为bc ;
6、弦长公式:(直线与椭圆的交点坐标设而不求)
若直线y kx b =+与圆锥曲线相交于两点A 、B ,且12,x x 分别为A 、B 的横坐
标,则AB =12x -,若12,y y 分别为A 、B 的纵坐标,则AB =
2121
1y y k
-+

(若弦AB 所在直线方程设为x ky b =+,则AB 12y y -。

特别地,焦点弦(过焦点的弦):焦点弦的弦长的计算,一般不用弦长公式计算,而是将焦点弦转化为两条焦半径之和后,利用第二定义求解。


例七:已知椭圆C :22
142
x y +
=和直线:l y x m =+交于,A B 两点,且2AB =,求直线的方程。

7、圆锥曲线的中点弦问题:(直线和椭圆的交点设而不求)
遇到中点弦问题常用“韦达定理”或“点差法”求解。

在椭圆122
22=+b
y a x 中,
以00(,)P x y 为中点的弦所在直线的斜率k=-0
202y a x
b ;
例八:如果椭圆22
1369
x y +
=弦被点A (4,2)平分,求这条弦所在的直线方程是(答:280x y +-=);
例九:(2)已知直线y=-x+1与椭圆22
221(0)x y a b a b
+=>>相交于A 、B 两
点,且线段AB 的中点在直线L :x -2y=0上,求此椭圆的离心率(答:2
);
例10:试确定m 的取值范围,使得椭圆13
42
2=+y x 上有不同的两点关于直
线m x y +=4对称(答:⎛ ⎝⎭


特别提醒:因为0∆>是直线与圆锥曲线相交于两点的必要条件,故在求解有关弦长、对称问题时,务必别忘了检验0∆>!。

相关文档
最新文档