高中数学函数模型及其应用练习题(含答案)
高三数学函数模型及其应用试题答案及解析
高三数学函数模型及其应用试题答案及解析1.定义在上的函数满足,则=()A.-1B.0C.1D.2【答案】C【解析】因为2015=6×336-1,所以f(2015)=f(-1)=log(1+1)=1.选C2【考点】分段函数求值2.牛奶保鲜时间因储藏温度的不同而不同,假定保鲜时间与储藏温度的关系为指数型函数y=ka x,若牛奶在0℃的冰箱中,保鲜时间约为100 h,在5℃的冰箱中,保鲜时间约为80 h,那么在10℃时保鲜时间约为()A.49 h B.56 h C.64 h D.72 h【答案】C【解析】由得k=100,a5=,所以当10℃时,保鲜时间为100·a10=100·()2=64,故选C.3.(2011•湖北)提高过江大桥的车辆通行能力可改善整个城市的交通状况,在一般情况下,大桥上的车流速度v(单位:千米/小时)是车流密度x(单位:辆/千米)的函数,当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时,研究表明:当20≤x≤200时,车流速度v是车流密度x的一次函数.(1)当0≤x≤200时,求函数v(x)的表达式;(2)当车流密度x为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)f(x)=x•v(x)可以达到最大,并求出最大值.(精确到1辆/小时).【答案】(1)(2)3333辆/小时【解析】(1)由题意:当0≤x≤20时,v(x)=60;当20<x≤200时,设v(x)=ax+b再由已知得,解得故函数v(x)的表达式为(2)依题并由(1)可得当0≤x<20时,f(x)为增函数,故当x=20时,其最大值为60×20=1200当20≤x≤200时,当且仅当x=200﹣x,即x=100时,等号成立.所以,当x=100时,f(x)在区间(20,200]上取得最大值.综上所述,当x=100时,f(x)在区间[0,200]上取得最大值为,即当车流密度为100辆/千米时,车流量可以达到最大值,最大值约为3333辆/小时.答:(1)函数v(x)的表达式(2)当车流密度为100辆/千米时,车流量可以达到最大值,最大值约为3333辆/小时.4.某食品公司为了解某种新品种食品的市场需求,进行了20天的测试,人为地调控每天产品的单价P(元/件):前10天每天单价呈直线下降趋势(第10天免费赠送品尝),后10天呈直线上升,其中4天的单价记录如表:时间(将第x天记为x)x1101118而这20天相应的销售量Q(百件/天)与x对应的点(x,Q)在如图所示的半圆上.(1)写出每天销售收入y(元)与时间x(天)的函数关系式y=f(x).(2)在这20天中哪一天销售收入最高?为使每天销售收入最高,按此次测试结果应将单价P定为多少元为好?(结果精确到1元)【答案】(1)y=100QP=100,x∈[1,20],x∈N*(2)7【解析】(1)P=x∈N*,Q=,x∈[1,20],x∈N*,所以y=100QP=100,x∈[1,20],x∈N*.(2)因为(x-10)2[100-(x-10)2]≤=2500,所以当且仅当(x-10)2=100-(x-10)2,即x=10±5时,y有最大值.因为x∈N*,所以取x=3或17时,y=700max≈4999(元),此时,P=7元.答:第3天或第17天销售收入最高,按此次测试结果应将单价P定为7元为好.5.某造纸厂拟建一座底面图形为矩形且面积为162平方米的三级污水处理池,池的深度一定(平面图如图所示),如果池四周围墙建造单价为400元/米,中间两道隔墙建造单价为248元/米,池底建造单价为80元/平方米,水池所有墙的厚度忽略不计.(1)试设计污水处理池的长和宽,使总造价最低,并求出最低总造价;(2)若由于地形限制,该池的长和宽都不能超过16米,试设计污水处理池的长和宽,使总造价最低,并求出最低总造价.【答案】(1)当长为16.2米,宽为10米时总造价最低,总造价最低为38 880元(2)当长为16米,宽为10米时总造价最低,总造价最低为38 882元.【解析】(1)设污水处理池的宽为x米,则长为米.则总造价f(x)=400×(2x+)+248×2x+80×162=1 296x++12 960=1 296(x+)+12 960≥1 296×2 +12 960=38 880(元),当且仅当x=(x>0),即x=10时取等号.∴当长为16.2米,宽为10米时总造价最低,总造价最低为38 880元.(2)由限制条件知,∴10≤x≤16,设g(x)=x+(10≤x≤16),g(x)在上是增函数,∴当x=10时(此时),g(x)有最小值,即f(x)有最小值,即为1 296×+12 960=38 882元.∴当长为16米,宽为10米时总造价最低,总造价最低为38 882元.6.农业技术员进行某种作物的种植密度试验,把一块试验田划分为8块面积相等的区域(除了种植密度,其它影响作物生长的因素都保持一致),种植密度和单株产量统计如下:根据上表所提供信息,第_____号区域的总产量最大,该区域种植密度为_____株/.{第13,14题的第一空3分,第二空2分}【答案】5,3.6【解析】由图中数据可得,,总产量,故时取得最大值,即第5号区域的总产量最大,该区域种植密度为.【考点】二次函数.7.某企业拟建造如图所示的容器(不计厚度,长度单位:米),其中容器的中间为圆柱形,左右两端均为半球形,按照设计要求容器的容积为立方米,且. 假设该容器的建造费用仅与其表面积有关. 已知圆柱形部分每平方米建造费用为3千元,半球形部分每平方米建造费用为22千元. 设该容器的建造费用为y千元. 当该容器建造费用最小时,r的值为()A.B.1C.D.2【答案】B【解析】设容器的容积为,由题意知:,又,故由于,因此.所以建造费用,因此,,此时易知,故选B.【考点】1.几何体的体积;2.基本不等式.8.设函数,.(1)解方程:;(2)令,求证:;(3)若是实数集上的奇函数,且对任意实数恒成立,求实数的取值范围.【答案】(1);(2)参考解析;(3)【解析】(1)由于函数,,所以解方程.通过换元即可转化为解二次方程.即可求得结论.(2)由于即得到.所以.所以两个一组的和为1,还剩中间一个.即可求得结论.(3)由是实数集上的奇函数,可求得.又由于对任意实数恒成立.该式的理解较困难,所以研究函数的单调性可得.函数在实数集上是递增.集合奇函数,由函数值大小即可得到变量的大小,再利用基本不等式,从而得到结论.试题解析:(1)即:,解得,(2).因为,所以,,(3)因为是实数集上的奇函数,所以.,在实数集上单调递增.由得,又因为是实数集上的奇函数,所以,,又因为在实数集上单调递增,所以即对任意的都成立,即对任意的都成立,.【考点】1.解方程的思想.2.函数的单调性.3.归纳推理的思想.4.基本不等式.9.为了净化空气,某科研单位根据实验得出,在一定范围内,每喷洒1个单位的净化剂,空气中释放的浓度y(单位:毫克/立方米)随着时间(单位:天)变化的函数关系式近似为若多次喷洒,则某一时刻空气中的净化剂浓度为每次投放的净化剂在相应时刻所释放的浓度之和.由实验知,当空气中净化剂的浓度不低于4(毫克/立方米)时,它才能起到净化空气的作用.(1)若一次喷洒4个单位的净化剂,则净化时间可达几天?(2)若第一次喷洒2个单位的净化剂,6天后再喷洒a()个单位的药剂,要使接下来的4天中能够持续有效净化,试求的最小值(精确到0.1,参考数据:取1.4).【答案】(1)可达8天;(2)a的最小值为.【解析】(1)根据题中条件每喷洒1个单位的净化剂,空气中释放的浓度y(单位:毫克/立方米)随着时间(单位:天)变化的函数关系已经给出,则易得一次喷洒4个单位的净化剂时的函数关系式:,这样就得到一个分段函数,对分段函数的处理常用的原则:先分开,现合并,解两个不等式即可求解; (2)中若第一次喷洒2个单位的净化剂,6天后再喷洒a()个单位的药剂,根据题意从第6天开始浓度来源与两方面,这是题中的难点,前面留下的为:,后面新增的为:,所得化简即可得到:,结合基本不等式知识求出最小值,最后解一个不等式:,即可求解.试题解析:(1)因为一次喷洒4个单位的净化剂,所以浓度则当时,由,解得,所以此时. 3分当时,由解得,所以此时.综合得,若一次投放4个单位的制剂,则有效净化时间可达8天. 7分(2)设从第一次喷洒起,经x()天,浓度. 10分因为,而,所以,故当且仅当时,y有最小值为.令,解得,所以a的最小值为. 14分【考点】1.实际应用问题;2.分段函数;3.基本不等式.10.设函数f(x)的定义域为D,若存在非零实数l使得对于任意x∈M(M⊆D)有x+l∈D,且f (x+l)≥f(x),则称f(x)为M上的l高调函数,如果定义域为R的函数f(x)是奇函数,当x≥0时,f(x)=|x-a2|-a2,且f(x)为R上的8高调函数,那么实数a的取值范围是( )A. B. C. D.【答案】A【解析】当时,,则,即为上的8高调函数;当时,函数的图象如图所示,若为上的8高调函数,则,解得且.综上.【考点】1.新定义题;2.函数图像.11.要在墙上开一个上半部为半圆形、下部为矩形的窗户(如图所示),在窗框为定长的条件下,要使窗户能够透过最多的光线,窗户应设计成怎样的尺寸?【答案】半圆直径与矩形的高的比为2∶1【解析】设半圆直径为2R,矩形的高为a,则2a+2R+πR=L(定值),S=2Ra+πR2=-R2+LR,当R=时S最大,此时=1,即半圆直径与矩形的高的比为2∶1时,窗户能够透过最多的光线.12.我国辽东半岛普兰附近的泥炭层中,发掘出的古莲子,至今大部分还能发芽开花,这些古莲子是多少年以前的遗物呢?要测定古物的年代,可用放射性碳法.在动植物的体内都含有微量的放射性14C,动植物死亡后,停止了新陈代谢,14C不再产生,且原有的14C会自动衰变,经过5570年(叫做14C的半衰期),它的残余量只有原始量的一半,经过科学家测定知道,若14C的原始含量为a,则经过t年后的残余量a′(与a之间满足a′=a·e-kt).现测得出土的古莲子中14C残余量占原量的87.9%,试推算古莲子的生活年代.【答案】1036年前【解析】因a′=a·e-kt,即=e-kt.两边取对数,得lg=-ktlge.①又知14C的半衰期是5570年,即t=5570时,=.故lg=-5570klge,即klge=.代入①式,并整理,得t=-.这就是利用放射性碳法计算古生物年代的公式.现测得古莲子的是0.879,代入公式,得t=-≈1036.即古莲子约是1036年前的遗物.13.用长为90cm、宽为48cm的长方形铁皮做一个无盖的容器,先在四角分别截去一个小正方形,然后把四边翻折90°角,再焊接而成,则该容器的高为________cm时,容器的容积最大.【答案】10【解析】设容器的高为xcm,即小正方形的边长为xcm,该容器的容积为V,则V=(90-2x)(48-2x)x=4(x3-69x2+1080x),0<x<12,V′=12(x2-46x+360)=12(x-10)(x-36),当0<x<10时,V′>0;当10<x<12时,V′<0.所以V在(0,10]上是增函数,在[10,12)上是减函数,故当x =10时,V最大.14.某客运部门规定甲、乙两地之间旅客托运行李的费用为:不超过25kg按0.5元/kg收费,超过25kg的部分按0.8元/kg收费,计算收费的程序框图如图所示,则①②处应填()A.y=0.8xy=0.5xB.y=0.5xy=0.8xC.y=0.8x-7.5y=0.5xD.y=0.8x+12.5y=0.8x【答案】C【解析】设行李的质量为xkg,则所需费用为:y=即y=15.定义在R上的函数及二次函数满足:且。
第09讲 函数(一次函数二次函数和幂函数)模型及其应用高中数学常见题型解法归纳反馈训练及详细解析
【知识要点】一、在现实生活中有许多问题,往往隐含着量与量之间的关系,可通过成立变量之间的函数关系和对所得函数的研究,使问题取得解决.数学模型方式是把实际问题加以抽象归纳,成立相应的数学模型,利用这些模型来研究实际问题的一般数学方式;数学模型那么是把实际问题用数学语言抽象归纳,再从数学角度来反映或近似地反映实际问题时所得出的关于实际问题的数学描述.数学模型来源于实际,它是对实际问题抽象归纳加以数学描述后的产物,它又要回到实际中去查验,因此对实际问题有深刻的理解是运用数学模型方式的前提.二、函数是描述客观世界转变规律的根本数学模型,不同的转变现象需要用不同的函数模型来描述,数学应用题的建模进程就是信息的获取、存储、处置、综合、输出的进程,熟悉一些根本的数学模型,有助于提高咱们解决实际问题的能力.三、一次函数、二次函数和幂函数的图像和性质一、一次函数的一般形式为,y kx b =+当0k >时,函数单调递增,当0k <时,函数单调递减,当0k =时,函数是常数函数.二、二次函数的一般形式是2(0)y ax bx c a =++≠,当0a >时,函数的图像抛物线开口向上,极点坐标为24(,)24b ac b a a --,函数在(,)2b a -∞-单调递减,在(,)2b a -+∞2b x a=-时,函数有最小值244ac b a -.当0a <时,函数的图像抛物线开口向下,极点坐标为24(,)24b ac b a a --,函数在(,)2b a-∞-单调递增,在(,)2b a -+∞2b x a=-时,函数有最大值244ac b a -. 3、 幂函数的一般形式为(,a y x a R a x =∈是常数,是自变量),其特征是以幂的底为自变量,指数为常数,其概念域随着常数a 取值的不同而不同. 所有幂函数都在(0,)+∞有概念,而且图像都过点〔1,1〕;0,a >幂函数在(0,)+∞是增函数,0a <,幂函数在(0,)+∞是减函数.四、解决实际问题的解题进程一、 对实际问题进展抽象归纳:研究实际问题中量与量之间的关系,肯定变量之间的主、被动关系,并用x 、y 别离表示问题中的变量;二、成立函数模型:将变量y表示为x的函数,在中学数学内,咱们成立的函数模型一般都是函数的解析式;3、求解函数模型:按如实际问题所需要解决的目标及函数式的构造特点正确选择函数知识求得函数模型的解,并恢复为实际问题的解.这些步骤用框图表示:五、解应用题的一般程序1读:阅读理解文字表达的题意,分清条件和结论,理顺数量关系,这一关是根底;2建:将文字语言转化为数学语言,利用数学知识,成立相应的数学模型.熟悉根本数学模型,正确进展建“模〞是关键的一关;3解:求解数学模型,取得数学结论.一要充分注意数学模型中元素的实际意义,更要注意巧思妙作,优化进程;4答:将数学结论恢复给实际问题的结果.六、常见的函数模型有一次函数模型、二次函数模型、指数函数模型、对数函数模型、幂函数模型、分段函数模型、三角函数模型、数列函数、线性目标函数模型和综合函数模型等. 学科@网【方式讲评】【例1】某地域1995年底沙漠面积为95万公顷,为了解该地域沙漠面积的转变情况,进展了持续5年的观测,并将每一年年末的观测结果记录如下表.按照此表所给的信息进展预测:〔1〕若是不采取任何办法,那么到2010年末,该地域的沙漠面积将大约变成多少万公顷;〔2〕若是从2000年末后采取植树造林等办法,每一年改造0.6万公顷沙漠,那么到哪一年年末该地域沙漠面积减少到90万公顷?〔2〕设从1996年算起,第x年年末该地域沙漠面积能减少到90万公顷,由题意得+--=,x x950.20.6(5)90x=〔年〕解得20故到2015年年末,该地域沙漠面积减少到90万公顷.=+的图【点评】〔1〕由表观察知,沙漠面积增加数y与年份数x之间的关系图象近似地为一次函数y kx b象,这是解题的切入点和关键点.〔2〕求一次函数的解析式一般利用待定系数法.【反映检测1】某工厂在甲、乙两地的两个分厂各生产某种机械12台和6台,现销售给A地10台,B地8台,从甲地调运1台至A地、B地的运费别离为400元和800元,从乙地调运1台至A地、B地的运费别离为300元和500元.〔1〕设从乙地调运x台至A地,求总运费y关于x的函数关系式;〔2〕假设总运费不超过9000元,问共有几种调动方案?〔3〕求出总运费最低的调运方案及最低的费用.【例2】某租赁公司拥有汽车100辆.当每辆车的月租金为3000元时,可全数租出.当每辆车的月租金每增加50元时,未租出的车将会增加一辆.租出的车每辆每一个月需要保护费150元,未租出的车每辆每一个月需要保护费50元.〔1〕当每辆车的月租金定为3600元时,能租出多少辆车?〔2〕当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少?【点评】〔1〕在实际问题背景下,成立收益、利润的函数模型,一般是利润=收入-各项支出.〔2〕依照公司的月收益为:租出车辆⨯〔月租金-保护费〕-未租出车辆⨯保护费,将月收益视为月租金的函数,构造函数模型求解问题.【反映检测2】某化工厂引进一条先进生产线生产某种化工产品,其生产的总本钱y〔万元〕与年产量x〔吨〕之间的函数关系式可以近似地表示为24880005xy x=-+,此生产线年产量最大为210吨.〔1〕求年产量为多少吨时,生产每吨产品平均本钱最低,并求最低本钱.〔2〕假设每吨产品平均出厂价为40万元,那么昔时产量为多少吨时,可以取得最大利润?最大利润是多少?【例3】有一片树林现有木材储蓄量为7100c m3,要力争使木材储蓄量20年后翻两番,即抵达28400 c m3.〔1〕求平均每一年木材储蓄量的增加率;〔2〕若是平均每一年增加率为8%,几年可以翻两番?【点评】〔1〕增加率〔降低率〕的问题一般是指数或幂函数模型,若是时间求增加率〔降低率〕,多是幂函数模型.〔2〕“翻两番〞指此刻是原来的4倍,“翻n番〞指的是此刻是原来的2n倍.【反映检测3】〔1〕在1975年某市每千克猪肉的平均价钱是1.4元,而到了2021年,该市每千克猪肉的平均价钱是15元,假定这30年来价钱年平均增加率一样,求猪肉价钱的年平均增加率.〔2〕另一方面,1975年时该市职工月平均工资是40元,而到了2021年,该市职工月平均工资是860元,通过猪肉价钱的增加和工资增加的对照,试说明人们的生活水平是日趋提高,并计算假设按这种速度,到2021年,估量该市职工月平均工资是多少元?高中数学常见题型解法归纳及反映检测第09讲:函数(一次函数、二次函数和幂函数〕模型及其应用参考答案【反映检测1答案】〔1〕2008600(06,)y x x x z =+≤≤∈;〔2〕共有3种调运方案;〔3〕乙分厂的6 台机械全数调往B 地,从甲分厂调往A 地10 台,调往B 地2台,最小值是8600元.【反映检测2答案】〔1〕年产量为200吨时,每吨平均本钱最低为32万元;〔2〕年产量为210吨时,可取得最大利润1660万元.【反映检测2详细解析】(1)每吨平均本钱为y x(万元), 那么80008000482483255y x x x x x=+-≥-=,当且仅当80005x x =,即200x =时取等号, ∴年产量为200吨时,每吨平均本钱最低为32万元.(2)设年取得总利润为()R x 万元,那么R(x)=40x-y=40x-25x +48x-8 000=-25x +88x-8 000=-15 (x-220)2+1 680(0≤x ≤210),∵()R x 在[0,210]上是增函数, ∴210x =时,()R x 有最大值为-(210-220)2+1 680=1 660,∴年产量为210吨时,可取得最大利润1 660万元.【反映检测3答案】〔1〕8.2%;(2)4000元.【反映检测3详细解析】〔1〕设猪肉价钱的年平均增加率是%x ,那么有3015 1.4(1%)x =+.利用计算器可得8.2x =.〔2〕该市职工月工资和年平均增加率是%x ,那么有3084040(1%)x =+,利用计算器可得10.8x =.因为10.88.2>,因这人们的生活水平是日趋提高.照这样的速度到2021年,职工月平均工资是15860(110.8%)4000+≈元.。
12、函数模型及其应用(含答案)
12函数模型及其应用1.七类常见函数模型(1)审题:弄清题意,分清条件和结论,理顺数量关系,初步选择数学模型.(2)建模:将自然语言转化为数学语言,将文字语言转化为符号语言,利用数学知识,建立相应的数学模型.(3)解模:求解数学模型,得出数学结论.(4)还原:将数学问题还原为实际问题.以上过程用框图表示如下:4.判断函数图象与实际问题中两变量变化过程相吻合的两种方法(1)构建函数模型法:当根据题意易构建函数模型时,先建立函数模型,再结合模型选图象.(2)验证法:当根据题意不易建立函数模型时,则根据实际问题中两变量的变化特点,结合图象的变化趋势,验证是否吻合,从中排除不符合实际的情况,选择出符合实际情况的答案.5.解函数应用题的一般步骤第一步:(审题)弄清题意,分清条件和结论,理顺数量关系;第二步:(建模)将文字语言转化成数学语言,用数学知识建立相应的数学模型;第三步:(解模)求解数学模型,得到数学结论;第四步:(还原)将用数学方法得到的结论还原为实际问题的意义;第五步:(反思)对于数学模型得到的数学结果,必须验证这个数学结果对实际问题的合理性.2.建模的基本原则(1)在实际问题中,若两个变量之间的关系是直线上升或直线下降或图象为直线(或其一部分),一般构建一次函数模型,利用一次函数的图象与性质求解.(2)实际问题中的如面积问题、利润问题、产量问题或其图象为抛物线(或抛物线的一部分)等一般选用二次函数模型,根据已知条件确定二次函数解析式.结合二次函数的图象、最值求法、单调性、零点等知识将实际问题解决.(3)实际问题中有些变量间的关系不能用同一个关系式给出,而是由几个不同的关系式构成,如出租车计价与路程之间的关系,应构建分段函数模型求解.练习一1.有一组试验数据如表所示:A.y=2x+1-1 B.y=x2-1C.y=2log2x D.y=x3答案 B解析根据表中数据可知,能体现这组数据关系的函数模型是y=x2-1.2.物价上涨是当前的主要话题,特别是菜价,某部门为尽快稳定菜价,提出四种绿色运输方案.据预测,这四种方案均能在规定的时间T内完成预测的运输任务Q0,各种方案的运输总量Q与时间t的函数关系如图所示,在这四种方案中,运输效率(单位时间的运输量)逐步提高的是( )答案 B解析B中,Q的值随t的变化越来越快.故选B.3.有一批材料可以建成200 m长的围墙,如果用此材料在一边靠墙的地方围成一块矩形场地,中间用同样的材料隔成三个面积相等的矩形(如图所示),则围成的矩形场地的最大面积为________ m2.(围墙厚度不计)答案2500解析设围成的矩形的长为x m,则宽为200-x4m,则S=x·200-x4=14(-x2+200x)=-14(x-100)2+2500.当x=100时,S max=2500 m2.4.高为H,满缸水量为V的鱼缸的轴截面如图所示,其底部破了一个小洞,满缸水从洞中流出,若鱼缸水深为h时水的体积为v,则函数v=f(h)的大致图象是( )答案 B解析当h=H时,体积为V,故排除A,C;由H→0过程中,减少相同高度的水,水的体积从开始减少的越来越快到越来越慢,故选B.5.如图,矩形ABCD的周长为8,设AB=x(1≤x≤3),线段MN的两端点在矩形的边上滑动,且MN=1,当N沿A→D→C→B→A在矩形的边上滑动一周时,线段MN的中点P所形成的轨迹为G,记G围成的区域的面积为y,则函数y=f(x)的图象大致为( )答案 D解析 由题意可知点P 的轨迹为图中虚线所示,其中四个角均是半径为12的扇形.因为矩形ABCD 的周长为8,AB =x , 则AD =8-2x2=4-x , 所以y =x (4-x )-π4=-(x -2)2+4-π4(1≤x ≤3), 显然该函数的图象是二次函数图象的一部分, 且当x =2时,y =4-π4∈(3,4),故选D. 6.某校学生研究学习小组发现,学生上课的注意力指标随着听课时间的变化而变化,老师讲课开始时,学生的兴趣激增;接下来学生的兴趣将保持较理想的状态一段时间,随后学生的注意力开始分散.设f (t )表示学生注意力指标.该小组发现f (t )随时间t (分钟)的变化规律(f (t )越大,表明学生的注意力越集中)如下:f (t )=⎩⎪⎨⎪⎧100a t10-600≤t ≤10,34010<t ≤20,-15t +64020<t ≤40(a >0且a ≠1).若上课后第5分钟时的注意力指标为140,回答下列问题: (1)求a 的值;(2)上课后第5分钟和下课前第5分钟比较,哪个时间注意力更集中?并请说明理由;(3)在一节课中,学生的注意力指标至少达到140的时间能保持多长? 解 (1)由题意得,当t =5时,f (t )=140, 即100·a510-60=140,解得a =4. (2)因为f (5)=140,f (35)=-15×35+640=115, 所以f (5)>f (35),故上课后第5分钟时比下课前第5分钟时注意力更集中. (3)①当0<t ≤10时,由(1)知,f (t )=100·4t 10-60≥140,解得5≤t ≤10;②当10<t ≤20时,f (t )=340>140恒成立; ③当20<t ≤40时,f (t )=-15t +640≥140, 解得20<t ≤1003. 综上所述,5≤t ≤1003. 故学生的注意力指标至少达到140的时间能保持1003-5=853分钟. 7.某市家庭煤气的使用量x (m 3)和煤气费f (x )(元)满足关系f (x )=⎩⎨⎧C ,0<x ≤A ,C +B x -A ,x >A .已知某家庭2019年前三个月的煤气费如下表:月份 用气量 煤气费 一月份 4 m 3 4元 二月份 25 m 3 14元 三月份35 m 319元A .11.5元B .11元C .10.5元D .10元答案 A解析 根据题意可知f (4)=C =4,f (25)=C +B (25-A )=14,f (35)=C +B (35-A )=19,解得A =5,B =12,C =4,所以f (x )=⎩⎨⎧4,0<x ≤5,4+12x -5,x >5,所以f (20)=4+12×(20-5)=11.5,故选A.8.某食品的保鲜时间y (单位:小时)与储藏温度x (单位:℃)满足函数关系y =e kx +b (e =2.718…为自然对数的底数,k ,b 为常数).若该食品在0 ℃的保鲜时间是192小时,在22 ℃的保鲜时间是48小时,则该食品在33 ℃的保鲜时间是________小时.答案 24解析 由题意得⎩⎨⎧e b=192,e22k +b=48,即⎩⎨⎧e b =192,e11k=12,所以该食品在33 ℃的保鲜时间是y =e 33k +b =(e 11k )3·e b =⎝ ⎛⎭⎪⎫123×192=24(小时).9.如图,已知边长为8米的正方形钢板有一个角被锈蚀,其中AE =4米,CD =6米.为了合理利用这块钢板,在五边形ABCDE 内截取一个矩形BNPM ,使点P 在边DE 上.(1)设MP =x 米,PN =y 米,将y 表示成x 的函数,并求该函数的解析式及定义域;(2)求矩形BNPM 面积的最大值.解 (1)如图,作PQ ⊥AF 于点Q ,所以PQ =8-y ,EQ =x -4, 在△EDF 中,EQ PQ =EF FD, 所以x -48-y =42,所以y =-12x +10,定义域为{x |4≤x ≤8}. (2)设矩形BNPM 的面积为S ,则S (x )=xy =x ⎝ ⎛⎭⎪⎫10-x 2=-12(x -10)2+50,所以S (x )是关于x 的二次函数,且其图象开口向下,对称轴为直线x =10,所以当x ∈[4,8]时,S (x )单调递增,所以当x =8时,矩形BNPM 的面积取得最大值,最大值为48平方米.10.某公司为激励创新,计划逐年加大研发资金投入.若该公司2015年全年投入研发资金130万元,在此基础上,每年投入的研发资金比上一年增长12%,则该公司全年投入的研发资金开始超过200万元的年份是( )(参考数据:lg 1.12≈0.05,lg 1.3≈0.11,lg 2≈0.30) A .2018年 B .2019年 C .2020年 D .2021年答案 B解析 根据题意,知每年投入的研发资金增长的百分率相同,所以从2015年起,每年投入的研发资金组成一个等比数列{a n },其中首项a 1=130,公比q =1+12%=1.12,所以a n =130×1.12n -1.由130×1.12n -1>200,两边同时取对数,得n -1>lg 2-lg 1.3lg 1.12,又lg 2-lg 1.3lg 1.12≈0.30-0.110.05=3.8,则n >4.8,即a 5开始超过200,所以2019年投入的研发资金开始超过200万元,故选B.11.已知一容器中有A ,B 两种菌,且在任何时刻A ,B 两种菌的个数乘积均为定值1010,为了简单起见,科学家用P A =lg n A 来记录A 菌个数的资料,其中n A 为A 菌的个数,现有以下几种说法:①P A ≥1;②若今天的P A 值比昨天的P A 值增加1,则今天的A 菌个数比昨天的A 菌个数多10;③假设科学家将B 菌的个数控制为5万,则此时5<P A <5.5(注:lg 2≈0.3). 则正确的说法为________.(写出所有正确说法的序号)答案 ③解析 当n A =1时,P A =0,故①错误;若P A =1,则n A =10,若P A =2,则n A =100,故②错误;设B 菌的个数为n B =5×104,∴n A =10105×104=2×105,∴P A=lg n A =lg 2+5.又lg 2≈0.3,∴P A ≈5.3,则5<P A <5.5,即③正确.12.某景区提供自行车出租,该景区有50辆自行车供游客租赁使用,管理这些自行车的费用是每日115元.根据经验,若每辆自行车的日租金不超过6元,则自行车可以全部租出;若超出6元,则每超过1元,租不出的自行车就增加3辆.为了便于结算,每辆自行车的日租金x (元)只取整数,并且要求租自行车一日的总收入必须高于这一日的管理费用,用y (元)表示出租自行车的日净收入(即一日中出租自行车的总收入减去管理费用后得到的部分).(1)求函数y =f (x )的解析式;(2)试问当每辆自行车的日租金为多少元时,才能使一日的净收入最多? 解 (1)当x ≤6时,y =50x -115, 令50x -115>0,解得x >2.3, ∵x 为整数,∴3≤x ≤6,x ∈Z .当x >6时,y =[50-3(x -6)]x -115=-3x 2+68x -115.令-3x 2+68x -115>0,有3x 2-68x +115<0,结合x 为整数得6<x ≤20,x ∈Z .∴y =⎩⎨⎧50x -1153≤x ≤6,x ∈Z ,-3x 2+68x -1156<x ≤20,x ∈Z .(2)对于y =50x -115(3≤x ≤6,x ∈Z ), 显然当x =6时,y max =185; 对于y =-3x 2+68x -115=-3⎝ ⎛⎭⎪⎫x -3432+8113(6<x ≤20,x ∈Z ),当x =11时,y max =270.∵270>185,∴当每辆自行车的日租金定为11元时,才能使一日的净收入最多.13.用清水洗衣服,若每次能洗去污垢的34,要使存留的污垢不超过1%,则至少要洗的次数是(参考数据:lg 2≈0.3010)( )A .3B .4C .5D .6答案 B解析 设至少要洗x 次,则⎝ ⎛⎭⎪⎫1-34x ≤1100,∴x ≥1lg 2≈3.322,因此至少需要洗4次,故选B.14.某电视新产品投放市场后第一个月销售100台,第二个月销售200台,第三个月销售400台,第四个月销售790台,则下列函数模型中能较好地反映销量y 与投放市场的月数x 之间关系的是( )A .y =100xB .y =50x 2-50x +100C .y =50×2xD .y =100log 2x +100答案 C解析 对于A 中的函数,当x =3或4时,误差较大.对于B 中的函数,当x =4时误差较大.对于C 中的函数,当x =1,2,3时,误差为0,x =4时,误差为10,误差很小.对于D 中的函数,当x =4时,据函数式得到的结果为300,与实际值790相差很远.综上,只有C 中的函数误差最小.15.据统计,每年到鄱阳湖国家湿地公园越冬的白鹤数量y (只)与时间x (年)近似地满足关系y =a log 3(x +2),观察发现2014年(作为第1年)到该湿地公园越冬的白鹤数量为3000只,估计到2020年到该湿地公园越冬的白鹤的数量为( )A .4000只B .5000只C .6000只D .7000只答案 C 解析 当x =1时,由3000=a log 3(1+2),得a =3000,所以到2020年冬,即第7年,y =3000×log 3(7+2)=6000,故选C.15.某位股民买入某支股票,在接下来的交易时间内,他的这支股票先经历了3次涨停(每次上涨10%)又经历了3次跌停(每次下降10%),则该股民这支股票的盈亏情况(不考虑其他费用)为( )A .略有盈利B .无法判断盈亏情况C .没有盈利也没有亏损D .略有亏损答案 D解析 由题意可得(1+10%)3(1-10%)3=0.993≈0.97<1.因此该股民这只股票的盈亏情况为略有亏损.16.某地区的绿化面积每年平均比上一年增长18%,经过x 年后,绿化面积与原绿化面积之比为y ,则y =f (x )的图象大致为( )答案 D解析 设某地区起始年的绿化面积为a ,因为该地区的绿化面积每年平均比上一年增长18%,所以经过x 年后,绿化面积g (x )=a (1+18%)x ,因为绿化面积与原绿化面积的比值为y ,则y =f (x )=g x a=(1+18%)x =1.18x ,因为y =1.18x 为底数大于1的指数函数,故可排除A ,C ,当x =0时,y =1,可排除B ,故选D.17.物体在常温下的温度变化可以用牛顿冷却规律来描述:设物体的初始温度是T 0,经过一定时间t (单位:min)后的温度是T ,则T -T a =(T 0-T a )⎝ ⎛⎭⎪⎫12t h,其中T a 称为环境温度,h 称为半衰期,现有一杯用85 ℃热水冲的速溶咖啡,放在21 ℃的房间中,如果咖啡降到37 ℃需要16 min ,那么这杯咖啡要从37 ℃降到29 ℃,还需要________ min.答案 8解析 由题意知T a =21 ℃.令T 0=85 ℃,T =37 ℃,得37-21=(85-21)·⎝ ⎛⎭⎪⎫1216h ,∴h =8.令T 0=37 ℃,T =29 ℃,则29-21=(37-21)·⎝ ⎛⎭⎪⎫12t 8,∴t =8.18.候鸟每年都要随季节的变化进行大规模的迁徙,研究某种鸟类的专家发现,该种鸟类的飞行速度v (单位:m/s)与其耗氧量Q 之间的关系为:v =a +b log 3Q 10(其中a ,b 是实数).据统计,该种鸟类在静止的时候其耗氧量为30个单位,而其耗氧量为90个单位时,其飞行速度为1 m/s.(1)求出a ,b 的值;(2)若这种鸟类为赶路程,飞行的速度不能低于 2 m/s ,则其耗氧量至少要多少个单位?解 (1)由题意可知,当这种鸟类静止时,它的速度为0 m/s ,此时耗氧量为30个单位,故有a +b log 33010=0,即a +b =0. 当耗氧量为90个单位时,速度为1 m/s ,故a +b log 39010=1,整理得a +2b =1. 解方程组⎩⎨⎧ a +b =0,a +2b =1,得⎩⎨⎧ a =-1,b =1.(2)由(1)知,v =a +b log 3Q 10=-1+log 3Q 10.所以要使飞行速度不低于2 m/s ,则有v ≥2,所以-1+log 3Q 10≥2, 即log 3Q 10≥3,解得Q 10≥27,即Q ≥270.所以若这种鸟类为赶路程,飞行的速度不能低于2 m/s ,则其耗氧量至少要270个单位.19.食品安全问题越来越引起人们的重视,农药、化肥的滥用对人民群众的健康带来一定的危害,为了给消费者带来放心的蔬菜,某农村合作社每年投入200万元,搭建了甲、乙两个无公害蔬菜大棚,每个大棚至少要投入20万元,其中甲大棚种西红柿,乙大棚种黄瓜,根据以往的种菜经验,发现种西红柿的年收入P 、种黄瓜的年收入Q 与投入a (单位:万元)满足P =80+42a ,Q =14a +120.设甲大棚的投入为x (单位:万元),每年两个大棚的总收入为f (x )(单位:万元).(1)求f (50)的值;(2)试问如何安排甲、乙两个大棚的投入,才能使总收入f (x )最大? 解 (1)若投入甲大棚50万元,则投入乙大棚150万元,所以f (50)=80+42×50+14×150+120=277.5. (2)由题知,f (x )=80+42x +14(200-x )+120=-14x +42x +250, 依题意得⎩⎨⎧ x ≥20,200-x ≥20,解得20≤x ≤180,故f (x )=-14x +42x +250(20≤x ≤180). 令t =x ,则t 2=x ,t ∈[25,65], y =-14t 2+42t +250=-14(t -82)2+282,当t =82,即x =128时,y 取得最大值282,所以投入甲大棚128万元,乙大棚72万元时,总收入最大,且最大收入为282万元.。
高中数学函数模型及其应用练习题(含答案)
高中数学函数模型及其应用练习题(含答案)高中数学函数模型及其应用练习题(含答案)数学必修1(苏教版)2.6 函数模型及其应用某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为了扩大销售量,尽快减少库存,商场决定采取适当降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件,于是商场经理决定每件衬衫降价15元,经理的决定正确吗?基础巩固1.某商场售出两台取暖器,第一台提价20%以后按960卖出,第二台降价20%以后按960元卖出,这两台取暖器卖出后,该商场()A.不赚不亏 B.赚了80元C.亏了80元 D.赚了160元解析:960+960-9601+20%-9601-20%=-80.答案:C2.用一根长12 m的铁丝折成一个矩形的铁框架,则能折成的框架的最大面积是__________.解析:设矩形长为x m,则宽为12(12-2x) m,用面积公式可得S的最大值.答案:9 m23.在x g a%的盐水中,加入y g b%的盐水,浓度变为c%,答案:a(1-b%)n7.某供电公司为了合理分配电力,采用分段计算电费政策,月用电量x(度)与相应电费y(元)之间的函数关系的图象如下图所示.(1)填空:月用电量为100度时,应交电费______元;(2)当x100时,y与x之间的函数关系式为__________;(3)月用电量为260度时,应交电费__________元.解析:由图可知:y与x之间是一次函数关系,用待定系数法可求解析式.答案:(1)60 (2)y=12x+10 (3)1408.为了保护水资源,提倡节约用水,某城市对居民生活用水实行“阶梯水价”.计费方法如下表:每户每月用水量水价不超过12 m3的部分 3元/m3超过12 m3但不超过18 m3的部分 6元/m3超过18 m3的部分 9元/m3若某户居民本月交纳的水费为48元,则此户居民本月用水量为__________m3.解析:设每户每月用水量为x,水价为y元,则y=3x,012,36+x-126,1218,36+36+x-189,x>18,即y=3x,012,6x-36,1218,9x-90,x18.48=6x-36,x=14.答案:149.国家收购某种农产品的价格是120元/担,其中征税标准为每100元征8元(叫做税率为8个百分点,即8%),计划收购m万担,为了减轻农民负担,决定税率降低x个百分点,预计收购量可增加2x个百分点.(1)写出税收y(万元)与x的函数关系式;(2)要使此项税收在税率调整后,不低于原计划的78%,试确定x的范围.解析:(1)y=120m[1+(2x)%](8%-x%)=-0.024m(x2+42x-400)(08).(2)-0.024m(x2+42x-400)120m8%78%,即x2+42x-880,(x+44)(x-2)0,解得-442.又∵08,02.10.有一条双向公路隧道,其横断面由抛物线和矩形ABCO的三边组成,隧道的最大高度为4.9 m,AB=10 m,BC=2.4 m.现把隧道的横断面放在平面直角坐标系中,若有一辆高为4 m,宽为2 m的装有集装箱的汽车要通过隧道.问:如果不考虑其他因素,汽车的右侧离开隧道右壁至少多少米才不至于碰到隧道顶部(抛物线部分为隧道顶部,AO、BC为壁)?解析:由已知条件分析,得知抛物线顶点坐标为(5,2.5),C 点的坐标为(10,0),所以设抛物线的解析式为y=a(x-5)2+2.5,①把(10,0)代入①得0=a(10-5)2+2.5,解得a=-110,y=-110(x-5)2+2.5.当y=4-2.4=1.6时,1.6=-110(x-5)2+2.5,即(x-5)2=9,解得x1=8,x2=2.显然,x2=2不符合题意,舍去,所以x=8.OC-x=10-8=2.故汽车应离开右壁至少2 m才不至于碰到隧道顶部.。
2015届高考数学总复习 第二章 第十一节函数模型及其应用课时精练试题 文(含解析)
度h (单位:cm)与燃烧时间t (单位:小时)的函数关系用图象表示为( )解析:根据题意得解析式为h =20-5t (0≤t ≤4),其图象为B. 答案:B2.等边三角形的边长为x ,面积为y ,则y 与x 之间的函数关系式为( )A .y =x 2B .y =12x 2C .y =32x 2 D .y =34x 2解析:y =12·x ·x ·sin 60°=34x 2.故选D.答案:D3.某工厂采用高科技改革,在2年内产值的月增长率都是a ,则这2年内第2年某月的产值比第1年相应月产值的增长率为( )A .a 12-1B .(1+a )12-1 C .a D .a -1解析:不妨设第一年8月份的产值为b ,则9月份的产值为b (1+a ),10月份的产值为b (1+a )2,依次类推,到第二年8月份是第一年8月份后的第12个月,即一个时间间隔是1个月,这里跨过了12个月,故第二年8月份产值是b (1+a )12.又由增长率的概念知,这两年内的第二年某月的产值比第一年相应月产值的增长率为:b +a 12-b b=(1+a )12-1.答案:B4( )A .y =2x -2B .y =12(x 2-1)C .y =log 3xD .y =2x-2解析:代入数据验证,最接近者为B.答案:B5.某工厂6年来生产某种产品的情况是:前3年年产量的增长速度越来越快,后3年年产量保持不变,则该厂6年来这种产品的总产量C 与时间t (年)的函数关系图象正确的是( )解析:依题意,前3年年产量增长速度越来越快,说明呈高速增长,只有A 、C 图象符合要求,而后3年的总产量保持匀速增长,故选A.答案:A6.世界人口在过去40年内翻了一番,则每年人口平均增长率是(参考数据lg 2≈0.301 0,100.007 5≈1.017)( )A .1.5%B .1.6%C .1.7%D .1.8%解析:设每年人口平均增长率为x ,则(1+x )40=2,两边取对数,则40lg(1+x )=lg 2,所以lg(1+x )=lg 240≈0.007 525,所以100.007 525≈1+x ,得1+x ≈1.017,所以x ≈1.7%.答案:C7.某物体一天中的温度T (单位:℃)是时间t (单位:h)的函数:T (t )=t 3-3t +60,t =0表示中午12:00,其后t 取正值,则下午3时的温度为________.解析:当t =3时,T (3)=33-3×3+60=78. 答案:78 ℃8.里氏震级M 的计算公式为:M =lg A -lg A 0,其中A 是测震仪记录的地震曲线的最大振幅,A 0是相应的标准地震的振幅.假设在一次地震中,测震仪记录的最大振幅是1 000,此时标准地震的振幅为0.001,则此次地震的震级为______级;9级地震的最大振幅是5级地震最大振幅的________________倍.答案:6 10 0009.小王每月除去所有日常开支,大约结余a 元.小王决定采用零存整取的方式把余钱积蓄起来,每月初存入银行a 元,存期1年(存12次),到期取出本金和利息.假设1年期零存整取的月利率为r ,每期存款按单利计息.那么,小王的存款到期利息为________元.解析:依题意得,小王存款到期利息为12ar +11ar +10ar +…+3ar +2ar +ar =+2ar =78ar (元).答案:78ar10.用一根长为12 m 的铝合金条做成一个“目”字形窗户的框架(不计损耗),要使这个窗户通过的阳光最充足,则框架的长与宽分别应为____________.答案:3 m,1.5 m11.(2013·山东名校信息优化卷)如图放置的边长为1的正方形PABC 沿x 轴滚动.设顶点P (x ,y )的轨迹方程是y =f (x ),则y =f (x )在其两个相邻零点间的图象与x 轴所围成的区域的面积为________.解析:由于本题是求两个相邻零点间的图象与x 轴所围成的区域的面积,所以为了简便,可以直接将P 点移到原点,开始运动,如图所示,当P 点第一次回到x 轴时经过的曲线是三段相连的圆弧,它与x 轴围成的区域面积为π4+⎝ ⎛⎭⎪⎫π2+1+π4=π+1.答案:π+112.根据市场调查,某商品在最近40天内的价格P 与时间t 的关系用图1中的一条折线表示,销量Q 与时间t 的关系用图2中的线段表示(t ∈N *).(1)分别写出图1表示的价格与时间的函数关系P =f (t ),图2表示的销售量与时间的函数关系Q =g (t );(2)这种商品的销售额S (销售量与价格之积)的最大值及此时的时间.解析:(1)P =f (t )=⎩⎪⎨⎪⎧t 2+11,t ∈[1,,t ∈N *,-t +41,t ∈[20,40],t ∈N *.Q =g (t )=-t 3+433,t ∈[1,40],t ∈N *.(2)当1≤t <20时,S =⎝ ⎛⎭⎪⎫t 2+11⎝ ⎛⎭⎪⎫-t 3+433=-16⎝ ⎛⎭⎪⎫t -2122+4 22524.∵t ∈N *,∴t =10或11时,S max =176.当20≤t ≤40时,S =(-t +41)⎝ ⎛⎭⎪⎫-t 3+433=13t 2-28t +1 7633为减函数;当t =20时,S max =161. 而161<176,∴当t =10或11时,S max =176.13.(2013·安徽蚌埠质检)经调查测算,某产品的年销售量(即该厂的年产量)x 万件与年促销费用m 万元(m ≥0)满足x =3-km +1(k 为常数),如果不搞促销活动,则该产品的年销售量只能是1万件.已知2012年生产该产品的固定投入为8万元,每生产1万件该产品需要再投入16万元,厂家将每件产品的销售价格定为每件产品平均成本的1.5倍(产品成本包括固定投入和再投入两部分资金).(1)将2012年该产品的利润y 万元表示为年促销费用m 万元的函数; (2)该厂家2012年的促销费用投入多少万元时,厂家的利润最大?解析:(1)由题意可知当m =0时,x =1(万件).所以1=3-k ,得k =2,即x =3-2m +1.每件产品的销售价格为1.5×8+16xx(元),所以2012年的利润y =x ×1.5×8+16x x-(8+16x +m )=4+8x -m =4+8⎝⎛⎭⎪⎫3-2m +1-m =28-16m +1-m (m ≥0), 所以利润y 表示为年促销费用的函数关系式是y =28-16m +1-m (m ≥0).(2)由(1)知y =29-⎣⎢⎡⎦⎥⎤16m +1+m +(m ≥0).因为m ≥0时,16m +1(m +1)≥216=8,所以y ≤29-8=21.当且仅当16m +1=m +1即m =3(万元)时,y 取得最大值.所以当促销费用投入3万元时,厂家获得的利润最大为21万元. 14.即将开工的上海与周边城市的城际列车铁路线将大大缓解交通的压力,加速城市之间的流通.根据测算,如果一列火车每次拖4节车厢,每天能来回16次;如果每次拖7节车厢,则每天能来回10次.每天来回次数是每次拖挂车厢节数的一次函数,每节车厢一次能载客110人,试问:每次应拖挂多少节车厢才能使每天营运人数最多?并求出每天最多的营运人数.(注: 营运人数指火车运送的人数)解析:设这列火车每天来回次数为t 次,每次拖挂车厢n 节,则设t =kn +b ,由⎩⎪⎨⎪⎧ 16=4k +b ,10=7k +b ,解得⎩⎪⎨⎪⎧k =-2,b =24, ∴t =-2n +24.设每次拖挂n 节车厢,每天营运人数为y 人,则y =tn ×110×2=2(-220n 2+2 640n ),当n =2 640440=6时,总人数最多为15 840人.∴每次应拖挂6节车厢才能使每天的营运人数最多,最多为15 840人.15.如图,在半径为30 cm 的半圆形(O 为圆心)铝皮上截取一块矩形材料ABCD ,其中点A ,B 在直径上,点C ,D 在圆周上.(1)怎样截取才能使截得的矩形ABCD 的面积最大?并求最大面积.(2)若将所截得的矩形铝皮ABCD 卷成一个以AD 为母线的圆柱形罐子的侧面(不计剪裁和拼接损耗),应怎样截取,才能使做出的圆柱形罐子体积最大?并求最大体积.解析:(1)(法一)连接OC .设BC =x ,矩形ABCD 的面积为S ,则AB =2900-x 2,其中0<x <30.所以S =2x 900-x 2=2x 2-x 2≤x 2+(900-x 2)=900,当且仅当x 2=900-x 2,即x =152时,S 取得最大值为900 cm 2. (法二)连接OC .设∠BOC =θ,矩形ABCD 的面积为S ,则BC =30sin θ,OB =30cos θ,其中0<θ<π2.所以S =AB ·BC =2OB ·BC =900 sin 2θ.当sin 2θ=1,即θ=π4时,S 取最大值为900 cm 2,此时BC =15 2.所以取BC 为15 2 cm 时,矩形ABCD 的面积最大,最大值为900 cm 2. (2)(法一)设圆柱底面半径为r ,高为x ,体积为V ,由AB =2900-x 2=2πr ,得r =900-x 2π,所以V =πr 2h =1π(900x -x 3),其中0<x <30.由V ′=1π(900-3x 2)=0,得x =103,因此V =1π(900x -x 3)在(0,103)上是增函数,在(103,30)上是减函数.所以当BC =103时,V 取得最大值为6 0003πcm 3.(法二)连接OC .设∠BOC =θ,圆柱底面半径为r ,高为h ,体积为V ,则圆柱的底面半径为r =30cos θπ,高h =30sin θ,其中0<θ<π2.所以V =πr 2h =27 000πsin θcos 2θ=27 000π(sin θ-sin 3θ).设t =sin θ(0<t <1),则V =27 000π(t -t 3).由V ′=27 000π(1-3t 2)=0,得t =33.因此V =27 000π(t -t 3)在⎝ ⎛⎭⎪⎫0,33上是增函数,在⎝ ⎛⎭⎪⎫33,1上是减函数,所以当t =33,即sin θ=33,BC =103时,V 取得最大值为6 0003π cm 3.所以取BC 为10 3 cm 时,做出的圆柱形罐子体积最大,最大值为6 0003π cm 3.。
高考数学一轮总复习第2章函数的概念与基本初等函数(ⅰ)第9节函数模型及其应用跟踪检测文含解析
第二章 函数的概念与基本初等函数(Ⅰ)第九节 函数模型及其应用A 级·基础过关|固根基|1.一根蜡烛长20 cm ,点燃后每小时燃烧5 cm ,燃烧时剩下的高度h(cm)与燃烧时间t(h)的函数关系用图象表示为图中的( )解析:选B 由题意知h =20-5t(0≤t≤4),图象应为B 项.2.某家具的标价为132元,若降价以九折出售(即优惠10%),仍可获利10%(相对进货价),则该家具的进货价是( )A .118元B .105元C .106元D .108元解析:选D 设进货价为a 元,由题意知132×(1-10%)-a =10%·a ,解得a =108.3.根据有关资料,围棋状态空间复杂度的上限M 约为3361,而可观测宇宙中普通物质的原子总数N 约为1080.则下列各数中与M N最接近的是( )(参考数据:lg 3≈0.48) A .1033B .1053C .1073D .1093解析:选D M≈3361,N≈1080,M N ≈33611080,则lg M N ≈lg 33611080=lg 3361-lg 1080=361lg 3-80≈93.∴M N≈1093. 4.某汽车销售公司在A ,B 两地销售同一种品牌的汽车,在A 地的销售利润(单位:万元)为y 1=4.1x-0.1x 2,在B 地的销售利润(单位:万元)为y 2=2x ,其中x 为销售量(单位:辆),若该公司在两地共销售16辆该种品牌的汽车,则能获得的最大利润是( )A .10.5万元B .11万元C .43万元D .43.025万元解析:选C 设公司在A 地销售该品牌的汽车x 辆,则在B 地销售该品牌的汽车(16-x)辆. 所以利润y =4.1x -0.1x 2+2(16-x)=-0.1x 2+2.1x +32=-0.1⎝⎛⎭⎪⎫x -2122+0.1×2124+32.因为x∈[0,16],且x∈N,所以当x =10或11时,总利润取得最大值43万元.5.设某公司原有员工100人从事产品A 的生产,平均每人每年创造产值t 万元(t 为正数).公司决定从原有员工中分流x(0<x <100,x∈N *)人去进行新开发的产品B 的生产.分流后,继续从事产品A 生产的员工平均每人每年创造产值在原有的基础上增长了1.2x%.若要保证产品A 的年产值不减少,则最多能分流的人数是( )A .15B .16C .17D .18解析:选B 由题意,分流前每年创造的产值为100t 万元,分流x 人后,每年创造的产值为(100-x)(1+1.2x%)t 万元,则由⎩⎪⎨⎪⎧0<x <100,x∈N *,(100-x )(1+1.2x%)t≥100t,解得0<x≤503.因为x∈N *,所以x 的最大值为16.6.当生物死亡后,其体内原有的碳14的含量大约每经过5 730年衰减为原来的一半,这个时间称为“半衰期”.当死亡生物体内的碳14含量不足死亡前的千分之一时,用一般的放射性探测器就测不到了.若某死亡生物体内的碳14用该放射性探测器探测不到,则它经过的“半衰期”个数至少是( )A .8B .9C .10D .11解析:选C 设该死亡生物体内原来的碳14的含量为1,则经过n 个“半衰期”后的含量为⎝ ⎛⎭⎪⎫12n,由⎝ ⎛⎭⎪⎫12n<11 000,得n≥10,所以,若某死亡生物体内的碳14用该放射性探测器探测不到,则它至少需要经过10个“半衰期”.7.(2019届北京东城模拟)小菲在学校选修课中了解到艾宾浩斯遗忘曲线,为了解自己记忆一组单词的情况,她记录了随后一个月的有关数据,绘制图象,拟合了记忆保持量f(x)与时间x(天)之间的函数关系f(x)=⎩⎪⎨⎪⎧-720x +1,0<x≤1,15+920x-12,1<x≤30.某同学根据小菲拟合后的信息得到以下结论: ①随着时间的增加,小菲的单词记忆保持量降低; ②9天后,小菲的单词记忆保持量低于40%; ③26天后,小菲的单词记忆保持量不足20%.其中正确结论的序号有________.(请写出所有正确结论的序号)解析:由函数解析式可知f(x)随着x 的增加而减少,故①正确;当1<x≤30时,f(x)=15+920x -12,则f(9)=15+920×9-12=0.35,即9天后,小菲的单词记忆保持量低于40%,故②正确;f(26)=15+920×26-12>15,故③错误. 答案:①②8.有一批材料可以建成200 m 长的围墙,如果用此材料在一边靠墙的地方围成一块矩形场地,中间用同样的材料隔成三个面积相等的矩形(如图所示),则围成的矩形场地的最大面积为________ m 2.(围墙厚度不计)解析:设围成的矩形场地的长为x m ,则宽为200-x 4 m ,则S =x·200-x 4=14(-x 2+200x)=-14(x -100)2+2 500.∴当x =100时,S max =2 500 m 2. 答案:2 5009.已知投资x 万元经销甲商品所获得的利润为P =x 4;投资x 万元经销乙商品所获得的利润为Q =a2x(a >0).若投资20万元同时经销这两种商品或只经销其中一种商品,使所获得的利润不少于5万元,则a的最小值为________.解析:设投资乙商品x 万元(0≤x≤20),则投资甲商品(20-x)万元. 则利润分别为Q =a 2x(a >0),P =20-x4,由题意得P +Q≥5,0≤x≤20时恒成立, 则化简得a x ≥x2,在0≤x≤20时恒成立.(1)x =0时,a 为一切实数; (2)0<x≤20时,分离参数a≥x2,0<x≤20时恒成立,所以a≥5,a 的最小值为 5. 答案: 510.已知某服装厂生产某种品牌的衣服,销售量q(x)(单位:百件)关于每件衣服的利润x(单位:元)的函数解析式为q(x)=⎩⎪⎨⎪⎧1 260x +1,0<x≤20,90-35x ,20<x≤180,求该服装厂所获得的最大效益是多少元?解:设该服装厂所获效益为f(x)元,则f(x)=100xq(x)=⎩⎪⎨⎪⎧126 000x x +1,0<x≤20,100x (90-35x ),20<x≤180.当0<x≤20时,f(x)=126 000x x +1=126 000-126 000x +1,f(x)在区间(0,20]上单调递增,所以当x =20时,f(x)有最大值120 000;当20<x≤180时,f(x)=9 000x -3005·x x , 则f′(x)=9 000-4505·x ,令f′(x)=0,所以x =80.当20<x <80时,f′(x)>0,f(x)单调递增;当80≤x≤180时,f′(x)≤0,f(x)为单调递减,所以当x =80时,f(x)有极大值,也是最大值240 000.由于120 000<240 000.故该服装厂所获得的最大效益是240 000元. B 级·素养提升|练能力|11.将甲桶中的a L 水缓慢注入空桶乙中,t min 后甲桶中剩余的水量符合指数衰减曲线y =ae nt.假设过5 min 后甲桶和乙桶的水量相等,若再过m min 甲桶中的水只有a4L ,则m 的值为( )A .5B .8C .9D .10解析:选A ∵5 min 后甲桶和乙桶的水量相等,∴函数y =f(t)=ae n t 满足f(5)=ae 5n=12a ,可得n =15ln 12,∴f(t )=a·⎝ ⎛⎭⎪⎫12t 5,因此,当k min 后甲桶中的水只有a4 L 时,f(k)=a·⎝ ⎛⎭⎪⎫12k 5=14a ,即⎝ ⎛⎭⎪⎫12k 5=14,∴k =10,由题可知m =k -5=5.12.“好酒也怕巷子深”,许多著名品牌是通过广告宣传进入消费者视线的.已知某品牌商品靠广告销售的收入R 与广告费A 之间满足关系R =a A(a 为常数),广告效应为D =a A -A.那么精明的商人为了取得最大广告效应,投入的广告费应为________.(用常数a 表示)解析:令t =A(t ≥0),则A =t 2,所以D =at -t 2=-t -12a 2+14a 2,所以当t =12a ,即A =14a 2时,D取得最大值.答案:14a 213.(2019年北京卷)李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60元/盒、65元/盒、80元/盒、90元/盒.为增加销量,李明对这四种水果进行促销:一次购买水果的总价达到120元,顾客就少付x 元.每笔订单顾客网上支付成功后,李明会得到支付款的80%.(1)当x =10时,顾客一次购买草莓和西瓜各1盒,需要支付________元;(2)在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x 的最大值为________.解析:(1)当x =10时,一次购买草莓和西瓜各1盒,共60+80=140(元),由题可知顾客需支付140-10=130(元).(2)设每笔订单金额为m 元,当0≤m<120时,顾客支付m 元,李明得到0.8m 元,0.8m ≥0.7m ,显然符合题意,此时x =0; 当m≥120时,根据题意得(m -x)80%≥m ×70%, 所以x≤m8,而m≥120,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x≤⎝ ⎛⎭⎪⎫m 8min ,而⎝ ⎛⎭⎪⎫m 8min=15, 所以x≤15.综上,当0≤x≤15时,符合题意, 所以x 的最大值为15.答案:(1)130 (2)1514.十九大提出对农村要坚持精准扶贫,至2020年底全面脱贫.现有扶贫工作组到某山区贫困村实施脱贫工作,经摸底排查,该村现有贫困农户100家,他们均从事水果种植,2017年底该村平均每户年纯收入为1万元.扶贫工作组一方面请有关专家对水果进行品种改良,提高产量;另一方面,抽出部分农户从事水果包装、销售工作,其人数必须小于种植的人数.从2018年初开始,若该村抽出5x 户(x∈Z,1≤x≤9)从事水果包装、销售工作,经测算,剩下从事水果种植的农户的年纯收入每户平均比上一年提高x20,而从事包装、销售的农户的年纯收入每户平均为⎝ ⎛⎭⎪⎫3-14x 万元(参考数据:1.13=1.331,1.153≈1.521,1.23=1.728).(1)至2020年底,为使从事水果种植的农户能实现脱贫(每户年均纯收入不低于1万6千元),至少要抽出多少户从事包装、销售工作?(2)至2018年底,该村每户年均纯收入能否达到1.35万元?若能,请求出从事包装、销售的户数;若不能,请说明理由.解:(1)至2020年底,种植户平均收入 =(100-5x )⎝ ⎛⎭⎪⎫1+x 203100-5x≥1.6,即⎝ ⎛⎭⎪⎫1+x 203≥1.6, 即x≥20(31.6-1).由题中所给数据,知1.15<31.6<1.2,所以3<20(31.6-1)<4. 所以x 的最小值为4,此时5x≥20,即至少要抽出20户从事包装、销售工作. (2)至2018年底,假设该村每户年均纯收入能达到1.35万元.每户的平均收入为5x ⎝ ⎛⎭⎪⎫3-14x +(100-5x )⎝ ⎛⎭⎪⎫1+x 20100≥1.35,化简得3x 2-30x +70≤0.因为x∈Z 且1≤x≤9,所以x∈{4,5,6}.所以当从事包装、销售的户数达到20至30户时,能达到,否则,不能.。
2024届新高考数学复习:专项(函数模型及其应用)历年好题练习(附答案)
2024届新高考数学复习:专项(函数模型及其应用)历年好题练习[基础巩固]一、选择题1.[2023ꞏ河北唐山一中期中]某工厂产生的废气经过过滤后排放,在过滤过程中,污染物的数量p (单位:毫克/升)不断减少,已知p 与时间t (单位:时)满足p (t )=p 0×2-t 30 ,其中p 0为t =0时的污染物数量.又测得当t ∈[0,30]时,污染物数量的变化率是-10ln 2,则p (60)=( )A .150毫克/升B .300毫克/升C .150ln 2毫克/升D .300ln 2毫克/升2.[2023ꞏ广东惠州调研]为了给地球减负,提高资源利用率,2020年全国掀起了垃圾分类的热潮,垃圾分类已经成为新时尚.假设某市2020年全年用于垃圾分类的资金为2 000万元,在此基础上,每年投入的资金比上一年增长20%,则该市全年用于垃圾分类的资金开始超过1亿元的年份是(参考数据:lg 1.2≈0.08,lg 5≈0.70)( )A .2030年B .2029年C .2028年D .2027年3.2023年6月4日6时30分许,神舟十五号载人飞船返回舱在预定区域安全着陆,神舟十五号载人飞船是使用长征二号F 遥十五运载火箭发射成功的.在不考虑空气阻力的情况下,火箭的最大速度v (单位:m/s)和燃料的质量M (单位:kg)、火箭(除燃料外)的质量m (单位:kg)的函数关系式为v =2 000ln ⎝⎛⎭⎫1+M m .如果火箭的最大速度达到12 km/s ,则燃料的质量与火箭的质量的关系是( )A.M =e 6m B .Mm =e 6-1C .ln M +ln m =6D .M m =e 6-14.中国的5G 技术处于领先地位,5G 技术的数学原理之一便是著名的香农公式:C =W log 2⎝⎛⎭⎫1+S N .它表示:在受噪声干扰的信道中,最大信息传递速度C 取决于信道带宽W ,信道内信号的平均功率S ,信道内部的高斯噪声功率N 的大小,其中S N 叫做信噪比.当信噪比比较大时,公式中真数中的1可以忽略不计.按照香农公式,若不改变带宽W ,而将信噪比S N 从1 000提升至4 000,则C 大约增加了(附:lg 2≈0.301 0)( )A .10%B .20%C .50%D .100%5.[2023ꞏ重庆巴蜀中学月考]2019年7月,中国良渚古城遗址获准列入世界遗产名录.良渚古城遗址是人类早期城市文明的范例,实证了中华五千年文明史.考古学家在测定遗址年龄的过程中利用了“放射性物质因衰变而减小”这一规律.已知样本中碳14的质量N 随时间t (年)的衰变规律满足:N =N 0ꞏ2-t 5 730 (N 0表示碳14原来的质量),经过测定,良渚古城某文物样本中碳14的质量是原来的0.6倍,据此推测良渚古城遗址存在的时期距今大约是(参考数据:log 23≈1.6,log 25≈2.3)( )A .3 440年B .4 010年C .4 580年D .5 160年二、填空题6.某品牌手机销售商今年1,2,3月份的销售量分别是1万部,1.2万部,1.3万部,为估计以后每个月的销售量,以这三个月的销售量为依据,用一个函数模拟该品牌手机的销售量y (单位:万部)与月份x 之间的关系,现从二次函数y =ax 2+bx +c (a ≠0)或函数y =ab x +c (b >0,b ≠1)中选用一个效果好的函数进行模拟,如果4月份的销售量为1.37万部,则5月份的销售量为________万部.7.已知某公司生产某产品的年固定成本为100万元,每生产1千件需另投入27万元,设该公司一年内生产该产品x 千件(0<x ≤25)并全部销售完,每千件的销售收入为R (x )(单位:万元),且R (x )=⎩⎨⎧108-13x 2(0<x ≤10),-x +175x +57(10<x ≤25). 当年产量为________千件时,该公司在这一产品的生产中所获年利润最大.(注:年利润=年销售收入-年总成本)8.网店和实体店各有利弊,两者的结合将在未来一段时期内,成为商业的一个主要发展方向.某品牌行车记录仪支架销售公司从2017年1月起开展网络销售与实体店体验安装结合的销售模式.根据几个月运营发现,产品的月销量x (万件)与投入实体店体验安装的费用t (万元)之间满足x =3-2t +1的函数关系.已知网店每月固定的各种费用支出为3万元,产品每1万件进货价格为32万元.若每件产品的售价定为“进货价的150%”与“平均每件产品的实体店体验安装费用的一半”之和,则该公司最大月利润为________万元.参考答案1.C 因为当t ∈[0,30]时,污染物数量的变化率是-10ln 2,所以-10ln 2=12p 0-p 030-0 ,所以p 0=600ln 2.因为p (t )=p 0×2-t 30 ,所以p (60)=600ln 2×2-2=150ln 2(毫克/升). 2.B 设经过n 年后,投入资金为y 万元,则y =2 000ꞏ(1+20%)n .由题意得2 000(1+20%)n >10 000,即1.2n >5,则n lg 1.2>lg 5,所以n >lg 5lg 1.2 ≈0.700.08=8.75,所以n =9,即2029年该市全年用于垃圾分类的资金开始超过1亿元.3.D 12 km/s =12 000 m/s ,所以12 000=2 000ln ⎝⎛⎭⎫1+M m ,所以ln ⎝⎛⎭⎫1+M m =6,则1+M m =e 6,所以M m =e 6-1,故选D .4.B 将信噪比S N 从 1 000提升至 4 000时,C 增加了W log 2(1+4 000)-W log 2(1+1 000)W log 2(1+1 000)≈ log 24 000-log 21 000log 21 000=23log 210 =23 lg 2≈23 ×0.301 0≈0.2=20%,故C 大约增加了20%,选B.5.B 由题得0.6ꞏN 0=N 0ꞏ2-t 5 730 ,即2-t 5 730 =35 ,两边同时取以2为底的对数,则有-t 5 730 =log 235 =log 23-log 25≈-0.7,故t ≈0.7×5 730=4 011年,最符合题意的选项为B.6.1.375答案解析:由题意可知,当选用函数f (x )=ax 2+bx +c 时,由⎩⎪⎨⎪⎧a +b +c =1,4a +2b +c =1.2,9a +3b +c =1.3,解得⎩⎪⎨⎪⎧a =-0.05,b =0.35,c =0.7,∴f (x )=-0.05x 2+0.35x +0.7,∴f (4)=1.3; 当选用函数g (x )=ab x +c 时,由⎩⎪⎨⎪⎧ab +c =1,ab 2+c =1.2,ab 3+c =1.3, 解得⎩⎪⎨⎪⎧a =-0.8,b =0.5,c =1.4,∴g (x )=-0.8×0.5x +1.4,∴g (4)=1.35.∵g (4)比f (4)更接近于1.37,∴选用函数g (x )=ab x +c 模拟效果较好,∴g (5)=-0.8×0.55+1.4=1.375,即5月份的销售量为1.375万部.7.9答案解析:设该公司在这一产品的生产中所获年利润为f (x ),当0<x ≤10时,f (x )=xR (x )-(100+27x )=81x -x 33 -100;当10<x ≤25时,f (x )=xR (x )-(100+27x )=-x 2+30x +75.故f (x )=⎩⎪⎨⎪⎧81x -x 33-100(0<x ≤10),-x 2+30x +75(10<x ≤25).当0<x ≤10时,由f ′(x )=81-x 2=-(x +9)(x -9),得当x ∈(0,9)时,f ′(x )>0,f (x )单调递增;当x ∈(9,10)时,f ′(x )<0,f (x )单调递减.故f (x )max =f (9)=81×9-13 ×93-100=386.当10<x ≤25时,f (x )=-x 2+30x +75=-(x -15)2+300≤300.综上,当x =9时,年利润取最大值,为386.所以当年产量为9千件时,该公司在这一产品的生产中所获年利润最大.8.37.5答案解析:由题意,产品的月销量x (万件)与投入实体店体验安装的费用t (万元)之间满足x =3-2t +1, 即t =23-x-1(1<x <3), 所以月利润y =⎝⎛⎭⎫48+t 2x x -32x -3-t =16x -t 2 -3=16x -13-x-52 =45.5-⎣⎡⎦⎤16(3-x )+13-x ≤45.5-216 =37.5, 当且仅当16(3-x )=13-x,即x =114 时取等号, 即该公司最大月利润为37.5万元.。
第15讲 函数模型及其应用(解析版)
第15讲 函数模型及其应用【基础巩固】1.(2022·辽宁葫芦岛·二模)某生物兴趣小组为研究一种红铃虫的产卵数y 与温度x (单位:℃)的关系.现收集了7组观测数据()(),1,2,,7i i x y i L =得到下面的散点图:由此散点图,在20℃至36℃之间,下面四个回归方程类型中最适宜作为红铃虫产卵数y 和温度x 的回归方程类型的是( ) A .y a bx =+ B .by a x=+C .e x y a b =+D .ln y a b x =+【答案】C【解析】由散点图可以看出红铃虫产卵数y 随着温度x 的增长速度越来越快, 所以e x y a b =+最适宜作为红铃虫产卵数y 和温度x 的回归方程类型. 故选:C2.(2022·重庆巴蜀中学高三阶段练习)2021年10月16日,搭载神舟十三号载人飞船的长征二号F 遥十三运载火箭,在酒泉卫星发射中心成功发射升空,载人飞船精准进入预定轨道,顺利将3名宇航员送入太空,发射取得圆满成功.已知在不考虑空气阻力和地球引力的理想状态下,可以用公式0lnMv v m=⋅计算火箭的最大速度(m /s)v ,其中0(m /s)v 是喷流相对速度,(kg)m 是火箭(除推进剂外)的质量,(kg)M 是推进剂与火箭质量的总和,Mm称为“总质比”.若某型火箭的喷流相对速度为1000m /s ,当总质比为625时,该型火箭的最大速度约为( )(附:lge 0.434,lg 20.301≈≈) A .5790m /s B .6219m/s C .6442m/s D .6689m/s【答案】C【解析】0v v =4lg54(1lg 2)ln 1000ln 625100010006442m/s lge lgeMm -=⨯=⨯=⨯≈. 故选:C .3.(2022·海南海口·二模)在核酸检测时,为了让标本中DNA 的数量达到核酸探针能检测到的阈值,通常采用PCR 技术对DNA 进行快速复制扩增数量.在此过程中,DNA 的数量n X (单位:g /L μμ)与PCR 扩增次数n 满足0 1.6n n X X =⨯,其中0X 为DNA 的初始数量.已知某待测标本中DNA 的初始数量为0.1g /L μμ,核酸探针能检测到的DNA 数量最低值为10g /L μμ,则应对该标本进行PCR 扩增的次数至少为( )(参考数据:lg1.60.20≈,ln1.60.47≈)A .5B .10C .15D .20【答案】B【解析】由题意知00.1X =,10n X =,令100.1 1.6n =⨯,得1.6100n =,取以10为底的对数得lg1.62n =,所以210lg1.6n =≈. 故选:B.4.(2022·北京·二模)某工厂产生的废气经过滤后排放,过滤过程中废气的污染物含量P (单位:mg /L )与时间t (单位:h )间的关系为0ektP P -=,其中0P ,k 是正的常数.如果在前10h 污染物减少19%,那么再过5h 后污染物还剩余( ) A .40.5% B .54% C .65.6% D .72.9%【答案】D【解析】由题设,1000(119%)e kP P --=,可得5e 0.9k -=,再过5个小时,0005(0.81(119%)0.9)e 0.729kP P P P -=⨯==-,所以最后还剩余72.9%. 故选:D5.(2022·山东·肥城市教学研究中心模拟预测)垃圾分类,一般是指按一定规定或标准将垃圾分类储存、分类投放和分类搬运,从而变成公共资源的一系列活动的总称.分类的目的是提高垃圾的资源价值和经济价值,力争物尽其用.进行垃圾分类收集可以减少垃圾处理量和处理设备,降低处理成本,减少土地资源的消耗,具有社会、经济、生态等几方面的效益.已知某种垃圾的分解率v 与时间t (月)满足函数关系式t v a b =⋅(其中,a b 为非零常数).若经过6个月,这种垃圾的分解率为5%,经过12个月,这种垃圾的分解率为10%,那么这种垃圾完全分解(分解率为100%)至少需要经过( )(参考数据lg 20.3≈)A .40个月B .32个月C .28个月D .20个月【答案】B【解析】依题意有()()61260.05,120.1,v ab v ab ⎧==⎪⎨==⎪⎩,解得162b =,0.025a =,故()160.0252tv t ⎛⎫=⨯ ⎪⎝⎭.令()1v t =,得16240t ⎛⎫= ⎪⎝⎭,故()16126610.6lg 4012lg 2log 403210.3lg 2lg 26t ⨯++===≈=. 故选B .6.(2022·全国·高三专题练习)有一批材料可以建成200m 的围墙,如果用此材料在一边靠墙的地方围成一块矩形场地,中间用同样的材料隔成三个面积相等的矩形(如图所示),若围墙厚度不计,则围成的矩形最大面积为( )A .22500mB .22750mC .23000mD .23500m【答案】A【解析】设矩形的宽为m x ,则该矩形的长为()2004m x -,所以,矩形的面积为()()()2220044504252500S x x x x x =-=--=--+,其中050x <<,故当25x =时,S 取得最大值22500m . 故选:A.7.(2022·全国·高三专题练习)为了预防某种病毒,某商场需要通过喷洒药物对内部空间进行全面消毒.出于对顾客身体健康的考虑,相关部门规定空气中这种药物的浓度不超过0.25毫克/立方米时,顾客方可进入商场.已知从喷洒药物开始,商场内部的药物浓度y(毫克/立方米)与时间t (分钟)之间的函数关系为100.1,0101,102t at t y t -≤≤⎧⎪=⎨⎛⎫>⎪ ⎪⎝⎭⎩,函数的图象如图所示.如果商场规定9:30顾客可以进入商场,那么开始喷洒药物的时间最迟是( )A .9:00B .8:40C .8:30D .8:00【答案】A【解析】根据函数的图象,可得函数的图象过点(10,1), 代入函数的解析式,可得1121a-⎛⎫⎪⎝⎭=,解得1a =,所以1100.1,0101,102tt t y t -≤≤⎧⎪=⎨⎛⎫>⎪ ⎪⎝⎭⎩, 令0.25y ≤,可得0.10.25t ≤或11020.251t -⎛⎝≤⎫ ⎪⎭,解得0 2.5t <≤或30t ≥,所以如果商场规定9:30顾客可以进入商场,那么开始喷洒药物的时间最迟是9:00. 故选:A.8.(2022·山东师范大学附中模拟预测)已知某电子产品电池充满时的电量为3000毫安时,且在待机状态下有两种不同的耗电模式可供选择.模式A :电量呈线性衰减,每小时耗电300毫安时;模式B :电量呈指数衰减,即:从当前时刻算起,t 小时后的电量为当前电量的12t倍.现使该电子产品处于满电量待机状态时开启A 模式,并在x 小时后,切换为B 模式,若使其在待机10小时后有超过5%的电量,则x 的取值范围是( ) A .12x << B .12x <≤C .89x <<D .89x ≤<【答案】C【解析】由题意得,x 小时后的电量为(3000300)x -毫安,此时转为B 模式, 可得10小时后的电量为101(3000300)2xx --⋅,则由题意可得101(3000300)30000.052xx --⋅>⨯, 化简得101(10)0.52xx --⋅>,即9102x x -->令10m x =-,则12m m ->, 由题意得010x <<,则010m <<,令m 分别为1,2时,这个不等式左右两边大小相等, 由函数y x =和12x y -=的图象可知, 该不等式的解集为12m <<, 所以1102x <-<,得89x <<, 故选:C9.(多选)(2022·全国·高三专题练习)尽管目前人类还无法准确预报地震,但科学家经过研究,已经对地震有所了解,例如,地震时释放的能量E (单位:焦耳)与地震里氏震级M 之间的关系为lg E =4.8+1.5M ,则下列说法正确的是( ) A .地震释放的能量为1015.3焦耳时,地震里氏震级约为七级 B .八级地震释放的能量约为七级地震释放的能量的6.3倍 C .八级地震释放的能量约为六级地震释放的能量的1000倍D .记地震里氏震级为n (n =1,2,···,9,10),地震释放的能量为an ,则数列{an }是等比数列 【答案】ACD【解析】对于A :当15.310E =时,由题意得15.3lg10 4.8 1.5M =+, 解得7M =,即地震里氏震级约为七级,故A 正确;对于B :八级地震即8M =时,1lg 4.8 1.5816.8E =+⨯=,解得16.8110E =,所以16.81.5115.3101010 6.310E E ==>≠,所以八级地震释放的能量约为七级地震释放的能量的 1.510倍,故B 错误;对于C :六级地震即6M =时,2lg 4.8 1.5613.8E =+⨯=,解得13.8210E =,所以16.83113.821010100010E E ===, 即八级地震释放的能量约为六级地震释放的能量的1000倍,故C 正确; 对于D :由题意得lg 4.8 1.5n a n =+(n =1,2,···,9,10),所以 4.8 1.510nn a +=,所以 4.8 1.5(1) 6.3 1.511010n n n a ++++== 所以6.31.5 1.51 4.81.5101010nn n n a a +++==,即数列{an }是等比数列,故D 正确; 故选:ACD10.(多选)(2022·山东日照·三模)某公司通过统计分析发现,工人工作效率E与工作年限()0r r >,劳累程度()01T T <<,劳动动机()15b b <<相关,并建立了数学模型0.141010r E T b -=-⋅,已知甲、乙为该公司的员工,则下列结论正确的是( )A .甲与乙劳动动机相同,且甲比乙工作年限长,劳累程度弱,则甲比乙工作效率高B .甲与乙劳累程度相同,且甲比乙工作年限长,劳动动机高,则甲比乙工作效率低C .甲与乙劳动动机相同,且甲比乙工作效率高,工作年限短.则甲比乙劳累程度弱D .甲与乙工作年限相同,且甲比乙工作效率高,劳动动机低,则甲比乙劳累程度强 【答案】AC【解析】设甲与乙的工人工作效率12,E E ,工作年限12,r r ,劳累程度12,T T ,劳动动机12,b b ,对于A ,0.141212122,,,15,01b b r r T T b b -=><<<<<℃210.140.421121,0r r b b T T -->>>, 则()120.140.1412112210101010r r E E T b T b ---=-⋅--⋅()1200.1.1424211100r rT b T b --=⋅-⋅>,℃12E E >,即甲比乙工作效率高,故A 正确; 对于B ,121212,,T T r r b b =>>,℃2210.0.140.140.141402.14121110,r r r b b b b b ----->>>>>,则()120.140.1412112210101010r r E E T b T b ---=-⋅--⋅()210.141210.14100r rT b b --=->,℃12E E >,即甲比乙工作效率高,故B 错误: 对于C ,112221,,b b E E r r =><,℃()210.140.14122211100r r E E T b T b ---=⋅-⋅>,210.140.142211r rT b T b --⋅>⋅℃()()11220.140.41110.122141r r r r b b b T T ---->=>, 所以1T T >2,即甲比乙劳累程度弱,故C 正确; 对于D ,12121221,,,01r r E E b b b b =><<<, ℃()210.140.14122211100r r E E T b T b ---=⋅-⋅>,210.140.142211r rT b T b --⋅>⋅℃()()11220.140.41110.122141r r r r b b b T T ---->=>, 所以1T T >2,即甲比乙劳累程度弱,故D 错误. 故选:AC11.(2022·河北·模拟预测)劳动实践是大学生学习知识、锻炼才干的有效途径,更是大学生服务社会、回报社会的一种良好形式某大学生去一服装厂参加劳动实践,了解到当该服装厂生产的一种衣服日产量为x 件时,售价为s 元/件,且满足8202s x =-,每天的成本合计为60020x +元,请你帮他计算日产量为___________件时,获得的日利润最大,最大利润为___________万元.【答案】 200 7.94 【解析】由题意易得日利润()()()()260020820260020220079400y s x x x x x x =⨯-+=--+=--+,故当日产量为200件时,获得的日利润最大,最大利润为7.94万元, 故答案为:200,7.94.12.(2022·全国·模拟预测)一种药在病人血液中的量保持1000mg 以上才有疗效,而低于500mg 病人就有危险.现给某病人静脉注射了这种药2000mg ,如果药在血液中以每小时10%的比例衰减,为了充分发挥药物的利用价值,那么从现在起经过______小时内向病人的血液补充这种药,才能保持疗效.(附:lg 20.3010≈,lg30.4771≈,精确到0.1h ) 【答案】6.6【解析】设x h 后血液中的药物量为y mg , 则有()020001100xy =-, 令1000y ≥得:lg 20.30106.612lg3120.4771x ≤≈≈--⨯故从现在起经过6.6h 内向病人的血液补充这种药,才能保持疗效. 故答案为:6.613.(2022·北京东城·三模)某超市在“五一”活动期间,推出如下线上购物优惠方案:一次性购物在99元(含99元)以内,不享受优惠;一次性购物在99元(不含99元)以上,299元(含299元)以内,一律享受九折优惠;一次性购物在299元(不含299元)以上,一律享受八折优惠;小敏和小昭在该超市购物,分别挑选了原价为70元和280元的商品,如果两人把商品合并由小昭一次性付款,并把合并支付比他们分别支付节省的钱,按照两人购买商品原价的比例分配,则小敏需要给小昭___________元. 【答案】61.6【解析】由题可得两人把商品合并由小昭一次性付款实际付款为()702800.8280+⨯=元, 他们分别支付应付款为702800.9322+⨯=元,故节省32228042-=元, 故小敏需要给小昭70704261.670280-⨯=+元.故答案为:61.6.14.(2022·重庆·模拟预测)我国的酒驾标准是指车辆驾驶员血液中的酒精含量大于或者等于20mg/100ml ,已知一驾驶员某次饮酒后体内每100ml 血液中的酒精含量y (单位:mg )与时间x (单位:h )的关系是:当1103x <<时,227010801111y x x =-+;当113x ≥时,110y x=,那么该驾驶员在饮酒后至少要经过__________h 才可驾车.【答案】5.5 【解析】当1103x <<时,2227010802701080(2)11111111y x x x =-+=--+, 当2x =时,函数有最大值10802011>,所以当1103x <<时,饮酒后体内每100ml 血液中的酒精含量小于20mg/100ml , 当当113x ≥时,函数110y x =单调递减,令11020 5.5y x x==⇒=,因此饮酒后5.5小时体内每100ml 血液中的酒精含量等于20mg/100ml , 故答案为:5.515.(2022·全国·高三专题练习)迷你KTV 是一类新型的娱乐设施,外形通常是由玻璃墙分隔成的类似电话亭的小房间,近几年投放在各大城市商场中,受到年轻人的欢迎.如图是某间迷你KTV 的横截面示意图,其中32AB AE ==,90A B E ∠=∠=∠=︒,曲线段CD 是圆心角为90︒的圆弧,设该迷你KTV 横截面的面积为S ,周长为L ,则SL的最大值为___________.(本题中取3π=进行计算)【答案】633-【解析】设圆弧的半径为3(0)2x x <≤,根据题意可得:32BC DE AB x x ==-=-()()22213339····422244x S AE DE AB DE AE x x x x x x ππ⎛⎫⎛⎫=+--+=⨯-+-=-+ ⎪ ⎪⎝⎭⎝⎭226242x xL AB BC DE x ππ=+++=-+2913642x S L x π-=∴==-,29122S x L x-∴=-令122t x =-(912)t ≤<,则, 212912272624t t S t x L t t -⎛⎫- ⎪-⎛⎫⎝⎭=∴==-++ ⎪⎝⎭ 根据基本不等式,272723344t t +≥,当却仅当 274t t =,即63t =“=”.[)63912,, 63t ∴=633maxSL =-故答案为:633-16.(2022·全国·高三专题练习)某厂借嫦娥奔月的东风,推出品牌为“玉兔”的新产品,生产“玉兔”的固定成本为20000元,每生产一件“玉兔”需要增加投入100元,根据初步测算,总收益满足函数()()()214000400280000400x x x R x x ⎧-≤≤⎪⎨⎪⎩,=,>,其中x 是“玉兔”的月产量.(1)将利润f (x )表示为月产量x 的函数;(2)当月产量为何值时,该厂所获利润最大?最大利润是多少?(总收益=总成本+利润) 【解】(1)由题意,当0400x 时,2()4000.520000100f x x x x =---23000.520000x x =--; 当400x >时,()8000010020000f x x =--60000100x =-;故2130020000,(0400)()210060000,(400)x x x f x x x ⎧-+-⎪=⎨⎪-+>⎩; (2)当0400x 时,2()3000.520000f x x x =--; 当300x =时,max ()(300)25000f x f ==(元) 当400x >时,max ()(400)20000f x f <=(元)2500020000>,∴当300x =时,该厂所获利润最大,最大利润为25000元.17.(2022·上海·华东师范大学附属东昌中学高三阶段练习)如图,某街道拟设立一占地面积为a 平方米的常态化核酸采样点,场地形状为矩形.根据防疫要求,采样点周围通道设计规格要求为:长边外通道宽5米,短边外通道宽8米,采样点长边不小于20米,至多长28米.(1)设采样点长边为x 米,采样点及周围通道的总占地面积为S 平方米,试建立S 关于x 的函数关系式,并指明定义域;(2)当300700a ≤≤时,试求S 的最小值,并指出取到最小值时x 的取值. 【解】(1)由题意采样点及周围通道构成的矩形的长是(16)m x +,宽是(10)m a x+, 故16(16)(10)10160,[20,28]aS x x a x xxa =++=+++∈; (2)由(1)知,1610160,[20,28]aS x a x x=+++∈, 当300490a ≤≤时,161610160210160810160a aS x a x a a a x x=+++≥⋅+=+, 当且仅当1610ax x=即85ax =8[20,28]5a x =8585a a故此时S 的最小值为810160a a +,此时85ax = 当490700a <≤时,令16()10160,[20,28]af x x a x x=+++∈, 则222161016()10,[20,28]a x af x x x x -'=-+=∈, 由于()0f x '=时,8285a x => ,故221016()0,[20,28]x af x x x -'=<∈, 即16()10160,[20,28]af x x a x x=+++∈单调递减, 故min 11()(28)4407af x f ==+,此时28x = ,满足a x x> , 故S 的最小值为114407a+,此时28x =. 18.(2022·全国·高三专题练习)某乡镇响应“绿水青山就是金山银山”的号召,因地制宜的将该镇打造成“生态水果特色小镇”.经调研发现:某珍惜水果树的单株产量W (单位:千克)与施用肥料x (单位:千克)满足如下关系:()253,02()50,251x x W x x x x⎧+≤≤⎪=⎨<≤⎪+⎩,肥料成本投入为10x 元,其它成本投入(如培育管理、施肥等人工费)20x 元.已知这种水果的市场售价大约15元/千克,且销售畅通供不应求,记该水果单株利润为()f x (单位:元) (1)写单株利润()f x (元)关于施用肥料x (千克)的关系式;(2)当施用肥料为多少千克时,该水果单株利润最大?最大利润是多少?【解】(1)依题意()15()1020f x W x x x =--,又()253,02()50,251x x W x x x x⎧+≤≤⎪=⎨<≤⎪+⎩,℃27530225,02()75030,251x x x f x x x x x⎧-+⎪=⎨-<⎪+⎩. (2)当02x 时,2()7530225f x x x =-+,开口向上,对称轴为15x =, ()f x ∴在[0,1]5上单调递减,在1(5,2]上单调递增, ()f x ∴在[0,2]上的最大值为()2465f =.当25x <时,2525()78030(1)780302(1)48011f x x x x x =-++-⨯+++, 当且仅当2511x x=++时,即4x =时等号成立. ℃465480<,℃当4x =时,max ()480f x =.℃当投入的肥料费用为40元时,种植该果树获得的最大利润是480元.【素养提升】1.(2022·全国·高三专题练习)如图,在正方形ABCD 中,|AB |=2,点M 从点A 出发,沿A →B →C →D →A 方向,以每秒2个单位的速度在正方形ABCD 的边上运动:点N 从点B 出发,沿B →C →D →A 方向,以每秒1个单位的速度在正方形ABCD 的边上运动.点M 与点N 同时出发,运动时间为t (单位:秒),℃AMN 的面积为f (t )(规定A ,M ,N 共线时其面积为零,则点M 第一次到达点A 时,y =f (t )的图象为( )A .B .C .D .【答案】A【解析】℃0≤t≤1时,f (t )=211222AM BN t t t ⋅=⋅⋅=; ℃12t <时,()()12122f t MN AB MN t t t =⋅==--=-; ℃23t <≤时,()()()122222f t MN BC MN t t t =⋅==---=-; ℃34t <≤时,()()][()21122322(4)22f t AM DN t t t ⎡⎤=⋅=--⋅--=-⎣⎦; 所以22,012,12()2,23(4),34t t t t f t t t t t ⎧⎪-<⎪=⎨-<⎪⎪-<⎩,其图象为选项A 中的图象, 故选:A .2.(2022·全国·高三专题练习)砖雕是江南古建筑雕刻中很重要的一种艺术形式,传统砖雕精致细腻、气韵生动、极富书卷气.如图是一扇环形砖雕,可视为扇形OCD 截去同心扇形OAB 所得部分.已知扇环周长300cm =,大扇形半径100cm OD =,设小扇形半径cm OA x =,AOB θ∠=弧度,则℃θ关于x 的函数关系式()x θ=_________.℃若雕刻费用关于x 的解析式为()101700w x x =+,则砖雕面积与雕刻费用之比的最大值为________.【答案】 1002100x x++,()0,100x ∈; 3 【解析】由题意可知,AOB θ∠=,OA x = ,100OD =,所以AB x θ=⋅,100AD BC x ==-,DC 100θ=,扇环周长AB AD BC DC +++2002100300x x θθ=⋅+-+=, 解得()1002,0,100100x x xθ+=∈+, 砖雕面积即为图中环形面积,记为S , 则12DOC AOB S S S OD DC =-=⋅⋅扇形扇形12OA AB -⋅⋅ 22111002100100500050002222100x x x x x x θθθθ⎛⎫+=⨯⨯-⋅⋅=-=-⋅ ⎪+⎝⎭, 即雕刻面积与雕刻费用之比为m , 则()()()()()()()210000*********()210101017000170x x w x m x x x x x S +-+=+-+==+, 令170t x =+,则170x t =-,()()22701203901202701227039101010t t t t t m t tt ---+-⨯⨯∴===--+ 122702393639310t t⨯≤-⋅=-+= ,当且仅当180t =时(即10x =)取等号, 所以砖雕面积与雕刻费用之比的最大值为3. 故答案为:1002100x x++,()0,100x ∈;3。
函数模型及其应用-2018-2019学年高一数学人教版必修1必刷题
函数模型及其应用-2018-2019学年高一数学人教版必修1必刷题1.一个模具厂一年中12月份的产量是1月份产量的m倍,那么该模具厂这一年中产量的月平均增长率是A.m11B.m12C. 1 D. 1【答案】D2.某自行车存车处在某一天总共存放车辆4 000辆次,存车费为:电动自行车0.3元/辆,普通自行车0.2元/辆.若该天普通自行车存车x辆次,存车费总收入为y元,则y与x的函数关系式为A.y=0.2x(0≤x≤4 000)B.y=0.5x(0≤x≤4 000)C.y=-0.1x+1 200(0≤x≤4 000)D.y=0.1x+1 200(0≤x≤4 000)【答案】C【解析】由题意得y=0.3(4 000-x)+0.2x=-0.1x+1 200.故选C.3.某城市出租汽车的收费标准是:起步价为6元,行程不超过2千米者均按此价收费;行程超过2千米,超过部分按3元/千米收费(不足1千米按1千米计价);另外,遇到堵车或等候时,汽车虽没有行驶,但仍按6分钟折算1千米计算(不足1千米按1千米计价).陈先生坐了一趟这种出租车,车费24元,车上仪表显示等候时间为11分30秒,那么陈先生此趟行程的取值范围是A.[5,6)B.(5,6]C.[6,7)D.(6,7]【答案】B【解析】若按x千米(x∈Z)计价,则6+(x-2)×3+2×3=24,得x=6.故实际行程应属于区间(5,6].故选B.4.y1=2x,y2=x2,y3=log2x,当2<x<4时,有A.y1>y2>y3B.y2>y1>y3C.y1>y3>y2D.y2>y3>y1【答案】B【解析】在同一平面直角坐标系内画出这三个函数的图象(图略),在区间(2,4)内,从上到下图象依次对应的函数为y2=x2,y1=2x,y3=log2x,故y2>y1>y3.故选B.5.有一组实验数据如下表所示:下列所给函数模型较适合的是A.y=log a x(a>1)B.y=ax+b(a>1)C.y=ax2+b(a>0)D.y=log a x+b(a>1)【答案】C6.某林区的森林蓄积量每年比上一年平均增长10.4%,要增长到原来的x倍,需经过y年,则函数y=f(x)的图象大致为【答案】D【解析】设该林区的森林原有蓄积量为a,由题意可得ax=a(1+0.104)y,故y=log1.104x(x≥1),函数为对数函数,所以函数y=f(x)的图象大致为D中图象,故选D.7.某厂日产手套总成本y(元)与手套日产量x(副)的函数解析式为y=5x+4 000,而手套出厂价格为每副10元,则该厂为了不亏本,日产手套至少为A.200副B.400副C.600副D.800副【答案】D【解析】由5x+4 000≤10x,解得x≥800,即日产手套至少800副时才不亏本.故选D.8.四人赛跑,假设他们跑过的路程f i(x)(其中i∈{1,2,3,4})和时间x(x>1)的函数关系分别是f1(x)=x2,f2(x)=4x,f3(x)=log2x,f4(x)=2x,如果他们一直跑下去,最终跑在最前面的人具有的函数关系是A.f1(x)=x2B.f2(x)=4xC.f3(x)=log2x D.f4(x)=2x【答案】D9.下列函数中随x 的增大而增大且速度最快的是 A .y =1100e xB .y =100ln xC .y =x 100D .y =100·2x【答案】A【解析】指数爆炸式形如指数函数.又e>2,∴1100e x 比100·2x增大速度快.10.下列函数中,随着x 的增大,增长速度最快的是A .y =50B .y =1 000xC .y =2x -1D .y =11 000ln x 【答案】C【解析】指数函数模型增长速度最快,故选C .11.已知A ,B 两地相距150千米,某人开汽车以60千米/小时的速度从A 地到达B 地,在B 地停留1小时后再以50千米/小时的速度返回A 地,则汽车离开A 地的距离x 关于时间t (小时)的函数解析式是 A .x =60tB .x =150-50tC .x =⎩⎪⎨⎪⎧60t ,0≤t ≤2.5150-50t ,t >3.5D .x =⎩⎪⎨⎪⎧60t ,0≤t ≤2.5150,2.5<t ≤3.5150-t -,3.5<t ≤6.5【答案】D【解析】显然出发、停留、返回三个过程中行车速度是不同的,故应分三段表示函数.故选D . 12.以下是三个变量y 1,y 2,y 3随变量x 变化的函数值表:其中,关于x 呈指数函数变化的函数是________. 【答案】y 113.某工厂8年来某种产品的总产量C 与时间t (年)的函数关系如图所示.以下四种说法:①前三年产量增长的速度越来越快; ②前三年产量增长的速度越来越慢; ③第三年后这种产品停止生产; ④第三年后产量保持不变. 其中说法正确的序号是________. 【答案】②③【解析】由t ∈[0,3]的图象联想到幂函数y =x α(0<α<1),反映了C 随时间的变化而逐渐增长但速度越来越慢.由t ∈[3,8]的图象可知,总产量C 没有变化,即第三年后停产,所以②③正确. 14.若a >1,n >0,那么当x 足够大时,a x ,x n,log a x 的大小关系是________.【答案】a x >x n>log a x【解析】∵a >1,n >0,∴函数y 1=a x ,y 2=x n,y 3=log a x 都是增函数.由指数函数、对数函数、幂函数的变化规律可知,当x 足够大时,a x >x n >log xa .15.函数y =x 2与函数y =x ln x 在区间(1,+∞)上增长较快的一个是________.【答案】y =x 2【解析】当x 变大时,x 比ln x 增长要快,∴x 2要比x ln x 增长的要快.16.在不考虑空气阻力的情况下,火箭的最大速度v 米/秒和燃料的质量M 千克、火箭(除燃料外)的质量m 千克的函数关系式是v =2 000·ln(1+Mm).当燃料质量是火箭质量的________倍时,火箭的最大速度可达12千米/秒. 【答案】e 6-1【解析】当v =12 000时,2 000·ln(1+M m )=12 000,∴ln (1+M m )=6,∴M m=e 6-1.17.由于电子技术的飞速发展,计算机的成本不断降低,若每隔5年计算机的价格降低13,则现在价格为8100元的计算机15年后的价格应降为________元.18.如图所示,折线是某电信局规定打长途电话所需要付的电话费y (元)与通话时间t (分钟)之间的函数关系图象,根据图象填空:(1)通话2分钟,需付的电话费为________元; (2)通话5分钟,需付的电话费为________元;(3)如果t ≥3,则电话费y (元)与通话时间t (分钟)之间的函数关系式为________. 【答案】(1)3.6 (2)6 (3)y =1.2t (t ≥3) 【解析】(1)由图象可知,当t ≤3时,电话费都是3.6元. (2)由图象可知,当t =5时,y =6,即需付电话费6元.(3)当t ≥3时,y 关于x 的图象是一条直线,且经过(3,3.6)和(5,6)两点,故设函数关系式为y =kt +b ,则⎩⎪⎨⎪⎧3k +b =3.6,5k +b =6,解得⎩⎪⎨⎪⎧k =1.2,b =0.故y 关于t 的函数关系式为y =1.2t (t ≥3).19.今有一组实验数据如下:现准备用下列函数中的一个近似地表示这些数据满足的规律,其中最接近的一个是A .v =log 2tB .v =log 12tC .v =t 2-12D .v =2t -2【答案】C【解析】从表格中看到此函数为单调增函数,排除B ,增长速度越来越快,排除A 和D ,故选C . 20.一个人以6米/秒的速度去追停在交通灯前的汽车,当他离汽车25米时,交通灯由红变绿,汽车以1米/秒2的加速度匀加速开走,那么 A .人可在7秒内追上汽车B .人可在10秒内追上汽车C .人追不上汽车,其间距最少为5米D .人追不上汽车,其间距最少为7米21.三个变量y 1,y 2,y 3,随着变量x 的变化情况如下表:则关于x 分别呈对数函数、指数函数、幂函数变化的变量依次为 A .y 1,y 2,y 3 B .y 2,y 1,y 3 C .y 3,y 2,y 1 D .y 1,y 3,y 2【答案】C22.下面对函数f (x )=12log x 、g (x )=1()2x ,与h (x )=x -12在区间(0,+∞)上的衰减情况说法正确的是A .f (x )衰减速度越来越慢,g (x )衰减速度越来越快,h (x )衰减速度越来越慢B .f (x )衰减速度越来越快,g (x )衰减速度越来越慢,h (x )衰减速度越来越快C .f (x )衰减速度越来越慢,g (x )衰减速度越来越慢,h (x )衰减速度越来越慢D .f (x )衰减速度越来越快,g (x )衰减速度越来越快,h (x )衰减速度越来越快 【答案】C【解析】观察函数f (x )=12log x 、g (x )=1()2x 与h (x )=x -12在区间(0,+∞)上的图象如图.可知:函数f (x )的图象在区间(0,1)上递减较快,但递减速度逐渐变慢;在区间(1,+∞)上,递减较慢,且越来越慢;同样,函数g (x )的图象在区间(0,+∞)上,递减较慢,且递减速度越来越慢;函数h (x )的图象在区间(0,1)上递减较快,但递减速度变慢;在区间(1,+∞)上,递减较慢,且越来越慢.故选C .23.若x ∈(0,1),则下列结论正确的是A .2x>12x >lg x B .2x>lg x >12xC .12x >2x>lg xD .lg x >12x >2x【答案】A【解析】结合y =2x,y =12x 及y =lg x 的图象易知,当x ∈(0,1)时,2x>12x >lg x .故选A .24.某化工厂打算投入一条新的生产线,但需要经环保部门审批后方可投入生产.已知该生产线连续生产n 年的累计产量为f (n )=12n (n +1)(2n +1)吨,但如果年产量超过150吨,将会给环境造成危害.为保护环境,环保部门应给该厂这条生产线拟定最长的生产期限是________年. 【答案】7【解析】由题意知,第一年产量为a 1=12×1×2×3=3;以后各年产量分别为a n =f (n )-f (n -1)=12n (n +1)(2n +1)-12n (n -1)(2n -1)=3n 2(n ∈N *),令3n 2≤150,得1≤n ≤52⇒1≤n ≤7,故生产期限最长为7年.25.表示一位骑自行车和一位骑摩托车的旅行者在相距80 km 的甲、乙两城间从甲城到乙城所行驶的路程与时间之间的函数关系,有人根据函数图象,提出了关于这两个旅行者的如下信息:①骑自行车者比骑摩托车者早出发3 h,晚到1 h;②骑自行车者是变速运动,骑摩托车者是匀速运动;③骑摩托车者在出发1.5 h后追上了骑自行车者;④骑摩托车者在出发1.5 h后与骑自行车者速度一样.其中,正确信息的序号是________.【答案】①②③26.四个变量y1,y2,y3,y4随变量x变化的数据如下表:关于x呈指数函数变化的变量是________.【答案】y227.一水池有2个进水口,1个出水口,两个进水口的进水速度如图甲、乙所示,出水口的排水速度如图丙所示,某天0点到6点,该水池的蓄水量如图丁所示.给出以下3个论断:①0点到3点只进水不出水;②3点到4点不进水只出水;③4点到6点不进水不出水.其中一定正确的论断序号是________.【答案】①②【解析】从0点到3点,两个进水口的进水量为9,故①正确;由排水速度知②正确;4点到6点可以是不进水,不出水,也可以是开一个进水口(速度快的)、一个排水口,故③不正确.28.已知A,B两地相距150 km,某人开汽车以60 km/h的速度从A地到达B地,在B地停留1小时后再以50 km/h的速度返回A地,汽车离开A地的距离x随时间t变化的关系式是__________.【答案】x=600 2.51502.5 3.5 503253.5 6.5t ttt t≤≤⎧⎪<≤⎨⎪-+<≤⎩,,,29.(2016•四川)某公司为激励创新,计划逐年加大研发资金投入.若该公司2015年全年投入研发资金130万元,在此基础上,每年投入的研发资金比上一年增长12%,则该公司全年投入的研发资金开始超过200万元的年份是(参考数据:lg1.12≈0.05,lg1.3≈0.11,lg2≈0.30) A .2018年 B .2019年 C .2020年 D .2021年【答案】B【解析】设从2015年开始第n 年该公司全年投入的研发资金开始超过200万元,由已知得()11200130112%200, 1.12130n n --⨯+>∴>, 两边取常用对数得200(1)lg1.12lg,130n ->lg 2lg1.30.30.111 3.8,5lg1.120.05n n --∴->==∴≥, 故从2019年开始,该公司全年投入的研发资金开始超过200万元,故选B .。
2021版《3年高考2年模拟》高考数学(浙江版理)检测:2.9 函数的模型及其应用 Word版含答案
§2.9函数的模型及其应用A组基础题组1.(2021浙江重点中学协作体适应性测试,4)已知0<a<1,则a2、2a、log2a的大小关系是( )A.a2>2a>log2aB.2a>a2>log2aC.log2a>a2>2aD.2a>log2a>a22.(2021福建泉州一中期中,5,5分)给出四个函数,分别满足:①f(x+y)=f(x)+f(y),②g(x+y)=g(x)g(y),③h(xy)=h(x)+h(y),④m(xy)=m(x)m(y).下列为四个函数的图象,对应正确的是( )A.①甲,②乙,③丙,④丁B.①乙,②丙,③甲,④丁C.①丙,②甲,③乙,④丁D.①丁,②甲,③乙,④丙3.(2021湖北,5,5分)小明骑车上学,开头时匀速行驶,途中因交通堵塞停留了一段时间,后来为了赶时间加快速度行驶.与以上大事吻合得最好的图象是( )4.(2021陕西,3,5分)如图,某港口一天6时到18时的水深变化曲线近似满足函数y=3sin+k,据此函数可知,这段时间水深(单位:m)的最大值为( )A.5B.6C.8D.105.(2022北京,8,5分)加工爆米花时,爆开且不糊的粒数占加工总粒数的百分比称为“可食用率”.在特定条件下,可食用率p与加工时间t(单位:分钟)满足函数关系p=at2+bt+c(a,b,c是常数),下图记录了三次试验的数据.依据上述函数模型和试验数据,可以得到最佳加工时间为( ) A.3.50分钟 B.3.75分钟 C.4.00分钟 D.4.25分钟6.(2021浙江五校第一次联考)一个容器装有细沙acm3,细沙从容器底部一个微小的小孔渐渐地漏出,tmin后剩余的细沙量为y=ae-bt(cm3),经过8min后发觉容器内还有一半的沙子,则再经过min,容器中的沙子只有开头时的八分之一.7.(2022杭州学军中学其次次月考,13,4分)不等式2x-1>m(x2-1)对满足|m|≤2的一切实数m都成立,则x的取值范围是.8.(2021湖南师大附中月考)某市居民自来水收费标准如下:每户每月用水不超过4吨时,每吨为1.8元;当超过4吨时,超过部分按每吨3元收费.已知某个月甲、乙两户共交水费y元,并且该月甲、乙两户的用水量分别为5x、3x吨.(1)求y与x的函数关系式;(2)若该月甲、乙两户共交水费26.4元,分别求出该月甲、乙两户的用水量和水费.9.(2022上海普陀调研测试,21,14分)某中学为了落实“阳光运动一小时”活动,方案在一块直角三角形ABC 的空地上修建一个占地面积为S平方米的矩形AMPN健身场地.如图,点M在AC上,点N在AB上,且P点在斜边BC上,已知∠ACB=60°且|AC|=30米,|AM|=x米,x∈[10,20].(1)试用x表示S,并求S的取值范围;(2)若在矩形AMPN以外(阴影部分)铺上草坪.已知:矩形AMPN健身场地每平方米的造价为元,草坪每平方米的造价为(k为正常数)元.设总造价T关于S的函数为T=f(S),试问:如何选取AM的长,才能使总造价T最低?B组提升题组1.(2022湖南,8,5分)某市生产总值连续两年持续增加,第一年的增长率为p,其次年的增长率为q,则该市这两年生产总值的年平均增长率为( )A. B.C. D.-12.(2021北京,8,5分)汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率状况.下列叙述中正确的是( )A.消耗1升汽油,乙车最多可行驶5千米B.以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多C.甲车以80千米/小时的速度行驶1小时,消耗10升汽油D.某城市机动车最高限速80千米/小时.相同条件下,在该市用丙车比用乙车更省油3.(2021浙江重点中学协作体摸底)一高为H,满缸水量为V的鱼缸截面如图所示,其底部破了一个小洞,满缸水从洞中流出.若鱼缸水深为h时,水的体积为V1,则函数V1=f(h)的大致图象可能是图.4.(2021浙江杭州九中期末)某汽车运输公司购买了一批豪华大客车投入营运,据市场分析每辆客车营运的总利润y(单位:10万元)与营运年数x(x∈N*)为二次函数关系(如图所示),则每辆客车营运年时,其营运的年平均利润最大.5.求实数a的范围,使得关于x的方程x2-ax+2=0在[1,3]上有解.6.(2022杭州学军中学其次次月考,18,14分)已知集合P=,y=log2(ax2-2x+2)的定义域为Q.(1)若P∩Q≠⌀,求实数a的取值范围;(2)若方程log2(ax2-2x+2)=2在内有解,求实数a的取值范围.7.(2021江苏,17,14分)某山区外围有两条相互垂直的直线型大路,为进一步改善山区的交通现状,方案修建一条连接两条大路和山区边界的直线型大路,记两条相互垂直的大路为l1,l2,山区边界曲线为C,方案修建的大路为l,如图所示,M,N为C的两个端点,测得点M到l1,l2的距离分别为5千米和40千米,点N到l1,l2的距离分别为20千米和2.5千米,以l2,l1所在的直线分别为x,y轴,建立平面直角坐标系xOy,假设曲线C符合函数y=(其中a,b为常数)模型.(1)求a,b的值;(2)设大路l与曲线C相切于P点,P的横坐标为t.①请写出大路l长度的函数解析式f(t),并写出其定义域;②当t为何值时,大路l的长度最短?求出最短长度.8.(2022超级中学原创猜测卷六文,20,15分)某市为迎接元旦的到来,拟在市观光巡游区建筑一个花坛,已知用钢管焊接而成的花坛围栏如图所示,它的外框是一个等腰梯形PQRS,内部是一段抛物线和一根横梁,抛物线的顶点与梯形上底边的中点均是焊接点O,梯形的腰紧靠在抛物线上,且两腰的中点是梯形的腰、抛物线与横梁的焊接点A,B,抛物线与梯形下底边的两个焊接点为C,D.已知梯形的高是40米,C,D两点间的距离是40米.(1)求横梁AB的长度;(2)求制作梯形外框的用料长度.(注:钢管的粗细等因素忽视不计,≈1.41)A组基础题组1.B 由于当0<a<1时,a2∈(0,1),2a>1,log2a<0,所以2a>a2>log2a,故选B.2.D 由题图可知丁是正比例函数图象,满足①;甲是指数型函数图象,满足②;乙是对数型函数图象,满足③;丙是幂函数图象,满足④.故选D.3.C 小明匀速运动时,所得图象为一条直线,且距离学校越来越近,故排解A.因交通堵塞停留了一段时间,与学校的距离不变,故排解D.后来为了赶时间加快速度行驶,故排解B.故选C.4.C 由于函数y=3sin+k的最小值为2,所以-3+k=2,得k=5,故这段时间水深的最大值为3+5=8(m),选C.5.B 由已知得解得∴p=-0.2t2+1.5t-2=-+,∴当t==3.75时p最大,即最佳加工时间为3.75分钟.故选B.6.答案16解析当t=0时,y=a,当t=8时,y=ae-8b=a,∴e-8b=,容器中的沙子只有开头时的八分之一,即y=ae-bt=a,e-bt==(e-8b)3=e-24b,则t=24,24-8=16. 7.答案解析构造函数f(m)=(x2-1)m-(2x-1),则f(m)是关于m的一次函数,要使2x-1>m(x2-1)对任意|m|≤2恒成立,即f(m)<0对任意m∈[-2,2]恒成立,只需解得x∈.8.解析(1)当甲的用水量不超过4吨,即5x≤4时,乙的用水量也不超过4吨,y=(5x+3x)×1.8=14.4x;当甲的用水量超过4吨,乙的用水量不超过4吨,即3x≤4且5x>4时,y=4×1.8+3x×1.8+3(5x-4)=20.4x-4.8; 当乙的用水量超过4吨,即3x>4时,y=1.8×8+3(5x-4+3x-4)=24x-9.6.所以y=(2)y=f(x)在各段区间上均为单调递增函数,当x∈时,y max=f<26.4;当x∈时,y max=f<26.4;当x∈时,令24x-9.6=26.4,解得x=1.5.所以甲户用水量为5x=7.5吨,水费为4×1.8+3.5×3=17.7(元);乙户用水量为3x=4.5吨,水费为4×1.8+0.5×3=8.7(元).9.解析(1)在Rt△PMC中,|MC|=30-x米,∠PCM=60°,∴|PM|=|MC|·tan∠PCM=(30-x)米,则S=x(30-x),x ∈[10,20],于是200≤S≤225.(2)矩形AMPN健身场地造价T1=37k元,又△ABC的面积为450平方米,∴草坪造价T2=(450-S)元,又T=T1+T2,∴f(S)=25k,200≤S≤225.∵+≥12,当且仅当=,即S=216时等号成立,此时x(30-x)=216,解得x=12或x=18,∴选取AM的长为12米或18米时总造价T最低.B组提升题组1.D 设两年前的年底该市的生产总值为a,则其次年年底的生产总值为a(1+p)(1+q).设这两年生产总值的年平均增长率为x,则a(1+x)2=a(1+p)(1+q),由于连续两年持续增加,所以x>0,因此x=-1,故选D.2.D 对于A选项:由题图可知,当乙车速度大于40km/h时,乙车每消耗1升汽油,行驶里程都超过5km,则A错; 对于B选项:由题意可知,以相同速度行驶相同路程,燃油效率越高,耗油越少,故三辆车中甲车耗油最少,则B 错;对于C选项:甲车以80千米/小时的速度行驶时,燃油效率为10km/L,则行驶1小时,消耗了汽油80×1÷10=8(升),则C错;对于D选项:当行驶速度小于80km/h时,在相同条件下,丙车的燃油效率高于乙车,则在该市用丙车比用乙车更省油,则D对.综上,选D.3.答案②解析当h=0时,V1=0,可排解①③;由于鱼缸中间粗两头细,所以当h在四周时,体积变化较快;当h小于时,体积增加得越来越快;当h大于时,体积增加得越来越慢.故填②.4.答案 5解析由题图可得营运总利润y=-(x-6)2+11,则营运的年平均利润为=-x-+12,∵x∈N*,∴≤-2+12=2,当且仅当x=,即x=5时取“=”.∴当x=5时,营运的年平均利润最大.5.解析①当x=1是方程的解时,a=3.②当x=3是方程的解时,a=.③设f(x)=x2-ax+2,则函数在(1,3)内有唯一零点的条件为或解得3<a<或a=2.④当方程x2-ax+2=0在(1,3)上有两解时,设f(x)=x2-ax+2,则解得2<a<3.综上,实数a的取值范围是2≤a≤.6.解析(1)由已知得Q={x|ax2-2x+2>0},若P∩Q≠⌀,则说明在内至少有一个x值,使不等式ax2-2x+2>0成立,即在内至少有一个x值,使a>-成立,令u=-,则只需a>u min,又u=-2+,当x∈时,∈,从而u∈,∴a的取值范围是a>-4.(2)∵方程log2(ax2-2x+2)=2在内有解,∴ax2-2x+2=4,即ax2-2x-2=0在内有解,即存在x∈,使a=+=2-,∵≤2-≤12,∴≤a≤12,即a的取值范围是.7.解析(1)由题意知,点M,N的坐标分别为(5,40),(20,2.5).将其分别代入y=,得解得(2)①由(1)知,y=(5≤x≤20),则点P的坐标为,y'=-,设在点P处的切线l交x,y轴分别于A,B点,l的方程为y-=-(x-t),由此得A,B.故f(t)==,t∈[5,20].②设g(t)=t2+,则g'(t)=2t-.令g'(t)=0,解得t=10.当t∈(5,10)时,g'(t)<0,g(t)是减函数;当t∈(10,20)时,g'(t)>0,g(t)是增函数.从而,当t=10时,函数g(t)有微小值,也是最小值,所以g(t)min=300,此时f(t)min=15.答:当t=10时,大路l的长度最短,最短长度为15千米.8.解析(1)建立如图所示的平面直角坐标系,设梯形的下底边与y轴交于点M,抛物线的方程为x2=2py(p<0). 由题意得D(20,-40),代入抛物线的方程得p=-5,所以抛物线的方程为x2=-10y. 当y=-20时,x=±10,即A(-10,-20),B(10,-20),所以|AB|=20≈28.2.故横梁AB的长度约为28.2米.(2)由题意得梯形的腰QR的中点是梯形的腰QR与抛物线唯一的公共点,设直线RQ的方程为y+20=k(x-10)(k<0),由得x2+10kx-100(2+k)=0,则Δ=100k2+400(2+k)=0,解得k=-2,所以直线RQ的方程为y=-2x+20.从而得Q(5,0),R(15,-40).所以|OQ|=5,|MR|=15,|RQ|=30,所以梯形的周长为2×(5+15+30)=100≈141(米),故制作梯形外框的用料长度约为141米.。
2019高三数学文二轮复习查漏补缺课时练习(十二)第12讲函数模型及其应用含答案解析
课时作业(十二)第12讲函数模型及其应用时间/45分钟分值/100分基础热身1.下列函数中,随x的增大,y的增大速度最快的是()A.y=1000×2xB.y=1000log2xC.y=x1000D.y=1000×(32) x2.用长度为24米的材料围成一矩形场地,中间加两道隔墙,要使矩形的面积最大,则隔墙的长度为()A.8米B.6米C.4米D.3米3.在某个物理实验中,测量得到变量x和变量y的几组数据如下表:x0.500.992.013.98y-0.990.010.982.00则对x,y最适合的拟合函数是()A.y=2xB.y=x2-1C.y=log2xD.y=2x-24.某市出租车的车费计算方法如下:路程在3 km以内(含3 km)为8元,达到3 km后,每增加1 km加收1.4元,达到8 km后,每增加1 km加收2.1元,增加不足1 km按四舍五入计算.若某乘客乘坐该市出租车交了44.4元车费,则该乘客乘坐出租车行驶的路程可以是()A.22 kmB.24 kmC.26 kmD.28 km5.拟定甲、乙两地通话m分钟的电话费(单位:元)由f(m)=1.06×(0.5×[m]+1)给出,其中m>0,[m]是不超过m的最大整数(如[3]=3,[3.9]=3,[3.01]=3),则甲、乙两地通话6.5分钟的电话费为元.能力提升6.我国古代数学名著《九章算术》有“米谷粒分”题:发仓募粮,所募粒中秕不百三则收之(不超过3%).现抽样取米一把,取得235粒米中夹秕n粒,若这批米合格,则n不超过()A.6B.7C.8D.97.我国某部门为尽快稳定菜价,提出四种绿色运输方案.据预测,这四种方案均能在规定的时间T内完成预测的运输任务Q0,各种方案的运输总量Q与时间t的函数关系如图K12-1所示,在这四种方案中,运输效率(单位时间的运输量)逐步提高的是()ABCD图K12-18.某产品的总成本y(万元)与产量x(台)之间满足函数关系式y=3000+20x-0.1x2(0<x<240,x∈N*),若每台产品的售价为25万元,所有生产出来的产品都能卖完,则生产者不亏本时(销售收入不小于总成本)的最低产量是()A.100台B.120台C.150台D.180台9.设某公司原有员工100人从事产品A的生产,平均每人每年创造产值t(t>0)万元.公司决定从原有员工中分流x(0<x<100,x ∈N*)人去从事产品B的生产,分流后,继续从事产品A生产的员工平均每人每年创造产值在原有的基础上增长了1.2x%.若要保证产品A的年产值不减少,则最多能分流的人数是()A.15B.16C.17D.1810.国家对某行业征税的规定如下:年收入在280万元及以下部分的税率为p%,超过280万元的部分按(p+2)%征税.有一公司的实际缴税比例为(p+0.25)%,则该公司的年收入是()A.560万元B.420万元C.350万元D.320万元图K12-211.某厂有许多形状为直角梯形的铁皮边角料(如图K12-2),为降低消耗,开源节流,现要从这些边角料上截取矩形铁片(如图中阴影部分)备用,则截取的矩形面积的最大值为.12.某化工厂打算投入一条新的生产线,但需要经环保部门审批后方可投入生产.已知该生产线连续生产n(n∈N*)年的累计n(n+1)(2n+1),当年产量超过150吨时,将会给环境造成危害.为保护环境,环保部门应给该厂这条生产量(单位:吨)为f(n)=12产线拟定最长的生产期限是年.13.某食品的保鲜时间y(单位:h)与储藏温度x(单位:℃)满足函数关系式y=e kx+b(e=2.718…为自然对数的底数,k,b为常数).若该食品在0 ℃的保鲜时间是192 h,在22 ℃的保鲜时间是48 h,则该食品在33 ℃的保鲜时间是h.14.(10分)某地上年度电价为0.8元/千瓦时,年用电量为1亿千瓦时.本年度计划将电价调至0.55~0.75元/千瓦时,经测算,若电价调至x元/千瓦时,本年度新增用电量为y亿千瓦时,则y与(x-0.4)成反比例.又当x=0.65时,y=0.8.(1)求y与x之间的函数关系式.(2)若每千瓦时电的成本价为0.3元,则电价调至多少时,本年度电力部门的收益将比上年度增加20%?(收益=用电量×(实际电价-成本价))15.(10分)一片森林原来的面积为a,计划每年砍伐一些树,且每年砍伐面积的百分比相等,当砍伐到森林剩余面积为原面积的一半时,所用时间是10年,为保护生态环境,森林面积至少要保留原面积的14,已知到今年为止,森林剩余面积为原来的√22.(1)求每年砍伐面积的百分比.(2)到今年为止,该森林已砍伐了多少年?(3)今后最多还能砍伐多少年?难点突破16.(15分)某创业投资公司拟投资开发某种新能源产品,估计能获得投资收益(单位:万元)的范围是[10,100].现准备制定一个对科研课题组的奖励方案,要求奖金y(单位:万元)随投资收益x(单位:万元)的增加而增加,且奖金不超过5万元,同时奖金不超过投资收益的20%.(1)该公司为制定奖励方案,现建立函数模型y=f(x),请你根据题意,写出函数模型应满足的条件.(2)现有两个函数模型:①y=120x+1;②y=log2x-2.试分析这两个函数模型是否符合公司要求.课时作业(十二)1.A[解析]在对数函数、幂函数、指数函数中,指数函数的增大速度最快,故排除B,C;指数函数中,底数越大,函数的增大速度越快,故选A.2.D[解析]设隔墙的长度为x(0<x<6)米,矩形的面积为y平方米,则y=x×24−4x2=2x(6-x)=-2(x-3)2+18,所以当x=3时,y取得最大值.故选D.3.C[解析]将x=0.50,y=-0.99代入计算,可以排除A;将x=2.01,y=0.98代入计算,可以排除B,D;将各组数据代入函数y=log2x,可知满足题意.故选C.4.A[解析]设该乘客乘坐出租车行驶的路程为x km.根据题意可得8+1.4×5+2.1×(x-8)=44.4,解得x=22.故选A.5.4.24[解析]因为m=6.5,所以[m]=6,则f(6.5)=1.06×(0.5×6+1)=4.24.6.B[解析]由题意得,n235≤3%,解得n≤7.05,所以若这批米合格,则n不超过7.7.B [解析] 单位时间的运输量逐步提高时,运输总量的增长速度越来越快,即图像在某点的切线的斜率随着自变量的增加会越来越大,故函数图像应一直是下凹的.故选B .8.C [解析] 设利润为f (x )万元,则f (x )=25x-(3000+20x-0.1x 2)=0.1x 2+5x-3000≥0,得x ≥150,所以生产者不亏本时的最低产量为150台.故选C .9.B [解析] 由题意,分流前产品A 的年产值为100t 万元,分流x 人后,产品A 的年产值为(100-x )(1+1.2x %)t 万元,则由{0<x <100,x ∈N *,(100-x)(1+1.2x%)t ≥100t,解得0<x ≤503,且x ∈N *,所以x 的最大值为16.故选B .10.D [解析] 设该公司的年收入为x 万元,纳税额为y 万元,则由题意得y={x ·p%,x ≤280,280·p%+(x -280)·(p +2)%,x >280,依题有280·p%+(x -280)·(p+2)%x=(p+0.25)%,解得x=320.故选D .11.180 [解析] 依题意知20−x 20=y -824−8,即x=54(24-y ),所以阴影部分的面积S=xy=54(24-y )·y=54(-y 2+24y )=-54(y-12)2+180,0<y<24,所以当y=12时,S 取得最大值180.12.7 [解析] 设第n (n ∈N *)年的年产量(单位:吨)为a n ,则a 1=12×1×2×3=3.当n ≥2时,a n =f (n )-f (n-1)=12n (n+1)(2n+1)-12n (n-1)(2n-1)=3n 2,又a 1=3也符合a n =3n 2,所以a n =3n 2(n ∈N *).令a n ≤150,即3n 2≤150,解得-5√2≤n ≤5√2,所以1≤n ≤7,n ∈N *,故最长的生产期限为7年. 13.24 [解析] 由已知条件,得192=e b,且48=e22k+b=e b ·(e 11k )2,所以e11k=(48192)12=(14)12=12,设该食品在33 ℃的保鲜时间是t h ,则t=e 33k+b =192e 33k =192·(e 11k )3=192×(12)3=24. 14.解:(1)因为y 与(x-0.4)成反比例,所以设y=kx -0.4(k ≠0,0.55≤x ≤0.75). 把x=0.65,y=0.8代入上式,得0.8=k0.65−0.4,得k=0.2.所以y=0.2x -0.4=15x -2, 即y 与x 之间的函数关系式为y=15x -2(0.55≤x ≤0.75). (2)根据题意,得(1+15x -2)·(x-0.3)=1×(0.8-0.3)×(1+20%), 整理得x 2-1.1x+0.3=0,解得x=0.5或x=0.6. 经检验0.5,0.6都是所列方程的根. 因为0.55≤x ≤0.75,所以x=0.5不符合题意,应舍去,所以x=0.6.所以当电价调至每千瓦时0.6元时,本年度电力部门的收益将比上年度增加20%. 15.解:(1)设每年砍伐面积的百分比为x (0<x<1), 则a (1-x )10=12a ,即(1-x )10=12, 解得x=1-(12)110.故每年砍伐面积的百分比为1-(12)110.(2)设经过m年剩余面积为原来的√22,则a(1-x)m=√22a,即(12)m10=(12)12,即m10=12,解得m=5.故到今年为止,已砍伐了5年.(3)设从今年开始,最多还能砍伐n年,则n年后剩余面积为√22a(1-x)n.令√22a(1-x)n≥14a,即(1-x)n≥√24,即(12)n10≥(12)32,即n10≤32,解得n≤15,故今后最多还能砍伐15年.16.解:(1)由题知,函数模型y=f(x)满足的条件是:(i)当x∈[10,100]时,f(x)是增函数;(ii)当x∈[10,100]时,f(x)≤5恒成立;(iii)当x∈[10,100]时,f(x)≤x5恒成立.(2)对于函数模型①y=120x+1,它在[10,100]上是增函数,满足条件(i);但当x=80时,y=5,因此,当x>80时,y>5,不满足条件(ii).故该函数模型不符合公司要求.对于函数模型②y=log2x-2,它在[10,100]上是增函数,满足条件(i);当x=100时,y max=log2100-2=2log25<5,即f(x)≤5恒成立,满足条件(ii);设h(x)=log2x-2-15x,则h'(x)=log2ex-15,因为x∈[10,100],所以1100≤1x≤110,所以h'(x)≤log2e10-15<210-15=0,所以h(x)在[10,100]上是减函数,因此,h(x)≤h(10)=log210-4<0,即f(x)≤x5恒成立,满足条件(iii).所以该函数模型符合公司要求.综上,对数函数模型y=log2x-2符合公司要求.。
高考数学(文)总复习:创新思维课时规范练(含答案)第二章 第九节 函数模型及其应用
课时规范练A组基础对点练1.下列函数中随x的增大而增长速度最快的是()A.v=1100·ex B.v=100ln xC.v=x100D.v=100×2x答案:A2.(2019·开封质检)用长度为24(单位:米)的材料围成一矩形场地,中间加两道隔墙,要使矩形的面积最大,则隔墙的长度为()A.3米B.4米C.6米D.12米解析:设隔墙的长为x(0<x<6)米,矩形的面积为y平方米,则y=x×24-4x2=2x(6-x)=-2(x-3)2+18,所以当x=3时,y取得最大值.答案:A3.某商场销售A型商品,已知该商品的进价是每件3元,且销售单价与日均销售量的关系如表所示:请根据以上数据分析,要使该商品的日均销售利润最大,则此商品的定价(单位:元/件)应为()A.4 B.5.5C.8.5 D.10解析:由题意可设定价为x元/件,利润为y元,则y=(x-3)[400-40(x-4)]=40(-x2+17x-42),故当x=8.5时,y有最大值,故选C.答案:C4.(2019·济南模拟)某种动物繁殖量y只与时间x年的关系为y=a log3(x+1),设这种动物第2年有100只,到第8年它们将发展到()A.200只B.300只C.400只D.500只解析:∵繁殖数量y只与时间x年的关系为y=a log3(x+1),这种动物第2年有100只,∴100=a log 3(2+1),∴a =100,∴y =100log 3(x +1),∴当x =8时,y =100log 3(8+1)=100×2=200.故选A.答案:A5.某厂有许多形状为直角梯形的铁皮边角料,如图,为降低消耗,开源节流,现要从这些边角料上截取矩形铁片(如图中阴影部分)备用,当截取的矩形面积最大时,矩形两边长x ,y 应为( )A .x =15,y =12B .x =12,y =15C .x =14,y =10D .x =10,y =14解析:由三角形相似得24-y 24-8=x 20, 得x =54(24-y ),由0<x ≤20得,8≤y <24,所以S =xy =-54(y -12)2+180,所以当y =12时,S 有最大值,此时x =15.答案:A6.某电视新产品投放市场后第一个月销售100台,第二个月销售200台,第三个月销售400台,第四个月销售790台,则下列函数模型中能较好地反映销量y 与投放市场的月数x 之间关系的是( )A .y =100xB .y =50x 2-50x +100C .y =50×2xD .y =100log 2x +100解析:根据函数模型的增长差异和题目中的数据可知,应为指数型函数模型,代入数据验证即可得.答案:C7.(2019·南昌模拟)某电信公司推出两种手机收费方式:A 种方式是月租20元,B 种方式是月租0元.一个月的本地网内通话时间t (分钟)与电话费S (元)的函数关系如图所示,当通话150分钟时,这两种方式的电话费相差__________.解析:依题意可设S A(t)=20+kt,S B(t)=mt.又S A(100)=S B(100),∴100k+20=100m,得k-m=-0.2,于是S A(150)-S B(150)=20+150k-150m=20+150×(-0.2)=-10,即两种方式的电话费相差10元.答案:10元8.(2019·唐山模拟)某人计划购买一辆A型轿车,售价为14.4万元,购买后轿车一年的保险费、汽油费、年检费、停车费等约需2.4万元,同时汽车年折旧率约为10%(即这辆车每年减少它的价值的10%),试问,大约使用________年后,花费在该车上的费用(含折旧费)达到14.4万元?解析:设使用x年后花费在该车上的费用达到14.4万元.依题意可得,14.4(1-0.9x)+2.4x=14.4.化简得:x-6×0.9x=0,令f(x)=x-6×0.9x.因为f(3)=-1.374<0,f(4)=0.063 4>0,所以函数f(x)在(3,4)上应有一个零点.故大约使用4年后,花费在该车上的费用达到14.4万元.答案:49.一片森林原来面积为a,计划每年砍伐一些树,且每年砍伐面积的百分比相等,当砍伐到面积的一半时,所用时间是10年,为保护生态环境,森林面积至少要保留原面积的14,已知到今年为止,森林剩余面积为原来的22.(1)求每年砍伐面积的百分比;(2)到今年为止,该森林已砍伐了多少年?10.某厂生产某种零件,每个零件的成本为40元,出厂单价定为60元.该厂为鼓励销售商订购,决定当一次订购量超过100个时,每多订购一个,订购的 全部零件的出厂单价就降低0.02元,但实际出厂单价不低于51元.(1)当一次订购量为多少个时,零件的实际出厂单价恰降为51元?(2)设一次订购量为x 个,零件的实际出厂单价为p 元,写出函数p =f (x )的表达式;(3)当销售商一次订购多少个时,该厂获得的利润为6 000元?( 工厂售出一个零件的利润=实际出厂单价-成本)解析:(1)设每个零件的实际出厂价格恰好降为51元时,一次订购量为x 0个,则x 0=100+60-510.02=550(个),因此,当一次订购量为550个时,每个零件的实际出厂价格恰好降为51元.(2)当0≤x ≤100时,p =60;当100<x <550时,p =60-0.02(x -100)=62-x 50;当x ≥550时,p =51.所以p =⎩⎪⎨⎪⎧ 60(0≤x ≤100),62-x 50(100<x <550),(x ∈N *),51(x ≥550).(3)设销售商的一次订购量为x 个时,工厂获得的利润为L 元,则L =(p -40)x=⎩⎪⎨⎪⎧ 20x (0≤x ≤100),22x -x 250(100<x <550),(x ∈N *),11x (x ≥550),当0≤x ≤100时,L ≤2 000;当x ≥550时,L ≥6 050; 当100<x <550时,L =22x -x 250.由⎩⎪⎨⎪⎧ 22x -x 250=6 000,100<x <550,解得x =500.B 组 能力提升练11.世界人口在过去40年翻了一番,则每年人口平均增长率约是(参考数据lg2≈0.301 0,100.007 5≈1.017)( )A .1.5%B .1.6%C .1.7%D .1.8% 解析:由题意得(1+x )40=2,∴40lg(1+x )=lg 2,∴lg(1+x )≈0.007 5,∴1+x =100.007 5,∴x ≈0.017=1.7%.故选C.答案:C12.已知某服装厂生产某种品牌的衣服,销售量q (x )(单位:百件)关于每件衣服的利润x (单位:元)的函数解析式为 q (x )=⎩⎨⎧ 1 260x +1,0<x ≤20,90-35x ,20<x ≤180,则当该服装厂所获效益最大时,x =( )A .20B .60C .80D .40 解析:设效益为f (x )则f (x )=100xq (x )=⎩⎨⎧ 126 000x x +1,0<x ≤20,100x (90-35x ),20<x ≤180.当0<x ≤20时,f (x )=126 000x x +1=126 000-126 000x +1,f (x )在区间(0,20]上单调递增,所以当x =20时,f (x )有最大值120 000.当20<x ≤180时,f (x )=9 000x -3005·x x ,则f ′(x )=9 000-4505·x ,令f ′(x )=0,∴x =80.当20<x <80时,f ′(x )>0,f (x )单调递增,当80≤x ≤180时,f ′(x )≤0,f (x )单调递减,所以当x =80时,f (x )有极大值,也是最大值240 000.故选C.答案:C13.某商场对顾客实行购物优惠活动,规定一次性购物付款总额:(1)如果不超过200元,则不给予优惠.(2)如果超过200元但不超过500元,则按标价给予9折优惠.(3)如果超过500元,则500元按第(2)条给予优惠,剩余部分给予7折优惠. 某人单独购买A ,B 商品分别付款100元和450元,假设他一次性购买A ,B 两件商品,则应付款是________元.解析:设商品总额为x 元,应付金额为y 元,则y =⎩⎨⎧ x ,0≤x ≤200,0.9x ,200<x ≤500,0.7x +100,x >500,令0.9x =450,得x =500, 则0.7×(500+100)+100=520(元).答案:52014.(2019·沈阳模拟)一个容器装有细沙a cm 3,细沙从容器底部一个细微的小孔慢慢地匀速漏出,t min 后剩余的细沙量为y =a e -bt (cm 3),经过8 min 后发现容器内还有一半的沙子,则再经过________ min ,容器中的沙子只有开始时的八分之一.解析:依题意有a ·e -b ×8=12a ,所以b =ln 28,所以y =a ·e -ln 28t .若容器中的沙子只有开始时的八分之一,则有a ·e -ln 28t =18a ,解得t =24,所以再经过的时间为24-8=16 min.答案:1615.随着中国一带一路的深入发展,中国某陶瓷厂为了适应发展,制定了以下生产计划,每天生产陶瓷的固定成本为14 000元,每生产一件产品,成本增加 210元.已知该产品的日销售量f (x )(单位:件)与产量x (单位:件)之间的关系式为f (x )=⎩⎪⎨⎪⎧ 1625x 2(0≤x ≤400)x -144(400<x <500),每件产品的售价g (x )(单位:元)与产量x 之间的关系式为g (x )=⎩⎪⎨⎪⎧ -58x +750(0≤x ≤400)-x +900(400<x <500).(1)写出该陶瓷厂的日销售利润Q (x )(单位:元)与产量x 之间的关系式;(2)若要使得日销售利润最大,则该陶瓷厂每天应生产多少件产品,并求出最大利润.解析:(1)设总成本为c (x )(单位:元)则c (x )=14 000+210x ,所以日销售利润Q (x )=f (x )g (x )-c (x )=⎩⎪⎨⎪⎧ -11 000x 3+65x 2-210x -14 000(0≤x ≤400),-x 2+834x -143 600(400<x <500).(2)由(1)知,当0≤x ≤400时,Q ′(x )=-31 000x 2+125x -210. 令Q ′(x )=0,解得x =100或x =700(舍去).易知当x ∈[0,100)时,Q ′(x )<0;当x ∈(100,400]时,Q ′(x )>0.所以Q (x )在区间[0,100)上单调递减,在区间(100,400]上单调递增.因为Q(0)=-14 000,Q(400)=30 000,所以Q(x)在x=400时取到最大值,且最大值为30 000. 当400<x<500时,Q(x)=-x2+834x-143 600.当x=-8342×(-1)=417时,Q(x)取得最大值,最大值为Q(x)max=-4172+834×417-143 600=30 289.综上所述,若要使得日销售利润最大,则该陶瓷厂每天应生产417件产品,其最大利润为30 289元.16.(2019·湖北八校联考)已知某工厂每天固定成本是4万元,每生产一件产品成本增加100元,工厂每件产品的出厂价定为a元时,生产x(x>0)件产品的销售收入是R(x)=-14x2+500x(元),P(x)为每天生产x件产品的平均利润(平均利润=总利润总产量).销售商从工厂以每件a元进货后,又以每件b元销售,且b=a+λ(c-a),其中c为最高限价(a<b<c),λ为销售乐观系数,据市场调查,λ由当b-a是c-b,c-a的比例中项时来确定.(1)每天生产量x为多少时,平均利润P(x)取得最大值?并求P(x)的最大值;(2)求乐观系数λ的值;(3)若c=600,当厂家平均利润最大时,求a与b的值.解析:(1)依题意设总利润为L(x),则L(x)=-14x2+500x-100x-40 000=-14x2+400x-40 000(x>0),∴P(x)=-14x2+400x-40 000x=-14x-40 000x+400≤-200+400=200,当且仅当14x=40 000x,即x=400时等号成立.故当每天生产量为400件时,平均利润最大,最大值为200元.(2)由b=a+λ(c-a),得λ=b-a c-a.∵b-a是c-b,c-a的比例中项,∴(b-a)2=(c-b)(c-a),两边同时除以(b -a )2,得1=(c -a )-(b -a )b -a ·c -a b -a =(c -a b -a -1)c -a b -a, ∴1=(1λ-1)·1λ,解得λ=5-12或λ=-5-12(舍去). 故乐观系数λ的值为5-12.(3)∵厂家平均利润最大,∴a =40 000x +100+P (x )=40 000400+100+200=400.由b =a +λ(c -a ),结合(2)可得b -a =λ(c -a )=100(5-1), ∴b =100(5+3).故a 与b 的值分别为400,100(5+3).。
必修1 新课标 数学 《3.2.2 函数模型的应用实例》测试题
《3.2.2 函数模型的应用实例》测试题一、选择题1.某种细胞在正常培养过程中,时刻(单位:分)与细胞数(单位:个)的部分数据如下:个细胞时的时刻最接近于)A.200B.220C.240D.260考查目的:考查观察分析能力、函数建模能力和运用指数函数的性质解决实际问题的能力.答案:A.解析:由表中数据可以看出,与的函数关系式为.令,则,而,∴繁殖到1000个细胞时,时刻最接近200分,故答案应选A.2.(2011北京)据统计,一名工人组装第件某产品所用的时间(单位:分钟)为(为常数).已知工人组装第4件产品用时30分钟,组装第A件产品时用时15分钟,那么的值分别是( ).A.75,25B.75,16C.60,25D.60,16考查目的:考查读题审题能力和分段函数模型的应用能力.答案:D.解析:由条件可知,时所用时间为常数,所以组装第4件产品用时必然满足第一个分段函数,即,∴,,∴,故答案应选D.3.如果在今后若干年内,我国国民经济生产总值都控制在平均每年增长8%的水平,那么要达到国民经济生产总值比2009年翻两番的年份大约是( ).(,,,)A.2018年B.2025年C.2027年D.2028年考查目的:考查增长率问题和指数、对数的相互转化及其运算.答案:C.解析:设2009年总值为,经过年翻两番,则,∴,∴,故答案应选C.二、填空题4.某商品零售价2012年比2011年上涨了25%,欲控制该商品零售价2013年比2011年只上涨10%,则2013年应比2012年降价________%.考查目的:考查读题审题能力、增长率问题解决能力和函数思想.答案:12.解析:设该商品零售价2011年为元,2013年应比2012年降价,则2012年零售价为元,而2013年零售价为元,∴,解得.5.某市居民自来水收费标准如下:每户每月用水不超过4吨时,每吨为1.80元.当用水超过4吨时,超过的部分按每吨3.00元计算.若甲、乙两户某月共交水费元,且甲乙两户某月用水量分别为吨、吨,则关于的函数关系式为 .考查目的:考查分段函数模型应用能力和分类讨论思想.答案:.解析:由题意知,当甲乙两户用水量都不超过4吨时,即当时,;当甲户用水量超过4吨,乙户用水量不超过4吨时,即当时,;当甲乙两户用水量都超过4吨时,即当时,.6.A市和B市分别有某种库存机器12台和6台,现决定支援C村10台,D村8台.已知从A市调运一台机器到C村和D村的运费分别是400元和800元;从B市调运一台机器到C 村和D村的运费分别是300元和500元.设B市运往C村机器台,若要求运费W不超过9000元,则共有种调运方案.考查目的:考查函数建模与实际应用能力.答案:3.解析:由于B市运往C村机器台,则B市运往D村机器台,A市运往C村机器台,则A市运往D村机器台,∴,由得.∵是自然数,∴可取0,1,2,∴共有3种调运方案.三、解答题7.(2012上海春)某环线地铁按内、外环线同时运行,内、外环线的长均为30千米(忽略内、外环线长度差异).⑴当9列列车同时在内环线上运行时,要使内环线乘客最长候车时间为10分钟,求内环线列车的最小平均速度;⑵新调整的方案要求内环线列车平均速度为25千米/小时,外环线列车平均速度为30千米/小时.现内、外环线共有18列列车全部投入运行,要使内、外环线乘客的最长候车时间之差不超过1分钟,问:内、外环线应各投入几列列车运行?考查目的:考查读题审题能力、函数建模能力,以及函数与不等式的综合应用能力.答案:⑴20;⑵10.解析: ⑴设内环线列车运行的平均速度为千米/小时,由题意得,解得,∴要使内环线乘客最长候车时间为10分钟,列车的最小平均速度是20千米/小时.⑵设内环线投入列列车运行,则外环线投入列列车运行,内、外环线乘客最长候车时间分别为分钟,则,故,可化为,解得,∴.又∵,∴,∴当内环线投入列,外环线投入8列列车运行,内、外环线乘客最长候车时间之差不超过1分钟.8.(2011湖南)如图,长方形物体E在雨中沿面P(面积为S)的垂直方向作匀速移动,速度为,雨速沿E移动方向的分速度为.E移动时单位时间内的淋雨量包括两部分:①P或P的平行面(只有一个面淋雨)的淋雨量,假设其值与成正比,比例系数为;②其它面的淋雨量之和,其值为,记为E移动过程中的总淋雨量,当移动距离,面积时.⑴写出的表达式;⑵设,,试根据的不同取值范围,确定移动速度,使总淋雨量最少.考查目的:考查读题审题能力、函数建模能力和函数性质的综合应用,以及分类讨论思想.答案:⑴;⑵当时,是关于的减函数,故当时,.当时,在上,是关于的减函数;在上,是关于的增函数;故当时,.解析:⑴由题意知,E移动时单位时间内的淋雨量为,故.⑵由⑴知,当时,当时,,故.当时,是关于的减函数,故当时,.当时,在上,是关于的减函数;在上,是关于的增函数;故当时,.。
高考文科数学题型复习《函数模型及其应用》真题汇总含答案
高考文科数学题型复习《函数模型及其应用》真题汇总含答案1.(2019·北京·文·第14题)李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60元/盒、65元/盒、80元/盒、90元/盒.为增加销量,李明对这四种水果进行促销:一次购买水果的总价达到120元,顾客就少付x 元.每笔订单顾客网上支付成功后,李明会得到支付款的80%.①当10x =时,顾客一次购买草莓和西瓜各1盒,需要支付 元;②在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x 的最大值为 .【答案】①130;②15.【解析】①当10x =时,顾客一次购买草莓和西瓜各1盒,可得6080140+=(元),即有顾客需要支付14010130-=(元);②在促销活动中,设订单总金额为m 元,可得()80%70%m x m -⨯⨯,即有8m x ,由题意可得120m ,可得120158x =,则x 的最大值为15元. 2.(2014高考数学湖北文科·第16题)某项研究表明,在考虑行车安全的情况下,某路段车流量F (单位时间内经过测量点的车辆数,单位:辆/小时)与车流速度v (假设车辆以相同速度v 行驶,单位:米/秒)平均车长l (单位:米)的值有关,其公式为l v v v F 2018760002++=(1)如果不限定车型,05.6=l,则最大车流量为_______辆/小时; (2)如果限定车型,5=l ,则最大车流量比(1)中的最大车流量增加 辆/小时.【答案】(1)1900 (2)100解析:(1)依题意知,l >0,v >0,所以当l =6.05时,F =76000v v 2+18v +121=76000v +121v +18≤760002v ·121v+18=1900,当且仅当v =11时,取等号. (2)当l =5时,F =76000v v 2+18v +100=76000v +100v+18≤2000, 当且仅当v =10时,取等号,此时比(1)中的最大车流量增加100辆/小时.。
2021-2022学年新教材湘教版高中数学必修第一册4.5函数模型及其应用 课时练习题
4.5 函数模型及其应用1、几种函数增长快慢的比较 ................................................................................. 1 2、形形色色的函数模型 .. (7)1、几种函数增长快慢的比较1.某学校开展研究性学习活动,某同学获得一组实验数据如下表:对于表中数据,现给出以下拟合曲线,其中拟合程度最好的是( ) A .y =2x -2 B .y =⎝ ⎛⎭⎪⎫12xC .y =log 2xD .y =12(x 2-1)解析:选D 法一:相邻的自变量之差从左到右依次大约为1,相邻的函数值之差大约为2.5,3.5,4.5,6,基本上是逐渐增加的,抛物线拟合程度最好,故选D.法二:可以采用特殊值代入法,取某个x 的值代入,再比较函数值是否与表中数据相符.可取x =4,经检验易知选D.2.有甲、乙、丙、丁四种不同品牌的自驾车,其跑车时间均为x 小时,跑过的路程分别满足关系式:f 1(x )=x 2,f 2(x )=4x ,f 3(x )=log 3(x +1),f 4(x )=2x -1,则5个小时以后跑在最前面的为( )A .甲B .乙C .丙D .丁解析:选D 法一:分别作出四个函数的图象(图略),利用数形结合,知5个小时后丁车在最前面.法二:由于4个函数均为增函数,且f 1(5)=52=25,f 2(5)=20,f 3(5)=log 3(5+1)=1+log 32,f 4(5)=25-1=31,f 4(5)最大,所以5个小时后丁车在最前面,故选D.3.(2021·安徽省级示范高中高一期中)若x ∈(0,1),则下列结论正确的是( )A .2x >x 12>lg x B .2x >lg x >x 12 C .x 12>2x >lg xD .lg x >x 12>2x解析:选A 如图所示,结合y =2x ,y =x 12及y =lg x 的图象易知,当x ∈(0,1)时,2x >x 12>lg x ,故选A.4.某校甲、乙两食堂某年1月份的营业额相等,甲食堂的营业额逐月增加,并且每月的增加值相同;乙食堂的营业额也逐月增加,且每月增加的百分率相同.已知本年9月份两食堂的营业额又相等,则本年5月份( )A .甲食堂的营业额较高B .乙食堂的营业额较高C .甲、乙两食堂的营业额相同D .不能确定甲、乙哪个食堂的营业额较高解析:选A 设甲、乙两食堂1月份的营业额均为m ,甲食堂的营业额每月增加a (a >0),乙食堂的营业额每月增加的百分率为x ,由题意可知,m +8a =m ×(1+x )8,则5月份甲食堂的营业额y 1=m +4a ,乙食堂的营业额y 2=m ×(1+x )4=m (m +8a ).因为y 21-y 22=(m +4a )2-m (m +8a )=16a 2>0,所以y 1>y 2.故本年5月份甲食堂的营业额较高.5.某企业的一个车间有8名工人,以往每人年薪为1万元.从今年起,计划每人的年薪比上一年增加10%,另外每年新招3名工人,每名新工人的第一年年薪为8千元,第二年起与老工人的年薪相同.若以今年为第一年,那么第x 年企业付给工人的工资总额y(万元)表示成x的函数,其表达式为() A.y=(3x+5)1.1x+2.4B.y=8×1.1x+2.4xC.y=(3x+8)1.1x+2.4D.y=(3x+5)1.1x-1+2.4解析:选A第一年企业付给工人的工资总额为8×1.1+3×0.8(万元),第二年企业付给工人的工资总额为(8+3)×1.12+3×0.8(万元),…,以此类推,第x年企业付给工人的工资总额应为y=[8+3(x-1)]×1.1x+2.4=(3x+5)1.1x+2.4(万元).6.函数y=x2与函数y=x ln x在区间(1,+∞)上增长较快的一个是________.解析:当x变大时,x比ln x增长要快,∴x2要比x ln x增长的要快.答案:y=x27.一种专门侵占内存的计算机病毒,开机时占据内存2 KB,然后每3分钟自身复制一次,复制后所占内存是原来的2倍,那么开机后经过________分钟,该病毒占据64 MB内存(1 MB=210 KB).解析:设开机后经过n个3分钟后,该病毒占据64 MB内存,则2×2n=64×210=216,∴n=15,故时间为15×3=45(分).答案:458.生活经验告诉我们,当水注入容器(设单位时间内进水量相同)时,水的高度随着时间的变化而变化,在下图中请选择与容器相匹配的图象,A对应______;B对应_____;C对应______;D对应______.解析:A容器下粗上细,水高度的变化先慢后快,故与(4)对应;B容器为球形,水高度变化为快—慢—快,应与(1)对应;C,D容器都是柱形的,水高度的变化速度都应是直线型,但C容器细,D容器粗,故水高度的变化为:C容器水高度变化快,与(3)对应,D容器水高度变化慢,与(2)对应.答案:(4)(1)(3)(2)9.画出函数f(x)=x与函数g(x)=14x2-2的图象,并比较两者在[0,+∞)上的大小关系.解:函数f(x)与g(x)的图象如图所示.根据图象易得:当0≤x<4时,f(x)>g(x);当x=4时,f(x)=g(x);当x>4时,f(x)<g(x).10.每年的3月12日是植树节,全国各地在这一天都会开展各种形式、各种规模的义务植树活动,某市现有树木面积10万平方米,计划今后5年内扩大树木面积,有两种方案如下:方案一:每年植树1万平方米;方案二:每年树木面积比上一年增加9%.你觉得哪种方案较好.(参考数据:(1+9%)5≈1.538 6)解:方案一:5年后树木面积是10+1×5=15(万平方米).方案二:5年后树木面积是10×(1+9%)5≈15.386(万平方米).∵15.386>15,∴方案二较好.11.当0<x<1时,f(x)=x2,g(x)=x 12,h(x)=x-2的大小关系是()A.h(x)<g(x)<f(x)B.h(x)<f(x)<g(x) C.g(x)<h(x)<f(x) D.f(x)<g(x)<h(x)解析:选D在同一坐标下作出函数f(x)=x2,g(x)=x 12,h(x)=x-2的图象.由图象知,D正确.12.某地发生地震后,地震专家对该地区发生的余震进行了监测,记录的部分数据如下表:地震强度(J)1.6×10193.2×10194.5×1019 6.4×1019震级(里氏) 5.0 5.2 5.3 5.4地震强度x(×1019)和震级y的模拟函数关系可以选用y=a lg x+b(其中a,b 为常数).利用散点图可得a=________,b=________.(取lg 2=0.3进行计算)解析:由模拟函数及散点图得a lg 1.6+b=5,a lg 3.2+b=5.2,两式相减得a(lg 3.2-lg 1.6)=0.2,所以a lg 2=0.2,解得a=2 3,所以b=5-23lg 1.6=5-23(4lg 2-1)=5-23×15=7315.答案:23731513.某人对东北一种松树的生长进行了研究,收集了其高度h(米)与生长时间t(年)的相关数据,选择h=mt+b与h=log a(t+1)来拟合h与t的关系,你认为哪个符合?并预测第8年的松树高度.t(年)12345 6h(米)0.61 1.3 1.5 1.6 1.7解:在坐标轴上标出t (年)与h (米)之间的关系如图所示.由图象可以看出增长的速度越来越慢,用一次函数模型拟合不合适,则选用对数函数模型比较合理.不妨将(2,1)代入h =log a (t +1)中,得1=log a 3,解得a =3. 故可用函数h =log 3(t +1)来拟合这个实际问题.当t =8时,求得h =log 3(8+1)=2,故可预测第8年松树的高度为2米. 14.假设有一套住房的房价从2011年的20万元上涨到2021年的40万元.下表给出了两种价格增长方式,其中P 1是按直线上升的房价,P 2是按指数增长的房价,t 是2011年以来经过的年数.t 0 5 10 15 20 P 1/万元 20 40 P 2/万元2040(1)求函数P 1=f (t )的解析式; (2)求函数P 2=g (t )的解析式;(3)完成上表空格中的数据,并在同一直角坐标系中画出两个函数的图象,然后比较两种价格增长方式的差异.解:(1)设f (t )=kt +b (k ≠0), 则⎩⎨⎧b =20,10k +b =40⇒⎩⎨⎧b =20,k =2. ∴P 1=f (t )=2t +20.(2)设g (t )=ma t (a >0,且a ≠1), 则⎩⎨⎧m =20,ma 10=40⇒⎩⎪⎨⎪⎧m =20,a =102.∴P 2=g (t )=20×(102)t =20×2t 10.(3)图象如图.表格中的数据如下表所示:t 05101520P1/万元2030405060P2/万元20202404028012增长的价格,但10年后,P2价格增长速度很快,远远超出P1的价格并且时间越长,差别越大.2、形形色色的函数模型1.某种产品今年的产量是a,如果保持5%的年增长率,那么经过x年(x∈N +),该产品的产量y满足()A.y=a(1+5%x)B.y=a+5%C.y=a(1+5%)x-1D.y=a(1+5%)x解析:选D经过1年,y=a(1+5%),经过2年,y=a(1+5%)2,…,经过x年,y=a(1+5%)x.2.某种放射性元素,每年在前一年的基础上按相同比例衰减,100年后只剩原来的一半,现有这种元素1克,3年后剩下()A.0.015克B.(1-0.5%)3克C.0.925克D.1000.125 克解析:选D设每年减少的比例为x,因此1克这种放射性元素,经过100年后剩余1×(1-x)100克,依题意得(1-x)100=0.5,所以x=1-1000.5,3年后剩余为(1-x)3,将x的值代入,得结果为1000.125,故选D.3.某商场2020年在销售某种空调旺季的4天内的利润如下表所示,时间t 123 4利润y(千元)2 3.988.0115.99现构建一个销售这种空调的函数模型,应是下列函数中的()A.y=log2t B.y=2tC.y=t2D.y=2t解析:选B作出散点图如图所示.由散点图可知,图象不是直线,排除选项D;图象不符合对数函数的图象特征,排除选项A;把t=1,2,3,4代入B,C选项的函数中,函数y=2t的函数值最接近表格中的对应值,故选B.4.(多选)如图,某池塘里浮萍的面积y(单位:m2)与时间t(单位:月)的关系为y=a t.关于下列说法正确的是()A.浮萍每月的增长率为1B.第5个月时,浮萍面积就会超过30 m2C.浮萍每月增加的面积都相等D.若浮萍蔓延到2 m2,3m2,6 m2所经过的时间分别是t1,t2,t3,则t1+t2=t3解析:选ABD图象过(1,2)点,∴2=a1,即a=2,∴y=2t.∵2t+1-2t2t=2t(2-1)2t=1,∴每月的增长率为1,A正确.当t=5时,y=25=32>30,∴B正确.∵第二个月比第一个月增加y 2-y 1=22-2=2(m 2),第三个月比第二个月增加y 3-y 2=23-22=4(m 2)≠y 2-y 1,∴C 不正确.∵2=2t 1,3=2t 2,6=2t 3, ∴t 1=log 22,t 2=log 23,t 3=log 26,∴t 1+t 2=log 22+log 23=log 26=t 3,D 正确.故选A 、B 、D.5.我们处在一个有声世界里,不同场合,人们对声音的音量会有不同要求.音量大小的单位是分贝(dB),对于一个强度为I 的声波,其音量的大小η可由如下公式计算:η=10·lg I I 0(其中I 0是人耳能听到的声音的最低声波强度),设η1=70 dB的声音强度为I 1,η2=60 dB 的声音强度为I 2,则I 1是I 2的( )A.76倍 B .10倍 C .1076倍D .ln 76倍解析:选B 依题意可知,η1=10·lg I 1I 0,η2=10·lg I 2I 0,所以η1-η2=10·lg I 1I 0-10·lg I 2I 0,则1=lg I 1-lg I 2,所以I 1I 2=10.故选B.6.在一场足球比赛中,一球员从球门正前方10 m 处将球踢起射向球门,当球飞行的水平距离是6 m 时,球到达最高点,此时球高3 m ,已知球门高2.44 m 并且球按抛物线飞行,球________踢进球门(填“能”或“不能”).解析:建立如图所示的坐标系,抛物线经过点(0,0),顶点为(6,3). 设其解析式为y =a (x -6)2+3,把x =0,y =0代入,得a =-112, ∴y =-112(x -6)2+3.当x =10时,y =-112(10-6)2+3=53<2.44. ∴球能踢进球门. 答案:能7.在不考虑空气阻力的情况下,火箭的最大速度v m/s 和燃料的质量M kg ,火箭(除燃料外)的质量m kg 的函数关系式是v =2 000·ln ⎝ ⎛⎭⎪⎫1+M m .当燃料质量是火箭质量的________倍时,火箭的最大速度可达12 km/s.解析:当v =12 000 m/s 时,2 000·ln ⎝ ⎛⎭⎪⎫1+M m =12 000,所以ln ⎝ ⎛⎭⎪⎫1+M m =6,所以Mm =e 6-1.答案:e 6-18.我们知道,燕子每年秋天都要从北方飞往南方过冬,研究燕子的科学家发现,两岁燕子的飞行速度可以表示为函数v =5log 2Q10,单位是m/s ,其中Q 表示燕子的耗氧量.(1)计算:燕子静止时的耗氧量是多少个单位?(2)当一只燕子的耗氧量是80个单位时,它的飞行速度是多少?解:(1)由题知,当燕子静止时,它的速度v =0,代入函数关系式可得0=5log 2Q10,解得Q =10.即燕子静止时的耗氧量是10个单位. (2)将耗氧量Q =80代入函数关系式,得 y =5log 28010=5log 28=15.即当一只燕子的耗氧量是80个单位时,它的飞行速度为15 m/s.9.某企业常年生产一种出口产品,根据预测可知,进入21世纪以来,该产品的产量平稳增长.记2015年为第1年,且前4年中,第x 年与年产量f (x )(万件)之间的关系如下表所示:若f (x )近似符合以下三种函数模型之一:f (x )=ax +b ,f (x )=2x +a ,f (x )=log 12x +a .(1)找出你认为最适合的函数模型,并说明理由,然后选取2015年和2017年的数据求出相应的解析式;(2)因遭受某国对该产品进行反倾销的影响,2021年的年产量比预计减少30%,试根据所建立的函数模型,确定2021年的年产量.解:(1)符合条件的是f (x )=ax +b , 若模型为f (x )=2x +a , 则由f (1)=21+a =4,得a =2, 即f (x )=2x +2,此时f (2)=6,f (3)=10,f (4)=18,与已知相差太大,不符合. 若模型为f (x )=log 12x +a ,则f (x )是减函数,与已知不符合. 由已知得⎩⎨⎧a +b =4,3a +b =7,解得⎩⎪⎨⎪⎧a =32,b =52.所以f (x )=32x +52,x ∈N .故最适合的函数模型解析式为f (x )=32x +52,x ∈N . (2)2021年预计年产量为f (7)=32×7+52=13, 2021年实际年产量为13×(1-30%)=9.1. 故2021年的年产量为9.1万件.10.某医药研究所开发一种新药,如果成年人按规定的剂量服用,据监测,服药后每毫升血液中的含药量y (单位:μg)与时间t (单位:h)之间近似满足如图所示的曲线.(1)写出服药后每毫升血液中的含药量y 与时间t 之间的函数关系式y =f (t );(2)据进一步测定:每毫升血液中含药量不少于0.25 μg 时,对治疗疾病有效,求服药一次治疗疾病的有效时间.解:(1)当0≤t <1时,y =kt ,由点M (1,4)在直线上,得4=k ,故y =4t ; 当t ≥1时,y =⎝ ⎛⎭⎪⎫12t -a ,由点M (1,4)在曲线上,得4=⎝ ⎛⎭⎪⎫121-a,解得a =3,即y =⎝ ⎛⎭⎪⎫12t -3.故y =f (t )=⎩⎨⎧4t ,0≤t <1,⎝ ⎛⎭⎪⎫12t -3,t ≥1.(2)由题意知f (t )≥0.25,则⎩⎨⎧4t ≥0.25,0≤t <1或⎩⎨⎧⎝ ⎛⎭⎪⎫12t -3≥0.25,t ≥1,解得116≤t ≤5. 所以服药一次治疗疾病的有效时间为5-116=7916(h).11.噪声污染已经成为影响人们身体健康和生活质量的严重问题.实践证明,声音强度D (分贝)由公式D =a lg I +b (a ,b 为非零常数)给出,其中I (W/cm 2)为声音能量.(1)当声音强度D 1,D 2,D 3满足D 1+2D 2=3D 3时,求对应的声音能量I 1,I 2,I 3满足的等量关系式;(2)当人们低声说话,声音能量为10-13 W/cm 2时,声音强度为30分贝;当人们正常说话,声音能量为10-12 W/cm 2时,声音强度为40分贝.当声音强度大于60分贝时属于噪音,一般人在100~120分贝的空间内,一分钟就会暂时性失聪.问声音能量在什么范围时,人会暂时性失聪.解:(1)∵D 1+2D 2=3D 3,∴a lg I 1+b +2(a lg I 2+b )=3(a lg I 3+b ), ∴lg I 1+2lg I 2=3lg I 3,∴I 1·I 22=I 33.(2)由题意得⎩⎨⎧-13a +b =30,-12a +b =40,⎩⎨⎧a =10,b =160,∴100<10lg I +160<120, ∴10-6<I <10-4.故当声音能量I ∈(10-6,10-4)时,人会暂时性失聪.12.中国的钨矿资源储量丰富,在全球已经探明的钨矿产资源储量中占比近70%,居全球首位.中国又属赣州钨矿资源最为丰富,其素有“世界钨都”之称.某科研单位在研发钨合金产品的过程中发现了一种新合金材料,由大数据测得该产品的性能指标值y 与这种新合金材料的含量x (单位:克)的关系为:当0≤x <6时,y 是x 的二次函数;当x ≥6时,y =⎝ ⎛⎭⎪⎫13x -t.测得数据如表(部分).(1)求y 关于x 的函数关系式y =f (x ); (2)求函数f (x )的最大值. 解:(1)当0≤x <6时,由题意, 设f (x )=ax 2+bx +c (a ≠0),由题中表格数据可得⎩⎪⎨⎪⎧f (0)=c =0,f (1)=a +b +c =74,f (2)=4a +2b +c =3,解得⎩⎪⎨⎪⎧a =-14 ,b =2,c =0.所以当0≤x <6时,f (x )=-14x 2+2x . 当x ≥6时,f (x )=⎝ ⎛⎭⎪⎫13x -t,由题中表格数据可得,f (9)=⎝ ⎛⎭⎪⎫139-t =19,解得t =7,所以当x ≥6时,f (x )=⎝ ⎛⎭⎪⎫13x -7.综上,f (x )=⎩⎪⎨⎪⎧-14x 2+2x ,0≤x <6,⎝ ⎛⎭⎪⎫13x -7,x ≥6.(2)当0≤x <6时,f (x )=-14x 2+2x =-14(x -4)2+4, 所以当x =4时,函数f (x )取得最大值,为4;当x ≥6时,f (x )=⎝ ⎛⎭⎪⎫13x -7单调递减,所以f (x )的最大值为f (6)=⎝ ⎛⎭⎪⎫136-7=3,因为4>3,所以函数f (x )的最大值为4.。
高中数学必修一同步练习题库:函数模型及其应用(填空题:容易)
函数模型及其应用〔填空题:容易〕1、某电视台应某企业之约播放两套连续剧.连续剧甲每次播放时间为80分钟,其中广告时间为1分钟,收视观众为60万;连续剧乙每次播放时间为40分钟,其中广告时间为1分钟,收视观众为20万.假设企业与电视台达成协议,要求电视台每周至少播放6分钟广告,而电视台每周只能为该企业提供不多于320分钟的节目时间.那么该电视台每周按要求并合理安排两套连续剧的播放次数,可使收视观众的最大人数为_______x2、长为6米、宽为4米的矩形,当长增加工米,且宽减少2米时面积最大,此时宽减少了米, 面积取得了最大值.3、某医院用甲、乙两种原材料为手术后病人配制营养餐,甲种原料每克含蛋白质5个单位和维生素C 10个单位,售价2元;乙种原料每克含蛋白质6个单位和维生素 C 20个单位,售价3元;假设病人每餐至少需蛋白质50个单位、维生素 C 140个单位,在满足营养要求的情况下最省的费用为4、〔10分〕某单位准备印制一批证书,现有两个印刷厂可供选择,甲厂费用分为制版费和印刷费两部分,先收取固定的制版费,再按印刷数量收取印刷费;乙厂直接按印刷数量收取印刷费.甲厂的总费用y1〔千元〕、乙厂的总费用y2 〔千元〕与印制证书数量x 〔千个〕的函数关系图分别如图中甲、乙所示.it f于元〕.1234567B9 *〔l〕甲厂的制版费为千元,印刷费为平均每个—元,甲厂的费用y i与证书数量x之间的函数关系为,〔2〕当印制证书数量不超过2千个时,乙厂的印刷费为平均每个元;〔3〕当印制证书数量超过2千个时,求乙厂的总费用与证书数量x之间的函数关系式为 ;〔4〕假设该单位需印制证书数量为8千个,该单位应选择哪个厂更节省费用?请说明理由5、如图,函数f(x)的图象是曲线 OAB,其中点O, A, B 的坐标分别为(0,0), (1,2), (3,1),那么f(f(3))的值 等于.[Log ->26、设,那么J SQ))的值为|log 2x(x >0 ][〞三.).那么打川.上) 八」_X 2+K (工)0)卜8、函数f (x) =l x+l (工<0) ,对任意的xC [0,「恒有f (x-a) wf(x) ( a>0)成立,那么实数a=.(3 A--.49--9、二次函数F 二的顶点坐标为I 2 ,,且,〞工)二°的两个实根之差等于7 ,/« =10、如图,二次函数 y=ax 2+ bx+c(a, b, c 为实数,点,假设ACXBC,那么实数a 的值为11、某地高山上温度从山脚起每升高 100m 降低0.6C.山顶的温度是 146C,山脚的温度是 26C,那么此山的高为 m.12、我国古代数学名著?数书九章?中有 天池盆测雨〞题:在下雨时,用一个圆台形的天池盆接雨水.天池盆盆口直径为二尺八寸,盆底直径为一尺二寸,盆深一尺八寸.假设盆中积水深九寸,那么平地降雨量是 ________ 寸.(注:①平地降雨量等于盆中积水体积除以盆口面积;②一尺等于十寸)13、里氏震级M 的计算公式为:二】趴4一坨遥,其中A 是测震仪记录的地震曲线的最大振幅, 工二是相应的标准地震的振幅.假设在一次地震中,测震仪记录的最大振幅是1000,此时标准地震的振幅为0.001,那么此次地震的震级为 级;9级地震的最大振幅是 5级地震最大振幅的 倍.7、函数aw0的图像过点 C(t,2),且与x 轴交于 A, B 两14、/3 =」<%-3丁+9 - +4,那么/(X)的最大值是.15、如下图,线段AB=8,点C在线段AB上,且AC=2, P为线段CB上一动点,点A绕点C旋转后与点B绕点P旋转后重合于点 D.设CP=x, 4CPD的面积为f(x),那么f(x)的定义域为; f'(即零点j ------------------- 〜* *AA~~CP B是?第15曲用)16、对于定义域和值域均为1°刀的函数,㈤,定义工⑸/式力=/5(项, 兀(力二八九3 , n=1, 2, 3,….满足九㈤=’的点称为f的程阶周期点.(1)设“那么f的2阶周期点的个数是 ______________________________ ;"*)= 12-2x x = [-=l](2)设〔 2 那么f的2阶周期点的个数是.,y ...... . ...................................... P^4BC J - , k」F(芭F),…、、一口17、如图放置的边长为1的正方形沿轴滚动.设顶点- /的轨迹方程是y二/(月,那么}二〃月在其两个相邻零点间的图象与x轴所围区域的面积/3 二/一工一二人-= ir18、函数''' 的一个零点所在的区间为I -,那么比的值为 .19、在一定范围内,某种产品的购置量y吨与单价x元之间满足一次函数关系,如果购置1000吨,每吨为800元,购置2000吨,每吨700元,那么客户购置400吨,单价应该为元.20、〔此题总分值9分〕某家庭进行理财投资,根据长期收益率市场预测,投资债券等稳健型产品的收益与投资额成正比,投资股票等风险型产品的收益与投资额的算术平方根成正比.投资1万元时,两类产品的收益分别为0.125万元和0.5万元〔如图〕〔1〕分别写出两种产品的收益与投资的函数关系.〔2〕该家庭现有20万元资金,全部用于理财投资,问:怎么分配资金能使投资获得最大收益,其最大收益是多少万元?21、某汽车油箱中存油22 kg,油从管道中匀速流出, 200分钟流尽,油箱中剩余量y〔kg〕与流出时间x 〔分钟〕之间的函数关系式为 .周一4口工+1|飞卜1 txWR〕的最大值为M,最小值为m ,那么的值为23、我市某旅行社组团参加香山文化一日游,预测每天游客人数在:“至13"人之间,游客人数 ' 〔人〕与游客的消费总额* 〔元〕之间近似地满足关系:.那么游客的人均消费额最高为_________ 元24、某工厂2002年生产某种产品2万件,以后每一年比上一年增产20%,那么从年开始这家工厂、土工由* 口M金* 曰加一八flfi- = 0.3010L1E3= 0,4771〕生厂这种广品的年广重超过12万件.6中22、函数25、用长为18cm 的钢条围成一个长方体形状的框架,要求长方体的长与宽之比为 2: 1,那么长方体的最大体积是 ______________其中正确命题是27、设函数〃方=皿口/-1) .假设了 有唯一的零点工(7立R ),那么实数a= 128、函数上的零点个数是于(%) -- + : (工于己29、设, 21:二,那么f(x)+f(1-x)=,并利用推导等差数列前 n 项和公式的方法,求得 f(-5)+f(-4)+ +f(0)+ ■ +f(5)+f(6)的值为30、假设关于工的方程 匕- I"山工有解,那么实数巳的取值范围是 ▲.31、设口力u 克,关于X 的方程Xy "Xx-F + D =0的四个实根构成以"为公比的等比数列,假设32、、一种新款 的价格原来是 a 元,在今后m 个月内,价格平均每两个月减少p%,那么这款 的价格 y 元随月数x 变化的函数解析式: —(1)方程角鼠处]-°有且仅有 6个根 (2)方程处八年1 . °有且仅有3个根 (3)方程/[/")] = °有且仅有5个根(4)方程W 式期=°有且仅有4个根26、函数〃工.叮=且付在一工?]的图象如下所示:给出以下四个命题:口'的取值范围是33、设函数7⑶的定义域为,假设存在非零实数k使得对于任意工三口有,伏-幻:/〔工〕,那么称人工〕为Q上的定调函数〞.如果定义域是「L-工〕的函数为「L-M〕上的无调函数〞,那么实数4的取值范围是▲34、假设函数八,“疗+ / Tin,一〞-ig/1〕有三个零点,那么?的值是35、如果关于实数的所有解中,仅有一个正数解,那么实数口的取值范围为36、在同一平面直角坐标系中, > =虱力的图象与J'=卜〞的图象关于直线丁= '对称,而A /⑸的图象与J =式公的图象关于点对称,假设•"⑸=T ,那么实数网的值为37、.函数*2 =,-X - 1的单调递减区间为▲ 38、放射性元素由于不断有原子放射出微粒子而变成其他元素,其含量不断减少,这种现象成为衰变,假设在放射性同位素葩137的衰变过程中,其含量〔单位:太贝克〕与时间才〔单位:年〕满足函数关系:"〔f〕=/上:,其中乂为『=.时葩137的含量,「二卸时,葩137的含量的变化率是一1讪2 〔太贝克/年〕,那么必那么二—太贝克.39、°<日<1 ,那么函数J 一" 一'呜〞的零点的个数为40、假设是方程产,",.一侬,匚亡的的根,其中:是虚数单位,那么一.x+z= 1< -j'sinE -33=2*w" 尸科** ^3^ 鼻m41、假设关于T1' 一的三元一次方程组I " " ■有唯一解,那么8的取值的集合是------------- ------ .42、〔文〕方程1Og上仅7〕=工的解是43、某区的绿化覆盖率的统计数据如下表所示,如果以后的几年继续依此速度开展绿化,那么到44、1992年底世界人口到达54.8亿,假设人口的平均增长率为1%,经过工年后世界人口数为3〔亿〕,那么与工的函数解析式为45、对任意一,函数一⑴满足㈤T,设/=【了⑴⑺,数列31同〕的前15项的和为16 ,那么/QA.46、假设函数"工〕一国+ " ' 没有零点,那么以的取值范围为47、函数/〔幻满足/住+1> = 一&〕,且/'〔工〕是偶函数,当工H01]时,,⑴三亡;假设在区间[T3]内,函数= —有4个零点,那么实数k的取值范围为一.48、关于*的方程V- + 2x + C^0有一个正根与一个负根的充要条件是49、某校要建造一个容积为8^',深为2m的长方体无盖水池,池底和池壁的造价每平方米分别为240元和160元,那么水池的最低总造价为元.50、购置的全球通〞卡,使用须付根本月租费〞每月需交的固定费用〕50元,在市内通话时每分钟另收话费0.40元;购置神州行〞卡,使用时不收根本月租费〞,但在市内通话时每分钟话费为0.60元.假设某用户每月费预算为120元,那么它购置卡才合算.51、方程2x|=2 —x的实数解有个.52、以初速度40 A,垂直向上抛一物体,,时刻的速度〔卜的单位是八〕为'=40-10.,那么该物体达到最大高度为.米53、一批设备价值*万元,由于使用磨损,每年比上一年价值降低b%,那么建年后这批设备的价值为___________ 万元.54、定义在R上的奇函数门口和偶函数目⑸满足『3 ’虱月=丁,假设不等式喈⑴*虱2»士0对,苣〔0,1]恒成立,那么实数交的取值范围是.55、建造一个容积为18m3,深为2m的长方体无盖水池,如果池底和池壁每平方米的造价分别为200元和150元,那么这个水池的最低造价为〔单位:元〕.56、某种化学反响需要一种催化剂加速反响,但这种催化剂用多了对生成物有影响〔影响它的纯度〕.假设这种催化剂参加量在^到〞断1兄之间,那么第二次参加的催化剂的量为芸.57、用二分法求方程x3-2x-5=0在区间[2, 3]上的近似解,取区间中点x°=2 . 5,那么下一个有解区间为.58、一辆汽车沿直线轨道前进,假设司机踩刹车后汽车速度叫r-i 八〔单位:米/秒〕,那么汽车刹车后前进二米才停车;59、由曲线?.和露次= = 所围成的图形的面积的最小值是_.60、092年底世界人口到达’4无亿,假设人口的年平均增长率为不整上河.年底世界人口为丁亿,那么手与之的函数关系式为 .61、某厂2021年12月份产值方案为当年1月份产值的a倍,那么该厂2021年度产值的月平均增长率为.62、,〔灯是周期为2的奇函数,当.工至工1时,那么\ 5』63、将函数户小,S XT'-二缶在仁曲的图像绕坐标原点逆时针方向旋转角59 W⑴,得到曲线Q.假设对于每一个旋转角,曲线C都是一个函数的图像,那么,的最大值为(1) 1; 0. 5; y=0. 5x+1 (2) 1 . 5(3) 尸?=—上+ —4 2(4)选择乙厂更节省费用1、200万2、0.5 (或一米)3、23参考答案5、6、7、8、9、-4/—12工十4010、11、19004、13、5, 10000.15、16、2,417、18、119、500020、(1)八6二:封了?与近可二不同工之可8 2(2)当* = 2 ,即至=之6万元时,收益最大,,但=二万元1121、y= 22- I..x22、233、34、2(f 0]u[226、⑴(3)(4)27、428、329、1,630、11231、32、 • 一 .」•'〔:二二〕37、38、150 15.39、ffl40、7T—,Z} 41、42、43、ID44、54.8(1 +1%)x45、3/4(OJ) 工)46、49、352050、神州行51、252、8053 '53、55、540056、,二-57、[2, 2, 5]63、【解析】1每次播放时间〔单位皿电广告时间〔单位口回1收视观众〔单位连续剧甲「80P 1连线配4012C i限制条件播放最长时间320戢少厂告时间6设每周播放连续剧甲?次,播放连续剧乙丁次,收视率为-,那么目标函数为工-.约束条件为SOx+401 <320 x + y>6 x>G. v>G由图可知,:=60*+?0N在点,』g书处取到最大值200,所以可使收视观众的最大人数为200万X 1 -I5=(6+ 工)(4——) => y = - -JT +X-H 24(0 < r < 8) 2、试题分析:由题意有:设面积为 3 ,那么 2 , 2>3 =2/米1 1 = 0.5 i当K = 1米时, ~ 2那么2 米.故填0.5 〔或2米〕.考点:此题考查数学建模水平和二次函数求最值点的方法.3、解:设每盒盒饭需要甲、乙原料分别为x 〔克〕,y 〔克〕,所需费用为S=2x+3y,61、62、arctafi—作出可行域如图.且x、y满足由图可知,直线s=2x+3y过A 〔4, 5〕时,s最小,即S 最/」、=2X4+3X5=23.故甲、乙原料应该分别使用4, 5时,才能既满足营养,又使病人所需费用最省,最省的费用为23.故答案为:23.【点评】用图解法解决线性规划问题时,分析题目的条件,找出约束条件和目标函数是关键,可先将题目中的量分类、列出表格,理清头绪,然后列出不等式组〔方程组〕寻求约束条件,并就题目所述找出目标函数.然后将可行域各角点的值一一代入,最后比拟,即可得到目标函数的最优解,该题是中档题.4、试题分析:〔1〕由函数图像可知甲厂印刷量为2千元时,费用为2千元,因此可得到一次函数关系式〔23〕的系数,从而得到函数解析式;〔2〕由乙的函数图像过点时可得到印刷费3千时印刷量为2千个,从而得到平均值;〔3〕利用待定系数法,设出解析式后由函数图像过的两点坐标代入函数式可得到参数值,从而得到函数式;〔4〕利用两函数解析式分别求出自变量为8时的函数值,比拟可得选择哪个厂更节省费用试题解析:〔1〕印刷量为0时费用为1千元,因此制版费为1千元;图像过点,所以印刷2千时,〔2 21 f 0 fl费用为1千,因此平土费用为0. 5;由函数过点V 1X —,因此方程为y=0. 5x+1 ;〔2〕印刷量为2千时费用为3千,因此平均费用为1. 5〔3〕设y2=kx+b ,由图可知,当 x=6 时,y 2=y i =0 , 5><6+1=4 , 所以函数图象经过点〔2,3〕和〔6,4〕[2H8二3所以把〔2,3〕和〔6,4〕代入y 2=kx+b ,得色〞 =4 ,b ——解得- ~ ,所以y 2与x 之间的函数关系式为〔4〕由图象可知,当 x=8时,y I >y 2,因此该单位选择乙厂更节省费用.〔求出当x=8时,y 1和y 2的值,用比拟大小的方法得到结论也正确〕 考点:1.函数图像;2.函数解析式5、由图可知 f(3) = 1, f(f(3)) =f(1) = 2.一 ,⑵二 1鸣〔〞-1〕二6、试题分析:由于 -考点:1.分段函数;2.指数、对数运算.考点:1.二次函数的图象与性质; 2.分段函数的性质;3.恒成立问题9、试题分析:由题意,设的两根为9三口1f 〕,那么可得:6 % r » 一、 八—〕=49 = 〔_二_2乂_二+5〕口=49=>口=14,设/〔力=口.7〕〔工+9,又「'『 七八2'.= 7/ -12X + 40考点:二次函数解析式求解 10、设点 A(x i,0), B(x 2,0),那么仁4 = (x i —t, —2), CS =(x 2-t, —2),所以仁4 CB = x i X 2—t(x i + X 2)+t 2 cb bec + 4=0.又 x i x 2= a , x i + x 2=- 口 ,所以 t 2+口 +4 +4=0.又点 C(t,2)在抛物线上,所以 at 2+bt+c=1,所以川⑵/10〕 = 3c =1 7、试题分析:由得考点:分段函数求值.川〕=啕】=.,所以/[".〕]=.8、试题分析:数形结合法,由图象可知当 =1时,对任意的上,°』,恒有f 〔x-a 〕 wf 〔x 〕成立;当 0 nl 时容易举出反例,答案为 1.Ar c 2 2 12,所以t2+ 0 + 口= 口,即—4=°,解得a=—二.ii、(26—14.6) 06 X00=i900.i2、天池盆中水的形状是以上底半径i0寸,下底半径6寸,高9寸的圆台,,平均降雨量==3.i3、试题分析:解析:由灯=1吐1科=以00.-1的001=0当为9级地震时,那么有1纠="-1居=£-1%当为5级地震时,那么有1魏・〃-1配・5十口故4・5皿d・WJ*三=10' =10000所以,事.答案为5,10000.考点:函数应用问题,对数函数的性质.点评:中档题,函数的应用问题,要注意遵循审清题意,设出变量,列出关系式,解,答〞.i4、试题分析/3二火工一3〕:十9 _ J〔x _ 1〕二十4= 33〕二+9一可]-必川*〔0-以的几何意义可以看做点d到点3 G3〕和点C Q2〕距离之差的最大值.而g-'〕所以- I考点:函数的最值两点的距离公式点评:此题的关键是根据函数的几何意义将代数问题转化成几何问题.属中木^题.i5、在三角形DCP中,CP=X, DC=2, DP=6-X.由三角形两边之和大于第三边,两边之差小于第三边得2 <x< 4.16、试题分析:〔1〕当xC [0, 1]时,后〔-丫〕一/〔此=工,由工=x 得,x=0,1 , f 的1阶周期点的个数是 2; 当xC [0, 1]时,/2〔工〕=『0;]工〕〕=*',由H 」=x ,得x=0,1,所以f 的2阶周期点的个数是2.J〔2〕当 xC [0,2]时,f [〔x 〕 =2x=x ,解得 x=0,I 2当xC 〔2,1]时,f 1 〔x 〕 =2-2x=x ,解得x= -,.二f 的1阶周期点的个数是 2;£当 xC [0, A ]时,f [〔x 〕 =2x, f 2 〔x 〕 =4x=x ,解得 x=0;II 1当 xC 〔4, 2]时,f [〔x 〕 =2x, f2 〔x 〕 =2-4x=x ,解得 x=-; I 3 2当 xC 〔 2,4]时,f [〔x 〕 =2-2x, f 2 〔x 〕 =-2+4x=x ,解得 x=-; 34 当 xC 〔 4 , 1]时,f [〔x 〕 =2-2x , f 2 〔x 〕 =4-4x=x ,解得 x= ’ .二. f 的 2 阶周期点的个数是 22=4. 故答案为2, 4. 考点:此题主要考查函数的 2阶周期点的个数的求法.点评:新定义问题是中档题.解题时要认真审题,仔细解答,注意分类讨论思想和等价转化思想的灵活运 用.1P 点从x 轴上开始运动的时候,首先是围绕 A 点运动4个圆,该圆半径为1,然后以B 点为中央,滚动到 C 点落地,其间是以 BP 为半径,旋转90.,再以C 为 17、考查P 点的运动轨迹,不妨考查正方形向右滚动,7C+ —xl xlq —JI +1圆心,再旋转90°,这时候以CP 为半径,因此最终构成图象如下: S=4- 4故答案为:兀+118、略19、本试题主要是考查了待定系数法的函数解析式的求解和运用. 购置1000吨,每吨为 800元,1000=800k+b; 假设购置2000吨,每吨为700元,2000=700k+b . 解方程组 1000=800k+b , 2000=700k+b得到k=-10 , b=9000函数关系式为y=-10x+9000 .当y=400时,解得x=5000 .故答案为单价应是 5000元, 故答案为5000元.解决这类问题的关键是设出解析式,然后将的变量和函数值代入解析式得到参数的值,进而运用其求 解别的变量的函数值.门向=处乳上〞与正=5 ggf =一=土;,, 二= I -伏〕旗号二彳£0〕即-y — 7[月+ 式20 - 电】二一 十-J20 —< 2€〕依题意得:..一 :-令「-20-? I 1-我 +v =■ -------- + 一〞一一-那么 ,■:至二羲万元时,收益最大, ,包=’万元20、解〔1〕设〔2〕设投资债券类产品 W 万元,那么股票类投资为〔」〕万元2221、流速为一 ••1111ICO 八裕可应100,x 分钟可流X.那么g(x)为奇函数,所以g(x)的最大值与最小值和为0,所以『卜耳-1 -『(工)工日-1 = °:即,11 +冽=2 .消费额最高且为40元.国2-坨2 卜]-2+1* 1lg2+ (n-1) lg1.2=lg12 , • . n= 二二 二二一匚="0.7781" 0.0791 +1〜10.84由于y=JxL2A ,是增函数,现x 取正整数,可知从 2021年开始,这家工厂生产这种产品的产量超过 12万台25、设长方体的宽为 xcm,那么长为2xcm,高为L8-8x-4x 9、---------- —— —3JC4- cm ;它的体积为 V=2x?x?3苒、: :)=9犷-6M ,(其中0<x<2);对V 求导,并令V' (x) =0,得1舐—13 =0,解得x=0,或x=1 ;当0vxv 1时,函数 V (x)单调递增,当1vxv -时,函数 V (x)单调递减;所以,当 x=1时,函数V (x)有最大值3,此时长为2cm,宽为1cm,高为1.5cm.故答案为3.26、解:由于方程过观幻】二° ,中当旦区=0那么有且仅有2个根,因此错误.而其余的方程的根,方程 /I 虱功=0中,纲=0, x 两个值,一个负数一个正数.而无论取正数函数复数,在函数 y=f(x)中,总有 6个交点,因此有且仅有 6个根分别对g(x),f(x)令值,注意验证都可以满足题意.因此选择 (1)(3)(4) 27、由"")"也.有唯一的零点三,口松+1=心有唯一的零点飞记= -axd-122、由于|jd-sinjc+1 /W = U ---/⑴= 1-,所以sin JC],令-23、解:由于根据二次函数的性质可知当每天游客人数在50至130人之间,而其对称轴为x=120,时,人均24、设?为这家工厂2002年生产这种产品的年产量,即 "二=2,并将这家工厂2003、2004年生产这种产品 的年产量分别记为 %、%,根据题意,数列{"肛}是 个公比为1.2的等比数列,其通项公式为। - 7 X 1 小 更 ,根据题意,设2Mb• =12两边取常用对数,得①当 a=^0 时=②当国=.时=1=0 〔舍去〕> =〔-〕r28、函数2的零点个数即函数‘ ? 与函数卜图象的交点个数,⑻十八一)=三 Y+占29、-那么 - -由于f(6)+f(-5) = /(5)+/(-4)=…=/(0) +/(!)=』= /(-4) + /⑸=/(-5) + 〃6)=得,■:一 • ■ 「一- 所以■ " ■由图象可知,两个函数有三个交点,即函数/〔x 〕=dy-jc 22的零点个数为3两式相加可t lnjc-130、因X>° ,所以别离参数可得上,即方程氏+1=1口*有解,即兀的取值l nx -l-xx-Qnx-1)为函数缶丁的值域—")二当时/V0>°,当其)时/r S)<0 ,所以/8==/(屋)=4 小山人 j ,士巾 E 」]卷,故实数上的取值范围是寸.31、设关于、的方程(1-皿+ 1村一改+ 1)=0的四个实根为网』三口鼻,其中X ;三是方程/一必+1=0的两根,三=三是方程f — b 工十1 二 0的两根由于再三二当下,所以网三和三不分别是等比数列的第一、四项和第二、三项_ 3 _ 1 N 一 二不妨设巧为等比数列的首项,那么三二砧1,由七七二1可得 『 口方二(七+FX 三+.)二(及+豌=4a-4'Xq +j)〔1+/X4+铲〕<r“、:…IJ2--2_d)Q/+g+2)----- J (5) = ------------------------- : ------- = --------------- j ------------ 记 q q~,那么 q g由于"仁」,所以当"中"时,/⑷©,此时 ;④ 单调递减;当 〞[口 时/go ,此 时,9」单调递增J 112 27 八1 112尸产■-/1, —) = > — = /( 2)q =-.....所以/⑷在@=1处取到极小值4,而“3,9 *',所以/⑷在, 3处取到极大值91 in11;q 已1不/ F ⑷三乩子]品七乩子]所以当 ,时, 9 ,即 932、由于根据关系式得到 f(3)=f (5) =f(7)=7-5=2,选C二—Lu x /,令/(外二°那么所以 七十七 二日二内三 二1;冯一三二比毛』=1其一 —七 上WT2,不符合;假设左<0那么 2 ,所以2 ,解得^之2.综上可得,k>2人E G) = 4,+*〞—尤加&-f34、令^g r (x) = a x I )ia^2x-Ina=(a x -l\Ina+2x;口 > 1,当“式岭町时,EG" ° 当时,/⑶<口故s (可在其=0处取得极小值,且式=2⑼=1 T 由于函数 声 =,量+£ rh 日-0-1(" 1)有三个零点 故:■’1二 1 即"二—二 3K x = +--— GC C — — = 3H35、当口三°时,方程为工 ,解得 3 ,符合条件.方程 工 即方程1 「 : 1 □ 1—=—OJT T Hax —— = JXj五,那么方程 上仅有一个正数解〞等价于函数.工与函数卜=一"一 , '工的图象在J 轴右侧只有一个交点_F当口 二0时,抛物线卜二一"- 4」,开口向下经过原点且对称轴3 人2万二^一<0当白〈°时,抛物线卜二一"- 4」,开口向上经过原点且对称轴 la,所以此时双曲线与抛物线在33、依题意可得,(工+处土工当工1-1时恒成立,即时恒成立.假设k<0 3 人真二——>2a1> =—,由于双曲线 上的图象位于第一、三象限,所以此时双曲线与抛物线相切.设切点坐标为 &谕,那么双曲线与抛物线在该点处的切线方程相同斜率相同,所以有 一工喉 + 3 =--L不:r 1 —y +3飞=—飞,解得叮二二1轴右侧恒有一个交点.综上可得,或.=36、由于J⑹=T ,所以点〔叽-D是函数3 =,⑸的图象,0*7关于点口口」对称点是!?-阳D,而1 =/〔工〕的图象与}二g⑶的图象关于点〔】◎对称,那么匚-也」〕是}=或稳的图象上的点,即虱2 一同=七点〔2-mJ〕关于直线y=x对称的点是〔1:一用〕,又1二以上〕的图象与J=1n x的图象关于直线y = £对称,所以点〔1二一间是> =瓜工的图象上的点,那么 2 —m=ln L/. m = 2,37、由/㈤々-L*.得/?1 ,所以富0 口,故函数"幻〞Y-1的单调递减区间为〔一K , 0〕〔此处也可以写成〔T,.】〕.38、略39、略40、略41、略42、略43、略44、略45、略46、略48、略49、考点:根据实际问题选择函数类型.4 S分析:设底面一边长x 〔m〕,那么令一边长为工〔m〕,底面积为4,侧面积为2X2X+2XH ,这样,可得总造价y,再利用根本不等式,可求得水池的最低总造价解:设底面一边长x 〔m〕,那么另一边长为工〔m〕,如图:8 4总造价为:y= 〔2X2X+2X工〕X160+4X240= 〔x+工〕>€40+960工^640+960=3520 元4当且仅当x=x,即x=2时,函数y的值最小,即当底面边长为 2 〔m〕的正方形时,建造的水池造价最少.故答案为:3520点评:此题考查了长方形模型的应用,由长方形的侧面积建立函数解析式,由解析式判断单调性并求最值,是中档题.50、考点:分段函数的应用.分析:分别计算出120元两种卡能拨打的分钟数,进而确定哪种卡比拟合算.120 - 50解答:解:购置的全球通卡120元能打的分钟数为:0 4=175 〔分钟〕120购置神州行卡120元能打的分钟数为:山6二2..〔分钟〕由于175V200所以购置神州行的卡比拟适宜.故答案为:神州行.51、方程2|x|=2-x的实数解个数就是函数y=2|x|与y="2-x〞的图象交点的个数,结合图象作答.解:如图:方程2|x|=2-x的实数解个数就是函数y=2|x|与y="2-x"的图象交点的个数,由图象可知,交点个数是2, 故答案为2.52、先求物体到达最大高度即其速度为0时,物体运动时间,再将物体最大高度问题转化为速度函数在时间上的定积分问题,利用微积分根本定理计算定积分的值即得最大高度解:令v=0,得t=4,该物体到达最大高度为h=〈(4OT0t)dt=(40t7J) |A=160-80-0=80故答案为8053、略54、略55、略56、略57、略58、略tan/"——那么 ,2.当切线方程和‘轴重合时,曲线上的点满足函数的定义,即是一个函数图象,再逆时针旋一 [加白伊-打转,曲线不再是一个函数的图象,所以,旋转角为能“一 / ,那么60、 增长率类型题目61、 先假设增长率为 p,再根据条件可得(1+p)1Ja,从而可解. 解: 由题意,该厂去年产值的月平均增长率为p,那么(1+p) 11=a,p=^ -1,62、点评:考察函数的奇偶性的性质和灵活运用,容易出错的是奇函数__ , 1 = J4T1 - 2y 曰 f 工一 63、由一 “可得,『仃-/二".-川,所以函数>二小+6才一/ -2表示的图象是在y.<6:y>-2时,以为圆心、半径为 行 的一段圆弧,设过原点且与曲线c 相切的直线方程为2,设此时直线的倾斜角为22—3 — arc taii —m ,即 3。
2020届高考数学(理)一轮必刷题 专题12 函数模型及其应用(解析版)
考点12 函数模型及其应用1、某市生产总值连续两年持续增加.第一年的增长率为p ,第二年的增长率为q ,则该市这两年生产总值的年平均增长率为( ) A.p +q 2B .(p +1)(q +1)-12C.pq D .(p +1)(q +1)-1【答案】D【解析】设第一年年初生产总值为1,则这两年的生产总值为(p +1)(q +1).设这两年生产总值的年平均增长率为x ,则(1+x )2=(p +1)(q +1),解得x =(p +1)(q +1)-1,故选D.2、在标准温度和大气压下,人体血液中氢离子的物质的量的浓度(单位m ol/L ,记作[H +])和氢氧根离子的物质的量的浓度(单位m ol/L ,记作[OH -])的乘积等于常数10-14.已知p H 值的定义为pH =-lg [H +],健康人体血液的p H 值保持在7.35~7.45之间,那么健康人体血液中的[H +][OH -]可以为(参考数据:lg 2≈0.30,lg3≈0.48)( ) A.12 B .13C .16D .110【答案】C【解析】∵[H +]·[OH -]=10-14,∴[H +][OH -]=[H +]2×1014,∵7.35<-lg [H +]<7.45, ∴10-7.45<[H +]<10-7.35,∴10-0.9<[H +][OH -]=1014·[H +]2<10-0.7,10-0.9=1100.9>110,lg(100.7)=0.7>lg 3>lg 2,∴100.7>3>2,10-0.7<13<12,∴110<[H +][OH -]<13.故选C. 3、一水池有两个进水口,一个出水口,每个水口的进、出水速度如图甲、乙所示.某天0点到6点,该水池的蓄水量如图丙所示.给出以下3个论断:①0点到3点只进水不出水;②3点到4点不进水只出水;③4点到6点不进水不出水,则一定正确的是( ) A .① B .①② C .①③D .①②③【答案】A【解析】由甲、乙两图知,进水速度是出水速度的12,所以0点到3点不出水,3点到4点也可能一个进水口进水,一个出水口出水,但总蓄水量降低,4点到6点也可能两个进水口进水,一个出水口出水,一定正确的是①.4、某食品的保鲜时间y (单位:小时)与储藏温度x (单位:℃)满足函数关系y =e kx +b (e =2.718…为自然对数的底数,k ,b 为常数).若该食品在0 ℃的保鲜时间是192小时,在22 ℃的保鲜时间是48小时,则该食品在33 ℃的保鲜时间是( ) A .16小时 B .20小时 C .24小时 D .28小时【答案】C【解析】由已知条件,得192=e b ,∴b =ln 192. 又∵48=e 22k +b =e 22k+ln 192=192e 22k =192(e 11k )2,∴e 11k=⎝⎛⎭⎫4819212=⎝⎛⎭⎫1412=12.设该食品在33 ℃的保鲜时间是t 小时,则t =e 33k +ln 192=192 e 33k =192(e 11k )3=192×⎝⎛⎭⎫123=24(小时). 5、某商店计划投入资金20万元经销甲或乙两种商品.已知经销甲、乙商品所获得的利润分别为P (万元)和Q (万元),且它们与投入资金x (万元)的关系是:P =x 4,Q =a2 x (a >0).若不管资金如何投入,经销这两种商品或其中的一种商品所获得的纯利润总不少于5万元,则a 的最小值应为( ) A. 5 B .5 C . 2 D .2【答案】A【解析】设投入x 万元经销甲商品,则经销乙商品投入(20-x )万元,总利润y =P +Q =x 4+a2·20-x .令y ≥5,则x 4+a 2·20-x ≥5对0≤x ≤20恒成立.∴a 20-x ≥10-x 2,∴a ≥1220-x 对0≤x <20恒成立.∵f (x )=1220-x 的最大值为5,且x =20时,a 20-x ≥10-x2也成立,∴a m i n = 5.故选A.6、某市家庭煤气的使用量x (m 3)和煤气费f (x )(元)满足关系f (x )=⎩⎪⎨⎪⎧C ,0<x ≤A ,C +B (x -A ),x >A .已知某家庭2018年前三个月的煤气费如表:若四月份该家庭使用了20 m 3A .11.5元 B .11元 C .10.5元 D .10元【答案】A【解析】根据题意可知f (4)=C =4,f (25)=C +B (25-A )=14,f (35)=C +B (35-A )=19,解得A =5,B =12,C =4,所以f (x )=⎩⎪⎨⎪⎧4,0<x ≤5,4+12(x -5),x >5,所以f (20)=4+12(20-5)=11.5.7、某校甲、乙两食堂某年1月营业额相等,甲食堂的营业额逐月增加,并且每月的增加值相同;乙食堂的营业额也逐月增加,且每月增加的百分率相同.已知本年9月份两食堂的营业额又相等,则本年5月份( ) A .甲食堂的营业额较高 B .乙食堂的营业额较高 C .甲、乙两食堂的营业额相同D .不能确定甲、乙哪个食堂的营业额较高 【答案】A【解析】设甲、乙两食堂1月份的营业额均为m ,甲食堂的营业额每月增加a (a >0),乙食堂的营业额每月增加的百分率为x ,由题意可得,m +8a =m ×(1+x )8,则5月份甲食堂的营业额y 1=m +4a ,乙食堂的营业额y 2=m ×(1+x )4=m (m +8a ),因为y 21-y 22=(m +4a )2-m (m +8a )=16a 2>0,所以y 1>y 2,故本年5月份甲食堂的营业额较高.8、加工爆米花时,爆开且不糊的粒数占加工总粒数的百分比称为“可食用率”.在特定条件下,可食用率p 与加工时间t (单位:分钟)满足函数关系p =at 2+bt +c (a ,b ,c 是常数),如图记录了三次实验的数据根据上述函数模型和实验数据,可以得到最佳加工时间为________分钟. 【答案】3.75【解析】由实验数据和函数模型知,二次函数p =at 2+bt +c 的图象过点(3,0.7),(4,0.8),(5,0.5),分别代入解析式,得⎩⎪⎨⎪⎧0.7=9a +3b +c ,0.8=16a +4b +c ,0.5=25a +5b +c ,解得⎩⎪⎨⎪⎧a =-0.2,b =1.5,c =-2.所以p =-0.2t 2+1.5t -2=-0.2(t -3.75)2+0.812 5,所以当t =3.75时,可食用率p 最大,即最佳加工时间为3.75分钟.9、某商店按每件80元的成本购进某商品1 000件,根据市场预测,销售价为每件100元时可全部售完,定价每提高1元时销售量就减少5件.若要获得最大利润,销售价应定为每件________元. 【答案】190 元【解析】设售价提高x 元,则依题意y =(1 000-5x )×(20+x )=-5x 2+900x +20 000=-5(x -90)2+60 500. 故当x =90时,y m a x =60 500,此时售价为每件190元.10、现有含盐7%的食盐水200 g ,需将它制成工业生产上需要的含盐5%以上且在6%以下(不含5%和6%)的食盐水,设需要加入4%的食盐水x g ,则x 的取值范围是________. 【答案】(100,400)【解析】设y =200×7%+x ·4%200+x ,令5%<y <6%,即(200+x )5%<200×7%+x ·4%<(200+x )6%,解得100<x <400.11、某市出租车收费标准如下:起步价为8元,起步里程为3 km(不超过3 km 按起步价付费);超过3 km 但不超过8 km 时,超过部分按每千米2.15元收费;超过8 km 时,超过部分按每千米2.85元收费,另每次乘坐需付燃油附加费1元.现某人乘坐一次出租车付费22.6元,则此次出租车行驶了________km. 【答案】9【解析】由已知可得y =⎩⎪⎨⎪⎧8+1,0<x ≤3,8+x -+1,3<x ≤8,8+2.15×5+2.85x -+1,x >8,=⎩⎪⎨⎪⎧9,0<x ≤3,2.15x -2.55,3<x ≤8,2.85x -3.05,x >8.由y =22.6解得x =9.12、某化工厂生产一种溶液,按市场要求杂质含量不超过0.1%.若初时含杂质2%,每过滤一次可使杂质含量减少13,至少应过滤________次才能达到市场要求(已知lg 2≈0.301 0,lg 3≈0.477 1).【答案】8【解析】设过滤n 次才能达到市场要求,则2%⎝⎛⎭⎫1-13n ≤0.1%,即⎝⎛⎭⎫23n ≤120,所以n lg 23≤-1-lg 2,所以n ≥7.39,所以n =8.13、某工厂产生的废气经过过滤后排放,过滤过程中废气的污染物数量P (毫克/升)与时间t (小时)的关系为P =P 0e -kt .如果在前5小时消除了10%的污染物,那么污染物减少19%需要花费的时间为________小时.【答案】10【解析】由题设可得(1-0.1)P 0=P 0e-5k,即0.9=e-5k,故-5k =ln 0.9;又(1-0.19)P 0=P 0e -kt ,即0.81=e-kt,故-kt =ln 0.81=2ln 0.9=-10k ,故t =10,应填10.14、渔场中鱼群的最大养殖量为m ,为保证鱼群的生长空间,实际养殖量不能达到最大养殖量,必须留出适当的空闲量.已知鱼群的年增长量y 吨和实际养殖量x 吨与空闲率的乘积成正比,比例系数为k (k >0),则鱼群年增长量的最大值是________. 【答案】km4【解析】由题意,空闲率为1-xm ,∴y =kx ⎝⎛⎭⎫1-xm ,定义域为(0,m ), y =kx ⎝⎛⎭⎫1-x m =-k m ⎝⎛⎭⎫x -m 22+km 4, ∵x ∈(0,m ),k >0,∴当x =m 2时,y m a x =km 4.15、拟定甲、乙两地通话m 分钟的电话费(单位:元)由f (m )=1.06(0.5[m ]+1)给出,其中m >0,[m ]是不超过m 的最大整数(如[3]=3,[3.7]=3,[3.1]=3),则甲、乙两地通话6.5分钟的电话费为________元. 【答案】4.24【解析】∵m =6.5,∴[m ]=6,则f (m )=1.06×(0.5×6+1)=4.24.16、某人根据经验绘制了2018年春节前后,从12月21日至1月8日自己种植的西红柿的销售量y (千克)随时间x (天)变化的函数图象,如图所示,则此人在12月26日大约卖出了西红柿________千克. 【答案】1909【解析】 前10天满足一次函数关系,设为y =kx +b ,将点(1,10)和点(10,30)代入函数解析式得⎩⎪⎨⎪⎧10=k +b ,30=10k +b ,解得k =209,b =709,所以y =209x +709,则当x =6时,y =1909.17、候鸟每年都要随季节的变化进行大规模的迁徙,研究某种鸟类的专家发现, 该种鸟类的飞行速度v (单位:m/s)与其耗氧量Q 之间的关系为:v =a +b log 3Q10(其中a ,b 是实数).据统计,该种鸟类在静止的时候其耗氧量为30个单位,而其耗氧量为90个单位时,其飞行速度为1 m/s. (1)求出a ,b 的值;(2)若这种鸟类为赶路程,飞行的速度不能低于2 m/s ,则其耗氧量至少要多少个单位?【答案】(1) ⎩⎪⎨⎪⎧a =-1,b =1. (2) 270【解析】(1)由题意可知,当这种鸟类静止时,它的速度为0 m/s ,此时耗氧量为30个单位,则a +b log 33010=0,即a +b =0;当耗氧量为90个单位时,速度为1 m/s ,则a +b log 39010=1,整理得a +2b =1.解方程组⎩⎪⎨⎪⎧a +b =0,a +2b =1,得⎩⎪⎨⎪⎧a =-1,b =1. (2)由(1)知,v =a +b log 3Q 10=-1+log 3Q10.所以要使飞行速度不低于2 m/s ,则v ≥2, 所以-1+log 3Q 10≥2,即log 3Q 10≥3,解得Q10≥27,即Q ≥270.所以若这种鸟类为赶路程,飞行的速度不能低于2 m/s ,则其耗氧量至少要270个单位.18、某医药研究所开发的一种新药,如果成年人按规定的剂量服用,据监测,服药后每毫升血液中的含药量y (微克)与时间t (小时)之间近似满足如图所示的曲线(1)写出第一次服药后y 与t 之间的函数关系式y =f (t );(2)据进一步测定,每毫升血液中含药量不少于0.25微克时治疗疾病有效,求服药一次后治疗疾病有效的时间.【答案】(1) y =⎩⎪⎨⎪⎧4t ,0≤t ≤1,⎝⎛⎭⎫12t -3,t >1. (2) 7916【解析】(1)由题图,设y =⎩⎪⎨⎪⎧kt ,0≤t ≤1,⎝⎛⎭⎫12t -a ,t >1,当t =1时,由y =4得k =4,由⎝⎛⎭⎫121-a =4得a =3.所以y =⎩⎪⎨⎪⎧4t ,0≤t ≤1,⎝⎛⎭⎫12t -3,t >1. (2)由y ≥0.25得⎩⎪⎨⎪⎧0≤t ≤1,4t ≥0.25或⎩⎪⎨⎪⎧t >1,⎝⎛⎭⎫12t -3≥0.25,解得116≤t ≤5.因此服药一次后治疗疾病有效的时间是5-116=7916(小时).19、已知一容器中有A ,B 两种菌,且在任何时刻A ,B 两种菌的个数乘积为定值1010,为了简单起见,科学家用P A=lg (n A)来记录A菌个数的资料,其中n A为A菌的个数,现有以下几种说法:①P A≥1;②若今天的P A值比昨天的P A值增加1,则今天的A菌个数比昨天的A菌个数多了10个;③假设科学家将B菌的个数控制为5万个,则此时5<P A<5.5.其中正确的说法为________.(写出所有正确说法的序号)【答案】③【解析】当n A=1时P A=0,故①错误;若P A=1,则n A=10,若P A=2,则n A=100,故②错误;设B菌的个数为n B=5×104,∴n A=10105×104=2×105,∴P A=lg(n A)=lg 2+5.又∵lg 2≈0.3,∴5<P A<5.5,故③正确.20、某人计划购买一辆A型轿车,售价为14.4万元,购买后轿车一年的保险费、汽油费、年检费、停车费等约需2.4万元,同时汽车年折旧率约为10%(即这辆车每年减少它的价值的10%),那么,大约使用________年后,花费在该车上的费用(含折旧费)达到14.4万元.【答案】4【解析】设使用x年后花费在该车上的费用达到14.4万元,依题意可得,14.4(1-0.9x)+2.4x=14.4.化简得:x-6×0.9x=0,令f(x)=x-6×0.9x.因为f(3)=-1.374<0,f(4)=0.063 4>0,所以函数f(x)在(3,4)上应有一个零点.故大约使用4年后,花费在该车上的费用达到14.4万元.21、某沿海地区养殖的一种特色海鲜上市时间仅能持续5个月,预测上市初期和后期会因供应不足使价格呈持续上涨态势,而中期又将出现供大于求使价格连续下跌.现有三种价格模拟函数:①f(x)=p·q x;②f(x)=px2+qx+1;③f(x)=x(x-q)2+p(以上三式中p,q均为常数,且q>1).(1)为准确研究其价格走势,应选哪种价格模拟函数(不必说明理由)?(2)若f(0)=4,f(2)=6.①求出所选函数f(x)的解析式(注:函数定义域是[0,5],其中x=0表示8月1日,x=1表示9月1日,以此类推);②为保证养殖户的经济效益,当地政府计划在价格下跌期间积极拓宽外销,请你预测该海鲜将在哪几个月内价格下跌.【答案】(1) f(x)=x(x-q)2+p(2) f(x)=x3-6x2+9x+4(0≤x≤5) 9月、10月两个月【解析】(1)因为上市初期和后期价格呈持续上涨态势,而中期又将出现价格连续下跌,所以在所给出的函数中应选模拟函数f (x )=x (x -q )2+p . (2)①对于f (x )=x (x -q )2+p ,由f (0)=4,f (2)=6,可得p =4,(2-q )2=1, 又q >1,所以q =3,所以f (x )=x 3-6x 2+9x +4(0≤x ≤5). ②因为f (x )=x 3-6x 2+9x +4(0≤x ≤5), 所以f ′(x )=3x 2-12x +9, 令f ′(x )<0,得1<x <3.所以函数f (x )在(1,3)内单调递减,所以可以预测这种海鲜将在9月、10月两个月内价格下跌.22、我校为丰富师生课余活动,计划在一块直角三角形ABC 的空地上修建一个占地面积为S (平方米)的AMPN 矩形健身场地.如图,点M 在AC 上,点N 在AB 上,且P 点在斜边BC 上.已知∠ACB =60°,|AC |=30米,|AM |=x 米,x ∈[10,20].设矩形AMPN 健身场地每平方米的造价为37kS 元,再把矩形AMPN 以外(阴影部分)铺上草坪,每平方米的造价为12kS 元(k 为正常数).(1)试用x 表示S ,并求S 的取值范围; (2)求总造价T 关于面积S 的函数T =f (S );(3)如何选取|AM |,使总造价T 最低(不要求求出最低造价)?【答案】选取|AM |为12米或18米时总造价T 最低.【解析】(1)在Rt △PMC 中,显然|MC |=30-x ,∠PCM =60°,|PM |=|MC |·tan ∠PCM =3(30-x ), ∴矩形AMPN 的面积S =|PM |·|AM |= 3x (30-x ),x ∈[10,20], ∴2003≤S ≤225 3.(2)矩形AMPN 健身场地造价T 1=37k S ,又∵△ABC 的面积为4503,∴草坪造价T 2=12kS (4503-S ).∴总造价T =T 1+T 2=25k ⎝ ⎛⎭⎪⎫S +2163S , 2003≤S ≤225 3.(3)∵S +2163S≥1263,当且仅当S =2163S ,即S =2163时等号成立,此时3x (30-x )=2163,解得x =12或x =18.23、某公司为了变废为宝,节约资源,新上了一个从生活垃圾中提炼生物柴油的项目.经测算,该项目月处理成本y (元)与月处理量x (吨)之间的函数关系可以近似地表示为:y =⎩⎨⎧13x 3-80x 2+5 040x ,x ∈[120,,12x 2-200x +80 000,x ∈[144,,且每处理一吨生活垃圾,可得到能利用的生物柴油价值为200元,若该项目不获利,政府将给予补贴. (1)当x ∈[200,300]时,判断该项目能否获利.如果获利,求出最大利润;如果不获利,则政府每月至少需要补贴多少元才能使该项目不亏损?(2)该项目每月处理量为多少吨时,才能使每吨的平均处理成本最低? 【答案】(1) 5 000元 (2) 400吨【解析】(1)当x ∈[200,300]时,该项目获利为S ,则S =200x -⎝⎛⎭⎫12x 2-200x +80 000=-12(x -400)2, ∴当x ∈[200,300]时,S <0,因此,该项目不会获利. 当x =300时,S 取得最大值-5 000,∴政府每月至少需要补贴5 000元才能使该项目不亏损. (2)由题意可知,生活垃圾每吨的平均处理成本为: yx =⎩⎨⎧13x 2-80x +5 040,x ∈[120,,12x -200+80 000x,x ∈[144,当x ∈[120,144)时,y x =13x 2-80x +5 040=13(x -120)2+240,∴当x =120时,yx 取得最小值240.当x ∈[144,500)时,y x =12x -200+80 000x≥2x 2·80 000x-200=400-200=200, 当且仅当x 2=80 000x ,即x =400时,yx取得最小值200.∵240>200,∴当每月处理量为400吨时,才能使每吨的平均处理成本最低.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学函数模型及其应用练习题(含答案) 数学必修1(苏教版)
2.6 函数模型及其应用
某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为了扩大销售量,尽快减少库存,商场决定采取适当降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件,于是商场经理决定每件衬衫降价15元,经理的决定正确吗?
基础巩固
1.某商场售出两台取暖器,第一台提价20%以后按960卖出,第二台降价20%以后按960元卖出,这两台取暖器卖出后,该商场()
A.不赚不亏B.赚了80元
C.亏了80元D.赚了160元
解析:960+960-9601+20%-9601-20%=-80.
答案:C
2.用一根长12 m的铁丝折成一个矩形的铁框架,则能折成的框架的最大面积是__________.
解析:设矩形长为x m,则宽为12(12-2x) m,用面积公式可得S的最大值.
答案:9 m2
3.在x g a%的盐水中,加入y g b%的盐水,浓度变为c%,
则x与y的函数关系式为__________.
解析:溶液的浓度=溶质的质量溶液的质量=xa%+yb%x+y=
c%,解得y=a-cc-bx=c-ab-cx.
答案:y=c-ab-cx
4.某服装个体户在进一批服装时,进价已按原价打了七五折,他打算对该服装定一新标价在价目卡上,并说明按该价的20%销售.这样仍可获得25%的纯利,求此个体户给这批服装定的新标价y与原标价x之间的函数关系式为________ 解析:由题意得20%y-0.75x=0.7x25%y=7516x.
答案:y=7516x
5.如果本金为a,每期利率为r,按复利计算,本利和为y,则存x期后,y与x之间的函数关系是________.
解析:1期后y=a+ar=a(1+r);
2期后y=a(1+r)+a(1+r)r=a(1+r)2;…归纳可得x期后y =a(1+r)x.
答案:y=a(1+r)x
6.一批设备价值a万元,由于使用磨损,每年比上一年价值降低b%,n年后这批设备的价值为________万元.
解析:1年后价值为:a-ab%=a(1-b%),2年后价值为:a(1-b%)-a(1-b%)b%=a(1-b%)2,
n年后价值为:a(1-b%)n.
答案:a(1-b%)n
7.某供电公司为了合理分配电力,采用分段计算电费政策,月用电量x(度)与相应电费y(元)之间的函数关系的图象如下图所示.
(1)填空:月用电量为100度时,应交电费______元;
(2)当x100时,y与x之间的函数关系式为__________;
(3)月用电量为260度时,应交电费__________元.
解析:由图可知:y与x之间是一次函数关系,用待定系数法可求解析式.
答案:(1)60(2)y=12x+10(3)140
8.为了保护水资源,提倡节约用水,某城市对居民生活用水实行“阶梯水价”.计费方法如下表:
每户每月用水量水价
不超过12 m3的部分3元/m3
超过12 m3但不超过18 m3的部分6元/m3
超过18 m3的部分9元/m3
若某户居民本月交纳的水费为48元,则此户居民本月用水量为__________m3.
解析:设每户每月用水量为x,水价为y元,则
y=3x,012,36+x-126,1218,36+36+x-189,x>18,即y=3x,012,6x-36,1218,9x-90,x18.
48=6x-36,x=14.
答案:14
9.国家收购某种农产品的价格是120元/担,其中征税标准为每100元征8元(叫做税率为8个百分点,即8%),计划收购m万担,为了减轻农民负担,决定税率降低x个百分点,预计收购量可增加2x个百分点.
(1)写出税收y(万元)与x的函数关系式;
(2)要使此项税收在税率调整后,不低于原计划的78%,试确定x的范围.
解析:(1)y=120m[1+(2x)%](8%-x%)=
-0.024m(x2+42x-400)(08).
(2)-0.024m(x2+42x-400)120m8%78%,
即x2+42x-880,(x+44)(x-2)0,
解得-442.
又∵08,02.
10.
有一条双向公路隧道,其横断面由抛物线和矩形ABCO的三边组成,隧道的最大高度为4.9 m,AB=10 m,BC=2.4 m.现把隧道的横断面放在平面直角坐标系中,若有一辆高为4 m,宽为2 m的装有集装箱的汽车要通过隧道.问:如果不考虑其他因素,汽车的右侧离开隧道右壁至少多少米才不至于碰到隧道顶部(抛物线部分为隧道顶部,AO、BC为壁)?
解析:由已知条件分析,得知抛物线顶点坐标为(5,2.5),C
点的坐标为(10,0),所以设抛物线的解析式为
y=a(x-5)2+2.5,①
把(10,0)代入①得0=a(10-5)2+2.5,
解得a=-110,y=-110(x-5)2+2.5.
当y=4-2.4=1.6时,1.6=-110(x-5)2+2.5,
即(x-5)2=9,解得x1=8,x2=2.
显然,x2=2不符合题意,舍去,所以x=8.
死记硬背是一种传统的教学方式,在我国有悠久的历史。
但随着素质教育的开展,死记硬背被作为一种僵化的、阻碍学生能力发展的教学方式,渐渐为人们所摒弃;而另一方面,老师们又为提高学生的语文素养煞费苦心。
其实,只要应用得当,“死记硬背”与提高学生素质并不矛盾。
相反,它恰是提高学生语文水平的重要前提和基础。
OC-x=10-8=2.
死记硬背是一种传统的教学方式,在我国有悠久的历史。
但随着素质教育的开展,死记硬背被作为一种僵化的、阻碍学生能力发展的教学方式,渐渐为人们所摒弃;而另一方面,老师们又为提高学生的语文素养煞费苦心。
其实,只要应用得当,“死记硬背”与提高学生素质并不矛盾。
相反,它恰是提高学生语文水平的重要前提和基础。
要练说,得练看。
看与说是统一的,看不准就难以说得好。
练看,就是训练幼儿的观察能力,扩大幼儿的认知范围,让
幼儿在观察事物、观察生活、观察自然的活动中,积累词汇、理解词义、发展语言。
在运用观察法组织活动时,我着眼观察于观察对象的选择,着力于观察过程的指导,着重于幼儿观察能力和语言表达能力的提高。
故汽车应离开右壁至少2 m才不至于碰到隧道顶部.。