极限求法大全
高等数学求极限的14种方法
高等数学求极限的14种方法高等数学求极限的14种方法一、极限的定义极限的保号性很重要。
设$x\to x_0$,$limf(x)=A$,则有以下两种情况:1)若$A>0$,则有$\delta>0$,使得当$00$;2)若有$\delta>0$,使得当$0<|x-x_0|<\delta$时,$f(x)\geq 0$,则$A\geq 0$。
极限分为函数极限和数列极限,其中函数极限又分为$x\to\infty$时函数的极限和$x\to x_0$的极限。
要特别注意判定极限是否存在,收敛于$a$的充要条件是它的所有子数列均收敛于$a$。
常用的是其推论,即“一个数列收敛于$a$的充要条件是其奇子列和偶子列都收敛于$a$”。
二、解决极限的方法如下:1.等价无穷小代换。
只能在乘除时候使用。
2.XXX(L'Hospital)法则。
它的使用有严格的使用前提。
首先必须是$x$趋近,而不是$n$趋近,所以面对数列极限时候先要转化成求$x$趋近情况下的极限,数列极限的$n$当然是趋近于正无穷的,不可能是负无穷。
其次,必须是函数的导数要存在,假如只告诉$f(x)$、$g(x)$,而没有告诉是否可导,不可直接用洛必达法则。
另外,必须是“比”或“无穷大比无穷大”,并且注意导数分母不能为$0$。
洛必达法则分为三种情况:1)$\infty/\infty$时,直接用$\infty$;2)$0\cdot\infty$、$\infty-\infty$、$0^0$、$\infty^0$时,应为无穷大和无穷小成倒数的关系,所以无穷大都写成了无穷小的倒数形式了。
通分之后,就能变成(1)中的形式了。
即$f(x)g(x)=\frac{f(x)}{g(x)}$或$f(x)g(x)=\frac{g(x)}{f(x)}$;3)$1^\infty$、$0^0$、$1^{\infty-\infty}$、$\infty^0$对于幂指函数,方法主要是取指数还取对数的方法,即$e^{f(x)g(x)}=e^{g(x)lnf(x)}$,这样就能把幂上的函数移下来了,变成$0/0$型未定式。
求极限的12种方法总结及例题
求极限的12种方法总结及例题求极限的12种方法总结及例题1. 引言在数学学习中,求极限是一个重要的概念,也是许多数学题解的基础。
在学习求极限的过程中,有许多不同的方法可以帮助我们理解和解决问题。
本文将总结12种方法,帮助我们更全面地理解求极限的概念,并提供相应的例题进行演示。
2. 利用极限的定义我们可以利用极限的定义来求解问题。
根据定义,当x趋向于a时,函数f(x)的极限为L,即对于任意的正数ε,总存在正数δ,使得当0<|x-a|<δ时,有|f(x)-L|<ε。
利用这个定义,可以求得一些简单的极限,如lim(x→0) sinx/x=1。
3. 利用夹逼准则夹逼准则是求极限常用的方法之一。
当我们无法直接求出某个函数的极限时,可以利用夹逼准则来找到该函数的极限值。
要求lim(x→0) xsin(1/x)的极限,可以通过夹逼准则来解决。
4. 利用极限的四则运算极限的四则运算法则是求解复杂函数极限的基本方法之一。
利用这个法则,我们可以将复杂的函数分解成简单的部分,再进行求解。
要求lim(x→0) (3x^2+2x-1)/(x+1),可以利用极限的四则运算法则来求解。
5. 利用洛必达法则当我们遇到不定型的极限时,可以利用洛必达法则来求解。
洛必达法则可以帮助我们求出不定型极限的值,例如0/0、∞/∞、0*∞等形式。
通过洛必达法则,我们可以将求解不定型极限的过程转化为求解导数的问题,从而得到极限的值。
6. 利用泰勒展开泰勒展开是求解复杂函数极限的有效方法之一。
当我们遇到无法直接求解的函数极限时,可以利用泰勒展开将其转化为无穷级数的形式,然后再进行求解。
通过泰勒展开,我们可以将复杂函数近似为一个多项式,从而求得函数的极限值。
7. 利用换元法换元法是求解复杂函数极限的常用方法之一。
通过适当的变量替换,可以将复杂的函数转化为简单的形式,然后再进行求解。
对于lim(x→∞) (1+1/x)^x,可以通过换元法将其转化为e的极限形式来求解。
函数极限的十种求法
函数极限的十种求法信科2班江星雨20140202250 函数极限可以分成而运用ε-δ定义更多的见诸于已知极限值的证明题中。
掌握这类证明对初学者深刻理解运用极限定义大有裨益。
以的极限为例,f(x) 在点以A为极限的定义是:对于任意给定的正数ε(无论它多么小),总存在正数,使得当x满足不等式时,对应的f(x)函数值都满足不等式:,那么常数A就叫做函数f(x)当x→x。
时的极限。
1.利用极限的四则运算法则:极限四则运算法则的条件是充分而非必要的,因此,利用极限四则运算法则求函数极限时,必须对所给的函数逐一进行验证它是否满足极限四则运算法则条件,满足条件者。
方能利用极限四则运算法则进行求之。
不满足条件者,不能直接利用极限四则运算法则求之。
但是,井非不满足极限四则运算法则条件的函数就没有极限,而是需将函数进行恒等变形,使其符合条件后,再利用极限四则运算法则求之。
而对函数进行恒等变形时,通常运用一些技巧如拆项、分子分母同时约去零因子、分子分母有理化、通分、变量替换等等。
例 1求lim( x 2 − 3x + 5).x→ 2解:lim( x 2 − 3x + 5) = lim x 2 − lim 3x + lim 5= (lim x) 2 − 3 lim x + lim 5= 2 2 − 3 ⋅ 2 + 5 = 3.x→2 x →2 x →2 x →2 x →2 x →2 x →22.利用洛必达法则洛必达(L 'Hopital)法则是在一定条件下通过分子分母分别求导再求极限来确定未定式值的方法.简单讲就是,在求一个含分式的函数的极限时,分别对分子和分母求导,在求极限,和原函数的极限是一样的。
一般用在求导后为零比零或无穷比无穷的类型。
利用洛必达求极限应注意以下几点:设函数f(x)和F(x)满足下列条件:(1)x→a时,lim f(x)=0,lim F(x)=0;(2)在点a的某去心邻域内f(x)与F(x)都可导,且F(x)的导数不等于0;(3)x→a时,lim(f'(x)/F'(x))存在或为无穷大则x→a时,lim(f(x)/F(x))=lim(f'(x)/F'(x))例1:1-cosx = 1-{1-2[sin(x/2)]^2} = 2[sin(x/2)]^2xsinx = 2xsin(x/2)cos(x/2)原式= lim 2[sin(x/2)]^2 / [2xsin(x/2)cos(x/2)] = tgx / x对分子分母同时求导(洛必达法则)(tgx)' = 1 / (cosx)^2(x)' = 1原式= lim 1/(cosx)^2当x --> 0 时,cosx ---> 1原式= 13.利用两个重要极限:应用第一重要极限时,必须同时满足两个条件:①分子、分母为无穷小,即极限为0 ;②分子上取正弦的角必须与分母一样。
极限的六种求法
极限的六种求法1、代入法作者:教资备考群(865061525)之管理员,—━☆知浅づ如果自变量所趋近的值,能使函数有意义,就可以直接代入函数表达式中。
注:能使函数有意义,就是这个自变量在函数的定义域内。
【例】limx→2 x2x3 + 1− 2x + 3=( )。
2解:x2 − 2x + 3 = (x − 1)+ 2 ≥ 2 ≠ 0可见该函数的定义域是x3 + 1 R,所以可以直接将8 + 1x = 2 代入x3 + 1 。
x2 − 2x + 3limx→2 x2− 2x + 3 = limx→24 − 4 + 3= 3。
2、约公因子法如果自变量所趋近的值,使得函数没有意义。
可以考虑约公因子,将其约去。
因此经常运用因式分解。
【例】limx→3x2−x− 6x−3=( ) 。
解:这里发现,该函数的定义域为{x|x ≠ 3}。
如果x → 3,会使得函数没有意义。
因此考虑约公因子。
lim x→3x2−x−6x− 3= limx→3(x− 3)(x + 2)x− 3= lim(x + 2) = 5。
x→30 ⎩ x x x3、最高次幂法当函数是分式形式,且分子、分母都是多项式时,可以使用最高次幂法求极限。
它的原理,就是分子分母同时除以自变量的最高次幂。
这样自变量趋近于无穷大时, 那些比最高次幂低的项,直接就变为 0 了。
最高次幂法也俗称抓大头。
a⎧ ,n = m , a x m + a x m−1 + ⋯ + a⎪b 0lim 0 1 m = x→∞ b 0x n + b 1x n−1 + ⋯ + b n ⎨0,n > m , ⎪∞,n < m 。
【 例 】10x 4 + 6x 3 − x 2 + 3( ) 。
1 limx→∞2x 4 − x 2 − 9x=首先,观察到函数是个分式的形式。
其次,分子跟分母的最高次幂都是 4;最后,求极限直接用最高次幂法,原式 = 10= 5。
2那么,不妨拿这个例子,验证一下最高次幂法的原理。
极限计算的13种方法示例
极限计算的13种方法示例极限是微积分中的重要概念,它描述了函数在某一点附近的行为。
在计算极限时,我们可以利用一些常见的方法来求解。
下面将介绍13种常见的极限计算方法。
一、代入法代入法是极限计算中最简单的方法之一。
当我们需要计算一个函数在某一点的极限时,只需要将该点的横坐标代入函数中,求得纵坐标即可。
二、夹逼定理夹逼定理是一种常用的极限计算方法,它适用于那些难以直接计算的函数。
夹逼定理的核心思想是通过找到两个函数,它们在极限点附近夹住我们要求的函数,从而求得该函数的极限值。
三、无穷小量法无穷小量法是极限计算中常用的方法之一。
它利用了无穷小量的性质,将函数中的高阶无穷小量忽略不计,只考虑最高阶的无穷小量来计算极限。
四、洛必达法则洛必达法则是一种常用的极限计算方法,它适用于求解0/0型和∞/∞型的极限。
该法则的核心思想是将函数的极限转化为两个函数的导数的极限,然后通过求导计算得到极限值。
五、泰勒展开法泰勒展开法是一种常用的近似计算极限的方法。
它利用了泰勒级数展开的性质,将函数在某一点附近进行泰勒展开,然后通过截断级数来计算函数的极限。
六、换元法换元法是一种常用的极限计算方法,它适用于那些存在复杂变量关系的函数。
通过引入新的变量来替代原来的变量,可以简化函数的形式,从而更容易计算极限。
七、分子有理化分子有理化是一种常用的极限计算方法,它适用于那些含有根式的函数。
通过将根式的分子有理化,可以将原函数转化为一个分式,从而更容易计算极限。
八、分部积分法分部积分法是一种常用的极限计算方法,它适用于那些含有积分的函数。
通过将原函数进行分部积分,可以将原函数转化为一个更简单的函数,从而更容易计算极限。
九、换元积分法换元积分法是一种常用的极限计算方法,它适用于那些含有复杂变量关系的函数。
通过引入新的变量来替代原来的变量,可以简化函数的形式,从而更容易计算极限。
十、二重极限法二重极限法是一种常用的极限计算方法,它适用于那些含有多个变量的函数。
16种求极限的方法及一般题型解题思路分享
千里之行,始于足下。
16种求极限的方法及一般题型解题思路共享求极限是微积分中格外重要的概念,它可以挂念我们争辩函数的性质以及解决各种数学问题。
在求极限的过程中,有很多种不同的方法可以使用。
本文将介绍16种常见的求极限的方法,并共享一般题型的解题思路。
1. 代入法:将变量的值直接代入函数中,求出函数在该点的函数值。
这种方法适用于对于给定的变量值函数值可以直接计算的状况。
2. 合并同类项法:对于多项式函数,可以将同类项合并,化简为简洁的表达式,使得求极限更加便利。
3. 分子有理化法:对于分式函数,可以通过有理化分子的方法将其转化为整式的形式,使得求极限更加便利。
4. 凑微分法:对于含有微分的项,可以通过凑微分的方法将其转化为可求极限的形式。
5. 分部积分法:对于不定积分的形式,可以通过分部积分的方法将其转化为可求极限的形式。
6. 换元法:通过适当的变量替换,将原函数转化为简洁函数的形式,使得求极限更加便利。
7. 反函数法:对于已知函数,可以通过找到其反函数,将原函数的极限转化为反函数的极限来求解。
第1页/共3页锲而不舍,金石可镂。
8. 夹逼定理:假如一个函数在某点四周的两个函数夹住,并且这两个函数的极限都存在且相等,那么该点的极限存在且等于这两个函数的极限。
9. 洛必达法则:对于两个函数的极限,假如它们的导数的极限都存在且有限,那么这两个函数的极限相等。
这个法则对于解决0/0和∞/∞型的极限问题格外有用。
10. 先有界后无穷法则:假如一个函数在某个点四周有界,并且向正无穷或负无穷趋于极限,那么该点的极限等于无穷。
11. 拆分法则:假如一个极限可以通过拆分成多个极限来求解,那么可以分别求解这些极限,然后将结果合并。
12. 开放法则:对于含有无穷小量的表达式,可以将其开放成多项式的形式,然后求极限。
13. 不等式法则:可以通过利用一些不等式关系来限定函数的范围,从而求出极限的范围。
14. 递推法:对于递归定义的序列或函数,可以通过递推关系式来求出其极限。
16种求极限的方法
16种求极限的方法在微积分中,求极限是一项重要的技巧和方法,用于研究函数在其中一点或趋于其中一点时的行为。
求极限的方法有很多种,下面将介绍16种常见的求极限方法。
1.代入法:将待求极限中的变量替换成极限点处的值,如果代入后得到一个有界的数或者可数收敛,则该极限存在。
2.四则运算法则:利用加法、减法、乘法和除法的性质进行极限运算。
例如,如果两个函数的极限都存在,则它们的和、差、积以及商(除数非零)的极限均存在。
3.夹逼定理:如果两个函数在其中一点附近夹住一个函数,并且夹住的函数的极限存在,则被夹住的函数的极限也存在,并且等于夹住的函数的极限。
4.极限的唯一性:如果存在一个数L是函数f在其中一点的极限,那么该极限是唯一的。
5.极限的有界性:如果函数f在其中一点的极限存在,则函数f在该点附近必定有界。
反之,如果函数f在其中一点附近有界,那么该点处的极限必定存在。
6.无穷小量和无穷大量:无穷小量是指当自变量趋于其中一点时,函数值趋近于零的量,无穷大量是指当自变量趋于其中一点时,函数值趋近于无穷的量。
利用无穷小量和无穷大量的性质,可以简化极限的求解过程。
7. 根式求极限:使用L'Hopital法则来解决根式的极限问题,即将根式转化为分式,再求导数。
8.多项式求极限:将多项式的极限转化为无穷小量的极限,利用低阶无穷小量和高阶无穷小量的性质进行极限计算。
9.取对数法:将函数取对数后,利用对数的性质进行极限计算。
10.换元法:通过进行合适的变量替换,将待求极限转化为更容易求解的形式。
11.不等式运算法:通过使用不等式的性质,对函数进行合理的估计,从而求解极限。
12.导数法则:利用导数的性质,对函数进行极限计算。
例如,利用导数的定义和求导法则可以方便地求解一些函数的极限。
13.递推法:对于一些递归定义的数列或函数,可以通过递推法求解其极限。
14.泰勒展开法:利用函数对应点附近的泰勒展开式,将函数的极限转化为级数的极限,进而求解极限。
求极限的13种方法
求极限的13种方法求极限的方法有很多种,以下列举了常见的13种方法和技巧,以帮助解决各种极限问题。
1.代入法:将极限中的变量代入表达式中,简化计算。
这通常适用于简单的多项式函数。
2.夹逼定理:当一个函数夹在两个趋向于相同极限的函数之间时,函数的极限也趋向于相同的值。
3.式子分解:通过将复杂的函数分解成更简单的部分,可以更容易地计算极限。
4.求导法则:使用导数的性质和规则来计算函数的极限。
这适用于涉及导数的函数。
5.递归关系:如果一个函数的递归关系式成立,可以使用递归关系来计算函数的极限。
6.级数展开:将函数展开成无穷级数的形式,可以使用级数的性质来计算函数的极限。
7.泰勒级数:对于可微的函数,可以通过使用泰勒级数来近似计算函数的极限。
8. 洛必达法则:如果一个函数的极限形式是$\frac{0}{0}$或$\frac{\infty}{\infty}$,可以使用洛必达法则来计算极限。
该法则涉及对分子分母同时求导的操作。
9.极限存在性证明:通过证明一个函数在一些点上的左极限和右极限存在且相等,可以证明函数在该点上的极限存在。
10.收敛性证明:对于一个序列极限,可以通过证明序列是有界且单调递增或单调递减的来证明其极限存在。
11.极限值的判断:根据函数的性质,可以判断函数在一些点上的极限是多少。
12.替换法:通过将变量替换为一个新的变量,可以使函数更容易计算极限。
13.反证法:通过假设极限不存在或不等于一些特定值,来推导出矛盾的结论,从而证明极限存在或等于一些特定值。
这些方法并非完整的极限求解技巧列表,但是它们是最常见和基本的方法。
在实际问题中,可能需要结合使用多种方法来求解复杂的极限。
16种求极限方法及一般题型解题思路分享
16种求极限方法及一般题型解题思路分享求极限是微积分中的重要内容之一,常见于各种数学和工程科学中。
为了求出一个函数在某一点的极限,需要使用合适的方法。
下面介绍16种常用的求极限方法,以及一般题型解题思路。
一、直接代入法对于多项式函数和分式函数,可以直接将自变量代入函数表达式中计算极限。
例如,求函数 f(x) = 2x + 3 在 x = 1 处的极限,直接代入即可得到结果。
二、分解因式法对于分式函数,可以通过分解因式来简化计算,特别适用于分子和分母都是多项式的情况。
例如,求函数 f(x) = (x^2 - 1)/(x - 1) 在 x = 1 处的极限,可以将分子进行因式分解,得到 f(x) = (x - 1)(x + 1)/(x - 1),然后约去公因式,即可得到结果。
三、夹逼定理夹逼定理用于解决复杂函数在某一点处的极限问题。
如果一个函数在某一点附近被两个其他函数夹住,并且这两个函数的极限都存在且相等,那么原函数的极限也存在且等于这个相等的极限。
例如,对于函数 f(x) = x*sin(1/x),当 x 趋近于 0 时,f(x) 被两个函数 g(x) = x 和 h(x) = -x 夹住,且 g(x) 和 h(x) 的极限都是 0,所以 f(x) 的极限也是 0。
四、变量代换法第1页/共5页对于一些特殊的函数,可以通过变量代换来简化计算。
例如,对于函数f(x) = sin(1/√x),当 x 趋近于 0 时,可以将√x = t,那么 x = t^2,且当 x 趋近于 0 时,t 也趋近于 0,所以求 f(x) 在 x = 0 处的极限可以转化为求 g(t) = sin(1/t) 在 t = 0 处的极限。
五、洛必达法则洛必达法则是一种常用的求函数极限的方法,特别适用于形如 0/0 或∞/∞的不定式。
根据洛必达法则,如果一个不定式的分子和分母的极限都存在且为 0 或∞,那么可以分别对分子和分母求导后再次求极限,直到找到一个不是 0/0 或∞/∞的形式。
函数极限的十种求法
函数极限的十种求法设 f (x )=xsin 1/x + a,x<0,b+1,x=0,x^2-1,x<0,试求: 当a ,b 为何值时,f (x )在x=0处的极限存在? 当a ,b 为何值时,f (x )在x=0处连续? 注:f (x )=xsin 1/x +a, x< 0 b+1, x=0 X^2-1, x>0 解:f(0)=b+1左极限:lim(x→0-) f(x)=lim(x→0-) (xsin(1/x)+a)=0+a =a 左极限:lim(x→0+) f(x)=lim(x→0+) (x^2-1)=0-1=-1f(x)在x =0处连续,则lim(x→0-) f(x)=lim(x→0+) f(x)=f(0), 所以a =-1=b+1, 所以a =-1,b =-27.利用等价无穷小量代换求极限例 8 求极限30tan sin lim sin x x xx→-. 解 由于()s i n t a ns i n 1c os c o s xx x x x-=-,而 ()sin ~0x x x →,()21cos ~02x x x -→,()33sin ~0x x x →故有23300tan sin 112lim lim sin cos 2x x x x x x x x x →→⋅-=⋅=. 注 在利用等价无穷小量代换求极限时,应注意只有对所求极限式中相乘或相除的因式才能用等价无穷小量替代,而对极限式中的相加或相减部分则不能随意替代,如在例题中,若因有()t a n ~0x x x →,()s i n ~0x x x →,而推出 3300tan sin limlim 0sin sin x x x x x xx x→→--==, 则得到的式错误的结果.附 常见等价无穷小量()sin ~0x x x →,()tan ~0x x x →,()21cos ~02x x x -→,()arcsin ~0x x x →,()arctan ~0x x x →,()1~0x e x x -→, ()()ln 1~0x x x +→,()()11~0x x x αα+-⋅→. 8 利用洛比达法则求极限洛比达法则一般被用来求00型不定式极限及∞∞型不定式极限.用此种方法求极限要求在点0x 的空心领域()00U x 内两者都可导,且作分母的函数的导数不为零.例1 求极限21cos limtan x xxπ→+.解 由于()2l i m 1c o s l i m t a n 0x x x x ππ→→+==,且有()1cos 'sin x x +=-,()22tan '2tan sec 0x x x =≠,由洛比达法则可得21cos lim tan x xxπ→+2s i nl i m 2t a n s e cx x x x π→-=3cos lim 2x x π→⎛⎫=- ⎪⎝⎭12=. 8.利用定义求极限1.()()()000'limx x f x f x f x x x →-=-,2.()()()0000'limh f x h f x f x h→+-=.其中h 是无穷小,可以是()0x x x x ∆∆=-,x ∆的函数或其他表达式.例1 求极限2222x x p p x q q→+-+-()0,0p q >>.分析 此题是0x →时00型未定式,在没有学习导数概念之前,常用的方法是消去分母中的零因子,针对本题的特征,对分母分子同时进行有理化便可求解.但在学习了导数的定义式之后,我们也可直接运用导数的定义式来求解.解 令()f x =()g x =则x → ()()()()000lim00x f x f x g x g x →--=--()()'0'0f g =p q=.9. 利用归结原则求极限归结原则设f 在()00;'U x δ内有定义,()0lim x x f x →存在的充要条件是:对任何含于()00;'U x δ且以0x 为极限的数列{}n x ,极限()lim n n f x →∞都存在且相等.例1求极限211lim 1nn n n →∞⎛⎫++ ⎪⎝⎭.分析 利用复合函数求极限,令()21211x x x u x x ++⎛⎫=+ ⎪⎝⎭,()1x v x x+=求解. 解 令()21211x x x u x x ++⎛⎫=+ ⎪⎝⎭,()1x v x x+=则有 ()lim n u x e →+∞=;()lim 1n v x →+∞=,由幂指函数求极限公式得()()211lim 1lim xv x x x u x e x x →+∞→+∞⎛⎫++== ⎪⎝⎭, 故由归结原则得221111lim 1lim 1n xn x e n n x x →∞→+∞⎛⎫⎛⎫++=++= ⎪ ⎪⎝⎭⎝⎭. 注 1 归结原则的意义在于把函数归结为数列极限问题来处理,对于0x x +→,0x x -→,x →+∞和x →-∞这四种类型的单侧极限,相应的归结原则可表示为更强的形式.注 2 若可找到一个以0x 为极限的数列{}n x ,使()lim n n f x →∞不存在,或找到两个都以0x 为极限的数列{}'n x 与{}''n x ,使()'lim n n f x →∞与()"lim n n f x →∞都存在而不相等,则()0lim x x f x →不存在10.利用泰勒公式求极限在此种求极限的方法中,用得较多的是泰勒公式在00x =时的特殊形式,即麦 克劳林公式.也可称为带有佩亚诺余项的麦克劳林公式()()()()()()()2"000'02!!n nn f f f x f f x x x x n ο=+++⋯⋯++.例1 求极限2240cos limx x x e x -→-.解 由于极限式的分母为4x ,我们用麦克劳林公式表示极限的分子,取4n =:()245cos 1224x x x x ο=-++,()22452128x x x ex ο-=-++,()2452cos 12x x x ex ο--=-+.因而求得()24524400cos 112limlim 12x x x x x x ex x ο-→→-+-==-.利用此种方法求极限时,必须先求函数的麦克劳林公式,选取恰当的n . 2.10用导数的定义求极限常用的导数定义式,设函数()y f x =在点0x 处可导,则下列式子成立: 1.()()()00'limx x f x f x f x x x →-=-,2.()()()0000'limh f x h f x f x h→+-=.其中h 是无穷小,可以是()0x x x x ∆∆=-,x ∆的函数或其他表达式.例1证明()()211lim 212x x x x →-=--.分析 当1x ≠时,10x -≠,故()()211122x x x x x-+=---,于是有 ()()23111332212222x x x x x x x x x --+--=-==-----, 取112δ=,当101x δ<-<时1322x <<,故有122x ->,从而有()()21212x x x ----61x <-,取26εδ=即可.证明 对于0ε∀>,取1m i n ,26εδ⎧⎫=⎨⎬⎩⎭,于是当01x δ<-<时,有 ()()2126112x x x x ε--<-<--,由定义知()()211lim 212x x x x →-=--成立.注 函数()f x 在点0x 处是否有极限,与函数()f x 在点0x 处是否有定义无关.。
函数极限的十种求法
函数极限的十种求法函数极限是高等数学中的一个重要概念,在数学分析、微积分、实变函数、复变函数等领域均有应用。
函数极限的求法有很多种,以下将介绍其中的十种方法。
一、代数方法利用现有函数的代数性质,根据极限的定义求解。
例如,对于函数 f(x)=2x+1-x,当 x 趋近于 1 时,有:lim f(x) = lim (2x+1-x) = lim x+1 = 2x→1 x→1 x→1 x→1二、夹逼定理夹逼定理也称为夹逼准则或夹逼定律。
当f(x)≤g(x)≤h(x),且lim f(x)=lim h(x)=l 时,有 lim g(x)=l。
例如,对于函数 f(x)=sin(x)/x 和 g(x)=1,当 x 趋近于 0 时,有:-1 ≤sin(x)/x ≤ 1lim -1 ≤ lim sin(x)/x ≤ lim 1x→0 x→0 x→0 x→0lim sin(x)/x = 1三、单调有界准则单调有界准则也称收敛定理。
当一个数列同时满足单调有界性质,即数列单调递增或单调递减且有上(下)界时,该数列必定收敛。
对于函数而言,只需要证明其单调有界的性质,即可用该准则求出其极限值。
例如,对于函数 f(x)=sin(x)/x,当 x 趋近于 0 时,此时 f(x) 没有极限值,但是根据单调有界准则,可以求得其极限是 1。
四、洛必达法则洛必达法则是一种有效的求函数极限值的方法,通常用在0/0形式的极限中。
对于连续可导的函数 f(x) 和 g(x),若 lim f(x)/g(x)存在,则有:lim f(x) lim f'(x)lim ——— = lim ———x→a g(x) x→a g'(x)其中“lim” 表示极限符号,f'(x) 表示 f(x) 的导数,g'(x) 表示 g(x) 的导数。
如果上式右边的极限存在,那么左边的极限也存在,并且二者相等。
例如,对于函数 f(x)=x^2+2x 和 g(x)=x+1,当 x 趋近于 1 时,有:lim (x^2+2x) lim (2x+2)lim ———— = lim ———— = 4x→1 x+1 x+1五、泰勒公式泰勒公式是求解函数在某点处的极限值的有效方法之一。
求极限的21个方法总结
求极限的21个方法总结1. 直接代入法:将变量的值代入极限表达式中,计算极限的值。
2. 分子分母同除以最高次项的方法:可以使得分子和分母的最高次项的系数为1,简化计算。
3. 消去法:利用性质将某些项消去,使得表达式更容易计算。
4. 因式分解法:将极限表达式中的因式进行分解,简化计算。
5. 分数分解法:将极限表达式中的分数进行分解,简化计算。
6. 奇偶性性质:利用函数的奇偶性质,简化计算。
7. 倍角、半角、和差公式:利用三角函数的相关公式,简化计算。
8. 幂函数性质:利用幂函数的性质,简化计算。
9. 对数函数性质:利用对数函数的性质,简化计算。
10. 指数函数性质:利用指数函数的性质,简化计算。
11. 三角函数性质:利用三角函数的性质,简化计算。
12. 极坐标法:将极限表达式转化为极坐标形式,简化计算。
13. 无穷小代换法:将极限表达式中的变量代换为无穷小量,简化计算。
14. 夹逼定理:利用夹逼定理确定极限的值。
15. L'Hopital法则:当计算的极限为0/0或者∞/∞形式时,可以利用L'Hopital 法则进行计算。
16. 泰勒展开法:将极限表达式进行泰勒展开,取较低阶项进行计算。
17. 递推法:将极限表达式中的各项逐步推导出来,从而得到极限的值。
18. 积分法:将极限表达式转化为积分形式,利用积分的性质计算极限的值。
19. 微分法:将极限表达式转化为微分形式,利用微分的性质计算极限的值。
20. 反函数法:将极限表达式中的函数进行反函数变换,简化计算。
21. 几何法:利用几何图形的性质计算极限的值。
高等数学求极限的常用方法(附例题和详解)
高等数学求极限的常用方法(附例题和详解)高等数学中求极限是一项重要的数学技巧,它在数学分析、微积分和其他数学领域中都有广泛应用。
本文将介绍一些常用的求极限的方法,并给出相应的例题和详解。
一、直接代入法直接代入法是求极限的最基本方法之一。
当函数在某一点连续时,可以直接将该点代入函数中来求极限。
例题1:求函数f(x) = x^2在x=2处的极限。
解:直接将x=2代入函数中,得到f(2) = 2^2 = 4。
因此,f(x)在x=2处的极限为4。
二、夹逼法夹逼法(也称为夹挤准则)是求解一些复杂极限的常用方法。
它基于一个简单的想法:如果函数g(x)和h(x)在某一点p附近夹住函数f(x),并且g(x)和h(x)的极限都相等,那么f(x)的极限也等于这个相等的极限。
例题2:求极限lim(x→∞) [(x+1)/x]。
解:我们可以用夹逼法来求解这个极限。
首先,我们可以注意到1 ≤ [(x+1)/x] ≤ [x/x] = 1(其中[x]表示取整函数)。
因此,我们可以将极限表达式两侧夹逼:lim(x→∞) 1 ≤ lim(x→∞) [(x+1)/x] ≤ lim(x→∞) 1。
根据夹逼准则,当lim(x→∞) 1 = 1时,极限lim(x→∞) [(x+1)/x]存在且等于1。
三、极限的四则运算法则在求解复杂函数的极限时,可以利用极限的四则运算法则。
该法则规定,如果函数f(x)和g(x)在某点p处的极限存在,则函数h(x) = f(x) ± g(x)、h'(x) = f(x) * g(x)、和h''(x) = f(x) / g(x)在点p的极限也存在,并满足相应的运算法则。
例题3:求极限lim(x→0) (sinx/x)。
解:我们可以利用极限的四则运算法则来求解这个极限。
首先,观察到当x→0时,分子sinx和分母x都趋向于0,因此这个极限是一个未定式。
根据极限的四则运算法则,我们可以将lim(x→0) (sinx/x)转化为lim(x→0) sinx / lim(x→0) x。
极限求法总结
极限的求法1、利用极限的定义求极限2、直接代入法求极限3、利用函数的连续性求极限4、利用单调有界原理求极限5、利用极限的四则运算性质求极限 6. 利用无穷小的性质求极限 7、无穷小量分出法求极限 8、消去零因子法求极限 9、 利用拆项法技巧求极限 10、换元法求极限11、利用夹逼准则求极限[3] 12、利用中值定理求极限 13、 利用罗必塔法则求极限 14、利用定积分求和式的极限 15、利用泰勒展开式求极限 16、分段函数的极限1、利用极限的定义求极限用定义法证明极限,必须有一先决条件,即事先得知道极限的猜测值A ,这种情况一般较困难推测出,只能对一些比较简单的数列或函数推测分析出极限值,然后再去用定义法去证明,在这个过程中,放缩法和含绝对值的不等式总是密切相连的。
例:()0lim x x f x A →=的ε-δ 定义是指:∀ε>0, ∃δ=δ(0x ,ε)>0,0<|x-0x |<δ⇒|f(x)-A|<ε 为了求δ 可先对0x 的邻域半径适当限制, 如然后适当放大|f(x)-A |≤φ(x) (必然保证φ(x)为无穷小),此时往往要用含绝对值的不等式:|x+a |=|(x-0x )+(0x +a)|≤|x-0x |+|0x +a|<|0x +a |+δ1 域|x+a|=|(x-0x )+(0x +a)|≥|0x +a|-|x-0x |>|0x +a|-δ1 从φ(x)<δ2,求出δ2后,取δ=min(δ1,δ2),当0<|x-0x |<δ 时,就有|f(x)-A|<ε.例:设lim n n x a →∞=则有12 (i)nn x x x a n→∞++=.证明:因为lim n n x a →∞=,对110()N N εε∀>∃=,,当1n N >时,-2n x a ε∣∣<于是当1n N >时,1212......n n x x x x x x na a n n+++∣+++-∣∣-∣=0ε<<1其中112N A x a x a x =∣-∣+∣-∣+∣-α∣是一个定数,再由2A n ε<,解得2An ε>,故取12max ,A N N ε⎧⎫⎡⎤=⎨⎬⎢⎥⎣⎦⎩⎭12...+=22n x x x n N n εεε+++>-α<当时,。
高等数学求极限的各种方法
求极限的各种方法1.约去零因子求极限例1:求极限11lim 41--→x x x【说明】1→x 表明1与x 无限接近,但1≠x ,所以1-x 这一零因子可以约去。
【解】6)1)(1(lim 1)1)(1)(1(lim2121=++=-++-→→x x x x x x x x =4 2.分子分母同除求极限例2:求极限13lim 323+-∞→x x x x【说明】∞∞型且分子分母都以多项式给出的极限,可通过分子分母同除来求。
【解】3131lim 13lim 311323=+-=+-∞→∞→x xx x x x x 【注】(1) 一般分子分母同除x 的最高次方;(2) ⎪⎪⎩⎪⎪⎨⎧=<∞>=++++++----∞→nm b a n m n m b x b x b a x a x a n nm m m m n n n n x 0lim 011011ΛΛ 3.分子(母)有理化求极限例3:求极限)13(lim 22+-++∞→x x x【说明】分子或分母有理化求极限,就是通过有理化化去无理式。
【解】13)13)(13(lim)13(lim 22222222+++++++-+=+-++∞→+∞→x x x x x x x x x x0132lim22=+++=+∞→x x x例4:求极限3sin 1tan 1limxxx x +-+→【解】xx x xx x x x x x sin 1tan 1sin tan limsin 1tan 1lim3030+-+-=+-+→→ 41sin tan lim 21sin tan limsin 1tan 11lim30300=-=-+++=→→→x x x x x x xx x x x 【注】本题除了使用分子有理化方法外,及时分离极限式中的非零因子...........就是解题的关键 4.应用两个重要极限求极限两个重要极限就是1sin lim 0=→xxx 与e x n x x x n n x x =+=+=+→∞→∞→10)1(lim )11(lim )11(lim ,第一个重要极限过于简单且可通过等价无穷小来实现。
高等数学求极限的各种方法
⾼等数学求极限的各种⽅法求极限的各种⽅法1.约去零因⼦求极限例1:求极限11lim 41--→x x x【说明】1→x 表明1与x ⽆限接近,但1≠x ,所以1-x 这⼀零因⼦可以约去。
【解】6)1)(1(lim 1)1)(1)(1(lim2121=++=-++-→→x x x x x x x x =4 2.分⼦分母同除求极限例2:求极限13lim 323+-∞→x x x x【说明】∞∞型且分⼦分母都以多项式给出的极限,可通过分⼦分母同除来求。
【解】3131lim 13lim 3 11323=+-=+-∞→∞→x xx x x x x 【注】(1) ⼀般分⼦分母同除x 的最⾼次⽅;(2)=<∞>=++++++----∞→nm b a n m n m b x b x b a x a x a n nm m m m n n n n x 0lim 011011ΛΛ 3.分⼦(母)有理化求极限例3:求极限)13(lim 22+-++∞→x x x【说明】分⼦或分母有理化求极限,就是通过有理化化去⽆理式。
【解】13)13)(13(lim)13(lim 22222222+++++++-+=+-++∞→+∞→x x x x x x x x x x0132lim22=+++=+∞→x x x例4:求极限3sin 1tan 1limxxx x +-+→【解】xx x xx x x x x x sin 1tan 1sin tan limsin 1tan 1lim3030+-+-=+-+→→ 41sin tan lim 21sin tan limsin 1tan 11lim30300=-=-+++=→→→x x x x x x xx x x x 【注】本题除了使⽤分⼦有理化⽅法外,及时分离极限式中的⾮零因⼦...........就是解题的关键 4.应⽤两个重要极限求极限两个重要极限就是1sin lim 0=→xxx 与e x n x x x n n x x =+=+=+→∞→∞→10)1(lim )11(lim )11(lim ,第⼀个重要极限过于简单且可通过等价⽆穷⼩来实现。
16种求极限的方法
16种求极限的方法 <网上找的仅供参考>首先说下我的感觉,假如高等数学是棵树木得话,那么极限就是他的根,函数就是他的皮。
树没有跟,活不下去,没有皮,只能枯萎,可见这一章的重要性。
为什么第一章如此重要?各个章节本质上都是极限,是以函数的形式表现出来的,所以也具有函数的性质。
函数的性质表现在各个方面首先对极限的总结如下极限的保号性很重要就是说在一定区间内函数的正负与极限一致1 极限分为一般极限,还有个数列极限,(区别在于数列极限时发散的,是一般极限的一种)2解决极限的方法如下:(我能列出来的全部列出来了!!!!!你还能有补充么???)1 等价无穷小的转化,(只能在乘除时候使用,但是不是说一定在加减时候不能用但是前提是必须证明拆分后极限依然存在) e的X次方-1 或者(1+x)的a次方-1等价于Ax 等等。
全部熟记(x趋近无穷的时候还原成无穷小)2落笔他法则(大题目有时候会有暗示要你使用这个方法)首先他的使用有严格的使用前提!!!!!!必须是 X趋近而不是N趋近!!!!!!!(所以面对数列极限时候先要转化成求x 趋近情况下的极限,当然n趋近是x趋近的一种情况而已,是必要条件(还有一点数列极限的n当然是趋近于正无穷的不可能是负无穷!)必须是函数的导数要存在!!!!!!!!(假如告诉你g(x), 没告诉你是否可导,直接用无疑于找死!!)必须是 0比0 无穷大比无穷大!!!!!!!!!当然还要注意分母不能为0落笔他法则分为3中情况1 0比0 无穷比无穷时候直接用2 0乘以无穷无穷减去无穷(应为无穷大于无穷小成倒数的关系)所以无穷大都写成了无穷小的倒数形式了。
通项之后这样就能变成1中的形式了3 0的0次方 1的无穷次方无穷的0次方对于(指数幂数)方程方法主要是取指数还取对数的方法,这样就能把幂上的函数移下来了,就是写成0与无穷的形式了,(这就是为什么只有3种形式的原因, LNx两端都趋近于无穷时候他的幂移下来趋近于0 当他的幂移下来趋近于无穷的时候 LNX趋近于0)3泰勒公式 (含有e的x次方的时候,尤其是含有正余旋的加减的时候要特变注意!!!!)E的x展开 sina 展开 cos 展开 ln1+x展开对题目简化有很好帮助4面对无穷大比上无穷大形式的解决办法取大头原则最大项除分子分母!!!!!!!!!!!看上去复杂处理很简单!!!!!!!!!!5无穷小于有界函数的处理办法面对复杂函数时候,尤其是正余旋的复杂函数与其他函数相乘的时候,一定要注意这个方法。
求极限的若干方法
求极限的若干方法
求极限是微积分中的重要概念,用于研究函数在某一点的变化趋势。
下面将介绍求极
限的若干方法。
1.代入法:当函数在某一点存在有限极限时,可以直接将该点的值代入函数,计算函
数在该点的函数值即可。
2.夹逼准则:当函数在某一点附近的函数值被两个趋于同一极限的函数夹住时,可以
确定该点的极限。
3.无穷小量法:当函数在某一点存在极限时,可以将函数近似为一个无穷小量与一个
有限常数之积,从而来推导出极限。
4.拉'Hopital法则:当函数在某一点的极限存在时,可以将函数拆分为两个函数的比值,然后对这两个函数的导数分别求极限,如果这两个导数的极限存在或都为无穷,则原
函数的极限也存在,且等于这两个导数的极限的商。
5.泰勒展开法:可以使用函数的泰勒展开式来近似计算函数在某一点的极限。
6.换元法:当函数在某一点的极限不存在或无法直接求解时,可以通过进行变量替换,将原极限转化为新的极限,从而求得原极限。
这些方法是求解函数极限常用的方法,其中每种方法在不同的情况下会有更适用的使
用场景。
在实际求解极限题目时,我们需要根据具体的题目条件和要求,选择适合的方法
来进行计算。
求极限的方法总结
求极限的几种常用方法一、 约去零因子求极限例如求极限limx→1x4-1x-1,本例中当x→1时,x-1→0,表明x 与1无限接近,但x≠1,所以x-1这一因子可以约去。
二、 分子分母同除求极限求极限limx→∞x3-x23x3+1∞∞型且分子分母都以多项式给出的极限,可通过分子分母同除来求。
limx→∞x3-x23x3+1=limx→∞1-1x3+1x3=13三、 分子(母)有理化求极限例:求极限limx→∞(x3+3-x2+1)分子或分母有理化求极限,是通过有理化化去无理式。
()()()()131313lim 13lim 22222222+++++++-+=+-++∞→+∞→x x x x x x xx x x 0132lim 22=+++=+∞→x x x例:求极限limx→01+tanx -1+sinxx330sin 1tan 1lim x x x x +-+→=()x x x x x x sin 1tan 1sin tan lim 30+++-→ =300sin tan lim sin 1tan 11lim x x x x x x x -+++→→=41sin tan lim 2130=-→x x x x 本题除了使用分子有理化方法外,及时分离极限式中的非零因子是解题的关键。
四、 应用两个重要极限求极限(2)limx→∞(1+1x)x=limx→0(1+x)1x=e在这一类型题中,一般也不能直接运用公式,需要恒等变形进行化简后才可以利用公式。
例:求极限limx→∞(x+1x-1)x第二个重要极限主要搞清楚凑的步骤:先凑出1,再凑1+1x,最后凑指数部分。
limx→∞(x+1x-1)x=limx→∞(1+2x-1)x=limx→∞[1+1x-122x-1(1+ 2x-1)12]2=e2五、利用无穷小量的性质求极限无穷小量的性质:无穷小量与有界量的乘积还是无穷小量。
这种方法可以处理一个函数极限不存在但有界,和另一个函数的极限是零的极限的乘积的问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
极限求法大全1.1利用极限的定义求极限用定义法证明极限,必须有一先决条件,即事先得知道极限的猜测值 A ,这种情况一般较困难推测出,只能对一些比较简单的数列或函数推测分析出极限 值,然后再去用定义法去证明,在这个过程中,放缩法和含绝对值的不等式总是 密切相连的例:lim f x A 的「S 定义是指:£>0, S = S ( x 0, £ ) >0, O v |x- X Q |x X Ovs |f(x)-A| V£为了求S 可先对X O 的邻域半径适当限制,如然后适当放大I f(x)-A (x)(必然保证© (x)为无穷小),此时往往要用含绝对值的不等式:I x+a I =|(x- X O )+( x o +a)| < |x- x °|+| x o +a| v| x °+a | +S 1域|x+a|=|(x- X O )+( x o +a)| >| x °+a|-|x- X O | >| x °+a|- S 1 从© (x) VS 2,求出S 2后,取3 = min( S 1,S 2),当 0 v |x- x 0 | VS 时,就有 |f(x)-A| V£ . 例: 设 lim X n a 贝V 有 lim __也―a .n nn证明:因为 lim x nn a ,对0,N 1 N,),当n N 1时,X n -a -于是当n N 1 时,X 1 X 2…Xna X 1 X 2 ...x na1.2利用极限的四则运算性质求极限定理⑴:若极限lim f (x)和lim g(x)都存在,贝U 函数f (x) g(x), f (x) g(x)当 X X)X X OX x 0时也存在且① l in i f(x) g(x) 阿 f(x) l in i g(x) x X 0 x X 0 x^0② lim f (x) g(x) lim f (x) lim g(x)XX )X X )X X)nn其中A X 1 aX 2 a X N 1是一个定数 ,再由 A n2,解得n2A,故取N maxM, 2A当nN 时,X 1 x 2..X n—+ —2 2n of(x)lim f(x)在 x ------------ x 0时也存在,且有 lim -^-xo.g(x)x xg(x) lim g(x)Xx利用该种方法求极限方法简单,但要注意条件是每项或每个因子极限存在, 一般情况所给的变量都不满足这个条件, 例如出现0,-,等情况,都不能直接运用四则运算法则,必须对变量进行变形。
变形时经常用到因式分解、 有理化的运算以及三角函数的有关公式。
例:求 lim (——)x 11 x 3 1 x31解:由于当x 1时,亠与丄的极限都不存在,故不能利用“极限的和等 1 x 1 x于和的极限”这一法则,先可进行化简 _= 3 (1 x x 2) (1 x)(2 x) x=1-x 3 (1 x)(1 x x 2)分子分母都有极限且分母的极限不为零,可用商的极限法则,即——)=lim-(2 爲=1 X31 x x 1 (1 x x 2)1.3利用函数的连续性求极限定理[2]: 一切连续函数在其定义区间内的点处都连续,即如果 X o 是函数f (x)的 定义区间内的一点,则有lim f (x)f (x o )。
x x o一切初等函数在其定义域内都是连续的,如果f(x)是初等函数,x 0是其定义域内一点,则求极限lim f(x)时,可把x o 代入f(x)中计算出函数值,即x x olim f (x)= f (x o )。
x x o对于连续函数的复合函数有这样的定理:若 U (X)在X 。
连续且U o (X o ),y f (u)在U o 处连续,则复合函数y f [ (x)]在X o 处也连续,从而lim f x f x 或 lim f x f lim x 。
x xox xo x xo例: lim lnsinx又若c 0,则丄凶31后这样得到的新函数当x 1时,lim (二 x 11 :X2解:复合函数X=—在处是连续的,即有lim lnsinx=lnsin— ln1 02 x —21.4利用无穷小的性质求极限我们知道在某一过程中无穷大量的倒数是无穷小量,有界变量乘无穷小是无 穷小,对一些特殊的函数而言用其他方法很难求得,只能用这种方法来求。
例:求 lim 2 4X 7-x 1x 2 3x 2解:当时x 1,分母的极限为零,而分子的极限不为零,可先求处所给函数倒2数的极限lim -——3X _ =0,故lim 2 力 7= 。
x 1 4x-7 x 1x 3x 21.5利用单调有界原理求极限这种方法是利用定理:单调有界数列必有极限,先判断极限存在,进而求极限。
例:求 lim a a ... an解:令X n .a .a ... a , 则 X n 1 J O X 7,V a V a Va ,即xn 1xn ,所以数列X n 单调递增,由单调有界定理知,lim , a . a ... a 有限,并设为A ,lim X n 1 lim 、a x n ,即 A=. A a, Annnim a a...a。
1.6利用夹逼准则求极限⑶已知{X n } ,{y n },{z n }为三个数列,且满足: (1) y n Xn Z n ,(n 1,2,3,);(2) lim y n a , lim z n a 。
n n则极限lim X n —定存在,且极限值也是a ,即lim x n a 。
利用夹逼准则求极 nn限关键在于从X n 的表达式中,通常通过放大或缩小的方法找出两个同极限值的数 列使得y n X n z n 。
1=1 ,求Xn 的极限n n匚口,所以2例:X n ~T= r 2—n 1 n 21 1 Xn丁n _n^nn n^n解:因为X n单调递减,所以存在最大项和最小项1.7利用中值定理求极限sin(sin x) sin x例:求lim(x sin x) x]3xb af x.g xxn -=Jn则命X n又因为nim-n^H m — 一,则 h m x 11。
7n n(1)微分中值定理⑴:若函数 f(x)满足①在 a,b 连续,②在(a , b)可导; 则在(a ,b)内至少存在一点,使得f '()f(b) f(a)------- 0解: sin(sin x) sin x (sin x x ) cos[ (x sinx) x],(01)lim osin (sin x) sin x(sin x x) cos[=coslimcosx 1 3x 3sin x(2)积分中值定理 设函数f x 在闭区间a,b 上连续;g x 在a,b 上不变号且可积,则在 a,b 上至少有一点使得例:求lim no 4sin nxdx解:lim 04sin n xdxnn= lim sinxn二 4lim(sin)nn=0 1.8利用罗必塔法则求极限定理⑷:假设当自变量x 趋近于某一定值(或无穷大)时,函数f(x)和g(x)满足:(1) f (x)和g(x)的极限都是0或都是无穷大; (2) f (x)和g(x)都可导,且g(x)的导数不为0;f (x)(3) lim 存在(或是无穷大);g (x)则极限lim 丄也一定存在,且等于 limf (x),即lim 丄也=limf (x)。
g(x) 'g(x)'g(x) g(x)洛必达法则只能对0或一型才可直接使用,其他待定型必须先化成这两种类f ' X型之一,然后再应用洛必达法则。
洛必达法则只说明当lim ——等于A 时,那g (x)If x f x f x么lim --- 也存在且等于 A.如果lim —;—不存在时,并不能断定lim ------ 也不g(x) g (x) g(x)ln sinmx 例:求lim x 0In sin nx解:由 limlnsin mx limlnsin nx 知x 0x 0所以上述极限是一待定型1.9利用定积分求和式的极限利用定积分求和式的极限时首先选好恰当的可积函数 f(x)。
把所求极限的存在,只是这是不能用洛必达法则,而须用其他方法讨论limOg(x)lim In sinmx x 0 Insinnx lim m cosmx sinnx x 0 n cosnx sinmxmlim-s ^nxn x 0sinmx和式表示成f(x)在某区间a,b 上的待定分法(一般是等分)的积分和式的极限[5]。
在0,1上n 等分的积分和。
_ 1r1—lim [1 n n 1 (1 1)2n—1^^dx 01 x 21.10利用泰勒展开式求极限2,・ cosx e 2lim 4---x 0x4例: 求lim 【nnn 12n 2 (I 1)2]解:nn 212nn 222n 2(n1口)2n1可取函数 f (x)21 x,区间为 0,1 ,上述和式恰好是f(x)1 x所以lim 【nn n 2 12n 2泰勒展开式⑹:若f X 在x=0点有直到n+1 阶连续导数,那么f(x) f(0) f(0)x2!42R n (X)(n 1)其中 R n (X)其中0例: 解: 泰勒展开式 COSXx 24x / 4\(x )4!2X 、2 / 4、) (x )1.11换元法求极限当一个函数的解析式比较复杂或不便于观察时,可采用换元的方法加以变 形,使之简化易求。
例:求 lim -—-x 1xln x解:令 t x x 1 则 xlnx ln(t 1)2. 总结本文从极限的概念出发,针对性地对极限的求法作了一下小结, 总结出十一 种常见的方法即:1.利用极限的定义求极限2.利用极限的四则运算性质求极限3. 利用函数的连续性求极限4.利用无穷小的性质求极限5.利用单调有界原理求 极于是cos xx 2e T14x 12(x 4)x 22 cosx e所以limx 0lim 14x124 x(x 4)丄12mIm。
限6.利用夹逼准则求极限7.利用中值定理求极限8.利用洛必达法则求极限9. 利用定积分求和式的极限10.利用泰勒展开式求极限11.利用换元法求极限。
对一般的极限根据具体的问题就可以用上面的方法求解,对于复杂一点的可能要用到好几种方法才能够进行求解,这也是我今后主要进行研究的内容。