16.2(2)二次根式的除法练习
16.2.2 二次根式的除法-人教版数学八年级下册分层作业(含答案)
人教版初中数学八年级下册16.2.2 二次根式的除法同步练习夯实基础篇一、单选题:1.下列二次根式中,最简二次根式是()A.B.C.D.【答案】A【分析】满足被开方数不含有分母,被开方数不含有开得尽方的因数或因式两个条件的二次根式是最简二次根式,根据定义逐一分析即可.【详解】解:是最简二次根式,故A符合题意;,不是最简二次根式,故B不符合题意;,不是最简二次根式,故C不符合题意;,不是最简二次根式,故D不符合题意;故选A【点睛】本题考查的是最简二次根式的识别,掌握“最简二次根式的定义”是解本题的关键.2.下列计算正确的是()A.B.C.D.【答案】A【分析】根据分母有理化的方法可判断A,根据二次根式的化简可判断B,D,根据二次根式的乘方运算可判断C,从而可得答案.【详解】解:选项,原式,故该选项符合题意;选项,原式,故该选项不符合题意;选项,原式,故该选项不符合题意;选项,原式,故该选项不符合题意;故选:.【点睛】本题考查的是二次根式的化简,二次根式的乘方运算,分母有理化,掌握“二次根式的加减乘除乘方运算的运算法则”是解本题的关键.3.下列各式的计算中,结果为2的是()A.÷B.×C.÷D.×【答案】C【解析】略4.能使等式成立的的取值范围是()A.且B.C.D.【答案】C【分析】根据分式有意义和二次根式有意义的条件,即可求得的取值范围.【详解】解得故选C【点睛】本题考查了分式有意义和二次根式有意义的条件,二次根式的除法,掌握以上知识是解题的关键.5.如果,,那么下列各式:①,②,③,④.其中正确的个数()A.1个B.2个C.3个D.4个【答案】C【分析】先根据,得到a<0,然后利用二次根式的性质和二次根式的乘除运算法则逐个作出判断即可.【详解】解:∵ab>0,,∴a<0.∴,①正确;∵,a<0,∴,无意义,②错误;,③正确;,④正确;正确的有3个,故选C.【点睛】本题主要考查了二次根式的性质和二次根式的乘除法,熟练掌握运算法则是解题的关键.6.已知的面积为,底边为,则底边上的高为A.B.C.D.【答案】B【分析】根据三角形的面积公式列出运算式子,再根据二次根式的除法法则即可得.【详解】解:的面积为,底边为,底边上的高为,故选:B.【点睛】本题考查了二次根式除法的应用,熟练掌握二次根式除法的运算法则是解题关键.7.已知最简二次根式与的被开方数相同,则的值为()A.1B.2C.3D.4【答案】D【分析】根据最简二次根式的被开方数相同知开方次数相同,被开方数相同,即可列出二元一次方程组,再解出即可.【详解】根据题意可知,解得:,∴.故选D.【点睛】此题考查最简二次根式的定义,解二元一次方程组,正确理解题意列出方程组是解题的关键.二、填空题:8.在二次根式;;;;;;中是最简二次根式的是______.【答案】,,【分析】根据最简二次根式的定义:如果一个二次根式符合下列两个条件:1、被开方数中不含能开得尽方的因数或因式;2、被开方数的因数是整数,因式是整式,那么,这个根式叫做最简二次根式;判断即可.【详解】解:,不是最简二次根式;,是最简二次根式;,不是最简二次根式;,是最简二次根式;,是最简二次根式;,不是最简二次根式;,不是最简二次根式;∴是最简二次根式的有:,,,故答案为:,,.【点睛】本题考查了最简二次根式,熟知最简二次根式的定义是解本题的关键.9.计算;(1)__________________;(2)_________;(3)_________;(4)=__________,(5)__________;(6)____________;(7)__________;(8)__________.【答案】(1);(2);(3);(4),(5),(6);(7),(8)【分析】根据二次根式的除法法则进行计算即可,二次根式的除法法则是:(),反过来,可得;().【详解】(1),故答案为:;(2),故答案为:;(3),故答案为:;(4)=,故答案为:(5),故答案为:;(6),故答案为:;(7),故答案为:;(8),故答案为:.【点睛】本题考查了二次根式的除法运算,掌握二次根数的除法法则是解题的关键.10.计算的结果是______.【答案】##【分析】把被开方数相除,根指数不变,根据法则进行运算即可.【详解】解:故答案为:【点睛】本题考查的是二次根式的除法运算,掌握“二次根式的除法运算法则”是解本题的关键.11.计算:______.【答案】【分析】根据二次根式的除法运算法则进行计算即可.【详解】解:,故答案为:.【点睛】本题考查了二次根式的除法以及二次根式的性质,熟练掌握相关运算法则是解本题的关键.12.计算=_____.【答案】【分析】先由二次根式有意义的条件得到:>且>再利用二次根式的除法运算法则进行运算,再化简即可得到答案.【详解】解:由题意得:>>且>故答案为:【点睛】本题考查的是二次根式有意义的条件,二次根式的除法运算,掌握二次根式的除法运算法则是解题的关键.13.计算:=___.【答案】【分析】根据二次根式的乘除运算计算即可【详解】解:.【点睛】本题主要考查了二次根式的乘除运算,准确计算是解题的关键.14.若,则代数式的值为_____________.【答案】【分析】先计算括号内分式的减法运算,再把除法转化为乘法运算,约分后可得结果,再把代入要求值的代数式,利用二次根式的除法运算可得答案.【详解】解:当时,原式【点睛】本题考查的是分式的化简求值,二次根式的除法运算,掌握“二次根式的除法运算与分式的混合运算”是解本题的关键.三、解答题:15.化简:(1).(2).(3).(4).【答案】(1)(2)(3)(4)【分析】(1)根据积的算术平方根的性质,即进行化简即可;(2)根据积的算术平方根的性质,即进行化简即可;(3)根据商的算术平方根的性质,即进行化简即可;(4)根据商的算术平方根的性质,即进行化简即可.【详解】(1)原式(2)原式(3)原式(4)原式【点睛】本题考查了二次根式的性质,熟练掌握二次根式积和商的算术平方根的性质是解题的关键.16.计算:(1);(2);(3)(,).【答案】(1)(2)(3)【分析】(1)根据二次根式的除法计算法则求解即可;(2)根据二次根式的除法计算法则求解即可;(3)根据二次根式的除法计算法则求解即可.【详解】(1)解:原式;(2)解:原式;(3)解:原式.【点睛】本题主要考查了二次根式的除法,熟知相关计算法则是解题的关键.17.计算:(1);(2).【答案】(1)(2)【分析】根据二次根式的性质和二次根式的乘除运算法则求解即可.【详解】(1)解:原式.(2)解:.【点睛】本题考查二次根式的性质和二次根式的乘除,熟练掌握二次根式的性质和二次根式的乘除,正确化简和求解是解答的关键.18.先化简,再求值:,其中.【答案】,【分析】根据分式的混合运算法则把原式化简,把x的值代入计算即可.【详解】解:当时,原式.【点睛】本题考查的是分式的化简求值,掌握分式的混合运算法则是解题的关键.能力提升篇一、单选题:1.在如图的方格中,若要使横,竖,斜对角的3个实数相乘都得到同样的结果,则空格中代表的实数为()A.B.C.D.【答案】B【分析】根据第一行和第三行列式进行计算即可得.【详解】解:由题意得:,故选:B.【点睛】本题考查了二次根式的乘法与除法的应用,理解题意,正确列出运算式子是解题关键.2.化简二次根式得()A.B.C.D.【答案】A【详解】解析:根据二次根式有意义,即,当时,,即,∴.答案:A易错:B错因:忽略根式有无意义的条件,没有考虑b的取值范围,误以为.易错警示:化简二次根式,要注意以下两点:①利用积的算术平方根以及商的算术平方根的性质,把被开方数中能开得尽方的因数(或因式)都开出来;②二次根式有意义的前提是被开方数大于等于0.3.已知,且a>b>0,则的值为()A.B.±C.2D.±2【答案】A【分析】已知a2+b2=6ab,变形可得(a+b)2=8ab,(a-b)2=4ab,可以得出(a+b)和(a-b)的值,即可得出答案.【详解】解:∵a2+b2=6ab,∴(a+b)2=8ab,(a-b)2=4ab,∵a>b>0,∴a+b=,a-b=,∴=,故选A.【点睛】本题考查了分式的化简求值问题,完全平方公式的变形求值,二次根式的除法,观察式子可以得出应该运用完全平方式来求解,要注意a、b的大小关系以及本身的正负关系.二、填空题:4.把的根号外因式移到根号内得____________.【答案】【分析】根据二次根式被开方数是非负数且分式分母不为零,将根号外的因式转化成正数形式,然后进行计算,化简求值即可.【详解】解:,;故答案为:【点睛】本题考查二次根式的性质和二次根式计算,灵活运用二次根式的性质是解题关键.5.对于任意不相等的两个数,,定义一种运算*如下:.如,那么______.【答案】【分析】根据定义的新运算的方式,把相应的数字代入运算即可;【详解】解:,故答案为:.【点睛】本题主要考查实数的运算,二次根式的化简,解答的关键是理解清楚题意,对实数的运算的相应的法则的掌握.6.已知等式成立,化简|x﹣6|+的结果为_____.【答案】4【分析】直接利用二次根式的除法运算法则得出x的取值范围,进而化简得出答案.【详解】解:∵等式成立,∴,解得:3<x≤5,∴|x﹣6|+=6﹣x+x﹣2=4.故答案为:4.【点睛】此题主要考查了二次根式的除法运算以及非负数的性质,正确得出x的取值范围是解题关键.三、解答题:7.已知和是相等的最简二次根式.求,的值;求的值.【答案】的值是,的值是;(2).【分析】(1)根据题意,它们的被开方数相同,列出方程组求出a,b的值;(2)根据算术平方根的概念解答即可.【详解】∵和是相等的最简二次根式,∴.解得,,∴的值是,的值是;(2).【点睛】考查最简二次根式的定义,根据最简二次根式的定义列出关于a,b的方程组是解题的关键.。
2022-2023学年人教版八年级数学下册《16-2二次根式的乘除》同步练习题(附答案)
2022-2023学年人教版八年级数学下册《16.2二次根式的乘除》同步练习题(附答案)一.选择题1.下列运算中不正确的是()A.B.C.D.2.计算的结果是()A.16B.±16C.4D.±43.下列运算中,正确的是()A.B.C.(a3b4)2=a6b8D.4.下列根式中的最简二次根式是()A.B.C.D.5.下列二次根式中,属于最简二次根式的是()A.B.C.D.6.下列说法:(1)无理数包含正无理数、零、负无理数;(2)的算术平方根为2;(3)为最简二次根式;(4)实数和数轴上的点是一一对应的;(5)﹣a2一定有平方根,其中正确的有()A.1个B.2个C.3个D.4个7.的倒数是()A.B.C.D.8.的一个有理化因式是()A.B.+C.﹣D.二.填空题9.二次根式中:、、、是最简二次根式的是.10.化简为最简二次根式的结果是.11.化简:=.12.计算:=.13.计算:=.14.化简的结果是.15.分母有理化:=.16.将(a>0,b>0)化为最简二次根式:.17.化简:=.18.已知长方形的面积为12,其中一边长为,则该长方形的另一边长为.19.已知等式成立,化简|x﹣6|+的结果为.三.解答题20.计算:(1);(2).21.计算:÷.22.计算:2×÷.23.计算:×4÷.24.计算:3÷(•).25.计算:.26.请阅读下列材料:形如的式子的化简,我们只要找到两个正数a,b,使a+b=m,ab=n,即,那么便有(a >b).例如:化简.解:首先把化为,这里m=7,n=12,由于4+3=7,4×3=12,即,所以.请根据材料解答下列问题:(1)填空:=.(2)化简:(请写出计算过程).参考答案一.选择题1.解:根据二次根式的性质知,A、B、C都正确,D.表示4的算术平方根,则=2,故D错误,符合题意.故选:D.2.解:原式===4.故选:C.3.解:A、,故A不符合题意;B、,故B不符合题意;C、(a3b4)2=a6b8,故C符合题意;D、a6bc÷a﹣2b=a8c,故D不符合题意;故选:C.4.解:A.符合最简二次根式的定义,因此是最简二次根式,所以选项A符合题意;B.=2,因此选项B不符合题意;C.=,因此选项C不符合题意;D.=|m|,因此选项D不符合题意;故选:A.5.解:A.==3,选项A不符合题意;B.==,选项B不符合题意;C.是最简二次根式,选项C符合题意;D.==a2,选项D不符合题意;故选:C.6.解:(1)无理数包含正无理数和负无理数,故(1)不正确;(2)的算术平方根为2,故(2)正确;(3)==,故(3)不正确;(4)实数和数轴上的点是一一对应的,故(4)正确;(5)﹣a2一定有平方根,故(5)正确;所以,上列说法其中正确的有3个,故选:C.7.解:+1的倒数是=﹣1.故选:C.8.解:A.,那么是的一个有理化因式,故A符合题意.B.根据二次根式的乘法法则,不是的一个有理化因式,故B不符合题意.C.根据二次根式的乘法法则,不是的一个有理化因式,故C不符合题意.D.根据二次根式的乘法法则,,得不是的一个有理化因式,故D不符合题意.故选:A.二.填空题9.解:==,被开方数含分母,不是最简二次根式,=2,=|x|,被开方数中含能开得尽方的因数或因式,不是最简二次根式,是最简二次根式,故答案为:.10.解:6===2.故答案为:2.11.解:原式===6.故答案为:6.12.解:原式===6x.故答案为:6x.13.解:原式=×=2=2×=1.故答案为:1.14.解:===.故答案为:.15.解:原式==﹣3﹣,故答案为:﹣3﹣.16.解:∵a>0,b>0,∴=.故答案为:.17.解:∵x﹣2>0,∴x>2,1﹣x<0,原式化简为:x﹣2+x﹣1=2x﹣3,故答案为:2x﹣3.18.解:∵长方形的面积为12,其中一边长为,∴该长方形的另一边长为:12÷2=3.故答案为:3.19.解:∵等式成立,∴,解得:3<x≤5,∴|x﹣6|+=6﹣x+x﹣2=4.故答案为:4.三.解答题20.解:(1)原式===6;(2)原式===3.21.解:原式=÷=•=.22.解:2×÷=2=2=.23.解:原式=2×4×÷4=8÷4=2.24.解:原式=÷=.25.解:原式=÷•2m=.26.解:(1)==;故答案为:﹣;(2)首先把化为,这里m=21,n=108,∵9+12=21,9×12=108,即,∴.。
八年级数学下第16章二次根式16.2二次根式的运算16.2.2二次根式的加减目标一二次根式的除法
诊断:
2×3与
1 互为倒数,在计算时容易感觉 2×3
后两个式子方便计算,就先计算后面的乘法运算,从而
得出错误答案 2 6.
正解:原式=2
2×3 ×
1 2×3 ×
1= 2×3
2= 2×3
2 2×23×3=
23×3=
6 3.
9
小东在学习了
a= b
ab后,认为
ab=
a也成立,因 b
此他认为一个化简过程:
3-1)+(
5+
5- 3 3)( 5-
3)+
(
7+
7- 5 5)( 7-
5)+…+
(
2n+1+
2n+1- 2n-1 2n-1)( 2n+1-
2n-1)=
32-1+
5- 2
3+
7- 2
5+…+
2n+1- 2
2n-1=
2n+1-1 2.
【点拨】 分母中有二次根式时,往往需要将分母有理化,
分母有理化的实质是利用二次根式的平方和平方差公 式化去根号.
3 【教材 P8 例 2 改编】计算 8÷ A.2 B.4 C. 4 D.6
12的结果是( B )
4 计算 6a÷ 3a的结果是( A )
A. 2
B.
2 2
C. 2a
D.
2a 2
5 小明的作业本上有以下四题:① 16a4=4a2;
② 5 a· 10a=5 2a;③a 1a= ④ 8a÷ 2a=4.做错的题是( D )
3 (1)2
223÷19
415;
解:原式=32÷19 83÷415=227 120=227×2 30=
27 30;
(2)
32÷
二次根式的乘除练习题(含答案)
第十六章 二次根式16.2 二次根式的乘除1.下列二次根式中,最简二次根式是 A 23aB 13C 153D 1432.如果mn >0,n <0,下列等式中成立的有。 mn m n =1n m m n =m m n n=1m m n mn =-.A .均不成立B .1个C .2个D .3个3.下列各组二次根式化成最简二次根式后,被开方数完全相同的是 A ab 2abB mn 11m n+ C 22m n +22m n - D 3289a b 3489a b 4.下列等式不成立的是 A .2×36B 8÷2=4C 1333D 8×2=453x x-3x x -,则x 的取值范围是A .x <3B .x ≤3C .0≤x <3D .x ≥06结果为A .B .C .D .7=x 的取值范围是__________.8.计算:=__________.9=__________.10.下列二次根式:. 其中是最简二次根式的是__________.(只填序号)11.计算:-=__________.12.200020012)2)+⋅-=__________. 13.计算:(1;(2)- 14.计算:(123)4).15.计算(1)1223452533÷⨯;(2)21123(15)3825⨯-÷; (3)282(0)aa b ab a b÷⨯>;(4)27506⨯÷.16.当x <03x y -等于A .xyB .xC .-xy -D .-xy 179520的结果是 A .32B 32C 532D .5218.计算8(223)÷-⨯的结果是A .26B .33C .32D .6219.下列运算正确的是A 222253535315⨯==⨯=B 22224343431-=-=-=C.2510 5=D.(4)(16)416(2)(4)8-⨯-=-+-=-⨯-=20.若22m n+-和3223m n-+都是最简二次根式,则m=__________,n=__________.21.一个圆锥的底面积是26cm2,高是43cm,那么这个圆锥的体积是__________.22.计算:263⨯+(3-2)2-2(2-6).23.方老师想设计一个长方形纸片,已知长方形的长是140πcm,宽是35πcm,他又想设计一个面积与其相等的圆,请你帮助方老师求出圆的半径.24.(2018·甘肃兰州)下列二次根式中,是最简二次根式的是A.18B.13C.27D.1225.(2018·湖南益阳)123=⨯__________.26.(2018·江苏镇江)计算:182⨯=__________.1.【答案】D【解析】A a |,可化简;B ==C ==,可化简;因此只有D : =,不能开方,符合最简二次根式的条件.故选D .2.【答案】C【解析】根据题意,可知mn >0,n <0,所以可得m <0,根据二次根式的乘法的性质,可知m ≥0,n ≥0,=1,故②正确;根据二次根式除法的性质,可知m ≥0,n >0=-m ,故④正确.故选C . 3.【答案】D【解析】选项A 的被开方数不相同;选项B 的被开方数不相同;选项C ,不能够化简,被开方数不相同;选项D ,=23,23ab D .4.【答案】B【解析】选项A 、C 、D 正确;选项B 2=,选项B 错误,故选B . 5.【答案】C【解析】根据题意得:030x x ≥⎧⎨->⎩,解得:03x ≤<.故选C .6.【答案】B【解析】原式==,故选B .9.【答案】7120.091960.091960.31470.361440.361440.61212⨯==⨯=⨯.故答案为:712.10.【答案】①⑥【解析】最简二次根式是满足下列条件的二次根式:(1)被开方数的因数是整数,因式是整式;(2)被开方数中不含有能开的尽方的因式或因数.由此可得①⑥是二次根式,故答案为:①⑥. 11.【答案】-5【解析】原式48332731639495=÷-÷==-=-.故答案为:5-.123+2【解析】原式200020002000(32)(32)(32)[(332)]=-++⋅=⋅2000(1)32)=-⋅+⋅32)+32=32+.13.【解析】(1)25144⨯25144=512=⨯ 60=.(2)13xyz xy⋅- 13xyz xy=-⋅=-14.【解析】(1==(2==(3)====-.(4)====15.【解析】(1)原式233=⨯23=45==(2)(13()8=⨯-⨯354=-⨯ 154=-.(3)原式===(4)原式15==. 16.【答案】C【解析】∵x <0=|x -C . 17.【答案】A【解析】原式32,故选A . 18.【答案】BB . 19.【答案】A5315==⨯=,故正确;,故不正确;248==⨯=,故不正确.故选A . 20.【答案】1、2【解析】由题意,知213221m n m n +-=⎧⎨-+=⎩,解得12m n =⎧⎨=⎩,因此m 的值为1,n 的值为2.故答案为:1,2.21【解析】根据圆锥的体积公式可得,这个圆锥的体积是13⨯==故答案为24.【答案】B【解析】A1832=B13是最简二次根式,正确;C2733=不是最简二次根式,错误;D1223=B.25.【答案】6【解析】原式3×3=6.故答案为:6.26.【答案】218 2182⨯,故答案为:2.。
人教版八年级数学下册课件16.2 第2课时 二次根式的除法
x 0 ;
(5)
0.09 169 . 0.64 196
解: (3) 2 =
7 9
25 25 5 = = . 9 3 9
(4)
81 25 x 2
9
2 2
5x
=
ห้องสมุดไป่ตู้9 . 5x
先商的算术平方根的性 质,再运用积的平方根 性质
0.09 169 (5) 0.64 196
0.32 132 0.82 142
练一练 在下列各式中,哪些是最简二次根式?哪些不是?对不是最简二次根式的进 行化简.
1 5 ; (3) ; 3 2 解:只有(3)是最简二次根式; (1) 45; (2) (4) 0.5; 4 (5) 1 . 5
(1) 45 3 5; 1 1 1 3 3 (2) ; 3 3 3 3 3 1 1 1 2 2 (4) 0.5 ; 2 2 2 2 2 4 9 9 9 5 3 5 (5) 1 . 5 5 5 5 5 5
0.3 13 39 . 0.8 14 112
练一练 1.能使等式 A.x≠2
x x2 x x2
成立的x的取值范围是( C ) D.x≥2
B.x≥0
C.x>2
2.化简:
5 ; 64 5 解: (1) 64 (1)
7 (2) 1 25
(2) 1
5 64 5 . 8
7 ; 25
( 3 )
归纳
8 2 2 2 2a 2a a
2 a 2 a . a a a
a 可使分母不含根号.
分母形如 n a 的式子,分子、分母同乘以
归纳总结
满足如下两个特点: (1)被开方数不含分母;
16.2二次根式的乘除法
二次根式相除:
把被开方数的商作为商的被开方数
商的算术平方根:
a b a b
a 0, b 0
商的算术平方根等于被除式的算术 平方根除以除式的算术平方根.
与积的算术平方根的性质比较:
ab
a b
a 0, b 0
共同点:一个根号变成两个根号. 区别:取值范围不同。
例4:化简
解法1:2000 400 5 400 5 20 5
解法2:2000 102 (22 5) 102 22 5 102 22 5 20 5
你从上面的例子中发现了什么?
如果a1、a2、 ......、an 0 则:a1 a2 ... an a1 a2 ... an
探讨2:
(1)
9 3 2 ( ) = 16 4
3 4
观察1、2小题 的结果,他们 有什么特点? 你能列出怎样的 等式呢?
(2)
9 16
3 4
(1)、(2)题结果相同。
9 16
9 16
这个等式用字母 怎么表示呢?
a b
请同学们用文字表达 该等式。
a b
a 0, b 0
思考:等式中 的a和b有没有 条件的限制?
40 9
2 10 4 10 3 3
练习:
3 (1) 2 16
解:原式 35 35 35 16 4 16
15 ( 2) 1 49
解:原式 64 64 8 1 1 49 49 7 7
例5:计算
25 x 5 6 xy 3 9y
25 x5 25 x5 52 x 4 52 6x 4 5x2 解: 6 xy 6 3 3 4 2 4 2 9y 9 y 6 xy 96y 18 y 18 y
初中数学同步训练必刷题(人教版七年级下册16
初中数学同步训练必刷题(人教版七年级下册16.2 二次根式的乘除)一、单选题(每题3分,共30分)1.(2022八下·威县期末)下列根式是最简二次根式的是()A.√0.5B.√8C.√17D.−√3【答案】D【知识点】最简二次根式【解析】【解答】解:A、√0.5=√12=√22,故本选项不符合题意;B、√8=2√2,故本选项不符合题意;C、√17=√77,故本选项不符合题意;D、−√3是最简二次根式,故本选项符合题意;故答案为:D.【分析】利用最简二次根式的定义对每个选项计算求解即可。
2.(2022八下·顺平期末)下列二次根式中,不是最简二次根式的为()A.√6B.√7C.√8D.√10【答案】C【知识点】最简二次根式【解析】【解答】A.√6是最简二次根式,故A不符合题意;B.√7是最简二次根式,故B不符合题意;C.√8=2√2,故C符合题意;D.√10是最简二次根式,故D不符合题意.【分析】最简二次根式满足两个条件:①被开方数中不含分母,②被开方数中不能含有开方开的尽的因数或因式;据此解答即可.3.(2022八下·巴彦期末)下列计算中,正确的是()A.√5−√3=√2B.√3×√2=√5C.√8÷√2=2D.√(−3)2=−3【答案】C【知识点】二次根式的性质与化简;二次根式的乘除法;二次根式的加减法【解析】【解答】解:A、√5与√3不是同类二次根式,不能合并,不符合题意;B、√3×√2=√6,不符合题意;C、√8÷√2=√4=2,符合题意;D、√(−3)2=√9=3,不符合题意;故答案为:C.【分析】利用二次根式的性质,二次根式的加减乘除法则计算求解即可。
4.(2022八下·安宁期末)下列无理数中,与√24相乘积为有理数的是()A.√2B.√3C.√5D.√6【答案】D【知识点】二次根式的乘除法【解析】【解答】解:∵√24=2√6,√6×√6=6,∴与√24相乘积为有理数的是√6,故答案为:D.【分析】利用二次根式的乘法计算方法逐项判断即可。
16_2_2二次根式的除法同步作业 解析版【2023春人教版八下数学优质备课】
16.2 二次根式的乘除第 2 课时 二次根式的除法参考答案与试题解析夯基训练知识点1二次根式的除法法则1. 计算√5×√15√3的结果是_____________.1.【答案】52.√a−3√a−1=√a−3a−1成的条件是( )A.a ≠1B.a ≥1且a ≠3C.a>1D.a ≥32.【答案】D解:由√a √a =√a b (a ≥0,b>0),得{a −3≥0a −1≥0所以a ≥3.故选D. 3.计算√34÷√16的结果是( )A.√22B.√24C.3√22D.√32 3.【答案】C解:掌握二次根式的除法,直接计算即可.4.下列计算结果正确的是( )A.2+√3=2√3B.√8÷√2=2C.(-2a 2)3=-6a 6D.(a+1)2=a 2+14.【答案】B 知识点2商的算术平方根的性质 5若√a 2−a =√a √2−a ,则a 的取值范围是( )A .a <2B .a ≤2C .0≤a <2D .a ≥05解析:根据题意得⎩⎨⎧a ≥0,2-a >0,解得0≤a <2.故选C. 方法总结:运用商的算术平方根的性质:√b a =√b √a a >0,b ≥0),必须注意被开方数是非负数且分母不等于零这一条件.6化简:(1)√179; (2)√3c 34a 4b 2(a >0,b >0,c >0).6解析:运用商的算术平方根的性质,用分子的算术平方根除以分母的算术平方根.解:(1)179=169=169=43; (2)3c 34a 4b 2=3c 34a 4b 2=c 2a 2b3c . 方法总结:被开方数中的带分数要化为假分数,被开方数中的分母要化去,即被开方数不含分母,从而化为最简二次根式7.下列各式计算正确的是( ) A.√32=√32 B.√82=√3 C.√34=√32 D.√a 9b =√a 3b 7.【答案】C 8.若√1−a a 2=√1−a a ,则a 的取值范围是( )A.a ≤0B.a<0C.a>0D.0<a ≤18.【答案】D解:由题意得1-a ≥0且a>0,解得0<a ≤1.此题容易忽略1-a ≥0这个条件.9.下列等式不一定成立的是( )A.√a b =√a√b (b ≠0) B.a 3·a −5=1a 2(a ≠0) C.a 2−4b 2=(a+2b)(a-2b)D.(-2a 3)2=4a 69.【答案】A10.下列计算正确的是( )A.√12=2√3B.√32=√32 C.√−x 3=x D.√x 2=x10.【答案】A知识点3 最简二次根式11在下列各式中,哪些是最简二次根式?哪些不是?并说明理由. (1)45;(2)13;(3)52;(4)0.5;(5)145. 解析:根据满足最简二次根式的两个条件判断即可. 解:(1)45=35,被开方数含有开得尽方的因数,因此不是最简二次根式;(2)13=33,被开方数中含有分母,因此它不是最简二次根式; (3)52,被开方数不含分母,且被开方数不含能开得尽方的因数或因式,因此它是最简二次根式;(4)0.5=12=22,被开方数含有小数,因此不是最简二次根式; (5)145=95=355,被开方数中含有分母,因此它不是最简二次根式. 方法总结:解决此题的关键是掌握最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分母; (2)被开方数不含能开得尽方的因数或因式.题型总结题型1 利用二次根式的乘除法法则计算 12计算:(1)9√45÷3√212×32√223; (2)a 2∙√ab ∙b √b a ÷√9b 2a解析:先把系数进行乘除运算,再根据二次根式的乘除法则运算.解:(1)原式=9×13×32×45×25×83=183; (2)原式=a 2·b ·ab ·b a ·a 9b 2=a 2b 3a . 方法总结:二次根式乘除混合运算的方法与整式乘除混合运算的方法相同,在运算时要注意运算符号和运算顺序,若被开方数是带分数,要先将其化为假分数. 题型2利用商的算术平方根的性质求代数式的值13.已知√x−69−x =√x−6√9−x ,且x 为奇数,求(1+x)·√x 2−5x+4x 2−1的值. 13.解:∵√x−69−x =√x−6√9−x , ∴{x −6≥09−x ≥0∴6≤x<9. 又∵x 是奇数,∴x=7.∴(1+x)√x 2-5x+4x 2-1=(1+x)√(x -1)(x -4)(x+1)(x -1)=(1+x)√(x -4)(x+1)=√(x +1)(x −4).当x=7时,原式=√(7+1)(7−4)=2√6.题型3 利用商的算术平方根的性质确定字母的取值范围14若√a 2−a =√a √2−a ,则a 的取值范围是( )A .a <2B .a ≤2C .0≤a <2D .a ≥0解析:根据题意得⎩⎨⎧a ≥0,2-a >0,解得0≤a <2.故选C. 方法总结:运用商的算术平方根的性质:b a =b a(a >0,b ≥0),必须注意被开方数是非负数且分母不等于零这一条件.题型4 利用商的算术平方根的性质化简二次根式15化简:(1)√179; (2)√3c 34a 4b 2(a >0,b >0,c >0).解析:运用商的算术平方根的性质,用分子的算术平方根除以分母的算术平方根.解:(1)179=169=169=43; (2)3c 34a 4b 2=3c 34a 4b 2=c 2a 2b3c . 方法总结:被开方数中的带分数要化为假分数,被开方数中的分母要化去,即被开方数不含分母,从而化为最简二次根式拓展培优拓展角度1利用二次根式的性质活用代数式表示数16.老师在讲解“二次根式及其性质”时,在黑板上写下了下面的一题作为练习:已知√7=a,√70=b,用含有a,b 的代数式表示√4.9.甲的解法:√4.9=√4910=√49×1010×10=√7×√7010=ab 10; 乙的解法:√4.9=√49×0.1=7√0.1, 因为√0.1=√110=√770=√7√70=a b , 所以√4.9=7√0.1=7·a b =7a b .请你解答下面的问题:(1)甲、乙两人的解法都正确吗?(2)请你再给出一种不同于上面两人的解法.16.解:(1)都正确.(2)∵√10=√707=√70√7=b a , ∴√4.9=√4910=√49×1010×10=710√10=710·b a =7b 10a .拓展角度2 利用二次根式的乘除法法则进行分母有理化(类比思想)19.化简√3+√2,甲、乙两位同学的解法如下:甲:√3+√2=√3-√2(√3+√2)(√3-√2)=√3−√2; 乙:√3+√2=√3+√2=√3+√2)(√3-√2)√3+√2=√3−√2.以上两种化简的步骤叫做分母有理化.仿照上述两种方法化简:√7−√5.19.解:方法1:√7−√5=√7+√5)(√7−√5)(√7+√5)=2(√7+√5)2=√7+√5. 方法2:√7−√5=√7−√5=√7+√5)(√7−√5)√7−√5=√7+√5.拓展角度3二次根式除法的综合运用20座钟的摆针摆动一个来回所需的时间称为一个周期,其周期计算公式为T =2π√l g ,其中T 表示周期(单位:秒),l 表示摆长(单位:米),g =9.8米/秒2,假若一台座钟摆长为0.5米,它每摆动一个来回发出一次滴答声,那么在1分钟内,该座钟大约发出了多少次滴答声(π≈3.14)?解析:由给出的公式代入数据计算即可.要先求出这个钟摆的周期,然后利用时间除周期得到次数.解:∵T =2π√0.59.8≈1.42,60T =601.42≈42(次),∴在1分钟内,该座钟大约发出了42次滴答声.方法总结:解决本题的关键是正确运用公式.用二次根式的除法进行运算,解这类问题时要注意代入数据的单位是否统一.。
二次根式的乘除法(含例题)
第十六章 二次根式16.2 二次根式的乘除1.二次根式的乘法法则(1)一般地,二次根式的乘法法则是:__________(00)a b a b =≥≥,.语言叙述:二次根式相乘,把被开方数相乘,根指数__________.在进行二次根式的乘法运算时,一定不能忽略其被开方数a ,b 均为非负数这一条件. 000)a b c abc a b c =≥≥≥,,. ②00)a b c d bd b d =≥≥,,即当二次根式前面有系数时,可类比单项式乘单项式的法则进行运算,即将系数之积作为系数,被开方数之积作为被开方数;③乘法交换律和结合律以及乘法公式(平方差公式和完全平方公式)在二次根式的乘法中仍然可应用. (2)二次根式乘法法则的逆用00)ab a b a b =≥≥,.语言叙述:积的算术平方根等于积中各因数或因式的算术平方根的积.公式中的a ,b 可以是数,也可以是代数式,但必须满足a ≥0,b ≥0.实际上,a ≥0,b ≥0是限制公式右边的,对公式的左边,只要ab ≥0即可.二次根式乘法法则的逆用也称为积的算术平方根,在进行二次根式的乘法运算时,这两个关系经常交替使用. 0000)abcd a b c d a b c d =≥≥≥≥,,,.运用这个性质可以化简二次根式:如果一个二次根式的被开方数有的因数(式)是完全平方数(式),(00)ab a b a b =≥≥,2(0)a a a =≥将这些因数(式)“开方”出来,从而将二次根式化简.利用积的算术平方根的性质化简的步骤:①将被开方数进行因数分解或因式分解;②应用积的算术平方根的性质,将能开得尽方的因数或因式开出来.2.二次根式的除法法则(1)一般地,二次根式的除法法则是:0__________0)a b =≥,. 语言叙述:二次根式相除,把被开方数__________,根指数不变.【注意】①a ≥0,b >0时,式子才成立,若a ,b 都是负数,虽然0a b >在实数范围内无意义;若b =0,a b则号无意义. ②如果被开方数是带分数,应先将其化成假分数.③二次根式的运算结果应不含能开得尽方的因数或因式,同时分母中不含二次根式.(2)二次根式除法法则的逆用00)a b =≥>, ★语言叙述:商的算术平方根等于被除式的算术平方根除以除式的算术平方根.公式中的a ,b 表示的代数式必频满足a ≥0,b >0,a ≥0,b >0是限制公式右边的,对公式的左边,只要0a b≥且0b ≠即可.利用这个公式,同样可以达到化简二次根式的目的,在化简被开方数是分数(或分式)的二次根式时,先将其化为“(a ≥0,b >0)的形式,然后利用分式的基本性质,分子和分母同乘上一个适当的因式,化去分母中的根号即可. 3.最简二次根式满足下列两个条件的二次根式,叫做最简二次根式.(1)被开方数不含__________;(2)被开方数中不含能开得尽方的因数或因式.在二次根式的运算中,一般要把最后结果化为最简二次根式,并且分母中不含二次根式.【拓展】分母有理化:二次根式的除法可以用化去分母中的根号的方法来进行,这种化去分母中根号的变形叫做分母有理化.分母有理化的方法是根据分式的基本性质,将分子和分母都乘上分母的有理化因式(两个含有二次根式的代数式相乘,如果它们的积不含二次根式,就说这两个代数式互为有理化因式),化去分母中的根号.分母的有理化因式不唯一,但以运算最简便为宜.K知识参考答案:1.ab,不变2.>,相除3.分母K—重点二次根式的乘法和除法;最简二次根式的判断K—难点二次根式的乘法法则和除法法则的逆用K—易错运算顺序错误;忽视隐含条件一、二次根式的乘法1.法则中的a,b表示的代数式都必须是非负的.2.两个二次根式相乘,被开方数的积中有开得尽方的一定要开方.【例1】下列计算正确的是A.25×35=65B.32×33=36C.42×23=85D.22×63=126【答案】D⨯⨯得【例2】916144A.144 B.±144 C.±12 D.12【答案】A⨯⨯.故选A.916144⨯⨯916144=3412=144二、二次根式的除法1000)a b c ÷=≥>>,,;2.((()m n ÷=÷⋅,其中000a b n ≥>≠,,.【例3】=成立的条件是 A .a 、b 同号B .a ≥0,b >0C .a >0,b >0D .a >0,b ≥0 【答案】B【解析】由二次根式的非负性可知,a ≥0,b ≥0,由于b 是分母,故b >0.故选B .【例4】计算A .B .23xC .D x 【答案】C【解析】原式=4×C . 三、二次根式的乘除混合运算二次根式乘除混合运算的方法与整式乘除混合运算的方法相同,整式乘除法的一些法则、公式在二次根式乘除法中仍然适用.二次根式乘除混合运算的一般步骤:(1)将算式中的除法转化为乘法;(2)利用乘法运算律将运算转化为系数和被开方数的乘法运算;(3)将系数和被开方数分别相乘;(4)化成最简二次根式.【例5】A B C D .【答案】A==.故选A.四、最简二次根式判断二次根式是不是最简二次根式的方法:一看:看被开方数中是否含有能开得尽方的因数(或因式),且被开方数中是否含有分母.二化:若被开方数是多项式,能化成因数(或因式)积的形式,要先化成积的形式.三判断:得出结论.【例6】下列根式中,是最简二次根式的是A B C D【答案】C【解析】因为:A=;B=;D||b=,所以这三项都可化简,不是最简二次根式.故选C.。
学案5:16.2二次根式的乘除(2)
16.2二次根式的乘除(2)学习目标1a≥0,b>0a≥0,b>0)及利用它们进行运算.2、利用具体数据,通过学生练习活动,发现规律,归纳出除法规定,并用逆向思维写出逆向等式及利用它们进行计算和化简.3、理解最简二次根式的概念,并运用它把不是最简二次根式的化成最简二次根式.重点:掌握和应用二次根式的除法法则。
难点关键:发现规律,归纳出二次根式的除法规定,会判断二次根式是否是最简二次根式.一、自主学习计算下列各题,观察计算结果,你能发现什么规律?(1;(2=________;(3;(4=________.二、合作交流自学课本,然后完成下面的题目(要进行小组交流).1、根据规律,得到除法法则:__ ,反过来就有.2、计算:(1(2(3(43、化简:(1(2(3(44、观察上面各小题的运算结果,可以发现它们有共同特点:①,②,我们把满足这两个条件的二次根式,叫做最简二次根式.5、把下列各式化成最简二次根式(1)5.2 (2 (3)三、归纳小结:我们这节课学了哪些知识?与小组的其他同学交流一下你的收获与感悟。
四、课堂检测: 1).A .27B .27C D2=“把分母的根号去掉的过程称作“分母有理化”。
(1).A .2B .6C .13D(2) 分母有理化:3、把(a -1a -1)移入根号内得().A BC .D .4、_________.5、已知aa正确, a ·1a(a -1参考答案:一、(1)34,34;(2)23,23;(3)12,12;(4)23,23.二、2、(1)2 ,(2)2√3 ,(3)2 ,(4) 2√2 ;3、(1)√38 ,(2)8b 3a ,(3)3√x 8y ,(4) √5x13y ;5、(1)√102,(2)2xy √2y ,(3) xy√y 2+x 2 .四、1、A ,2、(1)C ,(2)√26 ,√36 ,√22 ;3、D ,4、-√−a −1 ;5、不对,−√−a +√−a .。
16.2二次根式的运算(第1课时)讲解与例题
二次根式的运算第1课时1.二次根式的乘法法则(1)二次根式的乘法法则(性质3):a ·b =ab (a ≥0,b ≥0).观察这个式子的左边和右边,得出等号的左边是两个二次根式相乘,等号右边是得到的积,仍是二次根式.由此得出:二次根式的乘法就是把被开方数的积作为积的被开方数.(2)对于二次根式乘法的法则应注意以下几点:①要满足a ≥0,b ≥0的条件,因为只有a ,b 都是非负数,公式才能成立.②从运算顺序看,等号左边是先分别求a ,b 两因数的算术平方根,然后再求两个算术平方根的积,等号右边是将非负数a ,b 先做乘法求积,再开方求积的算术平方根. ③公式a ·b =ab (a ≥0,b ≥0)可以推广到3个二次根式、4个二次根式等相乘的情况.④根据这个性质可以对二次根式进行恒等变形,或将有的因式适当改变移到根号外边,或将根号外边的非负因式平方后移到根号内.当二次根式根号外都含有数字因数时,可以仿照单项式的乘法法则进行运算:系数之积作为系数,被开方数之积作为被开方数.即m a ·n b =mn ab (a ≥0,b ≥0).【例1】计算:(1)0.4× 3.6;(2)545×3223. 分析:第(1)小题的被开方数都是小数,先将被开方数进行因数分解,第(2)小题的根号外都含有数字因数,可以仿照单项式的乘法. 解:(1)0.4× 3.6=0.4×3.6=0.4×0.4×9=0.4×3=1.2. (2)545×3223=5×32×45×23=152×3×15×23=15230. 2.积的算术平方根的性质 (1)ab =a ·b (a ≥0,b ≥0).用语言叙述为:积的算术平方根,等于积中各因式的算术平方根的积.(2)注意事项:①a ≥0,b ≥0是公式成立的重要条件.如(-4)×(-9)≠-4·-9,实际上公式中的a ,b 是限制公式右边的,对公式的左边,只要ab ≥0即可.②公式中的a ,b 可以是数,也可以是代数式,但必须是非负的.(3)利用这个公式,同样可以达到化简二次根式的目的.(4)ab =a ·b (a ≥0,b ≥0)可以推广为abc =a ·b ·c (a ≥0,b ≥0,c ≥0).计算形如(-4)×(-9)的式子时,应先确定符号,原式化为4×9,再化简.【例2】化简: (1)300;(2)21×63;(3)(-50)×(-8);(4)96a 3b 6(a >0,b >0).分析:根据积的算术平方根的性质:ab =a ·b (a ≥0,b ≥0)进行化简. 解:(1)300=102×3=102×3=10 3.(2)21×63=3×7×7×9=3×72×32=3×7×3=21 3.(3)(-50)×(-8)=50×8=202=20.(4)96a 3b 6=42·6·a 2·a ·(b 3)2=4ab 36a .3.二次根式的除法法则 对于两个二次根式a ,b ,如果a ≥0,b >0,那么a b =a b.这就是二次根式的除法法则.(1)二次根式的除法法则:①数学表达式:如果a ≥0,b >0,则有a b =a b .②语言叙述:两个二次根式相除,将它们的被开方数(式)相除,二次根号不变.(理解并掌握)(2)在二次根式的除法中,条件a ≥0,b >0与二次根式乘法的条件a ≥0,b ≥0是有区别的,因为分母不能为零,所以被除式可以是非负数,而除式必须是正数,否则除法法则不成立.知识点拓展:(1)二次根式的除法法则中的a ,b 既可以代表数,也可以代表式子;(2)m a ÷n b =m a n b =m na b (a ≥0,b >0,n ≠0),即系数与系数相除,被开方数与被开方数相除.点拨:在进行二次根式的除法运算时,应先确定商的符号,然后系数与系数相除,被开方数与被开方数相除,二次根号不变,但应注意的是当被开方数是带分数时,首先要把带分数化为假分数,再进行计算,并且计算的最终结果一定要化为最简形式,此外当数字与字母相乘时,要把数字放在字母的前面,如-26a 不能写成-2a 6.【例3】如果x x -1=x x -1成立,那么( ). A .x ≥0 B .x ≥1C .0≤x ≤1D .以上答案都不对解析:本题考查二次根式的除法法则成立的条件.要求x ≥0,x -1>0,则x >1.故选D.答案:D点拨:(1)逆用二次根式的除法时,一定要满足条件a ≥0,b >0.(2)通常去掉分母中的根号有两种方法:一是运用二次根式的性质和除法运算;二是运用二次根式的性质及乘法运算.4.二次根式除法的逆用通过计算:(1)1625=(45)2=45,1625=45,显然1625=1625;(2)81121=(911)2=911,81121=911,显然81121=81121,从而我们可以发现:二次根式的除法法则也可以反过来运用,即如果a ≥0,b >0,那么a b =a b,也就是说,商的算术平方根,等于被除式的算术平方根除以除式的算术平方根.名师归纳:二次根式的除法法则的逆用:(1)数学表达式:如果a ≥0,b >0,则有a b =a b ; (2)语言叙述:商的算术平方根,等于被除式的算术平方根除以除式的算术平方根;(3)逆用二次根式除法法则,可以把二次根式化为最简形式.(理解并掌握)【例4】把下列各式中根号外的因数(式)移到根号内.(1)535; (2)-2a 12a; (3)-a -1a ; (4)x y x(x <0,y <0). 分析:将根号外的因数(式)移到根号内时,要将根号外的数(式)改写成完全平方的形式作为被开方数(式),如5=52,实际上是运用了公式a =a 2(a ≥0).同时,此题还运用了公式a ·b =ab (a ≥0,b ≥0).如果根号外有负号,那么负号不能移入根号内,移到根号内的因数(式)必须是正的,但有些字母的取值范围需由隐含条件得出,如(2),(3)小题.解:(1)535=52×35=52×35=15. (2)∵12a>0,∴a >0. ∴-2a 12a =-(2a )2·12a=-(2a )2·12a=-2a . (3)∵-1a>0,∴a <0. ∴-a -1a =(-a )2·-1a=(-a )2·(-1a)=-a . (4)∵x <0,y <0,∴x y x =-(-x )2y x=-(-x )2·y x=-xy .(1)要将根号外的因数(式)平方后移到根号内,应运用公式a =a 2(a ≥0)及a ·b =ab (a ≥0,b ≥0);(2)根号外的负号不能移到根号内,如果根号外有字母,那么要判断字母的符号,如果符号是负的,那么负号要留在根号外.5.最简二次根式的概念满足下列两个条件的二次根式,叫做最简二次根式.①被开方数的因数是整数,因式是整式;②被开方数中不含能开得尽方的因数或因式.对最简二次根式的理解①被开方数中不含分母,即被开方数的因数是整数,因式是整式;②被开方数中每一个因数或因式的指数都小于根指数2,即每个因数或因式的指数都是1.【例5】若二次根式-33a +b 与2a +b b 是最简同类二次根式,求a ,b 的值.分析:最简同类二次根式是指根指数相同,根号内的因式相同且不能开方的二次根式.解:由题意,得⎩⎪⎨⎪⎧ a +b =2,3a +b =b ,解得⎩⎪⎨⎪⎧a =0,b =2. 所以a ,b 的值分别是0,2.本题考查的是对最简同类二次根式概念的理解.最简同类二次根式是指根指数相同,根号内的因式相同且不能开方的二次根式.6.二次根式的乘除混合运算(1)运算顺序:二次根式的乘除混合运算顺序与整式乘除混合运算顺序相同,按照从左到右的顺序计算,有括号的先算括号里面的.(2)公式、法则:整式乘除中的公式、法则在二次根式混合运算中仍然适用.(3)运算律:整式乘法的运算律在二次根式运算中仍然适用.乘法分配律是乘法对加法的分配律,而不是乘法对除法的分配律.在进行二次根式的运算时常见的错误是:①忽略计算公式的条件;②不注意式子的隐含条件;③除法运算时,分母开方后没写在分母的位置上;④误认为形如a 2+b 2的式子是能开得尽方的二次根式.【例6】计算下列各题: (1)9145÷(3235)×12223; (2)2ab a 2b ·3a b ÷(-121a). 分析:二次根式的乘除混合运算顺序与有理数的乘除混合运算的顺序相同,按从左到右的顺序进行运算,不同的是在进行二次根式的乘除运算时,二次根式的系数要与系数相乘除,被开方数与被开方数相乘除. 解:(1)9145÷(3235)×12223 =(9÷32×12)145÷35×83=(9×23×12)145×53×83=3881=322×292=3×292=232; (2)2ab a 2b ·3a b ÷(-121a )=[2ab ·3÷(-12)]a 2b ·a b ÷1a=-12ab a 2b ·a b·a =-12ab a 4 =-12ab ·a 2=-12a 3b .7.二次根式的化简(1)化二次根式为最简二次根式的方法:①如果被开方数是分数(包括小数)或分式,先利用商的算术平方根的性质把它写成分式的形式,然后把分母化为有理式.②如果被开方数是整数或整式,先将它分解因数或因式,然后把它开得尽方的因数或因式开出来.(2)口诀“一分、二移、三化”“一分”即利用分解因数或分解因式的方法把被开方数(或式)的分子、分母都化成质因数(或质因式)的幂的积的形式.“二移”即把能开得尽方的因数(或因式)用它的算术平方根代替移到根号外,其中把根号内的分母中的因式移到根号外时,要注意写在分母的位置上.“三化”即化去被开方数的分母.(3)化去分母中的根号①化去分母中的根号,其依据是分式的基本性质,关键是分子、分母同乘以一个式子,使它与分母相乘得整式.②下面几种类型的两个含有二次根式的代数式相乘,它们的积不含有二次根式. a 与a ;a +b 与a -b ;a +b 与a -b ;a b +c d 与a b -c d .③化去分母中的根号时,分母要先化简.(4)在进行二次根式的运算时,结果一般都要化为最简二次根式.【例7】(1)当ab <0时,化简ab 2,得__________.(2)把代数式x -1x根号外的因式移到根号内,化简的结果为__________. (3)把-x 3(x -1)2化成最简二次根式是__________. (4)化简35-2时,甲的解法是:35-2=3(5+2)(5-2)(5+2)=5+2,乙的解法是:35-2=(5+2)(5-2)5-2=5+2,以下判断正确的是( ). A .甲正确,乙不正确B .甲不正确,乙正确C .甲、乙的解法都正确D .甲、乙的解法都不正确解析:(1)在ab 2中,因为ab 2≥0,所以ab ·b ≥0.因为ab <0,b ≠0,所以b <0,a >0.原式=b 2·a =-b a .(2)因为-1x ≥0,又由分式的定义x ≠0,得x <0.所以原式=-(-x )-1x=-(-x )2(-1x)=--x . (3)化简时,需知道x ,x -1的符号,而它们的符号可由题目的隐含条件推出. ∵(x -1)2>0(这里不能等于0),∴-x 3≥0,即x ≤0,1-x >0. 故原式=(-x )2·(-x )(1-x )2=-x 1-x-x . (4)甲是将分子和分母同乘以5+2把分母化为整数,乙是利用3=(5+2)(5-2)进行约分,所以二人的解法都是正确的,故选C.答案:(1)-b a (2)--x(3)-x 1-x-x (4)C 8.二次根式的乘除法的综合应用利用二次根式的乘除法可解决一些综合题目,如:(1)比较大小比较两数的大小的方法有很多种,通常有作差法、作商法等.对于比较含有二次根式的两个数的大小,一种方法是把根号外的数移到根号内,通过比较被开方数的大小来比较原数的大小;二是将要比较的两个数分别平方,比较它们的平方数.(2)化简求值对于此类题目,不应盲目地把变量的值直接代入原式中,一般地说,应先把原式化简,再代入求值.在化简过程中要注意整个化简过程得以进行的条件,如开平方时注意被开方数为非负数,分式的分母不能为零等.再者,有些二次根式的化简,从形式上看是特别麻烦的,让人一看简直无从下手,但仔细分析又是有一定规律和模式的.(3)探索规律适时运用计算器,重视计算器在探索发现数学规律中的作用.如:借助于计算器可以求得42+32=__________,442+332=__________,4442+3332=__________,4 4442+3 3332=__________,……__________.解析:利用计算器我们可以分别求得42+32=25=5, 442+332= 3 025=55,4442+3332=308 025=555,4 4442+3 3332=30 858 025=5 555,2011555个.答案:5 55 555 5 555 2011555个【例8-1】已知9-x x -6=9-x x -6,且x 为偶数,求(1+x )x 2-5x +4x 2-1的值. 分析:式子a b =a b,只有a ≥0,b >0时才能成立.因此得到9-x ≥0且x -6>0,即6<x ≤9,又因为x 为偶数,所以x =8.解:由题意,得⎩⎪⎨⎪⎧ 9-x ≥0,x -6>0,即⎩⎪⎨⎪⎧x ≤9,x >6. ∴6<x ≤9.∵x 为偶数,∴x =8.∴原式=(1+x )(x -4)(x -1)(x +1)(x -1) =(1+x )x -4x +1 =(1+x )x -4x +1=(1+x )(x -4). ∴当x =8时,原式的值为4×9=6.【例8-2】观察下列各式: 223=2+23,338=3+38. 验证:223=233=23-2+222-1=2(22-1)+222-1=2+222-1=2+23; 338=338=33-3+332-1=3(32-1)+332-1=3+332-1=3+38. (1)按照上述两个等式及其验证过程的思路,猜想4415的变形结果并进行验证; (2)针对上述各式反映的规律,写出用n (n 为任意正整数且n ≥2)表示的等式,并给出证明.分析:本题是利用所学过的根式变形,去发现变形的规律,由于这种变形方法比较陌生,必须认真阅读所提供的素材,即学即用. 解:(1)4415=4+415. 验证:4415=4315=43-4+442-1=4(42-1)+442-1=4+442-1=4+415. (2)猜想:n n n 2-1=n +n n 2-1(n ≥2,n 为正整数). 证明:因为n n n 2-1=n 3n 2-1=n 3-n +n n 2-1=n (n 2-1)+n n 2-1=n +n n 2-1,所以nn n 2-1=n +n n 2-1.。
16.2.2二次根式的除法
数学上将这种把分母的根号去掉的过程称作“分母有理 化” 。 利用上述方法化简: (1)
A.
2 7
5
B.
2 7
2 7
2 1 =_________ (2) =________ 3 2 6
(2)化简
3 2 的结果是( ) 27
B. -
A. -
2 3
2 3
C. -
6 3
D. - 2
2、计算: (3)
( 3 )
4 16
=____
,
4 16
=____
; (3)
9x 64 y 2
(4)
5x 169 y 2
4 4 _______ ; 16 16
(4)
36 =____, 81
36 =___. 81
概念:化简二次根式达到的要求: (1)被开方数不含分母; (2)分母中不含有二次根式。
36 36 _______ . 81 81
12 3
(2)
3 1 2 8
3、填空: (1)
9 9 =____, =____; 16 16
(3)
1 1 4 16
(4)
64 8
规律:
9 9 ______ ; 16 16
16 36
=____ ,
( 2 )
16 36
2、化简: =____ ; (1)
3 64
(2)
64b 2 9a 2
16 16 ______ ; 36 36
学习环节: 一.前置作业:
1、写出二次根式的乘法法则和积的算术平方根的性质
a a a a = (a≥0,b>0)反过来, = (a≥0, b b b b
人教版八年级数学下册:16.2二次根式的乘除(2)
3 25x 25x 5 x
9y2 9y2 3y
练习一:
7 (1) 2
9
(2)
81 25x2
x
0
(3)
16b2c a2
a
0,
b
0
0.09 ×169 (4)
0.64 ×196
解:(4(3)()(2100))1..606a4922b2××57892c=x111296=69=295==16a2b0052822..x1960c5249==××=11534965b969ax
算术平方根的积等于各个被开方数积的算术平方根
ab a b (a 0,b 0)
积的算术平方根等于积中各因式的算术平方根.
思考:二次根式的除法有没有类似的法则呢?
计算下列各式,观察计算结果,你发现什么规律?
1.
4 9
2 3
,
2.
16 49
4 7
,
除,作为商的被开方数
例4:计算 1 24
解:
3
2 3 1
2 18
1 24 24 8 4 2 2 2
3
3
2 3 1
2 18
3 1 2 18
3 18 2
39
3 3
试一试
计算:
(1)
32 2
(2) 50 10
3 4 1 7
5 10
解:1 32 32 16 4
a+b • a+b
=
2a a+b a+b
(3) 3
2=
2 =
40 3 • 2 10 6
2 • 10
=
10 • 10
16.2.2 二次根式的除法
C. y
D. y
(来自《典中点》)
1 知识小结
1.二次根式的除法: 两个二次根式相除,把被开方数相除,根指
数不变,即: a a (a≥0,b>0). bb
2.最简二次根式: (1)被开方数不含分母; (2)被开方数中不含能开得尽方的因数或因式.
2 易错小结
计算: 23 3 2 3 1 . 23
(4)
2
3 .
3
(来自《教材》)
知3-练
2 设长方形的面积为S,相邻两边长分别为a,b. 已知S=16,b= 10 ,求a.
解:由题意得S=ab,所以 a S 16 16 10 16 10 8 10. b 10 10 10 10 5
(来自《教材》)
知3-练
3 【 2017·荆州】下列根式是最简二次根式的是
( C)
A. 1 3
C. 3
B. 0.3 D. 20
(来自《典中点》)
知3-练
4 【中考·锦州】下列二次根式中属于最简二次 根式的是( D )
A. 24 C. a
b
B. 36 D. a 4
(来自《典中点》)
知3-练
5
已知xy<0,化简二次根式
x
-y x2
的正确
结果为( B )
A. y
B. y
3
2 18
知1-讲
解:(1) 24 24 = 8= 4 2=2 2; 33
(2) 3 1 3 1 = 3 18= 3 9=3 3. 2 18 2 18 2
(来自《教材》)
总结
知1-讲
利用二次根式的除法法则进行计算,被开方 数相除时,可以用“除以一个不为零的数等于乘这 个数的倒数”进行约分、化简.
人教版八年级下册162二次根式的乘除练习(无答案)
16.2二次根式的乘除练习一、选择题 1.√2×√3的值为 ( ) A .√5B .√6C .2√3D .3√22.化简√52×8的结果是 ( ) A .10√2B .±10√2C .5√8D .±5√8 3.化简-√2√7的结果是( ) A .-√27B .-√7C .-√147D .-√24.在化简3√23时,有以下两种方法: 甲:原式=3×√2√3=3×√2×√3√3×√3=√6; 乙:原式=3×√2×33×3=3×√63=√6.下列说法正确是( )A .甲、乙两种方法均正确B .甲方法正确,乙方法错误C .甲方法错误,乙方法正确C .甲、乙两种方法均错误 5.下列计算正确的是( )A. √−9−4=√−9√−4=32B. √−9−4=−3−2=32C. √−9−4=√94=√9√4=32D. √−9−4=±√94=±32 6.已知长方形的面积为12,其中一边长为2√2,则其邻边长为( ) A.2√2 B.3√3 C.3√2 D.2√37.如果,,那么下面各式不正确的是( ) ABCD8.把) A B .C .D二、填空题9.计算:5÷√5√5所得的结果是______. 10.计算,√6×√8√2= .0ab >0a b +<a -1=b =-=11.化简:(1)√45= ;(2)√25x2y3z= .12.不等式2√2x-√6>0的解集是.13.一个长方体的底面是正方形,体积是V cm3,高是h cm,则底面的边长是cm.14.观察下列各式:√1+13=2√13,√2+14=3√14,√3+15=4√15,…….请你找出其中的规律,并写出第n(n为正整数)个等式: .三、解答题15.化简或计算:(1)√0.9×121100×0.36;(2)√12÷√27×(-√18);(3)√27×√12√3;(4)√12x÷(25√y);16.已知长方体的体积V=h=S.17求这个三角形的面积.18.古希腊的几何学家海伦,在数学史上以解决几何测量问题而闻名,在他的著作《度量》一书中,给出了一个公式:如图一个三角形的三边长分别为a,b,c,记p=a+b+c2,那么三角形的面积S=√p(p-a)(p-b)(p-c),此公式称为海伦公式.思考运用:已知李大爷家有一块三角形的菜地,如图,测得AB=7 m,AC=5 m,BC=4 m,你能求出李大爷家这块菜地的面积吗?试试看!。
人教版八年级数学下册二次根式(全章)习题及答案
人教版八年级数学下册二次根式(全章)习题及答案-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN二次根式16.1 二次根式:1. 有意义的条件是 。
2. 当__________3. 11m +有意义,则m 的取值范围是 。
4. 当__________x 是二次根式。
5. 在实数范围内分解因式:429__________,2__________x x -=-+=。
6. 2x =,则x 的取值范围是 。
7. 2x =-,则x 的取值范围是 。
8. )1x 的结果是 。
9. 当15x ≤5_____________x -=。
10. 把的根号外的因式移到根号内等于 。
11. 1x =+成立的条件是 。
12. 若1a b -+互为相反数,则()2005_____________a b -=。
13. )()()230,2,12,20,3,1,x y y x x x x y +=--++中,二次根式有( )A. 2个B. 3个C. 4个D. 5个14. 下列各式一定是二次根式的是( )15. 若23a ,则- )A. 52a -B. 12a -C. 25a -D. 21a -16. 若A==( ) A. 24a + B. 22a + C. ()222a + D. ()224a + 17. 若1a ≤)A. (1a -B. (1a -C. (1a -D. (1a -18.=x 的取值范围是( ) A. 2x ≠ B. 0x ≥ C. 2x D. 2x ≥ 19.)A. 0B. 42a -C. 24a -D. 24a -或42a -20. 下面的推导中开始出错的步骤是( )()()()()23123224==-==∴=-∴=- A. ()1 B. ()2 C. ()3 D. ()421.2440y y -+=,求xy 的值。
22. 当a 取什么值时,代数式1取值最小,并求出这个最小值。
23. 去掉下列各根式内的分母:())10x ())21x24. 已知2310x x -+=25. 已知,a b (10b -=,求20052006a b -的值。
八年级数学下册16.2.2二次根式的除法练习2新人教版
二次根式的除法一、选择题1.下列计算不正确的是( ). A .471613=B .xy xx y 63132= C .201)51()41(22=- D .x xx3294= 2.下列各式中,最简二次根式是( ). A .yx -1B .ba C .42+x D .b a 253.(易错题)下列各式错误的是( ) A 。
164255=B.2733648=C.222493=D 。
165755-=-4。
11x x x x=--成立的条件是( )A. x≥0 B 。
x<1 C. 0≤x〈1D 。
x≥0且x ≠15。
下列二次根式是最简二次根式的是( ) A 。
8B 。
2;C. 2D 。
0.26.化简20的结果是()A. 52B.25C 。
210D.457.(8223-的结果是( ) A.2B 。
3C 。
3D.6二、填空题8.在横线上填出一个最简单的因式,使得它与所给二次根式相乘的结果为有理式,如:23 与.2(1)32与______; (2)32与______;(3)a 3与______; (4)23a 与______; (5)33a 与______. 9.化简二次根式:(1)=⨯62________(2)=81_________(3)=-314_________ 10.已知,732.13≈则≈31______;≈27_________.(结果精确到0.001) 11。
如果2,5a b ==,则1000用含a,b 的代数式表示为__________ 。
三、解答题 12。
计算:(1)1115 3.524⨯÷; (2)241512532⎛⎫⨯⨯- ⎪ ⎪⎝⎭。
13.已知a ,b 满足1414303a b b a -++--=,求12b a a b ⎛⎫÷ ⎪ ⎪-⎝⎭的值. 14.观察下列各式及其验证过程:322233=+验证:()()323222222212322223332121-+-+====+--。
二次根式的除法练习题
二次根式的除法练习题课前预习:1.二次根式的除法法则:相除,根指数不变。
2.商的算术平方根: a?0,b?0)。
即两个二次根式相除,把被开方数a?0,b?0)。
即商的算术平方根等于被除式的算术平方根除以除式的算术平方根。
3.最简二次根式满足以下两个条件的二次根式叫做最简二次根式被开方数不含;被开方数中不含的因数或因式。
课堂练习:1.C.D.36A.B.2.下列二次根式是最简二次根式的是AB. C.D.3.设a?0,b?0,则下列运算错误的是B. ?D. ?154.化去下列二次根式中的分母,正确的是 AB.C.D. 3ax5.计算 A. B.3xC.D.6.。
7.3?,x??= ??课后训练:8.下列二次根式中,最简二次根式是A.B. C.D.9.成立的条件是 ?A.a??1 B. a?? C. a??1 D. a??2 10.的结果是 A.B.C.D. 11.AB.C.D. 12.下列计算正确的是A?B.?C.D. 5a213.小红的作业本上有以下四道题:22.?2.236,1.732,??2?;??3.?且x为奇数,求二次根式练习题____班姓名__________ 分数__________一、选择题1.若3?m为二次根式,则m的取值为A.m≤3B.m<3C.m≥D.m>32.下列式子中二次根式的个数有⑴11;⑵?3;⑶?x2?1;⑷8;⑸2;⑹?x;⑺x2?2x?3.3A.2个 B.3个 C.4个 D.5个3.当a?2a?2有意义时,a的取值范围是A.a≥B.a>C.a≠ D.a≠-24.下列计算正确的是①??4??9?6;②?4?9?6;③52?42?5?4?5?4?1;④52?42?52?42?1;A.1个 B.2个 C.3个 D.4个5.化简二次根式2?3得A.?B.5C.?D.306.对于二次根式x2?9,以下说法不正确的是A.它是一个正数 B.是一个无理数C.是最简二次根式D.它的最小值是37.把3aab分母有理化后得A.4bB.2b C.1 D.b28.ax?by的有理化因式是A.x?yB.x?yC.ax?by D.ax?by9.下列二次根式中,最简二次根式是A.3a B.1C.D.10.计算:a1?ab?等于 bababB.A.1ab211abC.ab D.bab abb二、填空题11.当x___________时,?3x是二次根式.12.当x___________时,3?4x在实数范围内有意义. 13.比较大小:?32______?23.14.2ba??____________;252?242?__________. a18b 15.计算:3a?2b?___________.16b2c16.计算:=_________________. a217.当a=3时,则15?a2?___________.18.若x?2x?2成立,则x满足_____________________. ?3?x3?x三、解答题19.把下列各式写成平方差的形式,再分解因式:⑴x2?5;⑵4a2?7;⑶16y2?15;⑷3x2?2y2.20.计算:⑴?3?;⑵2?⑶113?;31?23?;⑷x?10?1y?z.221.计算:⑴?220;⑵0.01?81; 0.25?144⑶12123ab1?2?1;⑷?.352bab22.把下列各式化成最简二次根式: abcc327132?122 ⑴;⑵?.52722ab23.已知:x?20?41,求x2?2的值.x参考答案:一、选择题1.A;2.C;3.B;4.A;5.B;6.B;7.D;8.C;9.D;10.A.二、填空题11.≤4bc131;12.≤;13.<;14.,7;15.302ab;16.;17.32;a34318.2≤x<3.三、解答题19.⑴;⑵;⑶;⑷;20.⑴?243;⑵2;⑶?43;⑷10xyz; 3c2332bc;23.121.⑴?;⑵;⑶1;⑷;22.⑴33;⑵ ?4a4420二次根式的乘除法练习题一、选择题1.下列各式属于最简二次根式的是A. B.x2?1C.yD.12??) ??A.①②③④B.①②C.y3③④ D.①②③3.下列各式中不成立的是?2x??32D.?44??1??94. 当x≤2时,下列等式成立的是A.2?x?2. B.2?x?3.C.?2?x?3?x. D.3?x3?x. ?2?x2?x.有一个长、宽、高分别为5cm、4cm、3cm的木箱,在它里面放入一根细木条,要求木条不能露出木箱,算一算,能放入的细木条的最大长度是A、41cm二、填空题6.?2.44.7.若|a-B、34cm C、52cm D、5cm 1|+2=0,则3a×2?b÷?ab的值是8?x,y满足的条件为 ?bxx=;10.把根号外的因式移到根号内:当b>0时,三、解答题 1=. 1?a11.计算:3x?2x2?6x42x?1?3?4x2x?1?1,求x?xy?x2y 的值.x?3?a的取值范围是 aA.a≤0 B.a?0 C.0?a≤1 D.a?01. 实数a、b在数轴上的位置如图所示.1 1。