浙江省考试院2013届高三数学测试卷试题 文 新人教A版
2013-2014学年高一数学上学期第三次月考试题 文 及答案(新人教A版 第38套)
2013—2014学年度高考辅导学校第三次月考 数学试题(文)一. 选择题(本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的,请把答案写在答题卡相应的位置)(1) 已知全集U R =,集合2{20}A x x x =->,{lg(1)}B x y x ==-,则(U C A B ) =( )(A) {12}x x <≤ (B){12}x x << (C){20}x x x ><或 (D){12}x x ≤≤ (2) 下列命题中是假命题的是( ) (A) x x x sin ),2,0(>∈∀π(B)0x R ∃∈,2cos sin 00=+x x(C) x R ∀∈,03>x(D)0lg ,00=∈∃x R x(3) 已知α∈(2π,π),sin α=53,则tan (4πα-)等于( ) (A)7- (B) 17- (C) 7 (D)71(4)已知32log log a =+,92log log b =-,23log c =,则,,a b c 的大小关系是( )(A)a b c =< (B)a b c => (C)a b c <<(D)a b c >>(5) 已知函数2()f x x bx =+()b R ∈,则下列结论正确的是( )(A),()b R f x ∀∈在(0,+∞)上是增函数 (B),()b R f x ∀∈在(0,+∞)上是减函数(C),()b R f x ∃∈为奇函数 (D),()b R f x ∃∈为偶函数(6) .若y x ,满足约束条件⎪⎩⎪⎨⎧≤+≥+≥32320y x y x x ,则y x z -=的最小值是 ( )(A )-3(B )0(C )23 (D )3(7) 已知等比数列{}n a 满足0,1,2,n a n >=,且25252(3)nn a a n -⋅=≥,则当1n ≥时,2123221log log log n a a a -+++=( )(A)(21)n n - (B)2(1)n + (C)2n (D)2(1)n -(8) 在ABC 中,a b =“”是cos cos a A b B =“”的 ( )(A)充要条件 (B)必要不充分条件 (C)充分不必要条件(D)既不充分也不必要条件(9) 若)(x f 是R 上的减函数,且)(x f 的图象过点)3,0(和)1,3(-,则不等式21)1(<-+x f 的解集是( )(A) (,2)-∞ (B)(1,4) (C)(0,3) (D) (1,2)- (10) 已知O 是△ABC 外接圆的圆心,A 、B 、C 为△ABC 的内角,若cos cos 2sin sin B C AB AC m AO C B+=⋅,则m 的值为 ( ) (A)1 (B)A sin (C)A cos (D)A tan二.填空题(本大题共5小题,每小题5分,共25分.把答案填写在相应位置的答题卡上) (11) 已知向量a 、b 的夹角为120,2,3a b ==,则2a b -= .(12) 已知0,0a b >>,且12(2y a b x=+为幂函数,则ba 11+的最小值为 .(13) 在ABC ∆中,(cos18,cos72)AB =,(2cos632cos27)BC =,,则ABC ∆面积为_(14) 已知数列{}n a 是等差数列,其前n 项和为n S ,若12345a a a =,且133********3S S S S S S ++=,则2a =_________. (15) 已知集合M 是满足下列条件的函数()f x 的全体:(1)()f x 既不是奇函数也不是偶函数;(2) 函数()f x 有零点.那么在函数① ()1f x x =-, ② ()21xf x =-, ③ 2,0()0,02,0x x f x x x x ->⎧⎪==⎨⎪+<⎩④ 2()1ln f x x x x =--+ 中,属于M 的有________.(写出所有符合的函数序号)三、解答题(本大题共6小题,共75分。
2013-2014学年高一数学上学期期末考试试题 文 及答案(新人教A版 第68套)
2013-2014学年高一上学期期末考试数学(文)试题(满分150分,考试时间120分钟)一、选择题(每小题5分)1已知集合M={0,2,4,6},集合Q={0,1,3,5},则M ∪Q 等于( ).A.{0}B.{0, 1,2,3,4,5,6}C.{1,2,3,4,5,6}D.{0,3,4,5,6}2、函数21)(--=x x x f 的定义域为( ) A 、[1,2)∪(2,+∞) B 、(1,+∞) C 、[1,2) D 、[1,+∞)3、已知角α的终边经过点1)P -,则cos sin αα-=( )A 、B 、;C 4、已知向量(2,),(,8)a x b x →→==,若||||→→→→⋅=⋅b a b a ,则x 的值是A.4-B. 4 C . 0 D. 4或-4 5.在)2,0(π内,使x x cos sin >成立的x 取值范围为( )A .)45,()2,4(ππππB .),4(ππC .)45,4(ππD .)23,45(),4(ππππ 6. 化简0015tan 115tan 1-+等于 ( ) A. 3 B. 23 C. 3 D. 1 7.三个数23.0=a ,3.0log 2=b ,3.02=c 之间的大小关系是( )A .a < c < bB .a < b < cC . b < a < cD . b < c < a8.已知函数 ⎩⎨⎧≤>=)0(3)0(log )(2x x x x f x ,则 ⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛41f f =( ) A .9 B . 19 C .-9 D .-199、已知方程lg x=2-x 的解为x 0,则下列说法正确的是( ).A.x 0∈(0,1)B.x 0∈(1,2)C.x 0∈(2,3)D.x 0∈[0,1]10、已知a 、b 均为单位向量,它们的夹角为60°,那么|a + 3b | =( )A .7B .10C .13D .411、函数x x y cos sin 3+=,]2,2[ππ-∈x 的最大值为( ) A .1 B. 2 C. 3 D. 23 12、已知函数f(x)在[0,+∞)上是减函数,g(x)=-f(x ),若g(lgx)<g(1),则x 的取值范围是 ( ) A(110,10) B(0,10) C(10,+∞) D(0,110)∪(10,+∞)二、填空题(每小题5分)13 若(2,2)a =-,则与a 垂直的单位向量的坐标为__________14.若幂函数)(x f 的图象过点)22,2(,=)9(f __________________.15.函数)34(log 221-+-=x x y 的单调递增区间________________.16、关于函数f(x)=4sin(2x +3π), (x∈R )有下列命题:①y=f(x)是以2π为最小正周期的周期函数;② y=f(x)可 改写为y =4cos(2x -6π); ③y=f(x)的图象关于点(-6π,0)对称;④ y=f(x)的图象关于直线x =512π-对称; 其中正确的序号为 。
浙江省考试院2013届高三测试卷化学试题
测试卷化学可能用到的相对原子质量:H 1 C 12 O 16 S 32 Na 23 Ca 40选择题7.下列说法正确的是A.含相同碳原子数的烷烃异构体,由于分子间作用力不同,支链越多沸点越高B.活泼金属元素的氧化物一定是碱性氧化物,非金属元素的氧化物一定是酸性氧化物C.氢氧化铁溶胶、甘油与乙醇的混合液、含PM2.5的大气均具有丁达尔效应D.绿色化学期望利用化学原理从源头消除污染,在化学过程中充分利用原料,实现零排放8.下列说法不.正确..的是A.用茚三酮溶液可以鉴别甘氨酸与醋酸B.用纸层析法分离铁离子与铜离子时,蓝色斑点在棕色斑点的下方,说明铜离子在固定相中分配得更多C.过滤、结晶、灼烧、萃取、分液和蒸馏等都是常用的分离有机混合物的方法D.如果不慎将苯酚沾到皮肤上,应立即用酒精洗涤,再用水冲洗9.下列各项中,理由、结论及因果关系均正确的是A.由于键能E N≡N>E Cl-Cl,故单质的沸点:N2>Cl2B.由于分子中可电离的H+个数H2SO4> CH3COOH,故两者的酸性:H2SO4>CH3COOH C.由于元素的非金属性N>P,故氢化物的稳定性:NH3>PH3D.由于氧化性Fe3+>Cu2+,故还原性Fe2+>Cu10.设计如下装置探究HCl溶液中阴、阳离子在电场中的相对迁移速率(已知:Cd的金属活动性大于Cu)。
恒温下,在垂直的玻璃细管内,先放CdCl2溶液及显色剂,然后小心放入HCl溶液,在aa’处形成清晰的界面。
通电后,可观察到清晰界面缓缓向上移动。
下列说法不正确...的是A.通电时,H+、Cd2+向Pt电极迁移,Cl-向Cd电极迁移B.装置中总反应的化学方程式为:Cd + 2HCl通电CdCl2 + H2↑C.一定时间内,如果通过HCl溶液某一界面的总电量为5.0 C,测得H+所迁移的电量为4.1 C,说明该HCl溶液中H+的迁移速率约是Cl-的4.6倍D .如果电源正负极反接,则下端产生大量Cl 2,使界面不再清晰,实验失败11.下列说法正确的是A .按系统命名法,CH 3CH 2CHCH 2CH 2CH 2C(CH 3)3CH 3CHCH 3的名称为2,7,7-三甲基-3-乙基辛烷 B .实验证实化合物可使Br 2的CCl 4溶液褪色,说明该分子中存在独立的碳碳单键和碳碳双键C .不能用新制的氢氧化铜鉴别乙醛与葡萄糖溶液D .化合物NO O N OOH的分子式为C 13H 8O 4N 212.下列关于甲、乙、丙、丁四个图像的说法中,不正确...的是甲 乙 丙 丁A .甲是乙酸分子的球棍模型,分子中所有碳原子和氧原子共平面B .乙是氨分子的比例模型,1 mol NH 3中含有共用电子对数为3N A (N A 表示阿伏加德罗常数)C .由丙可知,双氧水在有催化剂存在时的热化学方程式为2H 2O 2(l) =2H 2O(l)+O 2(g) H=-2(E a 2’- E a 2) kJ·mol -1D .丁是向硝酸银溶液中滴加氨水时,沉淀质量与氨的物质的量的关系图13.固体粉末X 中可能含有Fe 、FeO 、CuO 、MnO 2、KCl 和K 2CO 3中的若干种。
高中数学 模块1 高考真题(含解析)新人教A版必修1-新人教A版高一必修1数学试题
模块1高考真题对应学生用书P81剖析解读高考全国Ⅰ、Ⅱ、Ⅲ卷都是由教育部按照普通高考考试大纲统一命题,适用于不同省份的考生.但在难度上会有一些差异,但在试卷结构、命题方向上基本上都是相同的.“稳定”是高考的主旋律.在今年的高考试卷中,试题分布和考核内容没有太大的变动,三角、数列、立体几何、圆锥曲线、函数与导数等都是历年考查的重点.每套试卷都注重了对数学通性通法的考查,淡化特殊技巧,都是运用基本概念分析问题,基本公式运算求解、基本定理推理论证、基本数学思想方法分析和解决问题,这有利于引导中学数学教学回归基础.试卷难度结构合理,由易到难,循序渐进,具有一定的梯度.今年数学试题与去年相比整体难度有所降低.“创新”是高考的生命线.与历年试卷对比,Ⅰ、Ⅱ卷解答题顺序有变,这也体现了对于套路性解题的变革,单纯地通过模仿老师的解题步骤而不用心去理解归纳,是难以拿到高分的.在数据处理能力以及应用意识和创新意识上的考查有所提升,也符合当前社会的大数据处理热潮和青少年创新性的趋势.全国Ⅰ、Ⅱ、Ⅲ卷对必修1集合与函数知识的考查,相对来说比较常规,难度不大,变化小,综合性低,属于基础类必得分试题,主要考查集合的概念及运算,函数的图象及定义域、值域、单调性、奇偶性、对称性、周期、最值等基本性质.做题时若能熟练应用概念及性质,掌握转化的技巧和方法,基本不会丢分。
若综合其他省市自主命题卷研究,必修1的知识又能与命题、不等式、导数、分段函数等知识综合,强化了数形结合思想、分类讨论思想、转化与化归的数学思想的运用,提高了试题的难度,所以作为高一学生来说,从必修1就应该打好牢固的基础,培养最基本的能力.下面列出了2018年全国Ⅰ、Ⅱ、Ⅲ卷及其他自主命题省市试卷必修1所考查的全部试题,请同学们根据所学必修1的知识,测试自己的能力,寻找自己的差距,把握高考的方向,认清命题的趋势!(说明:有些试题带有综合性,是与以后要学习内容的小综合试题,同学们可根据目前所学内容,有选择性地试做!)穿越自测一、选择题1.(2018·全国卷Ⅰ,文1)已知集合A={0,2},B={-2,-1,0,1,2},则A∩B=( ) A.{0,2} B.{1,2}C.{0} D.{-2,-1,0,1,2}答案A解析根据集合交集中元素的特征,可以求得A∩B={0,2},故选A.2.(2018·全国卷Ⅱ,文2)已知集合A={1,3,5,7},B={2,3,4,5},则A∩B=( ) A.{3} B.{5}C.{3,5} D.{1,2,3,4,5,7}答案C解析∵A={1,3,5,7},B={2,3,4,5},∴A∩B={3,5},故选C.3.(2018·某某卷,1)已知全集U={1,2,3,4,5},A={1,3},则∁U A=( )A.∅B.{1,3}C.{2,4,5} D.{1,2,3,4,5}答案C解析因为全集U={1,2,3,4,5},A={1,3},所以根据补集的定义得,∁U A={2,4,5},故选C.4.(2018·全国卷Ⅲ,文1)已知集合A={x|x-1≥0},B={0,1,2},则A∩B=( ) A.{0} B.{1} C.{1,2} D.{0,1,2}答案C解析由集合A={x∈R|x≥1},所以A∩B={1,2},故选C.5.(2018·某某卷,文1)设集合A={1,2,3,4},B={-1,0,2,3},C={x∈R|-1≤x<2},则(A∪B)∩C=( )A.{-1,1} B.{0,1}C.{-1,0,1} D.{2,3,4}答案 C解析由并集的定义可得,A∪B={-1,0,1,2,3,4},结合交集的定义可知,(A∪B)∩C ={-1,0,1}.故选C.6.(2018·某某卷,理1)设全集为R,集合A={x|0<x<2},B={x|x≥1},则A∩(∁R B)=( )A.{x|0<x≤1} B.{x|0<x<1}C.{x|1≤x<2} D.{x|0<x<2}答案 B解析由题意可得,∁R B={x|x<1},结合交集的定义可得,A∩(∁R B)={x|0<x<1}.故选B.7.(2018·卷,文1)已知集合A ={x ||x |<2},B ={-2,0,1,2},则A ∩B =( ) A .{0,1} B .{-1,0,1} C .{-2,0,1,2} D .{-1,0,1,2} 答案 A解析 A ={x ||x |<2}={x |-2<x <2},B ={-2,0,1,2},∴A ∩B ={0,1}.故选A. 8.(2018·全国卷Ⅰ,理2)已知集合A ={x |x 2-x -2>0},则∁R A =( ) A .{x |-1<x <2} B .{x |-1≤x ≤2} C .{x |x <-1}∪{x |x >2} D .{x |x ≤-1}∪{x |x ≥2} 答案 B解析 解不等式x 2-x -2>0,得x <-1或x >2,所以A ={x |x <-1或x >2},于是∁R A ={x |-1≤x ≤2},故选B.9.(2018·全国卷Ⅲ,文7)下列函数中,其图象与函数y =ln x 的图象关于直线x =1对称的是( )A .y =ln (1-x )B .y =ln (2-x )C .y =ln (1+x )D .y =ln (2+x ) 答案 B解析 函数y =ln x 过定点(1,0),(1,0)关于x =1对称的点还是(1,0),只有y =ln (2-x )过此点.故B 正确.10.(2018·某某卷,理5)已知a =log 2e ,b =ln 2,c =log 1213,则a ,b ,c 的大小关系为( )A .a >b >cB .b >a >cC .c >b >aD .c >a >b 答案 D解析 由题意结合对数函数的性质可知,a =log 2e>1,b =ln 2=1log 2e ∈(0,1),c =log1213=log 23>log 2e ,据此可得,c >a >b .故选D.11.(2018·全国卷Ⅱ,文3)函数f (x )=e x -e-xx2的图象大致为( )答案 B解析 ∵x ≠0,f (-x )=e -x-e xx2=-f (x ), ∴f (x )为奇函数,排除A ,∵f (1)=e -e -1>0,∴排除D ;∵f (2)=e 2-e -24=4e 2-4e 216;f (4)=e 4-e-416=e 2·e 2-1e 416,∴f (2)<f (4),排除C.因此选B.12.(2018·全国卷Ⅰ,理9)已知函数f (x )=⎩⎪⎨⎪⎧e x,x ≤0,ln x ,x >0,g (x )=f (x )+x +a .若g (x )存在2个零点,则a 的取值X 围是( )A .[-1,0)B .[0,+∞)C .[-1,+∞) D.[1,+∞) 答案 C解析 画出函数f (x )的图象,再画出直线y =-x ,之后上下移动,可以发现当直线过点A 时,直线与函数图象有两个交点,并且向下可以无限移动,都可以保证直线与函数的图象有两个交点,即方程f (x )=-x -a 有两个解,也就是函数g (x )有两个零点,此时满足-a ≤1,即a ≥-1,故选C.13.(2018·全国卷Ⅰ,文12)设函数f (x )=⎩⎪⎨⎪⎧2-x,x ≤0,1,x >0,则满足f (x +1)<f (2x )的x 的取值X 围是( )A .(-∞,-1]B .(0,+∞)C .(-1,0)D .(-∞,0) 答案 D解析 将函数f (x )的图象画出来,观察图象可知⎩⎪⎨⎪⎧2x <0,2x <x +1,解得x <0,所以满足f (x +1)<f (2x )的x 的取值X 围是(-∞,0),故选D.14.(2018·全国卷Ⅲ,理12)设a =log 0.20.3,b =log 20.3,则( ) A .a +b <ab <0 B .ab <a +b <0 C .a +b <0<ab D .ab <0<a +b 答案 B解析 ∵a =log 0.20.3,b =log 20.3,∴1a =log 0.30.2,1b =log 0.32,∴1a +1b=log 0.30.4,∴0<1a +1b <1,即0<a +b ab<1.又∵a >0,b <0,∴ab <0,即ab <a +b <0,故选B.二、填空题15.(2018·某某卷,1)已知集合A ={0,1,2,8},B ={-1,1,6,8},那么A ∩B =________. 答案 {1,8}解析 由题设和交集的定义可知,A ∩B ={1,8}.16.(2018·某某卷,5)函数f (x )=log 2x -1的定义域为________. 答案 [2,+∞)解析 要使函数f (x )有意义,则log 2x -1≥0,解得x ≥2,即函数f (x )的定义域为[2,+∞).17.(2018·全国卷Ⅰ,文13)已知函数f (x )=log 2(x 2+a ),若f (3)=1,则a =________. 答案 -7解析 根据题意有f (3)=log 2(9+a )=1,可得9+a =2,所以a =-7.18.(2018·全国卷Ⅲ,文16)已知函数f (x )=ln (1+x 2-x )+1,f (a )=4,则f (-a )=________.答案 -2解析 f (x )+f (-x )=ln (1+x 2-x )+1+ln (1+x 2+x )+1=ln (1+x 2-x 2)+2=2,∴f (a )+f (-a )=2,则f (-a )=-2.19.(2018·卷,理13)能说明“若f (x )>f (0)对任意的x ∈(0,2]都成立,则f (x )在[0,2]上是增函数”为假命题的一个函数是________.答案 y =sin x (答案不唯一)解析 令f (x )=⎩⎪⎨⎪⎧0,x =0,4-x ,x ∈0,2],则f (x )>f (0)对任意的x ∈(0,2]都成立,但f (x )在[0,2]上不是增函数.又如,令f (x )=sin x ,则f (0)=0,f (x )>f (0)对任意的x ∈(0,2]都成立,但f (x )在[0,2]上不是增函数.20.(2018·某某卷,9)函数f (x )满足f (x +4)=f (x )(x ∈R ),且在区间(-2,2]上,f (x )=⎩⎪⎨⎪⎧cos πx2,0<x ≤2,x +12,-2<x ≤0,则f [f (15)]的值为________.答案22解析 由f (x +4)=f (x )得函数f (x )的周期为4,所以f (15)=f (16-1)=f (-1)=-1+12=12,因此f [f (15)]=f 12=cos π4=22. 21.(2018·某某卷,15)已知λ∈R ,函数f (x )=⎩⎪⎨⎪⎧x -4,x ≥λ,x 2-4x +3,x <λ,当λ=2时,不等式f (x )<0的解集是________.若函数f (x )恰有2个零点,则λ的取值X 围是________.答案 (1,4) (1,3]∪(4,+∞)解析 由题意,得⎩⎪⎨⎪⎧x ≥2,x -4<0或⎩⎪⎨⎪⎧x <2,x 2-4x +3<0,所以2≤x <4或1<x <2,即1<x <4,不等式f (x )<0的解集是(1,4),当λ>4时,f (x )=x -4>0,此时f (x )=x 2-4x +3=0,x =1,3,即在(-∞,λ)上有两个零点;当λ≤4时,f (x )=x -4=0,x =4,由f (x )=x 2-4x +3在(-∞,λ)上只能有一个零点,得1<λ≤3.综上,λ的取值X 围为(1,3]∪(4,+∞).22.(2018·某某卷,理14)已知a >0,函数f (x )=⎩⎪⎨⎪⎧x 2+2ax +a ,x ≤0,-x 2+2ax -2a ,x >0.若关于x的方程f (x )=ax 恰有2个互异的实数解,则a 的取值X 围是________.答案 (4,8)解析 当x ≤0时,方程f (x )=ax ,即x 2+2ax +a =ax ,整理可得,x 2=-a (x +1),很明显x =-1不是方程的实数解,则a =-x 2x +1,当x >0时,方程f (x )=ax ,即-x 2+2ax -2a =ax ,整理可得,x 2=a (x -2),很明显x =2不是方程的实数解,则a =x 2x -2,令g (x )=⎩⎪⎨⎪⎧-x 2x +1,x ≤0,x 2x -2,x >0,其中-x 2x +1=-x +1+1x +1-2,x 2x -2=x -2+4x -2+4,原问题等价于函数g (x )与函数y =a 有两个不同的交点,求a 的取值X 围.结合对勾函数和函数图象平移的规律绘制函数g (x )的图象,同时绘制函数y =a 的图象如图所示,考查临界条件,结合a >0观察可得,实数a 的取值X 围是(4,8).。
浙江省五校高三数学第一次联考试题 理 新人教A版
2013学年浙江省第一次五校联考数学(理科)试题卷本试题卷分选择题和非选择题两部分。
满分150分, 考试时间120分钟。
选择题部分(共50分) 参考公式:如果事件A , B 互斥, 那么棱柱的体积公式P (A +B )=P (A )+ P (B )V =Sh如果事件A , B 相互独立,那么 其中S 表示棱柱的底面积, h 表示棱柱的高P (A ·B )=P (A )· P (B ) 棱锥的体积公式如果事件A 在一次试验中发生的概率是p , 那么n V =31Sh次独立重复试验中事件A 恰好发生k 次的概率 其中S 表示棱锥的底面积, h 表示棱锥的高P n (k )=C k n p k (1-p )n -k(k = 0,1,2,…, n ) 球的表面积公式 棱台的体积公式S = 4πR 2)2211(31S S S S h V ++=球的体积公式其中S 1, S 2分别表示棱台的上、下底面积, V =34πR 3h 表示棱台的高 其中R 表示球的半径一、选择题: 本大题共10小题, 每小题5分,共50分。
在每小题给出的四个选项中, 只有一项是符合题目要求的。
1. 已知集合{}21(),0,1(2),2x P y y x Q x y g x x ⎧⎫==>==-⎨⎬⎩⎭则()R C P Q 为( )A .[1,2)B .),1(+∞C .),2[+∞D .),1[+∞2. “2a <”是“对任意实数x ,11x x a ++-≥成立”的( )A.充要条件B.必要不充分条件C.充分不必要条件D.既不充分也不必要条件3. 函数( )A .x π= D 4. 在ΔABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且2Ab c 22ccos=+, 则ΔABC 的形状是( )A .正三角形B .直角三角形C .等腰三角形D .等腰直角三角形 5.设等差数列{}n a 的前n 项和为n S ,若15915a a a =,且15599111135a a a a a a ++=,则9S =( )A.27B.24C.21D.18 6. 用0,1,2,3,4这五个数字组成无重复数字的五位数,并且两个奇数数字之间恰有一个偶数数字,这样的五位数有( )A.12个B.28个C.36个D.48个7. 已知x ,y 满足⎪⎩⎪⎨⎧≤++≤+≥041c by ax y x x ,且2x y +的取值范围是[1,7],则=++a c b a ( ) A .1 B .2 C .-1 D . -2 8. 已知A B 、是单位圆上的两点,O 为圆心,且AOB ∠=0120,MN 是圆O 的一条直径,点C 在圆内,且满足(1)OC OA OB λλ=+-(01)λ<<,则CM CN ⋅的取值范围是( ) A .1[,1)-B .[1,1)-C .3[,0)4- D .[1,0)-9的两个极值点分别为12,x x ,且1201x x <<<,点(,)P m n 表示的平面区域内存在点00(,)x y 满足00log (4)a y x =+,则实数a 的取值范围是( ) A. 1(0,)(1,3)2 B. (0,1)(1,3) C. 1(,1)(1,3]2D. (0,1)[3,)+∞10. 对任意实数1x >,12y >,不等式222241(21)(1)x y a y ax +≥--恒成立,则实数a 的最大值为( )A.2B.4C.2D.非选择题部分 (共100分)二、 填空题: 本大题共7小题, 每小题4分, 共28分。
浙江省2013届高三各地语文月考试卷分类汇编古诗词鉴赏专题(附答案)
浙江省2013届高三各地语文月考试卷分类汇编:古诗词鉴赏专题(一)、(杭高第一次月考)阅读下面一首词,然后完成1-2题。
(7分)江城子·密州出猎(苏轼)老夫聊发少年狂,左牵黄,右擎苍,锦帽貂裘,千骑卷平冈。
为报倾城随太守,亲射虎,看孙郎。
酒酣胸胆尚开张,鬓微霜,又何妨。
持节云中,何日遣冯唐?会挽雕弓如满月,西北望,射天狼。
1.“老夫聊发少年狂”中的“狂”字在整首词中有何作用? (3分)2.“会挽雕弓如满月,西北望,射天狼”勾勒出了怎样的形象?表达了作者怎样的心态?(4分)(二)、(第一次五校联考)阅读下面一首诗,完成3-4题。
(7分)寄黄几复①黄庭坚我居北海君南海,寄雁传书谢不能。
桃李春风一杯酒,江湖夜雨十年灯。
持家但有四立壁,治病不蕲三折肱②。
想见读书头已白,隔溪猿哭瘴溪藤。
【注】①此时诗人监德州(今属山东)德平镇,黄几复任四会县(今属广东)县令。
②蕲:求。
古语有“三折肱,知为良医”的说法,此处的典故说明黄几复具有杰出的政治才干。
3. 请结合诗歌的后四句,简要概括黄几复的形象特点。
(3分)4. 请赏析“桃李春风一杯酒,江湖夜雨十年灯”的主要表现手法及思想情感。
(4分)(三)、(慈溪中学第一次月考)阅读下面这首词,完成5-6题。
(7分)听筝柳中庸抽弦促柱①听秦筝,无限秦人悲怨声。
似逐春风知柳态,如随啼鸟识花情。
谁家独夜愁灯影?何处空楼思月明?更入几重离别恨,江南歧路洛阳城。
【注】①抽弦促柱:弹奏时,以手指或鹿骨爪拨弄筝弦,缓拨叫“抽弦”,急拨叫“促柱”。
5.这首诗题目是“听筝”,首联写的就是诗人在凝神细听。
那么颔联主要运用什么艺术手法来描写音乐给听者带来的感受?请作简要分析。
(3分)6.有人说,颈联中“独”与“空”堪称诗人炼字的典范,请对这两个字作简要赏析。
(4分)(四)、(东阳市南马高中第二次月考)阅读下面这首诗,完成7—8题。
(7分)送友人出塞【吴伟业】此去流人路几千,长虹亭外草连天。
人教A版高中数学选修一第一章测试题
第一章测试题(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.“a >0”是“|a |>0”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 解析 本题考查充要条件的判断,∵a >0⇒|a |>0,|a |>0D ⇒/a >0,∴“a >0”是“|a |>0”的充分不必要条件.答案 A2.命题“∀x ∈R ,x 2-2x +4≤0”的否定为( )A .∀x ∈R ,x 2-2x +4≥0B .∀x ∉R ,x 2-2x +4≤0C .∃x ∈R ,x 2-2x +4>0D .∃x ∉R ,x 2-2x +4>0答案 C3.“x =2k π+π4(k ∈Z )”是“tan x =1”成立的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 解析 tan(2k π+π4)=tan π4=1,所以充分;但反之不成立,如tan 5π4=1.答案 A4.下列命题中的假命题是( )A .∀x ∈R,2x -1>0B .∀x ∈N *,(x -1)2>0C.∃x∈R,lg x<1 D.∃x∈R,tan x=2解析对于B选项x=1时,(x-1)2=0,故选B.答案 B5.如果命题“綈p”为真,命题“p∧q”为假,那么()A.q为假B.q为真C.p或q为真D.p或q不一定为真解析∵命题“綈p”为真,∴命题“p”为假,又“p∧q”为假,∴q可真也可以假.∴p或q可真也可以假,故应选D.答案 D6.下列说法正确的是()①原命题为真,它的否命题为假;②原命题为真,它的逆命题不一定为真;③一个命题的逆命题为真,它的否命题一定为真;④一个命题的逆否命题为真,它的否命题一定为真.A.①②B.②③C.③④D.②③④答案 B7.设{a n}是首项大于零的等比数列,则“a1<a2”是“数列{a n}是递增数列”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件答案 C8.下列命题中的假命题是()A. ∀x >0且x ≠1,都有x +1x >2B. ∀a ∈R ,直线ax +y =a 恒过定点(1,0)C. ∀φ∈R ,函数y =sin(x +φ)都不是偶函数D .∃m ∈R ,使f (x )=(m -1)·xm 2-4m +3是幂函数,且在(0,+∞)上单调递减解析 A .当x >0时,x +1x ≥2 x ·1x =2,∵x ≠1,∴x +1x >2,故A 为真命题.B .将(1,0)代入直线ax +y =a 成立,B 为真命题.C .当φ=π2时,函数y =sin(x +π2)是偶函数,C 为假命题.D .当m =2时,f (x )=x -1是幂函数,且在(0,+∞)上单调递减,∴D 为真命题,故选C.答案 C9.下列选项中,p 是q 的必要不充分条件是( )A .p :a +c >b +d ,q :a >b ,且c >dB .p :a >1,b >1,q :f (x )=a x -b (a >0,且a ≠1)的图象不过第二象限C. p :x =1,q :x 2=xD .p :a >1,q :f (x )=log a x (a >0,且a ≠1)在(0,+∞)上为增函数答案 A10.以下判断正确的是( )A .命题“负数的平方是正数”不是全称命题B.命题“∀x∈N,x3>x”的否定是“∃x0∈N,x30>x0”C.“a=1”是“函数f(x)=cos2ax-sin2ax的最小正周期为π”的必要不充分条件D.“b=0”是“函数f(x)=ax2+bx+c是偶函数”的充要条件解析∵“负数的平方是正数”即∀x<0,则x2>0,是全称命题,∴A不正确;∵对全称命题“∀x∈N,x3>x”的否定是“∃x0∈N,x30≤x0”,∴B不正确;∵f(x)=cos2ax-sin2ax=cos2ax,当最小正周期为π时,有2π|2a|=π.∴|a|=1D⇒a=1,∴a=1是“函数f(x)=cos2ax-sin2ax的最小正周期为π”的充分不必要条件,故C不正确;D正确.答案 D11.下列四个命题中,其中真命题是()①“若xy=1,则lg x+lg y=0”的逆命题;②“若a·b=a·c,则a⊥(b-c)”的否命题;③“若b≤0,则方程x2-2bx+b2+b=0有实根”的逆否命题;④“等边三角形的三个内角均为60°”的逆命题.A.①②B.①②③④C.②③④D.①③④解析①逆命题:“若lg x+lg y=0,则xy=1”为真命题.②逆命题:“若a⊥(b-c),则a·b=a·c”为真命题,根据逆命题与否命题的等价性,则否命题也为真命题.③当b≤0时,Δ=4b2-4(b2+b)=-4b≥0,知方程有实根,故原命题为真命题,所以逆否命题也为真命题.④真命题.答案 B12.已知命题p :∀x ∈[1,2],x 2-a ≥0,命题q :∃x 0∈R ,x 20+2ax 0+2-a =0.若命题“p ∧q ”是真命题,则实数a 的取值范围是( )A .a ≤-2或a =1B .a ≤-2或1≤a ≤2C .a ≥1D .-2≤a ≤1解析 ∀x ∈[1,2],x 2-a ≥0,即a ≤x 2,当x ∈[1,2]时恒成立,∴a ≤1.∃x 0∈R ,x 20+2ax 0+2-a =0,即方程x 2+2ax +2-a =0有实根,∴Δ=4a 2-4(2-a )≥0,∴a ≤-2,或a ≥1.又p ∧q 为真,故p ,q 都为真,∴⎩⎨⎧ a ≤1,a ≤-2,或a ≥1.∴a ≤-2,或a =1.答案 A 二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)13.写出命题:“若方程ax 2-bx +c =0的两根均大于0,则ac >0”的一个等价命题是________.解析 一个命题与其逆否命题等价,因此只要写出原命题的逆否命题即可.答案 若ac ≤0,则方程ax 2-bx +c =0的两根不都大于014.已知p :x 2-x ≥2,q :|x -2|≤1,且p ∧q 与綈q 同时为假命题,则实数x 的取值范围为________.解析 由x 2-x ≥2,得x ≥2,或x ≤-1,|x -2|≤1,得1≤x ≤3,∵p ∧q 与綈q 同时为假命题,∴q 为真命题,p 为假命题,∴1≤x <2.答案 1≤x <215.已知直线l 1:2x -my +1=0与l 2:x +(m -1)y -1=0,则“m =2”是l 1⊥l 2的________条件.解析 若l 1⊥l 2,只需2×1+(-m )(m -1)=0,即m 2-m -2=0,即m =2,或m =-1,∴m =2是l 1⊥l 2的充分不必要条件.答案 充分不必要16.下列四种说法:①命题“∀x ∈R ,都有x 2-2<3x ”的否定是“∃x ∈R ,使得x 2-2≥3x ”;②若a ,b ∈R ,则2a <2b 是log 12a >log 12b 的必要不充分条件;③把函数y =sin(-3x )(x ∈R )的图象上所有的点向右平移π4个单位即可得到函数y =sin(-3x -π4)(x ∈R )的图象;④若向量a ,b 满足|a |=1,|b |=2,且a 与b 的夹角为2π3,则|a+b |= 3.其中正确的说法是________.解析 ①正确.②若2a <2b ,则a <b ,当a 或b 为负数时,log 12a >log 12b 不成立,若log 12a >log 12b ,∴0<a <b ,∴2a <2b .故②正确.③把y =sin(-3x )的图象上所有点向右平移π4,得到y =sin[-3(x-π4)]=sin(-3x +3π4),故③不正确.④由题可知,a ·b =1×2cos 2π3=-1,∴|a +b |2=a 2+2a ·b +b 2=3,∴|a +b |=3,故④正确.答案 ①②④三、解答题(本大题共6个小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤)17.(10分)判断下列命题是全称命题还是特称命题,并判断其真假.(1)平面内,凸多边形的外角和等于360°;(2)有一些奇函数的图象过原点;(3)∃x 0∈R,2x 20+x 0+1<0;(4)∀x ∈R ,sin x +cos x ≤ 2.解 (1)可以改写为“平面内,所有凸多边形的外角和等于360°”,故是全称命题,且为真命题.(2)“有一些”是存在量词,故该命题为特称命题,显然是真命题.(3)是特称命题.∵2x 20+x 0+1=2(x 0+14)2+78>0,∴不存在x 0∈R ,使2x 20+x 0+1<0,故该命题为假命题.(4)是全称命题.∵sin x +cos x =2sin(x +π4)≤2恒成立,∴对任意的实数x ,sin x +cos x ≤2都成立,故该命题是真命题.18.(12分)写出命题“已知a ,b ∈R ,若关于x 的不等式x 2+ax +b ≤0有非空解集,则a 2≥4b ”的逆命题,并判断其真假.解 逆命题为:“已知a ,b ∈R ,若a 2≥4b ,则关于x 的不等式x 2+ax +b ≤0有非空解集”.由a 2≥4b 知,Δ=a 2-4b ≥0.这说明抛物线y =x 2+ax +b 与x 轴有交点,那么x 2+ax +b ≤0必有非空解集.故逆命题是真命题.19.(12分)设集合M ={x |y =log 2(x -2)},P ={x |y =3-x },则“x ∈M 或x ∈P ”是“x ∈(M ∩P )”的什么条件?解 由题设知,M ={x |x >2},P ={x |x ≤3}.∴M ∩P =(2,3],M ∪P =R当x ∈M ,或x ∈P 时x ∈(M ∪P )=RD ⇒/x ∈(2,3]=M ∩P .而x ∈(M ∩P )⇒x ∈R∴x∈(M∩P)⇒x∈M,或x∈P.故“x∈M,或x∈P”是“x∈(M∩P)”的必要不充分条件.20.(12分)写出下列各命题的否定形式并分别判断它们的真假.(1)面积相等的三角形是全等三角形;(2)有些质数是奇数;(3)所有的方程都不是不等式;(4)自然数的平方是正数.解原命题的否定形式:(1)面积相等的三角形不一定是全等三角形,为真命题.(2)所有质数都不是奇数,为假命题.(3)至少存在一个方程是不等式,为假命题.(4)自然数的平方不都是正数,为真命题.21.(12分)已知a>0,a≠1,设p:函数y=log a(x+3)在(0,+∞)上单调递减,q:函数y=x2+(2a-3)x+1的图象与x轴交于不同的两点.如果p∨q真,p∧q假,求实数a的取值范围.解对于命题p:当0<a<1时,函数y=log a(x+3)在(0,+∞)上单调递减.当a>1时,函数y=log a(x+3)在(0,+∞)上单调递增,所以如果p为真命题,那么0<a<1.如果p为假命题,那么a>1.对于命题q:如果函数y=x2+(2a-3)x+1的图象与x轴交于不同的两点,那么Δ=(2a -3)2-4>0,即4a 2-12a +5>0⇔a <12,或a >52.又∵a >0,所以如果q 为真命题,那么0<a <12或a >52.如果q 为假命题,那么12≤a <1,或1<a ≤52.∵p ∨q 为真,p ∧q 为假,∴p 与q 一真一假.如果p 真q 假,那么⎩⎪⎨⎪⎧ 0<a <1,12≤a <1,或1<a ≤52,⇔12≤a <1. 如果p 假q 真,那么⎩⎪⎨⎪⎧ a >1,0<a <12,或a >52,⇔a >52.∴a 的取值范围是[12,1)∪(52,+∞). 22.(12分)设命题p :实数x 满足x 2-4ax +3a 2<0,其中a >0.命题q :实数x 满足⎩⎪⎨⎪⎧x 2-x -6≤0,x 2+2x -8>0. (1)当a =1,且p ∧q 为真,求实数x 的取值范围;(2)若p 是q 的必要不充分条件,求实数a 的取值范围. 解 (1)由x 2-4ax +3a 2<0,得a <x <3a (a >0).当a =1时,1<x <3,所以p :1<x <3.由⎩⎨⎧ x 2-x -6≤0,x 2+2x -8>0,解得2<x ≤3,所以q :2<x ≤3.若p ∧q 为真,则p 真且q 真,所以实数x 的取值范围是{x |2<x <3}.(2)设A ={x |x 2-4ax +3a 2<0,a >0}={x |a <x <3a ,a >0},B =⎩⎪⎨⎪⎧ x ⎪⎪⎪⎪⎭⎪⎬⎪⎫⎩⎨⎧ x 2-x -6<0,x 2+2x -8>0={x |2<x ≤3}.根据题意可得B A ,则0<a ≤2且3a >3,即1<a ≤2. 故实数a 的取值范围是{a |1<a ≤2}.。
人教新课标A版 高中数学必修4 第一章三角函数 1.5 函数y=sin(wx+φ) 同步测试A卷
人教新课标A版高中数学必修4 第一章三角函数 1.5 函数y=sin(wx+φ) 同步测试A卷姓名:________ 班级:________ 成绩:________一、单选题 (共15题;共30分)1. (2分) (2018高三上·黑龙江期中) 函数(其中)的图象如图所示,为了得到的图象,则只要将的图象()A . 向右平移个单位长度B . 向右平移个单位长度C . 向左平移个单位长度D . 向左平移个单位长度2. (2分)把函数的图象向右平移个单位,再把所得图象上各点的横坐标伸长到原来的2倍,则所得图象对应的函数解析式是()A .B .C .D .3. (2分) (2019高三上·临沂期中) 函数(其中)的图象如图所示,为了得到的图象,只需将图象()A . 向右平移个单位长度B . 向左平移个单位长度C . 向右平移个单位长度D . 向左平移个单位长度4. (2分)用“五点法”作y=2sin2x的图象是,首先描出的五个点的横坐标是()A . 0,,π,,2πB . 0,,,,πC . 0,π,2π,3π,4πD . 0,,,,5. (2分) (2020高三上·兴宁期末) 由的图象向左平移个单位,再把所得图象上所有点的横坐标伸长到原来的2倍后,所得图象对应的函数解析式为()A .B .C .D .6. (2分)函数在一个周期内的图象如图所示,则此函数的解析式是()A .B .C .D .7. (2分)要得到函数y=cos(2x+1)的图象,只需将函数y=cos2x的图象()A . 向左平移1个单位B . 向右平移1个单位C . 向左平移个单位D . 向右平移个单位8. (2分)已知函数f(x)=cos2x与g(x)=cosωx(ω>0)的图象在同一直角坐标系中对称轴相同,则ω的值为()A . 4B . 2C . 1D .9. (2分) (2017高一下·禅城期中) 三角函数y=sin(﹣2x)+cos2x的振幅和最小正周期分别为()A . ,B . ,πC . ,D . ,π10. (2分) (2016高一下·岳阳期中) 若函数y=sin(ωx+φ)(ω>0)的部分图象如图,则ω=()A . 5B . 4C . 3D . 211. (2分)用“五点法”作函数y=cos2x,x∈R的图象时,首先应描出的五个点的横坐标是()A . 0,,π,,2πB . 0,,,,πC . 0,π,2π,3π,4πD . 0,,,,12. (2分) (2016高三上·红桥期中) 函数f(x)=2sin(ωx+φ)(ω>0,﹣<φ<)的部分图象如图所示,则ω,φ的值分别是()A . 2,﹣B . 2,﹣C . 4,﹣D . 4,13. (2分)函数在区间上单调递减,且函数值从1减小到-1,那么此函数图象与y轴交点的纵坐标为()A .B .C .D .14. (2分)(2017·合肥模拟) 已知函数f(x)=Asin(ωx+ )﹣1(A>0,ω>0)的部分图象如图,则对于区间[0,π]内的任意实数x1 , x2 , f(x1)﹣f(x2)的最大值为()A . 2B . 3C . 4D . 615. (2分)(2020·海南模拟) 将函数的图象向左平移个单位长度后得到曲线,再将上所有点的横坐标伸长到原来的倍得到曲线,则的解析式为()A .B .C .D .二、填空题 (共5题;共5分)16. (1分)已知ω>0,0<φ<π,直线x=和x=是函数f(x)=sin(ωx+φ)图象的两条相邻的对称轴,则φ=________17. (1分)(2016·杭州模拟) 函数y=sin(ωx+φ)(x∈R,ω>0,0≤φ<2π)的部分图象如图,则函数表达式为________;若将该函数向左平移1个单位,再保持纵坐标不变,横坐标缩短为原来的倍得到函数g (x)=________.18. (1分) (2015高三上·河西期中) 已知角φ的终边经过点P(1,﹣2),函数f(x)=sin(ωx+φ)(ω>0)图象的相邻两条对称轴之间的距离等于,则 =________.19. (1分)(2016·新课标Ⅲ卷理) 函数y=sinx﹣ cosx的图象可由函数y=sinx+ cosx的图象至少向右平移________个单位长度得到.20. (1分) (2017高一上·安庆期末) 已知函数f(x)=sin(ωx+φ+ )(ω>0,0<φ≤ )的部分图象如图所示,则φ的值为________.三、解答题 (共5题;共25分)21. (5分) (2019高一上·郁南月考) 已知曲线y=Asin(ωx+φ)(A>0,ω>0)上的一个最高点的坐标为(,)此点与相邻最低点之间的曲线与x轴交于点(,0)且φ∈(- ,)(1)求曲线的函数表达式;(2)用“五点法”画出函数在[0,2 ]上的图象.22. (5分) (2020高一上·武汉期末) 已知函数 .(1)用五点法画出该函数在区间的简图;(2)结合所画图象,指出函数在上的单调区间.23. (5分)已知函数y=sin(2x+ )+1.(1)用“五点法”画出函数的草图;(2)函数图象可由y=sinx的图象怎样变换得到?24. (5分) (2019高一下·蛟河月考) 函数的一段图像过点,如图所示.(1)求在区间上的最值;(2)若 ,求的值.25. (5分)(2017·黑龙江模拟) 某同学将“五点法”画函数f(x)=Asin(wx+φ)(w>0,|φ|<)在某一个时期内的图象时,列表并填入部分数据,如下表:wx+φ0π2πxAsin(wx+φ)05﹣50(1)请将上述数据补充完整,填写在答题卡上相应位置,并直接写出函数f(x)的解析式;(2)将y=f(x)图象上所有点向左平移个单位长度,得到y=g(x)图象,求y=g(x)的图象离原点O 最近的对称中心.参考答案一、单选题 (共15题;共30分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、15-1、二、填空题 (共5题;共5分)16-1、17-1、18-1、19-1、20-1、三、解答题 (共5题;共25分)21-1、21-2、22-1、22-2、23-1、23-2、24-1、24-2、25-1、25-2、。
2013-2014学年高一数学上学期期末模块考试卷 文 及答案(新人教A版 第36套)
广东实验中学2013—2014学年(上)高二级模块考试数 学 (文科)本试卷分模块测试和能力测试两部分,共4页,满分150分,考试用时120分钟。
注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的校名、姓名、考号填写在答题卷的密封线内。
2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其它答案;不能答在试卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在另发的答题卷各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
4.考生必须保持答题卷的整洁,考试结束后,将答题卷一并收回。
参考公式:1.母线底面底面侧面底面圆锥表面积l r r S S S ππ+=+=22.h S V 底面锥31=3.设具有线性相关关系的两个变量x,y 的一组观察值为),,2,1)(,(n i y x j i =,则回归直线x b a y ˆˆˆˆ+=的系数为:⎪⎪⎪⎩⎪⎪⎪⎨⎧-=---=-⋅-=∑∑∑∑===x b y ax xy y x xx n x y x n y x b ni ini i ii ni i i ˆˆ)())((ˆ121221第一部分 模块测试题(共100分) 一. 选择题 (每题5分 共50分) 1.下列说法中正确的是 ( )A .棱柱中两个互相平行的面一定是棱柱的底面B .以直角三角形的一条边所在直线为旋转轴,其余两边旋转形成的面所围成的旋转体叫做圆锥C .一个棱锥至少有四个面D .用一平面去截圆锥,底面与截面之间的部分叫做圆台 2.若直线上有两个点在平面外...,则 ( ) A .直线上至少有一个点在平面内 B .直线上有无穷多个点在平面内 C .直线上所有点都在平面外 D .直线上至多有一个点在平面内3.一个几何体的三视图如图所示,则该几何体可以是( )1 32 7 01 8 12 3 2 69A BCEDA .棱柱B .棱台C .圆柱D .圆台4.某社区有500个家庭,其中高收入家庭160户,中等收入家庭280户,低收入家庭60户,为了调查社会购买力的某项指标,要从中抽取一个容量为100户的样本,记作①;我校高二级有12名女游泳运动员,为了调查学习负担情况,要从中选出3人的样本,记作②.那么完成上述两项调查应采用的最合适的抽样方法是 ( )A .①用随机抽样,②用系统抽样B .①用分层抽样,②用随机抽样C .①用系统抽样,②用分层抽样D .①用随机抽样,②用分层抽样 5.下列说法正确的是 ( )A .对立事件也是互斥事件B .某事件发生的概率为1.1C .不能同时发生的的两个事件是两个对立事件D .某事件发生的概率是随着实验次数的变化而变化的 6.下列判断正确的是 ( )A .若βαβα//,//b ,//a ,则a//bB .β⊥αβ⊥α⊥,b ,a ,则a⊥bC .若b //a ,b ,a β⊂α⊂,则βα//D .若n m ,m ⊥α⊥,则α//n7.已知某三棱锥的三视图(单位:cm )如图所示,则该三棱锥的体积是 ( ) A .1cm3B .2cm 3C .3cm 3D .6cm 38.若将一颗质地均匀的骰子(一种各面上分别标有1,2,3,4,5,6个点的正方体玩具),先后抛掷两次,则出现向上的点数之和为4的概率是 ( ) A .121 B .212 C .181 D .719.下图是某公司10个销售店某月销售某产品数量(单位:台)的茎叶图,则数据落在区间[20,30)内的概率为 ( ) A .0.2 B .0.4 C .0.5 D .0.610.如图,矩形ABCD 中,点E 为边CD 的中点,若在矩形ABCD 内部随机取一个点Q ,则点Q 取自△ABE 内部的概率等于 ( ) A .14 B .13 C .12 D .23二、填空题 (每题5分 共20分)11.已知一组数据为-2,0,4,x ,y ,6,15,且这组数据的众数为6,平均数为5,则这组ACBDA 1B 1C 1D 1/秒0.040.20 0.320.38 0.06数的中位数为_____________.12.某设备的使用年限x (年)和所支出的维修费用y (万元),有如下表所示的统计资料:由资料知y 对x 呈线性相关关系,则其回归直线方程y=bx+a 为________________ (其中3.1120.765.655.548.332.22=⨯+⨯+⨯+⨯+⨯)13.给出下列四个命题:①设α是平面,m 、n 是两条直线,如果α⊄α⊂n ,m ,m 、n 两直线无公共点,那么α//n . ②设α是一个平面,m 、n 是两条直线,如果αα//,//n m ,则m//n.. ③若两条直线都与第三条直线平行,则这两条直线平行.④三条直线交于一点,则它们最多可以确定3个平面.其中正确的命题是________14.如图,在棱长为1的正方体ABCD-1111D C B A 中, C B 1与BD 所成角为 _________.三、解答题 (每题10分 共30分)15.(10分) 如图,三棱锥A-BCD 中,E 、F 分别是棱AB 、BC 的中点,H 、G 分别是棱AD 、CD 上的点,且K FG EH = . 求证:(1)EH ,BD ,FG 三条直线相交于同一点K; (2)EF//HG.16.(10分)某班50名学生在一次百米测试中,成绩(单位:秒)全部介于13与18秒之间,将测试结果按如下方式分成五组:第一组[13,14),第二组[14,15),…,第五组[17,18],如图是按上述分组方法得到的频率分布直方图.若从第一、第五组中随机取出两个成绩,求这两个成绩一个在第一组,一个在第五组的概率. 17.(10分) 如图,母线长为2的圆锥PO 中,已知AB 是半径为1的⊙O 的直径,点C 在AB 弧上, DAEBF CG D HKAA 1EBFCMND B 1D 1 C 1为AC 的中点. (1)求圆锥PO 的表面积; (2)证明:平面ACP⊥平面POD.第二部分 能力测试(共50分) 18.“21m =”是“直线(m+2)x+3my+1=0与直线(m-2)x+(m+2)y-3=0互相垂直”的_____________条件(填“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”)19.如图,已知E ,F ,M ,N 分别是棱长为2的正方体ABCD-A 1B 1C 1D 1的棱AB 、BC 、CC 1、A 1B 1的中点,则三棱锥N-EFM 的体积为_____________ 20.(13分) 数列{n a } 中1a =13,前n 项和n S 满足1n S +-n S =113n +⎛⎫ ⎪⎝⎭(n ∈*N ).(1)求数列{n a }的通项公式n a 以及前n 项和n S ;(2)若S 1, t ( S 1+S 2 ), 3( S 2+S 3 ) 成等差数列,求实数t 的值。
(新教材)人教A版-数学必修第一册第五章 三角函数 测试题含答案
绝密★启用前(新教材)人教A版-数学必修第一册第五章三角函数测试题试卷副标题本试卷分第Ⅰ卷和第Ⅱ卷两部分,共150分,考试时间150分钟第Ⅰ卷一、选择题(共12小题,每小题5.0分,共60分)1.若α=-3 rad,则它是()A.第一象限角B.第二象限角C.第三象限角D.第四象限角2.若角α,β的终边关于y轴对称,则α与β的关系一定是(其中k∈Z) ()A.α+β=πB.α-β=π2C.α-β=π2+2kπD.α+β=(2k+1)π3.化简√1-2sin4cos4的结果是()A. sin 4+cos 4B. sin 4-cos 4C. cos 4-sin 4D.-sin 4-cos 44.当x∈[-2π,-32π]时,化简√1+sinx+√1-sinx的结果为()A.-2sin x2B.-2cos x2C.-2sin x2-2cos x2D. 2cos x25.已知α为第二象限角,且sinα=35,则tan(π+α)的值是()A.43B.34C.-43D.-346.设tan(π+α)=2,则sin(α-π)+cos(π-α)sin(π+α)−cos(π+α)等于() A. 3B.13C. 1D.-17.设α是第二象限角,且cosα2=-√1−cos2(π−α2),则α2是()A.第一象限角B.第二象限角C.第三象限角D.第四象限角8.下列函数中,同时满足:①在(0,π2)上是增函数;②为奇函数;③以π为最小正周期的函数是()A.y=tan xB.y=cos xC.y=tan x2D.y=|sin x|9.函数f(x)=sin(x+π3)+sin(x−π3)的最大值是()A. 2B. 1C.12D.√310.函数f(x)=sin x-√3cos x(x∈[-π,0])的单调递增区间是()A.[−π,−5π6]B.[−5π6,−π6]C.[−π3,0]D.[−π6,0]11.为了得到y=cos 4x,x∈R的图象,只需把余弦曲线上所有点的()A . 横坐标伸长到原来的4倍,纵坐标不变B . 横坐标缩短到原来的14倍,纵坐标不变 C . 纵坐标伸长到原来的4倍,横坐标不变 D . 纵坐标缩短到原来的14倍,横坐标不变12.已知a 是实数,则函数f (x )=1+a sin ax 的图象不可能是( )A .B .C .D .分卷II二、填空题(共4小题,每小题5.0分,共20分) 13.角α∈(-π,-π2),化简√1+sinα1-sinα-√1-sinα1+sinα=________.14.若k ∈{4,5,6,7},且sin(kπ2-α)=-sin α,cos(kπ2-α)=cos α,则k 的值为________.15.使函数y =2tan x 与y =cos x 同时单调递增的区间是________. 16.关于f (x )=4sin (2x +π3)(x ∈R ),有下列命题: ①由f (x 1)=f (x 2)=0可得x 1-x 2是π的整数倍; ②y =f (x )的表达式可改写成y =4cos (2x −π6);③y =f (x )图象关于(−π6,0)对称;④y =f (x )图象关于x =-π6对称. 其中正确命题的序号为________.三、解答题(共6小题, 共70分)17.(1)将-1 500°表示成2k π+α(0≤α<2π,k ∈Z )的形式,并指出它是第几象限角;(2)在0°~720°范围内,找出与角2π5终边相同的角. 18.证明:cosx1-sinx =1+sinx cosx .19.已知cos (π6−α)=√33,求cos (56π+α)-sin 2(α−π6)的值.20.利用三角函数线,写出满足下列条件的角x 的集合.(1)sin x >-12且cos x >12;(2)tan x ≥-1.21.证明:cos 20°cos(-70°)+sin 200°sin 110°+1+tan15°1+tan165°=√3.22.如下图,f (x )=A sin (2ωx +φ)(ω>0,A >0,-π2<φ<0). (1)求函数f (x )的解析式;(2)求函数f (x )在[-π,-π2]上的值域.答案1.【答案】C【解析】根据角度制与弧度制的转化,1 rad =(180π)°,则α=-3 rad =-(540π)°≈-171.9°,分析可得,α是第三象限角.2.【答案】D【解析】可以取几组特殊角代入检验. 3.【答案】C【解析】√1-2sin4cos4=√sin 24−2sin4cos4+cos 24=|sin 4-cos 4|. ∵5π4<4<3π2,∴由三角函数线易知cos 4>sin 4. ∴√1-2sin4cos4=cos 4-sin 4. 4.【答案】B【解析】∵x ∈[-2π,-32π], ∴x2∈[-π,-34π],∴sin x2<0,cos x2<0,sin x2-cos x2>0, sin x2+cos x 2<0,则原式=√sin 2x2+cos 2x2+2sin x2cos x2+√sin 2x2+cos 2x2−2sin x2cos x2=√(sin x2+cos x2)2+√(sin x2−cos x2)2=|sin x2+cos x2|+|sin x2-cos x2|=-sin x2-cos x2+sin x2-cos x2=-2cos x2. 5.【答案】D【解析】∵α为第二象限角,sin α=35, ∴cos α=-√1-sin 2α=-45,∴tan α=sinαcosα=-34, 则tan(π+α)=tan α=-34. 6.【答案】A【解析】由tan (π+α)=2,得tan α=2,则sin(α-π)+cos(π-α)sin(π+α)−cos(π+α)=-sinα-cosα-sinα-(-cosα)=sinα+cosαsinα-cosα=tanα+1tanα-1=3.7.【答案】C【解析】∵α是第二象限角,∴α2为第一或第三象限角. 又∵cos α2=-√1−cos 2(π−α2)<0,∴α2是第三象限角.8.【答案】A【解析】经验证,选项B 、D 中所给函数都是偶函数,不符合;选项C 中所给的函数的周期为2π. 9.【答案】B【解析】因为f (x )=2sin x cos π3=sin x ,所以最大值为1. 10.【答案】D【解析】f (x )=2sin (x −π3),f (x )的单调递增区间为[2kπ−π6,2kπ+5π6](k ∈Z ),因为x ∈[-π,0],所以令k =0得单调递增区间为[−π6,0]. 11.【答案】B【解析】ω=4>1,因此只需把余弦曲线上所有点的横坐标缩短到原来的14倍,纵坐标不变. 12.【答案】D【解析】当a =0时,f (x )=1,C 符合;当0<|a |<1时, T >2π,且最小值为正数,A 符合;当|a |>1时,T <2π,B 符合.排除A 、B 、C ,故选D. 13.【答案】-2tan α【解析】∵角α∈(-π,-π2),则√1+sinα1-sinα-√1-sinα1+sinα=1+sinα|cosα|-1-sinα|cosα|=-1+sinαcosα-(-1-sinαcosα)=-2sinαcosα=-2tan α.14.【答案】4【解析】由k ∈{4,5,6,7},sin(kπ2-α)=-sin α,可得k =4, 由cos(kπ2-α)=cos α,可得k =4.15.【答案】(2kπ−π,2kπ−π2),(2k π-π2,2k π)(k ∈Z )【解析】由y =2tan x 与y =cos x 的图象知,同时单调递增的区间为(2kπ−π,2kπ−π2),(2kπ−π2,2kπ)k ∈Z ).16.【答案】②③【解析】对于①,由f (x )=0,可得2x +π3=k π(k ∈Z ). ∴x =k2π-π6,∴x 1-x 2是π2的整数倍,∴①错;对于②,f (x )=4sin (2x +π3)利用公式得 f (x )=4cos [π2−(2x +π3)]=4cos (2x −π6),∴②对;对于③,f (x )=4sin (2x +π3)的对称中心满足2x +π3=k π,k ∈Z ,∴x =k2π-π6,k ∈Z ,∴(−π6,0)是函数y =f (x )的一个对称中心,∴③对;对于④,函数y =f (x )的对称轴满足2x +π3=π2+k π,k ∈Z ,∴x =π12+kπ2,k ∈Z ,∴④错. 17.【答案】(1)-1 500°=-1 500×π180=-25π3=-10π+5π3.∵5π3是第四象限角,∴-1 500°是第四角限角.(2)∵2π5=25×180°=72°,∴终边与角2π5相同的角为θ=72°+k ·360°(k ∈Z ),当k =0时,θ=72°;当k =1时,θ=432°,∴在0°~720°范围内,与2π5角终边相同的角为72°,432°. 18.【答案】cosx1-sinx =cosx(1+sinx)(1−sinx)(1+sinx)=cosx(1+sinx)cos 2x =1+sinx cosx.19.【答案】cos (56π+α)-sin 2(α−π6)=cos [π−cos(π6−α)]-sin 2(π6−α)=-cos (π6−α)-[1−cos 2(π6−α)]=cos 2(π6−α)-cos (π6−α)-1=(√33)2-√33-1=-2+√33.20.【答案】(1)作出单位圆,如图①则同时满足sin x >-12且cos x >12的区域部分为阴影部分,此时在[0,2π]内满足条件的角x ∈[0,π3],则满足sin x >-12且cos x >12的角x 的集合为{x |2k π≤x ≤2k π+π3}=[2k π,2k π+π3],k ∈Z .(2)如图②所示,过点(1,-1)和原点作直线交单位圆于P 和P ′, 则射线OP 、OP ′就是满足tan α=-1的角α的终边, ∵在[0,2π)内,满足条件的∠POx =π-π4=3π4,∠P ′Ox =-π4, ∴满足条件tan α=-1的角α的集合是{x |x =-π4+k π,k ∈Z },则满足tan x ≥-1的角α的集合是{x |-π4+k π≤x <π2+k π,k ∈Z }.21.【答案】左边=cos 20°cos 70°+(-sin 20°)sin 70°+tan45°+tan15°1−tan45°tan15° =cos(20°+70°)+tan(45°+15°)=0+√3=√3=右边. 22.【答案】(1)由题知A =2,T =43(2π3+π12)=π,由周期公式得2ω=2πT =2,∴f (x )=2sin(2x +φ). 又∵f (x )的图象过(0,-1), ∴2sin φ=-1, 又∵-π2<φ<0, ∴φ=-π6. ∴f (x )=2sin(2x -π6).(2)∵x ∈[-π,-π2],∴2x -π6∈[−13π6,−7π6],∴2sin(2x -5π6)∈[-1,2],∴函数f (x )在[-π,-π2]上的值域为[-1,2].。
新人教A版高中数学选择性必修一测试卷
○…………………装…………○…………:___________姓名:___________班级:__________√3 B. 32 C. 1 D. √32A. √3(2−√3)3B. √3(3−2√2)3C. 2√2−√33D. 3√3−2√23√2√2 A. √132B. 3√32√3 √3A. 83第2页第Ⅱ卷三、解答题(共5题;共52分)17.(2020·新高考Ⅰ)如图,四棱锥P-ABCD的底面为正方形,PD⊥底面ABCD.设平面PAD与平面PBC的交线为l.(1)证明:l⊥平面PDC;(2)已知PD=AD=1,Q为l上的点,求PB与平面QCD所成角的正弦值的最大值.18.(2020·济宁模拟)如图,四棱锥P−ABCD的底面为直角梯形,BC∥AD,∠BAD=90°,AD=PD=2AB=2BC=2,M为PA的中点.(Ⅰ)求证:BM∥平面PCD(Ⅱ)若平面ABCD⊥平面PAD,异面直线BC与PD所成角为60°,且△PAD是钝角三角形,求二面角B−PC−D的正弦值19.(2020高一下·大庆期末)已知ΔABC中,A(1,1)、B(2,−3)、C(3,5),写出满足下列条件的直线方程(要求最终结果都用直线的一般式方程表示).(1)BC边上的高线的方程;(2)BC边的垂直平分线的方程.第4页………○…………线…………○…答※※题※※………○…………线…………○…答案解析部分一、单选题 1.【答案】 C【考点】球的体积和表面积,点、线、面间的距离计算【解析】【解答】设球O 的半径为R ,则 4πR 2=16π ,解得: R =2 . 设 △ABC 外接圆半径为 r ,边长为 a , ∵△ABC 是面积为 9√34的等边三角形,∴12a 2×√32=9√34,解得: a =3 , ∴r =23×√a 2−a 24=23×√9−94=√3 ,∴ 球心 O 到平面 ABC 的距离 d =√R 2−r 2=√4−3=1 . 故答案为:C.【分析】根据球O 的表面积和 △ABC 的面积可求得球O 的半径R 和 △ABC 外接圆半径r ,由球的性质可知所求距离 d =√R 2−r 2 . 2.【答案】 A【考点】棱锥的结构特征【解析】【解答】因为根据题意可知,半径为R 的圆面剪切去如图中的阴影部分,沿图所画的线折成一个正三棱锥,结合图像可知侧棱长为, 而底面的边长为, 则根据正三棱锥的侧面与底面所成的二面角的余弦值是即为底面的高斜高的比值即为:O’D:VD 即为, 故选A.【分析】解决该试题的关键是分析折叠图前后的不变量,以及得到的正三棱锥的底面的变长和侧棱长问题。
高中数学 第九章 统计检测试题课时作业(含解析)新人教A版必修第二册-新人教A版高一第二册数学试题
第九章检测试题时间:120分钟 分值:150分第Ⅰ卷(选择题,共60分)一、单项选择题每小题5分,共40分1.对某校1 200名学生的耐力进行调查,抽取其中120名学生,测试他们1 500 m 跑步的成绩,得出相应的数值,在这项调查中,样本是指( C )A .120名学生B .1 200名学生C .120名学生的成绩D .1 200名学生的成绩解析:研究对象是某校1 200名学生的耐力,在这个过程中,1 200名学生的成绩是总体,样本是这120名学生的成绩.故选C.2.某校数学教研组为了解学生学习数学的情况,采用分层随机抽样的方法从高一600人、高二780人、高三n 人中,抽取35人进行问卷调查,已知高二被抽取的人数为13,则n 等于( B )A .660B .720C .780D .800解析:因为从高一600人,高二780人,高三n 人中,抽取35人进行问卷调查,已知高二被抽取的人数为13,所以1335=780600+780+n,解得n =720. 3.已知一组数据为20,30,40,50,50,60,70,80.其中平均数、中位数和众数的大小关系是( D )A .平均数>中位数>众数B .平均数<中位数<众数C .中位数<众数<平均数D .众数=中位数=平均数解析:众数、中位数、平均数都是50.4.某校为了了解高三学生在第一次模拟考试中对数学的掌握情况,从高三年级中随机抽查了100名学生的数学成绩,并制成了如下频率分布直方图,从图中可以知道这100名学生的平均分数和中位数分别为( B )A.103.2,113.2 B.108.2,108C.103.2,108 D.108.2,113.2解析:根据题中频率分布直方图,得这100名学生的平均分数为85×0.006 ×10+95×0.02×10+105×0.03×10+115×0.025×10+125×0.018×10+135×0.001×10=108.2;又0.006×10+0.02×10=0.26<0.5,0.26+0.03×10=0.56>0.5,所以中位数在[100,110)内,可设为x,则(x-100)×0.03+0.26=0.5,解得x=108.5.AQI是表示空气质量的指数,AQI越小,表明空气质量越好,当AQI不大于100时称空气质量为“优良”.如图是某地4月1日到12日AQI的统计数据,图中点A表示4月1日的AQI为201.则下列叙述不正确的是( C )A.这12天中有6天空气质量为“优良”B.这12天中空气质量最好的是4月9日C.这12天的AQI的中位数是90D.从4日到9日,空气质量越来越好解析:这12天中,空气质量为“优良”的有95,85,77,67,72,92,共6天,故A正确;这12天中空气质量最好的是4月9日,AQI 为67,故B 正确;这12天的AQI 的中位数是95+1042=99.5,故C 不正确;从4日到9日,AQI 越来越小,空气质量越来越好,D 正确.6.一个容量为32的样本,已知某组样本的频率为0.25,则该组样本的频数为( B )A .4B .8C .12D .16解析:设频数为x ,则x 32=0.25,x =32×14=8. 7.为了解学生“阳光体育”活动的情况,随机统计了n 名学生的“阳光体育”活动时间(单位:分钟),所得数据都在区间[10,110]内,其频率分布直方图如图所示.已知活动时间在[10,35)内的频数为80,则n 的值为( B )A .700B .800C .850D .900解析:由题中频率分布直方图,知组距为25,所以活动时间在[10,35)内的频率为0.1.因为活动时间在[10,35)内的频数为80,所以n =800.1=800. 8.2019年4月,某学校的学生参加了某考试机构举行的大联考,现从该校参加考试的学生数学成绩在100分及以上的试卷中随机抽取了20份试卷,这20份试卷的得分情况如下:109,112,120,128,135,139,142,150,118,124,127,135,138,144,114,126,126,135,137,148.则这组数据的第75百分位数是( C )A .120B .138C .138.5D .139解析:将这20个数据从小到大排列:109,112,114,118,120,124,126,126,127,128,135,135,135,137,138,139,142,144,148,150.∵i =20×75%=15,∴这组数据的第75百分位数为第15个数据和第16个数据的平均数,即138+1392=138.5. 二、多项选择题每小题4分,共20分9.经过中央电视台《魅力中国城》栏目的三轮角逐,黔东南州以三轮竞演总分排名第一名问鼎“最具人气魅力城市”.如图统计了黔东南州从2010年到2017年的旅游总人数(万人次)的变化情况,从一个侧面展示了大美黔东南的魅力所在.根据这个图表,在下列给出的黔东南州从2010年到2017年的旅游总人数的四个判断中,正确的是( ACD )A .自2011年起旅游总人数逐年增加B .2017年旅游总人数超过2015,2016两年的旅游总人数的和C .自2011年起年份数与旅游总人数成正相关D .从2014年起旅游总人数增长加快解析:从图表中看出:在A 中,旅游总人数逐年增加,故A 正确;在B 中,2017年旅游总人数没有超过2015,2016两年的旅游总人数的和,故B 错误;在C 中,年份数与旅游总人数成正相关,故C 正确;在D 中,从2014年起旅游总人数增长加快,故D 正确.10.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论正确的是( BCD )A.月接待游客量逐月增加B.年接待游客量逐年增加C.各年的月接待游客量高峰期大致在7,8月D.各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳解析:根据折线图,可知2014年8月到9月、2014年10月到11月等月接待游客量都是减少的,所以A错误;易知B、C、D正确.故选BCD.11.为了解户籍、性别对生育二胎选择倾向的影响,某地从育龄人群中随机抽取了容量为100的样本,其中城镇户籍与农村户籍各50人;男性60人,女性40人,绘制不同群体中倾向选择生育二胎与倾向选择不生育二胎的人数比例图(如图所示),其中阴影部分表示倾向选择生育二胎的对应比例,则下列叙述中正确的是( ABD )A.是否倾向选择生育二胎与户籍有关B.是否倾向选择生育二胎与性别无关C.倾向选择生育二胎的人员中,男性人数与女性人数相同D.倾向选择不生育二胎的人员中,农村户籍人数少于城镇户籍人数解析:由题图,可得是否倾向选择生育二胎与户籍有关、性别无关,倾向选择不生育二胎的人员中,农村户籍人数少于城镇户籍人数,倾向选择生育二胎的人员中,男性人数为60×60%=36,女性人数为40×60%=24,不相同.12.为了了解某校九年级1 600名学生的体能情况,随机抽查了部分学生,测试1分钟仰卧起坐的成绩(次数),将数据整理后绘制成如图所示的频率分布直方图,根据统计图的数据,下列结论错误的是( AD )A .该校九年级学生1分钟仰卧起坐的次数的中位数估计值为25B .该校九年级学生1分钟仰卧起坐的次数的众数估计值为27.5C .该校九年级学生1分钟仰卧起坐的次数超过30次的人数约为320D .该校九年级学生1分钟仰卧起坐的次数少于20次的人数约为32解析:由题图知,中位数是26.25,众数是27.5,1分钟仰卧起坐的次数超过30次的频率为0.2,所以估计该校九年级学生1分钟仰卧起坐的次数超过30次的人数约有320人;1分钟仰卧起坐的次数少于20次的频率为0.1,所以该校九年级学生1分钟仰卧起坐的次数少于20次的人数约有160人.第Ⅱ卷(非选择题,共90分)三、填空题每小题5分,共20分13.(2019·某某高考)已知一组数据6,7,8,8,9,10,则该组数据的方差是53. 解析:x =16×(6+7+8+8+9+10)=8, 所以方差为16×[(6-8)2+(7-8)2+(8-8)2+(8-8)2+(9-8)2+(10-8)2]=53. 14.用简单随机抽样的方法从含n 个个体的总体中,逐个抽取一个样本量为3的样本,若其中个体a 在第一次就被抽取的概率为18,那么n =8. 解析:在每一次抽样中,每个个体被抽到的概率都为1n =18,所以n =8. 15.有一组数据x 1,x 2,…,x n (x 1≤x 2≤…≤x n ),它们的平均数是10,若去掉其中最大的x n ,余下的数据的平均数为9,若去掉最小的x 1,余下的数据的平均数为11,则x 1关于n 的表达式为x 1=11-n ,x n 关于n 的表达式为x n =n +9.解析:由题意:∵x 1+x 2+…+x n n=10,∴x 1+x 2+…+x n =10n ,①∵x 1+x 2+…+x n -1n -1=9, ∴x 1+x 2+…+x n -1=9(n -1),②∵x 2+x 3+…+x n n -1=11, ∴x 2+x 3+…+x n =11(n -1),③①-②得:x n =n +9,①-③得:x 1=11-n .16.已知样本量为200,在样本的频率分布直方图中,共有n 个小矩形,若中间一个小矩形的面积等于其余(n -1)个小矩形面积和的13,则该组的频数为50. 解析:设除中间一个小矩形外的(n -1)个小矩形面积的和为P ,则中间一个小矩形面积为13P ,P +13P =1,P =34,则中间一个小矩形的面积等于13P =14,200×14=50,即该组的频数为50.四、解答题写出必要的计算步骤,只写最后结果不得分,共70分17.(10分)某城市100户居民的月平均用电量(单位:度),以[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300]分组的频率分布直方图如图所示.(1)求直方图中x 的值.(2)求月平均用电量的众数和中位数.(3)在月平均用电量为[220,240),[240,260),[260,280),[280,300]的四组用户中,用分层随机抽样的方法抽取11户居民,则月平均用电量在[220,240)的用户中应抽取多少户?解:(1)由(0.002+0.009 5+0.011+0.012 5+x +0.005+0.002 5)×20=1得,x =0.007 5,所以直方图中x 的值是0.007 5.(2)月平均用电量的众数是220+2402=230. 因为(0.002+0.009 5+0.011)×20=0.45<0.5,所以月平均用电量的中位数在[220,240)内,设中位数为a ,由(0.002+0.009 5+0.011)×20+0.012 5×(a -220)=0.5,得a =224,所以月平均用电量的中位数是224.(3)月平均用电量为[220,240)的用户有0.012 5×20×100=25户,月平均用电量为[240,260)的用户有0.007 5×20×100=15户,月平均用电量为[260,280)的用户有0.005×20×100=10户,月平均用电量为[280,300]的用户有0.002 5×20× 100=5户,抽取比例为1125+15+10+5=15,所以月平均用电量在[220,240)的用户中应抽取25×15=5(户).18.(12分)某市2018年4月1日-4月30日对空气污染指数的监测数据如下(主要污染物为可吸入颗粒物):61,76,70,56,81,91,92,91,75,81,88,67,101,103,95,91,77,86,81,83,82,82,64,79,86,85,75,71,49,45.(1)列出频率分布表.(2)作出频率分布直方图.解:(1)列出频率分布表如下:[91,101)55 30[101,111]22 30(2)频率分布直方图如图所示.19.(12分)某班100名学生期中考试语文成绩的频率分布直方图如图所示,其中成绩分组区间是[50,60),[60,70),[70,80),[80,90),[90,100].(1)求图中a的值;(2)若在同一组数据中,将该组区间的中点值作为这组数据的平均分,根据频率分布直方图,估计这100名学生语文成绩的平均分;(3)若这100名学生语文成绩某些分数段的人数(x)与数学成绩相应分数段的人数(y)之比如表所示,求数学成绩在[50,90)之外的人数.分数段[50,60)[60,70)[70,80)[80,90) x y 1121344 5(2)估计这次成绩的平均分x=55×0.05+65×0.4+75×0.3+85×0.2+95×0.05=73.所以这100名学生语文成绩的平均分为73分.(3)语文成绩在分数段[50,60),[60,70),[70,80),[80,90)的人数依次为0.05×100=5,0.4×100=40,0.3×100=30,0.2×100=20.所以数学成绩分数段在[50,60),[60,70),[70,80),[80,90)的人数依次为5,20,40,25.所以数学成绩在[50,90)之外的人数有100-(5+20+40+25)=10(人).20.(12分)某高校在2017年的自主招生考试成绩中随机抽取100名学生的笔试成绩,按成绩分组,得到的频率分布表如下:组号分组频率第1组[160,165)0.05第2组[165,170)0.35第3组[170,175)①第4组[175,180)0.2第5组[180,185]0.1(1)请先求出频率分布表中①处应填写的数据,并完成如图所示的频率分布直方图;(2)为了能选择出最优秀的学生,高校决定在笔试成绩高的第3,4,5组中用分层随机抽样的方法抽取6名学生进入第二轮面试,求第3,4,5组每组各应抽取多少名学生进入第二轮面试.解:(1)1-(0.05+0.35+0.2+0.1)=0.3,故①处应填0.3.完成频率分布直方图如图所示.(2)第3组的人数为0.3×100=30,第4组人数为0.2×100=20,第5组人数为0.1×100=10,共计60人,用分层随机抽样抽取6人,则第3组应抽取人数为3060×6=3,第4组应抽取人数为2060×6=2,第5组应抽取人数为1060×6=1. 21.(12分)在学校开展的综合实践活动中,某班进行了小制作评比,作品上交时间为5月1日12时至31日12时,评委会把同学们上交作品的件数按5天一组分组统计,绘制了频率分布直方图(如图所示).已知从左到右各长方形的高的比为234641,第三组的频数为12,请解答下列问题:(1)本次活动共有多少件作品参加评比?(2)哪组上交的作品数最多?有多少件?(3)经过评比,第四组和第六组分别有10件、2件作品获奖,问这两组哪组获奖率较高?解:(1)依题意知第三组的频率为42+3+4+6+4+1=15, 又因为第三组的频数为12,所以本次活动的参评作品数为1215=60(件). (2)根据频率分布直方图,可以看出第四组上交的作品数量最多,共有60×62+3+4+6+4+1=18(件).(3)第四组的获奖率是1018=59,第六组上交的作品数量为60×12+3+4+6+4+1=3(件).所以第六组的获奖率为23=69,显然第六组的获奖率较高. 22.(12分)某学校随机抽取部分新生调查其上学所需时间(单位:分钟),并将所得数据绘制成频率分布直方图(如图),其中上学所需时间的X 围是[0,100],样本数据分组为[0,20),[20,40),[40,60),[60,80),[80,100).(1)求直方图中x 的值;(2)如果上学所需时间不少于1小时的学生可申请在学校住宿,若该学校有600名新生,请估计新生中有多少名学生可以申请住宿;(3)由频率分布直方图估计该校新生上学所需时间的平均值.解:(1)由直方图可得20×x +0.025×20+0.006 5×20+0.003×20×2=1,解得x =0.012 5.(2)新生上学时间不少于1小时的频率为0.003×20×2=0.12,因为600×0.12=72,所以估计600名新生中有72名学生可以申请住宿.(3)由题可知20×0.012 5×10+0.025×20×30+0.006 5×20×50+0.003×20×70+0.003×20×90=33.6(分钟).故该校新生上学所需时间的平均值为33.6分钟.。
浙江省考试院2013届高三测试卷语文试题
测试卷语文全卷共8页,满分150分,考试时间150分钟。
请考生按规定用笔将所有试题的答案涂、写在答题纸上。
注意事项:1.答题前,考生务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔填写在答题纸上。
2.答题不能答在试题卷上。
选择题必须使用2B铅笔填涂;非选择题必须使用黑色字迹的签字笔或钢笔书写,字体要工整,笔迹要清楚。
一、语言文字运用(共24分,其中选择题每小题3分)1.下列词语中加点的字,注音没有错误的一项是A.翘.(qiáo)楚曲.(qū)笔缱绻.(juǎn)载.(zài)歌载舞B.掣.(châ)肘名媛.(yuàn)慑.(shâ)服喁喁.(yú)私语C.锃.(zâng)亮开涮.(shuā)讪.(shàn)笑舐.(shì)犊情深D.压轴.(zhòu)晕.(yùn)车哺.(bǔ)育一哄.(hōng)而散2.下列各句中,没有错别字的一项是A.我们在诵读诗歌时,要应声求气,涵泳诗韵,以求完美地再现情、景、理、声交融的美妙诗境。
B.当前,社会生活中存在着心浮气躁、急功进利的不良风气,在这种风气的裹挟下,有的人也就身不由己,随波逐流了。
C.儒雅内敛而不事张扬,孜孜以求而艰韧不拔,宠辱不惊而镇定自若,这种风范值得我们推崇。
D.在诸多科学家眼里,科学与艺术并非泾渭分明,而是孪生姊妹,犹如人类文明史上的两朵奇葩,在真善美的百花园中争奇斗艳。
3.下列各句中,加点的词语运用正确的一项是A.这些法国谚语在西欧语言之间尚.且.可以实现直译,但由于中法文化差异较大,要准确地翻译成汉语很不容易。
B.虽然《政府信息公开条例》已经实施多年,但每遇重大事故,有的地方政府还是捂.盖子..,生怕家丑外扬。
C.现在的家长特别重视孩子特长的培养,小小年纪就为他们报了各式各样的兴趣班,担心孩子别无长物....而输在起跑线上。
D.高等教育对一个人一生职业发展的影响是毋庸置疑的,引导学生成为社会认可的合格人才,应是大学众望所归....的使命。
2013届高三人教A版数学章末综合测试题(17)统计与统计案例、算法初步(1))
2013届高三数学章末综合测试题(17)统计与统计案例、算法初步一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.条件结构不同于顺序结构的明显特征是含有( ) A .处理框 B .判断框 C .起止框 D .输入、输出框解析 B 由条件结构与顺序结构定义可知,条件结构有判断框,而顺序结构中无判断框.2.给出以下四个问题:①输入一个数x ,输出它的绝对值;②求面积为6的正方形的周长;③求三个数a ,b ,c 中的最大数;④求函数f (x )=⎩⎪⎨⎪⎧3x -1,x ≤0,x 2+1,x >0的函数值.其中需要用条件结构来描述算法的有( )A .1个B .2个C .3个D .4个解析 C 其中①③④都需要对条件作出判断,都需要用条件结构,②用顺序结构即可.3.若右面的流程图的作用是交换两个变量的值并输出,则(1)处应填上( )A .x =yB .y =xC .T =yD .x =T解析 A 中间变量为T ,将T =x 后,T 就是x ,则将x =y 后,x 就变为y 了.故选A.4.对于算法: 第一步,输入n .第二步,判断n 是否等于2,若n =2,则n 满足条件;若n >2,则执行第三步. 第三步,依次从2到n -1检验能不能整除n ,若不能整除n ,则执行第四步;若能整除n ,则执行第一步.第四步,输出n . 满足条件的n 是( )A .质数B .奇数C .偶数D .合数解析 A 只能被1和自身整除的大于1的整数叫质数,2是最小的质数.这个算法通过对2到n -1一一验证,看是否有其他约数,来判断其是否为质数.5.(2011·湖北八校联考)在样本的频率分布直方图中,共有5个小长方形,若中间一个小长方形的面积等于其他4个小长方形的面积和的14,且样本容量为100,则正中间的一组的频数为( )A .80B .0.8C .20D .0.2解析 C ∵在样本的频率分布直方图中,小长方形的面积=频率,∴中间的一个小长方形所对应的频率是15,又∵频率=频数样本容量,∴正中间一组的频数是15×100=20.故选C.6.已知程序框图如图所示,该程序运行后,为使输出的b 值为16,则循环体的判断框内①处应填( )A .2B .3C .4D .5解析 B a =1时进入循环,此时b =21=2;a =2时再进入循环,此时b =22=4;a =3时再进入循环,此时b =24=16.∴a =4时应跳出循环,∴循环满足的条件为a ≤3,故选B.7.下列程序框图是循环结构的是( )A .①②B .②③C .③④D .②④解析 C 由循环结构的定义,易知③④是循环结构.8.(2011·江西八校联考)在2011年3月15日那天,南昌市物价部门对本市的5家商场的某商品的一天销售量及其价格进行了调查,5家商场的售价x 元和销售量y 件之间的一组数据如下表所示:其线性回归直线的方程是y ^=-3.2x +a ,则a =( )A .-24B .35.6C .40.5D .40解析 D 由题意得到x =15×(9+9.5+10+10.5+11)=10,y =15×(11+10+8+6+5)=8,且回归直线必经过点(x ,y )=(10,8),则有8=-3.2×10+a ,a =40,故选D.9.变量X 与Y 相对应的一组数据为(10,1),(11.3,2),(11.8,3),(12.5,4),(13,5);变量U 与V 相对应的一组数据为(10,5),(11.3,4),(11.8,3),(12.5,2),(13,1).r 1表示变量Y 与X 之间的线性相关系数,r 2表示变量V 与U 之间的线性相关系数,则( )A .r 2<r 1<0B .0<r 2<r 1C .r 2<0<r 1D .r 2=r 1解析 C 对于变量Y 与X 而言,Y 随X 的增大而增大,故Y 与X 正相关,即r 1>0;对于变量V 与U 而言,V 随U 的增大而减小,故V 与U 负相关,即r 2<0,所以有r 2<0<r 1.故选C.10.阅读如图所示的程序框图,若输入的n 是100,则输出的变量S 和T 的值依次是( )A .2 500,2 500B .2 550,2 550C .2 500,2 550D .2 550,2 500解析 D 由程序框图知,S =100+98+96+…+2=2 550,T =99+97+95+…+1=2 500,故选D.11.(2011·山西三市联考)某同学进入高三后,4次月考的数学成绩的茎叶图如图,则该同学数学成绩的方差是( )A .125B .5 5C .45D .3 5解析 C 由图可知,4次成绩分别为114,126,128,132,4次成绩的平均值是125,故该同学数学成绩的方差是s 2=14[(114-125)2+(126-125)2+(128-125)2+(132-125)2]=14×(121+1+9+49)=45.12.某农贸市场出售西红柿,当价格上涨时,供给量相应增加,而需求量相应减少,具体调查结果如下表:表1 市场供给量表2( )A .(2.4,2.5)B .(2.5,2.8)C .(2.8,3)D .(3,3.2)解析 C 由表1、表2可知,当市场供给量为60~70时,市场单价为2.5~3,当市场需求量为65~70时,市场单价为2.8~3.2,∴市场供需平衡点应在(2.8,3)内,故选C.二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上) 13.如图甲是计算图乙中空白部分面积的程序框图,则①处应填________.解析 由题意可得:S =⎣⎡⎦⎤14π⎝⎛⎭⎫a 22-12×a 2×a 2×8=⎝⎛⎭⎫π2-1a 2, 故①处应填S =⎝⎛⎭⎫π2-1a 2. 【答案】 S =⎝⎛⎭⎫π2-1a 2 14.给出以下算法: 第一步:i =3,S =0;第二步:i =i +2; 第三步:S =S +i ;第四步:如果S ≥2 013,则执行第五步;否则执行第二步; 第五步:输出i ; 第六步:结束.则算法完成后,输出的i 的值等于________.解析 根据算法可知,i 的值i n 构成一个等差数列{i n },S 的值是数列{i n }相应的前n 项的和,且i 1=5,d =2,又S ≥2 013,所以n ≥43,所以输出的i 的值为i 1+(n -1)×d =5+(43-1)×2=89.【答案】 8915.对一些城市进行职工人均工资水平x (千元)与居民人均消费水平y (千元)统计调查后知,y 与x 具有相关关系,满足回归方程y =0.66x +1.562.若某被调查城市居民人均消费水平为7.675(千元),则可以估计该城市人均消费额占人均工资收入的百分比约为________%(保留两个有效数字).解析 依题意得,当y =7.675时,有0.66x +1.562=7.675,x ≈9.262.因此,可以估计该城市人均消费额占人均工资收入的百分比为7.6759.262≈83%.【答案】 8316.如图所示的程序框图可用来估计π的值(假设函数RAND(-1,1)是产生随机数的函数,它能随机产生区间(-1,1)内的任何一个实数).如果输入1 000,输出的结果为788,则运用此方法估计的π的近似值为________.解析 本题转化为用几何概型求概率的问题.根据程序框图知,如果点在圆x 2+y 2=1内,m 就和1相加一次;现输入N 为1 000,m 起始值为0,输出结果为788,说明m相加了788次,也就是说有788个点在圆x 2+y 2=1内.设圆的面积为S 1,正方形的面积为S 2,则概率P =S 1S 2=π4,∴π=4P =4×7881 000=3.152.【答案】 3.152三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(10分)如图所示的算法中,令a =tan θ,b =sin θ,c =cos θ,若在集合⎩⎨⎧⎭⎬⎫θ⎪⎪-π4<θ<3π4,θ≠0,π4,π2中,给θ取一个值,输出的结果是sin θ,求θ值所在的范围.解析 由框图知,输出的a 是a 、b 、c 中最大的.由此可知,sin θ>cos θ,sin θ>tan θ.又θ在集合⎩⎨⎧⎭⎬⎫θ| -π4<θ<3π4,θ≠0,π4,π2中,∴θ值所在的范围为⎝⎛⎭⎫π2,3π4.18.(12分)(2011·江西七校联考)为庆祝国庆,某中学团委组织了“歌颂祖国,爱我中华”知识竞赛,从参加考试的学生中抽出60名学生,将其成绩(成绩均为整数)分成六段[40,50),[50,60),…,[90,100]后画出如图所示的部分频率分布直方图,观察图形的信息,回答下列问题.(1)求第四小组的频率,并补全这个频率分布直方图; (2)估计这次考试的及格率(60分及以上为及格)和平均分.解析 (1)设第i 组的频率为f i (i =1,2,3,4,5,6),因为这六组的频率和等于1,故第四组的频率:f 4=1-(0.025+0.015×2+0.01+0.005)×10=0.3. 频率分布直方图如图所示.(2)由题意知,及格以上的分数所在的第三、四、五、六组的频率之和为(0.015+0.03+0.025+0.005)×10=0.75,抽样学生成绩的及格率是75%.故估计这次考试的及格率为75%.利用组中值估算抽样学生的平均分:45·f 1+55·f 2+65·f 3+75·f 4+85·f 5+95·f 6=45×0.1+55×0.15+65×0.15+75×0.3+85×0.25+95×0.05=71.从而估计这次考试的平均分是71分.19.(12分)国庆期间,某超市对顾客实行购物优惠活动,规定一次购物付款总额: ①若不超过200元,则不予优惠;②若超过200元,但不超过500元,则按所标的价格给予9折优惠;③如果超过500元,500元的部分按②优惠,超过500元的部分给予7折优惠. 设计一个收款的算法,并画出程序框图.解析 依题意,付款总额y 与标价x 之间的关系式为(单位为元):y =⎩⎪⎨⎪⎧x (x ≤200),0.9x (200<x ≤500),0.9×500+0.7×(x -500)(x >500).算法:第一步,输入x 值.第二步,判断,如果x ≤200,则输出x ,结束算法;否则执行第三步.第三步,判断,如果x ≤500成立,则计算y =0.9x ,并输出y ,结束算法;否则执行第四步.第四步,计算:y =0.9×500+0.7×(x -500),并输出y ,结束算法. 程序框图:20.(12分)如图所示的是为了解决某个问题而绘制的程序框图,仔细分析各图框的内容及图框之间的关系,回答下列问题:(1)该程序框图解决的是怎样的一个问题?(2)当输入2时,输出的值为3,当输入-3时,输出的值为-2,求当输入5时,输出的值为多少?(3)在(2)的前提下,输入的x 值越大,输出的ax +b 是不是越大?为什么? (4)在(2)的前提下,当输入的x 值为多大时,可使得输出的ax +b 结果等于0?解析 (1)该程序框图解决的是求函数f (x )=ax +b 的函数值问题,其中输入的是自变量x 的值,输出的是x 对应的函数值.(2)由已知得⎩⎪⎨⎪⎧2a +b =3, ①-3a +b =-2, ②由①②,得a =1,b =1.f (x )=x +1, 当x 输入5时,输出的值为f (5)=5+1=6. (3)输入的x 值越大,输出的函数值ax +b 越大. 因为f (x )=x +1是R 上的增函数. (4)令f (x )=x +1=0,得x =-1, 因而当输入的x 为-1时, 输出的函数值为0.21.(12分)(2011·东北三校一模)某学生对其亲属30人的饮食习惯进行了一次调查,并用茎叶图表示30人的饮食指数.(说明:图中饮食指数低于70的人,饮食以蔬菜为主;饮食指数高于70的人,饮食以肉类为主)(1)根据茎叶图,帮助这位学生说明其亲属30人的饮食习惯; (2)根据以上数据完成下列2×2列联表:(3)能否有99% 附:K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d ).类为主.(2)2×2列联表如下:(3)因为K 2=30×(8-128)12×18×20×10=30×120×12012×18×20×10=10>6.635,所以有99%的把握认为其亲属的饮食习惯与年龄有关.22.(12分)对任意函数f (x ),x ∈D ,可按如图构造一个数列发生器,其工作原理如下:①输入数据x 0∈D ,经数列发生器输出x 1=f (x 0);②若x 1∉D ,则数列发生器结束工作;若x 1∈D ,则将x 1反馈回输入端,再输出x 2=f (x 1),并依此规律继续下去.现定义f (x )=4x -2x +1.(1)输入x 0=4965,则由数列发生器产生数列{x n },请写出数列{x n }的所有项;(2)若要数列发生器产生一个无穷的常数列,试求输入的初始数据x 0的值. 解析 (1)函数f (x )=4x -2x +1的定义域为D =(-∞,-1)∪(-1,+∞), ∴输入x 0=4965时,数列{x n }只有三项:x 1=1119,x 2=15,x 3=-1.(2)若要数列发生器产生一个无穷的常数列, 则f (x )=4x -2x +1=x 有解,整理得,x 2-3x +2=0,∴x =1或x =2. x 0=1时,x n +1=4x n -2x n +1=x n ,即x n =1;x 0=2时,x n +1=4x n -2x n +1=x n ,即x n =2.∴x 0=1或x 0=2.。
高中数学 高考模拟测试卷一课一练(含解析)新人教A版必修第一册-新人教A版高一第一册数学试题
新20版练B1数学人教A 版高考模拟测试卷一、选择题(本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1.设全集U ={x ∈N|x ≤8},集合A ={1,3,7},B ={2,3,8},则(∁U A )∩(∁U B )=()。
A.{1,2,7,8}B.{4,5,6} C.{0,4,5,6} D.{0,3,4,5,6} 答案:C解析:∵U ={x ∈N|x ≤8}={0,1,2,3,4,5,6,7,8},又A ∪B ={1,2,3,7,8},∴(∁U A )∩(∁U B )=∁U (A ∪B )={0,4,5,6},故选C 。
2.(2019·黄冈调考)已知函数f (x )=a x(a ∈R),则“0<a ≤14”是“对任意x 1≠x 2,都有f(x 1)−f(x 2)x 1−x 2<0”成立的()。
A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件 答案:A解析:“对任意x 1≠x 2,都有f (x 1)-f (x 2)x 1−x 2<0”等价于“函数f (x )=a x(a ∈R)在R 上为减函数”,即0<a <1,显然“0<a ≤14”是“对任意x 1≠x 2,都有f (f 1)-f (f 2)f 1−f 2<0成立”的充分不必要条件,故选A 项。
3.(2019·某某调考)命题p :∀x ∈[0,+∞),(log 32)x≤1,则()。
A.p 是假命题,p 的否定:∃x 0∈[0,+∞),(log 32)x 0>1 B.p 是假命题,p 的否定:∀x ∈[0,+∞),(log 32)x≥1 C.p 是真命题,p 的否定:∃x 0∈[0,+∞),(log 32)x 0>1 D.p 是真命题,p 的否定:∀x ∈[0,+∞),(log 32)x ≥1 答案:C解析:因为0<log 32<1,所以∀x ∈[0,+∞),(log 32)x≤1,p 是真命题,f p :∃x 0∈[0,+∞),(log 32)x0>1。
浙江省长兴中学2013届高三数学5月仿真考试题 理 新人教A版
2013届高三全真模拟考试试题卷数学(理科)本试卷分第I 卷和第II 卷两部分.考试时间120分钟,满分150分.请考生按规定用笔将所有试题的答案涂、写在答题纸上. 参考公式:如果事件A B ,互斥,那么球的表面积公式24πS R =()()()P A B P A P B +=+球的体积公式34π3V R = 如果事件A B ,相互独立,那么其中R 表示球的半径)()()(B P A P AB P =棱柱的体积公式 V=Sh如果事件A 在一次试验中发生的概率是p 棱锥的体积公式 V=31Sh 那么n 次独立重复试验中恰好发生k 次的概率: 棱台的体积公式:()(1)(01,2)k kn k n n P k C P P k n -=-=,,, V=31h (2211S S S S ++)第I 卷(共50分)一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若集合B A x y x B x y y A 则},1|{},|{2-====1( )A .(]1,∞-B .]1,1[-C .[0,1]D .[)∞-,12.设复数1234,z i z t i =+=+且12,z z R ⋅∈则实数t 等于( )A .43B .34 C . -43 D .-343. 不等式21π<<x 成立是不等式0tan )1(>-x x 成立的 ( )A .充分不必要条件B .必要不充分条件C .充要条件D .非充分非必要条件4.已知(n x 的展开式中所有项的二项式系数之和为64,则展开式中含3x 项的系数是( )A .154 B. 52 C .154- D . 52- 5.设α是空间中的一个平面,,,l m n 是三条不同的直线,①若,,,,m n l m l n l ααα⊂⊂⊥⊥⊥则; ②若//,//,,;l m m n l n αα⊥⊥则③若//,,l m m n αα⊥⊥,则n l // ④若,,,//m n l n l m αα⊂⊥⊥则;则上述命题中正确的是 ( ) A .①② B .①④ C .③④ D .②③ 6.如果执行右面的程序框图,那么输出的t =( ) A .96 B .120 C .144 D .300 7. 从0,2中选一个数字,从1,3,5中选两个数字,组成无重复 数字的三位数,其中奇数的个数为( )A .24B .18C .12D .6 8.如右图所示,,,A B C 是圆O 上的三点,CO 的延长线与 线段AB 交于圆内一点D ,若OC xOA yOB =+,则( )A .01x y <+<B .1x y +>C .1x y +<-D .10x y -<+<9. 已知双曲线(>0)mx y m -=221的右顶点为A ,若该双曲线 右支上存在两点,B C 使得ABC ∆为等腰直角三角形,则该双曲线 的离心率e 的取值范围是 ( )A .(1,2)B .(1,2)C .(1,3)D .(1,3)10. 已知c b a ,,满足0≠a 且,0,=++≥≥c b a c b a 则函数c bx ax x f ++=2)(截x 轴所得到的弦长的取值范围为( )]2,21.[A ]3,23.[B ]3,26.[C ]9,49.[D 第II 卷 (共100分)二、 填空题: 本大题共7小题, 每小题4分, 共28分。
2013学年高一数学上学期文理分科考试试题及答案(新人教A版 第106套)
南昌市八一中学高一文理分科考试数学试卷(考试时间120分钟,试卷满分150分)一、选择题:(本大题共10小题,每小题5分,共50分,在每一小题给出的四个选项中,只有一项是符合题目要求的,答案填写在答题卷上.) 1.已知全集U=R ,集合A={x| 23x -≤≤},B={ x| 1x <-或4x >},则()u A C B =( ) A . {x| 24x -≤<} B .{ x| 3x ≤或4x ≥} C .{x| 21x -≤<-} D .{x| 13x -≤≤} 2.方程125x x -+=的根所在的区间是( ) A 、(0,1) B 、(1,2) C 、(2,3)D 、(3,4)3.为了得到函数y=sin(2x-6π)的图像,可以将函数y=cos2x 的图像( ) A .向右平移6π B . 向右平移3π C . 向左平移6π D .向左平移3π4.3log 21=a ,2log 31=b ,3.0)21(=c ,则 ( )A a <b <cB a <c <bC b <c <aD b <a <c5.在△ABC 中,如果sinA =2sinCcosB ,那么这个三角形是A .锐角三角形B .直角三角形C .等腰三角形D .等边三角形6.若f(x)= 3,[1,0)1(),[0,1]3x x x x ⎧∈-⎪⎨-∈⎪⎩,则3[(log 2)]f f 的值为( )A..12- D .2-7、函数b x A x f +ϕ+ω=)sin()(图象如右图,则)(x f 的解析式与++=)1()0(f f S )(f )(f 20122+⋯+的值分别为( )A . 12sin 21)(+π=x x f , 2013=SB . 12sin 21)(+π=x x f ,212013=SC .12sin 21)(+π=x x f , 2012=SD .12sin 21)(+π=x x f , 212012=S8.函数122log sin(2)3y x π=-的一个单调递减区间是 ( )A . (,)612ππ-B . (,)126ππ-C . (,)63ππD . 25(,)36ππ9.设()f x 是定义在R 上以2为周期的奇函数,若(0,1)x ∈,12()log (1)f x x =-,则()f x在(1,2)上( )A.单调递增,且()0f x >B.单调递减,且()0f x >C.单调递增,且()0f x <D.单调递减,且()0f x < 10.设曲线x b x a x f sin cos )(+=的一条对称轴为5π=x ,则曲线)10(x f y -=π的一个对称点为( )A.⎪⎭⎫ ⎝⎛-0,5π B. ⎪⎭⎫ ⎝⎛0,103π C. ⎪⎭⎫ ⎝⎛0,52π D. ⎪⎭⎫⎝⎛-0,107π 二、填空题:(本大题共5小题,每小题5分,共25分,答案填写在答题卷上.)11、设)x (f 是定义在R 上的奇函数,当0≤x 时,x x )x (f -=22,则)(f 1= .12、已知扇形的周长是10cm ,面积是4cm 2,则扇形的中心角的弧度数是________13、函数3x x y +=的值域是.14.定义运算⎩⎨⎧>≤=*)(,)(,b a b b a a b a ,如:121=*,则函数x x x f cos sin )(*=的值域为15、下面有五个命题:①终边在y 轴上的角的集合是{β|β=Z k ,k ∈+22ππ}.②设一扇形的弧长为4cm ,面积为4cm 2,则这个扇形的圆心角的弧度数是2. ③函数x cos x sin y 44-=的最小正周期是2π. ④的图象为了得到x sin y 23=,只需把函数.)x sin(y 6323ππ的图象向右平移+=⑤函数上,在⎪⎭⎫⎢⎣⎡----=2πππ)x tan(y 是增函数. 所有正确命题的序号是 . (把你认为正确命题的序号都填上)三、解答题(本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤) 16、(本小题满分12分)(1)求值: (2)化简:17.(本题12分)已知:10103)cos(,55sin ,2,2-=-=<-<<<αβαπαβππαπ(1)求βcos 值; (2)求角β的值.3tan()cos(2)sin()2.cos()sin()ππαπαααππα---+----3556331103252718lg )log (log log log ++⋅++-18.(本小题12分) 已知函数)x sin()x (f 6221πω++=(其中01ω<<), 若直线3x π=是函数)x (f 图象的一条对称轴.(1)求ω及最小正周期; (2)求函数()f x ,[]ππ,x -∈的单调减区间.19.(本小题12分)已知函数()log (1)x a f x a =-(0a >且1a ≠). (1)求函数()f x 的定义域;(2)若()1f x >,求x 的取值范围.20.(本小题13分) 已知二次函数()()y f x x =∈R 的图象过点(0,-3),且0)(>x f 的解集)3,1(.(Ⅰ)求)(x f 的解析式; (Ⅱ)求函数]2,0[),(sin π∈=x x f y 的最值.21.(本题14分)已知函数2()2sin ()21,4f x x x x R π=+-∈.(1)函数()()h x f x t =+的图象关于点(,0)6π-对称,且(0,)t π∈,求t 的值;(2)[,],()342x f x m ππ∈-<恒有成立,求实数m 的取值范围.2012-2013学年度高一文理分科考试数学试题参考答案11、3- 12.12; 13、[)+∞,0 ; 14.,22,1⎥⎦⎤⎢⎣⎡- 15. (2)(4) 三、解答题(本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤) 16 解:(1)原式36log 5log 3log )2(5633313+⋅++=-- ……… 3分31321++-=……… 6分 (2)原式=αααααsin cos )cos (cos tan ⋅--⋅⋅- ……… 9分 = -1 ……… 12分17.略解:(1)55sin =α,552cos -=α10103)cos(-=-αβ,1010)sin(=-αβ23=22])cos[(cos ==+-= ααββ…………….6分 (2) πβπ2<< πβ47=∴…………….12分181)解:由题可知:)z k (k ∈+=+⋅2632ππππω故有k 2321+=ω 又2110=∴<<ωω ………3分ππ2621=++=∴T )x sin()x (f 周期 ……… 6分(2)≤+≤+622πππx k ππk 223+∴≤≤+x k ππ23ππk 234+ ……… 8分 ⎥⎦⎤⎢⎣⎡++=ππππk ,k A 23423设,[]ππ,B -=⎥⎦⎤⎢⎣⎡⋃⎥⎦⎤⎢⎣⎡--=⋂ππππ,,B A 332则 ……… 10分⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡--ππππ,,)x (f 332和的单调减区间为故 .……… 12分 19.解:(1)要使函数()f x 有意义必须10x a ->时,即1xa >…………………………1分 ①若1a >,则0x >……………………………………………………………………3分 ②若01a <<,则0x <………………………………………………………………5分 ∴当1a >时,函数()f x 的定义域为:{}0x x |>;当01a <<时,函数()f x 的定义域为:{}0x x |<………………………………6分 (2)()1f x >,即log (1)1x a a ->……………………………………………………7分 ①当1a >,则0x >,且1xa a ->…………………………………………………8分 ∴log (1)a x a >+………………………………………………………………………9分 ②当01a <<时,则0x <,且1xa a -<…………………………………………10分log (1)0a a x +<<…………………………………………………………………11分 ∴综上当1a >时,x 的取值范围是(log (1),)a a ++∞,当01a <<时,x 的取值范围是(log (1),0)a a +…………………………………12分 20.(本小题13分)解:(Ⅰ)由题意可设二次函数f(x)=a(x-1)(x-3)(a<0) …….2分当x=0时,y=-3,即有-3=a(-1)(-3), 解得a=-1, ……4分f(x)= -(x-1)(x-3)=342-+-x x , )(x f 的解析式为)(x f =342-+-x x . …….6分(Ⅱ)y=f(sinx)=3sin 4sin 2-+-x x =()12sin 2+--x . …….9分[0,]2x π∈,sin [0,1]x ∴∈,则当sinx=0时,y 有最小值-3; 当sinx=1时,y 有最大值0. …….13分)z k (k ,k X sin y ,x X ∈⎥⎦⎤⎢⎣⎡+++=+=πππππ22322216的单调减区间为则设21.解:(Ⅰ)∵2()2sin ()211cos(2)2142f x x x x x ππ=+--=-+-∴ ()()2sin(22)3h x f x t x t π=+=+-,∴()h x 的图象的对称中心为 ……………………………… 4分又已知点(,0)6π-为()h x 的图象的一个对称中心,∴()23k t k Z ππ=+∈ 而(0,)t π∈,∴3t π=或56π. …………………………………………7分 (Ⅱ)若[,]42x ππ∈时,22[,]363x πππ-∈, ………………………9分 ()[1,2]f x ∈,由()33()3f x m m f x m -<⇒-<<+……………………………12分∴3132m m -<⎧⎨+>⎩,解得14m -<<, 即m 的取值范围是(1,4)-.…………… 14分。
浙江省考试院2013届高三数学测试卷试题 文 新人教A版
测试卷数学(文科)姓名______________ 准考证号___________________ 本试题卷分选择题和非选择题两部分。
全卷共5页,选择题部分1至3页,非选择题部分4至5页。
满分150分,考试时间120分钟。
请考生按规定用笔将所有试题的答案涂、写在答题纸上。
选择题部分(共50分)注意事项:1.答题前,考生务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填写在试卷和答题纸规定的位置上。
2.每小题选出答案后,用2B铅笔把答题纸上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
不能答在试题卷上。
参考公式:球的表面积公式S=4πR2球的体积公式V=43πR3其中R表示球的半径锥体的体积公式V=13Sh其中S表示锥体的底面积, h表示锥体的高柱体的体积公式V=Sh其中S表示柱体的底面积, h表示柱体的高台体的体积公式()1213V h S S=其中S1, S2分别表示台体的上、下底面积,h表示台体的高如果事件A, B互斥, 那么P(A+B)=P(A)+P(B)一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A={-2,-1,1,2 },B={x | x2-x-2≥0 },则A∩B=A.{-1,1,2 } B.{-2,-1,2 }C.{-2,1,2 } D.{-2,-1,1}2.已知a ∈R ,则“a >0”是 “a +1a≥2”的 A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件 3.已知直线l ,m 和平面α,A .若l ∥m ,m ⊂α,则l ∥αB .若l ∥α,m ⊂α,则l ∥mC .若l ⊥m ,l ⊥α,则m ⊥αD .若l ⊥α,m ⊂α,则l ⊥m 4.若函数f (x ) (x ∈R )是奇函数,函数g (x ) (x ∈R )是偶函数,则A .函数f [g (x )]是奇函数B .函数g [f (x )]是奇函数C .函数f (x )⋅g (x )是奇函数D .函数f (x )+g (x )是奇函数 5.在某学校组织的校园十佳歌手评选活动中,八位评委为某学生的演出打出的分数的茎叶统计图如图所示.去掉一个最高分和一个最低分后,所剩数据的平均数与方差分别为 A .86,3 B .86,53 C .85,3 D .85,536.函数y =sin (2x +π4)的图象可由函数y =cos 2x 的图象 A .向左平移π8个单位长度而得到 B .向右平移π8个单位长度而得到C .向左平移π4个单位长度而得到 D .向右平移π4个单位长度而得到7.如图,在四边形ABCD 中,AB ⊥BC ,AD ⊥DC .若|AB |=a ,|AD |=b ,则AC BD ⋅=A .a 2-b 2B .b 2-a 2C .a 2+b 2D .ab8.设函数f (x )=x 3-4x +a ,0<a <2.若f (x )的三个零点为x 1,x 2,x 3,且x 1<x 2<x 3,则A .x 1>-1B .x 2<0C .x 2>0D .x 3>2(第7题图)9.已知双曲线x 2-22y =1,点A (-1,0),在双曲线上任取两点P ,Q 满足AP ⊥AQ ,则直线PQ 恒过点A .(3,0)B .C .(-3,0)D .10.如图,函数y =f (x )的图象为折线ABC ,设g 则函数y =g (x )的图象为A .B .C .D .非选择题部分(共100分)注意事项:1.用黑色字迹的签字笔或钢笔将答案写在答题纸上,不能答在试题卷上。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
测试卷数学(文科)姓名______________ 准考证号___________________ 本试题卷分选择题和非选择题两部分。
全卷共5页,选择题部分1至3页,非选择题部分4至5页。
满分150分,考试时间120分钟。
请考生按规定用笔将所有试题的答案涂、写在答题纸上。
选择题部分(共50分)注意事项:1.答题前,考生务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填写在试卷和答题纸规定的位置上。
2.每小题选出答案后,用2B铅笔把答题纸上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
不能答在试题卷上。
参考公式:球的表面积公式S=4πR2球的体积公式V=43πR3其中R表示球的半径锥体的体积公式V=13Sh其中S表示锥体的底面积, h表示锥体的高柱体的体积公式V=Sh其中S表示柱体的底面积, h表示柱体的高台体的体积公式()1213V h S S=其中S1, S2分别表示台体的上、下底面积,h表示台体的高如果事件A, B互斥, 那么P(A+B)=P(A)+P(B)一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A={-2,-1,1,2 },B={x | x2-x-2≥0 },则A∩B=A.{-1,1,2 } B.{-2,-1,2 }C.{-2,1,2 } D.{-2,-1,1}122.已知a ∈R ,则“a >0”是 “a +1a≥2”的 A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件 3.已知直线l ,m 和平面α,A .若l ∥m ,m ⊂α,则l ∥αB .若l ∥α,m ⊂α,则l ∥mC .若l ⊥m ,l ⊥α,则m ⊥αD .若l ⊥α,m ⊂α,则l ⊥m 4.若函数f (x ) (x ∈R )是奇函数,函数g (x ) (x ∈R )是偶函数,则A .函数f [g (x )]是奇函数B .函数g [f (x )]是奇函数C .函数f (x )⋅g (x )是奇函数D .函数f (x )+g (x )是奇函数 5.在某学校组织的校园十佳歌手评选活动中,八位评委为某学生的演出打出的分数的茎叶统计图如图所示.去掉一个最高分和一个最低分后,所剩数据的平均数与方差分别为 A .86,3 B .86,53 C .85,3 D .85,536.函数y =sin (2x +π4)的图象可由函数y =cos 2x 的图象 A .向左平移π8个单位长度而得到 B .向右平移π8个单位长度而得到C .向左平移π4个单位长度而得到D .向右平移π4个单位长度而得到7.如图,在四边形ABCD 中,AB ⊥BC ,AD ⊥DC .若|AB|=a ,|AD|=b ,则AC BD ⋅ =A .a 2-b 2B .b 2-a 2C .a 2+b 2D .ab8.设函数f (x )=x 3-4x +a ,0<a <2.若f (x )的三个零点为x 1,x 2,x 3,且x 1<x 2<x 3,则A .x 1>-1B .x 2<0C .x 2>0D .x 3>2(第7题图)39.已知双曲线x 2-22y =1,点A (-1,0),在双曲线上任取两点P ,Q 满足AP ⊥AQ ,则直线PQ 恒过点A .(3,0)B .C .(-3,0)D .10.如图,函数y =f (x )的图象为折线ABC ,设g 则函数y =g (x )的图象为A .B .C .D .非选择题部分(共100分)注意事项:1.用黑色字迹的签字笔或钢笔将答案写在答题纸上,不能答在试题卷上。
2.在答题纸上作图,可先使用2B铅笔,确定后必须使用黑色字迹的签字笔或钢笔描黑。
二、填空题: 本大题共7小题, 每小题4分, 共28分。
11.已知i是虚数单位,a∈R.若复数2i12ia+-的实部为1,则a=.12.某四棱柱的三视图(单位:cm)如图所示,则该四棱柱的体积为 cm3.13.若某程序框图如图所示,则该程序运行后输出的值是.14.从3男2女这5位舞蹈选手中,随机(等可能)抽出2人参加舞蹈比赛,恰有一名女选手的概率是.15.当实数x,y满足不等式组0,0,x yxx y m-≤⎧⎪≥⎨⎪+-≤⎩(m为常数)时,2x+y的最大值为4,则m=.16.设F1,F2是椭圆C:22221x ya b+=(a>b>0)的左、右焦点,过F1的直线l与C交于A,B两点.若AB⊥AF2,| AB | : | AF2 |=3:4,则椭圆的离心率为.17.已知函数f (x)=271x ax ax++++,a∈R.若对于任意的x∈N*,f (x)≥4恒成立,则a的取值范围是.侧视图俯视图(第12题图)(第13题图)4三、解答题: 本大题共5小题, 共72分。
解答应写出文字说明、证明过程或演算步骤。
18.(本题满分14分)在△ABC中,内角A,B,C的对边分别为a,b,c,已知2a cos A=b cos C+c cos B.(Ⅰ) 求A的大小;(Ⅱ) 求cos BC的取值范围.19.(本题满分14分)已知等比数列{a n}的前n项和S n=2n-a,n∈N*.设公差不为零的等差数列{b n}满足:b1=a1+2,且b2+5,b4+5,b8+5成等比.(Ⅰ) 求a及b n;(Ⅱ) 设数列{n}的前n项和为T n.求使T n>b n的最小正整数n的值.20.(本题满分15分)如图,四棱锥P-ABCD,PA⊥底面ABCD,AB∥CD,AB⊥AD,AB=AD=12CD=2,PA=2,E,F分别是PC,PD的中点.(Ⅰ) 证明:EF∥平面PAB;(Ⅱ) 求直线AC与平面ABEF所成角的正弦值.21.(本题满分15分)已知函数f (x)=x3-3ax+1,a∈R.(Ⅰ) 求f (x)的单调区间;(Ⅱ) 求所有的实数a,使得不等式-1≤f (x)≤1对x∈[0恒成立.22.(本题满分14分)如图,A,B是焦点为F的抛物线y2=4x上的两动点,线段AB的中点M在定.直线..x =t (t>0)上.(Ⅰ)求|FA|+|FB|的值;(Ⅱ)求| AB |的最大值.A BCDPEF(第20题图)(第22题图)5数学测试题(文科)答案及评分参考说明:一、本解答指出了每题要考查的主要知识和能力, 并给出了一种或几种解法供参考, 如果考生的解法与本解答不同, 可根据试题的主要考查内容比照评分参考制订相应的评分细则。
二、对计算题, 当考生的解答在某一步出现错误时, 如果后续部分的解答未改变该题的内容和难度, 可视影响的程度决定后续部分的给分, 但不得超过该部分正确解答应得分数的一半;如果后续部分的解答有较严重的错误, 就不再给分。
三、解答右端所注分数, 表示考生正确做到这一步应得的累加分数。
四、只给整数分数。
选择题和填空题不给中间分。
五、未在规定区域内答题,每错一个区域扣卷面总分1分。
一、选择题: 本题考查基本知识和基本运算。
每小题5分,满分50分。
1.B2.C3.D4.C5.A6.B7.B8.C 9.A10.A二、填空题:本题考查基本知识和基本运算。
每小题4分,满分28分。
11.9 12.12 13.91014.3515.8316.17.[13,+ )三、解答题:本大题共5小题,共72分。
解答应写出文字说明、证明过程或演算步骤。
18.本题主要考查正、余弦定理及三角运算等基础知识,同时考查运算求解能力。
满分14分。
(Ⅰ) 由余弦定理得62a cos A=b2222a b cab+-⋅+c2222a c bac+-⋅=a,所以cos A=12.又A∈(0,π),故A=π3.………… 7分(Ⅱ) 由(Ⅰ)知C=2π3-B,故cos BC=cos B2π3-B)sin B-12cos B=-sin (B+π6).因为0<B<2π3,所以π6<B+π6<5π6,所以-1≤-sin(B+π6)<-12.所以cos BC的取值范围是[-1,-12).………… 14分19.本题主要考查等差、等比数列的概念,通项公式及求和公式等基础知识,同时考查运算求解能力。
满分14分。
(Ⅰ) 当n=1时,a1=S1=2-a.当n≥2时,a n=S n-S n-1=2n-1.所以1=2-a,得a=1,所以7a n=2n-1.设数列{b n}的公差为d,由b1=3,(b4+5)2=(b2+5)(b8+5),得(8+3d)2=(8+d)(8+7d),故d=0 (舍去) 或d=8.所以a=1,b n=8n-5,n∈N*.………… 7分(Ⅱ) 由a n=2n-1,知n=2(n-1).T n=n(n-1).由b n=8n-5,T n>b n,得n2-9n+5>0,因为n∈N*,所以n≥9.所以,所求的n的最小值为9.………… 14分20.本题主要考查空间点、线、面位置关系,线面所成角等基础知识,同时考查空间想象能力和推理论证能力。
满分15分。
(Ⅰ) 因为E,F分别是PC,PD的中点,所以EF∥CD,又因为CD∥AB,所以EF∥AB,又因为EF 平面PAB所以EF∥平面PAB.………… 7分(Ⅱ) 取线段PA中点M,连结EM,则EM∥AC,8故AC与面ABEF所成角的大小等于ME与面ABEF所成角的大小.作MH⊥AF,垂足为H,连结EH.因为PA⊥平面ABCD,所以PA⊥AB,又因为AB⊥AD,所以AB⊥平面PAD,又因为EF∥AB,所以EF⊥平面PAD.因为MH 平面PAD,所以EF⊥MH,所以MH⊥平面ABEF,所以∠MEH是ME与面ABEF所成的角.在直角△EHM中,EM=12ACMHsin ∠MEH.所以AC与平面ABEF.………… 15分21.本题主要考查利用导数研究函数的单调性等性质,及导数应用等基础知识,同时考查推理论证能力。
满分15分。
(Ⅰ) f′(x)=3x2-3a.当a≤0时,f′(x)≥0恒成立,故f (x)的增区间是(-∞,+∞).当a>0时,由f′(x)>0,得x或x故f (x)的增区间是(和,+∞),f (x)的减区间是[.………… 7分A BCDPEF(第20题图)MH910(Ⅱ) 当a ≤0时,由(Ⅰ)知f (x )在[0上递增,且f (0)=1,此时无解. 当0<a <3时,由(Ⅰ)知f (x )在[0]上递减,在上递增,所以f (x )在[0]上的最小值为f=1-2所以1,1,(0)1,f f f ⎧≥-⎪⎪≤⎨⎪≤⎪⎩即1,1,a ⎧⎪⎨≥⎪⎩ 所以a =1.当a ≥3时,由(Ⅰ)知f (x )在[0]上递减,又f (0)=1,所以f=+1≥-1,解得a ≤1此时无解.综上,所求的实数a =1.………… 15分22.本题主要考查抛物线几何性质,直线与抛物线的位置关系,同时考查解析几何的基本思想方法和运算求解能力。