【恒心】辽宁省锦州市2014届高三第一次质量检测考试数学(文科)试题及参考答案【纯Word版】
14年高考真题——文科数学(辽宁卷)-推荐下载
6
(D) c a b
(D) p q
辽宁
(D)
2014 年高考真题文科数学(解析版) 卷
8.已知点 A2, 3在抛物线 C : y2 2 px 的准线上,记 C 的焦点为 F ,则直线
AF 的斜率为( )
(A) 4 3
(B) 1
9.设等差数列an的公差为 d ,若数列2a1an 为递减数列,则( )
⑴根据表中数据,问是否有 95%的把握认为
“南方学生和北方学生在选用甜品的饮食习惯
,求:⑴
a
和
方面有差异”; ⑵已知在被调查的北方学生中有 5 名数学系的学生,其中 2 名喜欢甜品,
现在从这 5 名学生中随机抽取 3 人,求至多有 1 人喜欢甜品的概率。
附: 2 n n11n22 n12n21 2 ,
)
(A)5, 3
(D)4, 3
(B)6, 9 8
二.填空题(本大题共 4 小题,每小题 5 分,共 20 分) 13.执行右侧的程序框图,若输入 n 3 ,则输出T
。
Page 2 of 8
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电通,力1根保过据护管生高线产中0不工资仅艺料可高试以中卷解资配决料置吊试技顶卷术层要是配求指置,机不对组规电在范气进高设行中备继资进电料行保试空护卷载高问与中题带资2负料2,荷试而下卷且高总可中体保资配障料置各试时类卷,管调需路控要习试在题验最到;大位对限。设度在备内管进来路行确敷调保设整机过使组程其高1在中正资,常料要工试加况卷强下安看与全22过,22度并22工且22作尽22下可护都能1关可地于以缩管正小路常故高工障中作高资;中料对资试于料卷继试连电卷接保破管护坏口进范处行围理整,高核或中对者资定对料值某试,些卷审异弯核常扁与高度校中固对资定图料盒纸试位,卷置编工.写况保复进护杂行层设自防备动腐与处跨装理接置,地高尤线中其弯资要曲料避半试免径卷错标调误高试高等方中,案资要,料求编试技5写、卷术重电保交要气护底设设装。备备置管4高调、动线中试电作敷资高气,设料中课并技3试资件且、术卷料中拒管试试调绝路包验卷试动敷含方技作设线案术,技槽以来术、及避管系免架统不等启必多动要项方高方案中式;资,对料为整试解套卷决启突高动然中过停语程机文中。电高因气中此课资,件料电中试力管卷高壁电中薄气资、设料接备试口进卷不行保严调护等试装问工置题作调,并试合且技理进术利行,用过要管关求线运电敷行力设高保技中护术资装。料置线试做缆卷到敷技准设术确原指灵则导活:。。在对对分于于线调差盒试动处过保,程护当中装不高置同中高电资中压料资回试料路卷试交技卷叉术调时问试,题技应,术采作是用为指金调发属试电隔人机板员一进,变行需压隔要器开在组处事在理前发;掌生同握内一图部线纸故槽资障内料时,、,强设需电备要回制进路造行须厂外同家部时出电切具源断高高习中中题资资电料料源试试,卷卷线试切缆验除敷报从设告而完与采毕相用,关高要技中进术资行资料检料试查,卷和并主检且要测了保处解护理现装。场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
2014年(辽宁卷)普通高等学校招生全国统一考试(文科)数学(含解析)
第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知全集,{|0},{|1}U R A x x B x x ==≤=≥,则集合()U C A B = ( ) A .{|0}x x ≥ B .{|1}x x ≤ C .{|01}x x ≤≤ D .{|01}x x <<2.设复数z 满足(2)(2)5z i i --=,则z =( ) A .23i + B .23i - C .32i + D .32i -3.已知132a -=,21211log ,log 33b c ==,则( ) A .a b c >> B .a c b >> C .c a b >> D .c b a >>4.已知m ,n 表示两条不同直线,α表示平面,下列说法正确的是( ) A .若//,//,m n αα则//m n B .若m α⊥,n α⊂,则m n ⊥C .若m α⊥,m n ⊥,则//n αD .若//m α,m n ⊥,则n α⊥5.设,,a b c是非零向量,已知命题P :若0a b ⋅= ,0b c ⋅= ,则0a c ⋅=;命题q :若//,//a b b c ,则//a c ,则下列命题中真命题是( )A .p q ∨B .p q ∧C .()()p q ⌝∧⌝D .()p q ∨⌝6.若将一个质点随机投入如图所示的长方形ABCD 中,其中AB=2,BC=1,则质点落在以AB 为直径的半圆内的概率是( ) A .2π B .4π C .6π D .8π7. 某几何体三视图如图所示,则该几何体的体积为( ) A .82π- B .8π- C .82π-D .84π-8. 已知点(2,3)A -在抛物线C :22y px =的准线上,记C 的焦点为F ,则直线AF 的斜率为( )A .43-B .1-C .34-D .12- 【答案】C 【解析】9. 设等差数列{}n a 的公差为d ,若数列1{2}n a a为递减数列,则( ) A .0d < B .0d > C .10a d < D .10a d >10.已知()f x 为偶函数,当0x ≥时,1cos ,[0,]2()121,(,)2x x f x x x π⎧∈⎪⎪=⎨⎪-∈+∞⎪⎩,则不等式1(1)2f x -≤的解集为( ) A .1247[,][,]4334 B .3112[,][,]4343--C .1347[,][,]3434D .3113[,][,]4334--11. 将函数3sin(2)3y x π=+的图象向右平移2π个单位长度,所得图象对应的函数( )A .在区间7[,]1212ππ上单调递减B .在区间7[,]1212ππ上单调递增 C .在区间[,]63ππ-上单调递减 D .在区间[,]63ππ-上单调递增12. 当[2,1]x ∈-时,不等式32430ax x x -++≥恒成立,则实数a 的取值范围是( )A .[5,3]--B .9[6,]8-- C .[6,2]-- D .[4,3]--第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 执行右侧的程序框图,若输入3n =,则输出T = .14.已知x,y满足条件220240330x yx yx y+-≥⎧⎪-+≥⎨⎪--≤⎩,则目标函数34z x y=+的最大值为.15. 已知椭圆C :22194x y +=,点M 与C 的焦点不重合,若M 关于C 的焦点的对称点分别为A ,B ,线段MN 的中点在C 上,则||||AN BN += .16. 对于0c >,当非零实数a ,b 满足22420a ab b c -+-=,且使|2|a b +最大时,124a b c++的最小值为 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. (本小题满分12分)在ABC ∆中,内角A ,B ,C 的对边a ,b ,c ,且a c >,已知2BA BC ∙= ,1cos 3B =,3b =,求:(Ⅰ)a 和c 的值; (Ⅱ)cos()B C -的值.18. (本小题满分12分)某大学餐饮中心为了了解新生的饮食习惯,在全校一年级学生中进行了抽样调查,调查结果如下表所示:(Ⅰ)根据表中数据,问是否有95%的把握认为“南方学生和北方学生在选用甜品的饮食习惯方面有差异”; (Ⅱ)已知在被调查的北方学生中有5名数学系的学生,其中2名喜欢甜品,现在从这5名学生中随机抽取3人,求至多有1人喜欢甜品的概率.19. (本小题满分12分)如图,ABC ∆和BCD ∆所在平面互相垂直,且2AB BC BD ===,0120ABC DBC ∠=∠=,E 、F 、G分别为AC、DC、AD的中点. (Ⅰ)求证:EF⊥平面BCG;(Ⅱ)求三棱锥D-BCG的体积.附:椎体的体积公式13V Sh=,其中S为底面面积,h为高.20. (本小题满分12分)圆224x y +=的切线与x 轴正半轴,y 轴正半轴围成一个三角形,当该三角形面积最小时,切点为P (如图).(Ⅰ)求点P 的坐标;(Ⅱ)焦点在x 轴上的椭圆C 过点P ,且与直线:l y x =A ,B 两点,若PAB ∆的面积为2,求C 的标准方程.【考点定位】1、直线方程;2、椭圆的标准方程;3、弦长公式和点到直线的距离公式. 21. (本小题满分12分)已知函数()(cos )2sin 2f x x x x π=---,2()(1xg x x ππ=--.证明:(Ⅰ)存在唯一0(0,)2x π∈,使0()0f x =;(Ⅱ)存在唯一1(,)2x ππ∈,使1()0g x =,且对(1)中的01x x π+>.22. (本小题满分10分)选修4-1:几何证明选讲,连接DG并延长交圆于点A,作如图,EP交圆于E、C两点,PD切圆于D,G为CE上一点且PG PD弦AB垂直EP,垂足为F.(Ⅰ)求证:AB为圆的直径;(Ⅱ)若AC=BD,求证:AB=ED.23. (本小题满分10分)选修4-4:坐标系与参数方程将圆221x y +=上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C. (Ⅰ)写出C 的参数方程;(Ⅱ)设直线:220l x y +-=与C 的交点为12,P P ,以坐标原点为极点,x 轴正半轴为极坐标建立极坐标系,求过线段12PP 的中点且与垂直的直线的极坐标方程.24. (本小题满分10分)选修4-5:不等式选讲设函数()2|1|1f x x x =-+-,2()1681g x x x =-+,记()1f x ≤的解集为M ,()4g x ≤的解集为N.(Ⅰ)求M ;(Ⅱ)当x M N ∈ 时,证明:221()[()]4x f x x f x +≤.。
2014届高三数学一模文科试卷(附答案)
2014届高三数学一模文科试卷(附答案)箴言中学2013年高三第一次学月考试(时量120分钟满分 150分)一、选择题:本大题共9小题,每小题5分,共45分,每小题只有一项符合题目要求. 1.已知全集,集合,,则 =__________. A. {1,2,4} B. {2,3,4} C. {0,2,4} D . {0,2,3,4} 2.复数为虚数单位)在复平面内所对应的点在__________. A.第一象限 B.第二象限C.第三象限 D.第四象限 3.设 , 则“ ”是“ ”的__________. A.充分而不必要条件 B.必要而不充分条件 C.充要条件 D.既不充分也不必要条件 4.四名同学根据各自的样本数据研究变量之间的相关关系,并求得回归直线方程,分别得到以下四个结论:① y与x负相关且;② y与x负相关且;③ y与x正相关且;④ y与x正相关且 . 其中一定不正确的结论的序号是__________. A.①② B.②③ C.③④ D.①④ 5.下列函数中,既是偶函数又在区间上单调递减的是__________. A. B. C. D. 6.已知向量,,若,则=__________. A. B. C. D. 7.已知点在圆外, 则直线与圆的位置关系是_______. A.相切 B.相交 C.相离 D.不确定 8.若 ,则的取值范围是__________. A. B. C. D. 9.形如的函数因其函数图象类似于汉字中的�遄郑�故生动地称为“�搴�数”。
则当时的“�搴�数”与函数的交点个数为__________. A.2 B.3 C.4 D.5 二、填空题:本大题共6小题,每小题5分,共30分. 10.直线(为参数)的倾斜角为__________. 11.某学员在一次射击测试中射靶10次,命中环数如下:7,8,7,9,5,4,9,10,7,4, 则命中环数的方差为 . (注:方差,其中为的平均数) 12. 某几何体的三视图如图1所示,它的体积为__________. 13. 阅读图2的程序框图, 该程序运行后输出的的值为 __. 14. 设F1,F2是椭圆C:的两个焦点,若在C上存在一点P, 使PF1⊥PF2,且∠PF1F2=30°,则C的离心率为_____________. 15.已知函数的定义域为,部分对应值如下表,的导函数,的图象如图所示.�1 0 2 4 5 1 2 0 2 1 (1)的极小值为_______;(2)若函数有4个零点,则实数的取值范围为_________.箴言中学2013年高三第一次学月考试文科数学答题卷一、选择题:本大题共9小题,每小题5分,共45分,序号 1 2 3 4 5 6 7 8 9 答案二、填空题:本大题共6小题,每小题5分,共30分. 10.____________11.____________ 12..____________ 13.____________14.____________ 15.____________ _____________ 三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤. 16.(本小题12分) 若函数在R上的最大值为5. (1)求实数m的值; (2)求的单调递减区间。
2014年全国普通高等学校招生统一考试文科数学(辽宁卷带解析)答案解析
2014年全国普通高等学校招生统一考试文科(辽宁卷)数学答案解析1、【答案】D【解析】试题分析:由已知得,或,故.考点:集合的运算.2、【答案】A【解析】试题分析:由已知得,.考点:复数的运算.3、【答案】C【解析】试题分析:因为,,,故.考点:指数函数和对数函数的图象和性质.4、【答案】B【解析】试题分析:若则或相交或异面,故A错;若,,,由直线和平面垂直的定义知,,故B正确;若,,则或,故C错;若,,则与位置关系不确定,故D错.考点:空间直线和平面的位置关系.5、【答案】A【解析】试题分析:若,,则,故,故命题是假命题;若,则,故命题是真命题,由复合命题真假判断知,是真命题,选A.考点:1、平面向量的数量积运算;2、向量共线.6、【答案】B【解析】试题分析:将一个质点随机投入长方形ABCD中,基本事件总数有无限多个,故可考虑几何概型求概率.由已知得,以AB为直径的半圆的面积为.又长方形ABCD的面积为,故质点落在以AB为直径的半圆内的概率是,选B.考点:几何概型.7、【答案】B【解析】试题分析:由三视图还原几何体,得该几何体是棱长为2的正方体,切去底面半径为1、高为4的两个四分之一圆柱得到的几何体,故体积为,选B.考点:三视图.8、【答案】C【解析】试题分析:由已知得,抛物线的准线方程为,且过点,故,则,,则直线AF的斜率,选C.考点:1、抛物线的标准方程和简单几何性质;2、直线的斜率.9、【答案】C【解析】试题分析:由已知得,,即,,又,故,从而,选C.考点:1、等差数列的定义;2、数列的单调性.10、【答案】A【解析】试题分析:先画出当时,函数的图象,又为偶函数,故将轴右侧的函数图象关于轴对称,得轴左侧的图象,如下图所示,直线与函数的四个交点横坐标从左到右依次为,由图象可知,或,解得,选A.考点:1、分段函数;2、函数的图象和性质;3、不等式的解集.11、【答案】B【解析】试题分析:将函数的图象向右平移个单位长度,得到,令,解得,故递增区间为(),当时,得递增区间为,选B.考点:1、三角函数图象变换;2、三角函数的单调性.12、【答案】C【解析】试题分析:不等式变形为.当时,,故实数a的取值范围是;当时,,记,,故函数递增,则,故;当时,,记,令,得或(舍去),当时,;当时,,故,则.综上所述,实数a的取值范围是.考点:利用导数求函数的极值和最值.13、【答案】【解析】试题分析:输入,在程序执行过程中,的值依次为;;;;,程序结束.输出.考点:程序框图.14、【答案】【解析】试题分析:画出可行域,如下图所示,将目标函数变形为,当取到最大值时,直线的纵截距最大,故将直线向上平移到过点C时,目标函数取到最大值,,得,故.考点:线性规划.15、【答案】【解析】试题分析:如图所示,由已知条件得,点分布是椭圆的左、右焦点,且,分别是线段的中点,则在和中,,,又由椭圆定义得,,故.16、【答案】【解析】试题分析:设,则,代入到中,得,即……①因为关于的二次方程①有实根,所以,可得,取最大值时,或,当时,,当时,,综上可知当时,的最小值为.考点:1、一元二次方程根的判别式;2、二次函数求值域.17、【答案】(1);(2)【解析】试题分析:(1)由及向量数量积的定义,得,从而,故再寻求关于的等式是解题关键.由,不难想到利用余弦定理,得,进而联立求;(2)利用差角余弦公式将展开,涉及的正弦值和余弦值.由可求,因为三角形三边确定,故可利用正弦定理或余弦定理求值,代入即可求的值.(1)由得,.又.所以.由余弦定理,得.又.所以.解得或.因为.所以.(2)在中,.由正弦定理得,.因,所以为锐角.因此.于是.考点:1、平面向量数量积定义;2、正弦定理;3、余弦定理.18、【答案】(1)有的把握认为“南方学生和北方学生在选用甜品的饮食习惯方面有差异”;(2)【解析】试题分析:(1)将列联表中的数据代入公式计算,得的值,然后与表格中的比较,若小于,则有95%的把握认为“南方学生和北方学生在选用甜品的饮食习惯方面有差异”;(2)从5名学生中随机抽取3人,有10种结果,构成基本事件空间,其中“至多有1人喜欢甜品”这个事件包含7个基本事件,代入古典概型的概率计算公式即可.(1)将列联表中的数据代入公式计算.得.由于.所以有的把握认为“南方学生和北方学生在选用甜品的饮食习惯方面有差异”.(2)从5名数学系的学生任取3人的一切可能结果所组成的基本事件空间,,,.其中表示喜欢甜品的学生,.表示不喜欢甜品的学生,.由10个基本事件组成,切这些基本事件出现是等可能的.用A表示“3人中至多有1人喜欢甜品”这一事件,则.事件A是由7个基本事件组成.因而.考点:1、独立性检验;2、古典概型.19、【答案】(1)详见解析;(2)【解析】试题分析:(1)由已知得,是的中位线,故,则可转化为证明平面BCG.易证,则有,则在等腰三角形和等腰三角形中,且是中点,故,.从而平面BCG,进而平面BCG;(2)求四面体体积,为了便于计算底面积和高,往往可采取等体积转化法.由平面平面,利用面面垂直的性质,易作出面的垂线,同时求出点到面的距离,从而可求出点到平面距离,即四面体的高,进而求四面体体积.(1)证明:由已知得.因此.又为中点,所以;同理;因此平面.又.所以平面BCG.(2)在平面内.作.交延长线于.由平面平面.知平面.又为中点,因此到平面距离是长度的一半.在中,.所以.考点:1、直线和平面垂直的判定;2、面面垂直的性质;3、四面体的体积.20、【答案】(1);(2)【解析】试题分析:(1)首先设切点,由圆的切线的性质,根据半径的斜率可求切线斜率,进而可表示切线方程为,建立目标函数.故要求面积最小值,只需确定的最大值,由结合目标函数,易求;(2)设椭圆标准方程为,点在椭圆上,代入点得①,利用弦长公式表示,利用点到直线距离公式求高,进而表示的面积,与①联立,可确定,进而确定椭圆的标准方程.(1)设切点坐标为.则切线斜率为.切线方程为.即.此时,两个坐标轴的正半轴于切线围成的三角形面积.由知当且仅当时,有最大值.即有最小值.因此点的坐标为.(2)设的标准方程为.点.由点在上知.并由得.又是方程的根,因此,由,,得.由点到直线的距离为及得.解得或.因此,(舍)或,.从而所求的方程为.考点:1、直线方程;2、椭圆的标准方程;3、弦长公式和点到直线的距离公式.21、【答案】(1)详见解析;(2)详见解析【解析】试题分析:(1)依题意,只需证明函数在区间上存在唯一零点.往往转化为利用导数判断函数单调性、极值点,从而判断函数大致图象,进而说明零点分布情况.本题当时,,故在上为增函数,再说明端点函数值异号;(2)与(1)类似,只需证明函数在区间上存在唯一零点.但是不易利用导数判断函数大致图象,考虑到结论中,故需考虑第二问与第一问的关系,利用(1)的结论,设,则,,根据第一问中的符号,从而可判断函数的单调性,进而判断函数大致图象,确定函数的零点,寻求函数的零点与零点的关系,从而证明不等式.证明:(1)当时,,所以在上为增函数.又..所以存在唯一,使.(2)当时,化简得.令.记..则.由(1)得,当时,;当时,.从而在上为增函数,由知,当时,,所以在上无零点.在上为减函数,由及知存在唯一,使得.于是存在唯一,使得.设..因此存在唯一的,使得.由于,,所以.考点:1、函数的零点;2、利用导数判断函数单调性;3、利用导数求函数的最值.22、【答案】(1)详见解析;(2)详见解析【解析】试题分析:(1)要证明为圆的直径,只需证明,结合,在和中,只需证明,从而转化为证明,由弦切角定理以及很容易证明;(2)要证明,由(1)得,只需证明为圆的直径.连接,只需证明.只需证明.因为,故,根据同弧所对的圆周角相等得,故,从而.得证(1)因为.所以.由于为切线,所以.又由于,所以.由于,所以,.故为圆的直径.(2)连接.由于是直径,故.在和中,,.从而.于是.又因为,所以.又因为,所以.故.由于,所以,为直角.于是为直径.由(1)得,.考点:1、三角形全等;2、弦切角定理;3、圆的性质.23、【答案】(1)(为参数);(2)【解析】试题分析:(1)由平面直角坐标系中的伸缩变换得变换前后对应的坐标关系.即,反解并代入圆中,得曲线C的普通方程.进而写出参数方程;(2)将直线与圆联立,求的交点的坐标,从而可确定与垂直的直线方程.再利用化直线的直角坐标方程为极坐标方程.(1)设为圆上的点,经变换为上点.依题意,得由得.即曲线的方程为.故C的参数方程为(为参数).(2)由解得或不妨设.则线段的中点坐标为.所求直线的斜率为.于是所求直线方程为.化为极坐标方程为,即.考点:1、伸缩变换;2、曲线的参数方程;2、曲线的极坐标方程.24、【答案】(1);(2)详见解析.【解析】试题分析:(1)不等式变形为,然后分类讨论去绝对号解不等式得不等式解集;(2)解不等式,得.故.当时,,此时.代入中为二次函数,求其最大值即可.(1)当时,由得.故;当时,由得,故.所以的解集为.(2)由得.,故.当时,,故.考点:1、绝对值不等式解法;2、二次函数最值.。
2014年高考文科数学辽宁卷及答案解析
数学试卷 第1页(共21页)数学试卷 第2页(共21页)数学试卷 第3页(共21页)绝密★启用前2014年普通高等学校招生全国统一考试(辽宁卷)数 学(供文科考生使用)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答题前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.写在本试卷上无效.3.回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效.4.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知全集U =R ,{|0}A x x =≤,{|}B x x =≥1,则集合()UAB =ð( ) A .{|0}x x ≥ B .{|1}x x ≤ C .{|01}x x ≤≤ D .{|01}x x <<2.设复数z 满足(2i)(2i)5z --=,则z =( ) A .23i +B .23i -C .32i +D .32i - 3.已知132a -=,21log 3b =,121log 3c =,则( ) A .b a c >>B .a c b >>C .c b a >>D .c a b >>4.已知m ,n 表示两条不同直线,α表示平面.下列说法正确的是( )A .若m α∥,n α∥,则m n ∥B .若m α⊥,n α⊂,则m n ⊥C .若m α⊥,m n ⊥,则n α∥D .若m α∥,m n ⊥,则n α⊥5.设a ,b ,c 是非零向量.已知命题p :若a b 0=,b c 0=,则a c 0=; 命题q :若a ∥b ,b ∥c ,则a ∥c .则下列命题中真命题是( )A .p q ∨B .p q ∧C .()()p q ⌝∧⌝D .()p q ∨⌝6.若将一个质点随机投入如图所示的长方形ABCD 中,其中2AB =,1BC =,则质点落在以AB 为直径的半圆内的概率是( )A .π2B .π4C .π6D .π87.某几何体三视图如图所示,则该几何体的体积为( )A .π84-B .π82-C .8π-D .82π-8.已知点(2,3)A -在抛物线C :22ypx =的准线上,记C 的焦点为F ,则直线AF 的斜率为( )A .43-B .1-C .34-D .12-9.设等差数列{}n a 的公差为d .若数列1{2}na a 为递减数列,则( )A .0d >B .0d <C .10a d >D .10a d <10.已知()f x 为偶函数,当0x ≥时,1cos π,[0,],2()121,(,),2x x f x x x ⎧∈⎪⎪=⎨⎪-∈+∞⎪⎩则不等式1(1)2f x -≤的解集为( )A .1247[,][,]4334B .3112[,][,]4343--C .1347[,][,]3434D .3113[,][,]4334--11.将函数π3sin(2)3y x =+的图象向右平移π2个单位长度,所得图象对应的函数( )A .在区间π7π[,]1212上单调递减B .在区间π7π[,]1212上单调递增C .在区间ππ[,]63-上单调递减D .在区间ππ[,]63-上单调递增12.当[2,1]x ∈-时,不等式32430ax x x -++≥恒成立,则实数a 的取值范围是 ( ) A .[5,3]--B .9[6,]8--C .[6,2]--D .[4,3]--第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须做答.第22题~第24题为选考题,考生根据要求做答.二、填空题:本大题共4小题,每小题5分,共20分.--------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------姓名________________ 准考证号_____________数学试卷 第4页(共21页)数学试卷 第5页(共21页)数学试卷 第6页(共21页)13.执行右侧的程序框图,若输入3n =,则输出T =________. 14.已知x ,y 满足约束条件220240330x y x y x y +-⎧⎪-+⎨⎪--⎩≥≥≤ 则目标函数34z x y =+的最大值为________.15.已知椭圆C :22194x y +=,点M 与C 的焦点不重合.若M 关于C 的焦点的对称点分别为A ,B ,线段MN 的中点在C 上,则||||AN BN +=________.16.对于0c >,当非零实数a ,b 满足22420a ab b c -+-=且使|2|a b +最大时,124a bc++的最小值为________.三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)在ABC △中,内角A ,B ,C 的对边分别为a ,b ,c ,且a c >.已知2BA BC =,1cos 3B =,3b =.求:(Ⅰ)a 和c 的值; (Ⅱ)cos()B C -的值.18.(本小题满分12分)某大学餐饮中心为了解新生的饮食习惯,在全校一年级学生中进(Ⅰ)根据表中数据,问是否有95%的把握认为“南方学生和北方学生在选用甜品的饮食习惯方面有差异”;(Ⅱ)已知在被调查的北方学生中有5名数学系的学生,其中2名喜欢甜品,现在从这5名学生中随机抽取3人,求至多有1人喜欢甜品的概率.19.(本小题满分12分)如图,ABC △和BCD △所在平面互相垂直,且2AB BC BD ===,120ABC DBC ∠=∠=,E ,F ,G 分别为AC ,DC ,AD 的中点.(Ⅰ)求证:EF ⊥平面BCG ; (Ⅱ)求三棱锥D BCG -的体积.附:锥体的体积公式13V Sh =,其中S 为底面面积,h 为高.20.(本小题满分12分)圆224x y +=的切线与x 轴正半轴,y 轴正半轴围成一个三角形,当该三角形面积最小时,切点为P (如图). (Ⅰ)求点P 的坐标;(Ⅱ)焦点在x 轴上的椭圆C 过点P ,且与直线l :y x =+交于A ,B 两点.若PAB △的面积为2,求C 的标准方程.21.(本小题满分12分)已知函数()π(cos )2sin 2f x x x x =---,2()(π1πxg x x =--. 证明:(Ⅰ)存在唯一0π(0,)2x ∈,使0()0f x =; (Ⅱ)存在唯一1π(,π)2x ∈,使1()0gx =,且对(Ⅰ)中的0x ,有01πx x +>.请考生在第22、23、24三题中任选一题做答,如果多做,则按所做的第一题记分.做答时用2B 铅笔在答题卡上把所选题目对应题附:22112212211212()+n n n n n n n n n χ++-=+,数学试卷 第7页(共21页)数学试卷 第8页(共21页)数学试卷 第9页(共21页)号下方的方框涂黑.22.(本小题满分10分)选修4—1:几何证明选讲如图,EP 交圆于E ,C 两点,PD 切圆于D ,G 为CE 上一点且PG PD =,连接DG 并延长交圆于点A ,作弦AB 垂直EP ,垂足为F . (Ⅰ)求证:AB 为圆的直径; (Ⅱ)若AC BD =,求证:AB ED =.23.(本小题满分10分)选修4—4:坐标系与参考方程 将圆221xy +=上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C .(Ⅰ)写出C 的参数方程;(Ⅱ)设直线l :220x y +-=与C 的交点为1P ,2P ,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求过线段12P P 的中点且与l 垂直的直线的极坐标方程.24.(本小题满分10分)选修4—5:不等式选讲设函数()2|1|1f x x x =-+-,2()1681g x x x =-+.记()1f x ≤的解集为M ,()4g x ≤的解集为N .(Ⅰ)求M ; (Ⅱ)当x M N ∈时,证明:221()[()]4x f x x f x +≤.2014年普通高等学校招生全国统一考试(辽宁卷){|AB x x =){|0AB x =【提示】先求A B ,再根据补集的定义求)AB ð.【考点】交、并、补集的混合运算【解析】(2i)(2z -【提示】把给出的等式两边同时乘以B 运用线面垂直的性质,即可判断;C 运用线面垂直的性质,结合线线垂直和线面平行的位置即可判断;D 运用线面平行的性质和线面垂直的判定,即可判断.【考点】空间中直线与直线之间的位置关系A【解析】若0a b =,0b c =,则a b b c =,即()0a c b -=,则0a c =不一定成立,故命题p 为假命题.若a b ∥,b c ∥,则a c ∥,故命题q 为真命题.则p q ∨,命题,故选A.的真假,利用复合命题之间的关系即可得到结论.数学试卷 第10页(共21页)数学试卷 第11页(共21页)数学试卷 第12页(共21页)【解析】等差数列(123)++++++的值,当输入(123i)++++++的值,距最大,即最大.max .,Q数学试卷 第13页(共21页)数学试卷 第14页(共21页)数学试卷 第15页(共21页)【解析】242a ab -不等式得,23232b ⎤⎛⎫⎤=⎥⎦(Ⅰ)由2B A B C =得2cos ac B .2c =232+2sin c B b ⨯=C 1⎛=- 2BA BC =1cos 3B =代入求出6ac =,再利用余弦定理列出关系式,将b ,cos B 以及ac 的值代入得到22(Ⅱ)利用古典概型概率公式,即可求解.【考点】独立性检验的应用,古典概型及其概率计算公式Ⅰ)AB BC =G 为AD 的中点,CG ∴.CG BG G =,BGC .EF AD ∥EF ∴⊥平面BCG (Ⅱ)在平面,∆.G 6B=11sin1203322BD BC ︒=00014482x y x y =再根据2200x y +=数学试卷 第16页(共21页)数学试卷 第17页(共21页)数学试卷 第18页(共21页)122d AB =,解得()221k ⎡=+⎣2232b b -,代入上式得2231683b b -= 或26b =,所以椭圆方程为:P 00(,)x y 切线与x 轴正半轴,y 轴正半轴围成的三角形的面积008S x y =.再利用基122d AB =,求出【考点】直线与圆锥曲线的综合问题(Ⅰ)()πf x =.()πf x '=上单调递增.(Ⅱ)()(g x =cos (π)1sin x x x --++cos 1sin x x ++cos )1sin x x -++由导数法可得函数的零点,可得不等式【考点】函数零点的判定定理 )PD PG PDG PGD PD=∴∠=∠为切线,PDA DBA ∴∠=∠,PGD EGA DBA EGA DBA BAD EGA BAD ∠=∠∴∠=∠∴∠+∠=∠+∠,NDA PFA ∴∠=∠.9090AF EP PFA BDA AB ⊥∴∠=︒∴∠=︒∴为圆的直径.(Ⅱ)连接BC ,DC .90AB BDA ACB ∴∠=∠=︒是直径,在Rt BDA △与Rt ACB △中,AB BA AC BD ==,, Rt BDA Rt ACB ∴△≌△,DAB CBA DCB DAB ∴∠=∠∠=∠,DCB CBA ∴∠=∠,DC AB ∴∥.AB EP DC EP DCE ⊥∴⊥∠,为直角,∴ED 为圆的直径,AB 为圆的直径,AB ED ∴=.(Ⅱ)由214220x x y ⎧+=⎪⎨⎪+-=⎩,可得10x y =⎧⎨=⎩,02x y =⎧⎨=⎩,不妨设1(1,0)P 、2(0,2)P , 则线段12P P 的中点坐标为1,12⎛⎫ ⎪⎝⎭,再根据与l 垂直的直线的斜率为12, 故所求的直线的方程为111y x ⎛⎫-=- ⎪,即3220x y -+=.数学试卷 第19页(共21页) 数学试卷 第20页(共21页) 数学试卷 第21页(共21页)【提示】(Ⅰ)在曲线C 上任意取一点(,)x y ,再根据点,2y x ⎛⎫⎪⎝⎭在圆221x y +=上,求出C 的方程,化为参数方程.(Ⅱ)由2()16814g x x x =-+≤,求得1344x -≤≤,,44N ⎡⎤∴=-⎢⎥⎣⎦,M N ∴=30,4⎡⎤⎢⎥⎣⎦. 当x MN ∈时,()1f x x =-,22()[()]()[x ()]x f x x f x xf x f x +=+2111424x ⎛⎫=--≤ ⎪⎝⎭,故要证的不等式成立.【提示】(Ⅰ)由所给的不等式可得1331x x ≥⎧⎨-≤⎩①,或111x x <⎧⎨-≤⎩②,分别求得①、②的解集,再取并集,即得所求.N =30,4⎡⎢⎣MN 时,f ,显然它小于或等于14,要证的不等式。
【恒心】辽宁省锦州市2014届高三第一次质量检测考试数学(理科)试题及参考答案
2014年高三质量检测数学(理)参考答案一、选择题:(1)-(12)ABDBC CBACA AC二、填空题:(13)3,2(14)37 (15)552(16)①②三、解答题:时,,得,,即是首项为,公比为,p=或.)得18.(本小题满分12分)解:(Ⅰ)证明: 因为DE ⊥平面ABCD ,所以AC DE ⊥. 因为ABCD 是正方形, 所以BD AC ⊥, 所以AC ⊥平面BDE ,从而 AC ⊥BE -----------------(4分) (Ⅱ)解:因为DE DC DA ,,两两垂直,所以建立空间直角坐标系xyz D -如图所示. 设3=AD ,可知1,3==AF DE .则)0,0,0(D ,(3,0,0)A ,)1,0,3(F ,)3,0,0(E ,(3,3,0)B ,(0,3,0)C , 所以)1,3,0(-=,)2,0,3(-=,设平面BEF 的法向量为=n (,,)x y z ,则0BF EF ⎧⋅=⎪⎨⋅=⎪⎩n n ,即⎩⎨⎧=-=+-.023,03z x z y , 令3=z ,则=n )3,1,2(.因为AC ⊥平面BDE ,所以CA 为平面BDE 的法向量, (3,3,0)CA =-,所以147,cos==>< 因为二面角为锐角,所以二面角D BE F --的余弦值为147. -----------(8分) (Ⅲ)解:点M 是线段BD上一个动点,设(,,0)(0M t t t ≤≤.则(3,,0)AM t t =-,因为//AM 平面BEF ,所以AM ⋅n 0=,即0)3(2=+-t t ,解得2=t . 此时,点M 坐标为(2,2,0),13BM BD =,符合题意. -------------(12分) =,==,==,EX=2×+3×+4×+6×+7×+10×=﹣﹣,可得2a≥== a≥<,,,时取得极小值,即最小值.时,(lna≥﹣<<<<22.(本小题满分10分)选修4-1:几何证明选讲,∴,∴EP=EB=,解得,即ρsinθρcosθ=(Ⅱ)由,得24.(本小题满分10分)选修4-5:不等式选讲3|=时,﹣②当﹣<)∪(=时,﹣﹣<时,﹣.﹣﹣﹣11。
【恒心】2014年普通高等学校招生全国统一考试(辽宁卷)数学(文科)试题【首发纯Word版】
绝密★启用前2014年普通高等学校招生全国统一考试(辽宁卷)数 学(供文科考生使用)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1)已知全集,{|0},{|1}U R A x x B x x ==≤=≥,则集合()U C A B =( )A .{|0}x x ≥B .{|1}x x ≤C .{|01}x x ≤≤D .{|01}x x <<(2)设复数z 满足(2)(2)5z i i --=,则z =( )A .23i +B .23i -C .32i +D .32i -(3)已知132a -=,21211log ,log 33b c ==,则( ) A .a b c >> B .a c b >> C .c a b >> D .c b a >>(4)已知m ,n 表示两条不同直线,α表示平面,下列说法正确的是( )A .若//,//,m n αα则//m nB .若m α⊥,n α⊂,则m n ⊥C .若m α⊥,m n ⊥,则//n αD .若//m α,m n ⊥,则n α⊥(5)设,,a b c 是非零向量,已知命题p :若0a b ∙=,0b c ∙=,则0a c ∙=;命题q :若//,//a b b c ,则//a c ,则下列命题中真命题是( )A .p q ∨B .p q ∧C .()()p q ⌝∧⌝D .()p q ∨⌝(6)若将一个质点随机投入如图所示的长方形ABCD 中,其中AB=2,BC=1,则质点落在以AB 为直径的半圆内的概率是( )A .2πB .4πC .6πD .8π(7)某几何体三视图如图所示,则该几何体的体积为( )A .82π-B .8π-C .82π-D .84π-(8)已知点(2,3)A -在抛物线C :22y px =的准线上,记C 的焦点为F ,则直线AF 的斜率为( )A .43-B .-1C .34-D .12- (9)设等差数列{}n a 的公差为d ,若数列1{2}n a a 为递减数列,则( )A .0d <B .0d >C .10a d <D .10a d >(10)已知()f x 为偶函数,当0x ≥时,1cos ,[0,]2()121,(,)2x x f x x x π⎧∈⎪⎪=⎨⎪-∈+∞⎪⎩,则不等式1(1)2f x -≤的解集为( )A .1247[,][,]4334 B .3112[,][,]4343-- C .1347[,][,]3434 D .3113[,][,]4334-- (11)将函数3sin(2)3y x π=+的图象向右平移2π个单位长度,所得图象对应的函数( )A .在区间7[,]1212ππ上单调递减 B .在区间7[,]1212ππ上单调递增 C .在区间[,]63ππ-上单调递减 D .在区间[,]63ππ-上单调递增 (12)当[2,1]x ∈-时,不等式32430ax x x -++≥恒成立,则实数a 的取值范围是( )A .[5,3]--B .9[6,]8-- C .[6,2]-- D .[4,3]-- 第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须做答.第22题~第24题为选考题,考生根据要求做答.二、填空题(每题5分,满分20分,将答案填在答题纸上.)(13)执行右侧的程序框图,若输入3n =,则输出T = .(14)已知x ,y 满足条件220240330x y x y x y +-≥⎧⎪-+≥⎨⎪--≤⎩,则目标函数34z x y =+的最大值为 .(15)已知椭圆C :22194x y +=,点M 与C 的焦点不重合,若M 关于C 的焦点的对称点分别为A ,B ,线段MN 的中点在C 上,则||||AN BN += .(16)对于0c >,当非零实数a ,b 满足224240a ab b c -+-=,且使|2|a b +最大时,345a b c-+的最小值为 . 三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)(17)(本小题满分12分)在ABC ∆中,内角A ,B ,C 的对边a ,b ,c ,且a c >,已知2BA BC ∙=,1cos 3B =,3b =,求:(1)a 和c 的值;(2)cos()B C -的值.(18)(本小题满分12分)某大学餐饮中心为了了解新生的饮食习惯,在全校一年级学生中进行了抽样调查,调查结果如下表所示:(1)根据表中数据,问是否有95%的把握认为“南方学生和北方学生在选用甜品的饮食习惯方面有差异”;(2)已知在被调查的北方学生中有5名数学系的学生,其中2名喜欢甜品,现在从这5名学生中随机抽取3人,求至多有1人喜欢甜品的概率.(19)(本小题满分12分)如图,ABC ∆和BCD ∆所在平面互相垂直,且2AB BC BD ===,0120ABC DBC ∠=∠=,E 、F 、G 分别为AC 、DC 、AD 的中点.(1)求证:EF ⊥平面BCG ;(2)求三棱锥D -BCG 的体积. 附:椎体的体积公式13V Sh =,其中S 为底面面积,h 为高.(20)(本小题满分12分) 圆224x y +=的切线与x 轴正半轴,y 轴正半轴围成一个三角形,当该三角形面积最小时,切点为P (如图).(1)求点P 的坐标;(2)焦点在x 轴上的椭圆C 过点P ,且与直线:+3l y x =交于A ,B 两点,若PAB ∆的面积为2,求C 的标准方程.(21)(本小题满分12分)已知函数()(cos )2sin 2f x x x x π=---,1sin 2()()11sin x x g x x x ππ-=-+-+. 证明:(1)存在唯一0(0,)2x π∈,使0()0f x =; (2)存在唯一1(,)2x ππ∈,使1()0g x =,且对(1)中的01x x π+<.请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分,作答时用2B 铅笔在答题卡上把所选题目对应题号下方的方框涂黑.(22)(本小题满分10分)选修4-1:几何证明选讲如图,EP 交圆于E 、C 两点,PD 切圆于D ,G 为CE 上一点且PG PD =,连接DG 并延长交圆于点A ,作弦AB 垂直EP ,垂足为F .(1)求证:AB 为圆的直径;(2)若AC =BD ,求证:AB =ED .(23)(本小题满分10分)选修4-4:坐标系与参数方程将圆221x y +=上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C .(1)写出C 的参数方程;(2)设直线:220l x y +-=与C 的交点为12,P P ,以坐标原点为极点,x 轴正半轴为极坐标建立极坐标系,求过线段12PP 的中点且与l 垂直的直线的极坐标方程.(24)(本小题满分10分)选修4-5:不等式选讲设函数()2|1|1f x x x =-+-,2()1681g x x x =-+,记()1f x ≤的解集为M ,()4g x ≤的解集为N .(1)求M ;(2)当x MN ∈时,证明:221()[()]4x f x x f x +≤.。
【恒心】辽宁省锦州市2014届高三第一次质量检测考试数学(文科)试题及参考答案
(21) (本小题满分 12 分) 解: (Ⅰ)由 f(1)=2,得 a=1,又 x>0, ∴x +x﹣xlnx)≥bx +2x 恒成立⇔1﹣ ﹣
7
2 2
≥ b,
令 g(x)=1﹣ ﹣
,可得 g(x)在(0,1]上递减,
在[1,∞)上递增,所以 g(x)min=g(1)=0, 即 b≤0. ----------------------------------------------(4 分) (Ⅱ)f′(x)=2ax﹣lnx, (x>0) , 令 f′(x)≥0 得:2a≥ ∴当 a≥ 若 0<a< ,设 h(x)= ,当 x=e 时,h(x)max= ,
2 2 2
∴四边形 PQMF 为平行四边形, ∴PQ∥MF. ∵MF⊂平面 A1EF,PQ⊄平面 A1EF. ∴PQ∥平面 A1EF.---------------------------------------------------------(12 分) (19) (本小题满分 12 分) 解: (Ⅰ)用(a,b) (a,b 分别表示第一、二次取到球的编号)表示先后两次取球构 成的基本事件, 则基本事件有: (1,2) , (1,3) , (1,4) , (2,1) , (2,3) , (2,4) , (3,1) , (3,2) , (3,4) , (4,1) , (4,2) , (4,3)共 12 个…(3 分) 设“第一次球的编号为偶数且两个球的编号之和能被 3 整除”为事件 A, 则事件 A 包含的基本事件有: (2,1) , (2,4) , (4,2)共有 3 个; …(5 分)
6
∴P(A)=
=
---------------------------------(6 分)
2014年高中毕业班第一次教学质量检测高三文科数学试题含答案(文)
2014年马鞍山市高中毕业班第一次教学质量检测高三文科数学试题本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,全卷满分150分,考试时间120分钟. 考生注意事项:1.答题前,务必在试题卷、答题卡规定的地方填写自己的学校、姓名、班级、座号、准考证号.2.答第Ⅰ卷时,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.3.答第Ⅱ卷时,必须使用0.5毫米的黑色墨水签字笔在答题卡上....书写,要求字体工整、笔迹清晰.作图题可先用铅笔在答题卡...规定的位置绘出,确认后再用0.5毫米的黑色墨水签字笔描清楚.必须在题号所指示的答题区域作答,超出答题区域书写的答案无效.............,在试题...卷.、草稿纸上答题无效......... 4.考试结束,务必将试题卷和答题卡一并上交.第I 卷(选择题,共50分)一、选择题:本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的,请在答题卡相应位置将正确结论的代号用2B 铅笔涂黑. 1.设i 是虚数单位,则复数20141()1i z i+=-=( )A . 1-B .1C .i -D . i答案:A命题意图:本题考查复数的基本运算,简单题.2.已知集合2{|30}A x x x =-<,{||2|1}B x x =-<,则“a A ∈”是“a B ∈”的( ) A .充分而不必要条件 B .必要而不充分条件C .充要条件D .既不充分也不必要条件答案:B命题意图:本题考查集合的基本运算及简易逻辑,简单题.3.高三(1)班有学生52人,现将所有学生随机编号,用系统抽样方法,抽取一个容量为4的样本,已知5号,31号,44号学生在样本中,则样本中还有一个学生的编号是( )A .8B .13C .15D .18答案:D命题意图:本题考查系统抽样方法,简单题.4.已知向量(1,2)a =- ,(,4)b x = ,且a ∥b ,则︱a b -︱=( )A. B. C. D. 答案:B命题意图:本题考查平面向量的基本运算,简单题.5.已知倾斜角为α的直线l 与直线m :220x y -+=平行,则tan 2α的值为( )A .43 B . 34C .45D .23答案:A命题意图:本题考查直线的斜率、两倍角公式,简单题.6.某程序框图如图所示,则该程序运行后输出的值是( ) A .2 B .3C .4D .5答案:C命题意图:本题考查程序框图,简单题.7.各项均为正数的等比数列{}n a 中,1232a a a +=,则4534a a a a ++的值为( ) A .1- B .1-或2 C . 3D .2答案:D命题意图:本题考查等比数列的运算性质,简单题.第6题图8.已知1a >,1b >,且1ln ln 4a b =,则ab ( ) A .有最大值1 B .有最小值1 C .有最大值e D .有最小值e 答案:D命题意图:本题考查不等式的基本运算,中等题.9.已知实数,x y 满足1;0;22 4.x y x y ≥⎧⎪≥⎨⎪≤+≤⎩则22x y +的取值范围是( )A .416[,]55B .5[,16]4C. D. 答案:B命题意图:本题考查线性规划、点到直线的距离公式,中等题. 10.已知函数ln ||()x f x x x=+,则函数()y f x =的大致图象为( )答案:C命题意图:本题考查函数的性质、导数,较难题.第II 卷(非选择题,共100分)二、填空题:本大题共5个小题,每小题5分,共25分.请在答题卡上答题.答案:存在0x R ∈,200x ≤命题意图:全称命题、特称命题、命题的否定,简单题.A. B. C. D.12.已知抛物线22(0)y px p =>的准线与圆:C 221x y +=答案:2p =命题意图:本题考查抛物线与圆的性质,简单题. 13.已知某几何体的三视图如图所示,则该几何体的体积等于 .答案:10命题意图:本题考查三视图、三棱锥的体积,简单题.14.已知直线y mx =与函数212(),0;3()11,0.2x x f x x x ⎧-≤⎪⎪=⎨⎪+>⎪⎩的图象恰好有3个不同的公共点,则实数m 的取值范围是 . 答案:m命题意图:本题考查分段函数、曲线的切线斜率,渗透数形结合思想,中等题. 15.关于函数2()sin cos cos f x x x x =-,给出下列命题:①()f x 的最小正周期为2π;②()f x 在区间(0,)8π上为增函数;③直线38x π=是函数()f x 图象的一条对称轴; ④函数()f x 的图象可由函数()2f x x =的图象向右平移8π个单位得到; ⑤对任意x R ∈,恒有()()14f x f x π++-=-.其中正确命题的序号是 ____________. 答案:②③⑤命题意图:本题综合考察三角恒等变换、三角函数的性质,较难题.三、解答题:本大题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤. 16. (本小题满分12分)正视图侧视图第13题图已知A 、B 、C 为ABC ∆的三个内角,其对边分别为a 、b 、c ,若(cos ,sin )m B B =,(cos ,sin )n C C =- ,且12m n ⋅= .(Ⅰ)求A ;(Ⅱ)若4a b c =+=,求ABC ∆的面积.命题意图:本题综合考察平面向量的数量积、三角恒等变换、解三角形,简单题.解:(Ⅰ) (cos ,sin ),(cos ,sin )m B B n C C ==- ,12m n ⋅=1cos cos sin sin 2B C B C ∴-=……………………………………2分 1cos()2B C ∴+=又0B C π<+< ,3B C π∴+= ………………………………4分A B C π++= ,23A π∴=. ……………………………………6分 (Ⅱ)由余弦定理2222cos a b c bc A =+-⋅得222()22cos3b c bc bc π=+--⋅ 即:1121622()2bc bc =--⋅-,4bc ∴= ………………………9分11sin 422ABC S bc A ∆∴=⋅=⋅=……………………………12分17.(本小题满分12分)已知某年级1000名学生的百米跑成绩全部介于13秒与18秒之间,为了了解学生的百米跑成绩情况,随机抽取了若干学生的百米跑成绩,并按如下方式分成五组:第一组[13,14);第二组[14,15);…;第五组[17,18].按上述分组方法得到的频率分布直方图如图所示,已知图中从左到右的前3个组的频率之比为1∶4∶10,且第二组的频数为8. (Ⅰ)请估计该年级学生中百米跑成绩在[16,17)内的人数; (Ⅱ)求调查中随机抽取了多少个学生的百米成绩;(Ⅲ)若从第一和第五组所有成绩中随机取出2个,求这2个成绩差的绝对值大于1秒的概率.命题意图:本题考察频率分布直方图、古典概型,中等题.解:(Ⅰ)百米成绩在[16,17)内的频率为0.32⨯1=0.32. 0.32⨯1000=320∴估计该年段学生中百米成绩在[16,17)内的人数为320人. ……3分(Ⅱ)设图中从左到右前3个组的频率分别为x ,4x ,10x 依题意,得x+4x+10x+0.32⨯1+0.08⨯1=1 ,∴x=0.04 ……4分 设调查中随机抽取了n 个学生的百米成绩,则840.04n⨯=∴n =50 ∴调查中随机抽取了50个学生的百米成绩. ……6分(Ⅲ)百米成绩在第一组的学生数有1⨯0.04⨯1⨯50=2,记他们的成绩为a ,b 百米成绩在第五组的学生数有0.08⨯1⨯50= 4,记他们的成绩为m ,n ,p ,q 则从第一、五组中随机取出两个成绩包含的基本事件有{a,b},{a,m},{a,n},{a,p},{a,q},{b,m},{b,n},{b,p},{b,q},{m,n},{m,p},{m,q},{n,p},{n,q},{p,q },共15个 ……9分 设事件A 为满足成绩的差的绝对值大于1秒,则事件A 所包含的基本事件有{a,m},{a,n},{a,p},{a,q},{b,m},{b,n},{b,p},{b,q},共8个, ……10分 所以P(A )=815……12分 本试题主要考查样本估计总体,考查古典概型的概率公式,考查频率分布直方图等知识,考查数据处理能力和分析问题、解决问题的能力. 18. (本小题满分12分)如图,边长为2的正三角形ABC ∆所在平面与等腰直角三角形DBC 所在平面相互垂直,已知DB DC =,1AE =,AE ⊥平面ABC . (Ⅰ)求证:DE ∥平面ABC ; (Ⅱ)求证:BD ⊥平面CDE ; (Ⅲ)求三棱锥C BDE -的体积.命题意图:本题综合考察空间线、面的位置关系,体积的计算公式,中等题.解:(Ⅰ)取BC 的中点O ,连接,OA ODDBC ∆是等腰直角三角形,面ABC ⊥面DBC ,DO BC ⊥∴DO ⊥面ABC ,1DO =,又 AE ⊥平面ABC ,∴AE ∥OD ,1AE =,∴四边形AODE 为平行四边形EB第18题图∴AO ∥DE ,OA ABC DE ABC ⊂⊄ 面面,DE ∴∥平面ABC ……………4分 (Ⅱ)由(Ⅰ)得AO ∥DE ,又AO ⊥平面BCDAO BD ∴⊥,∴ED BD ⊥,又C D B D ⊥ ,CD ED D = ,∴BD ⊥平面CDE ………8分(Ⅲ)AO ⊥平面BCD A O D E ∴⊥ AO ∥DE DE ∴⊥平面BCD DE CD ∴⊥1122EDC S DE DC ∆∴=⋅=1133C BDE B CDE CDE V V S BD --∆∴==⋅==……………12分 19.(本小题满分13分)已知函数()ln 1f x x x =--. (Ⅰ)求函数()f x 在2x =处的切线方程;(Ⅱ)若()0,x ∈+∞时,()2f x ax ≥-恒成立,求实数a 的取值范围.命题意图:本题综合考察函数的单调性、导数的应用以及恒成立问题,中等题. 解:(Ⅰ)由题意得,()1f x '=11(2)122f '=-=可得()g x 在2(0,)e 上单调递减,在()2,e +∞上单调递增, ………10分20.(本小题满分13分)已知各项均为正数的数列{}n a 中,11a =,n S 为数列{}n a 的前n 项和. (Ⅰ)若数列{}n a ,{}2n a 都是等差数列,求数列{}n a 的通项公式; (Ⅱ)若22n n n S a a =+,试比较12231111n n a a a a a a +++⋅⋅⋅+与1的大小. 命题意图:本题综合考察等差数列的通项公式、裂项求和,中等题.解:(Ⅰ) 数列{}n a ,{}2n a 都是等差数列,设数列{}n a 的公差为d ,则2222222221311122()(2)2(1)1(12)a a a a d a a d d d =+⇒+=++⇒+=++ 得 220d =, ∴0d =1n a ∴= …………………………………5分(Ⅱ)由于22n n n S a a =+ ①当2n ≥时,21112n n n S a a ---=+②由①-②得:2211,n n n n a a a a --+=-又0n a > ∴ 11(2,)n n a a n n N *--=≥∈ ,………………………………………10分 又11a = ∴n a n = ∴122311111111111223(1)n n a a a a a a n n n+++⋅⋅⋅+=+++=-<⨯⨯+ ……………………………13分21.(本小题满分13分)(Ⅰ)求椭圆方程;(Ⅱ)已知点,M N 为椭圆的长轴的两个端点,作不平行于坐标轴的割线AB ,若满足AFM BFN ∠=∠,求证:割线AB 恒经过一定点.命题意图:本题综合考察椭圆的方程与几何性质,直线与椭圆的位置关系、直线的斜率,较难题. 解:(Ⅰ)设,0)F c (由①②及222a b c =+得226,2a b ==,(Ⅱ)设割线AB 的方程为(0)y kx b k =+≠,即122112()()2()0x kx b x kx b kx b kx b +++-+++=12122(2)()40kx x b k x x b +-+-=所以割线AB 方程为3(3)y kx b kx k k x =+=-=-,即割线AB 恒过点(3,0)… ………13分。
【恒心】考前最后一卷-2014辽宁省高考预测金卷数学(文科)试题及参考答案
2014辽宁省高考压轴卷【李炳璋】数 学(文科)第I 卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.全集U =R ,集合{10}A x x =+<,{30}B x x =-<,那么集合()U C A B =( )A {13}x x -≤<B {13}x x -<<C {1}x x <-D {3}x x >2.已知复数20141i z i=+,则复数z 在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限3.“4a <-”是“函数()3f x ax =+在区间[-1,1]上存在零点”的( ) A .充分不必要条件 B .必要不充分条件C .充分必要条件D .既不充分也不必要条件4.已知()f x 是定义在R 上的奇函数,且0x ≥时()f x 的图像如图所示,则()2f -=A .3-B .2-C .1-D .25.已知变量x ,y 满足约束条件20,2,0,x y y x y +-≥⎧⎪≤⎨⎪-≤⎩则2z x y =+的最大值为 A .2B .3C .4D .66.在ABC ∆中,90C =,且3CA CB ==,点M 满足2,BM MA CM CB =⋅则等于( )A .2B .3C .4D .67. 把函数)6sin(π+=x y 图象上各点的横坐标缩短到原来的21倍(纵坐标不变),再将图象向右平移3π个单位,那么所得图象的一条对称轴方程为 ( )A .2π-=x B .4π-=x C .8π=x D .4π=x8. 已知,a b 为两条不同的直线,,αβ为两个不同的平面,且a α⊥,b β⊥,则下列命题中的假.命题是 1 3 2xyO 图2A .若a ∥b ,则α∥βB .若αβ⊥,则a b ⊥C .若,a b 相交,则,αβ相交D .若,αβ相交,则,a b 相交 9.阅读右边的程序框图,输出的结果s 的值为A .0B .32C .3D .32-10.若直线:10 l ax by ++=始终平分圆M :224210x y x y ++++=的周长,则()()2222a b -+-的最小值为 ( )A .5B .5C .25D .1011.设函数11,(,2)()1(2),[2,)2x x f x f x x ⎧--∈-∞⎪=⎨-∈+∞⎪⎩,则函数()()1F x xf x =-的零点的个数为A .4B .5C .6D .712.设等差数列{}n a 满足:22222233363645sin cos cos cos sin sin 1sin()a a a a a a a a -+-=+,公差(1,0)d ∈-.若当且仅当9n =时,数列{}n a 的前n 项和n S 取得最大值,则首项1a 的取值范围是( ) A .74,63ππ⎛⎫⎪⎝⎭B .43,32ππ⎛⎫⎪⎝⎭C .74,63ππ⎡⎤⎢⎥⎣⎦D .43,32ππ⎡⎤⎢⎥⎣⎦第II 卷(非选择题 共90分)本卷包括必考题和选考题两部分,第13题-21题为必考题,每个试题考生都必须作答,第22题-24题为选考题,考生根据要求作答二、填空题(本大题共4小题,每小题5分,共20分。
辽宁省锦州市2014届高三第一次质量检测考试(即2014锦州市一模)文科综合(扫描版)
2014年高三质量检测参考答案及评分标准地理部分一、选择题二、非选择题36、(24分)(1) (6分)A地年日照时数小于B地;B地降水较少,天气晴朗日子多;B地海拔相对较高。
(2)(10分)2~3月份覆草会影响地温回升。
(2分)有利的影响:减少水分蒸发;防止水土流失;调节土温,夏季不过热、冬季不过冷;改善土壤理化性状,提高土壤肥力;防止杂草生长,减轻病虫害;提高树体营养水平,促进果树生长。
(六选四,每点2分)(3)(8分)支持山地丘陵区,适宜林果业发展,种植果树,可以提高经济效益(经济收入),解决劳动就业(吸收农村劳动力)(8分)反对该地属于山地丘陵,降水丰富且集中夏季,种植果树降低了植被覆盖度,易造成水土流失(8分)37、(22分)(1)(8分)A地比B地年均温低(2分);A地气温年较差大于B地(2分)。
原因:A地纬度高于B地(2分);A地深居内陆、B地距海洋近(2分)。
(2)(6分)河流上游流经山区,流速快,携带大量泥沙;进入中游地区,地形平坦,流速减慢,泥沙大量沉积;河床抬高,导致汛期河流易改道。
(每点2分)(3)(8分)地理位置优越,靠近东部经济地带,为东部产业转移提供资金支持;经济基础雄厚,经济腹地发达而广阔;科技人才多,劳动力素质高;C城市是省会,信息、金融等服务条件好,中部崛起等政策支持。
(每点2分)【选考题部分】42. (10分)(1)该地岩层有较高的科学价值;峡谷地貌具有很高美学价值;有较高经济价值。
(任答两点即可得4分)。
(2)加拿大经济发达,旅游需求高;与美国相邻,客市场近;交通发达,出行便利。
(6分)43、(10分)(1)导致农作物开花、成熟期推迟,造成减产等;低温多雾,出行不便;低温天气导致疾病流行(6分)(2)印度地处低纬地区,正常年份冬季气温较高,缺乏对低温天气的预警和应对措施;印度地处热带,生长期长,越冬作物多,低温对农业生产影响大。
(4分)44、(10分)(1)气候变暖,冰川消融,海平面将上升;会淹没冰岛沿海低地。
辽宁省锦州市高三数学上学期期末考试试题(文,理)
1 2014-2015年度第一学期期末考试 高三数学(文科)参考答案及评分标准第I 卷一、选择题: DBCDB BCDAC AB第II 卷二、填空题:本大题共4小题,每小题5分. (13)- (14)8 (15)①②④ (16)三、解答题:解答应写出文字说明、证明过程或演算步骤. (17) (本小题满分10分)已知数列{a n }的前n 项和为S n ,且S n =2a n -2(n ∈N *),数列{b n }满足b 1=1,且点P (b n ,b n +1)(n ∈N *)在直线y =x +2上.(1)求数列{a n },{b n }的通项公式. (2)求数列{a n ·b n }的前n 项和D n . 【解】 (1)当n =1时,a 1=2, 当n ≥2时,a n =S n -S n -1=2a n -2a n -1,所以a n =2a n -1(n ≥2),所以{a n }是等比数列,公比为2,首项a 1=2,所以a n =2n, 又点P (b n ,b n +1)(n ∈N *)在直线y =x +2上,所以b n +1=b n +2,所以{b n }是等差数列,公差为2,首项b 1=1,所以b n =2n -1. ……………………6分(2)由(1)知a n ·b n =(2n -1)×2n,所以D n =1×21+3×22+5×23+7×24+…+(2n -3)×2n -1+(2n -1)×2n,①2D n =1×22+3×23+5×24+7×25+…+(2n -3)×2n+(2n -1)×2n +1.②①-②得-D n =1×21+2×22+2×23+2×24+…+2×2n-(2n -1)×2n +1=2+2×1-24(1-2n -1-(2n -1)×2n +1=(3-2n )2n +1-6,则D n =(2n -3)2n +1+6. ……………………12分(18)(本小题满分12分)己知向量,记.(I)若,求的值;( II)在锐角ABC中,角A,B,C的对边分别是a,b,c,且满足(, 求函数的取值范围.解:(Ⅰ)==因为,所以…………………………………4分……………………6分(Ⅱ)因为由正弦定理得所以所以因为,所以,且所以……………………9分2所以……………………10分又因为……………………11分故函数的取值范围是……………………12分(19)(本小题满分12分)己知斜三棱柱的底面是边长为2的正三角形,侧面为菱形,,平面平面ABC,M、N是AB,的中点.(I)求证:CM//平面.( II)求证:BN;证明:(Ⅰ)取的中点,连接,.因为,分别是,的中点,所以∥,………2分又因为∥ ,所以∥且所以四边形为平行四边形,所以∥.………………………………………………………………4分又因为平面,平面,所以∥平面.………………………………………………………6分(Ⅱ)取的中点,连结,.由题意知,又因为平面平面,所以平面.…………………………………………8分因为平面所以因为四边形为菱形,所以3又因为∥, 所以所以平面,又平面…………………………10分所以.……………………………………………12分(20)(本小题满分12分)为了解某班学生喜爱打篮球是否与性别有关,对本班50人进行了问卷调查得到了如下的列联表:喜爱打篮球不喜爱打篮球合计男生20 5 25女生10 15 25合计30 20 50(1)用分层抽样的方法在喜欢打蓝球的学生中抽6人,其中男生抽多少人?(2)在上述抽取的6人中选2人,求恰有一名女生的概率.17.解:(1)在喜欢打蓝球的学生中抽6人,则抽取比例为∴男生应该抽取人…………………………4分(2)在上述抽取的6名学生中, 女生的有2人,男生4人。
2014年辽宁省高考数学试卷(文科)学生版
2014 年辽宁省高考数学试卷(文科)一、选择题(共12 小题,每题 5 分)1.( 5 分)(2014?辽宁)已知全集U=R,A={ x| x≤0} ,B={ x| x≥1} ,则会合 ?U(A ∪B)=()A.{ x| x≥0}B.{ x| x≤ 1}C.{ x| 0≤x≤1}D.{ x| 0<x<1} 2.(5 分)(2014?辽宁)设复数z 知足( z﹣2i)(2﹣i)=5,则z=()A.2+3i B.2﹣3i C.3+2i D.3﹣2i3.(5 分)(2014?辽宁)已知a=,b=log2,c=log,则()A.a>b>c B.a> c> b C.c>b>a D.c>a>b4.(5 分)(2014?辽宁)已知 m,n 表示两条不一样直线,α表示平面,以下说法正确的选项是()A.若 m∥α,n∥α,则 m∥n B.若 m⊥α,n? α,则 m⊥nC.若 m⊥α,m⊥n,则 n∥αD.若 m∥α, m⊥n,则 n⊥α5.( 5 分)( 2014?辽宁)设,,是非零向量,已知命题 p:若,,? =0? =0则 ? =0;命题 q:若∥,∥,则∥,则以下命题中真命题是()A.p∨q B.p∧q C.(¬ p)∧(¬ q) D. p∨(¬ q )6.(5 分)(2014?辽宁)若将一个质点随机投入如下图的长方形ABCD中,其中 AB=2, BC=1,则质点落在以 AB 为直径的半圆内的概率是()A.B.C.D.7.( 5 分)( 2014?辽宁)某几何体三视图如下图,则该几何体的体积为()A.8﹣B.8﹣C.8﹣πD.8﹣2π8.(5 分)(2014?辽宁)已知点 A(﹣ 2,3)在抛物线 C:y2=2px 的准线上,记C 的焦点为 F,则直线 AF 的斜率为()A.﹣B.﹣ 1C.﹣D.﹣9.(5 分)(2014?辽宁)设等差数列 { a n} 的公差为 d,若数列 { 2} 为递减数列,则()A.d>0B.d<0C.a1d>0D.a1d<010 .( 5 分)( 2014? 辽宁)已知 f ( x )为偶函数,当 x ≥ 0时, f ( x)=,,,则不等式 f (x﹣1)≤ 的解集为(),,.[, ]∪[, ]B.[﹣,﹣ ]∪[, ]A.[, ]∪[, ]D.[﹣,﹣ ]∪[, ]C11.(5 分)(2014?辽宁)将函数的图象向右平移个单位长度,所得图象对应的函数()A.在区间 [,] 上单一递加B.在区间 [,] 上单一递减C.在区间 [ ﹣,] 上单一递减D.在区间 [ ﹣,] 上单一递加12.( 5 分)(2014?辽宁)当 x∈ [ ﹣ 2, 1] 时,不等式 ax3﹣x2+4x+3≥0 恒成立,则实数 a 的取值范围是()A.[ ﹣5,﹣3]B.[ ﹣6,﹣]C.[ ﹣6,﹣ 2]D.[ ﹣4,﹣ 3]二、填空题(共 4 小题,每题 5 分)13.(5 分)(2014?辽宁)履行如图的程序框图,若输入 n=3,则输出 T=.14.( 5 分)(2014?辽宁)已知 x,y 知足拘束条件,则目标函数z=3x+4y 的最大值为.15.( 5分)(辽宁)已知椭圆C:+,点M 与 C 的焦点不重合,若2014?=1M 对于 C 的焦点的对称点分别为A、 B,线段MN 的中点在 C 上,则| AN|+| BN| =.16.( 5分)(辽宁)对于>,当非零实数a,b知足2﹣ 2ab+b2﹣ c=0 2014? c 04a且使 | 2a+b| 最大时,+ + 的最小值为.三、解答题17.( 12 分)( 2014?辽宁)在△ ABC中,内角 A、 B、 C 的对边分别为 a,b, c,且 a> c,已知?,cosB=, b=3,求:=2(Ⅰ) a 和 c 的值;(Ⅱ) cos(B﹣C)的值.18.( 12 分)(2014?辽宁)某大学餐饮中心为认识重生的饮食习惯,在全校一年级学生中进行了抽样检查,检查结果如表所示:喜爱甜品不喜爱甜品共计南方学生602080北方学生101020共计7030100(Ⅰ)依据表中数据,问能否有95%的掌握以为“南方学生和北方学生在采用甜品的饮食习惯方面有差别”;(Ⅱ)已知在被检查的北方学生中有5 名数学系的学生,此中 2 名喜爱甜品,此刻从这 5 名学生中随机抽取 3 人,求至多有 1 人喜爱甜品的概率.附: X2=P(x2> k)0.1000.0500.010 k 2.706 3.841 6.635 19.( 12 分)( 2014?辽宁)如图,△ABC 和△ BCD 所在平面相互垂直,且AB=BC=BD=2.∠ ABC=∠ DBC=120°,E、F、G 分别为 AC、DC、AD 的中点.(Ⅰ)求证: EF⊥平面 BCG;(Ⅱ)求三棱锥D﹣BCG的体积.附:锥体的体积公式V= Sh,此中 S为底面面积, h 为高.20.(12 分)(2014?辽宁)圆 x2+y2=4 的切线与 x 轴正半轴, y 轴正半轴围成一个三角形,当该三角形面积最小时,切点为P(如图).(Ⅰ)求点 P 的坐标;(Ⅱ)焦点在 x 轴上的椭圆 C 过点 P,且与直线 l:y=x+交于A、B两点,若△ PAB的面积为 2,求 C 的标准方程.21.( 12 分)(2014?辽宁)已知函数f( x) =π(x﹣cosx)﹣ 2sinx﹣2,g(x)=(x﹣π)+﹣1.证明:(Ⅰ)存在独一x0∈( 0,),使f( x0)=0;(Ⅱ)存在独一x1∈(,π),使g(x1)=0,且对(Ⅰ)中的x0,有 x0+x1>π.四、选考题,请考生在22-24 三题中任选一题作答,多做则按所做的第一题给分选修 4-1:几何证明选讲22.( 10 分)( 2014?辽宁)如图, EP 交圆于 E,C 两点, PD 切圆于 D,G 为 CE上一点且 PG=PD,连结 DG 并延伸交圆于点 A,作弦 AB 垂直 EP,垂足为F.(Ⅰ)求证: AB 为圆的直径;(Ⅱ)若 AC=BD,求证: AB=ED.选修 4-4:坐标系与参数方程23.( 2014?辽宁)将圆 x2+y2=1 上每一点的横坐标保持不变,纵坐标变成本来的2 倍,得曲线 C.(Ⅰ)写出 C 的参数方程;(Ⅱ)设直线 l:2x+y﹣ 2=0 与 C 的交点为 P1,P2,以坐标原点为极点, x 轴正半轴为极轴成立极坐标系,求过线段P1P2的中点且与l 垂直的直线的极坐标方程.选修 4-5:不等式选讲24.( 2014?辽宁)设函数f(x) =2| x﹣ 1|+ x﹣1,g(x)=16x2﹣ 8x+1.记 f( x)≤1 的解集为 M ,g(x)≤ 4 的解集为 N.(Ⅰ)求 M ;(Ⅱ)当 x∈ M∩N 时,证明: x2f( x)+x[ f (x)] 2≤ .。
【恒心】辽宁省锦州市2014届高三第一次质量检测考试理综试题及参考答案
理综生物部分答案l-6DBCDBD以下没有特殊注明,每空1分,其他合理答案也可酌情给分29.(9分)(1)组织液主动运输(2)乳糖、酪蛋白(2分)(3)内质网(4)免疫球蛋白增加与相应抗原特异性结合,发挥体液免疫功能(2分)30.(8分)(1)血糖来源进入细胞中被利用(2)体液调节(或激素调节)(3)血糖含量升高、胰高血糖素增加、神经递质(乙酰胆碱)的影响(3分)(4)肝脏、肾脏(2分)31.(14分)(1)AABB 和aabb 基因的自由组合定律(2)7/15(2分)AaBb aaBb Aabb(2分)(3)不定向性定向改变(4)①F2植株上果实形状为三角形:卵圆形=15:1;(2分)②F2植株上果实形状为三角形:卵圆形约= 27:5;(2分)③F2植株上果实形状为三角形:卵圆形=3:1;(2分)32.(8分)(1)取样器取样(2)在漏斗上方加一提供光源和热源的灯泡(2分) 杀死和保存小动物(3)降雨充足,气温较高,土壤中有机质较丰富,动物可在这个季节大量繁殖(回答合理即可)(2分)(4)分解者植被439. (15分)(1)压榨(2分)过滤(2分)(2)稀释涂布平板法(2分)高压蒸汽灭菌锅(2分)紫外线消毒(2分)(3)碳源和氮源(2分)越慢(2分)(4)大小40.(15分)(1)物质循环再生原理、物种多样性原理、协调与平衡原理、整体性原理(4分,其中两项即可)(2)限制性核酸内切酶、DNA 连接酶(4分) 植物组织培养(2分) DNA 分子杂交 (3)促性腺激素 M Ⅱ中 获能 免疫排斥理综物理参考答案22.(6分)(1)遇到挡板之后铁片的水平位移s 和坚直下落高度h (2分)(2)hgs v 2= (2分) (3))cos 1(42θ-=gL h gs (2分) 23.(9分) (1)电路如图所示.(2分)(2) E =5.5 V , r =1.0 Ω. ( 每空2分) (3) 0Ω. (1分)64%.(2分) 24.(14分)解:(1)设克服空气阻力所做的功为W f 由动能定理有:20212121mv mv W f -=- (1分)21202121mv mv W f -=(1分) (2)空气阻力kv f =(1分)落地前匀速运动,则01=-kv mg (2分) 设刚抛出时加速度大小为0a则00ma kv mg =+ (2分) 解得gv v a )1(100+= (1分) (3)上升时加速度为a , ma kv mg =+-)( (1分) vm k g a --= (1分)取极短t ∆时间,速度变化v ∆,有:t v m k t g t a v ∆-∆-=∆=∆ (1分)又h t v ∆=∆ (1分)上升全程∑∑∑∆-∆-=-=∆h m kt g v v 00 (1分)则Hm k gt v +=10 g v gt v H 110)(-= (1分)25.(18分)解: (1)粒子在磁场中运动时洛伦兹力不做功,打在M 点和N 点的粒子动能均为E 0,速度v 1、v 2大小相等,设为v ,由E 0=12mv 2可得v =2E 0m(2分) (2)如图所示,区域Ⅱ中无磁场时,粒子在区域Ⅰ中运动四分之一圆周后,从C 点沿y 轴负方向打在M 点,轨迹圆心是O1点,半径为r 1=R (2分)区域Ⅱ有磁场时,粒子轨迹圆心是O 2点,半径为r 2,由几何关系得r 22=(1.2R )2+(r 2-0.4R )2(2分)解得r 2=2R(1分) 由qvB =m v 2r 得B =mvqr(1分) 故B 1=2mE 0qR,方向垂直xOy 平面向外。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(Ⅱ)若an·bn=2n+1,求数列{bn}的前n项和Tn.
(18)(本小题满分12分)
如图,在边长为3的等边三角形ABC中,E,F分别为AB,AC边上的点,且满足AE=FC=CP=1,将△AEF沿EF折起到△A1EF的位置,如图,使平面A1EF⊥平面FEBP,连结
(Ⅰ)求证:A1E⊥PF;
(22)(本小题满分10分)选修4-1:几何证明选讲
如图所示,已知PA与⊙O相切,A为切点,过点P的割线交
圆于B、C两点,弦CD//AP,AD、BC相交于点E,F为CE上一
点,且DE2=EF·EC.
(Ⅰ)求证:CE·EB=EF·EP;
(Ⅱ)若CE颐BE=3:2,DE=3,EF=2,求PA的长.
(23)(本小题满分10分)选修4-4:坐标系与参数方程
必须作答。第(22)题—第(24)题为选考题,考生根据要求作答。
二、填空题:本大题4个小题,每小题5分,共20分.
13.在ABC中,BC=2,AC=,B=,则AB=;ABC的面积是
14.在等差数列 中,首项 公差d≠0,若 ,则m=__________.
15.如图,已知过椭圆 的左顶点A(- ,0)作直线 交 轴于点P,交椭圆于点Q,若AOP是等腰三角形,且=2,则此椭圆离心率为_________.
(A)29 (B)30
(C) (D)216
(11)春节期间,“厉行节约,反对浪费”之风悄然吹开,某市通过随机询问100名性别不同的居民是否能做到“光盘”行动,得到如下的列联表:
参考附表,得到的正确结论是
(A)在犯错误的概率不超过1%的前提下,认为“该市居民能否做到‘光盘’与性别有关”
(B)在犯错误的概率不超过1%的前提下,认为“该市居民能否做到‘光盘’与性别无关”
图如图,那么在这片树木中底部周长大于100
cm的株树大约中
A.3000株
B.600件,那么 的最大值为
A.-3 B.-2 C.1 D.2
(7)函数y=lnx(x>0)的图象与直线 相切,则a等于
(8)执行如图所示的程序框图,输出的结果是 ,则判断框内应填入的条件是
(3)设平面向量 等于
(A)4(B)5(C)3 (D)4
(4)下列说法中正确的是
A. “ ”是“ ”的必要条件
B.命题“ ”的否定是“ ”
C.m∈R,使函数 是奇函数
D.设p,q是简单命题,若p∨q是真命题,则p∧q也是真命题
(5)为了研究一片大约一万株树木的生长情况,随机测量了其中100株树木的底部周长(单位:cm),根据所得数据画出的样本频率分布直方
(Ⅱ)若Q为A1B中点,求证:PQ∥平面A1EF
(19)(本小题满分12分)
有一个不透明的袋子,装有4个完全相同的小球,球上分别编有数字1,2,3,4
(Ⅰ)若逐个不放回取球两次,求第一次取到球的编号为偶数且两个球的编号之和能被3整除的概率;
(Ⅱ)若先从袋中随机取一个球,该球的编号为a,将球放回袋中,然后再从袋中随机取一个球,该球的编号为b,求直线ax+by+1=0与圆x2+y2= 有公共点的概率.
(21)(本小题满分12分)
已知函数
(Ⅰ)若函数满足f(1)=2,且在定义域内f(x)≥bx2+2x恒成立,求实数b的取值范围;
(Ⅱ)若函数f(x)在定义域上是单调函数,求实数a的取值范围;
(III)当
请考生在第(22)、(23)、(24)三题中任选一题做答,如果多做,则按所做的第一题计分。作答时用2B铅笔在答题卡上把所选题目对应题号下方的方框涂黑。
辽宁省锦州市2014届高三第一次质量检测考试
数学(文)试题
注意事项:
本试卷分第I卷(选择题)和第II卷(非选择题)两部分,共150分。第域卷第(22)、(23)、(24)题为选考题,其他题为必考题,考试时间:120分钟。
参考公式:球的表面积公式:S=4 R2,球的体积公式:V= R2,其中R表示球的半径。
(C)有90%以上的把握认为“该市居民能否做到‘光盘’与性别有关”
(D)有90%以上的把握认为“该市居民能否做到‘光盘’与性别无关”
(12)若函数 = 满足 ,函数
则函数 在区间[-5,5]内的与 轴交点的个数为
A.5 B.7 C.8 D.10
第II卷(非选择题,共90分)
本卷包括必考题和选考题两部分。第(13)题—第(21)题为必考题,每个试题考生都
在极坐标系下,已知圆
(Ⅰ)以极点为坐标原点,极轴为x轴的正半轴建立平面直角坐标系援求圆O和直线l的直角坐标方程;
(Ⅱ)当 时,求直线l与圆O公共点的一个极坐标。
(9)已知函数 ,则下列结
论正确的是
(A)两个函数的图象均关于点(— ,0)成中心对称
(B)淤的纵坐标不变,横坐标扩大为原来的2倍,再向
右平移 个单位即得于
(C)两个函数在区间(— , )上都是单调递增函数
(D)两个函数的最小正周期相同
(10)一个三棱锥的三视图是三个直角三角形,
如图所示,则该三棱锥的外接球的表面积为
(20)(本小题满分12分)
设F为抛物线 的焦点,R,S,T为该抛物线上三点,若++=,且||+
||+||=6.
(Ⅰ)求抛物线 的方程;
(Ⅱ)M点的坐标为(m,0)其中m>0,过点F作斜率为k1的直线与抛物线交于A,B两点,A,B两点的横坐标均不为m,连接AM、BM并延长交抛物线于C、D两点,设直线CD的斜率为k2. ,求m的值.
16.下列命题:
① 使 是幂函数;且在(0,+∞)上递减;
②若 则 ;③已知 则 有最小值8;
④已知向量=(1,2),=(2,0),若向量+与向量=(1,-2)垂直,则实数等于-1.
其中,正确命题的序号为
三、解答题:解答应写出文字说明、证明过程或演算步骤.
(17)(本小题满分12分)
已知数列{ }的前n项和Sn满足 (p为大于0的常数),且a1是6a3与a2的等差中项。
第I卷(选择题共60分)
一、选择题:本大题共12小题,每小题5分,共60分援在每小题给出的四个选项中,只有一项是符合题目要求的援
(1)在复平面内,复数 对应的点的坐标为
(A)(-1,1)(B)(1,1)(C)(1,-1)(D)(-1,-1)
(2)设全集U=R,A={ },B={ },则如图中阴影部分表示的集合为