高考数学集合的运算

合集下载

高考数学一轮复习 1.1 集合的概念与运算

高考数学一轮复习 1.1 集合的概念与运算
的属性(是点集、数集或其他情形),从研究集合中元素的构成入手是解决集 合问题的前提.
2.如果集合 A 中含有 n 个元素,则集合 A 有 2n 个子集,2n-1 个真子集. 3.正确理解交、并、补集的含义是解决集合的运算问题的关键.数轴和 Venn 图是进行集合交、并、补运算的有力工具.
12
核心考点
(4)空集: 不含任何元素的集合
叫做空集,记作: ⌀
.
规定:空集是 任何集合的子集 .
4
知识梳理
双击自测
知识梳理
-5-
3.集合的基本运算
并集
符号 表示
A∪B
图形 表示
交集 A∩B
补集
设全集为 U,集合 A 的 补集∁UA
含义
A∪
B={x|x∈A,或 x∈B}
A∩B={x|x∈A,且 x∈B}
∁UA={x|x∈U,且 x∉ A}
-13-
考点一
考点二
考点三
考点一集合的基本概念
1.设集合 A={1,2,3},B={4,5},M={x|x=a+b,a∈A,b∈B},则 M 中元素的
个数为( )
A.3
B.4
C.5
D.6
关闭
由题意知 x=a+b,a∈A,b∈B,则 x 的可能取值为 5,6,7,8.因此,集合 M 共有 4 个元素.故选 B.
关闭
B
13 解析 答案
核心考点
-14-
考点一
考点二
考点三
2.若集合 A={x∈R|ax2+ax+1=0}中只有一个元素,则 a=( )
(6)设全集为 R,函数 y= 1-������2的定义域为 M,则∁RM={x|x>1,或 x<1}.( )

高考数学一轮复习课件11集合的概念与运算

高考数学一轮复习课件11集合的概念与运算


>0,得
x>1 或 x<0.
集合 A 中的元素不属于集合 B 的有 0,1,故选 A.
3
(2)由题意得 m+2=3 或 2m2+m=3,解得 m=1 或 m=- .当 m=1
2
时,m+2=3,且 2m2+m=3,根据集合中元素的互异性可知不满足题意;
3
1
3
当 m=-2时,m+2=2,而 2m2+m=3,故 m=-2.
A.{-1,0,1} B.{0,1}
C.{-1,1}
D.{0,1,2}
解析:A={-1,0,1,2},B={x|-1≤x≤1},则A∩B={-1,0,1}.故选A.
3.(2019北京海淀一模,1)已知集合P={x|0<x<4},且M⊆P,则M可以
是( A )
A.{1,2}
B.{2,4}
C.{-1,2}
当x=0时,y=-1,0,1;
当x=1时,y=-1,0,1;所以共有9个,选A.
(2)由题意,得A={-2,-1,0,1,2,3,4},对于集合B,因为x∈Z,2x∈A,所
以B={0,1,2},故选D.
-9-
考点1
考点2
考点3
思考求集合中元素的个数或求集合中某些元素的值应注意什么?
解题心得与集合中的元素有关问题的求解策略:
中至少有一个元素不在集合 A 中,则 (或B⫌A)
集合 A 是集合 B 的真子集
若集合 A,B 中的元素相同或集合 A,B
互为子集,则集合 A 等于集合 B
A=B
-3-
知识梳理
考点自诊
3.集合的运算
集合的并集
集合的交集

高考数学第一题集合

高考数学第一题集合

高考数学第一题集合题目:高考数学第一题集合正文:一、集合的基础概念集合是数学中的一种基本概念,它是由若干确定的元素组成的总体。

在高考数学中,我们常常会遇到关于集合的问题。

下面,就让我们一起来了解一些关于集合的基础知识。

1.1 集合的定义与表示法集合是由若干确定的元素组成的总体,我们通常用大写字母A、B等来表示集合。

而集合中的元素则用小写字母a、b等表示。

例如,我们可以表示一个集合A={1, 2, 3, 4},其中元素1、2、3、4都属于集合A。

1.2 集合的性质集合有一些基本性质,包括空集、全集、子集、真子集等。

空集是不包含任何元素的集合,用符号∅表示;全集则是指某一给定范围内的元素构成的集合,用符号U表示;而子集是指一个集合中的所有元素都是另一个集合的元素,用符号⊆表示。

如果一个集合是另一个集合的子集,并且两个集合不相等,则称这个子集为真子集。

1.3 常见的集合运算在高考数学中,我们会遇到一些常见的集合运算,包括并、交、差、补等。

集合的并是指包含两个或更多个集合中的所有元素的新集合,用符号∪表示;集合的交则是指两个或更多个集合中共有的元素构成的新集合,用符号∩表示;而集合的差是指从一个集合中减去另一个集合的所有元素所构成的新集合,用符号−表示;集合的补是指给定集合中不属于另一个集合的元素所构成的新集合,用符号'表示。

二、高考数学集合题的解题方法在高考数学中,集合题是一种常见的考点。

下面,我们来了解一些常用的解题方法。

2.1 集合图示法集合图示法是一种直观的解题方法,它通过用图形的方式表示集合,帮助我们更清晰地理解和解题。

例如,我们可以通过用圆形来表示集合,用交叉部分表示集合的交,用圆周上未填充的部分表示集合的差等。

2.2 元素法元素法是一种逐个检查集合元素的解题方法。

通过逐个检查集合元素是否符合给定条件,我们可以确定一个集合的内容。

例如,当解决集合的并、交、差等问题时,我们可以逐个检查集合中的元素,再通过运算规则得出结果。

高考数学259个核心考点

高考数学259个核心考点

高中数学考试必备的知识点整理温馨提示:在复习的同时,也要结合课本上的例题去复习,重点是课本,而不是题目应该怎样去做,所以在考前的一天必须回归课本复习,心中无公式,是解不出任何题目来的,只要心中有公式,中等的题目都可以解决。

必修一:一、集合的运算:交集:定义:由集合A 和集合B 中的公共元素组成的集合叫交集,记为A B 并集:定义:由属于集合A 或属于集合B 的元素组成的集合叫并集,记为A B补集:定义:在全集U 中,由所有不属于集合A 的元素组成的集合叫补集,记为C UA 二、指数与指数函数1、幂的运算法则:(1)a m •a n =a m + n ,(2)a m ÷a n =a m -n ,(3)(a m )n =a m n (4)(ab )n = a n •b nn -11a n⎛a ⎫nm-n (5) ⎪=n (6)a 0 = 1 ( a ≠0)(7)a =n (8)am=a(9)am=mna b ⎝b ⎭a 2、根式的性质⎧a ,a ≥0n n n n n n n n (1)(a )=a .(2)当为奇数时,a =a ;当为偶数时,a =|a |=⎨.-a ,a <0⎩n n 5.指数式与对数式的互化:log aN =b ⇔a b =N (a >0,a ≠1,N >0).6、对数的运算法则:(1)a b = N <=> b = log a N (2)log a 1 = 0(3)log a a = 1(4)log a a b = b (5)a log a N = N (6)log a (MN) = log a M + log a N(7)log a (log b N M ) = log a M -log a N(8)log a N b = b log a N (9)换底公式:log a N =Nlog banlog a b (a >0,且a >1,m ,n >0,且m ≠1,n ≠1,N >0).m (10)推论:log a m b n =(11)log a N =1(12)常用对数:lg N = log 10N(13)自然对数:ln A = log e Alog Na必修4:1、特殊角的三角函数值角α0°30°45°60°πππ角α的弧度数643Sinα12223290°π21180°π0270°3π2-1360°2π0321Cosα12220-101tanα03313不存在0不存在02、诱导公式:函数名不变,符号看象限(把α看成锐角)公式一:Sin(α+2kπ)=Sinα公式二:Sin(α+π)=-SinαCos(α+2kπ)=Cosα Cos(α+π)=-Cosαtan(α+2kπ)=tanα tan(α+π)=tanα公式三:Sin(-α)=-Sinα公式四:Sin(π-α)=SinαCos(-α)= Cosα Cos(π-α)=-Cosαtan(-α)=-tanα tan(π-α)=-tanα公式五:Sin(π2-α)=Cosα公式六:Sin(π2+α)=CosαCos(ππ2-α)=Sinα Cos(2+α)=-Sinα3、两角和与角差的正弦、余弦和正切公式①sin(α+β)=sin αcos β+cos αsin β②sin(α-β)=sin αcos β-cos αsin β③cos(α+β)=cos αcos β-sin αsin β④cos(α-β)=cos αcos β+sin αsin β⑤tan(α+β)=tan α+tan β1-tan αtan β⑥tan(α-β)=tan α-tan β1+tan αtan β4.二倍角的正弦、余弦和正切公式①sin 2α=2sin αcos α②cos 2α=cos 2α-sin 2α=1-2sin 2α=2cos α2-1③tan 2α=2tan α1-tan 2α④sin 2α=1-cos 2α2⑤cos 2α=1+cos 2α2sin αcos α=12sin 2α5、向量公式:→→→→①a ∥b ⇔x 1x =y 1(x 2,y 2≠0)(a ∥b ⇔x 1y 2-x 2,y 1=0)2y2→→→→→②a +b =(a +b )2=a 2+2a →⋅b →→+b 2=→2a +2a →⋅b →⋅cos θ+b→2→→③cos θ=a ⋅b =x 1x 2+y 1y2→(求向量的夹角)a ⋅→bx21+y2x2212+y2⑥④a ⊥b ⇔a ⋅b =0⑥平面内两点间的距离公式:设a =(x ,y ),则→2→→→→→a =x +y 或a =x 2+y 2→22→⑦平面内两点间的距离公式:a =(x 1-x 2)+(y 1-y 2)2222高中数学必修5知识点归纳第一章解三角形1、正弦定理:在∆AB C 中,a 、b 、c 分别为角A 、B 、C 的对边,R 为∆AB C 的外接圆的a b c半径,则有===2R .sin A sin B sin C2、正弦定理的变形公式:①a =2R sin A ,b =2R sin B ,c =2R sin C ;a b c②sin A =,sin B =,sin C =;③a :b :c =sin A :sin B :sin C ;2R 2R 2R a +b +c a b c④.===sin A +sin B +sin C sin A sin B sin C(正弦定理用来解决两类问题:1、已知两边和其中一边所对的角,求其余的量。

高考数学冲刺集 合的笛卡尔积与幂集运算

高考数学冲刺集 合的笛卡尔积与幂集运算

高考数学冲刺集合的笛卡尔积与幂集运算高考数学冲刺:集合的笛卡尔积与幂集运算在高考数学的众多考点中,集合的笛卡尔积与幂集运算虽然不是最常见的,但却是理解集合概念和运算的重要组成部分。

对于即将面临高考的同学们来说,掌握这两个知识点不仅有助于应对可能出现的相关考题,更能深化对集合这一数学概念的整体理解,提升数学思维能力。

首先,让我们来认识一下什么是集合的笛卡尔积。

笛卡尔积,简单来说,就是将两个集合中的元素进行所有可能的组合。

假设我们有两个集合 A 和 B,集合 A ={1, 2},集合 B ={a, b},那么 A 和 B 的笛卡尔积 A×B 就是{(1, a),(1, b),(2, a),(2, b)}。

可以看出,笛卡尔积的结果是一个新的集合,其中的元素是由原来两个集合中的元素两两配对组成的有序对。

理解笛卡尔积的关键在于“有序”这两个字。

这意味着(1, a) 和(a, 1) 是不同的元素。

在实际解题中,我们常常需要根据给定的集合求出它们的笛卡尔积,并通过笛卡尔积来解决一些与元素组合相关的问题。

那么,高考中可能会如何考查笛卡尔积呢?一种常见的题型是给定两个集合,要求求出它们的笛卡尔积,并确定笛卡尔积中元素的个数。

例如,集合 C ={x | 1 < x < 3,x ∈Z},集合 D ={y | 0 < y < 2,y ∈ Z},首先我们要明确集合 C ={2},集合 D ={1},那么 C×D ={(2, 1)},元素个数为 1。

另一种题型可能会更复杂一些,会将笛卡尔积与其他集合的运算结合起来,要求同学们进行综合的分析和计算。

比如,给出集合 E ={1, 2, 3},集合 F ={a, b},已知集合 G =(E×F) ∩ {(2, a),(3, b)},要求求出集合 G。

这就需要我们先求出 E×F ={(1, a),(1, b),(2, a),(2, b),(3, a),(3, b)},然后再与给定的集合求交集,得到集合 G ={(2, a),(3, b)}。

2024全国高考真题数学汇编:集合的基本运算

2024全国高考真题数学汇编:集合的基本运算

2024全国高考真题数学汇编集合的基本运算一、单选题1.(2024北京高考真题)已知集合{|31}M x x ,{|14}N x x ,则M N ()A . 11x x B . 3x x C . |34x x D . 4x x 2.(2024天津高考真题)集合 1,2,3,4A , 2,3,4,5B ,则A B ()A . 1,2,3,4B . 2,3,4C . 2,4D . 13.(2024全国高考真题)若集合 1,2,3,4,5,9A , 1B x x A ,则A B ()A . 1,3,4B . 2,3,4C . 1,2,3,4D . 0,1,2,3,4,94.(2024全国高考真题)已知集合 355,{3,1,0,2,3}A x x B ∣,则A B ()A .{1,0} B .{2,3}C .{3,1,0} D .{1,0,2}5.(2024全国高考真题)已知集合 1,2,3,4,5,9,A B A ,则 A A B ð()A . 1,4,9B . 3,4,9C . 1,2,3D .2,3,5参考答案1.C【分析】直接根据并集含义即可得到答案.【详解】由题意得 |34M x x N .故选:C.2.B【分析】根据集合交集的概念直接求解即可.【详解】因为集合 1,2,3,4A , 2,3,4,5B ,所以 2,3,4A B ,故选:B3.C【分析】根据集合B 的定义先算出具体含有的元素,然后根据交集的定义计算.【详解】依题意得,对于集合B 中的元素x ,满足11,2,3,4,5,9x ,则x 可能的取值为0,1,2,3,4,8,即{0,1,2,3,4,8}B ,于是{1,2,3,4}A B .故选:C4.A【分析】化简集合A ,由交集的概念即可得解.【详解】因为 |,3,1,0,2,3A x x ,且注意到12 ,从而A B 1,0 .故选:A.5.D【分析】由集合B 的定义求出B ,结合交集与补集运算即可求解.【详解】因为1,2,3,4,5,9,A B A ,所以 1,4,9,16,25,81B ,则 1,4,9A B ,2,3,5A A B ð故选:D。

数学集合高考知识点

数学集合高考知识点

数学集合高考知识点在高考数学中,集合是一个重要的概念,涉及到许多基础的数学知识点。

本文将详细介绍数学集合的相关知识点,包括集合的定义、运算、常见性质等。

一、集合的定义集合是指具有某种特定性质的对象的总体。

常用大写字母表示集合,集合中的元素用小写字母表示。

例如,集合A={1, 2, 3, 4}表示由元素1、2、3和4组成的集合。

二、集合的表示方法1. 列举法:直接将集合中的元素列举出来。

例如,集合A={1, 2, 3, 4}。

2. 描述法:通过描述集合中元素的特点来表示集合。

例如,集合A={x|x是正整数且x < 5}表示由小于5的正整数组成的集合。

三、集合的基本运算1. 并集:表示两个或多个集合中所有元素的总和,用符号∪表示。

例如,A∪B表示集合A和集合B的并集。

2. 交集:表示两个或多个集合中共有的元素,用符号∩表示。

例如,A∩B表示集合A和集合B的交集。

3. 差集:表示从一个集合中减去另一个集合中的元素,用符号-表示。

例如,A-B表示从集合A中减去集合B中的元素。

4. 互斥:表示两个集合没有公共元素,用符号⊥表示。

例如,A⊥B表示集合A和集合B互斥。

5. 补集:表示在全集中存在但不在某个集合中的元素构成的集合,用符号A'表示。

例如,A'表示集合A的补集。

四、集合的常见性质1. 交换律:对于任意两个集合A和B,A∪B=B∪A,A∩B=B∩A。

2. 结合律:对于任意三个集合A、B和C,(A∪B)∪C=A∪(B∪C),(A∩B)∩C=A∩(B∩C)。

3. 分配律:对于任意三个集合A、B和C,A∪(B∩C)=(A∪B)∩(A∪C),A∩(B∪C)=(A∩B)∪(A∩C)。

4. 对于全集U来说,U∪A=U,U∩A=A,U-A=∅。

5. 幂集:对于集合A,由A的所有子集构成的集合称为A的幂集,用符号P(A)表示。

通过对集合的学习,可以帮助我们更好地理解和运用数学知识。

在高考中,集合相关的题目常常出现,掌握了集合的基本概念和运算规则,能够更好地解答相关题目,提高数学成绩。

高三数学高考集合知识点梳理

高三数学高考集合知识点梳理

高三数学高考集合知识点梳理集合是数学中一个重要的概念,广泛应用于各个数学分支。

在高考数学中,集合也是一个重要的考点。

本文将对高三数学高考集合知识点进行梳理,以帮助同学们更好地掌握和应用这些知识。

一、集合的定义与表示方法集合是由一些特定对象组成的整体,这些对象被称为集合的元素。

常用的表示方法主要有以下几种:1. 列举法:直接列举出集合的所有元素,用大括号{}表示。

2. 描述法:通过给出元素满足的条件来描述集合,用大括号{}表示,并用逗号分隔元素。

二、集合间的关系与运算1. 子集关系:若集合A的所有元素同时也是集合B的元素,则称A是B的子集,记作A⊆B。

特别地,一个集合是其本身的子集。

2. 并集运算:将两个集合中的所有元素放在一起组成一个集合,记作A∪B。

3. 交集运算:两个集合中相同的元素组成的集合,记作A∩B。

4. 差集运算:从一个集合中去掉与另一个集合相同的元素后得到的集合,记作A-B或者A\B。

5. 互斥集:两个集合没有相同的元素,记作A∩B=∅,称为互斥集。

6. 补集运算:对于给定的全集U,集合A的补集是指所有不属于集合A的元素组成的集合,记作A'或者Ā。

三、集合的性质与定理1. 幂集性质:集合A的幂集是指以A的所有子集为元素的集合,记作P(A)。

对于一个有n个元素的集合来说,它的幂集将有2^n个元素。

2. 交换律、结合律、分配律等:并集和交集运算满足交换律、结合律、分配律等基本的运算性质。

3. 德摩根律:对于给定的全集U、集合A和集合B,德摩根律表示为以下两个公式:(A∪B)' = A'∩B'(A∩B)' = A'∪B'四、集合的应用集合在数学中有着广泛的应用,它不仅在高考数学中出现,还涉及到概率、统计、逻辑等许多领域。

1. 概率:在概率计算中,集合用于描述事件的样本空间以及事件的发生情况,通过集合的交并运算和概率的定义,可以计算出事件发生的概率。

高考数学讲义:集合的运算(并集)(解析版)

高考数学讲义:集合的运算(并集)(解析版)

第5讲:集合的运算(并集)【学习目标】1.理解两个集合的并集的含义.会求两个简单集合的并集;2.能使用Venn 图表达集合的关系及运算,体会直观图示对理解抽象概念的作用.【基础知识】一、并集【考点剖析】考点一:并集的求解(基础)例1.若集合{2,1,2}M =--,集合{0,2}N =,则M N 等于()A.{2,1,2}--B.{2,1,0,2}--C.{}2D.{2,1,0}--【答案】B 【详解】因为集合{2,1,2}M =--,集合{0,2}N =,所以{2,1,0,2}M N =-- ,故选:B变式训练1:已知集合{}2,0,1M =-,{}1,0,1,2N =-,则M N = ()A.{}2,1,0,2--B.{}2,0,1-C.{}2,0,1,2-D.{}2,1,0,1,2--【答案】D 【详解】由{}2,0,1M =-,{}1,0,1,2N =-,∴{2,1,0,1,2}M N ⋃=--.故选:D.变式训练2:已知{|7}A x x =∈<N ,{5,6,7,8}B =,则集合A B 中的元素个数为()A.7B.8C.9D.10【答案】C 【详解】{0,1,2,3,4,5,6}A =,{0,1,2,3,4,5,6,7,8}A B = ,共9个元素.故选:C.变式训练3:已知集合A=1{1,2,}2A =,B={}2|,y y x x A =∈,A B = _______________.【答案】11{1,2,,4,}24【详解】因为B={y|y=x2,x∈A}=1144⎧⎫⎨⎬⎩⎭,,,所以A∪B=1112424⎧⎫⎨⎬⎩⎭,,,,.故答案为:1112424⎧⎫⎨⎬⎩⎭,,,,考点二:并集的求解(提升)例2.已知集合{}{}7,27A y y B x x =<=-≤≤,则A B = ()A.{}22x x -≤<B.{}7x x ≤C.{}7x x <D.{}27x x -≤<【答案】B 【详解】{}{}{}77,27A y y x x B x x =<=<=-≤≤,∴A B = {}7x x ≤,故选:B.变式训练1:若集合{0,1,2,3},{13}S T xx ==-<<∣,则S T = ()A.{|13}x x -<<B.{|13}x x -<≤C.{0,1,2}D.{|03}x x <≤【答案】B 【详解】画数轴如图:可看出并集为S T ⋃={|13}x x -<≤故选:B变式训练2:设集合{}{}21,02M x x N x x =-<<=<<,则M N = ()A.{|20}x x -<<B.{|01}x x <<C.{|02}x x <<D.{|22}x x -<<【答案】D 【详解】由{|21}M x x =-<<,{|02}N x x =<<,则{|22}M N x x =-<< 故选:D.变式训练3:设集合13{|}A x x =≤≤,{|24}B x x =<<,则A B = ()A.{|14}x x ≤<B.{|23}x x ≤≤C.{|23}x x <≤D.{|24}x x £<【答案】A 【详解】因为集合13{|}A x x =≤≤,{|24}B x x =<<,所以[13](24)[14)A B == ,,,,故选:A.考点三:并集的求解(拓展)例3.已知集合{|42}M x x =-<<,2{|60}N x x x =--<,则M N =()A.{|43}x x -<<B.{|42}x x -<<-C.{|22}x x -<<D.{|23}x x <<【答案】A 【详解】由题意,集合2{|60}{|23}N x x x x x =--<=-<<,且{|42}M x x =-<<,根据集合并集的概念及运算,可得{|43}M N x x ⋃=-<<.故选:A.变式训练1:若集合{}2270A x x x =-<,{}3B x x =>,则A B = ()A.{}x x >B.732x x ⎧⎫<<⎨⎬⎩⎭C.702x x ⎧⎫<<⎨⎬⎩⎭D.{0x x <或}3x >【答案】A 【详解】(){}727002A x x x x x ⎧⎫=-<=<<⎨⎬⎩⎭,{}3B x x =>,{}0A B x x ∴⋃=>.故选:A.变式训练2:已知集合{}220A x R x x =∈-<,{}14B x R x =∈≤≤,则A B = ()A.{}|04x x <<B.{}04x x <≤C.{}12x x ≤<D.{}24x x <≤【答案】B 【详解】因为{}{}22002A x R x x x R x =∈-<=∈<<,{}14B x R x =∈≤≤,所以{}04A B x x =<≤ .故选:B.变式训练3:已知集合()(){}410A x x x =+-≤,{}2B x x =<,则A B = ()A.{}22x x -<<B.{}21x x -<≤C.{}24x x -<≤D.{}42x x -≤<【答案】D 【详解】由不等式()()410x x +-≤,解得41x -≤≤,即{}41A x x =-≤≤,又因为{}22B x x =-<<,所以{}42A B x x ⋃=-≤<.故选:D.考点四:已知并集求参数例4.设集合{}{}20,2,|40A B x x mx n ==-+=,,若{}0,1,2,3,4A B = ,则m n +的值是()A.1B.3C.5D.7【答案】D 【详解】因为集合{}{}20,2,|40A B x x mx n ==-+=,,{}0,1,2,3,4A B = ,则{}1,3B =,所以,1、3是方程20x mx n -+=的两根,所以,1313mn+=⎧⎨⨯=⎩,因此,437m n +=+=.故选:D.变式训练1:已知集合{}21,A a=,{}1,0,1B =-,若A B B = ,则A 中元素的和为()A.0B.1C.2D.1-【答案】B 【详解】A B B =Q U ,A B ∴⊆,20a ∴=,则0a =,{}1,0A ∴=,因此,集合A 中元素的和为011+=.故选:B.变式训练2:设集合{}24A x Z x =∈≤,{}1,2,B a =,且A B A = ,则实数a 的取值集合为()A.{}2,1,0--B.{}2,1--C.{}1,0-D.{}2,1,1--由题得{}{}242,1,0,1,2A x Z x =∈≤=--,因为{}1,2,B a =,且A B A = ,所以实数a 的取值集合为{}2,1,0--.故选:A变式训练3:已知集合{}2320A x x x =-+=,{}210B x x ax a =-+-=.(1)若A B A = ,求实数a 的值;【答案】(1)2a =或3;【详解】(1)由2320x x -+=得1x =或2,所以{1,2}A =,由210x ax a -+-=得1x =或1a -,所以1,1B a B ∈-∈,因为A B A ⋃=,所以B A ⊆,所以11a -=或2,所以2a =或3;考点五:已知并集求参数范围(基础)例5.已知集合{}2430A x x x =-+<,{}B x x m =>,若{}1A B x x => ,则()A.1m ≥B.13m ≤<C.13m <<D.13m ≤≤【答案】B 【详解】解不等式2430x x -+<可得13x <<,所以{}13A x x =<<,因为{}B x x m =>,{}1A B x x ⋃=>,所以13m ≤<.故选:B.变式训练1:已知集合{|1}A x x =≤,{|}B x x a =≥,且A B R = ,则实数a 的取值范围是()A.1a <B.1a >C.1a ≤D.1a ≥【答案】C 【详解】解:{|1}A x x =≤ ,{|}B x x a =≥,且A B R = ,故选:C.变式训练2:已知集合{}2A x x =>,{}B x x m =<,若A B R = ,则实数m 的取值范围()A.2m ≤B.2m <C.2m ≥D.2m >【答案】D 【详解】因为A B R = ,即集合A 与集合B 包含了所有的实数,那么m>2.故选:D.变式训练3:设集合{}240A x x =-≥,{}20B x x a =+≤,且A B R = ,则a 的取值范围是()A.{|4}x x ≥-B.{|4}x x ≤-C.{|2}x x ≥-D.{|2}x x ≤-【答案】B 【详解】240x -≥,解得:2x ≥或2x -≤,即{2A x x =≥或2}x £-,{|}2aB x x =≤-,A B R = ,22a∴-≥,解得:4a ≤-.故选:B考点六:已知并集关系,求参数范围(提升)例6.已知集合{|25},{|121}A x x B x m x m =-<<=+≤≤-.(1)当3m =时,求A B U ;(2)若A B A = ,求实数m 的取值范围.【答案】(1){|25}A B x x =-<≤ ;(2)3m <.【详解】(1)当3m =时,B 中不等式为45x ≤≤,即{}|45B x x =≤≤,∴{|25}A B x x =-<≤ (2)∵A B A = ,∴B A ⊆,①当B =∅时,121m m +>-,即2m <,此时B A ⊆;②当B ≠∅时,12112215m m m m +≤+⎧⎪+>-⎨⎪-<⎩,即23m ≤<,此时B A ⊆.综上m 的取值范围为3m <.变式训练1:已知集合{}2430A xx x =-+>∣,{4}B x m x m =<≤+∣,若A B R = ,则实数m 的取值范围是()A.{|12}x x -≤<B.{|11}x x -≤<C.{|1}x x <D.{|1}x x ≥-【答案】B 【详解】因为{}2430{|1A xx x x x =-+>=<∣或3}x >,{4}B x m x m =<≤+∣,且A B R = ,所以有143m m <⎧⎨+≥⎩,解得11m -≤<,故选:B.变式训练2:已知集合{}2|3100M x x x =--≤,{}|121N x a x a =+≤≤+.(1)若M N M = ,求实数a 的取值范围.【答案】(1){|2}m m ≤.【详解】(1)(2),M N M N M=∴⊆ ①若N =∅,则121a a +>+,解得0a <,符合题意;②若N ≠∅,则12121512a a a a +≤+⎧⎪+≤⎨⎪+≥-⎩,解得02a ≤≤.综合可得实数a 的取值范围是{|2}m m ≤.变式训练3:已知集合{}121A x a x a =+≤≤+,{}25B x x =-≤≤.(1)若3a =,求A B ;(2)若A B B = ,求实数a 的取值范围.【答案】(1){}27x x -≤≤;(2)2a ≤.【详解】(1)当3a =时,{}47A x x =≤≤,{}25B x x =-≤≤.∴{}27A B x x ⋃=-≤≤(2)由A B B = 得A B ⊆,当A =∅时,211a a +<+,0a <当A ≠∅时,有12215121a a a a +≥-⎧⎪+≤⎨⎪+≤+⎩,解得02a ≤≤综上a 的取值范围为:2a ≤.【过关检测】1、已知集合{3,2,1}A =---,{2,1,0}B =--,则A B = ()A.{3,2,1,0}---B.{3,2,1}---C.{2,1,0}--D.{2,1}--【答案】A 【详解】由{3,2,1}A =---,{2,1,0}B =--,则{3,2,1,0}A B ⋃=---.故选:A2、若集合{}=2,1,1M --,集合{}0,1N =,则M N 等于()A.{}2,1,0,1--B.{}2,1,1--C.{}2,1,0--D.{}1【答案】A 【详解】因为集合{}=2,1,1M --,集合{}0,1N =,所以M N ⋃{}2,1,0,1=--,故选:A3、已知集合{}210,A x x x =-≤∈Z ,{}2,B y y x x A ==∈,则A B = ()A.{2,1,1,2}--B.{2,1,0,1,2}--C.{1,1}-D.{0}【答案】B 【详解】集合{}{}{}210,11,1,0,1A x x x x x x =-≤∈=-≤≤∈=-Z Z ,{}{}2,2,0,2B y y x x A ==∈=-,{}2,1,0,1,2A B ∴=--U ,故选:B.4、已知集合{}2,4,6A =,{}1,3,4,6B =,则A B 中元素的个数是()A.2B.5C.6D.7【答案】B 【详解】由题意得,{}1,2,3,4,6A B = ,显然A B 中元素的个数是5.故选:B.5、若集合{1,3,}A x =,{}2,1B x =,且{1,3,}A B x = ,则满足条件的x 的个数是()A.1B.2C.3D.4【答案】C 【详解】∵{1,3,}A B x = ,{1,3,}A x =,{}2,1B x =,∴23x =或2x x =,解得x =或1x =或0x =,1x =显然不合题意,经检验0x =或故选:C.6、已知集合{}0,1,2A ,{}21,B x x n n A ==-∈,则A B 中元素的个数为()A.1B.3C.4D.5【答案】D【详解】解:{}0,1,2A =,{}1,1,3B =-;∴{}1,0,1,2,3A B ⋃=-;∴A B 中元素的个数为5.故选:D.7、已知集合{}1,0,1A =-,{}2|1,B y y x x A ==+∈,则集合A B 中元素的个数为()A.4B.3C.2D.1【答案】A【详解】当1,0,1x =-,对应2,1,2y =,{}2,1B ∴=,则{}1,0,1,2A B ⋃=-,A B 中有4个元素.故选:A8、满足条件{}{},,,,a b M a b c d = 的所有集合M 的个数是()A.1B.2C.3D.4【答案】D【详解】解:由{}{},,,,a b M a b c d ⋃=,则{},M c d ={},,M a c d =,或{},,M b c d =,或{},,,M a b c d =共4个,故选D.9、已知集合{0,1,2}M =,{}2N x x =<,则M N = ()A.{0}B.{}2x x <C.{0,1}D.{}2x x ≤【答案】D【详解】由题意,集合{0,1,2}M =,{}2N x x =<,根据集合并集的概念及运算,可得{}2M N x x ⋃=≤.故选:D.10、已知集合{}13A x x =<<,{}02B x x =<<,则A B = ()A.{}12x x <<B.{}13x x x <<C.{}02x x <<D.{}03x x <<【答案】D【详解】因为{}13A x x =<<,{}02B x x =<<,所以A B = {}03x x <<故选:D11、已知集合{1},{12}A x x B x x =>=-<<∣∣,则A B = ()A.{1}x x >-∣B.{2}x x <∣C.{11}x x -<<∣D.{12}x x <<∣【答案】A【详解】因为{1},{12}A x x B x x =>=-<<∣∣,所以A B = {1}x x >-∣,故选:A.12、已知集合{}42M x x =-<<,{}(2)(3)0N x x x =+-<,则M N = ()A.{}43x x -<<B.{}42x x -<<-C.{}22x x -<<D.{}23x x <<【答案】A【详解】解:∵{}42M x x =-<<,{}{}(2)(3)023N x x x x x =+-<=-<<,∴{}43M N x x ⋃=-<<,故选:A.13、已知集合{}2230A xx x =--<∣,1{0}2B x x =->∣,则A B = ()A.13{}22x x <<∣B.3{}2x x <∣C.1{1}2x x -<<∣D.{1}xx >-∣【答案】D【详解】解:∵集合{}2323012A xx x x x ⎧⎫=--<=-<<⎨⎩⎭∣∣,11022B x x x x ⎧⎫⎧⎫=->=>⎨⎬⎨⎬⎩⎭⎩⎭∣∣,∴{1}A B xx ⋃=>-∣.故选:D.14、已知集合{}{}2|5140,|5100A x x x B x x =--<=-<,则A B = ()A.{}|27x x -<<B.{}27x x <<C.{}|7x x <D.{}2x x >-【答案】C【详解】解不等式25140x x --<得27x -<<,所以{}27A x x =-<<;解不等式5100x -<得2x <,所以{}2B x x =<,所以{}|7A B x x ⋃=<.故选:C.15、若集合{1,2}A =-,{}240B x x x m =-+=,且{1,2,5}A B =- ,则()A.2B∈B.5B ∉C.1B ∈D.1B-∈【答案】D【详解】依题意,5∈B ,则25200m -+=,解得5m =-,故{1,5}B =-;观察可知,1B -∈,故选:D.16、若集合{1,1}A =-,{|1}B x mx ==,且A B A = ,则m 的值为()A.1或0B.1-或0C.1或1-或0D.1或1-或2【答案】C【详解】,A B A B A⋃=⊆ ∴B ∴=∅;{1}B =-;{1}B =当B =∅时,0m =当{1}B =-时,1m =-当{1}B =时,1m =故m 的值是0;1;1-故选:C.17、已知集合2{|20}A x x x =-≥,{|}B x x a =<,且A B = R ,则实数a 的取值范围是()A.0a <B.0a >C.2a >D.2a ≥【答案】D【详解】由220x x -≥解得0x ≤或2x ≥,则{|0,A x x =≤或}2x ≥,又{|}B x x a =<,若A B = R ,则2a ≥.故选:D .18、已知集合{}2430A x x x =-+=,{}230B x x ax =-+=.(1)若A B B = ,求实数a 的值;【答案】(1)4;【详解】{}2430A x x x =-+=={}1,3,(1)因为A B B ⋃=,所以A B ⊆,所以1和3是230x ax -+=的两个实根,所以13a +=,即4a =.19、设集合{213}A xm x m =-+<<-+∣,{216}B x x =≤+≤∣.(1)若1m =,求A B ;(2)若A B B = ,求实数m 的取值范围.【答案】(1){|15}A B x x =-<≤ ;(2){|0}m m ≤.【详解】解:(1)因为{213}A xm x m =-+<<-+∣,{216}{15}B x x x x =≤+≤=≤≤∣∣,(1)若1m =,{12}A xx =-<<∣,则{|15}A B x x =-<≤ .(2)因为A B B = ,所以A B ⊆,①当A =∅时,213m m -+≥-+,即2m ≤-;②当A ≠∅时,213,211,35,m m m m -+<-+⎧⎪-+≥⎨⎪-+≤⎩解得20m -<≤,综上,实数m 的取值范围是{|0}m m ≤.20、已知集合{}25A x x =-≤≤,{}121B x m x m =+≤≤-.(1)若A B A = ,求实数m 的取值范围;(2)当{},C x x A x Z =∈∈时,求C 的非空真子集的个数;【答案】(1)(],3-∞;(2)254.【详解】(1)A B A =Q U ,B A ∴⊆.①若B =∅,则121m m +>-,解得2m <;②若B ≠∅,则121m m +≤-,可得2m ≥.由B A ⊆可得12215m m +≥-⎧⎨-≤⎩,解得33m -≤≤,此时23m ≤≤.综上所述,实数m 的取值范围是(],3-∞;(2){}{},2,1,0,1,2,3,4,5C x x A x Z =∈∈=-- ,集合C 中共8个元素,因此,集合C 的非空真子集个数为822254-=;21、已知集合{}13A x x =≤≤,集合{}21B x m x m =≤≤-.(1)当1m =-时,求A B ;(2)若A B B = ,求实数m 的取值范围.【答案】(1){}23A B x x =-≤≤ ;(2){}2m m ≤-.【详解】(1)当1m =-时,{}22B x x =-≤≤,又{}13A x x =≤≤,∴{}23A B x x ⋃=-≤≤;(2)∵A B B = ,则A B ⊆,∴B ≠∅,则有:212113m m m m <-⎧⎪≤⎨⎪-≥⎩,解之得:2m ≤-.∴实数m 的取值范围是{}2m m ≤-.。

高考数学《集合的概念及运算》

高考数学《集合的概念及运算》
(2)本题考查集合的并集运算、一元一次不等式和一元二次不等式的解法.A={x|x(2- x)≥0}={x|0≤x≤2},B={x|1≤x≤4},所以 A∪B={x|0≤x≤4},故选 A.
(3)本题考查韦恩图及集合的基本运算.如图所示的阴影部分用集合可表示为(∁UA)∩B 或 ∁U(A∩B)∩B.故选 BC.
(2022·连云港模拟)若非空且互不相 等的集合 M,N,P 满足:M∩N=M,N∪P= P,则 M∪P=( )
A.∅ B.M C.N D.P
板书
【答案】D
【解析】本题考查集合的交集、并集运算.由题意可知 M∩N=M,则 M N,又 N∪P =P,则 N P,所以 M N P,所以 M∪P=P,故选 D.
【归纳】研究集合问题时,要把握以下几个关键点:一是集合中的元素是什么,即弄清集合 是数集还是点集;二是集合中的元素满足什么限制条件,特别注意集合中元素的互异性;三是 能根据已知条件(元素的限制条件)构造关系式解决相关问题.
(2022·江苏模拟)已知 a,b∈R,若 a,ba,1={a2,a+b,0},则 a2 019+b2 019= ____________.
A.(∁UA)∪B C.∁U(A∩B)∩B
B.(∁UA)∩B D.∁U(A∪B)∪B
板书
【答案】(1)B (2)A (3)BC
【解析】(1)由对数中真数大于 0,得 M={x|x<-2 或 x>2},所以∁RM={x|-2≤x≤2}. 又 N={x|0<x<4},所以(∁RM)∩N={x|0<x≤2},故选 B.
【归纳】(1)紧扣“新”定义,把新定义所叙述的问题的本质弄清楚.(2)把握“新”性质,要善于 从试题中发现可以使用集合性质的一些因素.(3)遵守“新”法则,准确把握新定义的运算法则.

高考数学集合的运算

高考数学集合的运算

;/ 独立游戏 独游侠

内容上:点明中心,升华主题,表达了作者对有良好教养的人的高度赞美。 评分标准:(2分)每答出一方面得1分,意思对即可。 25.名字是一个人的代名词,拥有良好教养,是对这个人的最高评价,正所谓名副其实。示例一:主动帮助有困难的同学;示例二:遵守交通规则等。(能 体现学生良好教养的示例即可。) 评分标准:(3分)谈认识得1分,示例各1分。 (2017代谢)(二)阅读下 文,完成第19—23题(20分) 十七岁那年的单车 (1)十七岁那年,刘伟看到别人骑着单车跑来跑去,十分xiàn mù,吵着要母亲买一辆。父亲横着眼说:“别做梦!有本事自 己去买!” (2)刘伟发了一个月脾气。母亲心疼儿子,就买了一辆旧单车,在一个夏曰的午后推回了家。刘伟骑上单车就跑,天天呼朋唤友,在集镇上闲逛。只有在外面没处混的时候,他才会回家,迎接他的自然是父亲铜铃般的眼珠子。刘伟把他爹当空气,吃完饭,跨上单车又风一样 飘走了。 (3)那一天,刘伟没有骑车出门。单车在墙角拧着脖子,父亲越看越来气,举起一把锄头,攒足力气砸了下去。单车散了架。“你──”刘伟正从外面回来,抄起一根扁担,横在父亲面前。母亲赶紧跑过去夺下了扁担。 (4)父亲本来体弱,这回又气又恨,病倒了。 (5)第 二天,刘伟在埋头收拾衣服,母亲惊诧地问:“你要干啥?” “你别管。”刘伟头也不回,(? ),走了。 (6)“有本事你就别回来!”病床上的父亲吼道。 (7)刘伟走后,母亲每天晚上都会把刘伟的饭留在锅里。半夜,父亲起来喝水,总忍不住揭开锅盖看看。 (8)刘伟真的有 半个月没回家了。母亲急了,找男人吵。父亲便四处打听刘伟的下落。 (9)母亲依然每天都给刘伟留饭。父亲依然每晚都揭开锅盖看一眼。 (10)两个月后的一天中午,母亲在打盹,听到屋里有响声,睁开眼。儿子正打着赤膊一门心思地擦着一辆新单车。父亲斜着眼看他,他装着不 知道。 (11)母亲万分高兴,跑到厨房打了一大碗溏心鸡蛋。刘伟吃着鸡蛋,母亲在一边说:“这次你爸的病一直不见好,今天你把他驮到医院看一下啊!” (12)刘伟不作声,站在单车旁,低头摸着崭新的龙头。父亲不愿意,母亲硬把他推到单车边,架了上去。 (13)刘伟在前面 使劲蹬车。父亲紧紧地拽着座凳下的立杆。父子俩你不理我,我不理你。走了一程,父亲手一松,就从单车上掉下来了。 (14)刘伟两条长腿支挺了车,不耐烦地说:“又怎么了?” (15) “我不走了。”父亲说,“你这辆车是哪里弄来的?借的?偷的?抢的?” (16) “关你什 么事!” (17)“我是你爹!” (18)“起来!” (19)父亲没动。 (20)“不起来拉倒!”刘伟按了一把车铃,“丁零零”跑了! (21)父亲爬起来,拍拍屁股,看见刘伟又把单车骑回来了。 (22)“我说单车是给人家搬砖挣钱买的,你信不信? ”刘伟的口气缓和了一些。 (23)父亲看了看儿子,脸和胳膊都晒得黑黝黝的。“这还差不多。”他嘟哝了一句,就往单车上坐。儿子伸手拉了他一下 :“我要冲了,你抓牢。” (24)父亲犹豫了一下,伸出手环住了儿子的腰。刘伟身体一震,顿了一下,脚下一用力,单车就飞跑起来,身后留下了一串清脆的车 铃声。 19.根据拼音写汉字。(2分) xiàn? mù(? ) 20.填入第⑤段括号里的句子,符合语境的一项是( )(3分) A.顶着火辣辣的太阳? B.冒着冷丝丝的寒风 C.踩着金灿灿的落叶? D.迎着雾蒙蒙的细雨 21.小说以“单车”为线索,情节生动。请在括号里填写恰当的内容。(4分) 母亲购买旧车—( )— ( ) —父子骑车看病 22.第(9)段与第(7)段内容基本相同,简析作者这样写的用意。(5分) ?答:23.细读第(24)段,紧扣加点之处,说说结尾的妙处。(6分) 答:代谢:?19.羡慕 ?20.A? 21.父亲生气砸车 刘伟挣钱买车? 22.评分要点:内容概 括? 说明用意(情感、结构)? 代谢示例:⑦⑨两段都写了母亲“留饭”和父亲“揭开锅盖看”的情节。这些重复动作蕴含着父母对儿子的牵挂,突出了对孩子的爱;也为后文父子矛盾的解决做了铺垫。 ?23.①“环住”体现了父亲对儿子的认可;②身体“一震”也是内心的震动,表明 刘伟体会到了父亲的信任与关爱;③“车铃声”渲染了父子和好带来的愉悦。④结尾含蓄而巧妙地表现了主题:一个曾经叛逆的少年在父母的关爱和生活的磨练中获得了成长。 (2017贵州黔东南)(一)阅读下文,回答14—17题。(12分) 窑? 变 余显斌 ?(1)鲁山花瓷是瓷中名品,百 闻难得一见,因此,市场上算稀罕物,可是,他的店里,有时也做着鲁山花瓷的生意。 ?(2)他开一爿(pán)店,在一弯水边,上写铺名:名瓷之家。各种瓷器,琳琅满目。客人来寻,踏过石桥,转过一道竹林,沿一道逼仄的门进去,眼前一亮,面前柜上摆着罐、杯、壶、瓠(hù)等, 有的天青色,有的白如银子。还有一种瓷,胎质厚实朴重,黑色质地上流淌着白斑蓝彩,泛着幽幽蓝光,让人眩晕。 ?(3)这,就是闻名的鲁山花瓷。 ?(4)买家只许看,选准了,他才拿出瓷器让对方细看。在他这买瓷的,尤其是鲁山花瓷的,一般都信任他。因为,他是鲁山花瓷的权 威。一尊鲁山花瓷拿来,不要放大镜,他用手一摸,鼻子一嗅,嗯,宋代的,绝对宋代的,瞧这质地,这手感。一查,果然是宋代的。也因此,他的那家店,人来人往,生意很好。 ?(5)当然,有时买主一个电话,他也会乐呵呵地送货上门,仅限于本市。以他的说法,不为挣钱,只为 交友,志同道合嘛。 ?(6)有人出三万元钱,想买他这个罐。那天,是个细雨天,天青色的烟雨无边无沿地下着。他用纸盒随手装了个小小的鲁山花瓷罐,提着,走了出去。 ?(7)由于路近,他没有打车,走过小巷,出了竹林。这时,一辆三轮车冲了出来,他躲闪不及,手一松,纸盒 落地,“哐”的一声全碎了。 ?(8)三轮司机傻了眼,跳下来道:“没事吧,大哥?”他火了:“没事?瞧我这罐。”三轮司机说:“不就一个罐吗?多少钱!” ?(9)就在这时,买主打来电话,说三万元已备好,罐怎么还没送来?他将电话让司机听了。三轮司机顿时结结巴巴道: “三——三万元啊?”他眼一翻:“现在知道不是你家腌菜罐子了吧?”三轮司机呆了一会,一咬牙:“我赔!”他哼了一声:“民工吧,你有钱吗?算了算了,就当我募捐了,做了善事。”说着,他不想再纠缠下去,转身就走。 ?(10)回到家,他拿了另一件鲁山花瓷罐,四耳的,黑 底白釉,装入一个纸盒子,去了买主那儿。三万元钱也就到了手里。 ?(11))这样的生意,他一天会做几起。所以,撞碎鲁山花瓷的事,他也就慢慢忘了。 (12)一个冬日的早晨,他刚开门,一个人影戳在眼前。抬眼一望,不是别人,正是那个民工司机。司机吸溜着鼻子,显然站了 一会儿了。看见开门,司机连忙把手上紧紧裹着的蛇皮袋层层打开,抖抖缩缩捏出几卷钱,一张张地数,整整三万,放在他手中。 ?(13)司机交了钱,嘘了口气,好像多大一个心事了了。他张张嘴,想说什么,可又没说出来。直看着那民工骑上三轮车,嘟嘟嘟地走了。一直消失在晨雾 中,消失在他视线的尽头。 ?(14)他拿着钱仍呆呆地站在那儿,心中有股烈焰在燃烧,在蒸腾,在激流澎湃,以至于他虚汗淋漓。因为,只有他知道自己卖出去的鲁山花瓷里,有个别是赝品,是自己手制的。 ?(15)那天,民工撞碎的就是一尊赝品。他当时之所以没让赔,一则赝品不 值钱。再则怕闹开了,被行家发现,看出其中的猫腻。 ?(16)鲁山花瓷,是高温下的一种美丽的窑变。 ?(17)他没想到,一个民工司机,竟让自己心中发生了剧烈的窑变,也如鲁山花瓷一样,放射着一片洁净的蓝色。当天,他找到民工退还了钱。以后,他的“名瓷之家”中,再也没 有赝品了。 (选自2017年5月《小小说月刊》,有删改) 14.下列对本文的理解和分析正确的两项是( )(? )(3分) ? A.第(6)自然段画横线句子在文中的作用是为下文埋下伏笔。 ? B.联系标题“窑变”,可以看出,这篇小说重点刻画的人物是民工司机。 ? C.从第(17)自 然段画线句可以看出,人要想成为如鲁山花瓷一样的瓷中极品,有时需要经历“窑变”。 ? D.第(9)自然段画横线句子“他不想再纠缠下去,转身就走”可以看出,“他”是一个同情农民工的人。 15.第(12)自然段划波浪线句子运用了什么描写方法?有何作用?(3分) 答: ? 16.谈谈你对标题“窑变”含义的理解。(3分) 答: ? 17.“人无完人,金无足赤”,在现实生活中,相信你也有过“窑变”的经历。请根据你对课文的理解,简要谈谈你的“窑变”过程。(3分) 答: 代谢:14.(3分)A、C(C选项着眼于全文,2分;A选项着眼于局部,1分;B項重 点刻画人物是“他”,他不想纠缠是因为这鲁山花瓷是赝品,不值钱,“他“怕被行家看出破绽。) 15.(3分)动作描写(1分),表现出民工司机非常珍惜他的血汗钱,每一张钱都来之不易,同时也表现了民工司机敢于担当、诚信朴实、善良的高贵品质 (2分)。 16.(3分)“窑变” 指瓷器土胚在窑中经过数次高温烧烤后,最终形成美丽魯山花瓷的过程(1分),在文中,“窑变”的深层含义是指“他”在民工司机敢于相当、讲诚信美德的影响下得到净化后发生变化的过程。(2分) 17.(3分)(代谢略。考生能联系“自身缺点受到某人、某事物、某种现象的影响, 得到启发,受到警醒,发生质的变化”进行回答,语言通顺,意思表达清楚,即可得到满分3分) (2017山东东营)(三)(8 分) “我也知道。将军家里都是些名贵的、纯种的狗;这条狗呢,鬼才知道是什么玩意儿! 毛色既不好,模样也不中看,完全是个下贱胚子。居然有人养这种 狗!这人的脑子上哪儿去啦?要是这样的狗在彼得堡或者莫斯科让人碰见,你们猜猜看,结果会怎样?那儿的人可不管什么法律不法律,一眨眼的工夫就叫它断了气!你呢,赫留金,受了害,我们绝不能不管。得好好教训他们一下!是时候了。” ……“它的脸上又没写着……前几天我 在将军家院子里看见过这样的一条狗。”

高中数学集合题型及解题方法

高中数学集合题型及解题方法

高中数学集合题型及解题方法摘要:1.集合概念与基本运算2.集合间的逻辑关系3.集合题型分类及解题方法4.高考集合题型解析5.解题技巧与策略正文:一、集合概念与基本运算集合是数学中的基本概念,它由一些元素组成。

集合间的运算主要包括并集、交集、补集和全集等。

熟练掌握集合的基本概念和运算对于解决集合题型至关重要。

二、集合间的逻辑关系集合间的逻辑关系包括子集、超集、真子集、真超集等。

理解这些逻辑关系有助于我们更好地把握集合间的包含关系,为解题打下基础。

三、集合题型分类及解题方法1.集合基本运算题:求解集合间的并集、交集、补集等运算,可以通过列举法、描述法等方法求解。

2.集合逻辑关系题:判断集合间的包含关系、相等关系等,可以利用真子集、真超集等概念进行判断。

3.集合与函数题:集合与函数的关系,如函数的定义域、值域等问题,可以通过对函数的性质进行分析求解。

4.集合与数列题:集合与数列的关系,如求数列的通项公式、求和公式等问题,可以通过集合运算解决。

5.集合与不等式题:集合与不等式的关系,如解集合不等式、求解不等式组等问题,可以通过集合的基本运算解决。

四、高考集合题型解析高考中的集合题型主要涉及集合的基本运算、逻辑关系、与函数、数列、不等式的结合等问题。

解题时要注意审题,把握题目中的关键信息,运用恰当的解题方法。

五、解题技巧与策略1.审题要细,抓住关键信息。

2.善于利用集合的基本性质和运算规律。

3.灵活运用逻辑关系判断方法。

4.分类讨论,化简集合运算过程。

5.结合其他数学知识点,如函数、数列、不等式等,综合分析问题。

通过以上分析和方法,相信大家对高中数学集合题型及解题方法有了更深入的了解。

数学集合的概念运算

数学集合的概念运算

课前案1.集合与元素(1)集合元素的三个特征:、、.(2)元素与集合的关系是或关系,用符号或表示.(3)集合的表示法:、、.(4)常见数集的记法集合自然数集正整数集整数集有理数集实数集符号2.集合间的基本关系表示关系文字语言符号语言记法基本关系子集集合A的所有元素都是集合B的元素x∈A⇒x∈BA B或B A 真子集集合A是集合B的子集,且集合B中至少有一个元素不属于AA⊆B,且存在x0∈B,x0∉AA B或B A 相等集合A,B的元素完全相同A⊆B,B⊆AA=B 空集不含任何元素的集合.空集是任何集合A的子集任意x,x∉∅,∅⊆A ∅3.集合的基本运算集合的并集集合的交集集合的补集图形语言符号语言A∪B=A∩B=∁U A=(1)并集的性质:A∪∅=A;A∪A=A;A∪B=B∪A;A∪B=A⇔B⊆A.(2)交集的性质:A∩∅=∅;A∩A=A;A∩B=B∩A;A∩B=A⇔A⊆B.(3)补集的性质:A∪(∁U A)=U;A∩(∁U A)=∅.(4)∁U(∁U A)=A;∁U(A∪B)=(∁U A)∩(∁U B);∁U(A∩B)=(∁U A)∪(∁U B).课中案一、目标导引[疑误辨析]判断正误(正确的打“√”,错误的打“×”)(1){x |y =x 2+1}={y |y =x 2+1}={(x ,y )|y =x 2+1}.( ) (2)若{x 2,1}={0,1},则x =0,1.( ) (3){x |x ≤1}={t |t ≤1}.( )(4)对于任意两个集合A ,B ,(A ∩B )⊆(A ∪B )恒成立. ( ) (5)若A ∩B =A ∩C ,则B =C .( ) [教材衍化]1.(必修1P12A 组T3改编)若集合P ={x ∈N |x ≤ 2 021},a =22,则( ) A .a ∈P B .{a }∈P C .{a }⊆P D .a ∉P2.(必修1P11例9改编)已知U ={α|0°<α<180°},A ={x |x 是锐角},B ={x |x 是钝角},则∁U (A ∪B )=________.3.(必修1P44A 组T5改编)已知集合A ={(x ,y )|x 2+y 2=1},B ={(x ,y )|y =x },则A ∩B 中元素的个数为________.[易错纠偏](1)忽视集合中元素的互异性致误; (2)忽视空集的情况致误; (3)忽视区间端点值致误. 1.已知集合A ={1,3,m },B ={1,m },若B ⊆A ,则m =________.2.已知集合A ={x |x 2-4x +3<0},B ={x |2<x <4},则A ∩B =________,A ∪B =________,(∁R A )∪B =________.3.已知集合M ={x |x -2=0},N ={x |ax -1=0},若M ∩N =N ,则实数a 的值是________. 二典型例题集合的含义(1)已知集合A ={0,1,2},则集合B ={(x ,y )|x ≥y ,x ∈A ,y ∈A }中元素的个数是( ) A .1 B .3 C .6 D .9(2)若集合A ={x ∈R |ax 2-3x +2=0}中只有一个元素,则a =( ) A .92 B .98 C .0 D .0或98(3)设a ,b ∈R ,集合{1,a +b ,a }=⎩⎨⎧⎭⎬⎫0,b a ,b ,则b -a =________.与集合中的元素有关问题的求解步骤1.(2020·温州八校联考)已知集合M={1,m+2,m2+4},且5∈M,则m的值为() A.1或-1 B.1或3 C.-1或3 D.1,-1或32.已知集合A={x|x∈Z,且32-x∈Z},则集合A中的元素个数为________.集合的基本关系(1)已知集合A={x|x2-3x+2=0,x∈R},B={x|0<x<5,x∈N},则满足条件A⊆C⊆B的集合C 的个数( ) A.1 B.2 C.3 D.4(2)已知集合A={x|-2≤x≤5},B={x|m+1≤x≤2m-1},若B⊆A,则实数m的取值范围为________.1.(变条件)在本例(2)中,若A⊆B,如何求解?2.(变条件)若将本例(2)中的集合A改为A={x|x<-2或x>5},如何求解?1.设P={y|y=-x2+1,x∈R},Q={y|y=2x,x∈R},则()A.P⊆Q B.Q⊆P C.∁R P⊆Q D.Q⊆∁R P2.(2020·绍兴调研)设A={1,4,2x},B={1,x2},若B⊆A,则x=________.3.已知集合A={x|x2-3x+2=0,x∈R},B={x|0<x<5,x∈N},则满足条件A⊆C⊆B的集合C的个数为________.集合的基本运算(高频考点)集合的基本运算是历年高考的热点,每年必考,常和不等式的解集、函数的定义域、值域等相结合命题,主要以选择题的形式出现.试题多为低档题.主要命题角度有:(1)求集合间的交、并、补运算;(2)已知集合的运算结果求参数.角度一求集合间的交、并、补运算2019·高考全国卷Ⅰ)已知集合U={1,2,3,4,5,6,7},A={2,3,4,5},B={2,3,6,7},则B∩∁U A=()A.{1,6} B.{1,7} C.{6,7} D.{1,6,7}(2)(2020·浙江高考模拟)设全集U=R,集合A={x|x2-x-2<0},B={x|1<x<3},则A∪B=________,∁U(A ∩B)=________.角度二已知集合的运算结果求参数(1)设集合A={x|-1≤x<2},B={x|x<a},若A∩B≠∅,则a的取值范围是()A.-1<a≤2 B.a>2 C.a≥-1 D.a>-1(2)设集合A={1,2,4},B={x|x2-4x+m=0}.若A∩B={1},则B=()A.{1,-3} B.{1,0 }C.{1,3} D.{1,5}(1)集合运算的常用方法①若集合中的元素是离散的,常用Venn图求解.②若集合中的元素是连续的实数,则用数轴表示,此时要注意端点的情况.(2)利用集合的运算求参数的值或取值范围的方法①与不等式有关的集合,一般利用数轴解决,要注意端点值能否取到.②若集合能一一列举,则一般先用观察法得到不同集合中元素之间的关系,再列方程(组)求解.[提醒]在求出参数后,注意结果的验证(满足互异性).1.已知集合P={x∈R|1≤x≤3},Q={x∈R|x2≥4},则P∪(∁R Q)=()A.[2,3] B.(-2,3] C.[1,2) D.(-∞,-2]∪[1,+∞)2.设全集S={1,2,3,4},且A={x∈S|x2-5x+m=0},若∁S A={2,3},则m=________.核心素养系列 数学抽象——集合的新定义问题定义集合的商集运算为A B ={x |x =m n ,m ∈A ,n ∈B }.已知集合A ={2,4,6},B ={x |x =k2-1,k∈A },则集合BA ∪B 中的元素个数为( )A .6B .7C .8D .9解决集合新定义问题的方法(1)紧扣新定义.首先分析新定义的特点,把新定义所叙述的问题的本质弄清楚,并能够应用到具体的解题过程之中,这是破解新定义型集合问题难点的关键所在.(2)用好集合的性质.集合的性质(概念、元素的性质、运算性质等)是破解新定义型集合问题的基础,也是突破口,在解题时要善于从试题中发现可以使用集合性质的一些因素,在关键之处用好集合的性质.设数集M ={x |m ≤x ≤m +34},N ={x |n -13≤x ≤n },且M ,N 都是集合U ={x |0≤x ≤1}的子集,定义b -a 为集合{x |a ≤x ≤b }的“长度”,则集合M ∩N 的长度的最小值为________.课后案 [A 组]1.已知集合A ={1,2,3,4},B ={2,4,6,8},则A ∩B 中元素的个数为( ) A .1 B .2 C .3 D .42.(2020·温州十五校联合体联考)已知集合A ={}x |e x ≤1,B ={}x |ln x ≤0,则A ∪B =( ) A .(-∞,1] B .(0,1] C .[1,e] D .(0,e]3.已知全集U =A ∪B ={x ∈Z |0≤x ≤6},A ∩(∁U B )={1,3,5},则B =( ) A .{2,4,6} B .{1,3,5} C .{0,2,4,6} D .{x ∈Z |0≤x ≤6} 4.设集合A ={1,2,6},B ={2,4},C ={x ∈R |-1≤x ≤5},则(A ∪B )∩C =( ) A .{2} B .{1,2,4} C .{1,2,4,6} D .{x ∈R |-1≤x ≤5} 5.已知全集为R ,集合A ={x |x 2-5x -6<0},B ={x |2x <1},则图中阴影部分表示的集合是( )A .{x |2<x <3}B .{x |-1<x ≤0}C .{x |0≤x <6}D .{x |x <-1}6.已知集合A ={x |x 2-3x <0},B ={1,a },且A ∩B 有4个子集,则实数a 的取值范围是( ) A .(0,3) B .(0,1)∪(1,3) C .(0,1) D .(-∞,1)∪(3,+∞) 7.设U ={x ∈N *|x <9},A ={1,2,3},B ={3,4,5,6},则(∁U A )∩B =( ) A .{1,2,3} B .{4,5,6} C .{6,7,8} D .{4,5,6,7,8}8.设集合A =⎩⎨⎧⎭⎬⎫5,b a ,a -b ,B ={b ,a +b ,-1},若A ∩B ={2,-1},则A ∪B =( )A .{-1,2,3,5}B .{-1,2,3}C .{5,-1,2}D .{2,3,5}9.已知集合P ={n |n =2k -1,k ∈N *,k ≤50},Q ={2,3,5},则集合T ={xy |x ∈P ,y ∈Q }中元素的个数为( ) A .147 B .140 C .130 D .11710.已知全集U =R ,集合A ={x |x 2-3x +2>0},B ={x |x -a ≤0},若∁U B ⊆A ,则实数a 的取值范围是( )A .(-∞,1)B .(-∞,2]C .[1,+∞)D .[2,+∞)11.集合A ={0,2,a },B ={1,a 2},若A ∪B ={0,1,2,4,16},则a 的值为________. 12.已知全集U =R ,集合A ={x |-1≤x ≤3},集合B ={x |log 2(x -2)<1},则A ∪B =________;A ∩(∁U B )=________.13.设集合A ={n |n =3k -1,k ∈Z },B ={x ||x -1|>3},则B =________,A ∩(∁R B )=________. 14.设全集为R ,集合M ={x ∈R |x 2-4x +3>0},集合N ={x ∈R |2x >4},则M ∩N =________;∁R (M ∩N )=________.15.已知集合M ={x |x 2-4x <0},N ={x |m <x <5},若M ∩N ={x |3<x <n },则m =________,n =________. 16.设全集U ={x ∈N *|x ≤9},∁U (A ∪B )={1,3},A ∩(∁U B )={2,4},则B =________. 17.已知集合A ={x |1≤x <5},C ={x |-a <x ≤a +3},若C ∩A =C ,则a 的取值范围是________.[B 组]1.已知全集U 为R ,集合A ={x |x 2<16},B ={x |y =log 3(x -4)},则下列关系正确的是( ) A .A ∪B =R B .A ∪(∁U B )=R C .(∁U A )∪B =R D .A ∩(∁U B )=A .2.集合A ={x |y =ln(1-x )},B ={x |x 2-2x -3≤0},全集U =A ∪B ,则∁U (A ∩B )=( )A .{x |x <-1或x ≥1}B .{x |1≤x ≤3或x <-1}C .{x |x ≤-1或x >1}D .{x |1<x ≤3或x ≤-1} 3.(2020·浙江新高考联盟联考)已知集合A ={1,2,m },B ={1,m },若B ⊆A ,则m =________,∁A B =________.4.函数g (x )=⎩⎪⎨⎪⎧x ,x ∈P ,-x ,x ∈M ,其中P ,M 为实数集R 的两个非空子集,规定f (P )={y |y =g (x ),x ∈P },f (M )={y |y =g (x ),x ∈M }.给出下列四个命题:①若P ∩M =∅,则f (P )∩f (M )=∅; ②若P ∩M ≠∅,则f (P )∩f (M )≠∅; ③若P ∪M =R ,则f (P )∪f (M )=R ; ④若P ∪M ≠R ,则f (P )∪f (M )≠R . 其中命题不正确的有________.5.设[x ]表示不大于x 的最大整数,集合A ={x |x 2-2[x ]=3},B =⎩⎨⎧⎭⎬⎫x |18<2x <8,求A ∩B .6.已知集合A ={x |1<x <3},集合B ={x |2m <x <1-m }. (1)当m =-1时,求A ∪B ; (2)若A ⊆B ,求实数m 的取值范围; (3)若A ∩B =∅,求实数m 的取值范围.课后案答题纸1 2 3 4 5 6 7 8 9 1011. 12. A ∪B =________;A ∩(∁U B )=________.13、 B =________,A ∩(∁R B )=_14. M ∩N =________;∁R (M ∩N )=________. 15. m =________,n =________.16. B =________. 17.B 组1 23. m =________,∁A B =________.4.5.设[x ]表示不大于x 的最大整数,集合A ={x |x 2-2[x ]=3},B =⎩⎨⎧⎭⎬⎫x |18<2x <8,求A ∩B .6.已知集合A ={x |1<x <3},集合B ={x |2m <x <1-m }. (1)当m =-1时,求A ∪B ; (2)若A ⊆B ,求实数m 的取值范围; (3)若A ∩B =∅,求实数m 的取值范围.。

高考数学《1.1集合与常用逻辑用语》

高考数学《1.1集合与常用逻辑用语》
C
关闭
关闭
解析 答案
第一章
1.1 集合的概念与运算
知识体系
知识梳理
核心考点
-13-
知识梳理 双基自测 自测点评
12345
5.(教材例题改编P8例5)设集合A={x|(x+1)·(x-2)<0},集合 B={x|1<x<3},则A∩B=( )
A.(-1,3) B.(-1,0) C.(1,2) D.(2,3)
A.{1,2,3} B.{1,2,4}
C.{1,3,4} D.{2,3,4}
解析 ∵A={1,4},B={2,4}, ∴A∩B={4}. 又U={x∈N*|x≤4}={1,2,3,4}, A∴∁U(A∩B)={1,2,3}
关闭
关闭
解析 答案
第一章
1.1 集合的概念与运算
知识体系
知识梳理
核心考点
-12-
12345
2.集合间的基本关系
关系 自然语言
符号语言
集合 A 中所有元素都在 子集 集合 B 中(即若 x∈A,则 x A⊆B(或B⊇A)
∈B)
真子 集
相等
集合 A 是集合 B 的子集, 且集合 B 中至少有一个 元素不在集合 A 中
集合 A,B 中元素相同或 集合 A,B 互为子集
A⫋B(或B⫌A) A=B
-5-
Venn 图 或
第一章
1.1 集合的概念与运算
知识体系
知识梳理
核心考点
-6-
知识梳理 双基自测 自测点评
12345
3.集合的运算
集合的并集
集合的交集
集合的补集
图形
符号
A∪B
={x|x∈A或x∈B}

重难点01 集合的概念与运算—2023年高考数学(原卷版)

重难点01 集合的概念与运算—2023年高考数学(原卷版)

重难点01 集合概念与运算1.集合的有关概念(1)集合中元素的三个特性:确定性、互异性、无序性。

(2)集合与元素的关系:若a属于集合A,记作a∈A;若b不属于集合A,记作b∉A。

(3)集合的表示方法:列举法、描述法、图示法。

(4)五个特定的集合:集合非负整数集(或自然数集) 正整数集整数集有理数集实数集符号N N*或N+Z Q R 2.集合间的基本关系表示关系文字语言记法集合间的基本关系子集集合A中任意一个元素都是集合B中的元素A⊆B或B⊇A 真子集集合A是集合B的子集,并且B中至少有一个元素不属于AA⊂B或B⊃A 相等集合A中的每一个元素都是集合B中的元素,集合B中的每一个元素也都是集合A中的元素A⊆B且B⊆A⇔A=B 空集空集是任何集合的子集∅⊆A空集是任何非空集合的真子集∅⊂B且B≠∅3.集合的三种基本运算符号表示图形表示符号语言集合的并集A∪B A∪B={x|x∈A,或x∈B}集合的交集 A ∩ BA ∩B ={x |x ∈A ,且x ∈B }集合的补集若全集为U ,则集合A 的补集为∁U A∁U A ={x |x ∈U ,且x ∉A }4.集合基本运算的性质 (1)A ∩A =A ,A ∩∅=∅。

(2)A ∪A =A ,A ∪∅=A 。

(3)A ∩(∁U A )=∅,A ∪(∁U A )=U ,∁U (∁U A )=A 。

(4)A ⊆B ⇔A ∩B =A ⇔A ∪B =B ⇔∁U A ⊇∁U B ⇔A ∩(∁U B )=∅。

2023年高考中仍将与一元二次不等式解法、一元一次不等式解法、指数、对数不等式解法结合重点考查集合的交集运算,也可能考查集合的并集、补集运算,依然放在前2题位置,难度为基础题.(建议用时:20分钟)一、单选题1.设集合{1,3,5,7}A =,{|25}B x x =≤≤,则A B =( )(A ){1,3}(B ){3,5}(C ){5,7}(D ){1,7}2.已知集合{}{}{}1,2,3,4,5,6,72,3,4,52,3,6,7U A B ===,,,则C U B A =( )A. {}1,6B. {}1,7C. {}6,7D. {}1,6,73.已知全集{}1,2,3,4,5,6,7,8U =,集合{}2,3,5,6A =,集合{}1,3,4,6,7B =,则集合UAB =A .{}2,5B .{}3,6C .{}2,5,6D .{}2,3,5,6,8 4.设集合},]2,0[,2{},21{∈==<-=x y y B x x A x 则=B A A . [0,2] B .(1,3) C . [1,3) D . (1,4)5.设集合{|(1)(2)0}A=x x x +-<,集合{|13}B x x =<<,则A BA .{|13}x x -<<B .{|11}x x -<<C .{|12}x x <<D .{|23}x x <<6.设集合{1,1,2,3,5},{2,3,4},{|13}A B C x x =-==∈<R ,则()A C B =A.{}2B.{}2,3C.{}1,2,3-D.{}1,2,3,4 7.设集合}034|{2<+-=x x x A ,}032|{>-=x x B ,则B A = A.3(3,)2-- B.3(3,)2- C.3(1,)2 D.3(,3)28.已知集合A ={1,2,3,4,5},B ={(x ,y )|x ∈A ,y ∈A ,x y -∈A },则B 中所含元素的个数为A .3B .6C .8D .109.已知集合B A 、均为全集}4,3,2,1{=U 的子集,且(){4}UA B =,{1,2}B =,则UAB =A .{3}B .{4}C .{3,4}D .∅10.设集合{}1,2,4A =,{}240x x x m B =-+=.若{}1AB =,则B =A .{}1,3-B .{}1,0C .{}1,3D .{}1,5 11.已知集合{}}242{60M x x N x x x =-<<=--<,,则M N ⋂=( )A. }{43x x -<<B. }{42x x -<<-C. }{22x x -<<D. }{23x x <<12.已知全集为R ,集合112xA x ⎧⎫⎪⎪⎛⎫=≤⎨⎬ ⎪⎝⎭⎪⎪⎩⎭,{}2|680B x x x =-+≤,则R A C B =A .{}|0x x ≤B .{}|24x x ≤≤C . {}|024x x x ≤<>或D .{}|024x x x <≤≥或13.集合{}R 25A x x =∈-≤中的最小整数为_______.14.已知集合A ={x |y =x 2},B ={y |y =x 2},C ={(x ,y )|y =x 2},则A ∩B =________,A ∩C =________。

高考数学冲刺集 合的并集、交集与补集运算

高考数学冲刺集 合的并集、交集与补集运算

高考数学冲刺集合的并集、交集与补集运算高考数学冲刺:集合的并集、交集与补集运算在高考数学中,集合的并集、交集与补集运算是一个重要的知识点。

对于即将参加高考的同学们来说,熟练掌握这些运算方法,不仅能够在考试中准确解题,还能为后续学习高等数学打下坚实的基础。

接下来,让我们一起深入探讨这一重要的数学概念。

一、集合的基本概念在了解并集、交集与补集运算之前,我们先来回顾一下集合的基本概念。

集合是由一些具有特定性质的元素所组成的整体。

我们通常用大写字母来表示集合,比如 A、B、C 等。

集合中的元素用小写字母表示,比如 a、b、c 等。

集合的表示方法有列举法、描述法和图示法。

列举法就是将集合中的元素一一列举出来,比如集合 A ={1, 2, 3};描述法是通过描述元素所具有的性质来表示集合,比如集合 B ={x | x > 0},表示 B 是由所有大于 0 的实数组成的集合;图示法包括韦恩图(Venn Diagram),它能直观地展示集合之间的关系。

二、并集运算并集是指将两个或多个集合中的所有元素合并在一起组成的新集合。

用符号“∪”表示。

例如,集合 A ={1, 2, 3},集合 B ={3, 4, 5},那么 A∪B ={1, 2, 3, 4, 5}。

并集运算的性质包括:1、交换律:A∪B = B∪A2、结合律:(A∪B)∪C = A∪(B∪C)在解题时,我们要注意对于两个集合的并集,相同的元素只算一次。

三、交集运算交集是指两个或多个集合中共同拥有的元素所组成的集合。

用符号“∩”表示。

继续以上面的集合 A 和 B 为例,A∩B ={3}。

交集运算的性质有:1、交换律:A∩B =B∩A2、结合律:(A∩B)∩C =A∩(B∩C)需要注意的是,如果两个集合没有共同的元素,那么它们的交集为空集,用符号“∅”表示。

四、补集运算补集是指在一个给定的全集 U 中,集合 A 之外的所有元素组成的集合。

用符号“CUA”表示。

高考数学总复习之集合的概念与运算

高考数学总复习之集合的概念与运算

高考数学总复习之集合的概念与运算一、知识梳理 1.集合的有关概念2.元素与集合、集合与集合之间的关系 (1)元素与集合:“∈”或“∉”.(2)集合与集合之间的关系:包含关系、相等关系. 3.集合的运算(1)交集:由所有属于集合A 且属于集合B 的元素所组成的集合,叫做集合A 与B 的交集,记为A ∩B ,即A ∩B ={x |x ∈A 且x ∈B }.(2)并集:由所有属于集合A 或属于集合B 的元素所组成的集合,叫做集合A 与集合B 的并集,记为A ∪B ,即A ∪B ={x |x ∈A 或x ∈B }.(3)补集:一般地,设S 是一个集合,A 是S 的一个子集(即A ⊆S ),由S 中所有不属于A 的元素组成的集合,叫做子集A 在全集S 中的补集(或余集),记为S A ,即S A ={x |x ∈S 且x ∉A }.二、点击双基1.已知集合M ={x |x 2<4},N ={x |x 2-2x -3<0},则集合M ∩N 等于 A.{x |x <-2} B.{x |x >3} C.{x |-1<x <2} D.{x |2<x <3} 解析:M ={x |x 2<4}={x |-2<x <2},N ={x |x 2-2x -3<0}={x |-1<x <3},结合数轴,∴M ∩N ={x |-1<x <2}. 答案:C2.已知集合A ={x ∈R |x <5-2},B ={1,2,3,4},则(R A )∩B 等于 A.{1,2,3,4} B.{2,3,4} C.{3,4} D.{4} 解析:R A ={x ∈R |x ≥5-2},而5-2∈(3,4),∴(R A )∩B ={4}. 答案:D3.设集合P ={1,2,3,4,5,6},Q ={x ∈R |2≤x ≤6},那么下列结论正确的是 A.P ∩Q =P B.P ∩Q Q C.P ∪Q =Q D.P ∩Q P 解析:P ∩Q ={2,3,4,5,6},∴P ∩Q P . 答案:D4.若全集}5,4,3,2,1{=M ,}4,2{=N ,M N )=( ) A.φ B.}5,3,1{ C.}4,2{ D. }5,4,3,2,1 答案:B5.已知集合A ={0,1},B ={x |x ∈A ,x ∈N*},C ={x |x ⊆A },则A 、B 、C 之间的关系是___________________.解析:用列举法表示出B ={1},C ={∅,{1},{0},A },易见其关系.这里A 、B 、C 是不同层次的集合,C 以A 的子集为元素,同一层次的集合可有包含关系,不同层次的集合之间只能是从属关系.答案:B A ,A ∈C ,B ∈C 三、典例剖析例1已知集合}2log |{2≤=x x A ,),(a B -∞=,若B A ⊆,则实数a 的取值范围是),(+∞c ,其中=c __4____.解析:}40|{≤<=x x A ,),(a B -∞=,又B A ⊆,∴4≥a ,又实数a 的取值范围是),(+∞c ,∴4=c .例2 已知A ={x |x 3+3x 2+2x >0},B ={x |x 2+ax +b ≤0}且A ∩B ={x |0<x ≤2},A ∪B ={x |x >-2},求a 、b 的值.解:A ={x |-2<x <-1或x >0},B =[x 1,x 2],由A ∩B =(0,2]知x 2=2, 且-1≤x 1≤0, ①由A ∪B =(-2,+∞)知-2≤x 1≤-1.②由①②知x 1=-1,x 2=2,∴a =-(x 1+x 2)=-1,b =x 1x 2=-2.评述:本题应熟悉集合的交与并的涵义,熟练掌握在数轴上表示区间(集合)的交与并的方法.三、深化拓展已知全集R U =,}1|1||{≥-=x x A ,B为函数132)(++-=x x x f 的定义域,C 为)]2)(1lg[()(x a a x x g ---=)1(<a的定义域;(1)A B I ;)(B A C U ⋃ (2)若C B ⊆,求实数a 的取值范围; 解:{0,A x x ∴=≤或}2x ≥; ∵函数()f x 的自变量x 应满足3201x x +-≥+,即(1)(1)010x x x +-≥⎧⎨+≠⎩ ∴1x <-或1x ≥{1,B x x ∴=<-或}1x ≥; {1,A B x x =<-I 或}2x ≥,{0,A B x x =≤U 或}1x ≥,()U C A B ⋃{}01x x =<<(2)∵函数()g x 的自变量x 应满足不等式(1)(2)0x a a x --->. 又由1a <,21a x a ∴<<+{}21C x a x a ∴=<<+ C B ⊆Q11a ∴+≤-或21a ≥ 2a ∴≤-或12a ≥,又1a <a ∴的取值范围为2a ≤-或112a ≤<. 例3 设集合P ={m |-1<m ≤0},Q ={m ∈R |mx 2+4mx -4<0对任意实数x 恒成立},则下列关系中成立的是A.P QB.Q PC.P =QD.P ∩Q =Q剖析:Q ={m ∈R |mx 2+4mx -4<0对任意实数x 恒成立}, 对m 分类:①m =0时,-4<0恒成立;②m <0时,需Δ=(4m )2-4×m ×(-4)<0,解得-1<m <0. 综合①②知-1<m ≤0,∴Q ={m ∈R |-1<m ≤0}. 答案:C评述:本题容易忽略对m =0的讨论,应引起大家足够的重视.例4 已知集合A ={(x ,y )|x 2+mx -y +2=0},B ={(x ,y )|x -y +1=0,0≤x ≤2},如果A ∩B ≠∅,求实数m 的取值范围.剖析:如果目光总是停留在集合这一狭窄的知识范围内,此题的思维方法是很难找到的.事实上,集合符号在本题中只起了一种“化妆品”的作用,它的实际背景是“抛物线x 2+mx -y +2=0与线段x -y +1=0(0≤x ≤2)有公共点,求实数m 的取值范围”.这种数学符号与数学语言的互译,是考生必须具备的一种数学素质.解:由⎩⎨⎧≤≤=+-=+-+),20(01,022x y x y mx x 得x 2+(m -1)x +1=0. ①∵A ∩B ≠∅,∴方程①在区间[0,2]上至少有一个实数解. 首先,由Δ=(m -1)2-4≥0,得m ≥3或m ≤-1.当m ≥3时,由x 1+x 2=-(m -1)<0及x 1x 2=1知,方程①只有负根,不符合要求;当m ≤-1时,由x 1+x 2=-(m -1)>0及x 1x 2=1>0知,方程①有两个互为倒数的正根.故必有一根在区间(0,1]内,从而方程①至少有一个根在区间[0,2]内.综上所述,所求m 的取值范围是(-∞,-1].评述:上述解法应用了数形结合的思想.如果注意到抛物线x 2+mx -y +2=0与线段x -y +1=0(0≤x ≤2)的公共点在线段上,本题也可以利用公共点内分线段的比λ的取值范围建立关于m 的不等式来解.设m ∈R ,A ={(x ,y )|y =-3x +m },B ={(x ,y )|x =cos θ,y =sin θ,0<θ<2π},且A ∩B ={(cos θ1,sin θ1),(cos θ2,sin θ2)}(θ1≠θ2),求m 的取值范围.提示:根据题意,直线y =-3x +m 与圆x 2+y 2=1(x ≠1)交于两点, ∴22)3(1||-+m <1且0≠-3×1+m . ∴-2<m <2且m ≠3.答案:-2<m <2且m ≠3.四、闯关训练1.集合A ={(x ,y )|x +y =0},B ={(x ,y )|x -y =2},则A ∩B 是A.(1,-1)B.⎩⎨⎧-==11y x C.{(1,-1)}D.{1,-1}解析:⎩⎨⎧=-=+20y x y x ⇒⎩⎨⎧-==.1,1y x 答案:C2.设集合A ={5,log 2(a +3)},集合B ={a ,b }.若A ∩B ={2},则A ∪B =______________.解析:∵A ∩B ={2},∴log 2(a +3)=2.∴a =1.∴b =2.∴A ={5,2},B ={1,2}.∴A ∪B ={1,2,5}.答案:{1,2,5}3.设A ={x |1<x <2},B ={x |x >a },若A B ,则a 的取值范围是___________________. 解析:A B 说明A 是B 的真子集,利用数轴(如下图)可知a ≤1. 答案:a ≤14.已知集合A ={x ∈R |ax 2+2x +1=0,a ∈R }只有一个元素,则a 的值为__________________.解析:若a =0,则x =-21.若a ≠0,Δ=4-4a =0,得a =1. 答案:a =0或a =15.设A 、B 、I 均为非空集合,且满足A ⊆B ⊆I ,则下列各式中错误..的是 A.(I A )∪B =IB.(I A )∪(I B )=IC.A ∩(I B )=∅D.(I A )∩(I B )=I B解析一:∵A 、B 、I 满足A ⊆B ⊆I ,先画出文氏图,根据文氏图可判断出A 、C 、D 都是正确的.解析二:设非空集合A 、B 、I 分别为A ={1},B ={1,2},I ={1,2,3}且满足A ⊆B ⊆I .根据设出的三个特殊的集合A 、B 、I 可判断出A 、C 、D 都是正确的.答案:B6.记函数f (x )=log 2(2x -3)的定义域为集合M ,函数g (x )= )1)(3(--x x 的定义域为集合N .求:(1)集合M 、N ;(2)集合M ∩N 、M ∪N .解:(1)M ={x |2x -3>0}={x |x >23};N ={x |(x -3)(x -1)≥0}={x |x ≥3或x ≤1}. (2)M ∩N ={x |x ≥3};M ∪N ={x |x ≤1或x >23}.7.已知A ={x ∈R |x 2+2x +p =0}且A ∩{x ∈R |x >0}=∅,求实数p 的取值范围. 解:∵A ∩{x ∈R |x >0}=∅,∴(1)若A =∅,则Δ=4-4p <0,得p >1;(2)若A ≠∅,则A ={x |x ≤0},即方程x 2+2x +p =0的根都小于或等于0. 设两根为x 1、x 2,则⎪⎩⎪⎨⎧≥=≤-=+≥-=.0,02,0442121p x x x x p Δ ∴0≤p ≤1. 综上所述,p ≥0. 8.已知P ={(x ,y )|(x +2)2+(y -3)2≤4},Q ={(x ,y )|(x +1)2+(y -m )2<41},且P ∩Q =Q ,求m 的取值范围.解:点集P 表示平面上以O 1(-2,3)为圆心,2为半径的圆所围成的区域(包括圆周);点集Q 表示平面上以O 2(-1,m )为圆心,21为半径的圆的内部.要使P ∩Q =Q ,应使⊙O 2内含或内切于⊙O 1.故有|O 1O 2|2≤(R 1-R 2)2,即(-1+2)2+(m -3)2≤(2-21)2.解得3-25≤m ≤3+25.评述:本题选题目的是:熟悉用集合语言表述几何问题,利用数形结合方法解题.9.若B ={x |x 2-3x +2<0},是否存在实数a ,使A ={x |x 2-(a +a 2)x +a 3<0}且A ∩B =A ?请说明你的理由.解:∵B ={x |1<x <2},若存在实数a ,使A ∩B =A ,则A ={x |(x -a )(x -a 2)<0}. (1)若a =a 2,即a =0或a =1时,此时A ={x |(x -a )2<0}=∅,满足A ∩B =A ,∴a =0或a =1.(2)若a 2>a ,即a >1或a <0时,A ={x |0<x <a 2},要使A ∩B =A ,则⎩⎨⎧≤≥212a a ⇒1≤ a ≤2,∴1<a ≤2.(3)若a 2<a ,即0<a <1时,A ={x |a <x <a 2},要使A ∩B =A ,则⎩⎨⎧≥≤122a a ⇒1≤a ≤2,∴a ∈∅.综上所述,当1≤a ≤2或a =0时满足A ∩B =A ,即存在实数a ,使A ={x |x 2-(a +a 2)x + a 3<0}且A ∩B =A 成立.10.已知二次函数x ax x f +=2)(有最小值,不等式0)(<x f 的解集为A 。

集合高考必考知识点总结

集合高考必考知识点总结

集合高考必考知识点总结高考是中国学生人生中最重要的考试之一,集合作为数学必考的重要知识点,在高考中占据着很大的比重。

本文将对高考数学中集合的必考知识点进行总结。

一、集合的基本概念集合是一个由确定的对象所构成的整体。

常用大写字母A、B、C 等表示集合,小写字母a、b、c等表示集合中的元素。

例如,集合A={1, 2, 3, 4},其中的元素1、2、3和4都属于集合A。

二、集合的运算1. 交集运算:集合A和集合B的交集,表示为A∩B,表示A和B 共有的元素组成的集合。

例如,集合A={1, 2, 3},集合B={2, 3, 4},则A∩B={2, 3}。

2. 并集运算:集合A和集合B的并集,表示为A∪B,表示A和B 所有的元素组成的集合。

例如,集合A={1, 2, 3},集合B={2, 3, 4},则A∪B={1, 2, 3, 4}。

3. 补集运算:集合A相对于集合B的补集,表示为A-B,表示A 中除去B中的所有元素所组成的集合。

例如,集合A={1, 2, 3},集合B={2, 3, 4},则A-B={1}。

4. 包含关系:集合A包含集合B的情况,即A⊇B,表示A中的所有元素都属于B。

例如,集合A={1, 2, 3},集合B={2, 3},则A⊇B。

5. 空集与全集:空集是不包含任何元素的集合,用符号∅表示;全集是指讨论问题所涉及的全部元素组成的集合。

三、集合的性质1. 交换律:集合的交集和并集满足交换律。

即A∩B=B∩A,A∪B=B∪A。

2. 结合律:集合的交集和并集满足结合律。

即A∩(B∩C)=(A∩B)∩C,A∪(B∪C)=(A∪B)∪C。

3. 分配律:集合的交集和并集满足分配律。

即A∩(B∪C)=(A∩B)∪(A∩C),A∪(B∩C)=(A∪B)∩(A∪C)。

四、集合的表示方法1. 列举法:将集合中的元素一一列举出来。

例如,集合A={1, 2, 3, 4}。

2. 描述法:根据元素的性质进行描述。

高考数学总复习第1讲 集合的概念与运算

高考数学总复习第1讲  集合的概念与运算

D.{1,2,3,4,6}
解:因为 A∪B={1,2,6}∪{2,4}={1,2,4,6}, 所以(A∪B)∩C={1,2,4,6}∩{1,2,3,4}={1,2,4}.
ห้องสมุดไป่ตู้
答案:B
4.(2017·北京卷)已知全集 U=R,集合 A={x|x<
-2 或 x>2},则∁UA=(
)
A.(-2,2)
B.(-∞,-2)∪(2,+∞)
点评:(1)用描述法表示集合,首先要搞清集合中代表 元素的含义,再看元素的限制条件,分清是数集、点集还 是其他类型的集合.
(2)解决含有参数的集合问题时,要注意集合中元素的 特征,并注意用互异性进行检验.
(3)分类讨论的思想方法常用于解决集合问题.
【变式探究】
1.(1)若集合 A={x∈R|ax2+ax+1=0}中只有一个元素,
则 a 等于( )
A.4
B.2
C.0
D.0 或 2
(2)已知集合 A={m+2,2m2+m},若 3∈A,则 m 的值

.
解:(1)当 a=0 时,方程化为 1=0,无解, 集合 A 为空集,不符合题意; 当 a≠0 时,由 Δ=a2-4a=0,解得 a=4.
解:(2)因为 3∈A,所以 m+2=3 或 2m2+m=3, 若 m+2=3,解得 m=1,此时 A={3,3}与集合中元素的 互异性矛盾,所以 m=1,不符合题意; 若 2m2+m=3,解得 m=1(舍去)或 m=-23. 检验知 m=-32满足题意. 故所求 m 的值为-32.
3.注意空集∅的特殊性,在解题时,若未能指明集合
非空时,要考虑空集的可能性,如 A⊆B,则有 A=∅或 A≠∅
两种可能,解题时常常遗漏对空集的讨论,这一点应引起 重视.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
求实数b的取值范围。
y
3
3 2
l2
3 2
l1
-3 0 -3 3
x
例5.已知 A {a 2 , a 1,3} B {a 3,3a 1, a 2 1},
若A B {3} ,求a的值。
例6.某校组织高一学生对所在市的居民中拥有电视 机、电冰箱、组合音响的情况进行一次抽样调查,调 查结果:3户特困户三种全无;至少有一种的:电视 机1090户,电冰箱747户,组合音响850户;至少有两 种的:电视机、组合音响570户,组合音响、电冰箱 420户,电视机、电冰箱520户,“三大件”都有的 265户。调查组的同学在统计上述数字时,发现没有 记下被调查的居民总户数,你能避免重新调查而解决 这个问题吗?
U CUA
A
2.常用运算性质及一些重要结论 A A B B A ① A A A A A A B B A ② A A A
③ A ( B C ) ( A B) C A B C
A ( B C ) ( A B) C A B C
来她不能保证,但是找,那是必须的。不但奴才们全部放下手头的事情,连她也是亲力亲为,投入到寻找板指的事项中。真是壹通好找! 雅思琦连午膳都没有正经吃,也是因为心事重重,没有心思吃饭。寻思着爷也差不多用过午膳,这板指也找了壹个多时辰,眼看着时候不 早,她和李淑清还要为参加晚上的宫宴做准备,于是打算还是先去给爷去回个话吧。其实从壹开始找,她就大概估计是这么壹个结局。也 不是她有多护着她院子里的奴才,而是连她自己都没有印象的东西,根本不可能指着奴才们能找出什么惊喜来。但是,不管找得到还是找 不到,还得硬着头皮去给爷回话。无奈,只好差红莲去给书院递话,她有事禀告爷。不壹会儿,红莲就回来了,同时传了爷的回话,同意 了。“福晋有什么事情?”王爷用壹贯不苟言笑的表情望着雅思琦。爷从来都是这么规规矩矩地称呼自己,从来没有唤过自己的闺名,可 是,府里的其它诸人,爷从来都是直呼其名。自从他们大婚的那壹天开始,爷和自己从来都是这么相敬如宾,爷总说自己是他最敬重的诸 人,可是,自己并不需要爷的敬重,作为壹个诸人,需要的是爷的宠爱。可是,就是因为自己是嫡福晋,就需要端庄、需要大家风范,为 什么,如果是这样的话,自己宁可不要当这个嫡福晋!“回爷,奴才们找了许久,也没有找到爷的板指,只有红莲能出入妾身的房间,妾 身也是仔仔细细地盘问过了„„”“噢,那爷可是记错了,落在其它的地方?秦顺儿!”“奴才在。”秦顺壹听屋里爷叫他,赶快进来, 即刻就跪在了屋子中间。“你今天早上怎么弄的?这么重要的物件都忘记了?”“奴才早上惦记着今天晚上的宫宴,心里壹走神儿,就忘 记了这档子事儿!”“你忘记了不要紧,爷这四处找了半天了,急得不行,福晋那里也是弄得人仰马翻,连见客都匆匆忙忙地,让年家人 看了笑话。”“爷教训得是,奴才该死,奴才该死!”“该死有什么用,赶快想,到底是落在哪儿了?想不出来,你就自己领板子 去!”“奴才这就想,这就想。”雅思琦眼看着秦顺儿有要吃板子的危险,就着急忙慌地要避出去。毕竟秦顺儿可是爷眼跟前儿的红人, 这奴才对她还是挺重要的,万壹吃了板子,再牵扯到她这里,犯不上,要吃板子,也是爷赏的,跟她不要有任何牵连,如果再呆下去,可 就真要壹只脚趟进这个混水里去了!于是,她假装想起来什么似的:“唉呀,瞧妾身这个记性,刚刚淑清妹妹还说要跟我商量晚上宫宴的 事情呢,怕是已经到了妾身的院子,要不„„”“噢,你先去吧,这里也没什么事情了。”雅思琦壹听,正中下怀,忙起身告辞。听着福 晋的脚步声出了院子,秦顺儿抬起头来,还不待爷说话呢,就径自站了起来,壹脸媚笑:“爷,没
④ A ( B C ) ( A B) ( A C ) A ( B C ) ( A B) ( A C )
⑤ A CU A
A CU A U
⑥ A B A A B
⑦ CU ( A B) (CU A) (CU B)
265 255 72 A 265 B 305 155 3
C 125
小结 1.计算题,如例1; 2.反问题要注意检验如例5; 3.用文氏图解题,如例6; 4.可与不等式、方程、几何结合。
作业
黑夜玩家,读音hēi yè ,汉语词语,指黑暗没有月光的夜晚。中文名 黑夜玩家 外文名 night 拼 音 hēi yè 注 音 ㄏㄟ ㄧㄜˋ 【词性】名词【释义】黑暗没有月光的夜晚。夜晚;晚上:白天~不停地施工。详细释义: ; /xs/0/510/ 黑夜玩家 kgh08neg 夜晚。唐 白居易 《游悟真寺诗一百三十韵》:“黑夜玩家自光明,不待灯烛燃。”《水浒传》第八四回:“黑夜玩家怎地厮杀,待天明 决一死战。” 柳青《铜墙铁壁》第四章:“金树旺 见 石得富 难为情的样子,就替他解释今黑夜玩家的确有事。”
A B B A B
CU ( A B) (CU A) (CU B)
⑧ Card ( A B) Card ( A) Card ( B) Card ( A B)
应用举例
例1.已知 x R, y N , A {y y x 4x 6} ,
2
B {y y x2 2x 18} 求A∩B.
2 A { x x x 6 0} B {x 0 x m 9} 例2.已知集合 ①若 A B B ,求实数m的取值范围; ②若 A B ,求实数m的取值范围。
m -2 3
m+9
x
m
m+9 -2 3
高三第一轮复习
集合的运算
知识点 1.有关概念 ① 交 集 : A B {x x A且x B}
A
B
A
B
A B
②并集: A B {x x A或x B}
ABA源自BA B③全集:如果集合S含有我们所要研究的各个集合的全 部元素,这个集合就可以看作一个全集,通常用U表示。
④补集: CU A {x x U且x A}
m m+9
x
2 M { x x 2x 3 0} N {x ax 1 0} 例3.设
若 M N N ,求所有满足条件的a的集合。
2 M { ( x , y ) y 9 x } 例4.已知集合
N {( x, y) y x b}且M N
新疆和静高级中学
相关文档
最新文档