7.1.2平面直角坐标系

合集下载

7.1.2 平面直角坐标系(2)

7.1.2 平面直角坐标系(2)

4.已知:A(0,1),B(2,0),C(4,3).
(1)求三角形ABC的面积; (2)设点P在坐标轴上,且三角形ABP与三角形ABC的面 积相等,直接写出点P的坐标.
提升拓展·考向导练
4
利用已知点的坐标求距离或面积问题
5.已知,点A(-2,3)、B(4,3)、C(-1,-3). (1)求A,B两点之间的距离. (2)求点C到x轴的距离. (3)求△ABC的面积. (4)观察线段AB与x轴的关系,若点D是线段AB上一点, 则点D的纵坐标有什么特点?
提升拓展·考向导练
利用平面直角坐标系求实际中的最短距离问题 26.如图,已知A,B两村庄的坐标分别为(2,2)、(7, 4),一辆汽车在x轴上行驶,从原点O出发向x轴正方 向前进. (1)在图中标出汽车行驶到什么 位置时离A村最近?写出此 位置的坐标. (2)在图中标出汽车行驶到什么 位置时离B村最近?写出此位置的坐标. (3)在图中标出汽车行驶到什么位置时离A,B两村的 距离和最小?画出此位置.
◎第三阶

◆知识导航
◆典例导学
◆反馈演练 (
◎第一阶
◎第二阶
◎第三阶

◆知识导航
◆典例导学
◆反馈演练 (
◎第一阶
◎第二阶
◎第三阶ห้องสมุดไป่ตู้

◆知识导航
◆典例导学
◆反馈演练 (
◎第一阶
◎第二阶
◎第三阶

◆知识导航
◆典例导学
◆反馈演练 (
◎第一阶
◎第二阶
◎第三阶

◆知识导航
◆典例导学
◆反馈演练 (
◎第一阶
◎第二阶
◎第三阶

◆知识导航

教学设计4:7.1.2 平面直角坐标系

教学设计4:7.1.2 平面直角坐标系

7.1.2 平面直角坐标系教学目标:(一)【知识目标】1、了解平面直角坐标系的产生过程;2、认识平面直角坐标系及其相关概念;3、探索象限内点的特征与坐标轴上点的特征。

(二)【技能目标】1、会正确画出平面直角坐标系;2、在给定的平面直角坐标系中,能够根据坐标指出点的位置,并且已知点的位置写出它对应的坐标;(三)【情感目标】1、能使学生感受到数学与现实世界的联系,增强学生“用数学”的意识,感受数学之用;2、培养学生严谨朴实的科学态度和勤奋自强的探索精神,以及独立思考与合作交流的学习习惯,感受数学之实。

3、让学生得到尝试、成功的情感体验,感受数学之美。

教学重点与难点:1、教学重点:能在给定的平面直角坐标系中,由点求出坐标,由坐标描出点。

教学过程:(一)创设问题情境引例:我们的教室共有56个座位,自前向后分为7排,自左向右分为8列,每位学生对应了一个座位,我们来玩个“点将”游戏,你们是“将”,由我来点,点到的同学说出自己的座位号几排几列)。

同时演示“点将”游戏,游戏规则:(1)老师报到学生姓名,学生起立并说出座位号;(2)老师说出座位号,对应的学生起立。

奖励:同学们的掌声。

再提问你如何来确定自己的座位?先让学生自己思考,也可以进行小范围的讨论,学生可以归纳出:要确定一个学生的座位必须有两个数,一个是排数,一个是列数。

那么再问2排3列与3排2列是否是同一个座位?由此你认为表示座位与两个数的顺序有关吗?结合课件演示,让学生进行讨论与思考,可以发现:一个“将”的座位应该由一对有序的数组构成的。

(二)构建数学模型由上面的例子中我们可以发现,我们学生的座位是由一对有序的数组构成的,那么就我们已有的数学知识而言,我们能否将其也用数学知识来解决呢?教师在这个时间可以先提问一个数是如何来确定它的位置的,学生马上可以想到有关数轴的知识。

再利用教室的座位安排情况,同时特别要注意排与列之间的位置关系,由此学生可以有如下的发现:1、排与列之间是互相垂直的位置关系。

7.1.2平面直角坐标系

7.1.2平面直角坐标系

坐标平面上的点
一对有序实数对
y
第二象限
5 4 3 2 1
第一象限
1 2 3 4 5 6 7 8 9x
- 9 - 8- 7 - 6 - 5- 4 - 3 - 2 - 1 o -1 -2 -3 -4 -5
第三象限
第四象限
注意:坐标轴上的点不属于任何象限
各象限内的点的坐标有何特征?
y
(-,+)
F (-7,2)
②原点重合
③通常取向右、向上为正方向 ④单位长度一般取相同的 1 2 3 4 5 x 横轴
-4
-3
-2 原点
-1
o -1 -2 -3 -4
横轴、纵轴统称为坐标轴
选择:下面四个图形中,是平面直角坐标系的是( Y Y 3 2 -3 -2 -1 0 1 2 3 1 O -3 -2 -1 1 2 3 X 0 -1 -2 (A) (B) Y 3 3 Y 2 2 1 1 -3 -2 -1 1 2 3 -1 O -2 -3 (C)
y
20 10
-20 -10
o

平面上有公共原点且互相垂直 简称直角坐标系。
10 20 -10 -20
-30
x
30
的2条数轴构成平面直角坐标系,

水平方向的数轴称为x轴或横轴。

竖直方向的数轴称为y轴或纵轴。
(它们统称坐标轴)

公共原点O称为坐标原点。
纵轴
平面直角坐标系
y 5 4 3 2 1
平面直角坐标系具有以下特征: ①两条数轴互相垂直
如何表示点p 的位置?
4 3 2
1
y
(4,3)
x轴上的坐标 写在前面
0 1 2 3 4 5 x

7.1.2平面直角坐标系

7.1.2平面直角坐标系

· ·
(-,-)
-1 -2
o
4
5
6
X
第四象限
(+,-)
(4,-4) G
· ·
H (5,-2)
根据点所在位置,用“+” “-”或“0”填表 点的坐标的符号特点 平 面 直 角 坐 标 系 一象限 二象限 三象限 四象限
(+,+)
(-,+) (-,-) (+,-)
知识5:坐标平面内点的特征②
说 一 说
Y轴 横坐标 坐标平面内点的坐标 纵坐标
2.由点求坐标:
结论:平面直角坐标系内的点 一 一对应 有序实数对 3.由坐标描点
4.坐标平面内点的特征
坐标平面内点的特征
根据点所在位置,用“+” “-”或“0” 填表 点的位置 横坐标符号 纵坐标符号 在第一象限 + + 在第二象限 + 在第三象限 + 在第四象限
1.在平面内准确确定一点的位置有 方位角+距离定位法 几种方法?————、—————— 区域定位法 经纬定位法 、————、————。都需要__ 两个 有序数对 数据,都是_____ 。 2.能不能找到一种类似于利用数 轴确定直线上点的位置来确定平面 内点的位置呢?
我们已经知道借助一条数轴,用 一个数可以确定点在直线上的位 置,你认为确定平面内的点的位置, 两 应该借助于几条数轴?
在平面内准确确定一个点的位置仅有一 个数据可以吗?需要 两 个?
不可以
平面直角坐标系的概念 知识1: y轴(纵轴) 取 y
两条数轴:(一般性特征)
(1)互相垂直
向 上 为 正 方 向
(2)原点重合
6 5 4 3 2 1

人教版七年级数学7.1.2平面直角坐标系说课讲稿

人教版七年级数学7.1.2平面直角坐标系说课讲稿

⼈教版七年级数学7.1.2平⾯直⾓坐标系说课讲稿《平⾯直⾓坐标系》说课稿今天我说课的内容是九年义务教育⼈教版七年级数学下册第七章第⼀节第⼆课时平⾯直⾓坐标系,我将从教材分析、学情分析、教法与学法、教学过程、教学评价⼏个⽅⾯谈谈我对本节课的认识。

⼀、教材分析(⼀)教材的地位和作⽤平⾯直⾓坐标系是在学习了数轴和有序数对后安排的⼀次概念性教学,也是初中⽣与坐标系的第⼀次亲密接触。

平⾯直⾓坐标系的建⽴架起了数与形之间的桥梁,是数形结合的具体体现。

这⼀节课主要是让学⽣认识平⾯直⾓坐标系,了解点与坐标的对应关系;在给定的平⾯直⾓坐标系中,能根据坐标描出点的位置,能由点的位置写出点的坐标。

因此,本节课的学习,是进⼀步学习函数及其它坐标系必备的基础知识,也就是说它在整个初中数学教材体系中有着举⾜轻重的作⽤。

(⼆)教学⽬标知识⽬标让学⽣理解平⾯直⾓坐标系的有关概念,并会由点确定坐标、由坐标描点的位置;能⼒⽬标让学⽣经历从实际⽣活中的具体问题抽象出数学模型—平⾯直⾓坐标系的过程;情感⽬标通过对问题情境的探索、交流等数学活动,培养学⽣的合作意识;(三)教学重难点教学重点:平⾯直⾓坐标系及相关概念。

教学难点:理解建⽴平⾯直⾓坐标系的必要性,体会坐标系中点与坐标的⼀⼀对应关系。

⼆、学情分析七年级的学⽣具有活泼好动,好奇的天性,他们正处于独⽴思维发展的重要阶段,对数学的求知欲较强,并且具有初步的⾃主、合作探究的学习能⼒,由于对数轴有⼀定的认识,因此,对于平⾯直⾓坐标系的构成和建⽴较为容易理解。

另外⼼理上,学⽣爱听⼩故事,我抓住这⼀点,介绍法国数学家笛卡尔以及他对数学发展的贡献,对学⽣进⾏数学⽂化的熏陶,以此来激发学⽣学习的积极性。

三、教法与学法教学⽅法:1.探索发现法2.指导阅读法3.讲练结合法学习⽅法:新课标倡导积极主动,勇于探索的学习⽅式,要求把课堂交给学⽣,因此本节课我主要引导学⽣在⼤胆猜想、⾃主探索、合作交流的学习过程中⾃主参与知识的形成过程,从⽽培养学⽣探究问题,交流合作的良好品质。

人教版七年级下数学7.1.2 平面直角坐标系教案

人教版七年级下数学7.1.2 平面直角坐标系教案

一、情境导入文字密码游戏:如图“家”字的位置记作(1,9),请你破解密码:(3,3),(5,5),(2,7),(2,2),(1,8) (8,7),(8,8).9家个和怎他是的去常8聪到饿日一有啊!哦7的我是发搞可了明在6确小大北京你才批不5年没定妈,爸事达方4营业女天员各合乎经3由于嘿毫力量靠孩济2仍真击歼安机麻生世1然往亲赌东门密棒暗0123456789二、讲授新知探究点1:平面直角坐标系问题1:建立了平面直角坐标系以后,平面内的点可以用来表示,由点P 向轴作垂线,垂足M在x轴上的坐标是;由点P向轴作垂线,垂足N在y轴上的坐标是 .于是,点P的横坐标是-2,纵坐标是3,且把横坐标写在纵坐标的前面,记作(-2,3).(-2,3)叫做点P在平面直角坐标系中的坐标,简称点P的坐标.典例精析例1.写出下图中的多边形ABCDEF各个顶点的坐标.针对训练在直角坐标系中描下列各点:A(4,3),B(-2,3),C(-4,-1),D(2,-2).方法总结:由坐标找点的方法:(1)先在坐标轴上找到表示横坐标与纵坐标的点;(2)然后过这两点分别作x轴与y轴的垂线;(3)垂线的交点就是该坐标对应的点.探究点2:直角坐标系中点的坐标的特征问题1:建立平面直角坐标系后,两条坐标轴把坐标平面分成个部分,从右上的象限开始,按逆时针方向依次为、、、,坐标轴上的点任何象限(填“属于”或“不属于”)问题2:各象限内点的坐标有什么特点?坐标轴上点的坐标有什么特点?问题3:坐标平面内的点与有序数对(坐标)是什么关系?典例精析例2.在平面直角坐标系中,描出下列各点,并指出它们分别在哪个象限. A(5,4),B(-3,4),C (-4 ,-1),D(2,-4).方法总结:两坐标轴上的点不属于任何一个象限,象限是按逆时针方向排列的.例3..设点M(a,b)为平面直角坐标系内的点.(1)当a>0,b<0时,点M位于第几象限?(2)当ab>0时,点M位于第几象限?(3)当a为任意有理数,且b<0时,点M位于第几象限?解析:(1)横坐标为正,纵坐标为负的点在第四象限;(2)由ab>0知a,b同号,则点M在第一或第三象限;(3)由a为任意有理数,b<0,则点M在x轴下方.解:(1)点M在第四象限;(2)可能在第一象限(a>0,b>0)或者在第三象限(a<0,b<0);(3)可能在第三象限(a<0,b<0)或者第四象限(a>0,b<0)或者y轴负半轴上.方法总结:熟记各象限内点的坐标的符号特征:(+,+)表示第一象限内的点;(-,+)表示第二象限内的点;(-,-)表示第三象限内的点;(+,-)表示第四象限内的点.例4.点A(m+3,m+1)在x轴上,则A点的坐标为( )A.(0,-2) B.(2,0) C.(4,0) D.(0,-4)方法总结:坐标轴上的点的坐标特点:x轴上的点的纵坐标为0,y轴上的点的横坐标为0.根据点所在坐标轴确定字母取值,进而求出点的坐标.针对训练1.已在平面直角坐标系中,点P(m,m-2)在第一象限内,则m的取值范围是______.方法总结:求点的坐标中字母的取值范围的方法:根据各个象限内点的坐标的符号特征,列出关于字母的不等式或不等式组,解不等式或不等式组即可求出相应字母的取值范围.2.已知点P到x轴的距离为2,到y轴的距离为1.如果过点P作两坐标轴的垂线,垂足分别在x轴的正半轴上和y轴的负半轴上,那么点P的坐标是( )A.(2,-1)B.(1,-2)C.(-2,-1)D.(1,2)方法总结:本题的易错点有三处:①混淆距离与坐标之间的区别;②不知道“点P到x轴的距离”对应的是纵坐标,“点P到y轴的距离”对应的是横坐标;③忽略坐标的符号出现错解.若本例题只已知距离而无附加条件,则点P的坐标有四个.探究点3:建立坐标系求图形中点的坐标问题1:正方形ABCD的边长为4,请建立一个平面直角坐标系,并写出正方形的四个顶点A,B,C,D在这个平面直角坐标系中的坐标.问题2:建立的平面直角坐标系不同,则各点的坐标也不同.你认为怎样建立直角坐标系才比较适当?总结归纳:建立平面直角坐标系,一般要使图形上的点的坐标容易确定,例如以正方形的两条边所在的直线为坐标轴,建立平面直角坐标系,又如以正方形的中心为原点建立平面直角坐标系.需要说明的是,虽然建立不同的平面直角坐标系,同一个点会有不同的坐标,但正方形的形状和性质不会改变.典例精析例5.长方形的两条边长分别为4,6,建立适当的直角坐标系,使它的一个顶点的坐标为(-2,-3).请你写出另外三个顶点的坐标.针对训练右图是一个围棋棋盘(局部),把这个围棋棋盘放置在一个平面直角坐标系中,白棋①的坐标是(-2,-1),白棋③的坐标是(-1,-3),则黑棋❷的坐标是________.三、课堂练习1.如图,点A的坐标为( )A.( -2,3)B.( 2,-3)C.( -2,-3)D.( 2,3)第1题图第2题图2.如图,点A的坐标为,点B的坐标为 .3.在 y轴上的点的横坐标是,在 x轴上的点的纵坐标是 .4.点 M(- 8,12)到 x轴的距离是,到 y轴的距离是 .。

7.1.2 平面直角坐标系 七年级数学下册(人教版)

7.1.2 平面直角坐标系 七年级数学下册(人教版)
2
D(____,____)
0
-3
例如,由点A分别向x轴和y轴作垂线,垂足M在x轴上的坐标是3,垂足N在y
轴上的坐标是4,我们说点A的横坐标是3,纵坐标是4,有序数对(3,4)就叫
做点A的坐标,记作A(3,4).
自学导航
原点O的坐标是什么?x轴和y轴上的点的坐标有什么特点?
原点O的坐标为(0,0);x轴上的点的纵
所以三角形ABC的边AB=9,边AB上的高为4,
1
所以三角形ABC的面积为 ×9×4=18.
2
迁移应用
1三角形OAB的面积为
( C )
A.1
B.2
C.3
D.4
2. 若三角形ABC的三个顶点的坐标分别为A (-3,-1),B (2,-1),C(1,3),则三角
所以点C与点B的纵坐标相同,点C与点D的横坐标
相同,所以点C( 3,-5).
迁移应用
1.已知点A (m+1,-2)和点B(3,m-1),若直线AB// x轴,则m的值为( C )
A.2
B.-4
C.-1
D.3
2.平面直角坐标系中,直线a经过点A(-2,3),B (4,3),则直线a还经过点( C )
A.(-5,4)
B.(3,-8)
C.(0,3)
D.(3,-3)
3.在平面直角坐标系中,AB//y轴,AB=5,点A的坐标为(-5,3),则点B的坐标
为( C )
A.(-5,8)
B.(0,3)
C.(-5,8)或(-5,-2)
D.(0,3)或(-10,3)
迁移应用
4.在平面直角坐标系中,已知点A(-3,2),B(1,4),经过点A 的直线l//x轴,C

7.1.2平面直角坐标系(1) (教学课件)- 人教版数学七年级下册

7.1.2平面直角坐标系(1) (教学课件)-  人教版数学七年级下册
解:如图,各点的横纵坐标相等,类似的点有(-5,-5),(-1,-1),(1,1),(2,2),(4,4)等.
答案图
5.(补图题)(人教7下P68、北师8上P66)如图,正方形ABCD的边长为6.(1)如果以点A为原点,AB所在直线为x轴,建立平面直角坐标系,在图中画出y轴,并写出正方形的顶点A,B,C,D的坐标;(2)请另建立一个平面直角坐标系,这时正方形的顶点A,B,C,D的坐标又分别是什么?




(1)点A( , ),在第 象限; (2)点B( , ),在第 象限; (3)点C( , ),在第 象限; (4)点D( , ),在第 象限.

2
-2

-2
y轴
向右
x轴
知识点二:点的坐标(1)有了平面直角坐标系,平面内的点就可以用一个有序数对来表示,这个有序数对就是点的坐标.(2)我们用有序数对表示平面上的点,这对数叫做 ,表示方法为(a,b),a是点对应 上的数值,b是点对应 上的数值. (3)注意:坐标平面内的点与有序数对是一一对应的关系.
点的位置
横坐标符号
纵坐标符号
第一象限
第二象限
第三象限
第四象限










纵坐标为 0
横坐标为 0
归纳:轴、轴不属于任何象限
新知探究
知识点1:象限点的特征
练习巩固
1.点 <m></m> 在第____象限;2.下列各点中,在第三象限的点是( )A. <m></m> B. <m></m> C. <m></m> D. <m>3.在平面直角坐标系中,点 <m></m> 在( )A.第二象限 B. <m></m> 轴上 C.第四象限 D. <m></m> 轴上4.点 <m></m> 在直角坐标系的 <m></m> 轴上,则 <m></m> ____ ,点 <m></m> 的坐标为______;5.点 <m></m> 在直角坐标系的 <m></m> 轴上,则点 <m></m> 的坐标为________;</m>

平面直角坐标系

平面直角坐标系

4
(-2,3)小强
3
2
(3,2)
小红
1 小明
(0,0)
0
-4 -3 -2 -1 0
1
2
3
4
-1
-2
6 5 4 3
2 原点
1
-6 -5 -4 -3 -2 -1 O 1 2 3 4 5 6
①两条数轴
-1 -2
②互相垂直
-3
-4
③公共原点
-5
-6
组成平面直角坐标系
在平面内,两条互相垂直 且有公共原点的数轴组成 平面直角坐标系(简称直 角坐标系)。
A.(2,1)
B.(-2,1)
C.(-3,-5)
D.(3,-5)
2.已知坐标平面内点A(m,n)在第四象限,那么点B(n,m)在
(B )
A.第一象限
B.第二象限.
C.第三象限
D.第四象限
在x轴上的点, 纵坐标等于0.

在y轴上的点, 横坐标等于0. C(0,5)
B(-4,0)
A(3,0)
到y轴的距离是___8_____.
4.若点P在第三象限且到x轴的距离为 2,到y轴的距离为
1.5,则点P的坐标是(__-_1_._5_,__-。2)
5.在平面直角坐标系内,已知点P ( a , b ),且a b < 0 ,
则点P的位置在_第__二__或__四__象__限_。
6.若点(a,b-1)在第二象限,则a的取值范围是__a_<_0_, b的取值范围___b__>_1__。
-2
(A)
(B)
3Y 2 1
-3 -2 -1-1 O1 2 3 X
-2 -3

平面直角坐标系

平面直角坐标系
C.平面直角坐标系中x轴、y轴把坐标平面分成4部分
D.凡是两条互相垂直的直线都能组成平面直角坐标系
针对练习
1.下面四个图形中,是平面直角坐标系的是( D)
y
3y
2
1
-3 -2 -1 O 1 2 3 x
(A)
3y
2 1
-3 -2 -1-1 O1 2 3 x
-2
-3(C)
3 2 1O -1 -2 -3 x
正方形ABCD的边长为4,请建立一个平面直角 坐标系,并写出正方形的四个顶点A,B,C,D在这个 平面直角坐标系中的坐标.
D
C
A
B
y 4D
(A) O
C
B 4x
解:如图,以顶点A为原点,AB所 在直线为x轴,AD所在直线为y轴建 立平面直角坐标系. 此时,正方形四个顶点A,B,C,D的坐 标分别为: A(0,0), B(4,0), C(4,4), D(0,4).
4.如果点M(3,x)在第一象限,则x的取值范围是 ____x_>__0____.
5.若第二象限内的点P(x,y)满足|x|=3,y2=25,则
点P的坐标是_(__-_3__,__5_)__.
6.如图所示,在平面直角坐标系中,描出以下各点:A (4,3),B(-2,3),C(-3,-1),D(2,-2),E(0, -1),F(-1,0),G(0,0).并指出各点所在的象限 或坐标轴.
注意:坐标轴上的点不属于任何一个象限.
活动1: 观察坐标系,填写各象限内的点的坐标的特征:
y
点的位置
横坐标的 符号
纵坐标的 符号
5
4
B3
A
第一象限 +
+
2 1

7.1.2平面直角坐标系内点的坐标特征

7.1.2平面直角坐标系内点的坐标特征

15.在平面直角坐标系xOy中,对于任意两点P1(x1,y1)与P2(x2,y2)的“识别距离”,给出如下定义: 若|x1-x2|≥|y1-y2|,则点P1(x1,y1)与点P2(x2,y2)的“识别距离”为|x1-x2|; 若|x1-x2|<|y1-y2|,则点P1(x1,y1)与点P2(x2,y2)的“识别距离”为|y1-y2|. (1)已知点A(-1,0),点B为y轴上的动点.
练习:
1、平面直角坐标系中,点P(1,-4)在第( D ) A、第一象限 B、第二象限 C、第三象限 D、第四象限
23、、AA已点、、A知1((点-B2mM,、+(032),m3Ca+-B、19、),13-(在aD)2y、,轴在00上第),三C则象、A限(点,0的且,坐它-2标)的为坐D(标、都C(是0,)整2数),则a由所=点以(Am在+D1y=轴)-2上,所可以31知a-Aa-9<x点<0=0坐0,标即为m(aa+<>3031=,0,-解2)1得<.故am<=选3 -C3,. a=2
(2)∵点C(m,3 m+3),点D(0,1)
∴|x1-x2|=|m-04|=|m|,|y1-y2|=|43
m+3-1|=|
3 4
m+2|
3
令 m m2
∴|y|=2,
4
∴y=±2 ∴点B的坐标为(0,2)或(0,-2).
解得:m 8或m 8 7
②∵点A(-1,0),B(0,y)
当m=8时,“识别距离”为8
在第四象限内 x>0,y<0;
(二) 坐标轴上点的坐标特点:设点P坐标(x,y),
x轴正半轴上
x>0,y=0;

7.1.2平面直角坐标系

7.1.2平面直角坐标系
7.1.2平面直角坐标系
如何确定直线上点的位置?
数轴每个点都对应一个实数,这个实数 叫做这个点在数轴上的坐标. A
-6
-5
B
-3 -2 -1 0 1 2 3 4
C
5 6 7
-4
例如: 点A在数轴上的坐标为-4, 点B在数轴上的坐标为2, 数轴上坐标为5的点是点C。
如何确定平面上点的位置?
A
C
B
D
点的位置 在第一象限
横坐标符 号
纵坐标符号
在第二象限
在第三象限 在第四象限 在x 轴上 在y 轴上 在正半轴上
+ _ _ + + _ 0 0 0
+ + _ _ 0 0 + _ 0
在负半轴上
在正半轴上 在负半轴上
原点
口答
请你根据下列各点的坐标判定它们分 别在第几象限或在什么坐标轴上?
A(-5,2) 第二象限 B (3,-2)第四象限
C(0,4)y轴
G(5,0)x轴
x轴 D(-6,0)
E(1,8)第一象限 F(0,0)原点 H(-6,-4) 第三象限
1、数轴上的点与实数是一一对应的。
2、坐标平面上的点与有序数对是一一对应的。
y轴或纵轴
4
A的纵坐标
y N A
A的坐标
(3,4)
3
2 1 原点 M
(0,2)
C
x轴或横轴
1 2 3 4
x
-4
-3
-2
-1 O -1
-2 -3
A的横坐标
(0,-3)
D
B
平 面 直 角 坐 标 系
-4
(-3,-4)
y

7.1.2 平面直角坐标系

7.1.2 平面直角坐标系

3.如果 点 N(3-b,7+b)在 y 轴上,
则b= , N=
.
4.在平面角坐标系中有一点(a,b),并且ab=0,则点M的位 置是在
布置作业
课本68页 习题7.1 必做题: (1)第1,2,3题.
2)已知点P(2m+4,m-1)在x轴上,
则m=_
选做题: 第4,5题.
练习二 在平面直角坐标系中描出下列各点:
A(4,5) , B(-2,3), C(-4,-1), D(2.5,-2), E(0,-4).
解:如图,先在x轴上找出 表示4的点,再在y轴上找出 表示5的点,过这两个点分
y
5
A
4 3
2
1
别作x轴和y轴的垂线,垂线 的交点就是点A.
-4
-3
-2
-1 O -1
-2
(+,+)
B (5,3)
F(-7,2)
2
A(3,2)
1
- 9 - 8 - 7 - 6 - 5 - 4 - 3 - 2 - 1-1 o 1 2 3 4 5 6 7 8 9 x
(-,-)
-2 -3
(+,-)
G(-5,-4) -4
E(5,-4)
D(-7,-5)
-5
H(3,-5)
请你根据下列各点的坐标判定它们分 别在第几象限或在什么坐标轴上? A(-5、2)、 B(3、-2)、 C(0、4),
复习引入
数轴上的点与实数是一一对应关系
A
B
C
-3 -2 -1 0 1 2 3 4
A点的坐标是-3 B点的坐标是( 坐标是4的点是(
) )
人教版 初中数学 七年级下册 第七章

第8套人教初中数学七下 7.1.2 平面直角坐标系课件3 【经典初中数学课件 】

第8套人教初中数学七下 7.1.2 平面直角坐标系课件3 【经典初中数学课件 】

三、研读课文
例 在平面直角坐标系中描出下列各点: A(4,5),B(-2,3),C(-y,-1),D(2.5,-2),E
(0,-4).
解:如图,现在__x___轴上找出表示4的点,再在__y___轴
上找出表示5的点,过这两个点分别作x轴和y轴垂__线_____, 垂线的交点就是点A.类似的,请你在图中描出点B,C,D, E.
2、类似的,请写出图中点B、C、D的坐标:B(_-_3_,_-4__), C(_0__,_2__),D(__0_,_-_4_)
3、思考:原点O的坐标是(_0_,_0_), x 轴 上的点纵坐标都 是__0__,y轴上的点的横坐标都是_0__. 即:横轴上的点坐标 为(x,_0__),纵轴上的点坐标为(_0__,y).
Q(0,5)
M(4,0)
P(5,-3.5)
四、强化训练
在下面的平面直角坐标系中 1、请写出A、B、C的坐标:
A(1,1) B(4,3) C(-3,2)

2、若D、E的坐标分别为:(2,-2)、(-2,-3), 请在图中标出来;
3、原点O的坐标是( 0 ,0 ), 横轴上的点的坐标为 (x,__0__) ,纵轴上的点坐标为(__0__,y)
1
-4 -3 -2 -1 o
1234
x
-1
-2
(-2,-3)F· -3
·G(2,-3)
做 一

告诉大家 本节课你的收获!
小结:这节课主要学习了平面直角坐标系的有 关概念和一个最基本的问题,坐标平面内的点 与有序数对是一一对应的,渗透了数形结合 的思想等。
掌握x轴,y轴上点的坐标的特点: x轴上的点的纵坐标为0,表示为(x,0) y轴上的点的横坐标为0,表示为(0,y)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
7.1.2平面直角坐标系
如何确定直线上点的位置?
A
1米 -6 -5 -4 -3 -2 -1 0 1
B
2 3 4 5 6 7
数轴上的点可以用一个数来表示,这个数叫做这个点 在数轴上的坐标. 例如点A在数轴上的坐标为-3,点 B在数轴上的坐标为2。反过来,知道数轴上一个点 的坐标,这个的点在数轴上的位置也就确定了。
原点
1 2 3 4 5
x轴或横轴
6
-6 -5 -4 -3 -2 -1
-1 -2 -3 -4 -5 -6
o
X
第三象限
第四象限
①两条数轴 ②互相垂直 叫平面直角坐标系
③公共原点
选择:下面四个图形中,是平面直角坐标系的是( D )
Y Y -3 -2 -1 1 O 2 3 X
2 1
3
2 1 O -1 -2 -3 -1 -2
1.由点找坐标:
如何表示点A 的位置?
4 3 2
1
y

(4,3)
x轴上的坐标 写在前面
0 1 2 3 4 5 x
-5
-4
-3
-2
-1
-1
如何表示点A的位置: 过点A作x轴的垂线,垂足在x轴上对 -2 应的数是4,就是点A的横坐标. -3 过点A作y轴的垂线,垂足在y轴上对 应的数是3,就是点A的纵坐标. -4 有序数对(4,3)就是点A的坐标.
(B)
X
(A) 3 2 1
Y
3 Y 2 1
X
-3 -2 -1 O 2 3 -1 1 -2 -3 (C)
-3 -2 -1 O 2 3 1 -1 -2 -3 教程 (D)
X
在方格图中建立平面直角坐标系 y
2 1
-3
-2
-1 O -1
1
2
3
x
注意事项:在画平面直角坐标系时, -2 一定要画x轴、y轴的正方向,即箭 -3 头,标出原点O,单位长度要统一 (长度不统一的情况目前不要求)
A(-5,2) B (3,-2) C(0,4) D(-6,0) E(1,8) F(0,0) G(5,0) H(-6,-4) M (0,-3)
学以致用
如图,以中心广场为 坐标原点,取正东方 向为x轴的正方向,取 正北方向为y轴的正方 向,一个方格的边长 作为一个单位长度, 建立直角坐标系,分 别写出图中各个景点 的坐标。
x
(-,-)
(+,-)
根据点所在的位置,用“+“,”-”,或 “0“填表。
点的位置 在第一象限
横坐标符 号
纵坐标符号
在第二象限
在第三象限 在第四象限 在x 轴上 在y 轴上 在正半轴上
+ _ _ + + _ 0 0 0
+ + _ _ 0 0 + _ 0
在负半轴上
在正半轴上 在负半轴上
原点
口答
请你根据下列各点的坐标判定它们分别在第几象限或 在什么坐标轴上?
-4
1
2
3
-2 -3
D
C
-4
快速说出图中各点的坐标
各象限内的点的坐标有何特征?
(-,+)
F(-7,2)
y
5 (-2,3) 4 C 3 2 1
(+,+)
B (5,3) A(3,2)
-9 -8 -7 -6 -5 -4 -3 -2 -1 o 1 2 3 4 5 6 7 8 9 -1 -2 -3 E(5,-4) G(-5,-4) -4 H (3,-5) D (-7,-5) -5

y
2
在平面直角坐标 系中找到表示 A(3,-2)的点.
1
-3
-2
-1 O -1 -2
-3
1
2
3
x
A
由坐标找点的方法: 先找到表示横坐标与纵坐标的点, 然后过这两点分别作x轴与y轴的垂线, 垂线的交点就是该坐标对应的点。
纵轴
y 5 4
E A
·
3 2
B
·
-3
·
4 5 x 横轴
F
-2 -1
1 0 -1
阅读教材,回答下列问题:
平面上 两条互相垂直且有公共原点的数轴 组成 平面直角坐标系, 水平的数轴 叫x轴(横轴), 取向 右为正方向, 竖直的数轴 叫y轴(纵轴), 取向 上 为正方向。两坐标轴的交点是平面直角坐标系 的 原点 。
平面直角坐标系 第二象限
y y轴或纵轴 6
5 4 3 2 1
第一象限
通过今天的学习,你有什么收获?
1.平面直角坐标系的有关概念; 2.建立平面直角坐标系; 3.由点写出坐标,由坐标找出点; 4.平面直角坐标系中坐标轴和各个 象限上的点的坐标的特征。
如果以“中 心广场”为 原点作平面 直角坐标系 那么你能表 示“碑林” 的位置吗? “大成殿” 的位置呢?
雁塔 钟楼 中心广场 大成殿 碑林
影月湖
科枝大学
雁塔 碑林
钟楼
中心广场 各个景点的坐标为:
大成殿 雁塔(0,3) 碑林(3,1)
钟楼(-2,1) 影月湖
科技大学 大成殿(-2,-2) 科技大学(-5,-7) 影月湖(0,-5) 中心广场(0,0)
如何确定平面上点的位置?
A
C
D B
如图, 是某城 市旅游 景点的 示意图。 你要如 何确定 各个景 点的位 置?
科技大学
雁塔 碑林
钟楼
中心广场
大成殿
影月湖
如何确定平面上点的位置?
6.1.2
平面直角坐标系(一)
笛卡尔 ,法国著名哲学家,数学家。 1596年出生于法国拉镇,法国巴黎普 瓦捷大学毕业,获法律学位。 数学方面的主要成就 哲学专著《方法论》一书中的《几何 学》,第一次将x看作点的横坐标,把 y看作是点的纵坐标,将平面内的点与 一种坐标对应起来。
相关文档
最新文档