2013广东省八年级四边形能力提升卷及答案
八年级上册数学第四章四边形性质探索复习试题及答案.doc
八年级上册数学第四章四边形性质探索复习试题及答案学习是无止境的,是一个不断积累创新的过程。
下面小编为大家整理了八年级上册数学第四章四边形性质探索复习试题及答案,欢迎大家参考!一、精心选一选!1•如图1, □中,,为垂足•如果ZA二125° ,贝UZBCE=60°( B )A. 55°B. 35°C. 25°D. 30°2. 如图2,四边形是菱形,过点作的平行线交的延长线于点,则下列式子不成立的是(B )A. DA二DEB. BD=CEC. ZEAC=90°D. ZABC二2ZE3. (2019年广州市)如图3,每个小正方形的边长为1,把阴影部分剪下来,用剪下来的阴影部分拼成一个正方形,那么新正方形的边长是(C )A. B. 2 C . D .4. 在平行四边形ABCD中,对角线AC和BD相交于点0,则下面条件能判定平行四边形ABCD是矩形的是(B )A.AC 丄BDB. AC=BDC. AC二BD 且AC 丄BDD. AB二AD5•如图4,已知四边形ABCD是平行四边形,下列结论中不正确的是(D )A、当AB二BC时,它是菱形B、当AC丄BD时,它是菱形C、当ZABC=900时,它是矩形D、当AC=BD时,它是正方形6•如图5,菱形ABCD 中,ZB=60° , AB二2,E、F 分别是BC、CD的中点,连接AE、EF、AF,则AAEF的周长为(B )A. B. C. D. 37. 如图6,已知梯形ABCD 中,AD〃BC, AB二CD二AD, AC, BD 相交于0点,ZBCD二60°,则下列说法不正确的是(B)A.梯形ABCD是轴对称图形;B.梯形ABCD是中心对称图形;C.BC二2AD D.AC 平分ZDCB8•—个多边形内角和是,则这个多边形是(C )A.六边形B.七边形C.八边形D.九边形9•下列图形(图5)中,中心对称图形的是(B)10•将矩形纸片ABCD按如图7所示的方式折叠,得到菱形AECF.若AB二3,则BC的长为(D )A. 1B. 2C.D.二、细心填一填!1•将一张等边三角形纸片沿着一边上的高剪开,可以拼成不同形状的四边形.试写出其中一种四边形的名称.2.如图8,在矩形ABCD中,对角线AC, BD相交于点0,若ZA0B=60° AB二4cm,则AC 的长为—cm.3•如图9所示,根据四边形的不稳定性制作的边长均为15cm的可活动菱形衣架,若墙上钉子间的距离AB=BC=15cm,则Z1 二________ .4.如图10,正方形的边长为4cm,则图中阴影部分的面积为cm2. 5•如图",在梯形ABCD中,AD〃BC,E为BC上一点,DE〃AB,AD的长为1, BC的长为2,则CE的长为__________________ .6•如图12所示,菱形中,对角线相交于点,若再补充一个条件能使菱形成为正方形,则这个条件是(只填一个条件即可).7.在如图13所示的四边形中,若去掉一个的角得到一个五边形,则度.8•如图14(1)是一个等腰梯形,由6个这样的等腰梯形恰好可以拼出如图(2)所示的一个菱形.对于图⑴中的等腰梯形,请写出它的内角的度数或腰与底边长度之间关系的一个正确结论:.9. 如图15所示,已知等边三角形ABC的边长为1,按图中所示的规律,用个这样的三角形镶嵌而成的四边形的周长是O10. 如图16,矩形的面积为5,它的两条对角线交于点,以、为两邻边作平行四边形,平行四边形的对角线交于点,同样以、为两邻边作平行四边形,……,依次类推, 则平行四边形的面积为.三、耐心做一做!1 •如图17,在平行四边形ABCD中,ZABC的平分线交CD于点E, ZADC的平分线交AB于点F.试判断AF与CE是否相等,并说明理由.2.如图18所示,四边形ABCD是边长为13cm的菱形,其中对角线BD长10cm,求:(1)对角线AC的长度;⑵菱形ABCD的面积.3•在四边形ABCD中,AD〃BC, AB=CD,你认为这样的四边形ABCD 是平行四边形吗?小强:我认为这样的四边形ABCD是平行四边形,我画出的图形如图19 ;小明:我认为这样的四边形ABCD不是平行四边形,我画出的图形如图20 ;你同意谁的说法?并说明理由。
新人教版2013-2014学年度八年级下期半期考试题(二次根式勾股定理平行四边形)(经典较难)及参考答案
2013-2014学年度2015级八年级下期半期考试数 学 试 题考试时间:120分钟 试卷满分:150分(试题范围:二次根式、勾股定理、平行四边形)一、选择题(共12小题,每小题4分,共48分)下面每小题给出的四个选项中, 有且只有一个是正确的, 请把正确选项前的代号填在答卷指定位置.1、 下列计算正确的是( ) (A)235+=(B )236=·(C )84=(D )2(3)3-=- 2、在△ABC 中,AB=6,AC=8,BC=10,则△ABC 中BC 边上的高为( )A.6B. 8C.10D.4.83、下列根式中,是最简二次根式的是( )A. 0.2bB. 1212a b -C. 22x y -D. 25ab4、式子错误!未找到引用源。
错误!有意义的x 的取值范围是( )A.x ≥- 12错误!未找到引用源。
且x ≠1 B.x ≠1 C.x ≥-12D.x>-12 且x ≠1 5、四边形ABCD 中,对角线AC 、BD 相交于点O ,下列条件不能判定这个四边形是平行四边形的是( )A. AB ∥DC ,AD ∥BCB. AB=DC ,AD=BCC. AO=CO ,BO=DOD. AB ∥DC ,AD=BC6、如图,在直角三角形ABC 中,∠C=90°,AB=10,AC=8,点E 、F 分别为AC 和 AB 的中点,则EF=( )A.3B.4C.5D.67、已知xy >0,化简二次根式x - y x 2 的正确结果是( )8、如图,在□ ABCD 中,分别以AB 、AD 为边向外作等边△ABE 、△ADF, 延长CB 交AE 于点G(点G 在点A 、E 之间),连接CE 、CF 、EF,则以下四个结论一定正确的是( )①△CDF ≌△EBC;②∠CDF=∠EAF;③△ECF 是等边三角形;④CG ⊥AE.A.只有①②B.只有①②③C.只有③④D.①②③④9、下列命题是真命题的是( )A.实数a b ,在数轴上的对应点如图所示,化简2244a ab b a b -+++的结果为3b -. A.y B.-y C.-y D.--ya b 0B.已知y=2x -+2x -+5,则 x y =- 25. C.若2121m m m --+=,则m 的取值范围是1m ≥D.平行四边形既是中心对称图形,又是轴对称图形10、如图,在平行四边形ABCD 中,AB=4,∠BAD 的平分线与BC 的延长线交于点E ,与DC 交于点F ,且点F 为边DC 的中点,DG ⊥AE ,垂足为G ,若DG=1,则AE 的边长为( )A .2 3B .4 3C .4D .811、如图,正方形ABCD 中,点E 、F 分别在BC 、CD 上,△AEF 是等边三角形,连接AC 交EF 于G ,下列结论:①BE=DF ,②∠DAF=15°,③AC 垂直平分EF ,④BE+DF=EF ,⑤S △CEF=2S △ABE .其中正确结论有( )个.A. 2B. 3C. 4D.512、矩形ABCD 中,AB=4,AD=3,P ,Q是对角线BD 上不重合的两点,点P 关于直线AD ,AB 的对称点分别是点E 、F ,点Q关于直线BC 、CD 的对称点分别是点G 、H .若由点E 、F 、G 、H 构成的四边形恰好为菱形,则PQ 的长为 .二、填空题(共6小题,每小题4分,共24分)下列不需要写出解答过程,请将结果直接填写在答卷指定的位置.13、 直接填写计算结果:(1)2818+-=_____;(2)133+=_____.14、在矩形ABCD 中,已知两邻边AD=12,AB=5,P 是AD 边上异于A 和 D 的任意一点,且PE ⊥BD ,PF ⊥AC ,E 、F 分别是垂足,那么PE+PF= .15、如图把一张长方形纸片ABCD 折叠起来,使其对角顶点A 、C 重合,•若其长BC为a ,宽AB 为b ,则折叠后不重合部分的面积是 。
人教版数学八年级下册第18章平行四边形达标检测卷4份含答案
人教版数学八年级下册第18章平行四边形达标检测卷4份第18章单元测试(1)班级姓名成绩一、选择题(3′×10=30′)1.下列性质中,平行四边形具有而非平行四边形不具有的是().A.内角和为360° B.外角和为360° C.不确定性 D.对角相等2.□ ABCD中,∠A=55°,则∠B、∠C的度数分别是().A.135°,55° B.55°,135° C.125°,55° D.55°,125°3.下列正确结论的个数是().①平行四边形内角和为360°;②平行四边形对角线相等;③平行四边形对角线互相平分;④平行四边形邻角互补.A.1 B.2 C.3 D.44.平行四边形中一边的长为10cm,那么它的两条对角线的长度可能是().A.4cm和6cm B.20cm和30cm C.6cm和8cm D.8cm和12cm 5.在□ABCD中,AB+BC=11cm,∠B=30°,S ABCD=15cm2,则AB与BC的值可能是().A.5cm和6cm B.4cm和7cm C.3cm和8cm D.2cm和9cm 6.在下列定理中,没有逆定理的是().A.有斜边和一直角边对应相等的两个直角三角形全等;B.直角三角形两个锐角互余;C.全等三角形对应角相等;D.角平分线上的点到这个角两边的距离相等.7.下列说法中正确的是().A.每个命题都有逆命题 B.每个定理都有逆定理C.真命题的逆命题是真命题 D.假命题的逆命题是假命题8.一个三角形三个内角之比为1:2:1,其相对应三边之比为().A.1:2:1 B.1:1 C.1:4:1 D.12:1:29.一个三角形的三条中位线把这个三角形分成面积相等的三角形有()个. A.2 B.3 C.4 D.510.如图所示,在△ABC中,M是BC的中点,AN平分∠BAC,BN⊥AN.若AB=•14,•AC=19,则MN的长为().A.2 B.2.5 C.3 D.3.5二、填空题(3′×10=30′)11.用14cm长的一根铁丝围成一个平行四边形,短边与长边的比为3:4,短边的比为________,长边的比为________.12.已知平行四边形的周长为20cm,一条对角线把它分成两个三角形,•周长都是18cm,则这条对角线长是_________cm.13.在□ABCD中,AB的垂直平分线EF经过点D,在AB上的垂足为E,•若□ABCD•的周长为38cm,△ABD的周长比□ABCD的周长少10cm,则□ABCD的一组邻边长分别为______.14.在□ABCD中,E是BC边上一点,且AB=BE,又AE的延长线交DC的延长线于点F.若∠F=65°,则□ABCD的各内角度数分别为_________.15.平行四边形两邻边的长分别为20cm,16cm,两条长边的距离是8cm,•则两条短边的距离是_____cm.16.如果一个命题的题设和结论分别是另一个命题的______和_______,•那么这两个命题是互为逆命题.17.命题“两直线平行,同旁内角互补”的逆命题是_________.18.在直角三角形中,已知两边的长分别是4和3,则第三边的长是________.19.直角三角形两直角边的长分别为8和10,则斜边上的高为________,斜边被高分成两部分的长分别是__________.20.△ABC的两边分别为5,12,另一边c为奇数,且a+b+•c•是3•的倍数,•则c•应为________,此三角形为________三角形.三、解答题(6′×10=60′)21.如右图所示,在□ABCD中,BF⊥AD于F,BE⊥CD于E,若∠A=60°,AF=3cm,CE=2cm,求ABCD的周长.22.如图所示,在□ABCD 中,E 、F 是对角线BD 上的两点,且BE=DF.求证:(1)AE=CF ;(2)AE ∥CF .23.如图所示,□ABCD 的周长是,AB 的长是DE ⊥AB 于E ,DF ⊥CB 交CB•的延长线于点F ,DE 的长是3,求(1)∠C 的大小;(2)DF 的长.24.如图所示,□ABCD 中,AQ 、BN 、CN 、DQ 分别是∠DAB 、∠ABC 、∠BCD 、•∠CDA 的平分线,AQ 与BN 交于P ,CN 与DQ 交于M ,在不添加其它条件的情况下,试写出一个由上述条件推出的结论,并给出证明过程(要求:•推理过程中要用到“平行四边形”和“角平分线”这两个条件).FCDAEB25.已知△ABC的三边分别为a,b,c,a=n2-16,b=8n,c=n2+16(n>4).求证:∠C=90°.26.如图所示,在△ABC中,AC=8,BC=6,在△ABE中,DE⊥AB于D,DE=12,S =60,•求∠C的度数.△ABE27.已知三角形三条中位线的比为3:5:6,三角形的周长是112cm,•求三条中位线的长.28.如图所示,已知AB=CD,AN=ND,BM=CM,求证:∠1=∠2.29.如图所示,△ABC的顶点A在直线MN上,△ABC绕点A旋转,BE⊥MN于E,•CD•⊥MN于D,F为BC中点,当MN经过△ABC的内部时,求证:(1)FE=FD;(2)当△ABC继续旋转,•使MN不经过△ABC内部时,其他条件不变,上述结论是否成立呢?30.如图所示,E是□ABCD的边AB延长线上一点,DE交BC于F,求证:S△ABF=S .△EFC答案:一、1.D 2.C 3.C 4.B 5.A 6.C 7.A 8.B 9.C 10.C二、11.3cm 4cm 12.8 13.9cm和10cm 14.50°,130°,50°,130°• •15.10 16.结论题设 17.同旁内角互补,两直线平行18.5..13 直角三、21.□ABCD的周长为20cm 22.略24.略23.(1)∠C=45°(2)DF=225.•略 26.∠C=90° 27.三条中位线的长为:12cm;20cm;24cm 28.提示:连结BD,取BD•的中点G,连结MG,NG29.(1)略(2)结论仍成立.提示:过F作FG⊥MN于G 30.略第18章单元测试(2)班级姓名成绩一、选择题(3′×10=30′)1.下列判断四边形是平行四边形的是().A.两组角相等的四边形; B.对角线平分的四边形; C.一组对边相等,一组对角相等的四边形; D.两组对边分别相等的四边形2.根据下列条件,能作出平行四边形的是().A.两组对边长分别是3cm和7cm;B.相邻两边的边长分别是2cm和4cm,一条对角线长是7cm;C.一条边长为6cm,另一条对角线长为10cm,一条边长为8cm;D.一条边长为7cm,两条对角线长为6cm和8cm3.如图1所示,在□ABCD中,EF∥GH∥AB,MN∥BC,则图中的平行四边形的个数为(• ).A.12个 B.16个 C.14个 D.18个(1) (2) (3) 4.已知下列四个命题:①一组对边平行且相等的四边形;②两组对角分别相等的四边形;③对角线相等的四边形;④对角线互相平分的四边形.•其中能判断是平行四边形的命题个数为().A.1个 B.2个 C.3个 D.4个5.以不共线的三点为平行四边形的其中三个顶点作平行四边形,•一共可作平行四边形的个数是().A.2个 B.3个 C.4个 D.5个6.平行四边形的一边为32,则它的两条对角线长不可能是().A.20和40 B.30和50 C.40和50 D.20和607.如图2所示,EF过□ABCD对角线的交点O,分别交AD于E,交BC于点F,若OE=5,四边形CDEF的周长为25,则□ABCD的周长为().A.20 B.30 C.40 D.508.在□ABCD中,∠A:∠B:∠C:∠D的值可以是().A.1:2:3:4 B.1:3:4:2 C.1:1:2:2 D.3:4:3:49.已知O为□ABCD对角线的交点,且△AOB的周长为1,则□ABCD的面积为() A.1 B.2 C.3 D.410.已知O为□ABCD对角线的交点,且△AOB的周长比△BOC的周长多23,则CD-AD•的值为().A.23B.32C.2 D.3二、填空题(3′×10=30′)11.□ABCD中,∠A:∠B=7:2,则∠C=______.12.如图3所示,在□ABCD中,CM⊥AD于M,CN⊥AB于N,若∠B=50°,则∠MCN=_____.13.若平行四边形的周长为40cm,对角线AC、BD•相交于点O,•△BOC•的周长比△AOB的周长大2cm,则AB=________.14.若平行四边形的周长为56cm,相邻两边的长度比为3:4,则四边形的四边长分别为_____________.15.如果□ABCD和□ABEF有公共边AB,那么四边形DCEF是_________.16.四边形ABCD中,∠ADC=∠ABC,要判断这个四边形是平行四边形,•只需判断出__________即可,根据是________________.17.已知一个四边形的边长依次分别为a,b,c,d,且a2+b2+c2+d2=2ac+2bd,•则此四边形为___________.18.过平行四边形对角线的交点,且与一组边平行的直线将平行四边形分成的两个四边形________平行四边形.(填“是”或“不是”)19.四边形ABCD中,AC、BD交于点O,且OA=OC,OB=•OD,•∠ABC=•80•°,•则∠ADC=_____.20.已知:四边形ABCD中,AD∥BC,要使四边形ABCD为平行四边形,•需要增加条件________.(只需填写一个你认为正确的即可)三、解答题(共60′)21.(6′)如右图所示,在□ABCD中,AE、CF分别是∠DAB、∠BCD的平分线,求证:四边形AFCE是平行四边形.22.(6′)如右图所示,O为等边△ABC内任意一点,OD∥BC,OE∥AC,OF∥AB,•并且D、E、F分别在AB、BC、AC上,求证:OD+OE+OF=BC.23.(8′)如下图所示,已知平行四边形ABCD的周长是36cm,由钝角顶点D向AB、•BC引两条高DE、DF,且,cm,求平行四边形ABCD的面积.24.(8′)如下图所示,□ABCD中,AE⊥BC,AF⊥DC,垂足分别为E、F,∠ADC=•60•°,BE=2,CF=1,连结DE,求△DEC的面积.25.(8′)求证:顺次连结四边形各边中点所得的四边形是平行四边形.26.(8′)如右图所示,△ABC中,CD是△ABC的角平分线,AE⊥CD于E,F为AC的中点,试问EF∥BC吗?为什么?27.(8′)已知□ABCD中,E、F分别是BC、CD的中点,AE、AF分别交BD于M、N.求证:BM=MN=ND.28.(8′)已知如下图所示,在□ABCD中,∠A=60°,E、F分别是AB、CD•的中点,•且AB=2AD.(1)求证:EF:(2)试判断EF与BD的位置关系?答案:一、1.D 2.A 3.D 4.C 5.B 6.A 7.B 8.D 9.D 10.A二、11.140° 12.50° 13.9cm 14.12cm,16cm,12cm,16cm 15.•平行四边形16.∠BAD=∠BCD 两组对角分别相等,则四边形是平行四边形 17.•平行四边形 •18.是 19.80° 20.AB∥DC三、21.略 22.略 23.2 24..提示:连结AC 26.略27.略28.(1)提示:连结DE (2)EF⊥BD第18章单元测试(3)一、选择题.(每小题4分,共32分)1.一个平行四边形的两条对角线的长分别为8和10,则这个平行四边形边长不可能是()A.2B.5C.8D.102.如图,在菱形ABCD中,对角线AC与BD相交于点O,OE⊥AB,垂足为E,若∠ADC=130°,则∠AOE的大小为()A.75°B.65°C.55°D.50°第2题图第3题图3.如图,在矩形ABCD中,AB=2,BC=4,对角线AC的垂直平分线分别交AD、AC于点E、O,连接CE,则CE的长为()A.3B.3.5C.2.5D.2.84. 下列命题中,真命题是()A.对角线相等的四边形是矩形B.对角线互相垂直的四边形是菱形C.对角线互相平分的四边形是平行四边形D.对角线互相垂直平分的四边形是正方形5.如图,CD是△ABC的中线,点E,F分别是AC、DC的中点,EF=2,则BD=()A.2B.3C.4D.6第5题图第6题图第7题第8题6.如图所示,将□ABCD折叠,使顶点D恰好落在AB边上的点M处,折痕为AN,那么对于结论:①MN∥BC,②MN=AM,下列说法正确的是()A.①②都对B.①②都错C.①对②错D.①错②对7.如图所示,在正方形ABCD中,点E、F分别在CD,BC上,且BF=CE,连接BE,AF相交于点G,则下列结论不正确的是()A.BE=AFB.∠DAF=∠BECC.∠AFB+∠BEC=90°D.AG⊥BE8. 如图,矩形ABCD中,O为AC中点,过点O的直线分别与AB、CD交于点E、F,连结BF交AC于点M,连结DE、BO,若∠COB=60°,FO=FC,则下列结论:①FB垂直平分OC;②△EOB≌△CMB;③DE=EF;④S△AOE ∶S△BCM=2∶3.其中正确结论的个数是()A.4个B.3个C.2个D.1个二、填空题.(每小题4分,共32分)9.如图,在平行四边形ABCD中,∠B=110°,延长AD至F,延长CD至E,连接EF,则∠E+∠F= .第9题图第10题图10.如图所示,在R t△ABC中,∠C=90°,DE垂直平分AC,DF⊥BC,当△ABC满足条件时,四边形DECF是正方形.(要求:①不再添加任何辅助线;②只填一个符合要求的条件)11.如图,DE为△ABC的中位线,点F在DE上,且∠AFB=90°,若AB=8,BC=10,则EF的长为 .第11题图第12题图12. 如图,正方形ABCO的顶点C、A分别在x轴、y轴上,BC是菱形BDCE 的对角线,若∠D=60°,BC=2,则点D的坐标是 .13.已知一个平行四边形的一条对角线将其分为两个全等的等腰直角三角形,且这条对角线的长为6,则另一条对角线的长为 .14. 如图,菱形ABCD的面积为120cm2,正方形AECF的面积为50cm2,则菱形的边长为 cm.15.如图,已知点P是正方形ABCD的对角线BD上一点,PE⊥BC于E,PF⊥CD于F,连接PA、EF.则线段PA与EF之间的大小关系是 .第15题图第16题图16.如图,E是正方形ABCD的边CD的中点,AE的垂直平分线分别交AE、BC于H、G,若CG=7,BC=8,则GH等于 .三、解答题.(共56分)17.(8分)如图所示,一根长2.5m的木棍(AB)斜靠在与地面(OM)垂直的墙(ON)上,此时OB的距离为0.7m,设木棍的中点为P.若木棍顶端A沿墙下滑,且底端B沿地面向右滑行.(1)如果木棍的顶端A沿墙下滑0.4 m,那么木棍的底端B向外移动了多少距离?(2)请判断木棍滑动的过程中,点P到点O的距离是否变化,并简述理由.18.(8分)如图,在正方形ABCD中,对角线AC,BD相交于点O,E,F分别在OD,OC上,且DE=CF,连接DF,AE,AE的延长线交DF于点M.求证:AM⊥DF.19.(8分)如图,在平行四边形ABCD中,AE是BC边上的高,将△ABE沿BC方向平移,使点E与点C重合,得到△GFC.(1)求证:BE=DG;(2)若∠B=60°,当AB与BC满足什么数量关系时,四边形ABFG是菱形?证明你的结论.20.(8分)如图,在四边形ABCD中,AD∥BC,∠B=90°,AD=18cm,BC=21cm,点P从点A出发沿AD边向D以1cm/s的速度运动,点Q从点C出发沿CB边向B以2cm/s的速度运动,如果P、Q分别从A、C同时出发,设运动时间为t s.求:(1)当t为何值时,四边形ABQP为矩形?(2)当t为何值时,四边形PQCD为平行四边形?21.(12分)(2016·湖北十堰)如图,将矩形纸片ABCD(AD>AB)折叠,使点C刚好落在线段AD上,且折痕分别与边BC,AD相交,设折叠后点C,D的对应点分别为G,H,折痕分别与边BC,AD相交于点E,F.(1)判断四边形CEGF的形状,并证明你的结论;(2)若AB=3,BC=9,求线段CE的取值范围.22.(12分)如图①,菱形ABCD对角线AC,BD的交点O是四边形EFGH 对角线FH的中点,四个顶点A,B,C,D分别在四边形EFGH的边EF,FG,GH,HE 上.(1)求证:四边形EFGH是平行四边形;(2)如图②,若四边形EFGH是矩形,当AC与FH重合时,已知ACBD=2,且菱形ABCD的面积是20,求矩形EFGH的长与宽.答案第十八章达标检测卷一、选择题(每题3分,共30分)1.如图,▱ABCD中,AC=3 cm,BD=5 cm,则边AD的长可以是() A.3 cm B.4 cm C.5 cm D.6 cm2.如图,D,E分别是△ABC的边AB,AC上的点,且AD=DB,AE=EC.若DE =4,则BC的长为()A.2 B.4 C.6 D.83.如图,在▱ABCD中,AE平分∠BAD,若CE=3 cm,AB=4 cm,则▱ABCD的周长是()A.20 cm B.21 cm C.22 cm D.23 cm4.下列命题中,真命题是()A.对角线相等的四边形是矩形B.对角线互相垂直的四边形是菱形C.对角线互相平分的四边形是平行四边形D.对角线互相垂直平分的四边形是正方形5.若顺次连接四边形ABCD四边的中点,得到的图形是一个矩形,则四边形ABCD 一定是()A.矩形B.菱形C.对角线相等的四边形D.对角线互相垂直的四边形6.如图,在矩形ABCD中,对角线AC,BD相交于点O,过点O的直线EF分别交AB,CD于点E,F,若图中阴影部分的面积为6,则矩形ABCD的面积为()A.12 B.18 C.24 D.307.平行四边形ABCD的对角线交于点O,有五个条件:①AC=BD,②∠ABC =90°,③AB=AC,④AB=BC,⑤AC⊥BD,则下列哪个组合可判定这个四边形是正方形?()A.①②B.①③C.①④D.④⑤8.如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BAE=22.5°,EF⊥AB,垂足为F,则EF的长为()A.1 B. 2 C.4-2 2 D.3 2-49.如图,在菱形ABCD中,AB=2,∠A=120°,P,Q,K分别为线段BC,CD,BD上的任意一点,则P K+Q K的最小值为()A.1 B. 3 C.2 D.3+110.如图,依次连接第一个矩形各边的中点得到一个菱形,再依次连接菱形各边的中点得到第二个矩形,按照此方法继续下去.若第一个矩形的面积为1,则第n个矩形的面积为()A.14 B.14n-1C.14n D.14n+1二、填空题(每题3分,共30分)11.如图,在▱OABC中,点O为坐标原点,点A的坐标为(3,0),点B的坐标为(4,2),则点C的坐标为__________.12.如图,在菱形ABCD中,对角线AC=6,BD=10,则菱形ABCD的面积为________.13.如图,在正方形ABCD中,点F为CD上一点,BF与AC交于点E,若∠CBF=20°,则∠AED等于________.14.如图,在矩形ABCD中,对角线AC,BD相交于点O,DE⊥AC于点E,∠EDC:∠EDA=1:2,且AC=10,则EC的长度是________.15.如图,平行四边形ABCD的对角线AC,BD相交于点O,E,F分别是线段AO,BO的中点.若AC+BD=30 cm,△OAB的周长为23 cm,则EF的长为__________.16.如图,在▱ABCD中,点E为BC边上一点(不与端点重合),若AB=AE,且AE平分∠DAB,则有下列结论:①∠B=60°;②AC=BC;③∠AED=∠ACD;④△ABC≌△EAD.其中正确的是__________(在横线上填所有正确结论的序号).17.如图,在菱形纸片ABCD中,∠A=60°,折叠菱形纸片ABCD,使点C落在DP(P为AB的中点)所在的直线上的点C′处,得到经过点D的折痕DE.则∠DEC的大小为________.18.菱形ABCD在平面直角坐标系中的位置如图所示,其中点A的坐标为(1,0),点B的坐标为(0,3),动点P从点A出发,沿A→B→C→D→A→B→…的路径,在菱形的边上以每秒0.5个单位长度的速度移动,移动到第2 020 s 时,点P的坐标为__________.19.如图,四边形ABCD为矩形,过点D作对角线BD的垂线,交BC的延长线于点E,取BE的中点F,连接DF,DF=4.设AB=x,AD=y,则x2+(y-4)2的值为________.20.正方形ABCD的边长是4,点P是AD边的中点,点E是正方形边上的一点,若△PBE是等腰三角形,则腰长为____________________.三、解答题(21题8分,26题12分,其余每题10分,共60分)21.如图,在▱ABCD中,AE平分∠BAD,CF平分∠BCD,分别交CD,AB于点E,F.求证AE=CF.22.如图,正方形ABCD的边长为4,E,F分别为DC,BC的中点.(1)求证△ADE≌△ABF;(2)求△AEF的面积.23.如图,在平行四边形ABCD中,边AB的垂直平分线交AD于点E,交AB于点G,交CB的延长线于点F,连接AF,BE.(1)求证△AGE≌△BGF;(2)试判断四边形AFBE的形状,并说明理由.24.如图,在矩形ABCD中,对角线AC的垂直平分线EF分别交AD,AC,BC 于点E,O,F,连接CE和AF.(1)求证:四边形AECF为菱形;(2)若AB=4, BC=8,求菱形AECF的周长.25.如图,在平行四边形ABCD中,AB=3 cm,BC=5 cm,∠B=60°,G是CD 的中点,E是边AD上的动点,EG的延长线与BC的延长线交于点F,连接CE,DF.(1)求证:四边形CEDF是平行四边形.(2)①当四边形CEDF是矩形时,求AE的长;②当四边形CEDF是菱形时,求AE的长.26.如图,在正方形ABCD外侧作直线AP,点B关于直线AP的对称点为E,连接BE,DE,其中DE交直线AP于点F.(1)依题意补全图①;(2)若∠P AB=20°,求∠ADF的度数;(3)如图②,若45°<∠P AB<90°,用等式表示线段AB,EF,FD之间的数量关系,并证明.答案一、1.A 2.D 3.C 4.C5.D 点拨:运用三角形的中位线定理和矩形的性质解答.6.C 点拨:根据题意易知△COF 的面积与△AOE 的面积相等,阴影部分的面积为矩形面积的四分之一.7.C8.C 点拨:由题易得∠ABD =∠ADB =45°,再求出∠DAE 的度数.根据三角形的内角和定理求∠AED ,从而得到∠DAE =∠AED ,再根据等角对等边得到AD =DE ,然后求出正方形的对角线BD ,再求出BE ,进而在等腰直角三角形中利用勾股定理求出EF 的长.9.B10.B 点拨:第一个矩形的面积为1,易知第二个矩形的面积为14,第三个矩形的面积是116……故第n 个矩形的面积为14n -1. 二、11.(1,2) 12.30 13.65° 14.2.515.4 cm16.①③④ 点拨:∵四边形ABCD 为平行四边形,∴AB ∥CD ,AD =BC ,AD ∥BC .∴∠DAE =∠AEB .∵AE 平分∠DAB ,∴∠DAE =∠BAE .∴∠BAE =∠AEB .∴AB =BE .又AB =AE ,∴AB =AE =BE .∴△ABE 为等边三角形.∴∠B =∠BAE =60°.∴∠B =∠DAE .∵∠BAC =∠BAE +∠EAC =60°+∠EAC >∠B ,∴BC >AC .在△ABC 和△EAD 中,⎩⎨⎧AB =EA ,∠ABC =∠EAD ,BC =AD ,∴△ABC ≌△EAD (SAS ).∴∠BAC=∠AED.∵AB∥CD,∴∠BAC=∠ACD.∴∠AED=∠ACD.故正确的是①③④.17.75°点拨:如图,连接BD,由菱形的性质及∠A=60°,得到三角形ABD为等边三角形.由P为AB的中点,利用等腰三角形三线合一的性质得到∠ADP=30°.由题意易得∠ADC=120°,∠C=60°,进而求出∠PDC=90°,由折叠的性质得到∠CDE=∠PDE=45°,利用三角形的内角和定理即可求出∠DEC=75°.18.(0,3)19.16点拨:∵四边形ABCD是矩形,AB=x,AD=y,∴CD=AB=x,BC=AD=y,∠BCD=90°.又∵BD⊥DE,点F是BE的中点,DF=4,∴BF=DF=EF=4.∴CF=BF-BC=4-y.在Rt△DCF中,DC2+CF2=DF2,即x2+(4-y)2=42=16,∴x2+(y-4)2=16.20.25或52或652三、21.证明:∵四边形ABCD为平行四边形,∴AD=BC,∠D=∠B,∠BAD=∠BCD.又∵AE平分∠BAD,CF平分∠BCD,∴∠DAE=12∠BAD,∠BCF=12∠BCD.∴∠DAE=∠BCF.在△DAE和△BCF中,⎩⎨⎧∠D =∠B ,DA =BC ,∠DAE =∠BCF ,∴△DAE ≌△BCF (ASA ).∴AE =CF .22.(1)证明:∵四边形ABCD 为正方形,∴AB =AD =DC =CB ,∠D =∠B =90°.∵E ,F 分别为DC ,BC 的中点,∴DE =12DC ,BF =12BC .∴DE =BF .在△ADE 和△ABF 中,⎩⎨⎧AD =AB ,∠D =∠B ,DE =BF ,∴△ADE ≌△ABF (SAS ).(2)解:由题易知△ABF ,△ADE ,△CEF 均为直角三角形,且AB =AD =4,DE =BF =CE =CF =12×4=2,∴S △AEF =S 正方形ABCD -S △ADE -S △ABF -S △CEF =4×4-12×4×2-12×4×2-12×2×2=6.23.(1)证明:∵四边形ABCD 是平行四边形,∴AD ∥BC .∴∠AEG =∠BFG .∵EF 垂直平分AB ,∴EF ⊥AB ,AG =BG .在△AGE 和△BGF 中,⎩⎨⎧∠AEG =∠BFG ,∠AGE =∠BGF ,AG =BG ,∴△AGE ≌△BGF (AAS ).(2)解:四边形AFBE 是菱形.理由如下:∵△AGE ≌△BGF ,∴AE =BF .∵AD ∥BC ,∴四边形AFBE 是平行四边形.又∵EF ⊥AB ,∴四边形AFBE 是菱形.24.(1)证明:∵EF 是AC 的垂直平分线,∴AO =OC ,∠AOE =∠COF =90°.∵四边形ABCD 是矩形,∴AD ∥BC .∴∠EAO =∠FCO .在△AEO 和△CFO 中,⎩⎨⎧∠EAO =∠FCO ,AO =CO ,∠AOE =∠COF ,∴△AEO ≌△CFO (ASA ).∴OE =OF .∵OA =OC ,∴四边形AECF 是平行四边形.又∵EF ⊥AC ,∴四边形AECF 是菱形.(2)解:设AF =x .∵EF 是AC 的垂直平分线,∴AF =CF =x ,∴BF =8-x .在Rt △ABF 中,由勾股定理得:AB 2+BF 2=AF 2,即42+(8-x )2=x 2,解得x =5.∴AF =5.∴菱形AECF 的周长为20.25.(1)证明:∵四边形ABCD 是平行四边形,∴CF ∥ED .∴∠FCG =∠EDG .∵G 是CD 的中点,∴CG =DG .在△FCG 和△EDG 中,⎩⎨⎧∠FCG =∠EDG ,CG =DG ,∠CGF =∠DGE ,∴△FCG ≌△EDG (ASA ).∴FG =EG .∵CG =DG ,∴四边形CEDF 是平行四边形.(2)解:①∵四边形ABCD 是平行四边形,∴∠CDA =∠B =60°,DC =AB =3 cm ,BC =AD =5 cm .∵四边形CEDF 是矩形,∴∠CED =90°.在Rt △CED 中,易得ED =12CD =1.5 cm ,∴AE =AD -ED =3.5(cm).故当四边形CEDF 是矩形时,AE =3.5 cm.②若四边形CEDF 是菱形,则CE =ED .由①可知∠CDA =60°,∴△CED 是等边三角形.∴DE =CD =3 cm.∴AE =AD -DE =5-3=2(cm).故当四边形CEDF 是菱形时,AE =2 cm.点拨:在判定三角形全等时,关键是选择恰当的判定条件,有时还需添加适当的辅助线构造全等三角形.同时全等三角形也为平行四边形、矩形、菱形的判定构筑了重要的平台和保障.26.解:(1)如图①所示.(2)如图②,连接AE.∵点E是点B关于直线AP的对称点,∴∠P AE=∠P AB=20°,AE=AB.∵四边形ABCD是正方形,∴AE=AB=AD,∠BAD=90°.∴∠AED=∠ADE,∠EAD=∠DAB+∠BAP+∠P AE=130°.∴∠ADF=180°-130°2=25°.(3)EF2+FD2=2AB2.证明:如图③,连接AE,BF,BD,由轴对称和正方形的性质可得EF=BF,AE =AB=AD,易得∠ABF=∠AEF=∠ADF,又∵∠BAD=90°,∴∠ABF+∠FBD+∠ADB=90°.∴∠ADF+∠ADB+∠FBD=90°.∴∠BFD=90°.在Rt△BFD中,由勾股定理得BF2+FD2=BD2;在Rt△ABD中,由勾股定理得BD2=AB2+AD2=2AB2,∴EF2+FD2=2AB2.。
知识点详解人教版八年级数学下册第十八章-平行四边形专题测试试卷(含答案解析)
人教版八年级数学下册第十八章-平行四边形专题测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、勾股定理是人类早期发现并证明的重要数学定理之一,是数形结合的重要纽带.数学家欧几里得利用如图验证了勾股定理:以直角三角形ABC的三条边为边长向外作正方形ACHI,正方形ABED,正方形BCGF,连接BI,CD,过点C作CJ⊥DE于点J,交AB于点K.设正方形ACHI的面积为S1,正方形BCGF 的面积为S2,长方形AKJD的面积为S3,长方形KJEB的面积为S4,下列结论:①BI=CD;②2S△ACD=S1;③S1+S4=S2+S3)A.1个B.2个C.3个D.4个2、在ABCD中,添加以下哪个条件能判断其为菱形()A.AB⊥BC B.BC⊥CD C.CD⊥AC D.AC⊥BD3、在Rt△ABC中,∠C=90°,若D为斜边AB上的中点,AB的长为10,则DC的长为()A.5 B.4 C.3 D.24、如图,把矩形纸片ABCD沿对角线折叠,若重叠部分为EBD∆,那么下列说法错误的是()A.EBD∆是等腰三角形B.EBA∆全等∆和EDCC.折叠后得到的图形是轴对称图形D.折叠后ABE∠相等∠和CBD5、如图,在正方形有ABCD中,E是AB上的动点,(不与A、B重合),连结DE,点A关于DE的对称点为F,连结EF并延长交BC于点G,连接DG,过点E作EH⊥DE交DG的延长线于点H,连接BH,那么BH的值为()AEA.1 B C D.26、已知三角形三边长分别为7cm,8cm,9cm,作三条中位线组成一个新的三角形,同样方法作下去,一共做了五个新的三角形,则这五个新三角形的周长之和为()A.46.5cm B.22.5cm C.23.25cm D.以上都不对7、在菱形ABCD中,两条对角线AC=10,BD=24,则此菱形的边长为()A.14 B.25 C.26 D.138、如图,在长方形ABCD中,AB=10cm,点E在线段AD上,且AE=6cm,动点P在线段AB上,从点A 出发以2cm/s的速度向点B运动,同时点Q在线段BC上.以v cm/s的速度由点B向点C运动,当△EAP与△PBQ全等时,v的值为()A .2B .4C .4或65 D .2或1259、如图,矩形ABCD 中,AB =3,AD =4,将矩形ABCD 折叠后,A 点的对应点A '落在CD 边上,EF 为折痕,A A '和EF 交于G 点,当AG +BG 取最小值时,此时EF 的值为( )A .154B .C .D .510、如图,在△ABC 中,AC =BC =8,∠BCA =60°,直线AD ⊥BC 于点D ,E 是AD 上的一个动点,连接EC ,将线段EC 绕点C 按逆时针方向旋转60°得到FC ,连接DF ,则在点E 的运动过程中,DF 的最小值是( )A .1B .1.5C .2D .4第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,矩形ABCD中,AB=4,BC=6,点E为BC的中点,将△ABE沿AE翻折至△AFE,连接CF,则CF 的长为___.2、在直角墙角FOE中有张硬纸片正方形ABCD靠墙边滑动,如图所示,AD=2,A点沿墙往下滑动到O点的过程中,正方形的中心点M到O的最小值是______.3、如图,O为坐标原点,△ABO的两个顶点A(6,0),B(6,6),点D在边AB上,点C在边OA上,且BD=AC=1,点P为边OB上的动点,则PC+PD的最小值为 _____.4、如图,平行四边形ABCD中,AB=2,AD=1,∠ADC=60°,将平行四边形ABCD沿过点A的直线l 折叠,使点D落到AB边上的点D处,折痕交CD边于点E.若点P是直线l上的一个动点,则PD +PB 的最小值_______.5、如图,将n个边长都为1的正方形按如图所示摆放,点A1,A2,…,An分别是正方形的中心,则n 个正方形重叠形成的重叠部分的面积和为_____.三、解答题(5小题,每小题10分,共计50分)1、在△ABC中,AB=AC=x,BC=12,点D,E分别为BC,AC的中点,线段BE的垂直平分线交边BC于点F,(1)当x=10时,求线段AD的长.(2)x取何值时,点F与点D重合.(3)当DF=1时,求x2的值.2、(阅读材料)材料一:我们在小学学习过正方形,知道:正方形的四条边都相等,四个角都是直角;材料二:如图1,由一个等腰直角三角形和一个正方形组成的图形,我们要判断等腰直角三角形的面积与正方形的面积的大小关系,可以这样做:如图2,连接AC ,BD ,把正方形分成四个与等腰三角形ADE 全等的三角形,所以 14AED S S =△正方形.(解决问题)如图3,图中由三个正方形组成的图形(1)请你直接写出图中所有的全等三角形;(2)任意选择一组全等三角形进行证明;(3)设图中两个小正方形的面积分别为S 1和S 2,若6AB =,求S 1和S 2的值.3、已知如图,在ABCD 中,点E 是AD 边上一点,连接,,,BE CE BE CE BE CE =⊥,点F 是EC 上一动点,连接BF .(1)如图1,当BF AB ⊥时,连接DF ,延长,BE CD 交于点K ,求证:FD DK =;(2)如图2,以BF 为直角边作等腰,90Rt FBG FBG ∠=︒△,连接GE ,若DE CD ==F 在运动过程中,求BEG 周长的最小值.4、如图, ABCD的对角线AC、BD相交于点O,BD=12cm ,AC=6cm ,点E在线段BO上从点B以1cm/s的速度向点O运动,点F在线段OD上从点O以2cm /s的速度向点D运动.(1)若点E、F同时运动,设运动时间为t秒,当t为何值时,四边形AECF是平行四边形.(2)在(1)的条件下,当AB为何值时, AECF是菱形;(3)求(2)中菱形AECF的面积.5、在平面直角坐标系xOy中,点A(x,﹣m)在第四象限,A,B两点关于x轴对称,x=n(n为常数),点C在x轴正半轴上,(1)如图1,连接AB,直接写出AB的长为;(2)延长AC至D,使CD=AC,连接BD.①如图2,若OA=AC,求线段OC与线段BD的关系;②如图3,若OC=AC,连接OD.点P为线段OD上一点,且∠PBD=45°,求点P的横坐标.---------参考答案-----------一、单选题1、C【解析】【分析】根据SAS 证△ABI ≌△ADC 即可得证①正确,过点B 作BM ⊥IA ,交IA 的延长线于点M ,根据边的关系得出S △ABI =12S 1,即可得出②正确,过点C 作CN ⊥DA 交DA 的延长线于点N ,证S 1=S 3即可得证③正确,利用勾股定理可得出S 1+S 2=S 3+S 4,即能判断④不正确.【详解】解:①∵四边形ACHI 和四边形ABED 都是正方形,∴AI =AC ,AB =AD ,∠IAC =∠BAD =90°,∴∠IAC +∠CAB =∠BAD +∠CAB ,即∠IAB =∠CAD ,在△ABI 和△ADC 中,AI AC IAB CAD AB AD =⎧⎪∠=∠⎨⎪=⎩,∴△ABI≌△ADC(SAS),∴BI=CD,故①正确;②过点B作BM⊥IA,交IA的延长线于点M,∴∠BMA=90°,∵四边形ACHI是正方形,∴AI=AC,∠IAC=90°,S1=AC2,∴∠CAM=90°,又∵∠ACB=90°,∴∠ACB=∠CAM=∠BMA=90°,∴四边形AMBC是矩形,∴BM=AC,∵S△ABI=12AI•BM=12AI•AC=12AC2=12S1,由①知△ABI≌△ADC,∴S△ACD=S△ABI=12S1,即2S△ACD=S1,故②正确;③过点C作CN⊥DA交DA的延长线于点N,∴∠CNA=90°,∵四边形AKJD是矩形,∴∠KAD=∠AKJ=90°,S3=AD•AK,∴∠NAK=∠AKC=90°,∴∠CNA=∠NAK=∠AKC=90°,∴四边形AKCN是矩形,∴CN=AK,∴S△ACD=12AD•CN=12AD•AK=12S3,即2S△ACD=S3,由②知2S△ACD=S1,∴S1=S3,在Rt△ACB中,AB2=BC2+AC2,∴S3+S4=S1+S2,又∵S1=S3,∴S1+S4=S2+S3,即③正确;④在Rt△ACB 中,BC 2+AC 2=AB 2,∴S 3+S 4=S 1+S 2, ∴1234+=+S S S S ,故④错误;综上,共有3个正确的结论,故选:C .【点睛】本题主要考查勾股定理,正方形的性质,矩形性质,全等三角形的判定和性质等知识,熟练掌握勾股定理和全等三角形的判定和性质是解题的关键.2、D【解析】【分析】根据对角线互相垂直的平行四边形是菱形,结合选项找到对角线互相垂直即可求解.【详解】A 、∵AB ⊥BC ,∴∠ABC =90°,又∵四边形ABCD 是平行四边形,∴四边形ABCD 是矩形;故选项A 不符合题意;B 、C 选项,同A 选项一样,均为邻边垂直,ABCD 是矩形;故选项B 、C 不符合题意;D 、∵四边形ABCD 是平行四边形,又∵AC ⊥BD ,∴四边形ABCD 是菱形;故选项D 符合题意故选D【点睛】本题考查了菱形的判定,掌握菱形的判定定理是解题的关键.3、A【解析】【分析】利用直角三角形斜边的中线的性质可得答案.【详解】解:∵∠C=90°,若D为斜边AB上的中点,AB,∴CD=12∵AB的长为10,∴DC=5,故选:A.【点睛】此题主要考查了直角三角形斜边的中线,关键是掌握在直角三角形中,斜边上的中线等于斜边的一半.4、D【解析】【分析】根据题意结合图形可以证明EB=ED,进而证明△ABE≌△CDE;此时可以判断选项A、B、D是成立的,问题即可解决.【详解】解:由题意得:△BCD≌△BFD,∴DC=DF,∠C=∠F=90°;∠CBD=∠FBD,又∵四边形ABCD为矩形,∴∠A=∠F=90°,DE∥BF,AB=DF,∴∠EDB=∠FBD,DC=AB,∴∠EDB=∠CBD,∴EB=ED,△EBD为等腰三角形;在△ABE与△CDE中,∵BE DE AB CD=⎧⎨=⎩,∴△ABE≌△CDE(HL);又∵△EBD为等腰三角形,∴折叠后得到的图形是轴对称图形;综上所述,选项A、B、C成立,∴不能证明D是正确的,故说法错误的是D,故选:D.【点睛】本题主要考查了翻折变换及其应用问题;解题的关键是灵活运用翻折变换的性质,找出图中隐含的等量关系;借助矩形的性质、全等三角形的判定等几何知识来分析、判断、推理或解答.5、B【解析】【分析】作辅助线,构建全等三角形,证明△DAE≌△ENH,得AE=HN,AD=EN,再说明△BNH是等腰直角三角形,可得结论.【详解】解:如图,在线段AD上截取AM,使AM=AE,,∵AD=AB,∴DM=BE,∵点A关于直线DE的对称点为F,∴△ADE≌△FDE,∴DA=DF=DC,∠DFE=∠A=90°,∠1=∠2,∴∠DFG=90°,在Rt△DFG和Rt△DCG中,∵DF DC DG DG=⎧⎨=⎩,∴Rt△DFG≌Rt△DCG(HL),∴∠3=∠4,∵∠ADC =90°,∴∠1+∠2+∠3+∠4=90°,∴2∠2+2∠3=90°,∴∠2+∠3=45°,即∠EDG =45°,∵EH ⊥DE ,∴∠DEH =90°,△DEH 是等腰直角三角形,∴∠AED +∠BEH =∠AED +∠1=90°,DE =EH ,∴∠1=∠BEH ,在△DME 和△EBH 中,∵1DM BE BEHDE EH =⎧⎪∠=∠⎨⎪=⎩,∴△DME ≌△EBH (SAS ),∴EM =BH ,Rt △AEM 中,∠A =90°,AM =AE ,∴EM =,∴BH ,即BHAE故选:B .【点睛】本题考查了正方形的性质,全等三角形的判定定理和性质定理,等知识,解决本题的关键是作出辅助线,利用正方形的性质得到相等的边和相等的角,证明三角形全等.6、C【解析】【分析】如图所示,8cm AB =,9cm BC =,7cm AC =,DE ,DF ,EF 分别是三角形ABC 的中位线,GH ,GI ,HI 分别是△DEF 的中位线,则14.5cm 2DE BC ==,14cm 2EF AB ==,1 3.5cm 2DF AC ==,即可得到△DEF 的周长==12cm DE DF EF ++,由此即可求出其他四个新三角形的周长,最后求和即可.【详解】解:如图所示,8cm AB =,9cm BC =,7cm AC =,DE ,DF ,EF 分别是三角形ABC 的中位线,GH ,GI ,HI 分别是△DEF 的中位线, ∴14.5cm 2DE BC ==,14cm 2EF AB ==,1 3.5cm 2DF AC ==, ∴△DEF 的周长==12cm DE DF EF ++,同理可得:△GHI 的周长==6cm HI HG GI ++,∴第三次作中位线得到的三角形周长为3cm ,∴第四次作中位线得到的三角形周长为1.5cm∴第三次作中位线得到的三角形周长为0.75cm∴这五个新三角形的周长之和为1263 1.50.75=23.25cm ++++,故选C .【点睛】本题主要考查了三角形中位线定理,解题的关键在于能够熟练掌握三角形中位线定理.7、D【解析】【分析】由菱形的性质和勾股定理即可求得AB的长.【详解】解:∵四边形ABCD是菱形,AC=10,BD=24,∴AB=BC=CD=AD,AC⊥BD,OB=OD=12BD=12,OA=OC=12AC=5,在Rt△ABO中,AB,故选:D.【点睛】本题考查了菱形的性质、勾股定理等知识,熟练掌握菱形的性质,由勾股定理求出AB=13是解题的关键.8、D【解析】【分析】根据题意可知当△EAP与△PBQ全等时,有两种情况:①当EA=PB时,△APE≌△BQP,②当AP=BP时,△AEP≌△BQP,分别按照全等三角形的性质及行程问题的基本数量关系求解即可.【详解】解:当△EAP与△PBQ全等时,有两种情况:①当EA=PB时,△APE≌△BQP(SAS),∵AB=10cm,AE=6cm,∴BP=AE=6cm,AP=4cm,∴BQ=AP=4cm;∵动点P在线段AB上,从点A出发以2cm/s的速度向点B运动,∴点P和点Q的运动时间为:4÷2=2s,∴v的值为:4÷2=2cm/s;②当AP=BP时,△AEP≌△BQP(SAS),∵AB=10cm,AE=6cm,∴AP=BP=5cm,BQ=AE=6cm,∵5÷2=2.5s,∴2.5v=6,∴v=125.故选:D.【点睛】本题考查矩形的性质及全等三角形的判定与性质等知识点,注意数形结合和分类讨论并熟练掌握相关性质及定理是解题的关键.9、A【解析】【分析】过点G 作GM AD ⊥于M ,由翻折的性质知点G 为AA '的中点,则GM 为ADA '∆的中位线,可知G 在GM 上运动,当AG BG +取最小值时,此时A '与C 重合,利用勾股定理和相似求出EG 的长即可解决问题.【详解】解:过点G 作GM AD ⊥于M ,将矩形ABCD 折叠后,A 点的对应点A '落在CD 边上,∴点G 为AA '的中点,GM ∴为ADA '∆的中位线,A '在CD 上运动,G ∴在GM 上运动,∴当AG BG +取最小值时,此时A '与C 重合,5AA ',52AG ∴=, AGE ADC ∠=∠,GAE DAC ∠=∠,AGE ADC ∴∆∆∽, ∴EG CD AG AD =,∴3542EG =,158EG ∴=, 在BFG ∆和DEG ∆中,FBG EDG BG DG BGF DGE ∠=∠⎧⎪=⎨⎪∠=∠⎩, ()BFG DEG ASA ∴∆≅∆,EG GF ∴=,15152284EF EG ∴==⨯=, 故选:A .【点睛】本题主要考查了矩形的性质,翻折的性质,全等三角形的判定与性质,勾股定理等知识,解题的关键是证明G 在GM 上运动.10、C【解析】【分析】取线段AC 的中点G ,连接EG ,根据等边三角形的性质以及角的计算即可得出CD =CG 以及∠FCD =∠ECG ,由旋转的性质可得出EC =FC ,由此即可利用全等三角形的判定定理SAS 证出△FCD ≌△ECG ,进而即可得出DF =GE ,再根据点G 为AC 的中点,即可得出EG 的最小值,此题得解.【详解】解:取线段AC 的中点G ,连接EG ,如图所示.∵AC =BC =8,∠BCA =60°,∴△ABC 为等边三角形,且AD 为△ABC 的对称轴,∴CD =CG =12AB =4,∠ACD =60°,∵∠ECF =60°,∴∠FCD =∠ECG ,在△FCD 和△ECG 中,FC EC FCD ECG DC GC =⎧⎪∠=∠⎨⎪=⎩, ∴△FCD ≌△ECG (SAS ),∴DF =GE .当EG ∥BC 时,EG 最小,∵点G 为AC 的中点,∴此时EG =DF =12CD =14BC =2.故选:C .【点睛】本题考查了等边三角形的性质以及全等三角形的判定与性质,三角形中位线的性质,解题的关键是通过全等三角形的性质找出DF =GE,本题属于中档题,难度不大,解决该题型题目时,根据全等三角形的性质找出相等的边是关键.二、填空题1、3.6【解析】【分析】连接BF,根据三角形的面积公式求出BH,得到BF,根据直角三角形的判定得到∠BFC=90°,根据勾股定理求出答案.【详解】解:连接BF,∵BC=6,点E为BC的中点,∴BE=3,又∵AB=4,∴AE5,∴BH=3412 55⨯=,则BF=245,∵点E为BC的中点,∴BE=EC,∵△ABE沿AE翻折至△AFE,∴FE=BE,∴FE=BE= EC,∴∠CBF=∠EFB,∠BCF=∠EFC,∴2∠EFB+2∠EFC=180°,∴∠EFB+∠EFC=90°∴∠BFC=90°,∴CF 3.6=.故答案为:3.6.【点睛】本题考查的是翻折变换的性质和矩形的性质,掌握折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解题的关键.2、2【解析】【分析】OG GM,根据直角三角形的性质求出OG和MG的长,然后根据两点之间线段取AD的中点为G,连接,最短即可求解.【详解】OG GM,解:取AD的中点为G,连接,ABCD 为正方形,,AM MD AM MD ∴⊥=,2AD =,G 为中点,1MG =∴,又AOD 为直角三角形,112OG AD ∴==, G ∴的轨迹是以O 为圆心的圆弧,OM ∴最小值为当,,O G M 三点共线时,即2OM OG GM =+=,故答案为:2.【点睛】本题考查了正方形的性质,直角三角形斜边的中线等于斜边的一半,以及两点之间线段最短等知识,正确作出辅助线是解答本题的关键.3、6【解析】【分析】过点D作DE⊥AB交y轴于点E,交BO于点P,得矩形ACPD,正方形OCPE,此时PC+PD的值最小.【详解】解:∵A(6,0),B(6,6),∴OA=AB=6,∴∠B=∠COP=45°,如图,过点D作DE⊥AB交y轴于点E,交BO于点P,∴∠PDA=∠DAC=∠PCA=90°,∴四边形ACPD是矩形,∴AC=DP,PC=AD,同理可得四边形OCPE是矩形,∵∠COP=45°,∴PC=OC,∴四边形OCPE是正方形,∵BD=AC=1,∴DP=BD=1,∴PC=AD=5,∴PC+PD=6,此时PC+PD的值最小,为6.故答案为:6.【点睛】本题考查了矩形的判定与性质,正方形的判定以及垂线段最短问题.4【解析】【分析】不管P点在l上哪个位置,PD始终等于PD',故求PD'+PB可以转化成求PD+PB,显然当D、P、D'共线时PD+ PB最短.【详解】过点D作DM⊥AB交BA的延长线于点M,∵四边形ABCD是平行四边形,AD=1,AB=2,∠ADC=60°,∴∠DAM=60°,由翻折变换可得,AD=AD′=1,DE=D′E,∠ADC=∠AD′E=60°,∴∠DAM=∠AD′E=60°,∴AD∥D′E,又∵DE∥AB,∴四边形ADED′是菱形,∴点D与点D′关于直线l对称,连接BD交直线l于点P,此时PD′+PB最小,PD′+PB=BD,在Rt△DAM中,AD=1,∠DAM=60°,∴AM=12AD=12,DM=32AD=32,在Rt△DBM中,DM=32,MB=AB+AM=52,∴BD=DM2+MB2=322+522=7,即PD′+PB【点睛】本题考查平行四边形性质和菱形性质,掌握这些是本题解题关键.5、1 4 n【解析】【分析】根据题意可得,阴影部分的面积是正方形的面积的14,已知两个正方形可得到一个阴影部分,则n个这样的正方形重叠部分即为(n -1)个阴影部分的和.【详解】 解:由题意可得一个阴影部分面积等于正方形面积的14,即是14,n 个这样的正方形重叠部分(阴影部分)的面积和为:()11144n n -⨯-=. 故答案为:14n -. 【点睛】本题考查了正方形的性质,解题的关键是得到n 个这样的正方形重叠部分(阴影部分)的面积和的计算方法,难点是求得一个阴影部分的面积.三、解答题1、(1)8;(2)12;(3)72或216【分析】(1)根据等腰三角形的性质以及勾股定理即可解决问题.(2)如图2中,当点F 与D 重合时,连接DE .求出此时x 的值即可判断.(3)分两种情形分别求解即可解决问题.【详解】解:(1)如图1中,∵AB =AC ,BD =CD ,∴AD⊥BC,在Rt△ADB中,∵AB=10,BD=CD=6,∴AD8.(2)如图2中,当点F与D重合时,连接DE.∵OF垂直平分线段BE,∴BD=DE=6,∵∠ADC=90°,AE=EC,∴AC=2DE=12,当x=12时,点F与点D重合.(3)①当点F在点D左侧时,作EG⊥BC于G,连接EF,DE.∵DE=EC,EG⊥BC∴DG=GC=3,∵BD=6,DF=1,∴BF=5,∵OF垂直平分线段EB,∴EF=FB=5,在Rt△EFG中,∵EF=5,FG=4,∴EG3,在Rt△DEG中,DE∵AC=2DE,∴AC=∴x2=AC2=72.②当点F在点D右侧时,作EG⊥BC于G,连接EF,DE.易知BF=EF=7,FG=2,EG=∴DE∴AC=2DE=,∴x2=AC2=216.【点睛】本题属于三角形综合题,考查了等腰三角形的性质,线段的垂直平分线的性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会利用参数构建方程解决问题,学会用分类讨论的思想思考问题.2、(1)ADC ABC ≌△△;AHK CIJ △≌△;AEG CFG △≌△;(2)证明ADC ABC ≌△△;证明见解析;(3)19S =,28S =【分析】(1)根据图形可得出三对全等三角形;(2)根据正方形的性质及全等三角形的判定定理对(1)中全等三角形依次证明即可;(3)连接BG ,由材料二可得,ABC 被分成4个面积相等的等腰直角三角形,即可得出1S ;连接HJ ,KI ,过点H 作HM ⊥AD 于点M ,过点I 作IN ⊥CD 于点N ,则ACD 被分为9个面积相等的等腰直角三角形,即可得出2S .【详解】解:(1)ADC ABC ≌△△;AHK CIJ △≌△;AEG CFG △≌△(2)证明ADC ABC ≌△△;由题意得,在正方形ABCD 中,∵AB AD =,90ABC ADC ∠=∠=︒,在Rt ABC 和Rt ADC 中AC AC AB AD=⎧⎨=⎩ (HL)Rt ABC Rt ADC ∴△≌△;证明:AHK CIJ △≌△;由题意得,在正方形HIJK 中,HK IJ =,90AHK CIJ ∠=∠=︒,∵AC 为正方形ABCD 的对角线,∴45DAC DCA ∠=∠=︒,在Rt AHK 和Rt CIJ 中DAC DCA AHK CIJ HK IJ ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴Rt AHK Rt CIJ ≅;证明:AEG CFG △≌△由题意得,在正方形EBFG 中,EG FG =,90AEG GFC ∠=∠=︒,∵AC 为正方形ABCD 的对角线,∴45EAG FCG ∠=∠=︒,在Rt AEG 和Rt CFG 中EAG FCG AEG GFC EG FG ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴Rt AEG Rt CFG ≅;(3)如图,连接BG ,由材料二可得,ABC 被分成4个面积相等的等腰直角三角形, 166182ABC ADCS S ==⨯⨯=. ∴111892S =⨯=连接HJ ,KI ,过点H 作HM ⊥AD 于点M ,过点I 作IN ⊥CD 于点N ,则ACD 被分为9个面积相等的等腰直角三角形,∴241889S =⨯=.∴19S =,28S =.【点睛】题目主要考查正方形的性质、全等三角形的判定定理及对题意的理解能力,熟练掌握全等三角形的判定定理及理解题意是解题关键.3、(1)证明见解析;(2)3【分析】(1)通过证明△CEK ≌△BEF 及△KED ≌△FED 即可证明FD DK =;(2)延长CE 到点P ,使EP =CE ,先证明点G 在过点P 且与CE 垂直的直线PN 上运动,再作点E 关于点P 的对称点Q ,连接BQ 交PN 于点G ,此时△BEG 的周长最小,求出此时GE +GB +BE 的值即可.【详解】证明:(1)∵四边形ABCD 是平行四边形,∴AB CD ∥,∴∠K =∠ABE ,∵BF ⊥AB ,,BE CE ⊥∴∠ABF =90°,90,BEF CEK∴∠ABE=90°﹣∠EBF=∠BFE,∴∠K=∠BFE,∵BE=CE,∴△CEK≌△BEF(AAS),∴CK=BF,EK=EF,∵AD BC∥,∴∠KED=∠EBC,∠FED=∠ECB,∵BE=CE,∠EBC=∠ECB,∴∠KED=∠FED,∴ED=ED,∴△KED≌△FED(SAS),∴DK=DF,(2)如图,作BN⊥BE,GN⊥BN于点N,延长NG交射线CE于点P,则∠EBN=∠FBG=90°,∴∠NBG=∠EBF=90°﹣∠GBE,∵∠N=∠BEF=90°,BG=BF,∴△BNG≌△BEF(AAS),∴BN=BE;∵∠EBN=∠N=∠BEP=90°,∴四边形BEPN是正方形,∴PE=BE=CE,∴当点F在CE上运动时,点G在PN上运动;延长EP到点Q,使PQ=PE,连接BQ交PN于点G,∵PN垂直平分EQ,∴点Q与点E关于直线PN对称,∵两点之间,线段最短,∴此时GE+GB=GQ+GB=BQ最小,∵BE为定值,∴此时GE+GB+BE最小,即△BEG的周长最小;作DH⊥CE于点H,则∠DHE=∠DHC=90°,∵∠ECB=∠EBC=45°,∴∠HED=∠ECB=45°,∴∠HDE=45°=∠HED,∴DH=EH,∴DH2+EH2=2DH2=DE2=2,∴DH=EH=1;∴CH2222DH,512∴BE=CE=EH+CH=1+2=3,∴EQ=2PE=2BE=6,∵∠BEQ=90°,∴BQ=∴GE+GB+BE=3,∴△BEG周长的最小值为3.【点睛】本题重点考查平行四边形的性质、正方形的判定与性质、等腰直角三角形的性质、全等三角形的判定与性质、勾股定理、以及运用轴对称的性质求线段和的最小值问题的求解等知识与方法,深入探究与挖掘题中的隐含条件并且正确地作出辅助线是解题的关键,此题综合性强,难度大,属于考试压轴题.4、(1)t=2s;(2)AB=(3)24【分析】(1)若是平行四边形,所以BD=12cm,则BO=DO=6cm,故有6-t=2t,即可求得t值;(2)若是菱形,则AC垂直于BD,即有222+=,故AB可求;AO BO AB(3)根据四边形AECF是菱形,求得BO AC OE OF,,根据平行四边形的性质得到BO=OD,求得⊥=BE=DF,列方程到底BE=DF=2,求得EF=8,于是得到结论.【详解】解:(1)∵四边形ABCD为平行四边形,∴AO=OC,EO=OF,∵BO=OD=6cm,∴62=,=,EO t OF t-∴62t t-=,∴2t s=,∴当t为2秒时,四边形AECF是平行四边形;(2)若四边形AECF是菱形,则AC BD⊥,222AO BO AB∴+=,BA==∴当AB为时,平行四边形AECF是菱形;(3)由(1)(2)可知当t=2s,AB=AECF是菱形,∴EO=6−t=4,∴EF=8,∴菱形AECF的面积=116824 22AC EF⋅=⨯⨯=.【点睛】本题考查了平行四边形的判定和性质和菱形的判定和性质,勾股定理,菱形的面积的计算.5、(1)6;(2)①OC=BD,OC∥BD;②3.【分析】(1)利用二次根式的被开方数是非负数,求出m=3,判断出A,B两点坐标,可得结论;(2)①结论:OC=BD,OC∥BD.连接AB交x轴于点T.利用等腰三角形的三线合一的性质得出OC=2CT,利用三角形中位线定理得出CT∥BD,BD=2CT,由此即可得;②连接AB交OC于点T,过点P作PH⊥OC于H.证明△OTB≌△PHO(AAS),推出BT=OH=3,即可得出结论.【详解】解:(1)由题意,30 30mm-≥⎧⎨-≥⎩,∴m=3,∴x=n,∴A(n,﹣3),∵A,B关于x轴对称,∴B(n,3),∴AB=3﹣(﹣3)=6,故答案为:6;(2)①结论:OC=BD,OC∥BD.理由:如图,连接AB交x轴于点T.∵A,B关于x轴对称,∴AB⊥OC,AT=TB,∵AO=AC,∴OT=CT(等腰三角形的三线合一),∴OC=2CT,∵AC=CD,AT=TB,∴CT∥BD,BD=2CT,∴OC=BD,OC∥BD;②如图,连接AB交OC于点T,过点P作PH OC⊥于点H,B n,(,3)∴=,BT3∵AC=OC=CD,∴∠COA=∠OAC,∠COD=∠CDO,∴2∠OAC+2∠CDO=180°,∴∠OAC+∠CDO=90°,∴∠AOD=90°,∵A,B关于x轴对称,∴OT⊥AB,OA=OB,∴∠OBT=∠OAT,∵∠COD+∠AOC=90°,∠AOC+∠OAT=90°,∴∠OAT=∠COD,∴∠OBT =∠COD ,即∠OBT =∠POH ,∵BD ∥OC ,∴∠PDB =∠POH =∠OBT ,∠ABD =90°,∵∠PBD =45°,∴∠ABP =45°,∵∠OBP =∠OBT +∠ABP =∠OBT +45°,∠OPB =∠PBD +∠PDB =45°+∠PDB ,∴∠OBP =∠OPB ,∴OB =PO ,在OTB 和PHO △中,90OBT POH OTB PHO OB PO ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩, ∴△OTB ≌△PHO (AAS ),∴BT =OH =3,故点P 的横坐标为3.【点睛】本题考查了坐标与轴对称变化、三角形中位线定理、等腰三角形的三线合一等知识点,较难的是题(2)②,通过作辅助线,构造全等三角形是解题关键.。
部编数学八年级下册第18章平行四边形(B卷-能力提升练)(解析版)_new含答案
班级姓名学号分数第18章平行四边形(B卷·能力提升练)(时间:120分钟试卷满分:120分)一、选择题(每小题3分,共10题,共30分)1.(2022秋•莱阳市期末)如图,在▱ABCD中,BF平分∠ABC交AD于点F,CE平分∠BCD交AD于点E,若AB=6,AD=8,则EF的长度为( )A.4B.5C.6D.7【答案】A【考点】平行四边形的性质;【分析】先证明AB=AE=3,DC=DF,再根据EF=AF+DE﹣AD即可得出答案.【解答】解:∵四边形ABCD是平行四边形,∴AB=CD=3,BC=AD,AD∥BC,∵BF平分∠ABC交AD于E,CE平分∠BCD交AD于F,∴∠ABF=∠CBF=∠AFB,∠BCE=∠DCE=∠CED,∴AB=AF=6,DC=DE=6,∴EF=AF+DE﹣AD=6+6﹣AD=4.故选:A.2、(2022春•临漳县期末)如图,在四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定这个四边形是平行四边形的是( )A.AB∥DC,AD∥BC B.AB∥DC,∠DAB=∠DCBC.AO=CO,AB=DC D.AB∥DC,DO=BO【答案】C【考点】平行四边形的判定【分析】根据平行四边形的判定“①一组对边平行且相等的四边形是平行四边形;②两组对角分别相等的四边形是平行四边形;③两组对边分别平行的四边形是平行四边形;④两组对边分别相等的四边形是平行四边形”即可判断求解.【解答】解:A、∵AB∥CD,AD∥BC,∴四边形ABCD是平行四边形,故此选项不符合题意;B、∵AB∥DC,∴∠DAB+∠ADC=180°,∵∠DAB=∠DCB,∴∠DCB+∠ADC=180°,∴AD∥BC,∴四边形ABCD是平行四边形,故此选项不符合题意;C、∵AO=CO,AB=DC,∠AOB=∠COD,不能判定△AOB≌△COD,∴不能得到∠OAB=∠OCD,∴不能得到AB∥CD,∴不能判定四边形ABCD是平行四边形,故此选项符合题意;D、∵AB∥DC,∴∠OAB=∠OCD,在△AOB和△COD中,∠OAB=∠OCD,∠AOB=∠CODBO=DO∴△AOB≌△COD(AAS),∴AB=DC,又∵AB∥DC,∴四边形ABCD是平行四边形,故此选项不符合题意;故答案为:C.3、(2023•三水区校级开学)如图,在菱形ABCD中,DE⊥AB于点E,菱形ABCD的面积为48,DE=6,则AD的长为( )A.16B.8C.4D.2【答案】B【考点】菱形的性质;【分析】由菱形的性质得AD=AB,再由菱形的面积求出AB=8,即可得出结论.【解答】解:∵四边形ABCD是菱形,∴AD=AB,∵DE⊥AB,∴菱形ABCD的面积=AB•DE=48,即6AB=48,∴AB=8,∴AD=AB=8,故选:B.4、(2022秋•碑林区校级期末)如图,在边长为ABCD中,∠CDE=30°,DE⊥CF,则AF的长为( )A.B.C.D.【答案】D【考点】正方形的性质;全等三角形的判定与性质;【分析】由余角的性质可求∠CDE=∠BCF=30°,由直角三角形的性质可得BF=4,即可求解.【解答】解:∵四边形ABCD是正方形,∴CD=BC=AB=BCD=∠B=90°,∴∠CDE+∠DCF=90°=∠DCF+∠BCF,∴∠CDE=∠BCF=30°,∴BC==∴BF=4,∴AF=AB﹣BF=4,故选:D.5、(2022春•襄州区期末)如图,点D,E,F分别是△ABC三边的中点,则下列判断:①四边形AEDF一定是平行四边形;②若AD平分∠BAC,则四边形AEDF是正方形;③若AD⊥BC,则四边形AEDF是菱形;④若∠BAC=90°,则四边形AEDF是矩形.正确的是( )A.①②③④B.①④C.①③④D.①②④【答案】C【考点】正方形的判定与性质;三角形中位线定理;平行四边形的判定与性质;菱形的判定与性质;矩形的判定;【分析】①由三角形的中位线定理可以判定结论正确;②利用AD平分∠A可以判定四边形AEDF是菱形而非正方形,可得②的结论错误;③利用斜边上的中线等于斜边的一半可得出DE=DF,从而得出四边形AEDF是菱形;④∠A=90°,则根据①的结论可得四边形AEDF是矩形.【解答】解:①∵D是BC的中点,E是AB的中点,∴DE∥AC.∵D是BC的中点,F是AC的中点,∴四边形AEDF是平行四边形.∴①正确;②如图,由①知:AE∥DF,∴∠EAD=∠ADF.若AD平分∠BAC,则∠EAD=∠FAD.∴∠FAD=∠ADF,∴AF=FD,∵四边形AEDF是平行四边形,∴四边形AEDF是菱形.∴②不正确;③如图,若AD⊥BC,∵D是BC的中点,∴AD是BC的垂直平分线,∴AB=AC.∵AD⊥BC,E是AB的中点,∴DE=12 AB.同理:DF=12 AC,∴DE=DF.由①知:四边形AEDF是平行四边形,∴四边形AEDF是菱形.∴③正确;④若∠A=90°,如图,由①知:四边形AEDF是平行四边形,∵∠A=90°,∴四边形AEDF是矩形,∴④正确;综上可得,正确的结论有:①③④,故选:C.6、(2022•利通区校级一模)如图,在□ABCD中,AB=3,以点A为圆心,AB长为半径画弧交AD于点F,再分别以点B、F为圆心,大于12BF的相同长为半径画弧,两弧交于点P;连接AP并延长交BC于点E,连接EF,则四边形ABEF的周长为( )A.12B.14C.16D.18【答案】A【考点】等式的性质;平行线的性质;平行四边形的性质;菱形的判定;角平分线的定义【分析】利用基本作图得到AB=AF=3,∠BAE=∠FAE,根据平行四边形的性质得BC∥AD,则∠BEA=∠FAE ,所以∠BAE=∠BEA ,从而得到BE=BA=3,于是可判断四边形ABEF 为菱形,于是得到四边形ABEF 的周长.【解答】由作法得AB =AF =3,AE 平分∠BAD ,∴∠BAE =∠FAE ,∵四边形ABCD 为平行四边形,∴BC ∥AD ,∴BE ∥AF∴∠BEA =∠FAE ,∴∠BAE =∠BEA ,∴BE =BA =3,∴BE =AF∴四边形ABEF 为平行四边形,∵AB =AF∴四边形ABEF 为菱形,∴四边形ABEF 的周长=4×3=12.故答案为:A.7、(2022秋•封丘县校级期末)如图,在△ABC 中,AE 平分∠BAC ,D 是BC 的中点AE ⊥BE ,AB =5,AC =3,则DE 的长为( )A .1B .32C .2D .52【答案】A 【考点】三角形中位线定理;等腰三角形的判定与性质;【分析】连接BE 并延长交AC 的延长线于点F ,易证明△ABF 是等腰三角形,则得AF 的长,点E 是BF 的中点,求得CF 的长,从而DE 是中位线,即可求得DE 的长.【解答】解:连接BE 并延长交AC 的延长线于点F ,如图,∵AE ⊥BE ,∴∠AEB =∠AEF =90°,∵AE 平分∠BAC ,∴∠BAE =∠FAE ,∴∠ABE =∠AFE ,∴△ABF 是等腰三角形,∴AF =AB =5,点E 是BF 的中点,∴CF =AF ﹣AC =5﹣3=2,DE 是△BCF 的中位线,∴DE =12CF =1.故选:A .8、(2022春•潼关县期末)如图所示,以Rt △ABC 的直角边AC 向△ABC 外构造等边△ACD ,E 为AB 的中点,连接CE 、DE ,∠ACB =90,∠ABC =30°.下列结论:①AC ⊥DE ;②四边形BCDE 是平行四边形;③四边形ADCE 是菱形;④S 四边形BCDE =3S △ACD .其中正确的结论有( )A .1个B .2个C .3个D .4个【考点】菱形的判定与性质;等边三角形的性质;等边三角形的判定;含30度角的直角三角形;直角三角形斜边上的中线;平行四边形的判定与性质;【分析】根据直角三角形的性质得到∠BAC =60°,AC =12AB ,根据等腰三角形的性质得到∠ACD =60°,推出CD ∥AB ,根据线段中点的定义得到BE =AE =12AB ,根据平行四边形的判定定理得到四边形BCDE 为平行四边形,故②正确;四边形ADCE 是平行四边形,根据菱形的判定定理得到四边形ADCE 是菱形,故③正确;根据平行四边形的性质得到DF ∥BC ,根据垂直的定义得到AC ⊥DE ,故①正确;设AC =x ,则AB =2x ,根据三角形的面积公式即可得到结论.【解答】解:∵∠ACB =90°,∠ABC =30°,∴∠BAC =60°,AC =12AB ,∵△ACD 是等边三角形,∴∠ACD =60°,∴∠ACD =∠BAC ,∴CD ∥AB ,∵E 为AB 的中点,∴BE =AE =12AB ,∴BE ∥CD ,CD =BE =AE ,∴四边形BCDE 为平行四边形,故②正确;四边形ADCE 是平行四边形,∵∠ACB =90°,AE =BE ,∴CE =AE =12AB ,∴四边形ADCE 是菱形,故③正确;∵四边形BCDE 为平行四边形,∴DF ∥BC ,又∵∠ACB =90°,∴AC ⊥DE ,故①正确;设AC =x ,则AB =2x ,∴S △ACD =S △ACE =S △CBE 2,∴S 四边形BCDE =2S △BCE =2S △ACD ,故④错误;故选:C .9、(2022秋•沙坪坝区校级期末)如图,在正方形ABCD 中,O 为对角线AC 、BD 的交点,E 、F 分别为边BC、CD上一点,且OE⊥OF,连接EF.若∠AOE=150°,DF=EF的长为( )A.B.2+C1D.3【答案】A【考点】正方形的性质;全等三角形的判定与性质;【分析】由题意证明△BOE≌△COF(ASA),所以OE=OF,则△OEF是等腰直角三角形;过点F作FG ⊥OD,解三角形OFD即可得出OF的长,进而可求出EF的长.【解答】解:在正方形ABCD中,AC和BD为对角线,∴∠AOB=∠BOC=90°,∠OBC=∠OCD=45°,OB=OC,∵∠AOE=150°,∴∠BOE=60°;∵OE⊥OF,∴∠EOF=∠BOC=90°,∴∠BOE=∠COF=60°,∴△BOE≌△COF(ASA),∴OE=OF,∴△OEF是等腰直角三角形;过点F作FG⊥OD,如图,∴∠OGF=∠DGF=90°,∵∠ODC=45°,∴△DGF是等腰直角三角形,∴GF=DG=∵∠AOE=150°,∴∠BOE=60°,∴∠DOF=30°,∴OF=2GF∴EF==故选:A.10、(2022秋•朝阳区校级期末)如图,在矩形ABCD中,AB=12,AD=10,点P在AD上,点Q在BC上,且AP=CQ,连结CP、QD,则PC+QD的最小值为( )A.22B.24C.25D.26【答案】D【考点】矩形的性质;全等三角形的判定与性质;【分析】连接BP,则PC+QD的最小值转化为PC+PB的最小值,在BA的延长线上截取AE=AB=12,连接PE、CE,则PC+QD=PC+PB=PC+PE≥CE,再根据勾股定理求解即可.【解答】解:如图,连接BP,在矩形ABCD中,AD∥BC,AD=BC=10,∵AP=CQ,∴AD﹣AP=BC﹣CQ,∴DP=QB,DP∥BQ,∴四边形DPBQ是平行四边形,∴PB∥DQ,PB=DQ,则PC+QD=PC+PB,则PC+QD的最小值转化为PC+PB的最小值,在BA的延长线上截取AE=AB=12,连接PE,则BE=2AB=24,∵PA⊥BE,∴PA是BE的垂直平分线,∴PB=PE,∴PC+PB=PC+PE,连接CE,则PC+QD=PC+PB=PC+PE≥CE,∴CE===26,∴PC+PB的最小值为26,即PC+QD的最小值为26,故选:D.二、填空题(每小题3分,共8题,共24分)11、(2021秋•鄞州区校级期末)如图,在□ABCD中,过点C作CE⊥AB,垂足为E,若∠BAD=120°,则∠BCE的度数为.【答案】30°;【考点】平行四边形的性质;【分析】由平行四边形的性质得出∠B+∠BAD=180°,可得∠B的度数,由直角三角形的两上锐角互余得出∠BCE=90°﹣∠B即可.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠B+∠BAD=180°,∵∠BAD=120°,∴∠B=60°,∵CE⊥AB,∴∠E=90°,∴∠BCE=90°﹣∠B=90°﹣60°=30°;故选:30°.12、如图,从①AB∥CD;②AB=CD;③BC∥AD;④BC=AD这四个条件中任选两个,能使四边形ABCD是平行四边形的选法有 种.【答案】4;【考点】平行四边形的判定;【分析】根据平行四边形的判定方法:两组对边分别平行的四边形是平行四边形,两组对边分别相等的四边形是平行四边形,一组对边平行且相等的四边形是平行四边形即可一一判断得出答案.【解答】解:因为平行四边形的判定方法有:两组对边分别平行的四边形是平行四边形,可选①③;两组对边分别相等的四边形是平行四边形,可选②④;一组对边平行且相等的四边形是平行四边形,可选①②或③④;故答案为:法有四种。
数学八年级下 第二十二章 四边形 22.1 多边形练习卷一和参考答案
数学八年级下 第二十二章 四边形22.1 多边形(1)一、选择题1.四边形ABCD 中,如果∠A+∠C+∠D=280°,则∠B 的度数是 ( )A .80°B .90°C .170°D .20°2.一个多边形的内角和等于1080°,这个多边形的边数是 ( )A .9B .8C .7D .63.内角和等于外角和2倍的多边形是 ( )A .五边形B .六边形C .七边形D .八边形4.凸n 边形的内角中,锐角的个数最多有 ( )A .1个B .2个C .3个D .4个5.一个多边形的每一个顶点处取一个外角,这些外角中最多有钝角 (• )A .1个B .2个C .3个D .4个6、各内角相等的n 边形的一个外角等于 ( )A 、n n )2(1800-B 、n 0180C 、nn )2(3600- D 、n 0360 7、n 边形所有的对角线条数是 ( )A 、2)1(-n nB 、2)2(-n nC 、22nD 、2)3(-n n 8、如果正n 边形的一个内角等于一个外角的2倍,那么n 的值是 ( )A 、4B 、5C 、6D 、7二、填空题9. 五边形的内角和等于_______度.10.六边形的内角和等于_______度.11.正十边形的每一个内角的度数等于______,每一个外角的度数等于_______.12.如图,你能数出 个不同的四边形。
第12题13、如图所示,∠1=∠C+________,∠2=∠B+___________。
∠A+∠B +∠C +∠D+∠E= ________+∠1+∠2=________度。
14、一个多边形的每一个外角等于300,则这个多边形为___________ 边形。
15、当多边形边数增加一条边时,其内角和增加___________度 。
16、若正多边形的一个外角等于其一个内角的52,则这个多边形的内角和是___________ 。
特殊的平行四边形能力提升卷及参考答案
八年级下册特殊的平行四边形 能力提升卷一、选择题1.如图,在菱形ABCD 中,AB =5,∠BCD =120°,则对角线AC 等于( ) A.20 B.15 C.10 D.52.如图,正方形ABCD 内有两条相交线段MN 、EF ,M 、N 、E 、F 分别在边AB 、CD 、AD 、BC 上.小明认为:若MN =EF ,则MN ⊥EF ;小亮认为: 若MN ⊥EF ,则MN =EF .你认为( ) A.仅小明对 B.仅小亮对 C.两人都对 D.两人都不对3.如图(1),把一个长为m 、宽为n 的长方形(m >n )沿虚线剪开,拼接成图(2),成为在一角去掉一个小正方形后的一个大正方形,则去掉的小正方形的边长为( )A.2m n B.m -n C.2mD.2n4.如图所示,将一张正方形纸片对折两次,然后在上面打3个洞, 则纸片展开后是( )5.如图,矩形ABCD 中,AB =3,BC =5.过对角线交点O 作OE ⊥AC 交AD 于E , 则AE 的长是( ) A.1.6 B.2.5 C.3 D.3.46.如图,将一个长为10cm ,宽为8cm 的矩形纸片对折两次后,沿所得矩形两 邻边中点的连线(虚线)剪下,再打开,得到的菱形的面积为()A.10cm2 B.20cm 2 C.40cm2 D.80cm2 7.菱形OABC 在平面直角坐标系中的位置如图所示,∠AOC =45°,OC 则点B 的坐标为( ) ,1)B.(1) +1,1) 8.将矩形纸片ABCD 按如图所示的方式折叠,AE 、EF 为折痕, ∠BAE =30°,AB C 落在AD 边上的C 1处, 并且点B 落在EC 1边上的B 1处.则BC 的长为( )B.2C.3 9.如图,正方形ABCD 的边长为2,将长为2的线段QR 的两端放在正方形的相邻的两边上同时滑动.如果Q 点从A 点出发,沿图中所示方向按A →B →C →D →A 滑动到A 止,同时点R 从B 点出发,沿图中所示方向按B →C →D →A →B 滑动到B 止,在这个过程中,线段QR 的中点M 所经过的路线围成的图形的面积为( )A.2B.4-πC.πD.π-1 10.如图所示,正方形ABCD 的面积为12,△ABE 是等边三角形,点E 在正方形ABCD 内,在对角线AC 上有一点P ,使PD +PE 的 和最小,则这个最小值为( )C.3二、填空题11.长方形一条边长为3cm ,面积为12cm 2,则该长方形另一条边长为___cm. 12.如图,将边长为8cm 的正方形ABCD 折叠,使点D 落 在BC 边的中点E 处,点A 落在F 处,折痕为MN ,则线 段CN 的长是___. 13.如图所示,菱形ABCD 中,对角线AC ,BD 相交于点O ,BA C D A .B .C .D . A D EPBCmn nn (2) (1)EDC BAOABDRN F ECO BAH CCH 为AD 边中点,菱形ABCD 的周长为24,则OH 的长等于___. 14.如图,菱形ABCD 的对角线相交于点O ,请你添加一个条件:___,使得该菱形为正方形.15.如图,将两张长为8,宽为2最小值8,那么菱形周长的最大值是___.16.如图所示,两个全等菱形的边长为1米,一个微型机器人由A 点开始按ABCDEFCGA 的顺序沿菱形的边循环运动,行走2009米停下,则这个微型机器人停在___点.17.如果用4个相同的长为3宽为1的长方形,拼成一个大的长方形,那么这个大的长方形的周长可以是___.18.若正方形ABCD 的边长为4,E 为BC 边上一点,BE =3,M 为线段AE 上一点,射线BM 交正方形的一边于点F ,且BF =AE ,则BM 的长为___. 19.如图,菱形ABCD 的对角线长分别为a 、b ,以菱形ABCD 各边的中点为顶点作矩形A 1B 1C 1D 1,然后再以矩形A 1B 1C 1D 1的中点为顶点作菱形A 2B 2C 2D 2,…,如此下去,得到四边形A 2009B 2009C 2009D 2009的面积用含 a 、b 的代数式表示为___.20.如图,正方形纸片ABCD 的边长为1,M 、N 分别是AD 、BC 边上的点,将纸片的一角沿过点B 的直线折叠,使A 落在MN 上,落点 记为A ′,折痕交AD 于点E ,若M 、N 分别是AD 、BC 边 的中点,则A ′N =___;若M 、N 分别是AD 、BC 边的 上距DC 最近的n 等分点(n ≥2,且n 为整数),则A ′N =___(用含有n 的式子表示).三、解答题 21.已知:如图,在矩形ABCD 中,AF =BE .求证:DE =CF .22.两个完全相同的矩形纸片ABCD 、BFDE 如图放置,AB =BF ,求证:四边形BNDM 为菱形.23.如图,四边形ABCD 是矩形,△PBC 和△QCD 都是等边三角形,且点P 在矩形上方,点Q 在矩形内. 求证:(1)∠PBA =∠PCQ =30°;(2)P A =PQ .24.如图菱形ABCD 的边长为2,对角线BD =2,E 、F 分别是AD 、CD 上的两个动点,且满足AE +CF =2.(1)求证:△BDF ≌△BCF ; (2)判断△BEF 的形状,并说明理由.同时指出△BCF 是由△BDE 经过如何变换得到?A B D D C B A OO ED CA FN M DC B A E A ′ 第20题图3A CB D PQ BC D A E F C D EM A B FN25.(1)观察与发现:小明将三角形纸片ABC(AB>AC)沿过点A的直线折叠,使得AC落在AB边上,折痕为AD,展开纸片(如图①);再次折叠该三角形纸片,使点A和点D重合,折痕为EF,展平纸片后得到△AEF(如图②).小明认为△AEF是等腰三角形,你同意吗?请说明理由.(2)实践与运用:将矩形纸片ABCD沿过点B的直线折叠,使点A落在BC边上的点F处,折痕为BE(如图③);再沿过点E的直线折叠,使点D落在BE上的点D′处,折痕为E G(如图④);再展平纸片(如图⑤).求图⑤中∠α的大小.26.问题解决如图1,将正方形纸片ABCD折叠,使点B落在CD边上一点E(不与点C,D重合),压平后得到折痕MN.当CE CD=12时,求AMBN的值.EDCFBA图③E DCAB F G'D'A DECBα图④图⑤ACD图①ACD图②FEG图2NAB CDEFMN图1AB CEFM类比归纳 在图1中,若CE CD =13,则AM BN 的值等于___;若CE CD =14,则AM BN 的值等于___;若CE CD =1n(n 为整数),则AMBN的值等于___. (用含n 的式子表示) 联系拓广如图2,将矩形纸片ABCD 折叠,使点B 落在CD 边上一点E (不与点C ,D 重合),压平后得到折痕MN ,设ABBC=1m(m >1),CE CD =1n ,则AM BN 的值等于___.(用含m ,n 的式子表示)参考答案1.D.点拨:利用菱形和等边三角形的性质;2.C ;3.A.点拨:利用整式的运算及特殊平行四边形的面积求解;4.D ;5.D.点拨:利用矩形的性质、勾股定理求解;6.A.点拨:菱形的面积等于对角线乘积的一半;7.C.点拨:利用菱形的性质与判定、直角三角形的有关计算、平面内点的坐标的意义; 8.C ; 9.B ;10.A.点拨:易求得正方形的边长等于,由于正方形是轴对称图形,所以点D 与点B 是关于AC 对称,所以BE 与AC 的交点即为使PD +PE 的和最小的点P 位置,此时PD +PE 的和最小等于BE ,即为正方形的边长. 11.4;12.3cm.点拨:设CN =x cm.因为正方形的边长为8cm ,点E 是BC 中点,所以EC =4cm ,又因为由折叠的原理可知EN =DN =8-x ,在Rt △ECN 中,由勾股定理,得EN 2=EC 2+CN 2,即(8-x )2=42+x 2,解得x =3.即线段CN 的长是3cm ; 13.3.点拨:利用菱形的性质和直角三角形斜边上中线的性质求解,或利用菱形的性质和三角形中位线性质求解; 14.答案不惟一.如,AB ⊥BC ,或AC =BD ,或AO =BO 等; 15.17;16.B.点拨:因为有两个全等菱形,则周长和等于8,所以微型机器人由A 点开始行走,每运动8米,则又回到A 点,而2009÷8=251…1,所以微型机器人由A 点开始按ABCDEFCGA 的顺序沿菱形的边循环运动,行走2009米时则在点B 处停下;17.14,或16,或26.点拨:①长为4,宽为3;②长为12,宽为1;③长为6,宽为2;18.52,或125.点拨:分两种情况:若点F 在DC 上,因为BF =AE ,且AB =BC ,则△ABE ≌△BCF ,则∠BAE =∠BFC ,则∠BME =90°,则AB ×BE =AE ×BM ,则BM =512;若点F 在AD 上,此时可连接FE ,则可证明四边形ABEF 这矩形,则对角线互相平分,则BM =25; 19.201012⎛⎫ ⎪⎝⎭ab .点拨:利用矩形、菱形的面积及归纳法求解;.点拨:由折叠,得BA ′=AB =1,若M 、N 分别是AD 、BC 边的中点,BN =12,则A ′N2.若M 、N 分别是AD 、BC 边的上距DC 最近的n 等分点(n ≥2,且n 为整数),BN =1n n-,则A ′N. 21.因为AF =BE ,EF =EF ,所以AE =BF .因为四边形ABCD 是矩形,所以∠A =∠B =90°,AD =BC ,所以△DAE ≌△CBF ,所以DE =CF .22.因为四边形ABCD 、BFDE 是矩形,BM ∥DN ,DM ∥BN ,所以四边形BNDM 是平行四边形.又因为AB =BF =ED ,∠A =∠E =90°∠AMB =∠EMD ,所以△ABM ≌△EDM ,所以BM =DM ,所以平行四边形BNDM 是菱形. 23.(1)因为四边形ABCD 是矩形,所以∠ABC =∠BCD =90°.因为△PBC 和△QCD 是等边三角形,所以∠PBC =∠PCB =∠QCD =60°,所以∠PBA =∠ABC -∠PBC =30°,∠PCD =∠BCD -∠PCB =30°,所以∠PCQ =∠QCD -∠PCD =30°,即∠PBA =∠PCQ =30°.(2)因为AB =DC =QC ,∠PBA =∠PCQ ,PB =PC ,所以△P AB ≌△PQC ,所以P A =PQ . 24.(1)因为菱形ABCD 的边长为2,BD =2,所以BD =BC ,且∠BDE =∠BCF =60°.因为AE +CF =2,而AE +DE =AD =2,所以DE =CF ,所以△BDE ≌△BCF .(2)△BEF 是等边三角形.理由如下:由(1)得△BDE ≌△BCF ,所以BE =BF ,∠CBF =∠DBE ,即∠EBF =∠EBD +∠DBF =∠CBF +∠DBF =60°,所以△BEF 是等边三角形.△BCF 是由△BDE 绕点B 顺时针旋转60°得到.25.(1)同意.如图②,设AD 与EF 交于点G .由折叠知,AD 平分∠BAC ,所以∠BAD =∠CAD .又由折叠知,∠AGE =∠DGE =90°,所以∠AGE =∠AGF =90°,所以∠AEF =∠AFE ,所以AE =AF ,即△AEF 为等腰三角形.(2)由折叠知,四边形ABFE 是正方形,∠AEB =45°,所以∠BED =135°,又由折叠知,∠BEG =∠DEG ,所以∠DEG =67.5°,所以∠α=90°-67.5°=22.5°.26.问题解决:如图1,连接BM ,EM ,BE .由题设,得四边形ABNM 和四边形FENM 关于直线MN 对称,所以MN 垂直平分BE ,所以BM =EM ,BN =EN .因为四边形ABCD 是正方形,所以∠A =∠D =∠C =90°,AB =BC =CD =DA =2.因为CE CD =12,所以CE =DE =1.设BN =x ,则NE =x ,NC =2-x .在Rt △CNE 中,由勾股定理,得NE 2=CN 2+CE 2,即x 2=(2-x )2+12,解得x =54.即BN =54.在Rt △ABM 和Rt △DEM 在中,分别由勾股定理,得BM 2=AM 2+AB 2,EM 2=DM 2+DE 2,所以AM 2+AB 2=DM 2+DE 2.设AM =y ,则DM =2-y ,所以y 2+22=(2-y )2+12,解得y =14,即AM =14.所以AM BN =15.类比归纳:设正方形的边长为2,仿照问题解决,当CE CD =13时,则CE =23,DE =43.设BN =x ,则NE =x ,NC =2-x .所以x 2=(2-x )2+223⎛⎫ ⎪⎝⎭,解得x =109,BN =109;设AM =y ,则DM =2-y ,所以y 2+22=(2-y )2+243⎛⎫⎪⎝⎭,解得y =49,即AM =49.所以AM BN =410=25.当CE CD =14时,则CE =24,DE =64.设BN =x ,则NE =x ,NC =2-x .所以x 2=(2-x )2+224⎛⎫ ⎪⎝⎭,解得x =1716,BN =1716;设AM =y ,则DM =2-y ,所以y 2+22=(2-y )2+264⎛⎫ ⎪⎝⎭,解得y =916,即AM =916.所以AM BN =917.…当CE CD =1n 时,则CE =2n ,DE =22n n-.设BN =x ,则NE =x ,NC =2-x .所以x 2=(2-x)2+22n⎛⎫⎪⎝⎭,解得x=221nn+,BN=221nn+;设AM=y,则DM=2-y,所以y2+22=(2-y)2+222nn-⎛⎫⎪⎝⎭,解得y=()221nn-,即AM=()221nn-.所以AMBN=()2211nn-+.联系拓广:因为ABBC=1m(m>1),所以设AB=a,则BC=ma,于是仿照上面求解过程,由CECD=1n,得CE=an,DE=a-an,设BN=x,则NE=x,NC=ma-x.在Rt△CNE中,由勾股定理,得NE2=CN2+CE2,即x2=(ma-x)2+2an⎛⎫⎪⎝⎭,解得x=22212m nmn+a.即BN=22212m nmn+a;同样,在Rt△ABM和Rt△DEM在中,分别由勾股定理,得BM2=AM2+AB2,EM2=DM2+DE2,所以AM2+AB2=DM2+DE2.设AM=y,则DM=ma-y,所以y2+a2=(ma-y)2+2aan⎛⎫-⎪⎝⎭,解得y=222212m n nmn-+a,即AM=222212m n nmn-+a.所以AMBN=2222211n m nn m-++.。
八年级 四边形 综合拔高训练 能力提升(含完整答案与解析)
1.如图,在四边形ABCD中,AB=CD,点E在DC的延长线上,连接BE交AD于点F,BE平分∠ABC,BC=EC,作FG⊥BA延长线于点G.(1)求证:四边形ABCD为平行四边形;(2)若F为AD中点,EF=6,BC=2,求GF的长.2.在四边形ABCD中,点E、F在对角线AC上,连接DE、BF,DE∥BF,DE=BF,AF =CE.(1)如图1,求证:四边形ABCD是平行四边形;(2)如图2,∠ABC=90°,DE⊥AC,连接BE、DF,请直接写出所有的全等的直角三角形.3.如图,在△ABC中,AB=AC,AD是∠BAC的角平分线,点O是AB的中点,连接DO 并延长到点E,使OE=OD,连接AE、BD.(1)求证:四边形AEBD是矩形;(2)当∠BAC=90°时,判断四边形AEBD的形状,并证明你的结论.4.如图,四边形ABCD是正方形,点E,H分别在BC,AB上,点G在BA的延长线上,且CE=AG,DE⊥CH于F.(1)求证:四边形GHCD为平行四边形.(2)在不添加任何辅助线的情况下,请直接写出图中所有与∠ECF互余的角.5.如图1,▱ABCD的对角线AC,BD相交于点O,且AE∥BD,BE∥AC,OE=CD.(1)求证:四边形ABCD是菱形;(2)若∠ADC=60°,BE=2,求BD的长.6.如图,菱形ABCD的对角线AC、BD相交于点O,过点D作DE∥AC且DE=AC,连接AE交OD于点F,连接CE、OE.(1)求证:四边形OCED为矩形;(2)若菱形ABCD的边长为6,∠ABC=60°,求AE的长.7.如图,在四边形ABCD中,对角线AC、BD交于点O,AB∥DC,AB=BC,BD平分∠ABC,过点C作CE⊥AB交AB的延长线于点E,连接OE.(1)求证:四边形ABCD是菱形;(2)若AB=,OE=2,求四边形ABCD的面积.8.如图,在△ABC中,AB=AC,AD是BC边的中线,AG平分△ABC的外角∠BAF,BE ⊥AG,垂足为E.(1)求证:四边形ADBE是矩形;(2)连结DE,交AB于点O,若BC=8,AO=,则△ABC的面积是:.9.如图,在平行四边形ABCD中,O是对角线AC的中点,过点O作OE⊥BC交BC于点E.过点O作FG⊥AB交AB、CD于点F、G.(1)如图1,若BC=5,OE=3,求平行四边形ABCD的面积;(2)如图2,若∠ACB=45°,求证:AF+FO=EG.10.如图,点E为▱ABCD的边AD上的一点,连接EB并延长,使BF=BE,连接EC并延长,使CG=CE,连接FG.H为FG的中点,连接DH,AF.(1)若∠BAE=70°,∠DCE=20°,求∠DEC的度数;(2)求证:四边形AFHD为平行四边形;(3)连接EH,交BC于点O,若OC=OH,求证:EF⊥EG.答案与解析1.如图,在四边形ABCD中,AB=CD,点E在DC的延长线上,连接BE交AD于点F,BE平分∠ABC,BC=EC,作FG⊥BA延长线于点G.(1)求证:四边形ABCD为平行四边形;(2)若F为AD中点,EF=6,BC=2,求GF的长.【解答】(1)证明:∵BE平分∠ABC,BC=EC,∴∠ABF=∠CBE,∠CBE=∠E,∴∠ABF=∠E,∴AB∥CD,又∵AB=CD,∴四边形ABCD为平行四边形;(2)解:由(1)得:四边形ABCD为平行四边形,∴AD=BC=2,∵F为AD中点,∴AF=DF=,在△ABF和△DEF中,,∴△ABF≌△DEF(AAS),∴BF=EF=6,AB=DE,∵AB=CD,∴AB=CD=DE=CE=BC=,∵FG⊥AB,∴∠G=90°,∴GF2=AF2﹣AG2=BF2﹣BG2,即()2﹣AG2=62﹣(+AG)2,解得:AG=,∴GF==.【点评】本题考查了平行四边形的判定与性质、全等三角形的判定与性质、勾股定理等知识;熟练掌握平行四边形的判定与性质,证明三角形全等是解题的关键.2.在四边形ABCD中,点E、F在对角线AC上,连接DE、BF,DE∥BF,DE=BF,AF =CE.(1)如图1,求证:四边形ABCD是平行四边形;(2)如图2,∠ABC=90°,DE⊥AC,连接BE、DF,请直接写出所有的全等的直角三角形.【解答】(1)证明:∵DE∥BF,∴∠AFB=∠CED,在△ABF和△CDE中,,∴△ABF≌△CDE(SAS),∴AB=CD,∠BAF=∠DCE,∴AB∥CD,∴四边形ABCD是平行四边形;(2)解:图中所有的全等的直角三角形为△ABC≌△CDA,△ABF≌△CDE,△BEF≌△DFE,△BCF≌△DAE,理由如下:∵DE⊥AC,∴∠AED=∠CED=90°,由(1)得:△ABF≌△CDE,AB=CD,四边形ABCD是平行四边形,∴∠AFB=∠CED=90°,∴∠BFC=90°,∵∠ABC=90°,∴四边形ABCD是矩形,∴AD=BC,∠CDA=90°,在△ABC和△CDA中,,∴△ABC≌△CDA(SAS);同理:△ABF≌△CDE(SAS),△BEF≌△DFE(SAS),△BCF≌△DAE(SAS).【点评】本题考查了平行四边形的判定与性质、矩形的判定与性质、全等三角形的判定与性质等知识;熟练掌握平行四边形的判定与性质,证明三角形全等是解题的关键.3.如图,在△ABC中,AB=AC,AD是∠BAC的角平分线,点O是AB的中点,连接DO 并延长到点E,使OE=OD,连接AE、BD.(1)求证:四边形AEBD是矩形;(2)当∠BAC=90°时,判断四边形AEBD的形状,并证明你的结论.【解答】(1)证明:∵点O为AB的中点,连接DO并延长到点E,使OE=OD,∴四边形AEBD是平行四边形,∵AB=AC,AD是∠BAC的角平分线,∴AD⊥BC,∴∠ADB=90°,∴平行四边形AEBD是矩形;(2)∵∠BAC=90°,AB=AC,AD是∠BAC的角平分线,∴AD=BD=CD,∵由(1)得四边形AEBD是矩形,∴矩形AEBD是正方形.【点评】此题主要考查了正方形的判定以及矩形的判定和等腰直角三角形的性质等知识,熟练掌握正方形和矩形的判定是解题关键.4.如图,四边形ABCD是正方形,点E,H分别在BC,AB上,点G在BA的延长线上,且CE=AG,DE⊥CH于F.(1)求证:四边形GHCD为平行四边形.(2)在不添加任何辅助线的情况下,请直接写出图中所有与∠ECF互余的角.【解答】解:(1)证明:∵四边形ABCD是正方形,∴AD=DC,∠GAD=∠DCE=90°,在△GAD和△ECD中,,∴△GAD≌△ECD(SAS),∴DE=DG,∠GDA=∠EDC,∴∠GDA+∠ADF=∠EDC+∠ADF,即∠GDF=∠ADC=90°,∵DE⊥CH,∴∠DFH=∠CDF=90°,∴DG∥CH,∵∠HCB+∠HCD=∠EDC+∠DCF=90°,∴∠HCB=∠EDC,在△HBC和△ECD中,,∴△HBC和△ECD(ASA)∴CH=DE,∴DG=CH,∵DG∥CH,∴四边形GHCD为平行四边形;(2)∵△HBC≌△ECD,∴∠BHC=∠CED,∵∠ECF+∠FEC=90°,∴∠FEC,∠BHC与∠ECF互余;∵AD∥BC,∴∠ADE=∠DEC,∴∠ADE与∠ECF互余;∵∠DGA=∠CHB,∴∠DGA与∠ECF互余;∵∠DCF+∠ECF=90°,∴∠DCF与∠ECF互余;∴与∠ECF互余的角有:∠FEC、∠DCF、∠BHC、∠DGA、∠ADE.【点评】本题考查了全等三角形的性质和判定,平行线的性质和判定,正方形性质的应用,主要考查学生的推理能力.5.如图1,▱ABCD的对角线AC,BD相交于点O,且AE∥BD,BE∥AC,OE=CD.(1)求证:四边形ABCD是菱形;(2)若∠ADC=60°,BE=2,求BD的长.【解答】(1)证明:∵AE∥BD,BE∥AC,∴四边形AEBO是平行四边形,∵四边形ABCD是平行四边形,∴DC=AB.∵OE=CD,∴OE=AB.∴平行四边形AEBO是矩形,∴∠BOA=90°.∴AC⊥BD.∴平行四边形ABCD是菱形;(2)解:由(1)得:四边形AEBO是矩形,四边形ABCD是菱形,∴OA=BE=2,AC⊥BD,BO=DO,∠ADO=30°,∴OD=OA=2,∴BD=2OD=4.【点评】本题考查了菱形的判定和性质,矩形的判定和性质,直角三角形的性质,平行四边形的判定与性质等知识;灵活运用有关性质是解题的关键.6.如图,菱形ABCD的对角线AC、BD相交于点O,过点D作DE∥AC且DE=AC,连接AE交OD于点F,连接CE、OE.(1)求证:四边形OCED为矩形;(2)若菱形ABCD的边长为6,∠ABC=60°,求AE的长.【解答】(1)证明:四边形ABCD是菱形,∴OA=OC=AC,AD=CD,∵DE∥AC且DE=AC,∴DE=OA=OC,∴四边形OADE、四边形OCED都是平行四边形,∵AC⊥BD,∴四边形OCED是矩形;(2)解:∵在菱形ABCD中,∠ABC=60°,∴AC=AB=6,∴在矩形OCED中,CE=OD==3.∴在Rt△ACE中,AE==3.【点评】本题考查了菱形的性质,矩形的判定与性质,勾股定理的应用.注意证得四边形OCED是平行四边形,四边形OCED是矩形是关键.7.如图,在四边形ABCD中,对角线AC、BD交于点O,AB∥DC,AB=BC,BD平分∠ABC,过点C作CE⊥AB交AB的延长线于点E,连接OE.(1)求证:四边形ABCD是菱形;(2)若AB=,OE=2,求四边形ABCD的面积.【解答】(1)证明:∵AB∥DC,∴∠ABD=∠CDB,∵BD平分∠ABC,∴∠ABD=∠CBD,∴∠CDB=∠CBD,∴BC=CD,且AB=BC,∴CD=AB,且AB∥CD,∴四边形ABCD是平行四边形,∵AB=BC,∴四边形ABCD是菱形;(2)解:由(1)得:四边形ABCD是菱形,∴OA=OC,BD⊥AC,BO=DO,∵CE⊥AB,∴AC=2OE=4,∴OA=2,∴OB===1,∴BD=2OB=2,∴菱形ABCD的面积=AC×BD=×4×2=4.【点评】本题考查了菱形的判定和性质,角平分线的定义,勾股定理,直角三角形的性质等知识;证明四边形ABCD为菱形是解本题的关键.8.如图,在△ABC中,AB=AC,AD是BC边的中线,AG平分△ABC的外角∠BAF,BE ⊥AG,垂足为E.(1)求证:四边形ADBE是矩形;(2)连结DE,交AB于点O,若BC=8,AO=,则△ABC的面积是:12.【解答】(1)证明:∵在△ABC中,AB=AC,AD是BC边的中线,∴AD⊥BC,∠BAD=∠CAD,∴∠ADB=90°,∵AG为△ABC的外角∠BAF的平分线,∴∠BAE=∠F AE,∴∠DAE=90°,∵BE⊥AG,∴∠AEB=90°,∴四边形ADBE为矩形;(2)解:∵AD是BC边的中线,BC=8,∴BD=CD=4,由(1)得:四边形ADBE是矩形,∴AB=DE=2AO=5,在Rt△ABD中,AD===3,∴△ABC的面积=BC×AD=×8×3=12;故答案为:12.【点评】此题考查了矩形的判定与性质、等腰三角形的性质、勾股定理等知识;熟练掌握矩形的判定与性质是解题的关键.9.如图,在平行四边形ABCD中,O是对角线AC的中点,过点O作OE⊥BC交BC于点E.过点O作FG⊥AB交AB、CD于点F、G.(1)如图1,若BC=5,OE=3,求平行四边形ABCD的面积;(2)如图2,若∠ACB=45°,求证:AF+FO=EG.【解答】解:(1)连接BD,∵平行四边形ABCD,∴BD过点O,∴S△OBC=BC•OE=×5×3=∴平行四边形ABCD的面积=4S△OBC=30;(2)过点E作EH⊥EG,与GC的延长线交于点H,如图2,∵OE⊥BC,∴∠OEG+∠OEC=∠GEC+∠CEH=90°,∴∠OEG=∠CEH,∵∠ACB=45°,∴∠COE=45°,∴OE=CE,∵平行四边形ABCD中,AB∥CD,又FG⊥AB,∴FG⊥CD,∴∠EOG+∠ECG=360°﹣90°﹣90°=180°,∵∠ECH+∠ECG=180°,∴∠EOG=∠ECH,∴△OEG≌△CEH(ASA),∴OG=CH,EG=EH,∵四边形ABCD是平行四边形,∴OA=OC,AB∥CD,∴∠OAF=∠OCG,∵∠AOF=∠COG,∴△OAF≌△OCG(ASA),∴AF=CG,OF=OG,∵CG+CH=GH,∴AF+OF=GH,∵∠GEH=90°,EG=EH,∴GH=,∴AF+OF=EG.【点评】本题主要考查了平行四边形的性质,全等三角形的性质与判定,勾股定理,三角形的面积公式,关键是证明全等三角形.10.如图,点E为▱ABCD的边AD上的一点,连接EB并延长,使BF=BE,连接EC并延长,使CG=CE,连接FG.H为FG的中点,连接DH,AF.(1)若∠BAE=70°,∠DCE=20°,求∠DEC的度数;(2)求证:四边形AFHD为平行四边形;(3)连接EH,交BC于点O,若OC=OH,求证:EF⊥EG.【解答】(1)解:∵四边形ABCD是平行四边形,∴∠BAE=∠BCD=70°,AD∥BC,∵∠DCE=20°,∵AB∥CD,∴∠CDE=180°﹣∠BAE=110°,∴∠DEC=180°﹣∠DCE﹣∠CDE=50°;(2)证明:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∠BAE=∠BCD,∵BF=BE,CG=CE,∴BC是△EFG的中位线,∴BC∥FG,BC=FG,∵H为FG的中点,∴FH=FG,∴BC∥FH,BC=FH,∴AD∥FH,AD∥FH,∴四边形AFHD是平行四边形;(3)证明:连接EH,CH,∵CE=CG,FH=HG,∴CH=EF,CH∥EF,∵EB=BF=EF,∴BE=CH,∴四边形EBHC是平行四边形,∴OB=OC,OE=OH,∵OC=OH,∴OE=OB=OC=BC,∴△BCE是直角三角形,∴∠FEG=90°,∴EF⊥EG.【点评】本题考查了平行四边形的判定与性质、三角形中位线定理、等腰三角形的性质以及三角形内角和定理;熟练掌握平行四边形的性质,并能进行推理计算是解决问题的关键.。
八年级数学下册《四边形》单元测试题及答案
2017-2018学年(新课标)沪科版八年级数学下册第19章四边形单元测试卷一、选择题(每题4分,共40分)1.不能判定四边形ABCD为平行四边形的题设是()(A)AB平行且等于CD。
(B)∠A=∠C,∠B=∠D。
(C)AB=AD,BC=CD。
(D)AB=CD,AD=BC。
2.正方形具有而菱形不一定具有的性质是()(A)四条边相等(B)对角线互相垂直平分(C)对角线平分一组对角(D)对角线相等3、顺次连结任意四边形四边中点所得的四边形一定是()A、平行四边形B、矩形C、菱形D、正方形4.正多边形的一个内角是120°,则这个正多边形的边数为( )A.4B.8C.6D.125.如图,□ABCD中,∠C=108°,BE平分∠ABC,则∠ABE等于( )A.18°B.36°C.72°D.108°6.下列命题中,真命题是()A、有两边相等的平行四边形是菱形B、对角线垂直的四边形是菱形C、四个角相等的菱形是正方形D、两条对角线相等的四边形是矩形7.从一个n边形的同一个顶点出发,分别连接这个顶点与其余各顶点,若把这个多边形分割成6个三角形,则n的值是( )A.6B.7C.8D.98菱形的周长是它的高的4√2倍,则菱形中较大的一个角是( )A.100°B.120°C.135°D.150°9.如图,菱形ABCD中,AB=5,∠BCD=120°,则对角线AC的长是( )A.20B.15C.10D.510.如图,梯形ABCD中,AB∥CD,点E,F,G分别是BD,AC,DC的中点.已知两底之差是6,两腰之和是12,则△EFG的周长是( )A.8B.9C.10D.12二、填空题(每题5分,共20分)11、菱形ABCD的周长为36,其相邻两内角的度数比为1:5,则此菱形的面积为_________。
12、对角线长为2的正方形的周长为___________,面积为__________。
八年级数学下册四边形测试题及详细答案(新人教版)
八年级数学四边形测试题 姓名之杨若古兰创作(考试时间:90分钟 满分:100分)一、填空:(每小题2分,共24分)1、对角线_____平行四边形是矩形.2、如图⑴已知O 是平行四边形ABCD 的对角线交点,AC =24,BD =38,AD =14,那么△OBC 的周长等于_____.3、在平行四边形ABCD 中,∠C=∠B+∠D,则∠A=___,∠D =___.4、一个平行四边形的周长为70cm ,两边的差是10cm ,则平行四边形各边长为____cm.5、已知菱形的一条对角线长为12cm ,面积为30cm2,则这个菱形的另一条对角线长为__________cm.6、菱形ABCD 中,∠A=60o ,对角线BD 长为7cm ,则此菱形周长_____cm.7、如果一个正方形的对角线长为,那么它的面积______.8、如图(2)矩形ABCD 的两条对角线订交于O,∠AOB=60o,AB =8,则矩形对角线的长___.9、如图(3),等腰梯形ABCD 中,AD∥BC,AB∥DE,BC =8,AB =6,AD =5则△CDE 周长___.10、正方形的对称轴有___条11、如图(4),BD 是□ABCD 的对角线,点E 、F 在BD 上,要使四边形AECF 是平行四边形,还需添加的一个条件是______12、要从一张长为40cm ,宽为20cm 的矩形纸片中,剪出长为AB C O ⑴ A B CO ⑵ A BD ⑶ A D B CF E ⑷18cm,宽为12cm的矩形纸片,最多能剪出______张.二、选择题:(每小题3分,共18分)13、在平行四边形ABCD中,∠A:∠B:∠C:∠D的值可所以()A、1:2:3:4B、1:2:2:1C、2:2:1:1D、2:1:2:114、菱形和矩形必定都具有的性质是()A、对角线相等B、对角线互相垂直C、对角线互相平分D、对角线互相平分且相等15、以下命题中的假命题是()A、等腰梯形在同一底边上的两个底角相等B、对角线相等的四边形是等腰梯形C、等腰梯形是轴对称图形D、等腰梯形的对角线相等16、四边形ABCD的对角线AC、BD交于点O,能判定它是正方形的是()A、AO=OC,OB=ODB、AO=BO=CO=DO,AC⊥BDC、AO=OC,OB=OD,AC⊥BDD、AO=OC=OB=OD17、给出以下四个命题⑴一组对边平行的四边形是平行四边形⑵一条对角线平分一个内角的平行四边形是菱形⑶两条对角线互相垂直的矩形是正方形⑷顺次连接等腰梯形四边中点所得四边形是等腰梯形.其中准确命题的个数为()A、1个B、2个C、3个D、4个18、以下矩形中按虚线剪开后,能拼成平行四边形,又能拼成直角三角形的是()C D三、解答题(58分)19、(8分)如图:在□ABCD中,∠BAD的平分线AE交DC于E,若∠DAE=25o,求∠C、∠B的度数.ABCD中,AD∥BC,AB=DC,∠D=120o,对角线CA平分∠BCD,且梯形的周长20,求AC.ABCD中,E为CD边上的一点,F为BC的耽误线上一点,CE=CF.⑴△BCE与△DCF全等吗?说明理由;⑵若∠BEC=60o,求∠EFD.22、证实题:(8分)如图,△ABC中∠ACB=90o,点D、E分别是AC,AB的中点,点F在BC的耽误线上,且∠CDF=∠A.求证:四边形DECF是平行四边形.中点ABDCFE60oABDCFE23、(8分)已知:如图所示,△ABC 中,E 、F 、D 分别是AB 、AC 、BC 上的点,且DE∥AC,DF∥AB,要使四边形AEDF 是菱形,在不改变图形的前提下,你需添加的一个条件是_______________试证实:这个多边形是菱形.24、利用题(8分)某村要挖一条长1500米的水渠,渠道的横断面为等腰梯形,渠道深0.8米,渠底宽为1.2米,腰与渠底的夹角为135o ,问挖此渠需挖出土多少方?25、(10分)观察下图⑴正方形A 中含有_____个小方格,即A 的面积为____个单位面积.⑵正方形B 中含有_____个小方格,即B 的面积为____个单位面积.⑶正方形C 中含有_____个小方格,即C 的面积为____个单位面积.⑷你从中得到的规律是:_______________________.25、附加题(10已知:如图,在直角梯形ABCD AD =24cm ,BC =26cm ,动点P 从A 点开始沿动,动点Q 从C 点开始沿CB 边向B 以、Q 分别AB DC F E从A 、C 同时出发,当其一点到端点时,另一点也随之停止活动,设活动时间为t 秒,t 分别为什么值时,四边形PQCD 是平行四边形?等腰梯形?八年级数学单元测试答案 一、⑴相等;⑵45;⑶∠A=120o ,∠D=60o ;⑷22.5,12.5;⑸5;⑹28;⑺1;⑻16;⑼15;⑽4;⑾略;⑿3.二、⒀D;⒁C;⒂B;⒃B;⒄B;⒅B19、解:∠BAD=2∠DAE=2×25o=50o (2分)又∵□ABCD ∴∠C=∠BAD=50o (4分)∴AD∥BC∴∠B=180o -∠BAD (6分)=180o -50o =130o (8分) 20、解:∵AD∥BC ∴∠1=∠2 又∠2=∠3 ∴∠1=∠3 AD =DC (2分)又AB =DC 得AB =AD =DC =在△ADC 中∵∠D=120o∠1=∠3=又∠BCD=2∠3=60o∴∠B=∠BCD=60o (4分)∠BAD=180o -∠B-∠2=90o∠2=30o则BC =2AB =2x (6分)AB =4 BC =8 在Rt△ABC 中AC =(8分)21、⑴△BCE≌△DCF (1分) 理由:由于四边形ABCD 是正方形∴BC=CD ,∠BCD=90o A P DD Q C A DB 1 2 3∴∠BCE =∠DCF又CE =CF ∴△BCE≌△DCF(4分) ⑵∵CE =CF∴∠CEF =∠CFE∵∠FCE =90o∴∠CFE =又∵△BCE≌△DCF ∴∠CFD=∠BEC=60o (6分) ∴∠EFD=∠CFD-∠CFE=60o -45o =15o (8分)22、证实:∵D、E 分别是AC 、AB 的中点 ∴DE∥BC (1分) ∵∠ACB=90o∴CE=AB =AE (3分)∵∠A=∠ECA ∴∠CDF=∠A (4分)∴∠CDF=∠ECA ∴DF∥CE (7分)∴四边形DECF 是平行四边形 (8分)23、答条件AE =AF (或AD 平分角BAC ,等) (3分) 证实:∵DE∥AC DF∥AB∴四边形AEDF 是平行四边形 (6分)又AE =AF∴四边形AEDF 是菱形(8分)24、如图所示设等腰梯形ABCD 为渠道横断面,分别作DE⊥AB,CF⊥AB (2分)垂足为E 、F 则CD =1.2米,DE =CF =0.8米∠ADC=∠BCD =135o (4分)AB∥CD ∠A+∠ADC=180o∴∠A=45o =∠B 又DE⊥AB CF⊥AB ∴∠EDA=∠A ∠BCF=∠B又∵四边形CDEF 是矩形 ∴EF=CD =1.2米 (6分)A D C E FS梯形ABCD=∴所挖土方为1.6×1500=2400(立方米)(8分)(解析:解决本题的关键是数学建模,求梯形面积时,留意作辅助线,把梯形成绩向三角形和矩形转化)25、①4,4 (2分)②9,9 (4分)③13,13 (6分)④在直角三角形中两直角边的平方和等于斜边的平方(10分)26、解由于AD∥BC,所以,只需QC=PD,则四边形PQCD就是平行四边形,此时有3t=24-t.(3分)解之,得t=6(秒)(4分)当t=6秒时,四边形PQCD平行四边形. (5分)同理,只需PQ=CD,PD≠QC,四边形PQCD为等腰梯形.过P、D分别作BC的垂线交BC于E、F,则由等腰梯形的性质可知,EF=PD,QE=FC=26-24=2,所以2,解得.(10分)所以当t=7秒时,四边形PQCD是等腰梯形.。
初二八年级下册数学四边形测试题及试卷答案
2、能判定四边形ABCD 为平行四边形的题设是( ).(A )AB ∥CD ,AD=BC; (B )∠A=∠B ,∠C=∠D; (C )AB=CD ,AD=BC; (D )AB=AD ,CB=CD4、菱形ABCD 的对角线长分别为6cm 和8cm ,则菱形的面积为( )A.12,B.24C.36D.485.下列说法不正确的是( )(A )对角线相等且互相平分的四边形是矩形;(B )对角线互相垂直平分的四边形是菱形;(C )对角线垂直的菱形是正方形;(D )底边上的两角相等的梯形是等腰梯形6、如图1,在平行四边形ABCD 中,CE AB ⊥,E 为垂足.如果125A =∠,则BCE =∠( )A.55 B.35 C.25 D.30二、填空题(每题5分,共30分)7、顺次连结任意四边形各边中点所得到的四边形一定是__10、如图4,把一张矩形纸片ABCD 沿EF折叠后,点C D ,分别落在C D '',的位置上,EC '交AD 于点G .则△EFG 形状为12.如图6,AC 是正方形ABCD 的对角线,AE 平分∠BAC ,EF ⊥AC 交AC 于点F ,若BE=2,则CF 长为三、解答题(每题10分,共40分)13、(10分)已知:如图7,E 、F 是平行四边行ABCD 的对角线AC 上的两点,AE=CF 。
求证:∠CDF =∠ABE14、(10分)如图8,把正方形ABCD绕着点A,按顺时针方向旋转得到正方形AEFG,边FG与BC交于点H.求证:HC=HF.15、(10分)已知:如图9,在△ABC中,AB=AC,AD⊥BC,垂足为点D,AN是△AB外角∠CAM的平分线,CE⊥AN,垂足为点E,猜想四边形ADCE的形状,并给予证明.16、(10分)如图10,在梯形纸片ABCD中,AD//BC,AD>CD,将纸片沿过点D的直线折叠,使点C落在AD上的点C处,折痕DE交BC于点E,连结C′E.求证:四边形CDC′E是菱形,一.选择及填空题(每题5分,共10分)1、如图11,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC于点E,交AB于点F,F为垂足,连接DE,则∠CDE=_________度2.如图12,四边形ABCD是矩形,F是AD上一点,E是CB延长线上一点,且四边形AECF是等腰梯形.下列结论中不一定...正确的是().(A)AE=FC(B)AD=BC (C)∠AEB=∠CFD(D)BE=AF二、填空题(每题5分,共10分)3、如图13,已知:平行四边形ABCD中,∠的平分线CE交边AD于E,BCD∠的平分线BG交CE于F,交AD ABC于G.若AB=4cm,AD=6cm,则EG=_______ cm .4、将矩形纸片ABCD 按如图14所示的方式折叠,得到菱形AECF .若AB =9,则AC 的长为 _________《“四边形”综合测试题(一)》参考答案基础巩固一、选择题1、D2、C3、A4、B5、C.6、B二、填空题7、平行四边形 8、3. 9、45° 10、等腰三角形 11、23 12.2三、解答题13、证明:(1)∵ ABCD 是平行四边形,∴DC=AB ,DC ∥AB,∴∠DCF=∠BAE ,∵ AE=CF , ∴△ADF ≌△CBE ,∴∠CDF =∠ABE14、如图8,把正方形ABCD 绕着点A ,按顺时针方向旋转得到正方形AEFG ,边FG 与BC 交于点H .求证:HC=HF.解:证明:连结AH ,∵四边形ABCD ,AEFG 都是正方形.∴90B G ∠=∠=°,AG AB =,BC=GF ,又AH AH =.Rt Rt ()AGH ABH HL ∴△≌△,HG HB =∴,∴HC=HF.15、解:猜想四边形ADCE 是矩形。
八年级数学上册能力提升试卷【有解析有答案】
八年级数学上册能力提升试卷【有解析有答案】1.如图,由25个同样大小的小正方形组成的正方形网格中,△ABC是格点三角形(每个顶点都是格点),在这个正方形网格中画另一个格点三角形,使得它与△ABC全等且仅有一条公共边,则符合要求的三角形共能画()A.5个B.6个C.7个D.8个2.如图,在△ABC中,AC=BC,∠ACB=90°,AE平分∠BAC交BC于E,BD⊥AE于D,DF⊥AC 交AC的延长线于F,连接CD,给出四个结论:①∠ADC=45°;②BD=AE;③AC+CE=AB;④AB﹣BC=2FC;其中正确的结论有()A.1个B.2个C.3个D.4个3.如图,在△ABC中,∠C=90°,AB=30,D是AB上一点,AD:CD=25:7,且DB=DA,过AB 上一点P,作PE⊥AC于E,PF⊥BD于F,则PE+PF长是.4.如图,两个边长为6的等边三角形拼出四边形ABCD,点E从点D出发,以每秒1个单位长度的速度沿着射线DA的方向匀速运动,设运动时间为t秒.将线段CE绕点C顺时针旋转一个角α(α=∠BCD),得到对应线段CF.当t=时,DF的长度有最小值,最小值等于.5.如图,在四边形ABCD中,AD=4,CD=3,∠ABC=∠ACB=∠ADC=45°,则BD2=.6.如图,已知三角形木块ABC,∠A=30°,∠B=90°,AC=10cm,一只蚂蚁在AC、AB间往返爬行.当蚂蚁从木块AC边的中点O出发,爬行到AB边上任意一点P后,又爬回到AC边上的任意一点Q后,再爬行到点B,在这一过程中这只蚂蚁爬行的最短距离为.7.已知,如图,在△ABC中,AB=AC,∠BAC=α,且60°<α<120°,P是△ABC内部一点,且PC=AC,∠PCA=120°﹣α.(1)用含α的代数式表示∠APC,得∠APC=;(2)求证:∠BAP=∠PCB;(3)求∠PBC的度数;(4)若PA=PB,试猜想△ABC的形状.8.如图,Rt△ABC中,AB=AC,∠BAC=90°,将一块三角板中含45°角的顶点放在点A上,三角板斜边交BC于点D,直角边交BC于点E,在BC边上取一点M,连接AM.(1)若∠BAD=∠DAM,求证:∠CAE=∠EAM;(2)在(1)的条件下,线段BD、CE、DE之间是否存在一定的数量关系?若存在,请写出这个数量关系,并证明;若不存在,请说明理由.9.如图1:点M、N在直线AB的同侧,在直线上找一点P使MP+NP最短?解:做点M关于直线AB的对称点M′.连接M′N,线段M′N与直线AB的交点即为点P的位置,即MP+NP最短.(1)应用1:如图2,M、N是△ABC中AB、AC边上的两点,请在BC边上确定一点P使得△PMN的周长最小?(不写作法只保留作图痕迹)(2)应用2:设x、y为正实数,且x+y=8,求:+的最小值.10.数学活动﹣﹣求重叠部分的面积.问题情境:数学活动课上,老师出示了一个问题:如图1,将两块全等的直角三角形纸片△ABC和△DEF叠放在一起,其中∠ACB=∠E=90°,BC=DE=6,AC=FE=8,顶点D与边AB的中点重合.(1)若DE经过点C,DF交AC于点G,求重叠部分(△DCG)的面积;(2)合作交流:“希望”小组受问题(1)的启发,将△DEF绕点D旋转,使DE⊥AB交AC于点H,DF交AC于点G,如图2,求重叠部分(△DGH)的面积.11.如图,四边形ABCD是长方形(长方形对边相等且平行,四个角为直角),(1)用直尺和圆规在边CD上找一个点P,使△ADP沿着直线AP翻折后D点正好落在BC边上的Q点(不写作法,保留作图痕迹).连结AP,AQ,PQ;(2)在(1)中作的新图形中,已知AB=5,AD=13,求CP的长.12.课本的作业题中有这样一道题:把一张顶角为36°的等腰三角形纸片剪两刀,分成3张小纸片,使每张小纸片都是等腰三角形,你能办到吗?请画示意图说明剪法.我们有多少种剪法,图1是其中的一种方法:定义:如果两条线段将一个三角形分成3个等腰三角形,我们把这两条线段叫做这个三角形的三分线.(1)请你在图2中用两种不同的方法画出顶角为45°的等腰三角形的三分线,并标注每个等腰三角形顶角的度数;(若两种方法分得的三角形成3对全等三角形,则视为同一种)(2)△ABC中,∠B=30°,AD和DE是△ABC的三分线,点D在BC边上,点E在AC边上,且AD=BD,DE=CE,设∠C=x°,试画出示意图,并求出x所有可能的值.。
八年级数学下册《平行四边形》单元测试能力提升卷 含答案 (原卷+详解)
4 / 48
15.如图, ABC 中, ACB 90 , AC 8 , BC 6 ,分别以 ABC 的边 AB 、 BC 、 CA 为一边向 ABC 外作正方形 ABDE 、 BCMN 、 CAFG ,连接 EF 、 ND ,则图中阴影部分的面积之和等于 .
11 / 48
人教版数学八年级下册单元测试能力提升卷
《平行四边形》
答案详解版
一.选择题 1.如图,菱形 ABCD 中,过顶点 C 作 CE BC 交对角线 BD 于 E 点,已知 A 134 ,则 BEC 的大小为 ( )
A. 23
B. 28
C. 62
D. 67
【解析】菱形 ABCD , A 134 ,
A.2
B. 12 13 13
C.4
D.5
4.如图,在正方形 ABCD 内,以 BC 为边作等边三角形 BCM ,连接 AM 并延长交 CD 于 N ,则下列结论不
正确的是 ( )
1 / 48
A. DAN 15
B. CMN 45
C. AM MN
D. MN NC
5.在边长为 2 的正方形 ABCD 中, P 为 AB 上的一动点, E 为 AD 中点, PE 交 CD 延长线于 Q ,过 E 作
CBF ABF ;② FE FB ;③ 2SEFB S四边形DEBC ;④ BFE 3DEF .其中正确的个数是 (
)
A.1
B.2
C.3
D.4
9.如图,矩形 ABCD 中, BC AB ,对角线 AC 、 BD 交于 O 点,且 AC 10 ,过 B 点作 BE AC 于 E 点,
八年级数学四边形提高测试试题
卜人入州八九几市潮王学校四边形进步测试〔一〕选择题〔每一小题4分,一共32分〕1.假设一个多边形的内角和是外角和的5倍,那么这个多边形的边数是…………………〔〕 〔A 〕9〔B 〕10〔C 〕11〔D 〕12【提示】为了便于计算,设每个内角都相等,那么每个内角是每个外角的5倍.【答案】D .2.菱形ABCD 的两条对角线之和为l ,面积为S ,那么它的边长为…………………〔〕 〔A 〕2421l S -〔B 〕221l S +〔C 〕S l 4212-〔D 〕S l +2421【提示】设两对角线长的一半为a 与b ,那么S =2ab ,l =2〔a +b 〕,边长为22b a +.利用a 2+b 2=(a +b )2-2ab . 【答案】C .3.如图,矩形ABCD 的边长AB =6,BC =8,将矩形沿EF 折叠,使C 点与A 点重合, 那么折痕EF 的长是……………………………………………………………………〔〕 〔A 〕7.5〔B 〕6〔C 〕10〔D 〕5【提示】设AE =x ,那么ED =8-x ,CE =x ,用勾股定理列出方程x 2=(8-x )2+62,解出x =425,而OA =21AC =5. 【答案】A .4.:如图,在□ABCD 中,E 、F 分别是边AD 、BC 的中点,AC 分别交BE 、DF于G 、H ,并有以下结论:〔1〕BE =DF ;〔2〕AG =GH =HC ;〔3〕EG =21BG ;〔4〕S △ABE =3S △AGE . 其中正确的结论有…………………………………………………………………〔〕〔A 〕1个〔B 〕2个〔C 〕3个〔D 〕4个【提示】BG =2FH =2GE .【答案】D .5.如图,E 为矩形ABCD 的边CD 上的一点,AB =AE =4,BC =2,那么∠BEC 是〔〕〔A 〕15°〔B 〕30°〔C 〕60°〔D 〕75°【提示】作EF ⊥AB 于F 点,那么由AE =2BC =2EF ,得知∠EAB =30°.【答案】D .6.顺次连结四边形各边中点所得四边形是矩形,那么原图形一定是………………〔〕〔A 〕菱形〔B 〕对角线相等的四边形〔C 〕对角线垂直的四边形〔D 〕对角线垂直且互相平分的四边形【答案】C .7.如图,周长为68的矩形ABCD 被分成7个全等的矩形,那么矩形ABCD 的面积为………………………………………………………………………………………〔〕〔A 〕98〔B 〕196〔C 〕280〔D 〕284【提示】设小矩形的长为x ,宽为y ,那么有∴x =10,y =4.xy =40.【答案】C .8.如图,在□ABCD 中,EF ∥BC ,GH ∥AB ,EF 、GH 的交点P 在BD 上,那么图中面积相等的平行四边形有…………………………………………………………〔〕〔A 〕0对〔B 〕1对〔C 〕2对〔D 〕3对【提示】由S △BPE =S △BPH ,S △PDG =S △PDF 和S △ABD =S △CBD 可知有一边过P 点的3对平行四边形面积相等.【答案】D .〔二〕填空题〔每一小题3分,一共18分〕9.一个多边形的一个内角的补角与其他内角的和恰为500°,那么这个多边形的边数是______.【提示】由于五边形内角和为540°>500°,所以多边形的边数不可能超过5.显然它不可能是三角形.因此分四边形、五边形两种情况验证是否存在符合要求的图形.【答案】4或者5.10.如图,P 是□ABCD 内的一点,ABCD APBS S 平行四边形三角形=32,那么ABCD CPD S S 平行四边形三角形=______.【提示】过P 点分别作AB 和BC 的平行线,与□ABCD 的边相交,找出4对全等三角形.由此可见,△ABP 与△CDP 的面积之和为□ABCD 面积的一半. 【答案】101.11.用任意两个全等的直角三角形拼以下列图形:①平行四边形②矩形③菱形④正方形⑤等腰三角形⑥等边三角形其中一定可以拼成的图形是_______〔只填题号〕.【答案】①②⑤.12.如图,假设四边形CDEF 旋转后能与正方形ABCD 重合,那么在图形所在平面内,可以作为旋转中心的点的个数为______.【提示】施转中心必须在公一共边CD 上.【答案】3.13.如图,梯形ABCD 中,△ABP 的面积为20平方厘米,△CDQ 的面积为35平方厘米,那么阴影四边形的面积等于______平方厘米.【提示】连结MN .S △MNP =S △ABP ,S △MNQ =S △CDQ .【答案】55.14.如图,将边长为1的正方形ABCD 绕A 点按逆时针方向旋转30°,至正方形AB ′C ′D ′,那么旋转前后正方形重叠局部的面积是________.【提示】设CD 与B ′C ′的交点为M ,那么AM 为两正方形的对称轴.又设MD =x ,那么AM =2x ,用勾股定理列方程并解之即可. 【答案】33.〔三〕计算题〔每一小题6分,一共12分〕15.如图,一个等腰梯形的两条对角线互相垂直,且中位线长为l ,求这个等腰梯形的高.【提示】如以下列图,过B 点作AC 的平行线.【答案】过B 作BG ∥AC ,交DC 的延长线于G 点.在梯形ABCD 中,AB ∥DC ,∴四边形ABGC 为平行四边形.∴CG =AB ,BG =AC .∵EF 为梯形中位线, ∴DG =DC +AB =2EF =2 l .∵AC ⊥BD 且AC =BD .∴BG ⊥BD 且BG =BD .∴△BDG 为等腰直角三角形.∴高BH =21DG =l . 16.如图,矩形纸片ABCD 中,AB =3 cm ,BC =4 cm .现将A ,C 重合,使纸片折叠压平,设折痕为EF ,试求AF 的长和重叠局部△AEF 的面积.【提示】把AF 取作△AEF 的底,AF 边上的高等于AB =3.由折叠过程知,E F 经过矩形的对称中心,F D =B E ,A E =C E =A F .由此可以在 △ABE 中使用勾股定理求AE ,即求得AF 的长.【答案】如图,连结AC ,交EF 于点O ,由折叠过程可知,OA =OC ,∴O 点为矩形的对称中心.E 、F 关于O 点对称,B 、D 也关于O 点对称.∴BE =FD ,EC =AF ,由EC 折叠后与EA 重合,∴EC =EA .设AF =x ,那么BE =FD =AD -AF =4-x ,AE =AF =x .在Rt △ABE 中,由勾股定理,得AB 2+BE 2=AE 2,即32+(4-x )2=x 2.解得x =825. ∴S △AEF =21×3×825=1675〔cm 2〕 故AF 的长为825cm ,△AEF 的面积为1675cm 2. 〔四〕证明题〔每一小题5分,一共20分〕17.:如图,梯形ABCD 中,AD ∥BC ,过C 作CE ∥AB 且CE =AB ,连结DE 交BC 于F .求证:DF =EF .【提示】连结AE 交BC 于O ,要证DF =EF ,因为AD ∥BC ,所以只要证OA =OE ,只要证四边形ABEC 为平行四边形.【答案】连结AE 交BC 于O 点,∵CE AB,∴四边形ABEC为平行四边形,∴OA=OE.又AD∥BC,∴DF=EF.18.如图,E是矩形ABCD的边AD上一点,且BE=ED,P是对角线BD上任意一点,PF⊥BE,PG⊥AD,垂足分别为F、G.求证:PF+PG=AB.【提示】延长GP交BC于H,只要证PH=PF即可,所以只要证∠PBF=∠PBH.【答案】∵BE=DE,∴∠EBD=∠EDB.∵在矩形ABCD中,AD∥BC,∴∠DBC=∠ADB,∴∠EBD=∠CBD.延长GP交BC于H点.∵PG⊥AD,∴PH⊥BC.∵PF⊥BE,P是∠EBC的平分线上.∴PF=PH.∵四边形ABHG 中,∠A =∠ABH =∠BHG =∠HGA =90°.∴四边形ABHG 为矩形,∴AB =GH =GP +PH =GP +PF故PF +PG =AB .19.如图,在梯形ABCD 中,AD ∥BC ,M 、N 分别是AB 、CD 的中点,ME ∥AN 交BC 于点E ,求证AM =NE .【提示】延长AN 交BC 延长线于点F .证明NE 为△ABF 的中位线.【答案】延长AN 交BC 的延长线于点F ,∵DN =CN ,∠AND =FNC ,又由AD ∥BC ,得∠ADN =∠FCN ,∴△ADN ≌△FCN . ∴AN =NF .∵AM =BM 且ME ∥AF ,∴BE =EF .∴NE 为△ABF 的中位线,∴NE =21AB =AM . 20.:如图,以正方形ABCD 的对角线为边作菱形AEFC ,B 在FE 的延长线上.求证:AE 、AF 把∠BAC 三等分.【提示】证出∠CAE =30°即可.【答案】连结BD ,交AC 于点O ,作EG ⊥AC ,垂足为G 点.∵四边形AEFC 为菱形,∴EF ∥AC .∴GE =OB .∵四边形ABCD 为正方形,∴OB ⊥AC , ∴OB GE ,∵AE =AC ,OB =21BD =21AC , ∴EG =21AE , ∴∠EAG =30°.∴∠BAE =15°.在菱形AEFC 中,AF 平分∠EAC ,∴∠EAF =∠FAC =21∠EAC =15° ∴∠EAB =∠FAE =∠FAC .即AE 、AF 将∠BAC 三等分.〔五〕解答题〔每一小题6分,一共18分〕21.如图,M 、N 两点在正方形ABCD 的对角线BD 上挪动,∠MCN 为定角,连结AM 、AN ,并延长分别交BC 、CD 于E 、F 两点,那么∠CME 与∠CNF 在M 、 N 两点挪动过程,它们的和是否有变化?证明你的结论.【提示】BD 为正方形ABCD 的对称轴,∴∠1=∠3,∠2=∠4,用∠1和∠2表示∠MCN 以及∠EMC +∠FNC .【答案】∵BD 为正方形ABCD 的对称轴,∴∠1=∠3,∠2=∠4,∴∠EMC =180°-∠1-∠3=180°-2∠1.同理∠FNC =180°-2∠2.∴∠EMC +∠FNC =360°-2〔∠1+∠2〕.∵∠MCN =180°-〔∠1+∠2〕,∴∠EMC +∠FNC 总与2∠MCN 相等.因此∠EMC +∠FNC 始终为定角,这定角为∠MCN 的2倍.22.如图〔1〕,A B 、C D 是两条线段,M 是A B 的中点,S △D M C 、S △D A C 和S △D B C 分别表示△DMC 、△DAC 、△DBC 的面积.当AB ∥CD 时,有S △DMC =2DBCDAC S S ∆∆+①〔1〕如图〔2〕,假设图〔1〕中AB ∥CD 时,①式是否成立?请说明理由. 〔2〕如图〔3〕,假设图〔1〕中AB 与CD 相交于点O 时,S △DMC 与S △DAC 和S △DBC 有何种相等关系?证明你的结论.图〔1〕图〔2〕图〔3〕【提示】△DAC ,△DMC 和△DBC 同底CD ,通过它们在CD 边上的高的关系,来确定它们面积的关系.【答案】〔1〕当AB ∥CD 时,①式仍成立. 分别过A 、M 、B 作CD 的垂线,AE 、MN 、BF 的垂足分别为E 、N 、F .∵M 为AB 的中点,∴MN =21〔AE +BF 〕.∴S △DAC +S △DBC =21DC ·AE +21DC ·BF =21DC ·〔AE +BF 〕=2S △DMC .∴S △DMC =2DACDBC S S ∆∆-〔2〕对于图〔3〕有S △DMC =2DACDBC S S ∆∆-.证法一:∵M 是AB 的中点,S △ADM =S △BDM ,S △ACM =S △BCM ,S △DBC =S △BDM +S △BCM +S △DMC ,①S △DAC =S △ADM +S △ACM -S △DMC ②①-②得:S △DBC -S △DAC =2S △DMC∴S △DMC =2DACDBC S S ∆∆-.证法二:如右图,过A 作CD 的平行线l ,MN ⊥l ,垂足为N ,BE ⊥l ,垂足为E .设A 、M 、B 到CD 的间隔分别h 1、h 0、h 2.那么MN =h 1+h 0,BE =h 2+h 1.∵AM =BM ,∴BE =2MN .∴h 2+h 1=2〔h 1+h 0〕,∴h 0=212h h -. ∴S △DMC =2DAC DBC S S ∆∆-.23.:如图,△ABC 中,点O 是AC 上边上一个动点,过点O 作直线MN ∥BC ,MN 交∠BCA 的平分线于点E ,交∠BCA 的外角平分线于点F .〔1〕求证EO =FO .〔2〕当点O 运动到何处时,四边形AECF 是矩形?证明你的结论.【提示】〔1〕证明OE =OC =OF ;〔2〕O 点的位置首先满足四边形AECF 是平行四边形,然后证明它此时也是矩形.【答案】〔1〕∵CE 平分∠BCA ,∴∠BCE =∠ECO .又MN ∥BC ,∴∠BCE =∠CEO .∴∠ECO =∠CEO .∴OE =OC .同理OC =OF .∴OE =OF .〔2〕当点O 运动到AC 边的中点时,四边形AECF 是矩形,证明如下: ∵OE =OF ,又O 是AC 的中点,即OA =OC ,∴四边形AECF 是平行四边形.∵CE 、CF 分别平分∠BCA 、∠ACD ,且∠BCA +∠ACD =180°, ∴∠ECF =∠ECO +∠OCF =21〔∠BCA +∠ACD 〕=90°. ∴□AECF 是矩形.。
八年级四边形经典练习提高题含答案
八年级梯形菱形正方形综合试题(含答案)1、如图,在矩形ABCD 中,AB = 3,AD = 4, P 是AD 上不与A 、D 重合的一动点,PE ⊥AC , PF ⊥BD,E 、F 为垂足,则PE + PF 的值为( ) A 、2B 、2。
4C 、2。
5D 、 2.62、下列命题正确的是( ) A 、 两邻边相等的四边形是菱形B 、一条对角线平分一个内角的平行四边形是菱形C 、对角线垂直且一组邻边相等的四边形是菱形D 、对角线垂直的四边形是菱形3、已知菱形的周长是高的8倍,则菱形较大的一个角是( ) A 、100° B 、120° C 、135° D 、150°4。
如图梯形ABCD 的两底长为AD =6,BC =10,中线为EF , 且∠B =90︒,若P 为AB 上的一点,且PE 将梯形ABCD 分成面积相同的两区域,则△EFP 与 梯形ABCD 的面积比为何?(A) 1:6 (B) 1:10 (C ) 1:12 (D) 1:16 。
D CBA EFP5.如图,在等腰梯形ABCD 中,AD ∥BC ,对角线AC ⊥BD 于点O ,AE ⊥BC ,DF ⊥BC ,垂足分别为E 、F ,AD =4,BC =8,则AE +EF 等于() A .9 B .10 C .11 D .126。
如图,在等腰梯形ABCD 中,AB ∥CD , 对角线AC ⊥BC ,∠B =60º,BC =2cm ,则梯形ABCD 的面积为( ) A .33cm 2 B .6 cm 2C .36cm 2D .12 cm 27.(1)梯形ABCD 中,AD ∥BC ,AB=CD=AD=2,∠B=60°,则下底BC 的长是( )A .3B .4C . 2D .5 (2)已知等腰梯形的底角为45o ,高为2,上底为2,则其面积为 (A )2 (B)6 (C)8 (D )128.如图,在等腰梯形ABCD 中,AC ⊥BD ,AC =6cm ,则等腰梯形ABCD 的面积为_____cm 2.ACBD(第3题图)60°30°D CBA9,在等腰梯形ABCD 中,AD ∥BC ,CD AD AB ==,若︒=∠60ABC ,12=BC ,则梯形ABCD 的周长为____________.10.如图,已知梯形ABCD 中,AD ∥BC ,∠B =30°,∠C =60°,AD =4,AB =33,则下底BC 的长为 __________.1、如图,AC 是矩形ABCD 的对角线,AO = OC ,EF 经过点O 且分别交AD 、BC 于点E 、F,求证:ED = BF2、设等边△AEF 与菱形ABCD 有一公共顶点A ,且边长相等,三角形另两角的顶点E 和F 分别在菱形的边BC 和CD 上,求∠BAD 的度数3、如图,已知正方形ABCD ,E 为BC 上任意点,延长AB 至F ,使BF = BE ,AE的延长线交CF于G,求证:AG⊥CF4、如图,已知正方形ABCD,BE∥AC,AE=AC,求证:CF=CE5、如图,矩形ABCD中,DF平分∠ADC,交AC于E,交BC于F,∠BDF = 15°,求∠DOC和∠COF的度数6、如图,矩形ABCD中,点H在对角线BD上,HC⊥BD,HC的延长线交∠BAD的平分线于点E,试说明CE与BD的数量关系答案1。
初中八级数学经典四边形习题道(附答案)
经典四边形习题50道(附答案)1.已知:在矩形ABCD 中,AE ⊥BD 于E , ∠DAE=3∠BAE ,求:∠EAC 的度数。
2.已知:直角梯形ABCD 中,BC=CD=a 且∠BCD=60︒,E 、F 分别为梯形的腰AB 、 DC 的中点,求:EF 的长。
3、已知:在等腰梯形ABCD 中,AB ∥DC ,AD=BC ,E 、F 分别为AD 、BC 的中点,BD 平分∠ABC 交EF 于G ,EG=18,GF=10 求:等腰梯形ABCD 的周长。
4、已知:梯形ABCD 中,AB ∥CD ,以AD , AC 为邻边作平行四边形ACED ,DC 延长线交BE 于F ,求证:F 是BE 的中点。
5、已知:梯形ABCD 中,AB ∥CD ,AC ⊥CB , AC 平分∠A ,又∠B=60︒,梯形的周长是 20cm, 求:AB 的长。
6、从平行四边形四边形ABCD 的各顶点作对角线的垂线AE 、BF 、CG 、DH ,垂足分别是E 、F 、G 、H ,求证:EF ∥GH 。
7、已知:梯形ABCD 的对角线的交点为E_ O_ A_ B _ D_ C_ E_ E _ F_ A_ B _ D_ C_ G _ A _ B _ D _ C_ E _ F_ D _ A_ B _ C_ E _ F _ A_ B_ D _ C _ O _ D _ A_ B_ C _ H _ F _ G_ E若在平行边的一边BC 的延长线上取一点F , 使S ABC ∆=S EBF ∆,求证:DF ∥AC 。
8、在正方形ABCD 中,直线EF 平行于 对角线AC ,与边AB 、BC 的交点为E 、F , 在DA 的延长线上取一点G ,使AG=AD , 若EG 与DF 的交点为H ,求证:AH 与正方形的边长相等。
9、若以直角三角形ABC 的边AB 为边,在三角形ABC 的外部作正方形ABDE ,AF 是BC 边的高,延长FA 使AG=BC ,求证:BG=CD 。
广东省八级数学上册《四边形》测试题
广东省仁化县周田中学八年级数学上册《四边形》测试题 新人教版一、填空题1.对角线互相平分的四边形是______形;对角线相等的平行四边形是_______形 ;对角线互相垂直的平行四边形是______形;对角线互相平分且相等的四边形是______形;对角线互相平分且垂直的四边形______形;对角线互相垂直并平分且长度相等的四边形是______形;对角线相等的梯形是______梯形;顺次连接任意四边形各边中点得到的四边形一定是_______.2.有一个角是______的平行四边形叫做矩形。
3.如果要判定一个四边形是菱形,那么它的对角线应满足的条件是_________________。
4.已知菱形的两条对角线的长分别是6和8,那么它的边长是_______。
5.若菱形的周长为24 cm ,一个内角为60°,则菱形的面积为______ 。
6.对角线长为10 cm 的正方形的边长是______,面积是______ 。
7.在ABCD 中,∠A +∠C =270°,则∠B =______,∠C =______.。
8.在ABCD 中,两邻边的差为4cm ,周长为32cm ,则两邻边长分别为________.9.如果梯形的上底长为4cm,下底长为10cm,那么它的中位线长为________ cm 。
10.等腰梯形的上底是10cm ,下底是14cm ,高是2cm ,则等腰梯形的周长为______cm .11.如图,在正方形ABCD 的外侧,作等边△ADE ,则∠AEB=_______.二、选择题12. 能够判定一个四边形是平行四边形的条件是 ( )A 、一组对角相等B 、两条对角线互相平分C 、两条对角线互相垂直D 、一对邻角的和为180°13.如图4,梯形ABCD 中,对角线AC 与BD 交于点O ,则图中面积相等的三角形有( )。
A .3对B .2对C .1对D . 4对14.如图5,将矩形ABCD 沿对角线BD 对折,使点C 落在C′处,BC′交AD 于F ,下列不成立的是( )。
初二四边形综合提高练习题(附详细讲解)
初二四边形综合提高练习题(附详解)1.如图,在Rt△ABC中,∠B=90°,C=30°.点D从点C出发沿CA方向以每秒2个单位长的速度向点A匀速运动,同时点E从点A出发沿AB方向以每秒1个单位长的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(t>0).过点D作DF⊥BC于点F,连接DE、EF.(1)求AB,AC的长;(2)求证:AE=DF;(3)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,说明理由.(4)当t为何值时,△DEF为直角三角形?请说明理由.2.如图,已知菱形ABCD的对角线AC 、BD相交于点O,延长AB至点E,使BE=AB,连接CE.(1)求证:四边形BECD是平行四边形;(2)若∠E=60°,AC=求菱形ABCD的面积.3.在△ABC中,AB=AC=2,∠BAC=45º.△AEF是由△ABC绕点A按逆时针方向旋转得到,连接BE,CF相交于点D.(1)求证:BE=CF;(2)当四边形ABDF是菱形时,求CD的长.4.如图,四边形ABCD是正方形,点E,F分别在BC,AB上,点M在BA的延长线上,且CE=BF=AM,过点M,E分别作NM⊥DM,NE⊥DE交于N,连接NF.(1)求证:DE⊥DM;(2)猜想并写出四边形CENF是怎样的特殊四边形,并证明你的猜想.5.如图,正方形ABCD的面积为4,对角线交于点O,点O是正方形A1B1C1O的一个顶点,如果这两个正方形全等,正方形A1B1C1O绕点O旋转.(1)求两个正方形重叠部分的面积;(2)若正方形A1B1C1O旋转到B1在DB的延长线时,求A与C1的距离.6.在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,点D从点C出发沿CA方向以4cm/秒的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(0<t≤15).过点D作DF⊥BC于点F,连接DE,EF.(备注:在直角三角形中30度角所对的边是斜边的一半)(1)求证:AE=DF;(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值,如果不能,说明理由;(3)当t为何值时,△DEF为直角三角形?请说明理由.7.如图1,四边形ABCD是正方形,点E是边BC的中点,∠AEF=90°,且EF交正方形外角平分线CF于点F.(1)求证:AE=EF.(2)如图2,若把条件“点E是边BC的中点”改为“点E是边BC上的任意一点”其余条件不变,那么结论AE=EF是否成立呢?若成立,请你证明这一结论,若不成立,请你说明理由.8.已知□OABC的顶点A、C分别在直线x=2和x=4上,O为坐标原点,直线x=2分别与x轴和OC边交于D、E,直线x=4分别与x轴和AB边的交于点F、G.(1)如图,在点A、C移动的过程中,若点B在x轴上,①直线AC是否会经过一个定点,若是,请直接写出定点的坐标;若否,请说明理由.②□OABC是否可以形成矩形?如果可以,请求出矩形OABC的面积;若否,请说明理由.③四边形AECG是否可以形成菱形?如果可以,请求出菱形AECG的面积;若否,请说明理由.(2)在点A、C移动的过程中,若点B不在x轴上,且当□OABC为正方形时,直接写出点C的坐标.9.如图,矩形ABCD中,AB=9,AD=4.E为CD边上一点,CE=6.点P从点B出发,以每秒1个单位的速度沿着边BA向终点A运动,连接PE.设点P运动的时间为t秒.(1)求AE的长;(2)当t为何值时,△PAE为直角三角形?(3)是否存在这样的t,使EA恰好平分∠PED,若存在,求出t的值;若不存在,请说明理由.参考答案1.(1)AB=5,AC=10.(2)证明见解析;(3)能,当t=103时,四边形AEFD 为菱形.(4)当t=52秒或4秒时,△DEF 为直角三角形.【解析】(1)设AB=x,则AC=2x.由勾股定理得,(2x)2-x 2=(5)2,得x=5,故AB=5,AC=10. (2)证明:在△DFC 中,∠DFC=90°,∠C=30°,DC=2t ,∴DF=t.又∵AE=t,∴AE=DF.(3)能.理由如下:∵AB⊥BC ,DF⊥BC ,∴AE∥DF .又AE=DF ,∴四边形AEFD 为平行四边形.∵AB=5,∴AC=10.∴AD=AC -DC=10-2t .若使□AEFD 为菱形,则需AE=AD ,即t=10-2t ,t=.即当t=时,四边形AEFD 为菱形.(4)①∠EDF=90°时,10-2t=2t ,t=.②∠DEF=90°时,10-2t=t ,t=4.③∠EFD=90°时,此种情况不存在.故当t=秒或4秒时,△DEF 为直角三角形.2.(1)证明见解析;(2)菱形ABCD 的面积为试题解析:(1)∵四边形ABCD 是菱形, ∴AB=CD,AB∥CD.;又∵BE=AB, ∴BE=CD.∵BE∥CD, ∴四边形BECD 是平行四边形.(2)∵四边形BECD 是平行四边形, ∴BD∥CE.∴∠ABO=∠E=60°. 又∵四边形ABCD 是菱形, ∴AC 丄BD,OA=OC. ∴∠BOA=90°,∴∠BAO=30°.∵AC= ∴OA=OC= ∴OB=OD=2. ∴BD=4.∴菱形ABCD 的面积=11422AC BD ⨯⨯=⨯=3.(1)证明见解析;(2) 2试题解析:(1)∵△AEF 是由△ABC 绕点A 按逆时针方向旋转得到的,∴AE=AF=AB=AC=2,∠EAF=∠BAC=45°,∴∠BAC+∠3=∠EAF+∠3,即∠BAE=∠CAF,在△ABE 和△ACF 中{AB ACBAE CAF AE AF∠∠=== ∴△ABE ≌△ACF, ∴BE =CF .(2)∵四边形ABDF 是菱形, ∴AB ∥DF , ∴∠ACF =∠BAC =45°.∵AC =AF , ∴∠CAF =90°,即△ACF 是以CF 为斜边的等腰直角三角形, ∴CF =.又∵DF =AB =2, ∴CD =2.【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了菱形的性质.4.【解析】(1)证明:∵四边形ABCD 是正方形,∴DC=DA,∠DCE=∠DAM=90°,在△DCE 和△MDA 中,, ∴△DCE ≌△MDA (SAS ), ∴DE=DM ,∠EDC=∠MDA. 又∵∠ADE+∠EDC=∠ADC=90°, ∴∠ADE+∠MDA=90°, ∴DE⊥DM;(2)解:四边形CENF 是平行四边形,理由如下:∵四边形ABCD 是正方形, ∴AB∥CD,AB=CD .∵BF=AM, ∴MF=AF+AM=AF+BF=AB, 即MF=CD ,又∵F 在AB 上,点M 在BA 的延长线上, ∴MF∥CD, ∴四边形CFMD 是平行四边形, ∴DM=CF,DM∥CF,∵NM⊥DM,NE⊥DE,DE⊥DM, ∴四边形DENM 都是矩形, ∴EN=DM,EN∥DM,∴CF=EN,CF∥EN, ∴四边形CENF 为平行四边形.5.(1)1;(2解:解:(1)∵四边形ABCD为正方形,∴∠OAB=∠OBF=45°,OA=OB∵BO⊥AC,∴∠AOE+∠EOB=90°,又∵四边形A1B1C1O为正方形,∴∠A1OC1=90°,即∠BOF+∠EOB=90°,∴∠AOE=∠BOF,在△AOE和△BOF中,,∴△AOE≌△BOF(ASA),∵S两个正方形重叠部分=S△BOE+S△BOF,又S△AOE=S△BOF∴S两个正方形重叠部分=S ABO=S正方形ABCD=×4=1;(2)如图,∵正方形的面积为4,∴AD=AB=2,∵正方形A1B1C1O旋转到B1在DB的延长线时,∴C 1F=OC1=1,AG=1 ∴C1G=3,根据勾股定理,得AC1=.6.(1)、证明见解析;(2)、t=10;(3)、t=152或12,理由见解析.试题解析:(1)、∵在Rt△ABC中,∠C=90°﹣∠A=30°,∴AB=12AC=12×60=30cm∵CD=4t,AE=2t,又∵在Rt△CDF中,∠C=30°,∴DF=12CD=2t ∴DF=AE (2)、能。
第2章 四边形(提升卷)(解析版)初中数学
《阳光测评》2020-2021学年下学期八年级数学单元提升卷【湘教版】第2章四边形(提升卷)姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分120分,考试时间90分钟,试题共23题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.六边形的对角线共有()A.6条B.8条C.9条D.18条【答案】C【解答】解:六边形的对角线的条数==9.故选:C.【知识点】多边形的对角线2.以线段a=7,b=8,c=9,d=11为边作四边形,可作()A.一个B.2个C.3个D.无数个【答案】D【解答】解:四条线段组成的四边形可有无数种变化.故选:D.【知识点】多边形3.一幅美丽的图案,在某个顶点处由三个边长相等的正多边形密铺而成,其中有两个正八边形,那么另一个是()A.正三角形B.正方形C.正五边形D.正六边形【答案】B【解答】解:正八边形的每个内角为:180°﹣360°÷8=135°,两个正八边形在一个顶点处的内角和为:2×135°=270°,那么另一个多边形的内角度数为:360°﹣270°=90°,.∵正方形的每个内角和为90°,∴另一个是正方形.故选:B.【知识点】平面镶嵌(密铺)4.如图,在平行四边形ABCD中,∠A=100°,∠ABC的平分线BE交AD于点E,连接CE,若BE=CE,则∠ECD的度数为()A.30°B.40°C.60°D.80°【答案】C【解答】解:如图,∵四边形ABCD是平行四边形,∴AD∥BC,∠BCD=∠A.∴∠A+∠ABC=180°.又∠A=100°,∴∠ABC=80°.∵BE是∠ABC的平分线,∴∠EBC=∠ABC=40°.又∵BE=CE,∴∠ECB=∠EBC=40°.∴∠ECD=∠BCD﹣∠ECB=∠A﹣∠ECB=100°﹣40°=60°.故选:C.【知识点】平行四边形的性质5.一个多边形的内角和是1440°,且这个多边形的每一个内角都相等,则这个多边形的一个外角是()A.60°B.45°C.36°D.30°【答案】C【解答】解:∵该多边形的内角和是1440°,∴根据多边形内角和定理:(n﹣2)•180=1440,解得,n=10.∵多边形外角和为360°,∴这个多边形的一个外角度数为:360°÷10=36°.故选:C.【知识点】多边形内角与外角6.如图,△ABC与△A′B′C′关于O成中心对称,下列结论中不成立的是()A.OC=OC′B.OA=OA′C.BC=B′C′D.∠ABC=∠A′C′B′【答案】D【解答】解:对应点的连线被对称中心平分,A,B正确;成中心对称图形的两个图形是全等形,那么对应线段相等,C正确.故选:D.【知识点】中心对称7.如图,要使平行四边形ABCD成为菱形,添加一个条件不正确的是()A.AC⊥BD B.AB=AD C.AC=BD D.AC平分∠BAD【答案】C【解答】解:A、对角线互相垂直的平行四边形是菱形,此选项不符合题意;B、邻边相等的平行四边形是菱形,此选项不符合题意;C、由对角线相等不能证明平行四边形ABCD是菱形,此选项符合题意;D、对角线平分对角的平行四边形是菱形,此选项不符合题意;故选:C.【知识点】菱形的判定、平行四边形的性质8.图中有三个正方形,若阴影部分面积为4个平方单位,则最大正方形的面积是()平方单位.A.48B.12C.24D.36【答案】D【解答】解:如图,由题意△AEF是等腰直角三角形,设AE=EF=EG=CG=x.∵•AE•EF=4,∴x2=8,∵最大正方形的面积=AB2=(AC)2=×(3x)2=×8=36,故选:D.【知识点】正方形的性质9.如图,△ABC中,∠ABC=∠BAC,D是AB的中点,EC∥AB,DE∥BC,AC与DE交于点O.下列结论中,不一定成立的是()A.AC=DE B.AB=AC C.AD=EC D.OA=OE【答案】B【解答】解:∵EC∥AB,DE∥BC,∴四边形DBCE为平行四边形,∴BC=DE,DB=EC,∵∠ABC=∠BAC,∴CB=CA,∴AC=DE,A结论正确,不符合题意;∵∠ABC与∠ACB不一定相等,∴AB与AC不一定相等,B结论错误,符合题意;∵AD=DB,DB=EC,∴AD=EC,C结论正确,不符合题意;∵DE∥BC,∴∠ADO=∠ABC,∴∠ADO=∠A,∴OA=OD,∵DE∥BC,D是AB的中点,∴OD=BC=DE=OE,∴OA=OE,D结论正确,不符合题意;故选:B.【知识点】三角形中位线定理、直角三角形斜边上的中线、等腰三角形的判定与性质10.如图,矩形ABCD中,AB=4,BC=5,E、F分别是边AD、BC上的点,BE∥DF且BE与DF之间的距离为4,则AE的长为()A.3B.C.D.【答案】D【解答】解:过点D作DG⊥BE,垂足为G,如图所示:则GD=4=AB,∠G=90°,∵四边形ABCD是矩形,∴AD=BC=5,∠A=90°=∠G,在△AEB和△GED中,∴△AEB≌△GED(AAS).∴AE=EG.设AE=EG=x,则ED=5﹣x,在Rt△DEG中,由勾股定理得:ED2=EG2+GD2,∴x2+42=(5﹣x)2,解得:x=,即AE=.故选:D.【知识点】矩形的性质、平行线之间的距离二、填空题(本大题共6小题,每小题3分,共18分.不需写出解答过程,请把答案直接填写在横线上)11.图甲所示的四张牌,若只将其中一张牌旋转180°后得到图乙,则旋转的牌是.【答案】方块5【解答】解:方块5旋转180°后得到图乙,故答案为:方块5.【知识点】中心对称图形12.如图,在▱ABCD中,M是BC延长线上的一点,若∠A=135°,则∠MCD=.【答案】45°【解答】解:∵四边形ABCD是平行四边形,∴∠A=∠BCD=135°,∴∠DCM=180°﹣135°=45°,故答案为:45°.【知识点】平行四边形的性质13.从n边形(n>3)的一个顶点出发,可以画﹣条对角线,这些对角线把n边形分成﹣三角形,分得三角形内角的总和与多边形的内角和.【答案】【第1空】n-3【第2空】n-2【第3空】相等【解答】解:从n边形(n>3)的一个顶点出发的对角线有n﹣3条,可以把n边形划分为n﹣2个三角形,由此,可得n边形的内角和与分得三角形内角的总和相等,故答案为:n﹣3,n﹣2,相等.【知识点】多边形的对角线、多边形内角与外角、三角形内角和定理14.用4个全等的正八边形进行拼接,使相等的两个正八边形有一条公共边,围成一圈后中间形成一个正方形,如图1,用n个全等的正六边形按这种方式进行拼接,如图2,若围成一圈后中间形成一个正多边形,则n的值为.【答案】6【解答】解:两个正六边形结合,一个公共点处组成的角度为240°,故如果要密铺,则需要一个内角为120°的正多边形,而正六边形的内角为120°,故答案为:6.【知识点】平面镶嵌(密铺)15.如图,在△ABC中,AC=BC,点D、E分别是边AB、AC的中点.延长DE到点F,使DE=EF,得四边形ADCF.当∠ACB=°时,四边形ADCF是正方形.【答案】90【解答】解:当∠ACB=90°时,四边形ADCF是正方形,理由是:∵AC=BC,∠ACB=90°,∴∠CAB=∠CBA=45°,∵AC=BC,D为AB的中点,∴CD⊥AB,CD平分∠ACB,∴∠ADC=90°,∠ACD=ACB==45°=∠CAB,∴AD=CD,∵E为AC的中点,∴AE=CE,∵DE=EF,∴四边形ADCF是平行四边形,∵∠CDA=90°,AD=CD,∴四边形ADCF是正方形,即当∠ACB=90°时,四边形ADCF是正方形,故答案为:90.【知识点】正方形的判定、三角形中位线定理16.如图,点D,E,F分别是△ABC三边的中点,则下列结论中正确的有.①四边形AEDF一定是平行四边形;②若∠A=90°,则四边形AEDF是矩形;③若AD平分∠A,则四边形AEDF是正方形;④若AD⊥BC,则四边形AEDF是菱形.【答案】①②④【解答】解:①∵点D、E、F分别是△ABC三边的中点,∴DE、DF为△ABC的中位线,∴ED∥AC,且ED=AC=AF;DF∥AB,且DF=AB=AE,∴四边形AEDF一定是平行四边形,故正确;②若∠A=90°,则平行四边形AEDF是矩形,故正确;③如图,连接AD,若AD平分∠BAC,则∠BAD=∠CAD,∵DE∥AC,∴∠CAD=∠ADE,∴∠BAD=∠ADE,∴AE=DE,又∵四边形AEDF是平行四边形,∴四边形AEDF是菱形,∴不能判定四边形AEDF是正方形,故错误;④若AD⊥BC,则AD垂直平分BC,∴AB=AC,∵AB=AC,AD⊥BC,∴AD平分∠BAC,即∠BAD=∠CAD,∵DE∥AC,∴∠CAD=∠ADE,∴∠BAD=∠ADE,∴AE=DE,又∵四边形AEDF是平行四边形,∴四边形AEDF是菱形,故正确.故答案为:①②④.【知识点】矩形的判定与性质、菱形的性质、平行四边形的判定与性质、三角形中位线定理、正方形的判定、菱形的判定三、解答题(本大题共7小题,共72分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.若一个多边形的外角和比它的内角和的少90°,求多边形的边数.【解答】解:设这个多边形是n边形,,解得:n=2,答:这个多边形是12边形.【知识点】多边形内角与外角18.如图,正△ABC与正△A1B1C1关于某点中心对称,已知A,A1,B三点的坐标分别是(0,4),(0,3),(0,2).(1)求对称中心的坐标;(2)写出顶点C,C1的坐标.【解答】解:(1)∵A,A1,B三点的坐标分别是(0,4),(0,3),(0,2),所以对称中心的坐标为(0,2.5);(2)等边三角形的边长为4﹣2=2,所以点C的坐标为(,3),点C1的坐标(,2).【知识点】中心对称、坐标与图形性质19.如图,▱ABCD的对角线AC,BD交于点O,过点D作DE⊥BC于E,延长CB到点F,使BF=CE,连接AF,OF.(1)求证:四边形AFED是矩形.(2)若AD=7,BE=2,∠ABF=45°,试求OF的长.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∵BF=CE,∴FE=BC,∴四边形AFED是平行四边形,∵DE⊥BC,∴∠DEF=90°,∴四边形AFED是矩形.(2)解:由(1)得:∠AFE=90°,FE=AD,∵AD=7,BE=2,∴FE=7,∴FB=FE﹣BE=5,∴CE=BF=5,∴FC=FE+CE=7+5=12,∵∠ABF=45°,∴△ABF是等腰直角三角形,∴AF=FB=5,在Rt△AFC中,由勾股定理得:AC===13,∵四边形ABCD是平行四边形,∴OA=OC,∴OF=AC=.【知识点】平行四边形的性质、矩形的判定与性质20.附加题:如图,在五边形A1A2A3A4A5中,B1是A1对边A3A4的中点,连接A1B1,我们称A1B1是这个五边形的一条中对线.如果五边形的每条中对线都将五边形的面积分成相等的两部分.求证:五边形的每条边都有一条对角线和它平行.【解答】证明:取A1A5中点B3,连接A3B3、A1A3、A1A4、A3A5,∵A3B1=B1A4,∴S△A1A3B1=S△A1B1A4,又∵四边形A1A2A3B1与四边形A1B1A4A5的面积相等,∴S△A1A2A3=S△A1A4A5,同理S△A1A2A3=S△A3A4A5,∴S△A1A4A5=S△A3A4A5,∴△A3A4A5与△A1A4A5边A4A5上的高相等,∴A1A3∥A4A5,同理可证A1A2∥A3A5,A2A3∥A1A4,A3A4∥A2A5,A5A1∥A2A4.【知识点】多边形21.如图,在△ABC中,∠ACB=90°,D,E分别为AB,AC的中点,延长DE到F,使得EF=BC,连接AF,CF.(1)求证:四边形ADCF是菱形;(2)请给△ABC添加一个条件,使得四边形ADCF是正方形,则添加的条件为.【答案】AC=BC【解答】解:(1)证明:∵D,E分别为AB,AC的中点,∴DE是△ABC的中位线,∴DE=BC,DE∥BC,又∵EF=BC,∴E是DF的中点,又∵E为线段AC的中点,∴四边形ADCF是平行四边形.∵∠ACB=90°,DE∥BC,∴∠AED=∠ACB=90°,∴AC⊥FD,∴平行四边形ADCF是菱形.(2)添加的条件为:CA=CB,∵CA=CB,AD=DB,∴CD⊥AB,∴∠CDA=90°,∵ADCF是菱形,∴ADCF是正方形.故答案为:CA=CB.【知识点】三角形中位线定理、菱形的判定与性质、正方形的判定、直角三角形斜边上的中线22.我们给出如下定义:有一组相邻内角相等的凸四边形叫做“等邻角四边形”.请解答下列问题:(1)“梯形、长方形、正方形”中“等邻角四边形”是;(2)如图,在△ABC中,AB=AC,点D在BC上,且CD=CA,点E、F分别为BC、AD的中点,连接EF并延长交AB于点G.求证:四边形AGEC是“等邻角四边形”;(3)已知:在“等邻角四边形”ABCD中,∠A=90°,∠C=60°,AB=6,BC=10,请画出相应图形,并直接写出CD的长.【答案】长方形、正方形【解答】解:(1)“梯形、长方形、正方形”中“等邻角四边形”是长方形、正方形,故答案为:长方形、正方形;(2)连接AE,设∠B的度数为x,∵AB=AC,CD=CA,∴∠C=∠B=x,∠1==90°﹣,∵F是AD的中点,∴AF=EF=AD∴∠2=∠1=90°﹣,∴∠AGE=∠B+∠2=x+90°﹣,=90°+,∠GEC=180°﹣(90°﹣)=90°+,∴∠AGE=∠GEC;∴四边形AGEC是等邻角四边形;(3)①∠D=∠A=90°,如图,作BE⊥DC,∵∠D=∠A=∠BED=90°,∴四边形ADEB是矩形,∴DE=AB=6.在Rt△BEC中,BC=10,∠C=60°,∴CE=5,∴CD=DE+CE=11,②如图,∠A=∠B=90°作CE⊥AD,∵∠A=∠B=∠AEC=90°,∴四边形ABCE是矩形,∴AE=BC=10,CE=AB=6,在Rt△CED中,∠DCE=∠BCE﹣∠BCD=30°,∴CD=4,③∠B=∠C=60°.如图,延长AD,BC交于E在Rt△ABE中,∠B=60°,AB=6,∴BE=2AB=12,∠E=30°∴CE=BE﹣BC=12﹣10=2,∵∠BCD=60°,∴∠CDE=∠CED=30°,∴CD=CE=2,④∠D=∠C=60°,如图,延长DA,CB交于E,∵∠D=∠C=60°,∴∠E=60°,CD=CE,在Rt△ABE中,∠E=60°,AB=6,∴BE=4,∴CD =BC +BE =10+4.【知识点】矩形的性质、梯形、正方形的性质、等腰三角形的性质、直角三角形斜边上的中线23.乐乐和数学小组的同学们研究多边形对角线的相关问题,邀请你也加入其中!请仔细观察下面的图形和表格,并回答下列问题:多边形的顶点数4 5 6 7 8 …… n 从一个顶点出发的对角线的条数1 2 3 4 5 …… ① ﹣多边形对角线的总条数 2 5 9 14 20 …… ②﹣(1)观察探究 请自己观察上面的图形和表格,并用含n 的代数式将上面的表格填写完整,其中① ﹣ ;② ﹣ ;(2)实际应用 数学社团共分为6个小组,每组有3名同学.同学们约定,大年初一时不同组的两位同学之间要打一个电话拜年,请问,按照此约定,数学社团的同学们一共将拨打电话多少个?(3)类比归纳 乐乐认为(1)、(2)之间存在某种联系,你能找到这两个问题之间的联系吗?请用语言描述你的发现.【解答】解:(1)由题可得,当多边形的顶点数为n 时,从一个顶点出发的对角线的条数为n ﹣3,多边形对角线的总条数为n (n ﹣3);故答案为:n﹣3,n(n﹣3);(2)∵3×6=18,∴数学社团的同学们一共将拨打电话为×18×(18﹣3)=135(个);(3)每个同学相当于多边形的一个顶点,则共有n个顶点;每人要给不同组的同学打一个电话,则每人要打(n﹣3)个电话;两人之间不需要重复拨打电话,故拨打电话的总数为n(n﹣3);数学社团有18名同学,当n=18时,×18×(18﹣3)=135.【知识点】多边形的对角线。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
智能教育四边形能力提升卷(四)联系电话:88994533一、选择题(每题3分,共30分) 1、如图1所示,ABCD 中,两条对角线AC 、BD 相交于点O,AF ⊥BD 于F,CE ⊥BD 于E, 则图中全等三角形的对数共有( )A.5对B.6对C.7对D.8对CE BF A DOD 'B 'A 'CBADC 'B 'CN BFADPM2、平行四边形的周长是25cm,对边的距离分别是2cm 、3cm,则这个平行四边形的面积为( ) A.15cm 2 B.25cm 2 C.30cm 2 D.50cm 23、一个菱形的两条对角线长分别是6cm,8cm,则这个菱形的面积S 等于( ) A.48cm 2 B.24cm 2 C.12cm 2 D.18cm 24、如图2所示,把菱形ABCD 沿着对角线AC 的方向移动到菱形A′B′C′D′的位置,它们的重叠部分(图中阴影部分)的面积是菱形ABCD 的面积的12,若AC=2, 则菱形移动的距离AA′是( ) A.12B.22C.1D.2-15、在正方形ABCD 中,E 是AB 的中点,BF ⊥CE 于F,那么ABCD :S BFC S ∆正方形为( ) A.1:3 B.1:5 C.1:4 D.1:86、如图3所示,把矩形纸片ABCD 对折,设折痕为MN,再把B 点叠在折痕线上, 得到Rt △AB′E,沿着EB′线折叠所得到的△EAF 是( )A.等腰三角形B.等边三角形;C.等腰直角三角形D.直角三角形 7、等腰梯形的两条对角线互相垂直,中位线长为8cm,则它的高为( )A.4cmB.82cmC.8cmD.83cm8、若一个梯形的中位线长为15,一条对角线把中位线分成两条线段, 这两条线段的比是3:2,则梯形的上、下底长分别是( )A.3,4.5B.6,9C.12,18D.2,39、如图4所示,在直角梯形ABCD 中,AB ⊥BC,AD=1,BC=3,CD=4,EF 为梯形的中位线,DH 为梯形的高且交EF 于G.下列结论:①G 为EF 的中点;②△EHF 为等边三角形;③四边形EHCF 为菱形;④12BEH CFH S S ∆∆=.其中正确的结论有( )A.1个B.2个C.3个D.4个H GF E D CB A F E DC B A ODCB A10、如图5所示,矩形ABCD 的边长AB=6,BC=8,将矩形沿EF 折叠,使C 点与A 点重合,则折痕EF 的长是( )A.7.5B.6C.10D.5 二、填空题:(每小题3分,共30分) 11、在ABCD 中,若∠A:∠B=2:1,AD=20cm,AB=16cm, 则AD 与BC 两边间的距离是_____, ABCD的面积是_______.12、菱形的两条对角线长的比是1:2,其面积为12cm 2,则较长对角线是_______. 13、已知菱形的锐角是60°,边长是20cm,则较长的对角线是_____cm.14、梯形ABCD 中,AB ∥CD,∠D=80°,∠C=50°,AB=4,CD=10,则AD 的长是______. 15、如图6所示,ABCD 中,AC ⊥AB,∠ABD=30°,AC 与BD 相交于点O, AO= 1, 则BC=_____.16、如图7所示, 已知AD ∥BC, 要使四边形ABCD 为平行四边形, 需要增加条件_______.(只需填一个你认为正确的条件即可)图1图2 图3图4 图5 图617、如图8所示,是一块在电脑屏幕上出现的矩形色块图,由6个颜色不同的正方形组成.设中间最小的一个正方形边长为1,则这个矩形色块图的面积为________.DCBAF E DCBAP O FE DCBA18、已知四边形ABCD 各边中点分别E 、F 、G 、H ,如果四边形ABCD 是________,那么四边形EFGH是正方形.19、如图9所示,直角梯形ABCD 的中位线EF 的长为a,垂直于底的腰AB 的长为b,则图中阴影部分的面积等于________20、如图10所示,在矩形ABCD 中,AB=3,AD=4,P 是AD 上的动点,PE ⊥AC 于E,PF ⊥BD 于F,则PE+PF的值为 三、解答题:(共60分)21、已知:如图11所示,BD 是△ABC 的角平分线,EF 是BD 的垂直平分线,且交AB 于E,交BC 于点F.求证:四边形BFDE 是菱形.FE D CBA22、如图12所示,在四边形ABCD 中,AD=BC,E 、F 、G 分别是AB 、CD 、AC 的中点.求证:△EFG 是等腰三角形.G F ED C BA23、如图13所示,M 为 ABCD 中AB 边上一点,且AM=2MB,CM 交对角线BD 于点E.求证:BE=14BD. M E DCBA24、如图14所示,折叠矩形纸片ABCD,先折出折痕(对角线)BD,再折叠使AD 边与对角线BD 重合,得折痕DG .若AB=2,BC=1,求:AG.G DCBA图7图8图9图10图11图12图13图1425、如图15所示,四边形AEFD 和四边形EBCF 都是平行四边形. (1)求证:∠AEB=∠DFC;(2)当∠EBC=60°,BE=3cm,BC=5cm 时,求EBCF 的面积.FE D CBA26、有一片正方形土地,要在其上修筑两条笔直的道路,使道路把这片土地分成形状相同且面积相等的4部分.若道路的宽度可忽略不计,请设计三种不同的修筑方案.27、如图16所示,有一块面积为1的正方形纸片ABCD,M 、N 分别为AD 、BC 边的中点,将C 点折至MN上,落在P 点的位置,折痕为BQ,连结PQ.(1)求MP ;(2)求证:以PQ 为边长的正方形的面积等于13.QPN M D CBA28、如图17所示,梯形ABCD 中,AD ∥BC,AB=DC.(1)P 、E 、F 分别是BC 、AC 、BD 的中点,求证:AB=PE+PF;(2)如果P 是BC 上的任意一点(中点除外),PE ∥AB,PF ∥DC,那么AB=PE+PF,这个结论还成立吗?如果成立,请证明;若不成立,请说明理由.F EDCBA图15图16图17参考答案一、1、C;2、A;3、B;4、D;5、B;6、B;7、C;8、C;9、D;10、A;二、11、83cm,1603cm2;12、43cm;13、203cm ;14、6;15、7;16、AD=BC(或AB∥CD);17、143;18、正方形;19、12ab;20、125三、21、证明:∵EF是BD的垂直平分线,∴EB=ED,∠EBD=∠EDB,又∵∠EBD= ∠FBD.∴∠FBD=∠EDB,ED∥BF.同理,DF∥BE,∴四边形BFDE是平行四边形.又∵EB=ED, ∴四边形BFDE是菱形.22、证明:∵E,F,G分别是AB,CD,AC的中点. ∴GF= AD,GE= BC.又∵AD=BC,∴GF=GE,即△EFG是等腰三角形.23、证明:∵四边形ABCD为平行四边形,∴AB∥CD,AB=CD,∴△BME∽△DCE.∴BE BMDE DC=, ∴BE BMDE AB=,又∵AM=2MB,∴AB=3MB, ∴13BEDE=,∴14BEDB=,即BE=14BD.24、解:如答图所示,过G作GA′⊥DB,垂足为A′,则△DAG≌△DA′G,DA′=DA.设AG=x,则GA′=x.∵四边形ABCD是矩形,∴DC=AB=2,∠BCD=90°.又∵DA′=DA=BC=1∴BD=5,A′B=5-1,在Rt△BGA′中,GA′=x,A′B=5-1,BG=2-x,∠BA′G=90,∴x2+(5-1)2=(2-x)2, 解得x=512-,即AG=512-.A'CBGAD25、(1)证明:如答图所示,∵四边形AEFD和四边形EBCF都是平行四边形,∴AE=DF,BE=CD,AD//FE//BC,即四边形ABCD也是平行四边形.在△ABE和△DCF中,AB CDAE DFBE CF=⎧⎪=⎨⎪=⎩,∴△ABE≌△DCF.∴∠AEB=∠DFC.FEDCBA(2)解:如答图所示,过E作EG⊥BC于G,在Rt△BEG中,∠EBC=60°,EG=BE·sin60°=3×32=332(cm),∴33155322EBCFS BC EG==⨯=(cm2).CEBFA DG26、解:三种方案分别如答图所示.(1)OBA DC(2)EOBA DFGCH(3)EOBA DFG CH(1)连结AC,BD交于点O.(2)连结正方形两组对边中点EF,GH 交于点O. (3)取AE=BG=CF=DH,连结EF,GH 交于点O.27、(1)解:如答图所示,连结BP,PC,由折法知点P 是点C 关于折痕BQ 的对称点,∴BQ 垂直平分PC,BC=BP.又∵M 、N 分别为AD 、BC 边的中点,且ABCD 是正方形, ∴BP=PC. ∴BC=BP=PC.∴△PBC 是等边三角形.∵PN ⊥BC 于B,BN=NC=12BC=12,∠BPN=12∠BPC=30°, ∴PN=32,MP=MN -PN=1-32.(2)证明:由折法知,PQ=QC,∠PBQ=∠QBC=30°. 在Rt △BCQ 中,QC=BC·tan30°=1×33=33, ∴PQ=33,故以PQ 为边长的正方形的面积为13. QPBAM D N C28、(1)证明:∵P,E,F 分别为中点,∴PE=12AB,PF=12CD. ∴PE+PF=12(AB+CD). 又∵AB=CD,∴PE+PF=AB.(2)成立.∵PE ∥AB,PF ∥CD,∴,PE PC PF PBAB BC CD BC==, ∴PE PF PC PB AB BC ++=, ∴1PE PF AB+=,∴PE+PF=AB.。