信息论试题1
信息论试卷含答案资料讲解
《信息论基础》参考答案一、填空题(共15分,每空1分)1、信源编码的主要目的是提高有效性,信道编码的主要目的是提高可靠性。
2、信源的剩余度主要来自两个方面,一是信源符号间的相关性,二是信源符号的统计不均匀性。
3、三进制信源的最小熵为0,最大熵为32log bit/符号。
4、无失真信源编码的平均码长最小理论极限制为信源熵(或H(S)/logr= H r (S))。
5、当R=C 或(信道剩余度为0)时,信源与信道达到匹配。
6、根据信道特性是否随时间变化,信道可以分为恒参信道和随参信道。
7、根据是否允许失真,信源编码可分为无失真信源编码和限失真信源编码。
8、若连续信源输出信号的平均功率为2σ,则输出信号幅度的概率密度是高斯分布或正态分布或()222x f x σ-=时,信源具有最大熵,其值为值21log 22e πσ。
9、在下面空格中选择填入数学符号“,,,=≥≤〉”或“〈”(1)当X 和Y 相互独立时,H (XY )=H(X)+H(X/Y)=H(Y)+H(X)。
(2)()()1222H X X H X =≥()()12333H X X X H X = (3)假设信道输入用X 表示,信道输出用Y 表示。
在无噪有损信道中,H(X/Y)> 0, H(Y/X)=0,I(X;Y)<H(X)。
二、(6分)若连续信源输出的幅度被限定在【2,6】区域内,当输出信号的概率密度是均匀分布时,计算该信源的相对熵,并说明该信源的绝对熵为多少。
()1,2640,x f x ⎧≤≤⎪=⎨⎪⎩Q 其它()()()62log f x f x dx ∴=-⎰相对熵h x=2bit/自由度该信源的绝对熵为无穷大。
三、(16分)已知信源1234560.20.20.20.20.10.1S s s s s s s P ⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦(1)用霍夫曼编码法编成二进制变长码;(6分) (2)计算平均码长L ;(4分)(3)计算编码信息率R ';(2分)(4)计算编码后信息传输率R ;(2分) (5)计算编码效率η。
信息论考试题(填空简答)
一.填空题(每空1分,共20分)1.香农信息论的三个基本概念分别为_______________ 、_____________ 、 ____________ 。
2•对离散无记忆信源来说,当信源呈_______________ 分布情况下,信源熵取最大值。
3•写出平均互信息的三种表达公式________________ 、_____________ 、 ____________ 。
4.若连续信源输出的平均功率和均值被限定,则其输出信号幅度的概率密度函数为______________ 时,信源具有最大熵值;若连续信源输出非负信号的均值受限,则其输出信号幅度呈____________ 分布时,信源具有最大熵值。
5. ________________________________ 信道容量是为了解决通信的_________________________ 问题,而信息率失真函数是为了解决通信的___________ 问题。
6. ______________________________________________________ 费诺编码比较适合于的信源。
7•无记忆编码信道的每一个二元符号输出可以用多个比特表示,理想情况下为实数,此时的无记忆二进制信道又称为__________________________ 。
&差错控制的4种基本方式是:_________________ 、_____________ 、 ____________ 、______________ 。
9 . (n,k)线性码能纠t个错误,并能发现I个错误(l>t),码的最小距离为:10.循环码码矢的i次循环移位等效于将码多项式乘___________________ 后再模______________ 。
二.简答题(每小题5分,共30分)1 •分别说明平均符号熵与极限熵的物理含义并写出它们的数学表达式。
2•写出二进制均匀信道的数学表达式,并画出信道容量C与信道转移概率 p的曲线图。
最新《信息论》试题及答案
期终练习一、某地区的人群中,10%是胖子,80%不胖不瘦,10%是瘦子。
已知胖子得高血压的概率是15%,不胖不瘦者得高血压的概率是10%,瘦子得高血压的概率是5%,则“该地区的某一位高血压者是胖子”这句话包含了多少信息量。
解:设事件A :某人是胖子; B :某人是不胖不瘦 C :某人是瘦子 D :某人是高血压者根据题意,可知:P (A )=0.1 P (B )=0.8 P (C )=0.1 P (D|A )=0.15 P (D|B )=0.1 P (D|C )=0.05而“该地区的某一位高血压者是胖子” 这一消息表明在D 事件发生的条件下,A 事件的发生,故其概率为P (A|D )根据贝叶斯定律,可得:P (D )=P (A )* P (D|A )+P (B )* P (D|B )+P (C )* P (D|C )=0.1 P (A|D )=P (AD )/P (D )=P (D|A )*P (A )/ P (D )=0.15*0.1/0.1=0.15 故得知“该地区的某一位高血压者是胖子”这一消息获得的多少信息量为: I (A|D ) = - logP (A|D )=log (0.15)≈2.73 (bit ) 二、设有一个马尔可夫信源,它的状态集为{S 1,S 2,S 3},符号集为{a 1,a 2,a 3},以及在某状态下发出符号集的概率是(|)k i p a s (i ,k=1,2,3),如图所示(1)求图中马尔可夫信源的状态极限概率并找出符号的极限概率(2)计算信源处在某一状态下输出符号的条件熵H(X|S=j) (j=s 1,s 2,s 3) (3)求出马尔可夫信源熵H ∞解:(1)该信源达到平稳后,有以下关系成立:13212312123()()31()()()4211()()()42()()()1Q E Q E Q E Q E Q E Q E Q E Q E Q E Q E Q E =⎧⎪⎪=+⎪⎨⎪=+⎪⎪++=⎩可得1232()73()72()7Q E Q E Q E ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩3111322133313()()(|)72()()(|)73()()(|)7i i i i i i i i i p a Q E p a E p a Q E p a E p a Q E p a E =========∑∑∑(2)311113222133331(|)(|)log (|) 1.5bit/(|)(|)log (|)1bit/(|)(|)log (|)0bit/k k k kk k k k k H X S p a S p a S H X S p aS p a S H X S p a S p a S ====-==-==-=∑∑∑(符号)(符号)(符号)(3)31()(|)2/7*3/23/7*12/7*06/7iii H Q E H X E ∞==⨯=++=∑(比特/符号)三、二元对称信道的传递矩阵为0.60.40.40.6⎡⎤⎢⎥⎣⎦(1)若P(0)=3/4,P(1)=1/4,求H (X ),H (X|Y )和I (X ;Y )(2)求该信道的信道容量及其最大信道容量对应的最佳输入分布 解:⑴()H X =21()log ()iii p x p x ==-∑=0.75log 750.25log 25--≈0.811(比特/符号)1111212()()(|)()(|)p y p x p y x p x p y x =+=0.75*0.6+0.25*0.4=0.55 2121222()()(|)()(|)p y p x p y x p x p y x =+=0.75*0.4+0.25*0.6=0.45()0.55log0.550.45log0.45H Y =--=≈0.992(比特/符号)122(|)()(|)()(|)0.75(0.6,0.4)0.25(0.4,0.6)(0.6log 0.60.4log 0.4)0.971/H Y X p x H Y x p x H Y x H H =+=⨯+⨯=-+≈(比特符号)(|)()()()(|)()H X Y H XY H Y H X H Y X H Y =-=+-≈0.811+0.971-0.992=0.79 (比特/符号)I (X ;Y )=H (X )-H (X =0.811-0.79=0.021(比特/符号)(2)此信道为二元对称信道,所以信道容量为C=1-H(p)=1-H(0.6)=1-0.971=0.029(比特/符号) 当输入等概分布时达到信道容量四、求信道22042240p p p p εεεεεε⎡⎤-- ⎢⎥-- ⎢⎥⎣⎦的信道容量,其中1p p =-。
(完整word版)信息论试卷
一、选择题1、下列那位创立了信息论.(C)A.牛顿B.高斯C.香农D.哈夫曼2、下列不属于消息的是。
(B)A.文字B.信号C.图像D.语言3、同时扔两个正常的骰子,即各面呈现的概率都是1/6,若点数之和为2,则得到的自信息量为(B)。
A.-log36 bitB.log36 bitC.-log18 bitD.log18 bit4、下列说法不正确的是(C)A.异字头码肯定是唯一可译的B.逗点码是唯一可译的C.唯一可译码不必满足Kraft 不等式D.无逗点码可以唯一可译5、下述编码中那个可能是任何概率分布对应的Huffman编码(A)A.{0,10,11}B.{00,01,10,110}C.{01,10}D.{001,011,100,101}6、下列物理量不满足非负性的是(D)A.H(X)B.I(X;Y)C.H(Y|X)D.I(x j;y j)7、信源的输出与信道的输入匹配的目的不包括(D)A.符号匹配B.信息匹配C.降低信道剩余度D.功率匹配8、在串联系统中,有效信息量的值(B)A.趋于变大B.趋于变小C.不变D.不确定二、判断题1、信息论研究的主要问题是在通信系统设计中如何实现信息传输、存储和处理的有效性和可靠性。
(T)2、信息是先验概率和后验概率的函数,信息量是事件数目的指数函数。
(F)提示:对数函数3、两个事件之间的互信息量可正,可负,也可能为0。
(T)4、在通讯系统中,无论对接收到的信息怎样处理,信息只会减少,绝不可能增加。
(T )5、Huffman 编码是唯一的.(F)提示:不唯一6、概率大的事件自信息量大。
(F )提示:小7、在事件个数相同条件下,事件等概率出现情况下的熵值最大。
(T)8、平稳的离散无记忆信道不可用一维概率描述。
(F)提示:可以三、填空题1、必然事件的自信息是 0 .2、根据码字所含的码元的个数,编码可分为 等长 编码和 不等长 编码。
3、不等长D 元码,码字最长限定为N,则至多有 D(D N - 1)/(D — 1) 个码字。
《信息论》试题及答案
期终练习一、某地区的人群中,10%是胖子,80%不胖不瘦,10%是瘦子。
已知胖子得高血压的概率是15%,不胖不瘦者得高血压的概率是10%,瘦子得高血压的概率是5%,则“该地区的某一位高血压者是胖子”这句话包含了多少信息量。
解:设事件A :某人是胖子; B :某人是不胖不瘦 C :某人是瘦子 D :某人是高血压者根据题意,可知:P (A )= P (B )= P (C )= P (D|A )= P (D|B )= P (D|C )=而“该地区的某一位高血压者是胖子” 这一消息表明在D 事件发生的条件下,A 事件的发生,故其概率为P (A|D )根据贝叶斯定律,可得:P (D )=P (A )* P (D|A )+P (B )* P (D|B )+P (C )* P (D|C )= P (A|D )=P (AD )/P (D )=P (D|A )*P (A )/ P (D )=*=故得知“该地区的某一位高血压者是胖子”这一消息获得的多少信息量为: I (A|D ) = - logP (A|D )=log ()≈ (bit )二、设有一个马尔可夫信源,它的状态集为{S 1,S 2,S 3},符号集为{a 1,a 2,a 3},以及在某状态下发出符号集的概率是(|)k i p a s (i ,k=1,2,3),如图所示(1)求图中马尔可夫信源的状态极限概率并找出符号的极限概率(2)计算信源处在某一状态下输出符号的条件熵H(X|S=j) (j=s 1,s 2,s 3) (3)求出马尔可夫信源熵H ∞解:(1)该信源达到平稳后,有以下关系成立:13212312123()()31()()()4211()()()42()()()1Q E Q E Q E Q E Q E Q E Q E Q E Q E Q E Q E =⎧⎪⎪=+⎪⎨⎪=+⎪⎪++=⎩可得1232()73()72()7Q E Q E Q E ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩3111322133313()()(|)72()()(|)73()()(|)7i i i i i i i i i p a Q E p a E p a Q E p a E p a Q E p a E =========∑∑∑(2)311113222133331(|)(|)log (|) 1.5bit/(|)(|)log (|)1bit/(|)(|)log (|)0bit/k k k kk k k k k H X S p a S p a S H X S p aS p a S H X S p a S p a S ====-==-==-=∑∑∑(符号)(符号)(符号)(3)31()(|)2/7*3/23/7*12/7*06/7iii H Q E H X E ∞==⨯=++=∑(比特/符号)三、二元对称信道的传递矩阵为0.60.40.40.6⎡⎤⎢⎥⎣⎦(1)若P(0)=3/4,P(1)=1/4,求H (X ),H (X|Y )和I (X ;Y )(2)求该信道的信道容量及其最大信道容量对应的最佳输入分布 解:⑴()H X =21()log ()iii p x p x ==-∑=0.75log 750.25log 25--≈(比特/符号)1111212()()(|)()(|)p y p x p y x p x p y x =+=*+*= 2121222()()(|)()(|)p y p x p y x p x p y x =+=*+*=()0.55log0.550.45log0.45H Y =--=≈(比特/符号)122(|)()(|)()(|)0.75(0.6,0.4)0.25(0.4,0.6)(0.6log 0.60.4log 0.4)0.971/H Y X p x H Y x p x H Y x H H =+=⨯+⨯=-+≈(比特符号)(|)()()()(|)()H X Y H XY H Y H X H Y X H Y =-=+- ≈+ (比特/符号)I(X;Y)=H(X)-H(X|Y)=比特/符号) (2)此信道为二元对称信道,所以信道容量为C=1-H(p)=1-H==(比特/符号) 当输入等概分布时达到信道容量四、求信道22042240 p pp pεεεεεε⎡⎤--⎢⎥--⎢⎥⎣⎦的信道容量,其中1p p=-。
信息论考题及答案
一、(25分)如果X 和Y 相互独立,证明X 和Y 的熵满足可加性,即 H(Y)H(X)Y)H(X,+= 证明:设P(x,y)=P(x)P(y),则有1H(X,Y)()()logP()()11()()log()()log ()()11()log()log ()()()()xyxyxy xy P x P y x P y P x P y P x P y P x P y P x P y P x P y H X H Y ==+=+=+∑∑∑∑∑二、(50分)联合总体X ,Y 具有如下联合分布。
XY分别计算(1) 联合熵H(X,Y)是多少? (2)边缘熵H(X)和H(Y)是多少?(3)对于每一个y 值,条件熵H(X ︱y)是多少? (4)条件熵H(X ︱Y)是多少? (5)X 和Y 之间的互信息是多少? 解答:(1) H(X,Y)=3.375(2) H(X)=2, H(Y)=1.75(3) H(X|y=1)=2,H(X|y=1)=1.875,H(X|y=1)=1.875, H(X|y=4)=0.5(4)H(X|Y)=1.1264(5)I(X;Y)=H(X)-H(X|Y)=2-1.1264=0.8736 三、(25分)考虑一个差错概率为f=0.15的二进制对称信道。
输入总体为x Ω:{0P =0.9,1p =0.1},假设观察到y=1,请计算(1|1)P x y ==? 解:(1|1)P x y ===(1|1)(1)(1|)()xP y x P x P y x P x ===∑==9.015.01.085.01.085.0⨯+⨯⨯=22.0085.0=0.39一、(25分)如果X 和Y 相互独立,证明X 和Y 的熵满足可加性,即 H(Y)H(X)Y)H(X,+=二、(50分)联合总体X ,Y 具有如下联合分布。
XY分别计算(1) 联合熵H(X,Y)是多少? (2)边缘熵H(X)和H(Y)是多少?(3)对于每一个y 值,条件熵H(X ︱y)是多少? (4)条件熵H(X ︱Y)是多少? (5)X 和Y 之间的互信息是多少?三、(25分)考虑一个差错概率为f=0.15的二进制对称信道。
信息论 试卷与答案
答:最大离散熵定理为:离散无记忆信源,等概率分布时熵最大。
最大熵值为
。
3.解释信息传输率、信道容量、最佳输入分布的概念,说明平均互信息与信源的 概率分布、信道的传递概率间分别是什么关系?
答:信息传输率 R 指信道中平均每个符号所能传送的信息量。信道容量是一个信道所能达到 的最大信息传输率。信息传输率达到信道容量时所对应的输入概率分布称为最佳输入概率分 布。
一、概念简答题(每题 5 分,共 40 分)
1.什么是平均自信息量与平均互信息,比较一下这两个概念的异同?
答:平均自信息为 表示信源的平均不确定度,也表示平均每个信源消息所提供的信息量。
平均互信息
表示从 Y 获得的关于每个 X 的平均信息量,也表示发 X 前后 Y 的平均不确定性减少的量,还 表示通信前后整个系统不确定性减少的量。
概念简答题(每题 5 分,共 40 分) 1. 2. 3.答:信息传输率 R 指信道中平均每个符号所能传送的信息量。信道容量是一个信道所能达到的最大信息 传输率。信息传输率达到信道容量时所对应的输入概率分布称为最佳输入概率分布。
平均互信息是信源概率分布的∩型凸函数,是信道传递概率的 U 型凸函数。 4. 5 6 7.答:当 R<C 时,只要码长足够长,一定能找到一种编码方法和译码规则,使译码错误概率无穷小。 8. 二、综合题(每题 10 分,共 60 分)
8.什么是保真度准则?对二元信源 求 a>0 时率失真函数的 和 ?
答:1)保真度准则为:平均失真度不大于允许的失真度。
,其失真矩阵
,
2)因为失真矩阵中每行都有一个 0,所以有 。
二、综合题(每题 10 分,共 60 分) 1.黑白气象传真图的消息只有黑色和白色两种,求:
信息论基础1答案
信息论基础1答案《信息论基础》答案一、填空题(本大题共10小空,每小空1分,共20分)1. 按信源发出符号所对应的随机变量之间的无统计依赖关系,可将离散信源分为有记忆信源和无记忆信源两大类。
2. 一个八进制信源的最大熵为3bit/符号3.有一信源X,其概率分布为:X i X2 X3其信源剩余度为94.64%:若对该信源进行十次扩展,则每十个符号的平均信息量是15bit。
4. 若一连续消息通过放大器,该放大器输出的最大瞬间电压为b,最小瞬时电压为a。
若消息从放大器中输出,则该信源的绝对熵是 _:其能在每个自由度熵的最大熵是log (b-a ) bit/自由度:若放大器的最高频率为F,则单位时间内输出的最大信息量是2Flog (b-a )bit/s.5. 若某一信源X,其平均功率受限为16w,其概率密度函数是高斯分布时,差熵的最大值为2log32 e ;与其熵相等的非高斯分布信源的功率为16w6、信源编码的主要目的是提高有效性,信道编码的主要目的是提高可靠性。
7、无失真信源编码的平均码长最小理论极限制为信源熵(或H(S)/logr= H _「(S))。
&当R=C或(信道剩余度为0)时,信源与信道达到匹配。
9、根据是否允许失真,信源编码可分为无—真信源编码和限失真信源编码。
10、在下面空格中选择填入数学符号“,‘ ‘ ” 或“”(1)当X和Y相互独立时,H ( XY)=H(X)+H(X/Y)。
(2 )假设信道输入用X表示,信道输出用Y 表示。
在无噪有损信道中,H(X/Y)> 0,H(Y/X)=0,l(X;Y)<HX)。
二、掷两粒骰子,各面出现的概率都是1/6 , 计算信息量:1. 当点数和为3时,该消息包含的信息量是多少?2. 当点数和为7是,该消息包含的信息量是多少?3. 两个点数中没有一个是1的自信息是多少?解:1.P (“点数和为3” =P( 1,2)+ P( 1,2)=1/36+1/36=1/18则该消息包含的信息量是:l=-logP (“点数和为3”)=log18=4.17bit2. P (“点数和为7” =P( 1,6)+ P(6,1) + P (5,2)+ P (2,5)+ P (3,4)+ P (4,3) =1/366=1/6则该消息包含的信息量是:l=-logP (“点数和为7”)=log6=2.585bit3. P (“两个点数没有一个是1” =1-P “两个点数中至少有一个是1 ”=1-P(1,1or1,jori,1)=1-(1/36+5/36+5/36)=25/36则该消息包含的信息量是:l=-logP (“两个点数中没有一个是1”) =log25/36=0.53bit三、设X、丫是两个相互统计独立的二元随机变量,其取-1或1的概率相等。
信息论考试卷及答案解析
考试科目名称:信息论一. 单选(每空2分,共20分)1.信道编码的目的是(C ),加密编码的目的是(D )。
A.保证无失真传输B.压缩信源的冗余度,提高通信有效性C.提高信息传输的可靠性D.提高通信系统的安全性2.下列各量不一定为正值的是(D )A.信源熵B.自信息量C.信宿熵D.互信息量3.下列各图所示信道是有噪无损信道的是(B )A.B.C.D.4.下表中符合等长编码的是( A )5.联合熵H(XY)与熵H(X)及条件熵H(X/Y)之间存在关系正确的是(A )A.H(XY)=H(X)+H(Y/X)B.H(XY)=H(X)+H(X/Y)C.H(XY)=H(Y)+H(X)D.若X和Y相互独立,H(Y)=H(YX)6.一个n位的二进制数,该数的每一位可从等概率出现的二进制码元(0,1)中任取一个,这个n位的二进制数的自信息量为(C )A.n2B.1 bitC.n bitnD.27.已知发送26个英文字母和空格,其最大信源熵为H0 = log27 = 4.76比特/符号;在字母发送概率不等时,其信源熵为H1 = 4.03比特/符号;考虑字母之间相关性时,其信源熵为H2 = 3.32比特/符号;以此类推,极限熵H=1.5比特/符号。
问若用一般传送方式,冗余度为( B )∞A.0.32B.0.68C .0.63D .0.378. 某对称离散信道的信道矩阵为 ,信道容量为( B )A .)61,61,31,31(24log H C -= B .)61,61,31,31(4log H C -= C .)61,61,31,31(2log H C -= D .)61,31(2log H C -= 9. 下面不属于最佳变长编码的是( D )A .香农编码和哈夫曼编码B .费诺编码和哈夫曼编码C .费诺编码和香农编码D .算术编码和游程编码二. 综合(共80分)1. (10分)试写出信源编码的分类,并叙述各种分类编码的概念和特性。
信息论与编码复习题1(1)
一、填空题1.设信源X 包含4个不同离散消息,当且仅当X 中各个消息出现的概率为___Pi=1/4___时,信源熵达到最大值,为__2bit_,此时各个消息的自信息量为____2bit_______。
2.如某线性分组码的最小汉明距dmin=4,则该码最多能检测出___3_____个随机错,最多能 纠正___INT(1.5)__个随机错。
3.克劳夫特不等式是唯一可译码___存在___的充要条件。
4.平均互信息量I(X;Y)与信源熵和条件熵之间的关系是_I (X :Y )=H (X )-H (X/Y )5.__信源__编码的目的是提高通信的有效性,_信道_编码的目的是提高通信的可靠性,__加密__编码的目的是保证通信的安全性。
6.信源编码的目的是提高通信的 有效性 ,信道编码的目的是提高通信的 可靠性 ,加密编码的目的是保证通信的 安全性 。
7.设信源X 包含8个不同离散消息,当且仅当X 中各个消息出现的概率为__1/8_____时,信 源熵达到最大值,为___3bit/符号_________。
8.自信息量表征信源中各个符号的不确定度,信源符号的概率越大,其自信息量越__小____。
9.信源的冗余度来自两个方面,一是信源符号之间的_相关性__,二是信源符号分布的 __不均匀性___。
10.最大后验概率译码指的是 译码器要在已知r 的条件下找到可能性最大的发码Ci 作为移码估值 。
11.常用的检纠错方法有__前向纠错__、反馈重发和混合纠错三种。
二、单项选择题1.下面表达式中正确的是( A )。
A.∑=ji j x y p 1)/( B.∑=ii j x y p 1)/(C.∑=jj j i y y x p )(),(ω D.∑=ii j i x q y x p )(),(2.彩色电视显像管的屏幕上有5×105个像元,设每个像元有64种彩色度,每种彩度又有16种不同的亮度层次,如果所有的彩色品种和亮度层次的组合均以等概率出现,并且各个组合之间相互独立。
信息论考试卷与答案..
考试科目名称:信息论一. 单选(每空2分,共20分)1.一个m位的二进制数的自信息量为(A )A.m bitB.1 bitC.m2mD.22.信源编码的目的是(A )A.提高通信有效性B.提高信息传输的可靠性C.提高通信系统的安全性D.压缩信源的冗余度3.下面属于最佳变长编码的是(C )A.算术编码和游程编码B.香农编码和游程编码C.哈夫曼编码和费诺编码D.预测编码和香农编码4.表中符合即时码的是(A )和(D )5.下列各量可能为负值的是(B )A.自信息量B.互信息量C.信息熵D.平均互信息量6.联合熵H(XY)与熵H(X)及条件熵H(X/Y)之间存在关系错误的是(D )A.H(XY)=H(X)+H(Y/X)B.若X和Y相互独立,H(Y)=H(Y/X)C.H(XY)=H(Y)+H(X/Y)D.H(XY)=H(X)+H(X/Y)7.已知发送26个英文字母(包括空格),其最大信源熵(发送概率相等)为H0 = log27 = 4.76比特/符号;在字母发送概率不等时,其信源熵为H1 = 4.03比特/符号;考虑字母之间相关性时,其信源熵为H2 = 3.32=1.4比特/符号。
问若用一般传送比特/符号;以此类推,极限熵H∞方式,冗余度γ为( B )A.0.58B.0.71C.0.65D.0.298. 某信道传递矩阵为,其信道容量为( D )A .)41log 4143log 43()81,81,41,21(4log ++-=H C B .)41log 4343log 41()81,81,41,21(2log +--=H C C .)41log 4143log 43()81,81,41,21(4log +--=H CD .)41log 4143log 43()81,81,41,21(2log +--=H C9. 下列各图所示信道是对称信道的是( C )A .B .C .⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=8181214181814121PD.二. 综合(共80分)1.(10分)试画出通信系统的模型,并叙述各部分的定义和作用。
信息论测试题与答案
信息论测试题与答案⼀、设X、Y是两个相互统计独⽴的⼆元随机变量,其取-1 或1 的概率相等。
定义另⼀个⼆元随机变量Z,取Z=YX(⼀般乘积)。
试计算:1.H(Y)、H(Z);2.H (YZ);3.I (X;Y)、I (Y;Z);⼆、如图所⽰为⼀个三状态马尔科夫信源的转移概率矩阵1. 绘制状态转移图;2. 求该马尔科夫信源的稳态分布;3. 求极限熵;三、在⼲扰离散对称信道上传输符号 1 和0,已知P(0)=1/4,P(1)=3/4, 试求:1. 信道转移概率矩阵P2. 信道疑义度3. 信道容量以及其输⼊概率分布四、某信道的转移矩阵0.6 0.3 0.1 0P ,求信道容量,最佳输⼊概率分布。
0.3 0.6 0 0.1五、求下列各离散信道的容量(其条件概率P(Y/X) 如下:)六、求以下各信道矩阵代表的信道的容量答案⼀、设X、Y是两个相互统计独⽴的⼆元随机变量,其取-1或1的概率相等。
定义另⼀个⼆元随机变量Z,取Z=YX(⼀般乘积)。
试计算:1.H(Y)、H(Z);2.H(XY)、H(YZ);3.I(X;Y)、I(Y;Z);解:1.21111()=-()()=1bit/符号H Y P y logP y log logi i2222i1Z=YX ⽽且X 和Y 相互独⽴P(Z1=1)=P(Y=1)P(X1)P(Y1)P(X1)= 11111 22222P(Z2=-1)=P(Y=1)P(X1)P(Y1)P(X1)= 11111 222222故H(Z)= P(z)log P(z)=1bit/ 符号iii12.从上式可以看出:Y 与X 的联合概率分布为:P(Y,Z) Y=1 Y=-1Z=1 0.25 0.25Z=-1 0.25 0.25H(YZ)=H(X)+H(Y)=1+1=2bit/ 符号2. X 与Y 相互独⽴,故H(X|Y)=H(X)=1bit/ 符号I (X;Y)=H(X)-H(X|Y)=1-1=0bit/ 符号I(Y;Z)=H(Y)-H(Y|Z)=H(Y)-[H(YZ)-H(Z)]=0 bit/ 符号⼆、如图所⽰为⼀个三状态马尔科夫信源的转移概率矩阵3. 绘制状态转移图; 2. 求该马尔科夫信源的稳态分布; 3. 求极限熵;解:1. 状态转移图如右图32. 由公式p(E j ) P(E i ) P(E j | E i ) ,可得其三个状态的稳态概率为:i 11 1 1P(E ) P(E ) P(E ) P(E )1 12 32 2 41 1P(E ) P(E ) P(E )2 2 32 21 1P(E ) P(E ) P(E )3 1 32 4P(E ) P(E ) P(E ) 11 2 3 P(E )1P(E )2P(E )33727273. 其极限熵:33 1 1 2 1 1 2 1 1 1H = - |E = 0 + 0 +P(E)H(X )H(,,)H(,,)H(,,)i i7 2 2 7 2 2 7 4 2 4 i 13 2 2 8= 1+ 1+ 1.5= bit/7 7 7 7符号三、在⼲扰离散对称信道上传输符号 1 和0,已知P(0)=1/4,P(1)=3/4, 试求:2. 信道转移概率矩阵P 2. 信道疑义度3. 信道容量以及其输⼊概率分布4.4.0.7110.9解:1. 该转移概率矩阵为P= 0.90.1 0.10.92. 根据P(XY)=P(Y|X)P(X),可得联合概率P(XY)Y YX=0 9/40 1/40X=1 3/40 27/40P(Y=i) 12/40 28/40由P(X|Y)=P(X|Y)/P(Y) 可得P(X|Y) Y=0 Y=1X=0 3/4 1/28X=1 1/4 27/28H(X|Y)=- i j (i j)符号P(x y ) log P x |y =0.09+0.12+0.15+0.035=0.4bit/ i ,j 3. 该信道是对称信道,其容量为:C=logs-H=log2-H (0.9,0.1 )=1-0.469=0.531bit/ 符号这时,输⼊符号服从等概率分布,即XP(X ) 0 11 12 2四、某信道的转移矩阵3.0.3 0.1 0P ,求信道容量,最佳输⼊概率分布。
信息论基础理论与应用测验题及答案
信息论基础理论与应用测验题及答案————————————————————————————————作者:————————————————————————————————日期:信息论基础理论与应用考试题一﹑填空题(每题2分,共20分)1.信息论研究的目的就是要找到信息传输过程的共同规律,以提高信息传输的 (可靠性)﹑(有效性)﹑保密性和认证性,使信息传输系统达到最优化。
(考点:信息论的研究目的)2.电视屏上约有500×600=3×510个格点,按每点有10个不同的灰度等级考虑,则可组成531010⨯个不同的画面。
按等概计算,平均每个画面可提供的信息量约为(610bit /画面)。
(考点:信息量的概念及计算)3.按噪声对信号的作用功能来分类信道可分为 (加性信道)和 (乘性信道)。
(考点:信道按噪声统计特性的分类)4.英文电报有32个符号(26个英文字母加上6个字符),即q=32。
若r=2,N=1,即对信源S 的逐个符号进行二元编码,则每个英文电报符号至少要用 (5)位二元符号编码才行。
(考点:等长码编码位数的计算)5.如果采用这样一种译码函数,它对于每一个输出符号均译成具有最大后验概率的那个输入符号,则信道的错误概率最小,这种译码规则称为(最大后验概率准则)或(最小错误概率准则)。
(考点:错误概率和译码准则的概念)6.按码的结构中对信息序列处理方式不同,可将纠错码分为(分组码)和(卷积码)。
(考点:纠错码的分类)7.码C={(0,0,0,0),(0,1,0,1),(0,1,1,0),(0,0,1,1)}是((4,2))线性分组码。
(考点:线性分组码的基本概念)8.定义自信息的数学期望为信源的平均自信息量,即(11()log ()log ()()qi i i i H X E P a P a P a =⎡⎤==-⎢⎥⎣⎦∑)。
(考点:平均信息量的定义)9.对于一个(n,k)分组码,其最小距离为d,那么,若能纠正t个随机错误,同时能检测e(e≥t)个随机错误,则要求(d≥t+e+1)。
(完整word版)信息论习题集
信息论习题集第一章、判断题1、信息论主要研究目的是找到信息传输过程的共同规律,提高信息传输的可靠性、有效性、保密性和认证性,以达到信息传输系统的最优化。
(√)2、同一信息,可以采用不同的信号形式来载荷;同一信号形式可以表达不同形式的信息。
(√)3、通信中的可靠性是指使信源发出的消息准确不失真地在信道中传输;(√)4、有效性是指用尽量短的时间和尽量少的设备来传送一定量的信息。
(√)5、保密性是指隐蔽和保护通信系统中传送的消息,使它只能被授权接收者获取,而不能被未授权者接收和理解。
(√)6、认证性是指接收者能正确判断所接收的消息的正确性,验证消息的完整性,而不是伪造的和被窜改的。
(√)7、在香农信息的定义中,信息的大小与事件发生的概率成正比,概率越大事件所包含的信息量越大。
(×)第二章一、判断题1、通信中获得的信息量等于通信过程中不确定性的消除或者减少量。
(√)2、离散信道的信道容量与信源的概率分布有关,与信道的统计特性也有关。
(×)3、连续信道的信道容量与信道带宽成正比,带宽越宽,信道容量越大。
(×)4、信源熵是信号符号集合中,所有符号的自信息的算术平均值。
(×)5、信源熵具有极值性,是信源概率分布P的下凸函数,当信源概率分布为等概率分布时取得最大值。
(×)6、离散无记忆信源的N次扩展信源,其熵值为扩展前信源熵值的N倍。
(√)7、互信息的统计平均为平均互信息量,都具有非负性。
(×)8、信源剩余度越大,通信效率越高,抗干扰能力越强。
(×)9、信道剩余度越大,信道利用率越低,信道的信息传输速率越低。
(×)10、信道输入与输出之间的平均互信息是输入概率分布的下凸函数。
(×)11、在信息处理过程中,熵是不会增加的。
(√)12、熵函数是严格上凸的。
(√)13、信道疑义度永远是非负的。
(√)14、对于离散平稳信源,其极限熵等于最小平均符号熵。
信息论习题一二答案参考
信息论习题一二答案参考信息论习题一二答案参考信息论习题一、二答案参考1.一个随即变量x的概率密度函数P(x)= x /2,0≤x≤2V,则信源的相对熵为()。
A. 1.44bit/符号B. 1bit/符号正确C. 0.5bit/符号D. 0.72bit/符号2.下列不属于消息的是()A. 文字B. 图像C. 语言D. 信号3.下列哪一项不属于最简单的通信系统模型()A. 信宿B. 加密C. 信道D. 信源4.下列离散信源,熵最大的是()。
A. H(1/2,1/2)B. H(1/2,1/4,1/8,1/8)C. H(1/3,1/3,1/3)D. H(0.9,0.1)5.下面哪一项不属于熵的性质()A. 对称性B. 确定性C. 完备性D. 非负性6.同时扔两个正常的骰子,即各面呈现的概率都是1/6,若点数之和为12,则得到的自信息为()。
A. -log36bitB. log36bitC. -log (11/36)bitD. log (11/36)bit7.对连续信源的熵的描述不正确的是()。
A. 连续信源的熵和离散集的熵形式一致,只是用概率密度代替概率,用积分代替求和B. 连续信源的熵由相对熵和无穷大项构成C. 连续信源的熵值无限大D. 连续信源的熵可以是任意整数9.相对熵()。
A. 总非负B. 总为正C. 总为负D. 都不对9.英文字母有26个,加上空格共27个符号,由此H0(X)=4.76bit/符号,根据有关研究H∞(X)=1.4 bit/符号,则冗余度为()。
A. 0.71B. 0.51C. 0.11D. 0.3110.设信源S,若P(s1)=1/2、P(s2)=1/4、P(s3)=1/4,则其信源剩余度为()。
A. 3/4B. 0C. 1/4D. 1/211.设有一个无记忆信源发出符号A和B,已知p(A)=1/4,p (B)=3/4,发出二重符号序列消息的信源,则二次扩展信源熵为()。
A. 0.81bit/二重符号B. 1.86 bit/二重符号C. 0.93 bit/二重符号D. 1.62bit/二重符号12.H(X/X)=0。
信息论期末考试试题1
信息论期末考试试题1安徽⼤学2011—2012学年第1学期《信息论》考试试卷(AB 合卷)院/系年级专业姓名学号⼀、填空题1、接收端收到y 后,获得关于发送的符号是x 的信息量是。
2、⾹农信息的定义。
3、在已知事件z Z ∈的条件下,接收到y 后获得关于事件x 的条件互信息(;|)I x y z 的表达式为。
4、通信系统模型主要分成五个部分分别为:。
5、研究信息传输系统的⽬的就是要找到信息传输过程的共同规律,以提⾼信息传输的可靠性、有效性、和,使信息传输系统达到最优化。
6、某信源S 共有32个信源符号,其实际熵H ∞=1.4⽐特/符号,则该信源剩余度为。
7、信道固定的情况下,平均互信息(;)I X Y 是输⼊信源概率分布()Px 的型凸函数。
信源固定的情况下,平均互信息(;)I X Y 是信道传递概率(|)P y x 的型凸函数。
8、当信源与信道连接时,若信息传输率达到了信道容量,则称此信源与信道达到匹配。
信道剩余度定义为。
9、已知信源X 的熵H (X )=0.92⽐特/符号,则该信源的五次⽆记忆扩展信源X 5的信息熵5()H X = 。
10、将∞H ,6H ,0H ,4H ,1H 从⼤到⼩排列为。
11、根据⾹农第⼀定理,对于离散⽆记忆信源S ,⽤含r 个字母的码符号集对N 长信源符号序列进⾏变长编码,总能找到⼀种⽆失真的唯⼀可译码,使每个信源符号所需平均码长满⾜:。
12、多项式剩余类环[]())q F x f x 是域的充要条件为。
13、多项式剩余类环[](1)n q F x x -的任⼀理想的⽣成元()g x 与1n x -关系为。
14、有限域122F 的全部⼦域为。
15、国际标准书号(ISBN )由⼗位数字12345678910a a a a a a a a a a 组成(诸i a ∈11F ,满⾜:1010(mod11)ii ia=≡∑),其中前九位均为0-9,末位0-10,当末位为10时⽤X 表⽰。
(整理)信息论期末考试试题1.doc
安徽大学2011—2012学年第1学期 《信息论》考试试卷(AB 合卷)院/系 年级 专业 姓名 学号一、填空题1、接收端收到y 后,获得关于发送的符号是x 的信息量是 。
2、香农信息的定义 。
3、在已知事件z Z ∈的条件下,接收到y 后获得关于事件x 的条件互信息(;|)I x y z 的表达式为 。
4、通信系统模型主要分成五个部分分别为: 。
5、研究信息传输系统的目的就是要找到信息传输过程的共同规律,以提高信息传输的可靠性、有效性、 和 ,使信息传输系统达到最优化。
6、某信源S 共有32个信源符号,其实际熵H ∞=1.4比特/符号,则该信源剩余度为 。
7、信道固定的情况下,平均互信息(;)I X Y 是输入信源概率分布()Px 的 型凸函数。
信源固定的情况下,平均互信息(;)I X Y 是信道传递概率(|)P y x 的 型凸函数。
8、当信源与信道连接时,若信息传输率达到了信道容量,则称此信源与信道达到匹配。
信道剩余度定义为 。
9、已知信源X 的熵H (X )=0.92比特/符号,则该信源的五次无记忆扩展信源X 5的信息熵5()H X = 。
10、将∞H ,6H ,0H ,4H ,1H 从大到小排列为 。
11、根据香农第一定理,对于离散无记忆信源S ,用含r 个字母的码符号集对N 长信源符号序列进行变长编码,总能找到一种无失真的唯一可译码,使每个信源符号所需平均码长满足: 。
12、多项式剩余类环[]())q F x f x 是域的充要条件为 。
13、多项式剩余类环[](1)n q F x x -的任一理想的生成元()g x 与1n x -关系为 。
14、有限域122F 的全部子域为 。
15、国际标准书号(ISBN )由十位数字12345678910a a a a a a a a a a 组成(诸i a ∈11F ,满足:1010(mod11)ii ia=≡∑),其中前九位均为0-9,末位0-10,当末位为10时用X 表示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《信息论基础》答案
一、填空题(本大题共10小空,每小空1分,共20分)
1.按信源发出符号所对应的随机变量之间的无统计依赖关系,可将离散信源分为有记忆信源和无记忆信源两大类。
2.一个八进制信源的最大熵为3bit/符号
3.有一信源X,其概率分布为
123
x x x
X
111
P
244
⎛⎫
⎡⎤ ⎪
=
⎢⎥ ⎪
⎣⎦
⎝⎭
,其信源剩余度为94.64%;若
对该信源进行十次扩展,则每十个符号的平均信息量是15bit。
4.若一连续消息通过放大器,该放大器输出的最大瞬间电压为b,最小瞬时电压为a。
若消息从放大器中输出,则该信源的绝对熵是∞;其能在每个自由度熵的最大熵是log(b-a)bit/自由度;若放大器的最高频率为F,则单位时间内输出的最大信息量是2Flog (b-a)bit/s.
5.若某一信源X,其平均功率受限为16w,其概率密度函数是高斯分布时,差熵
的最大值为1
log32e
2
π;与其熵相等的非高斯分布信源的功率为16w
≥
6、信源编码的主要目的是提高有效性,信道编码的主要目的是提高可靠性。
7、无失真信源编码的平均码长最小理论极限制为信源熵(或H(S)/logr= H r(S))。
8、当R=C或(信道剩余度为0)时,信源与信道达到匹配。
9、根据是否允许失真,信源编码可分为无失真信源编码和限失真信源编码。
10、在下面空格中选择填入数学符号“,,,
=≥≤〉”或“〈”
(1)当X和Y相互独立时,H(XY)=H(X)+H(X/Y)。
(2)假设信道输入用X表示,信道输出用Y表示。
在无噪有损信道中,H(X/Y)> 0, H(Y/X)=0,I(X;Y)<H(X)。
二、掷两粒骰子,各面出现的概率都是1/6,计算信息量:
1.当点数和为3时,该消息包含的信息量是多少?
2.当点数和为7是,该消息包含的信息量是多少?
3.两个点数中没有一个是1的自信息是多少?
解:1.P (“点数和为3”)=P (1,2)+ P (1,2)=1/36+1/36=1/18 则该消息包含的信息量是:I=-logP (“点数和为3”)=log18=4.17bit 2.P (“点数和为7”)=P (1,6)+ P (6,1)+ P (5,2)+ P (2,5)+ P (3,4)+ P (4,3)=1/36 ⨯6=1/6
则该消息包含的信息量是:I=-logP (“点数和为7”)=log6=2.585bit 3.P (“两个点数没有一个是1”)=1-P (“两个点数中至少有一个是1”) =1-P(1,1or1,jori,1)=1-(1/36+5/36+5/36)=25/36
则该消息包含的信息量是:I=-logP (“两个点数中没有一个是1”)=log25/36=0.53bit
三、设X 、Y 是两个相互统计独立的二元随机变量,其取-1或1的概率相等。
定义另一个二元随机变量Z ,取Z=YX (一般乘积)。
试计算:
1.H (Y )、H (Z );
2.H (XY )、H (YZ );
3.I (X;Y )、I (Y;Z ); 解:1. 2
i 1
1
111H Y P y logP y log log 2222i i =⎡⎤=-+⎢⎥⎣⎦∑()=-
()()=1bit/符号 Z=YX 而且X 和Y 相互独立
∴ 1(1)(1)(1)P
P X P Y P X ⋅=+=-⋅=-(Z =1)=P(Y=1)= 11122222⨯+⨯= 2(1)(1)(1)P P X P Y P X ⋅=-+=-⋅=(Z =-1)=P(Y=1)= 111
22222
⨯+⨯=
故H(Z)= i
2
i
1
(z )log (z )i P P =-
∑=1bit/符号
2.从上式可以看出:Y 与X 的联合概率分布为:
H(YZ)=H(X)+H(Y)=1+1=2bit/符号
3. X 与Y 相互独立,故H(X|Y)=H(X)=1bit/符号 ∴I (X;Y )=H(X)-H(X|Y)=1-1=0bit/符号
I(Y;Z)=H(Y)-H(Y|Z)=H(Y)-[H(YZ)-H(Z)]=0 bit/符号
四、如图所示为一个三状态马尔科夫信源的转移概率矩阵
P=11022110221114
2
4⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭
1. 绘制状态转移图;
2. 求该马尔科夫信源的稳态分布;
3. 求极限熵;
解:1.状态转移图如右图 2.由公式3
1
()()(|)j i
j
i i p E P E P E
E ==
∑,可得其三个状态的稳态概率为:
1123223313123111()()()()22411()()()
2211
()()()
24()()()1P E P E P E P E P E P E P E P E P E P E P E P E P E ⎧
=++⎪⎪⎪=+⎪⎨
⎪=+⎪⎪⎪++=⎩
1233()7
2()72()7P E P E P E ⎧=⎪⎪⎪⇒=⎨⎪⎪=⎪⎩
3.其极限熵:
3
i i 1
3112112111
H = -|E =0+0+72272274243228
=1+1+ 1.5=bit/7777
i P H H H H ∞=⨯⨯⨯⨯⨯⨯∑(E )(X )(,,)(,,)(,,)
符号
五、在干扰离散对称信道上传输符号1和0,已知P (0)=1/4,P(1)=3/4,试求:
1. 该信道的转移概率矩阵P
2. 信道疑义度H (X|Y )
3. 该信道的信道容量以及其输入概率分布
解:1.该转移概率矩阵为 P=0.90.10.10.9⎡⎤
⎢
⎥⎣⎦
2.根据P (XY )=P (Y|X )⋅P (X ),可得联合概率
由P (X|Y )=P(X|Y)/P(Y)可得
H(X|Y)=-
i j
i
j
i j
(x y )log x |y =0.09+0.12+0.15+0.035=0.4bit/P P
∑,()符号 3.该信道是对称信道,其容量为:
C=logs-H=log2-H (0.9,0.1)=1-0.469=0.531bit/符号
这时,输入符号服从等概率分布,即0111()22X P X ⎡⎤
⎡⎤⎢
⎥=⎢⎥⎢⎥⎣⎦⎣⎦
六、某信道的转移矩阵⎥⎦
⎤
⎢
⎣⎡=1.006.03.001.03.06.0P
试求:该信道的信道容量及其最佳输入概率分布。
解:该信道是准对称信道,分解为两个互不相交的子信道矩阵 0.60.30.30.6⎡⎤
⎢
⎥⎣⎦
0.1000.1⎡⎤
⎢⎥⎣⎦ 这里110.90.9N M == 22
0.10.1N M == ∴C=logr-H(P 的行矢量)
-
2
k 1
log 1(0.6.3.1)0.9log 0.9-0.1log 0.1K
K N
M H ==--⨯⨯∑,0,0
=0.174bit/符号
这时,输入端符号服从等概率分布,即()X P X ⎡⎤⎢⎥⎣⎦
=011122⎡⎤
⎢⎥
⎢⎥⎣⎦
七、信源符号X 有六种字母,概率为0.32,0.22,0.18,0.16,0.08,0.04。
用赫夫曼编码法编成二进制变长码,写出编码过程并计算其平均码长、编码后的信息传输率和编码效率。
解:
该信源在编码之前的信源熵为:
6
i i 1()(x )log x i H S P P ==-∑()
=0.526+0.481+0.445+0.423+0.292+0.186 =2.353bit/符号
编码后的平均码长:
(0.320.220.18)20.163(0.080.04)4L =++⨯+⨯++⨯=2.4码元/信源符号
编码后的信息传输率为:
() 2.353
0.982.4H S R L
=
==bit/码元
编码效率为:max ()
0.98log R H S R L r
η===
八、设在平均功率受限的高斯可加波形信道中,信道带宽为3KHz ,又设信噪比为10
1.试计算该信道传达的最大信息率(单位时间);
2.若功率信噪比降为5dB ,要达到相同的最大信息传输率,信道带宽是多少? 解:1. 10d SNR B = 10SNR ∴=
故:该信道传送的最大信息速率为:
3t 4
=log +log =bit/s
C W ⨯⨯⨯(1SNR )=310(11)1.0410
2.若SNR=5dB ,则
,在相同t C 情况下 1.044
10⨯=Wlog (1+SNR )=Wlog4.162 ⇒W=5.04⨯3
10Hz。