〖中考零距离-新课标〗2018年江苏省无锡市中考数学第一次模拟试题及答案解析一
2017-2018学年最新江苏省无锡市中考数学第一次模拟试题及答案解析
2018年江苏省无锡市中考数学一模试卷一、选择题(本大题共10小题,每题3分,共计30分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请用2B铅笔把答题卷上相应的答案涂黑.)1.﹣3的绝对值是()A.3 B.﹣3 C.D.2.计算(﹣xy3)2的结果是()A.x2y6 B.﹣x2y6C.x2y9 D.﹣x2y93.如图,BC⊥AE于点C,CD∥AB,∠B=40°,则∠ECD的度数是()A.70°B.60°C.50°D.40°4.有6个相同的立方体搭成的几何体如图所示,则它的主视图是()A.B.C.D.5.下列调查中,适宜采用普查方式的是()A.了解一批圆珠笔的寿命B.了解全国九年级学生身高的现状C.考察人们保护海洋的意识D.检查一枚用于发射卫星的运载火箭的各零部件6.若是关于x、y的二元一次方程ax﹣3y=1的解,则a的值为()A.﹣5 B.﹣1 C.2 D.77.直线y=2x+2沿y轴向下平移6个单位后与y轴的交点坐标是()A.(0,2)B.(0,8)C.(0,4)D.(0,﹣4)8.如图,已知菱形ABCD的对角线AC、BD的长分别为6cm、8cm,AE⊥BC于点E,则AE的长是()A.B.C.D.9.如图,在矩形ABCD中,AB=4,AD=5,AD,AB,BC分别与⊙O相切于E,F,G 三点,过点D作⊙O的切线BC于点M,切点为N,则DM的长为()A.B.C.D.210.如图,在Rt△ABC中,∠ACB=90°,点D是AB边的中点,过D作DE⊥BC于点E,点P是边BC上的一个动点,AP与CD相交于点Q.当AP+PD的值最小时,AQ与PQ之间的数量关系是()A.AQ=PQ B.AQ=3PQ C.AQ=PQ D.AQ=4PQ二、填空题(本大题共8小题,每题2分,共计16分.请把答案直接填写在答题卷相应位置上.)11.函数y=中,自变量x的取值范围是.12.分解因式:ab3﹣4ab= .13.2016年我国大学毕业生将达到7650000人,该数据用科学记数法可表示为.14.一个扇形的圆心角为60°半径为6cm,则这个扇形的弧长为cm.(结果保留π)15.已知反比例函数的图象经过点(m,4)和点(8,﹣2),则m的值为.16.如图,△ABC中,D为BC上一点,∠BAD=∠C,AB=6,BD=4,则CD的长为.17.如图,C、D是线段AB上两点,且AC=BD=AB=1,点P是线段CD上一个动点,在AB同侧分别作等边△PAE和等边△PBF,M为线段EF的中点.在点P从点C移动到点D时,点M运动的路径长度为.18.如图坐标系中,O(0,0),A(6,6),B(12,0),将△OAB沿直线线CD折叠,使点A恰好落在线段OB上的点E处,若OE=,则CE:DE的值是.三、解答题(本大题共10小题,共计84分.解答需写出必要的文字说明或演算步骤.)19.(1)计算:﹣|﹣2|+2×(﹣3);(2)化简:(1+)÷.20.(1)解方程:1+=;(2)解不等式组:.21.如图,在▱ABCD中,点E,F在AC上,且∠ABE=∠CDF,求证:BE=DF.22.一个不透明的口袋中装有2个红球(记为红球1、红球2),1个白球、1个黑球,这些球除颜色外都相同,将球搅匀.(1)从中任意摸出1个球,恰好摸到红球的概率是(2)先从中任意摸出一个球,再从余下的3个球中任意摸出1个球,请用列举法(画树状图或列表),求两次都摸到红球的概率.23.图1、图2是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1,每个小正方形的顶点叫做格点.(1)在图1中画出等腰直角三角形MON,使点N在格点上,且∠MON=90°;(2)在图2中以格点为顶点画一个正方形ABCD,使正方形ABCD面积等于(1)中等腰直角三角形MON面积的4倍,并将正方形ABCD分割成以格点为顶点的四个全等的直角三角形和一个正方形,且正方形ABCD面积没有剩余(画出一种即可).24.某厂生产A,B两种产品,其单价随市场变化而做相应调整.营销人员根据前三次单价变化的情况,绘制了如表统计表及不完整的折线图.A,B产品单价变化统计表第一次第二次第三次A产品单价(元/件) 6 5.2 6.5B产品单价(元/件) 3.5 4 3并求得了A产品三次单价的平均数和方差:2=[(6﹣5.9)2+(5.2﹣5.9)2+(6.5﹣5.9)2]==5.9,sA(1)补全如图中B产品单价变化的折线图.B产品第三次的单价比上一次的单价降低了%(2)求B产品三次单价的方差,并比较哪种产品的单价波动小;(3)该厂决定第四次调价,A产品的单价仍为6.5元/件,B产品的单价比3元/件上调m%(m>0),使得A产品这四次单价的中位数是B产品四次单价中位数的2倍少1,求m的值.25.某工厂接受了20天内生产1200台GH型电子产品的总任务.已知每台GH型产品由4个G型装置和3个H型装置配套组成.工厂现有80名工人,每个工人每天能加工6个G型装置或3个H型装置.工厂将所有工人分成两组同时开始加工,每组分别加工一种装置,并要求每天加工的G、H型装置数量正好全部配套组成GH型产品.(1)按照这样的生产方式,工厂每天能配套组成多少套GH型电子产品?(2)为了在规定期限内完成总任务,工厂决定补充一些新工人,这些新工人只能独立进行G型装置的加工,且每人每天只能加工4个G型装置.请问至少需要补充多少名新工人?26.已知边长为3的正方形ABCD中,点E在射线BC上,且BE=2CE,连接AE交射处.线DC于点F,若△ABE沿直线AE翻折,点B落在点B1(1)如图1,若点E在线段BC上,求CF的长;(2)求sin∠DAB的值;1(3)如果题设中“BE=2CE”改为“=x”,其它条件都不变,试写出△ABE翻折后与正方形ABCD公共部分的面积y与x的关系式及自变量x的取值范围(只要写出结论,不需写出解题过程).27.如图,抛物线y=﹣x2+bx+c与x轴交于A、B两点,且B点的坐标为(3,0),经过A点的直线交抛物线于点D(2,3).(1)求抛物线的解析式和直线AD的解析式;(2)过x轴上的点(a,0)作直线EF∥AD,交抛物线于点F,是否存在实数a,使得以A、D、E、F为顶点的四边形是平行四边形?如果存在,求出满足条件的a;如果不存在,请说明理由.28.如图,Rt△ABC中,M为斜边AB上一点,且MB=MC=AC=8cm,平行于BC的直线l从BC的位置出发以每秒1cm的速度向上平移,运动到经过点M时停止.直线l分别交线段MB、MC、AC于点D、E、P,以DE为边向下作等边△DEF,设△DEF与△MBC 重叠部分的面积为S(cm2),直线l的运动时间为t(秒).(1)求边BC的长度;(2)求S与t的函数关系式;(3)在整个运动过程中,是否存在这样的时刻t,使得以P、C、F为顶点的三角形为等腰三角形?若存在,请求出t的值;若不存在,请说明理由.(4)在整个运动过程中,是否存在这样的时刻t,使得以点D为圆心、BD为半径的圆与直线EF相切?若存在,请求出t的值;若不存在,请说明理由.参考答案与试题解析一、选择题(本大题共10小题,每题3分,共计30分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请用2B铅笔把答题卷上相应的答案涂黑.)1.﹣3的绝对值是()A.3 B.﹣3 C.D.【考点】绝对值.【分析】根据一个负数的绝对值等于它的相反数得出.【解答】解:|﹣3|=﹣(﹣3)=3.故选:A.2.计算(﹣xy3)2的结果是()A.x2y6 B.﹣x2y6C.x2y9 D.﹣x2y9【考点】幂的乘方与积的乘方.【分析】根据幂的乘方和积的乘方的运算方法:①(a m)n=a mn(m,n是正整数);②(ab)n=a n b n(n是正整数);求出计算(﹣xy3)2的结果是多少即可.【解答】解:(﹣xy3)2=(﹣x)2•(y3)2=x2y6,即计算(﹣xy3)2的结果是x2y6.故选:A.3.如图,BC⊥AE于点C,CD∥AB,∠B=40°,则∠ECD的度数是()A.70°B.60°C.50°D.40°【考点】平行线的性质;垂线.【分析】由BC与AE垂直,得到三角形ABC为直角三角形,利用直角三角形两锐角互余,求出∠A的度数,再利用两直线平行同位角相等即可求出∠ECD的度数.【解答】解:∵BC⊥AE,∴∠ACB=90°,在Rt△ABC中,∠B=40°,∴∠A=90°﹣∠B=50°,∵CD∥AB,∴∠ECD=∠A=50°,故选C.4.有6个相同的立方体搭成的几何体如图所示,则它的主视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】根据主视图是从正面看得到的图形,可得答案.【解答】解:从正面看第一层三个小正方形,第二层左边一个小正方形,右边一个小正方形.故选:C.5.下列调查中,适宜采用普查方式的是()A.了解一批圆珠笔的寿命B.了解全国九年级学生身高的现状C.考察人们保护海洋的意识D.检查一枚用于发射卫星的运载火箭的各零部件【考点】全面调查与抽样调查.【分析】普查和抽样调查的选择.调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.【解答】解:A、了解一批圆珠笔芯的使用寿命,由于具有破坏性,应当使用抽样调查,故本选项错误;B、了解全国九年级学生身高的现状,人数多,耗时长,应当采用抽样调查的方式,故本选项错误;C、考察人们保护海洋的意识,人数多,耗时长,应当采用抽样调查的方式,故本选项错误;D、检查一枚用于发射卫星的运载火箭的各零部件,事关重大,应用普查方式,故本选项正确;故选:D.6.若是关于x、y的二元一次方程ax﹣3y=1的解,则a的值为()A.﹣5 B.﹣1 C.2 D.7【考点】二元一次方程的解.【分析】根据题意得,只要把代入ax﹣3y=1中,即可求出a的值.【解答】解:把代入ax﹣3y=1中,∴a﹣3×2=1,a=1+6=7,故选:D,7.直线y=2x+2沿y轴向下平移6个单位后与y轴的交点坐标是()A.(0,2)B.(0,8)C.(0,4)D.(0,﹣4)【考点】一次函数图象与几何变换.【分析】根据平移可得直线y=2x+2沿y轴向下平移6个单位后解析式为y=2x+2﹣6=2x ﹣4,再求出与y轴的交点即可.【解答】解:直线y=2x+2沿y轴向下平移6个单位后解析式为y=2x+2﹣6=2x﹣4,当x=0时,y=﹣4,因此与y轴的交点坐标是(0,﹣4),故选:D8.如图,已知菱形ABCD的对角线AC、BD的长分别为6cm、8cm,AE⊥BC于点E,则AE的长是()A.B.C.D.【考点】菱形的性质;勾股定理.【分析】根据菱形的性质得出BO、CO的长,在RT△BOC中求出BC,利用菱形面积等于对角线乘积的一半,也等于BC×AE,可得出AE的长度.【解答】解:∵四边形ABCD是菱形,∴CO=AC=3cm,BO=BD=4cm,AO⊥BO,∴BC==5cm,==×6×8=24cm2,∴S菱形ABCD=BC×AE,∵S菱形ABCD∴BC×AE=24,∴AE=cm,故选D.9.如图,在矩形ABCD中,AB=4,AD=5,AD,AB,BC分别与⊙O相切于E,F,G 三点,过点D作⊙O的切线BC于点M,切点为N,则DM的长为()A.B.C.D.2【考点】切线的性质;矩形的性质.【分析】连接OE,OF,ON,OG,在矩形ABCD中,得到∠A=∠B=90°,CD=AB=4,由于AD,AB,BC分别与⊙O相切于E,F,G三点得到∠AEO=∠AFO=∠OFB=∠BGO=90°,推出四边形AFOE,FBGO是正方形,得到AF=BF=AE=BG=2,由勾股定理列方程即可求出结果.【解答】解:连接OE,OF,ON,OG,在矩形ABCD中,∵∠A=∠B=90°,CD=AB=4,∵AD,AB,BC分别与⊙O相切于E,F,G三点,∴∠AEO=∠AFO=∠OFB=∠BGO=90°,∴四边形AFOE,FBGO是正方形,∴AF=BF=AE=BG=2,∴DE=3,∵DM是⊙O的切线,∴DN=DE=3,MN=MG,∴CM=5﹣2﹣MN=3﹣MN,△DMC中,DM2=CD2+CM2,在Rt∴(3+NM)2=(3﹣NM)2+42,∴NM=,∴DM=3=,故选A.10.如图,在Rt△ABC中,∠ACB=90°,点D是AB边的中点,过D作DE⊥BC于点E,点P是边BC上的一个动点,AP与CD相交于点Q.当AP+PD的值最小时,AQ与PQ之间的数量关系是()A.AQ=PQ B.AQ=3PQ C.AQ=PQ D.AQ=4PQ【考点】轴对称-最短路线问题.【分析】如图,作点A关于BC的对称点A′,连接A′D交BC于点P,此时PA+PD最小.作DM∥BC交AC于M,交PA于N,利用平行线的性质,证明AN=PN,利用全等三角形证明NQ=PQ,即可解决问题.【解答】解:如图,作点A关于BC的对称点A′,连接A′D交BC于点P,此时PA+PD 最小.作DM∥BC交AC于M,交PA于N.∵∠ACB=∠DEB=90°,∴DE∥AC,∵AD=DB,∴CE=EB,∴DE=AC=CA′,∵DE∥CA′,∴==,∵DM∥BC,AD=DB,∴AM=MC,AN=NP,∴DM=BC=CE=EB,MN=PC,∴MN=PE,ND=PC,在△DNQ和△CPQ中,,∴△DNQ≌△CPQ,∴NQ=PQ,∵AN=NP,∴AQ=3PQ.故选B.二、填空题(本大题共8小题,每题2分,共计16分.请把答案直接填写在答题卷相应位置上.)11.函数y=中,自变量x的取值范围是x≥﹣2 .【考点】函数自变量的取值范围.【分析】函数关系中主要有二次根式.根据二次根式的意义,被开方数是非负数即可求解.【解答】解:根据题意得:x+2≥0,解得x≥﹣2.故答案为:x≥﹣2.12.分解因式:ab3﹣4ab= ab(b+2)(b﹣2).【考点】提公因式法与公式法的综合运用.【分析】先提取公因式ab,再对余下的多项式利用平方差公式继续分解.【解答】解:ab3﹣4ab,=ab(b2﹣4),=ab(b+2)(b﹣2).故答案为:ab(b+2)(b﹣2).13.2016年我国大学毕业生将达到7650000人,该数据用科学记数法可表示为7.65×106.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将7650000用科学记数法表示为:7.65×106.故答案为:7.65×106.14.一个扇形的圆心角为60°半径为6cm,则这个扇形的弧长为2πcm.(结果保留π)【考点】圆锥的计算.【分析】利用弧长公式是l=,代入就可以求出弧长.【解答】解:弧长是:=2πcm.故答案为:2π.15.已知反比例函数的图象经过点(m,4)和点(8,﹣2),则m的值为﹣4 .【考点】反比例函数图象上点的坐标特征.【分析】根据反比例函数图象上点的坐标特征得到4×m=8×(﹣2),然后解一次方程即可.【解答】解:根据题意得4×m=8×(﹣2),解得m=﹣4.故答案为﹣4.16.如图,△ABC中,D为BC上一点,∠BAD=∠C,AB=6,BD=4,则CD的长为 5 .【考点】相似三角形的判定与性质.【分析】易证△BAD∽△BCA,然后运用相似三角形的性质可求出BC,从而可得到CD 的值.【解答】解:∵∠BAD=∠C,∠B=∠B,∴△BAD∽△BCA,∴=.∵AB=6,BD=4,∴=,∴BC=9,∴CD=BC﹣BD=9﹣4=5.故答案为5.17.如图,C、D是线段AB上两点,且AC=BD=AB=1,点P是线段CD上一个动点,在AB同侧分别作等边△PAE和等边△PBF,M为线段EF的中点.在点P从点C移动到点D时,点M运动的路径长度为 2 .【考点】轨迹.【分析】分别延长AE、BF交于点H,易证四边形EPFH为平行四边形,得出M为PH中点,则M的运行轨迹为三角形HCD的中位线GN.再求出CD的长,运用中位线的性质求出GN的长度即可.【解答】解:如图,分别延长AE、BF交于点H,∵∠A=∠FPB=60°,∴AH∥PF,∵∠B=∠EPA=60°,∴BH∥PE,∴四边形EPFH为平行四边形,∴EF与HP互相平分.∵M为EF的中点,∴M正好为PH中点,即在P的运动过程中,M始终为PH的中点,所以M的运行轨迹为三角形HCD的中位线GN.∵CD=6﹣1﹣1=4,∴GN=CD=2,即M的移动路径长为2.故答案为:2.18.如图坐标系中,O(0,0),A(6,6),B(12,0),将△OAB沿直线线CD折叠,使点A恰好落在线段OB上的点E处,若OE=,则CE:DE的值是.【考点】翻折变换(折叠问题);坐标与图形性质.【分析】过A作AF⊥OB于F,根据已知条件得到△AOB是等边三角形,推出△CEO∽△DBE,根据相似三角形的性质得到,设CE=a,则CA=a,CO=12﹣a,ED=b,则AD=b,OB=12﹣b,于是得到24b=60a﹣5ab,36a=60b﹣5ab,两式相减得到36a ﹣24b=60b﹣60a,即可得到结论.【解答】解:过A作AF⊥OB于F,∵A(6,6),B(12,0),∴AF=6,OF=6,OB=12,∴BF=6,∴OF=BF,∴AO=AB,∵tan∠AOB=,∴∠AOB=60°,∴△AOB是等边三角形,∴∠AOB=∠ABO=60°,∵将△OAB沿直线线CD折叠,使点A恰好落在线段OB上的点E处,∴∠CED=∠OAB=60°,∴∠OCE=∠DEB,∴△CEO∽△DBE,∴,设CE=a,则CA=a,CO=12﹣a,ED=b,则AD=b,OB=12﹣b,,∴24b=60a﹣5ab ①,,∴36a=60b﹣5ab ②,②﹣①得:36a﹣24b=60b﹣60a,∴=,即CE:DE=.故答案为:.三、解答题(本大题共10小题,共计84分.解答需写出必要的文字说明或演算步骤.)19.(1)计算:﹣|﹣2|+2×(﹣3);(2)化简:(1+)÷.【考点】分式的混合运算;实数的运算.【分析】(1)根据算术平方根的概念、绝对值的性质以及有理数的乘法法则计算即可;(2)根据分式的通分和约分法则计算.【解答】解:(1)原式=4﹣2﹣6=﹣4;(2)原式=•=.20.(1)解方程:1+=;(2)解不等式组:.【考点】解分式方程;解一元一次不等式组.【分析】(1)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解;(2)分别求出不等式组中两不等式的解集,找出解集的公共部分即可.【解答】解:(1)去分母,x﹣2+3x=6,解得:x=2,经检验:x=2是原方程的增根,∴原方程无解;(2),由①得,x<﹣1,由②得,x≤﹣8,∴原不等式组的解集是x≤﹣8.21.如图,在▱ABCD中,点E,F在AC上,且∠ABE=∠CDF,求证:BE=DF.【考点】全等三角形的判定与性质;平行四边形的性质.【分析】根据平行四边形的性质,证明AB=CD,AB∥CD,进而证明∠BAC=∠CDF,根据ASA即可证明△ABE≌△CDF,根据全等三角形的对应边相等即可证明.【解答】证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠BAC=∠CDF,∴△ABE和△CDF中,,∴△ABE≌△CDF,∴BE=DF.22.一个不透明的口袋中装有2个红球(记为红球1、红球2),1个白球、1个黑球,这些球除颜色外都相同,将球搅匀.(1)从中任意摸出1个球,恰好摸到红球的概率是(2)先从中任意摸出一个球,再从余下的3个球中任意摸出1个球,请用列举法(画树状图或列表),求两次都摸到红球的概率.【考点】列表法与树状图法;概率公式.【分析】(1)根据4个小球中红球的个数,即可确定出从中任意摸出1个球,恰好摸到红球的概率;(2)列表得出所有等可能的情况数,找出两次都摸到红球的情况数,即可求出所求的概率.【解答】解:(1)4个小球中有2个红球,则任意摸出1个球,恰好摸到红球的概率是;故答案为:;(2)列表如下:红红白黑红﹣﹣﹣(红,红)(白,红)(黑,红)红(红,红)﹣﹣﹣(白,红)(黑,红)白(红,白)(红,白)﹣﹣﹣(黑,白)黑(红,黑)(红,黑)(白,黑)﹣﹣﹣所有等可能的情况有12种,其中两次都摸到红球有2种可能,则P(两次摸到红球)==.23.图1、图2是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1,每个小正方形的顶点叫做格点.(1)在图1中画出等腰直角三角形MON,使点N在格点上,且∠MON=90°;(2)在图2中以格点为顶点画一个正方形ABCD,使正方形ABCD面积等于(1)中等腰直角三角形MON面积的4倍,并将正方形ABCD分割成以格点为顶点的四个全等的直角三角形和一个正方形,且正方形ABCD面积没有剩余(画出一种即可).【考点】作图—应用与设计作图.【分析】(1)过点O向线段OM作垂线,此直线与格点的交点为N,连接MN即可;(2)根据勾股定理画出图形即可.【解答】解:(1)如图1所示;(2)如图2、3所示;24.某厂生产A,B两种产品,其单价随市场变化而做相应调整.营销人员根据前三次单价变化的情况,绘制了如表统计表及不完整的折线图.A,B产品单价变化统计表第一次第二次第三次A产品单价(元/件) 6 5.2 6.5B产品单价(元/件) 3.5 4 3并求得了A产品三次单价的平均数和方差:2=[(6﹣5.9)2+(5.2﹣5.9)2+(6.5﹣5.9)2]==5.9,sA(1)补全如图中B产品单价变化的折线图.B产品第三次的单价比上一次的单价降低了25 %(2)求B产品三次单价的方差,并比较哪种产品的单价波动小;(3)该厂决定第四次调价,A产品的单价仍为6.5元/件,B产品的单价比3元/件上调m%(m>0),使得A产品这四次单价的中位数是B产品四次单价中位数的2倍少1,求m的值.【考点】方差;统计表;折线统计图;算术平均数;中位数.【分析】(1)根据题目提供数据补充折线统计图即可;(2)分别计算平均数及方差即可;(3)首先确定这四次单价的中位数,然后确定第四次调价的范围,根据“A产品这四次单价的中位数是B产品四次单价中位数的2倍少1”列式求m即可.【解答】解:(1)如图2所示:B产品第三次的单价比上一次的单价降低了=25%,(2)=(3.5+4+3)=3.5,==,∵B产品的方差小,∴B产品的单价波动小;(3)第四次调价后,对于A产品,这四次单价的中位数为=;对于B产品,∵m>0,∴第四次单价大于3,∵﹣1>,∴第四次单价小于4,∴×2﹣1=,∴m=25.25.某工厂接受了20天内生产1200台GH型电子产品的总任务.已知每台GH型产品由4个G型装置和3个H型装置配套组成.工厂现有80名工人,每个工人每天能加工6个G型装置或3个H型装置.工厂将所有工人分成两组同时开始加工,每组分别加工一种装置,并要求每天加工的G、H型装置数量正好全部配套组成GH型产品.(1)按照这样的生产方式,工厂每天能配套组成多少套GH型电子产品?(2)为了在规定期限内完成总任务,工厂决定补充一些新工人,这些新工人只能独立进行G型装置的加工,且每人每天只能加工4个G型装置.请问至少需要补充多少名新工人?【考点】一元一次不等式的应用;一元一次方程的应用.【分析】(1)设有x名工人加工G型装置,则有(80﹣x)名工人加工H型装置,利用每台GH型产品由4个G型装置和3个H型装置配套组成得出等式求出答案;(2)设招聘a名新工人加工G型装置,设x名工人加工G型装置,(80﹣x)名工人加工H型装置,进而利用每天加工的G、H型装置数量正好全部配套组成GH型产品得出等式表示出x的值,进而利用不等式解法得出答案.【解答】解:(1)设有x名工人加工G型装置,则有(80﹣x)名工人加工H型装置,根据题意,=,解得x=32,则80﹣32=48(套),答:每天能组装48套GH型电子产品;(2)设招聘a名新工人加工G型装置仍设x名工人加工G型装置,(80﹣x)名工人加工H型装置,根据题意,=,整理可得,x=,另外,注意到80﹣x≥,即x≤20,于是≤20,解得:a≥30,答:至少应招聘30名新工人,26.已知边长为3的正方形ABCD中,点E在射线BC上,且BE=2CE,连接AE交射线DC于点F,若△ABE沿直线AE翻折,点B落在点B处.1(1)如图1,若点E在线段BC上,求CF的长;的值;(2)求sin∠DAB1(3)如果题设中“BE=2CE”改为“=x”,其它条件都不变,试写出△ABE翻折后与正方形ABCD公共部分的面积y与x的关系式及自变量x的取值范围(只要写出结论,不需写出解题过程).【考点】翻折变换(折叠问题);勾股定理;正方形的性质;锐角三角函数的定义.【分析】(1)利用平行线性质以及线段比求出CF的值;(2)本题要分两种方法讨论:①若点E在线段BC上;②若点E在边BC的延长线上.需运用勾股定理求出与之相联的线段;(3)本题分两种情况讨论:若点E在线段BC上,y=,定义域为x>0;若点E在边BC的延长线上,y=,定义域为x>1.【解答】解:(1)∵AB∥DF,∴=,∵BE=2CE,AB=3,∴=,∴CF=;与DC相交于点M.(2)①若点E在线段BC上,如图1,设直线AB1由题意翻折得:∠1=∠2.∵AB∥DF,∴∠1=∠F,∴∠2=∠F,∴AM=MF.设DM=x,则CM=3﹣x.又∵CF=1.5,∴AM=MF=﹣x,在Rt△ADM中,AD2+DM2=AM2,∴32+x2=(﹣x)2,∴x=,∴DM=,AM=,∴sin∠DAB==;1②若点E在边BC的延长线上,如图2,设直线AB1与CD延长线相交于点N.同理可得:AN=NF.∵BE=2CE,∴BC=CE=AD.∵AD∥BE,∴=,∴DF=FC=,设DN=x,则AN=NF=x+.在Rt△ADN中,AD2+DN2=AN2,∴32+x2=(x+)2,∴x=.==;∴DN=,AN=sin∠DAB1(3)若点E在线段BC上,y=,定义域为x>0;若点E在边BC的延长线上,y=,定义域为x>1.27.如图,抛物线y=﹣x2+bx+c与x轴交于A、B两点,且B点的坐标为(3,0),经过A点的直线交抛物线于点D(2,3).(1)求抛物线的解析式和直线AD的解析式;(2)过x轴上的点(a,0)作直线EF∥AD,交抛物线于点F,是否存在实数a,使得以A、D、E、F为顶点的四边形是平行四边形?如果存在,求出满足条件的a;如果不存在,请说明理由.【考点】抛物线与x轴的交点;二次函数的性质;待定系数法求二次函数解析式;平行四边形的判定.【分析】(1)把点B和D的坐标代入抛物线y=﹣x2+bx+c得出方程组,解方程组即可;由抛物线解析式求出点A的坐标,设直线AD的解析式为y=kx+a,把A和D的坐标代入得出方程组,解方程组即可;(2)分两种情况:①当a<﹣1时,DF∥AE且DF=AE,得出F(0,3),由AE=﹣1﹣a=2,求出a的值;②当a>﹣1时,显然F应在x轴下方,EF∥AD且EF=AD,设F (a﹣3,﹣3),代入抛物线解析式,即可得出结果.【解答】解:(1)把点B和D的坐标代入抛物线y=﹣x2+bx+c得:,解得:b=2,c=3,∴抛物线的解析式为y=﹣x2+2x+3;当y=0时,﹣x2+2x+3=0,解得:x=3,或x=﹣1,∵B(3,0),∴A(﹣1,0);设直线AD的解析式为y=kx+a,把A和D的坐标代入得:,解得:k=1,a=1,∴直线AD的解析式为y=x+1;(2)分两种情况:如图所示:①当a<﹣1时,DF∥AE且DF=AE,则F点即为(0,3),∵AE=﹣1﹣a=2,∴a=﹣3;②当a>﹣1时,显然F应在x轴下方,EF∥AD且EF=AD,设F (a﹣3,﹣3),由﹣(a﹣3)2+2(a﹣3)+3=﹣3,解得:a=4±;综上所述,满足条件的a的值为﹣3或4±.28.如图,Rt△ABC中,M为斜边AB上一点,且MB=MC=AC=8cm,平行于BC的直线l从BC的位置出发以每秒1cm的速度向上平移,运动到经过点M时停止.直线l分别交线段MB、MC、AC于点D、E、P,以DE为边向下作等边△DEF,设△DEF与△MBC 重叠部分的面积为S(cm2),直线l的运动时间为t(秒).(1)求边BC的长度;(2)求S与t的函数关系式;(3)在整个运动过程中,是否存在这样的时刻t,使得以P、C、F为顶点的三角形为等腰三角形?若存在,请求出t的值;若不存在,请说明理由.(4)在整个运动过程中,是否存在这样的时刻t,使得以点D为圆心、BD为半径的圆与直线EF相切?若存在,请求出t的值;若不存在,请说明理由.【考点】几何变换综合题.【分析】(1)利用直角三角形的性质和锐角三角函数即可,(2)分两段求出函数关系式:当0<t≤3时,S=﹣t2+8t,当3<t≤4时,S=3t2﹣24t+48(3)当0<t≤3时,∠FCP≥90°,故△PCF不可能为等腰三角形当3<t≤4时,若△PCF为等腰三角形,也只能FC=FP,=3(4﹣t),得t=.(4)若相切,利用点到圆心的距离等于半径列出方程即可.【解答】解:(1)∵M为斜边中点,∴∠B=MCB=α,∴∠AMC=2α,∵MC=MA,∴∠A=∠AMC=2α,∴∠B+∠A=90°,∴α+2α=90°,∴α=30°,∴∠B=30°,∵cotB=,∴BC=AC×cotB=8;(2)由题意,若点F恰好落在BC上,∴MF=4(4﹣t)=4,∴t=3.当0<t≤3时,如图,∴BD=2t,DM=8﹣2t,∵l∥BC,∴,∴,∴DE=(8﹣2t).∴点D到EF的距离为FJ=DE=3(4﹣t),∵l∥BC,∴,∵FN=FJ﹣JN=3(4﹣t)﹣t=12﹣4t,∴HG=(3﹣t)S=S=(HG+DE)×FN=﹣t2+8t当3<t≤4时,重叠部分就是△DEF,=DE2=3t2﹣24t+48.S=S(3)当0<t≤3时,∠FCP≥90°,∴FC>CP,∴△PCF不可能为等腰三角形当3<t≤4时,若△PCF为等腰三角形,∴只能FC=FP,∴=3(4﹣t),∴t=(4)若相切,∵∠B=30°,∴BD=2t,DM=8﹣2t,∵l∥BC,∴,∴,∴DE=(8﹣2t).∴点D到EF的距离为DE=3(4﹣t)∴2t=3(4﹣t),解得t=.2016年6月9日。
江苏省无锡市2018届数学中考模拟试卷及答案解析
江苏省无锡市2018届数学中考模拟试卷一、选择题1.− 2 的倒数是( )A. 2B. 12 C. −12 D. − 2 2.式子 在实数范围内有意义,则x 的取值范围是( )A. >1B. ≥1C. <1D. ≤1 3.下列运算正确的是( )A. a 2·a 3﹦a 6B. a 3+ a 3﹦a 6C. |-a 2|﹦a 2D. (-a 2)3﹦a 6 4.一元二次方程x 2+5x +7=0解的情况是( )A. 有两个不相等的实数根B. 有两个相等的实数根C. 没有实数根D. 无法确定 5.若二次函数y =(a -1)x 2+3x +a 2-1的图象经过原点,则a 的值必为( )A. 1或-1B. 1C. -1D. 0 6.已知圆柱的底面半径为3cm ,母线长为5cm ,则圆柱的侧面积是( )A. 30cm 2B. 30πcm 2C. 15cm 2D. 15πcm 2 7.如图,AB 是⊙O 的直径,AB 垂直于弦CD ,∠BOC=70°,则∠ABD=( )A. 20°B. 46°C. 55°D. 70°8.如图,在Rt △ABC 中,∠B =90º,AB =6,BC =8,点D 在BC 上,以AC 为对角线的所有□ADCE 中,DE 的最小值是( )A. 4B. 6C. 8D. 109.已知如图,菱形ABCD四个顶点都在坐标轴上,对角线AC、BD交于原点O,DF垂直AB交AC于点G,反比例函数y=√3x(x>0),经过线段DC的中点E,若BD=4,则AG的长为()A. 4√33B. √3+2 C. 2 √3+1 D. 3√32+110.如图,△ABC中,∠BAC=90°,AB=3,AC=4,点D是BC的中点,将△ABD沿AD翻折得到△AED,连CE,则线段CE的长等于()A. 2B. 54C. 53D. 75二、填空题11.肥泡沫的泡壁厚度大约是0.0007mm,则数据0.0007用科学计数法表示为________.12.在Rt△ABC中,∠C=90°,AB=2,BC= √3,则sinA=________.13.因式分解:3x2﹣27=________.14.如图,点D在∠ΑΟΒ的平分线ΟC上,点Ε在ΟΑ上,ΕD//ΟΒ,∠1=25∘,则∠ΑΕD 的度数为________ ∘.15.某射击俱乐部将11名成员在某次射击训练中取得的成绩绘制成如图所示的条形统计图.由图可知,11名成员射击成绩的中位数是________环.16.如图,在坐标平面上,沿着两条坐标轴摆着三个相同的长方形,其长、宽分别为4、2,则通过A ,B ,C 三点的拋物线对应的函数关系式是________.17.如图,A 点的坐标为(﹣1,5),B 点的坐标为(3,3),C 点的坐标为(5,3),D 点的坐标为(3,﹣1),小明发现:线段AB 与线段CD 存在一种特殊关系,即其中一条线段绕着某点旋转一个角度可以得到另一条线段,你认为这个旋转中心的坐标是________.18.如图,正方形 ABCD 中,AB=3cm ,以 B 为圆心,1cm 长为半径画☉B ,点 P 在☉B 上移动,连接 AP ,并将 AP 绕点 A 逆时针旋转 90°至 AP',连接 BP',在点 P 移动过程中,BP' 长度的最小值为________cm 。
无锡市2018年初三年级数学试题中考模拟考试含答案.docx
无锡市 2018 年初三年级数学试题中考模拟考试含答案2018.4一、选择题:本大题共 10 小题,每小题 3 分,共 30 分.在每小题给出的四个选项中,恰有一项 是符合题目要求的, 请将正确选项的序号填写在题答题卡的相应的括号内. ....1.- 3 的倒数是()11A .3B . 3C .± 3D .- 3 .2.使 x-2 有意义的 x 的取值范围是( ) A .x > 1 B . x >2 C . x ≥ 2 12 D . x ≥ .23.下列事件中最适合使用普查方式收集数据的是 ( )A .了解某班同学的体重情况B .了解我省初中学生的兴趣爱好情况C .了解一批电灯泡的使用寿命D .了解我省农民工的年收入情况.4.如左图是由几个相同的小正方体搭成的一个几何体,它的左视图是(5.方程 2x - 1= 3x +2 的解为 A.B .C .A .x = 1B . x =- 1C . x = 36.如图 A , D 是⊙ O 上两点, BC 是直径.若∠D=35 ,则∠ OAB A .35B . 55 C . 65D .70 )D .(D . x =- 3.的度数是(.))7.下列图形中,是轴对称图形但不是中心对称图形的是()A .等边三角形B .平行四边形C .矩形D .圆.8.如图,直线 a ∥ b ,三角板的直角顶点放在直线b 上,两直角边与直线 a 相交,如果∠ 1=55 °,那么∠ 2 等于()A. 65°B .55°C .45°D. 35 .°9.如图, 将正方形 ABCD 的一角折向边CD ,使点 A 与 CB 上一点 E 重合,若 BE =1,CE=2,则折痕 FG 的长度为( )A. 10B. 2 2C . 3D . 4 .A ADGD1aF D /COB2bBEC第 8 题图第 6 题图第 9 题图10.经过点 (2,- 1)作一条直线和反比例函数y2相交, 当他们有且只有一个公共点时,x这样的直线存在( )A . 2 条B. 3 条 C.4条D.无数条.二、填空题(本大题共8 小题,每小题 2 分,共 16 分,不需要写出解答过程,请把答案填写在答题卡的相应位置的横线上)11. 2017 年我市参加中考的人数大约有11000 人,将 11000 用科学记数法表示为.12.因式分解: ab2- 9a=.13.当x =1时,分式x+2无意义 .k14.若反比例函数 y= x的图像经过点A(2, 5)和点 B( 1, n),则 n=.15.已知圆柱的底面半径为3cm,母线长为 5cm,则圆柱的侧面积是cm.16.居民用电计费实行“一户一表”政策,以年为周期执行阶梯电价,即:一户居民全年不超过 2880度的电量,执行第一档电价标准为0.48 元/度;全年用电量在2880 度到 4800度之间(含4800),超过2880 度的部分,执行第二档电价标准为0.53元 /度;全年用电量超过 4800 度,超过 4800 度的部分,执行第三档电价标准为0.78 元/度.小敏家 2017年用电量为3000 度,则2017 年小敏家电费为元.17.在四边形 ABCD 中,AD = 4,CD =3,∠ ABC=∠ ACB=∠ ADC = 45°,则 BD 的长为.D ACB第17 题18.在平面直角坐标系中,已知平行四边形ABCD 的点 A ( 0,-2)、点 B( 3m, 4m+1)(m≠-1),点 C( 6, 2),则对角线B D 的最小值是.三、解答题(本大题共 10 小题,共84 分.请在答题卡题目下方空白处作答,解答时应.......写出文字说明、证明过程或演算步骤)19.(本小题满分 8 分)计算 :( 1) tan30o- (- 2)2-.( 2) (2x- 1)2+( x-2)(x+2) .20. (本题满分8 分 )( 1)解方程:1xx- 3(x-2)≤4,= 2+.( 2)解不等式组:1+2x> x-1.x- 33-x321. (本题满分 6 分)如图,正方形AEFG的顶点 E、G 在正方形 ABCD的边 AB、AD 上,连接BF 、 DF .(1) 求证: BF=DF ;(2) 连接 CF,请直接写出CF(不必写出计算过程) .的值为BEB CEFAGD22.(本题满分 6 分)某校组织学生书法比赛,对参赛作品按 A、B、C、 D 四个等级进行了评定.现随机取部分学生书法作品的评定结果进行分析,并绘制扇形统计图和条形统计图如下:分析结果的扇形统计图人数分析结果的条形统计图6048D 级 A 级5020%40C 级302430%B 级2010根据上述信息完成下列问题:B C 等级A D 图①图②(1)求这次抽取的样本的容量;(2)请在图②中把条形统计图补充完整;( 3)已知该校这次活动共收到参赛作品750 份,请你估计参赛作品达到 B 级以上(即A 级和 B 级)有多少份?23. (本题满分8 分)甲、乙两人用手指玩游戏,规则如下:(1)每次游戏时,两人同时随机地各伸出一根手指;( 2)两人伸出的手指中,大拇指只胜食指,食指只胜中指,中指只胜无名指,无名指只胜小拇指,小拇指只胜大拇指,否则不分胜负,依据上述规则,当甲、乙两人同时随机地各伸出一根手指时,( 1)求甲伸出小拇指取胜的概率(请用“画树状图”或“列表”等方法写出分析过程);( 2)求乙取胜的概率.24.(本题满分 8 分)如图,△ ABC 中, AB=AC,以 AB 为直径的⊙ O 与 BC 相交于点 D,与 CA 的延长线相交于点 E,过点 D 作 DF⊥ AC 于点 F.(1)试说明 DF 是⊙ O 的切线;(2)若 AC=3 AE,求 tanC.25、(本题满分 10分)今年我市某公司分两次采购了一批第 24 题大蒜,第一次花费40 万元,第二次花费 60 万元,已知第一次采购时每吨大蒜的价格比去年的平均价格上涨了500 元,第二次采购时每吨大蒜的价格比去年的平均价格下降了 500元,第二次采购的数量是第一次采购数量的两倍.( 1)试问去年每吨大蒜的平均价格是多少元?( 2)该公司可将大蒜加工成蒜粉或蒜片,若单独加工成蒜粉,每天可加工8 吨大蒜,每吨大蒜获利 1000 元;若单独加工成蒜片,每天可加工12 吨大蒜,每吨大蒜获利600 元 . 为出口需要,所有采购的大蒜必须在30 天内加工完毕,且加工蒜粉的大蒜数量不少于加工蒜片的大蒜数量的一半. 为获得最大利润,应将多少吨大蒜加工成蒜粉?最大利润为多少?226.(本题满分 10 分)在平面直角坐标系xOy 中,抛物线y= mx +6mx+n( m> 0)与x 轴交于 A,B 两点(点 A 在点 B 左侧),顶点为 C,抛物线与y 轴交于点 D ,直线 BC 交 y 轴于 E,且△ ABC 与△ AEC 这两个三角形的面积之比为2∶ 3.( 1)求点 A 的坐标;( 2)将△ACO 绕点 C 顺时针旋转一定角度后,点 A 与求抛物线的解析式.B 重合,此时点O 恰好也在y 轴上,27.(本题满分 10 分)已知,如图,在边长为10 的菱形 ABCD 中, cos∠ B=3,点 E 为 BC 10边上的中点,点 F 为边 AB 边上一点,连接EF,过点 B 作 EF 的对称点 B’,( 1)在图( 1)中,用无刻度的直尺和圆规作出点B’(不写作法,保留痕迹);( 2)当△EFB ’为等腰三角形时,求折痕EF 的长度.(3)当 B’落在 AD 边的中垂线上时,求BF 的长度.A D A D A DF F FB EC B E C B EC图 1备用图备用图28.(本题满分 10 分)【缘起】苏教版九下56,“如图1,在Rt△中,∠=90°,CDP ABC ACB是△ ABC 的高,则△ ACD 与△ CBD 相似吗?”于是,学生甲发现CD2=AD ·BD 也成立.问题 1:请你证明 CD 2=AD ·BD ;CA D B图 1学生乙从CD2=AD ·BD 中得出:可以画出两条已知线段的比例中项.问题 2:已知两条线段AB 、BC 在 x 轴上,如图 2:请你用直尺(无刻度)和圆规作出这两条线段的比例中项.要求保留作图痕迹,不要写作法,最后指出所要作的线段.yA O ( B)Cx图 2学生丙也从 CD 2=AD·BD 中悟出了矩形与正方形的等积作法.问题 3:如图 3,已知矩形 ABCD ,请你用直尺(无刻度)和圆规作出一个正方形BMNP ,使得 S 正方形BMNP =S 矩形ABCD.要求:保留作图痕迹;简要写出作图每个步骤的要点.D CA B图3参考答案与评分标准一、 :1.D 2. C 3. A 4. B 5. D 6. B 7. A 8. D 9. A 10. C二、填空 :11 .1.1× 10412. a(b+3)(b-3) 13. x =- 214.1015 .30π 16.144617. 4118. 6三、解答 :19 .解:( 1)原式=3- 4 - 23 ⋯⋯( 3 分)(2)原式= 4x 2-4x + 1+( x 2- 4)=34 3( 4 分)= 4x 2- 4x +1+x 2- 4 ⋯( 3 分)- 63= 5x 2- 4x-3.⋯⋯( 4 分)20 .解:( 1) 1=2( x-3)-x⋯( 2 分)( 2)第 1 个不等式解得: x ≥ 1∴ x=7 ⋯( 3 分)第 1 个不等式解得: x < 4⋯( 2 分)x=7 是原方程的解.⋯( 4 分)∴原不等式 的解集 1≤ x <4 ⋯( 4 分)21 .( 1)略⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(4 分)( 2) 2 ⋯⋯⋯⋯⋯⋯⋯⋯⋯( 6 分)22 .( 1) 120⋯⋯( 2 分)( 2) 略, C :40; D : 12每个 1 分( 4 分)( 3) 750×4824= 450(份).⋯⋯⋯⋯⋯( 6分)120123 .解:(1)画 状 或列表略⋯⋯⋯⋯( 6 分)画 状 或列表正确,得5 分, 正( 2)125确 1 分⋯⋯⋯⋯⋯( 8 分)524. 解析: ( 1) 明: 接 OD ,∵ OB=OD , ∴∠ B=∠ ODB ,⋯⋯⋯⋯⋯( 1 分)∵ AB=AC , ∴ ∠ B= ∠ C , ∴ ∠ ODB= ∠ C , ∴ OD ∥ AC , ⋯⋯⋯⋯⋯⋯( 2 分)∵ DF ⊥ AC , ∴ OD ⊥ DF , ⋯⋯⋯( 3 分)∴ DF 是⊙ O 的切 ;⋯⋯⋯(( 2)解: 接BE , ∵ AB 是直径,∴∠ AEB=90°,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(4 分)5 分)∵ AB=AC , AC=3AE ,∴ AB=3AE , CE=4AE , 22∴ BE= AB -AE =2 2 AE , ⋯⋯⋯( 6 分)BE 2 2AE2在 Rt △ BEC 中, tanC=AE = 4AE = 225.解:( 1) 去年每吨大蒜的平均价格是⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( x 元,8 分)由 意得,4000002600000⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(2 分)x 500x 500解得: x =3500, ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ (3 分): x =3500 是原分式方程的解,且符合 意,⋯⋯⋯⋯⋯⋯⋯⋯⋯(4 分)答:去年每吨大蒜的平均价格是 3500 元;⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(5 分)( 2)由( 1)得,今年的大蒜数 : 40000040003 300(吨)⋯⋯⋯⋯(6 分)将 m 吨大蒜加工成蒜粉, 将( 300 m )吨加工成蒜片,由 意得,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(7 分)解得: 100≤m ≤120, ⋯⋯⋯⋯⋯⋯⋯⋯( 8 分)利 : 1000 +600(300)=400+180000,⋯⋯⋯⋯⋯⋯⋯⋯⋯(9 分)mm m当 m =120 ,利 最大, 228000 元. 答: 将120 吨大蒜加工成蒜粉,最大利 228000 元. ⋯⋯⋯(10 分)26.解:( 1)抛物 y =mx 2 +6mx + n (m > 0),得到 称 x=-2,⋯⋯⋯( 1 分)①当 S △ ABC : S △AEC =2∶ 3 , BC : CE=2: 3,∴ CB : BE=2:1∵ OF=3,∴ OB=1,即 B (- 1, 0)∴ A(-5, 0), B(- 1, 0), ⋯⋯( 2 分)②当 S △ABC : S △AEC =3∶ 2 , BC :CE=3 : 2,∴ CD : BD =2: 1∴ A(-15, 0), B( 3, 0), ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(3 分)22( 2)①当 A(- 5, 0),B(-1, 0) ,把 B(- 1, 0)代人 y = mx 2得, n=5m ⋯⋯⋯⋯⋯⋯⋯⋯⋯(3 分)+6mx + n m =6 , n= 546 . ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(5 分)4∴ y =6 x 2+ 3 6 x+ 5 6 . ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( 6 分)4 2 4②当 A(-15 , 0), B(3, 0) ,22把 B( 3,0)代人 y = mx 2+6mx + n 得, n= -45m ⋯⋯⋯⋯⋯⋯(7 分)24m =2 5, n=-55 .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(9 分)276∴ y =2 5x 2+ 4 5 x -5 5.⋯⋯⋯⋯⋯⋯⋯( 10 分)279627.解:( 1)尺 作 略.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(2 分)( 2)① 当 B ’E=EF , EF=5,⋯⋯⋯⋯⋯( 3 分)②当 B ’E=B ’F , EF= 35 ,⋯⋯⋯⋯⋯( 4 分) ③当 EF=B ’F , EF=25⋯⋯⋯⋯⋯( 5 分)3上: EF=5,35 , 25⋯⋯⋯⋯⋯( 6 分)3(3) 2 91 - 12⋯⋯⋯⋯⋯( 10 分)y5D28.解:( 1)明略⋯⋯⋯( 2 分)( 2) CD所要画的段⋯⋯⋯( 4 分)( 3)①延 AB 至 E,使得 BE=BC;A O (B) C x②以 AE 直径,画半 O,与 BC 的延相交于M图 2③以 BM 做正方形 BMNP⋯⋯⋯⋯⋯( 7 分)N MD C⋯⋯⋯⋯⋯( 10 分)AP O B E。
2018年江苏省无锡市中考数学试卷含答案解析(word版)
2018年江苏省无锡市中考数学试卷含解析一、选择题(本大题共10小题,每小题3分,共30分。
在每小题所给出的四个选项中,只有一项是正确的,请用2B铅笔把答题卡上相应的选项标号涂黑)1.(3分)下列等式正确的是()A.()2=3 B.=﹣3 C.=3 D.(﹣)2=﹣32.(3分)函数y=中自变量x的取值范围是()A.x≠﹣4 B.x≠4 C.x≤﹣4 D.x≤43.(3分)下列运算正确的是()A.a2+a3=a5B.(a2)3=a5C.a4﹣a3=a D.a4÷a3=a4.(3分)下面每个图形都是由6个边长相同的正方形拼成的图形,其中能折叠成正方体的是()A.B.C.D.5.(3分)下列图形中的五边形ABCDE都是正五边形,则这些图形中的轴对称图形有()A.1个B.2个C.3个D.4个6.(3分)已知点P(a,m),Q(b,n)都在反比例函数y=的图象上,且a<0<b,则下列结论一定正确的是()A.m+n<0 B.m+n>0 C.m<n D.m>n7.(3分)某商场为了解产品A的销售情况,在上个月的销售记录中,随机抽取了5天A 产品的销售记录,其售价x(元/件)与对应销量y(件)的全部数据如下表:则这5天中,A产品平均每件的售价为()A.100元B.95元C.98元D.97.5元8.(3分)如图,矩形ABCD中,G是BC的中点,过A、D、G三点的圆O与边AB、CD 分别交于点E、点F,给出下列说法:(1)AC与BD的交点是圆O的圆心;(2)AF与DE 的交点是圆O的圆心;(3)BC与圆O相切,其中正确说法的个数是()A.0 B.1 C.2 D.39.(3分)如图,已知点E是矩形ABCD的对角线AC上的一动点,正方形EFGH的顶点G、H都在边AD上,若AB=3,BC=4,则tan∠AFE的值()A.等于B.等于C.等于D.随点E位置的变化而变化10.(3分)如图是一个沿3×3正方形方格纸的对角线AB剪下的图形,一质点P由A点出发,沿格点线每次向右或向上运动1个单位长度,则点P由A点运动到B点的不同路径共有()A.4条B.5条C.6条D.7条二、填空题(本大题共8小题,每小题2分,共16分。
2018年江苏省无锡市中考数学试卷(附参考解析)
2018年江蘇省無錫市中考數學試卷一、選擇題(本大題共10小題,每小題3分,共30分。
在每小題所給出的四個選項中,只有一項是正確的,請用2B鉛筆把答題卡上相應的選項標號塗黑) 1.(3分)下列等式正確的是()A.()2=3 B.=﹣3 C.=3 D.(﹣)2=﹣32.(3分)函數y=中引數x的取值範圍是()A.x≠﹣4 B.x≠4 C.x≤﹣4 D.x≤43.(3分)下列運算正確的是()A.a2+a3=a5 B.(a2)3=a5C.a4﹣a3=a D.a4÷a3=a4.(3分)下麵每個圖形都是由6個邊長相同的正方形拼成的圖形,其中能折疊成正方體的是()A.B.C.D.5.(3分)下列圖形中的五邊形ABCDE都是正五邊形,則這些圖形中的軸對稱圖形有()A.1個 B.2個 C.3個 D.4個6.(3分)已知點P(a,m),Q(b,n)都在反比例函數y=的圖象上,且a <0<b,則下列結論一定正確的是()A.m+n<0 B.m+n>0 C.m<n D.m>n7.(3分)某商場為了解產品A的銷售情況,在上個月的銷售記錄中,隨機抽取了5天A產品的銷售記錄,其售價x(元/件)與對應銷量y(件)的全部數據如下表:9095100105110售價x(元/件)銷量y(件)110100806050則這5天中,A產品平均每件的售價為()A.100元B.95元C.98元D.97.5元8.(3分)如圖,矩形ABCD中,G是BC的中點,過A、D、G三點的圓O與邊AB、CD分別交於點E、點F,給出下列說法:(1)AC與BD的交點是圓O的圓心;(2)AF與DE的交點是圓O的圓心;(3)BC與圓O相切,其中正確說法的個數是()A.0 B.1 C.2 D.39.(3分)如圖,已知點E是矩形ABCD的對角線AC上的一動點,正方形EFGH 的頂點G、H都在邊AD上,若AB=3,BC=4,則tan∠AFE的值()A .等於B .等於C .等於D.隨點E位置的變化而變化10.(3分)如圖是一個沿3×3正方形方格紙的對角線AB剪下的圖形,一質點P由A點出發,沿格點線每次向右或向上運動1個單位長度,則點P由A點運動到B點的不同路徑共有()A.4條 B.5條 C.6條 D.7條二、填空題(本大題共8小題,每小題2分,共16分。
2018年无锡市中考数学模拟卷(正卷)答案
绝密★启用前2018年无锡市中考数学模拟卷(正卷)考试范围:初中;考试时间:120分钟;命题人:方科题号一二三总分得分参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.故选:C.2.故选:C.3.故选:A.4.故选:D.5.故选:D.6.故选:C.7.故选:D.8.故选:B.9.故选:C.10.故选:D.二.填空题(共8小题,满分16分,每小题2分)11.故答案为:2.54×106.12.故答案为:4a(a+2)(a﹣2)13.故答案为:y=﹣.14.∴全面积=300π+100π=400π.15.故答案为:或.16.正确命题有①.17.故答案为:t=2或3≤t≤7或t=8.18.故答案为3.三.解答题(共10小题,满分84分)19.解:(1)原式=1﹣3+3=1.(2)原式=x2+2x+1﹣2x+4=x2+5.20.∴原方程组的解为:21.∴k=3.22.落到A点位置的概率为:;(2)落到C点位置的概率为.(3)落到C点位置的概率为.23.【解答】解:(1)根据小强的方法将乙城市16台自动售货机的销售情况如图所示:(2)甲城市16台自动售货机中销售额最高的为58元;甲城市16台自动售货机中有两台销售额为30元.(3)甲城市16台自动售货机销售额在10﹣20元的有5个;甲城市16台自动售货机销售额在30﹣40元和40﹣50元的个数一样.(4)第二种.理由:数据量太大,枝叶就会很多,用茎叶图就显得不太方便.柱状图更直观清晰,易于比较数据的大小.24.(6分)(1)如图△ABC,请用圆规和直尺作出的△ABC的外接圆.(不要求写作法,但要保留作图痕迹)(2)若△ABC是正三角形,边长为6,△ABC的外接圆的半径是多少?【分析】(1)分别作出AC和BC的垂直平分线,两线的交点就是圆心O的位置,再以CO长为半径画圆即可;(2)当△ABC是正三角形时,BC的垂直平分线过A点,首先根据等腰三角形三线合一的性质计算出∠OCF=30°,再根据勾股定理计算出CO的长度即可.【解答】解:(1)如图所示:⊙O即为所求;(2)当△ABC是正三角形时,BC的垂直平分线过A点,连接AO,CO,∵△ABC是正三角形,AF⊥BC,∴∠FAC=∠BAC=30°,CF=BC=3,∵AO=CO,∴∠ACO=30°,∴∠OCF=60°﹣30°=30°,∴OF=OC,设OC=2x,则OF=x,x2+32=(2x)2,解得:x=,∵x表示CO的长,∴x=CO=.25.【解答】解:(1)如图,连接 AB,BC,∵点 C 是劣弧 AB 的中点,∴=,∴CA=CB.又∵CD=CA,∴CB=CD=CA.在△ABD中,∵,∴∠ABD=90°,∴∠ABE=90°,∴AE 是⊙O 的直径;(2)如图,由(1)可知,AE 是⊙O 的直径,∴∠ACE=90°,∵⊙O 的直径为6,AC=2,∴⊙O 的面积为9π,在Rt△ACE 中,∠ACE=90°,由勾股定理,得CE==4,∴S△AEC=×AC×CE=4,∴阴影部分的面积之和为:﹣4.26.【解答】解:(1)∵抛物线y=ax2+bx+5与x轴交于点A(1,0),B (5,0),∴,解得.∴抛物线的解析式为y=x2﹣6x+5.(2)∵A(1,0),B(5,0),∴OA=1,AB=4.∵AC=AB且点C在点A的左侧,∴AC=4.∴CB=CA+AB=8.∵线段CP是线段CA、CB的比例中项,∴=.∴CP=4.又∵∠PCB是公共角,∴△CPA∽△CBP.∴∠CPA=∠CBP.过P作PH⊥x轴于H.∵OC=OD=3,∠DOC=90°,∴∠DCO=45°.∴∠PCH=45°∴PH=CH=CP=4,∴H(﹣7,0),BH=12.∴P(﹣7,﹣4).∴tan∠CBP==,tan∠CPA=.(3)∵抛物线的顶点是M(3,﹣4),又∵P(﹣7,﹣4),∴PM∥x轴.当点E在M左侧,则∠BAM=∠AME.过点A作AN⊥PM于点N,则N(1,﹣4).∵∠AEM=∠AMB,∴△AEM∽△BMA.∴=.∴=.∴ME=5,∴E(﹣2,﹣4).当点E在M右侧时,记为点E′,∵∠AE′N=∠AEN,∴点E′与E 关于直线AN对称,则E′(4,﹣4).综上所述,E的坐标为(﹣2,﹣4)或(4,﹣4).27.【解答】解:(1)把A(4,0),B(﹣1,0)代入抛物线y=﹣x2+bx+c中得:,解得:,∴y=﹣x2+x+3=﹣(x﹣)2+;∴抛物线的函数解析式为:y=﹣x2+x+3,其对称轴为直线:x=;故答案为:y=﹣x2+x+3;x=;(2)∵A(4,0),C(0,3),∴直线AC的解析式为:y=﹣x+3;设P(x,﹣x2+x+3),则Q(x,﹣x+3),∴PQ=(﹣x2+x+3)﹣(﹣x+3)=﹣+3x=﹣(x﹣2)2+3,∵P是抛物线在第一象限内图象上的一动点,∴0<x<4,∴当x=2时,PQ的最大值为3;(3)分两种情况:①当D在线段OA上时,如图1,△AEQ∽△ADC,∵EQ=EA,∴CD=AD,设CD=a,则AD=a,OD=4﹣a,在Rt△OCD中,由勾股定理得:32+(4﹣a)2=a2,a=,∴AD=CD=,∴OD=4﹣=,∴D(,0),②当D在点B的左侧时,如图2,△AEQ∽△ACD,∵EQ=EA,∴CD=AC,∵OC⊥AD,∴OD=OA=4,∴D(﹣4,0),综上所述,当△ACD与△AEQ相似时,点D的坐标为(,0)或(﹣4,0).28.【解答】解:由题意可得,AB、2AE都是正方形边长,AB=AA′=2AE,∵AB=4,∴AE=×4=2,在Rt△ABE中,BE===2,∴BC=2BE=4.。
2018年江苏省无锡市南长区中考数学一模试卷 解析版
2018年江苏省无锡市南长区中考数学一模试卷一、选择题(本大题共10小题,每小题3分,共计30分.每题的四个选项中,只有一个符合题意)1.(3分)﹣5的相反数是()A.B.5C.﹣D.﹣52.(3分)函数y=中自变量x的取值范围为()A.x>2B.x≥2C.x<2D.x≤23.(3分)下列运算正确的是()A.2a2+a2=3a4B.(﹣2a2)3=8a6C.a3÷a2=a D.(a﹣b)2=a2﹣b24.(3分)下列图案不是轴对称图形的是()A.B.C.D.5.(3分)一组数据:2,﹣1,0,3,﹣3,2.则这组数据的中位数和众数分别是()A.0,2B.1.5,2C.1,2D.1,36.(3分)如图,A,B,C是⊙O上三点,∠ACB=25°,则∠BAO的度数是()A.50°B.55°C.60°D.65°7.(3分)下列命题中,正确的是()A.菱形的对角线相等B.平行四边形既是轴对称图形,又是中心对称图形C.正方形的对角线相等且互相垂直D.矩形的对角线不能相等8.(3分)如果一个多边形的内角和等于900°,这个多边形是()A.四边形B.五边形C.六边形D.七边形9.(3分)在△ABC中,AC=4,AB=5,则△ABC面积的最大值为()A.6B.10C.12D.2010.(3分)已知正方形ABCD的边长为5,E在BC边上运动,DE的中点G,EG绕E顺时针旋转90°得EF,问CE为多少时A、C、F在一条直线上()A.B.C.D.二、填空题(本大题共8小题,每小题2分,共16分)11.(2分)因式分解:2a2﹣8=.12.(2分)太阳半径大约是696 000千米,用科学记数法表示为米.13.(2分)若反比例函数的图象经过第一、三象限,则k的取值范围是.14.(2分)用一个圆心角为120°,半径为6的扇形作一个圆锥的侧面,这个圆锥的底面圆的半径是.15.(2分)如图,在▱ABCD中,E是边BC上的点,分别连结AE、BD相交于点O,若AD=10,=,则EC=.16.(2分)如图,每个小正方形边长为1,则△ABC边AC上的高BD的长为.17.(2分)如图,在边长为2的菱形ABCD中,∠B=45°,AE为BC边上的高,将△ABE 沿AE所在直线翻折至△AGE,那么△AGE与四边形AECD重叠部分的面积是.18.(2分)如图,在△ABC中,∠ABC=60°,AB=3,BC=12,以AC为腰,点A 为顶点作等腰△ACD,且∠DAC=120°,则BD的长为.三、解答题(本大题共10小题,共84分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤).19.(8分)计算:(1)2﹣1﹣(﹣0.5)0﹣﹣sin30°;(2)(x﹣2)2﹣x(x﹣3).20.(8分)(1)解方程:=;(2)解不等式组:21.(6分)如图,E,F是四边形ABCD的对角线AC上两点,AF=CE,DF=BE,DF∥BE.求证:(1)△AFD≌△CEB;(2)四边形ABCD是平行四边形.22.(8分)学习了统计知识后,某中学小光同学,为了解本校九年级学生晚间睡眠时间,进行了一次抽样调查,设睡眠时间为t小时,所得数据按以下四个时间段进行统计:A.t <6 B.6≤t<7 C.7≤t<8 D.t≥8图1,图2是根据调查结果绘制的两幅不完整的统计图.请根据图中提供的信息,解答以下问题:(1)这次调查中,共抽查了名学生;(2)在扇形统计图中,“D时间段”部分所对应的圆心角是度;(3)补全两幅统计图;(4)本校九年级共有800名学生.若睡眠时间不足8小时均为睡眠不足,估计本校九年级学生睡眠不足的人数?23.(8分)小明参加某个智力竞答节目,答对最后两道单选题就顺利通关.第一道单选题有3个选项,第二道单选题有4个选项,这两道题小明都不会,不过小明还有一个“求助”没有用(使用“求助”可以让主持人去掉其中一题的一个错误选项).(1)如果小明第一题不使用“求助”,那么小明答对第一道题的概率是.(2)如果小明将“求助”留在第二题使用,请用树状图或者列表来分析小明顺利通关的概率.24.(8分)如图,在△ABC中,AB=AC,以AB为直径作圆O,分别交BC于点D,交CA的延长线于点E,过点D作DH⊥AC于点H,连接DE交线段OA于点F.(1)求证:DH是圆O的切线;(2)若A为EH的中点,求的值;(3)若EA=EF=1,求圆O的半径.25.(8分)某乒乓球训练馆准备购买n副某种品牌的乒乓球拍,每副球拍配k(k≥3)个乒乓球.已知A、B两家超市都有这个品牌的乒乓球拍和乒乓球出售,且每副球拍的标价都为20元,每个乒乓球的标价都为1元.现两家超市正在促销,A 超市所有商品均打九折(按原价的90%付费)销售,而B 超市买1副乒乓球拍送3个乒乓球.若仅考虑购买球拍和乒乓球的费用,请解答下列问题:(1)如果只在某一家超市购买所需球拍和乒乓球,那么去A 超市还是B 超市买更合算? (2)当k =12时,请设计最省钱的购买方案.26.(10分)(1)如图1是某个多面体的表面展开图.①请你写出这个多面体的名称,并指出图中哪三个字母表示多面体的同一点;②如果沿BC 、GH 将展开图剪成三块,恰好拼成一个矩形,那么△BMC 应满足什么条件?(不必说理)(2)如果将一个三棱柱的表面展开图剪成四块,恰好拼成一个三角形,如图2,那么该三棱柱的侧面积与表面积的比值是多少?为什么?(注:以上剪拼中所有接缝均忽略不计)27.(10分)如图,在平面直角坐标系中,抛物线y =ax 2+bx +4经过A (﹣3,0)、B (4,0)两点,且与y 轴交于点C ,D (4﹣4,0).动点P 从点A 出发,沿线段AB 以每秒1个单位长度的速度向点B 移动,同时动点Q 从点C 出发,沿线段CA 以某一速度向点A 移动.(1)求该抛物线的解析式;(2)若经过t 秒的移动,线段PQ 被CD 垂直平分,求此时t 的值;(3)在第一象限的抛物线上取一点G ,使得S △GCB =S △GCA ,再在抛物线上找点E (不与点A 、B 、C 重合),使得∠GBE =45°,求E 点的坐标.28.(10分)(1)如图1,已知△ABC,以AB、AC为边分别向△ABC外作等边△ABD和等边△ACE,连接BE、CD,请你完成图形(尺规作图,不写作法,保留作图痕迹),并证明:BE=CD;(2)如图2,利用(1)中的方法解决如下问题:在四边形ABCD中,AD=3,BD=2,∠ABC=∠ACB=∠ADB=45°,求CD的长;(3)如图3,四边形ABCD中,∠BAC=90°,∠ADB=∠ABC=α,tanα=,BD=5,AD=12,求CD的长.2018年江苏省无锡市南长区中考数学一模试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共计30分.每题的四个选项中,只有一个符合题意)1.(3分)﹣5的相反数是()A.B.5C.﹣D.﹣5【分析】根据一个数的相反数就是在这个数前面添上“﹣”号,求解即可.【解答】解:﹣5的相反数是5,故选:B.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.不要把相反数的意义与倒数的意义混淆.2.(3分)函数y=中自变量x的取值范围为()A.x>2B.x≥2C.x<2D.x≤2【分析】本题主要考查自变量的取值范围,函数关系中主要有二次根式.根据二次根式的意义,被开方数是非负数即可求解.【解答】解:根据题意,得x﹣2≥0,解得x≥2.故选:B.【点评】考查了函数自变量的范围,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.3.(3分)下列运算正确的是()A.2a2+a2=3a4B.(﹣2a2)3=8a6C.a3÷a2=a D.(a﹣b)2=a2﹣b2【分析】根据合并同类项,积的乘方等于乘方的积,同底数幂的除法,完全平方公式,可得答案.【解答】解:A、系数相加字母及指数不变,故A不符合题意;B、积的乘方等于乘方的积,故B不符合题意;C、同底数幂的除法底数不变指数相减,故C符合题意;D、(a﹣b)2=a2﹣2ab+b2,故D不符合题意;故选:C.【点评】本题考查了同底数幂的除法,熟记法则并根据法则计算是解题关键.4.(3分)下列图案不是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念对各选项分析判断利用排除法求解.【解答】解:A、是轴对称图形,故本选项错误;B、是轴对称图形,故本选项错误;C、是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项正确.故选:D.【点评】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.5.(3分)一组数据:2,﹣1,0,3,﹣3,2.则这组数据的中位数和众数分别是()A.0,2B.1.5,2C.1,2D.1,3【分析】把这组数据按照从小到大的顺序排列,第3、4个数的平均数是中位数,在这组数据中出现次数最多的是1,得到这组数据的众数.【解答】解:把这组数据按照从小到大的顺序排列﹣3,﹣1,0,2,2,3,第3、4个两个数的平均数是(0+2)÷2=1,所以中位数是1;在这组数据中出现次数最多的是2,即众数是2,故选:C.【点评】本题考查一组数据的中位数和众数,在求中位数时,首先要把这列数字按照从小到大或从的大到小排列,找出中间一个数字或中间两个数字的平均数即为所求.6.(3分)如图,A,B,C是⊙O上三点,∠ACB=25°,则∠BAO的度数是()A.50°B.55°C.60°D.65°【分析】首先连接OB,由A,B,C是⊙O上三点,∠ACB=25°,利用圆周角定理,即可求得∠AOB的度数,再利用等腰三角形的性质,即可求得答案.【解答】解:连接OB,∵∠ACB=25°,∴∠AOB=2∠ACB=50°,∵OA=OB,∴∠OAB=∠OBA==65°.故选:D.【点评】此题考查了圆周角定理以及等腰三角形的性质.注意准确作出辅助线是解此题的关键.7.(3分)下列命题中,正确的是()A.菱形的对角线相等B.平行四边形既是轴对称图形,又是中心对称图形C.正方形的对角线相等且互相垂直D.矩形的对角线不能相等【分析】根据菱形的性质对A进行判断;根据平行四边形的性质和轴对称的定义对B进行判断;根据正方形的性质对C进行判断;根据矩形的性质对D进行判断.【解答】解:A、菱形的对角线相互垂直平分,所以A选项错误;B、平行四边形不是轴对称图形,只是中心对称图形,所以B选项错误;C、正方形的对角线相等且互相垂直,所以C选正确;D、矩形的对角线相等,所以D选项错误.故选:C.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.8.(3分)如果一个多边形的内角和等于900°,这个多边形是()A.四边形B.五边形C.六边形D.七边形【分析】根据n边形的内角和为(n﹣2)•180°得到(n﹣2)•180°=900°,然后解方程即可.【解答】解:设所求正n边形边数为n,则(n﹣2)•180°=900°,解得n=7.故选:D.【点评】本题考查根据多边形的内角和计算公式求多边形的边数,解答时要会根据公式进行正确运算、变形和数据处理.9.(3分)在△ABC中,AC=4,AB=5,则△ABC面积的最大值为()A.6B.10C.12D.20【分析】把AB边作为底边,则AB边上的高的最大值为AC的长度,同理把AC边作为底边,则AC边上的高的最大值为AB的长度,即三角形为直角三角形时面积最大,求出即可.【解答】解:把AB边作为底边,则AB边上的高的最大值为AC的长度,同理把AC边作为底边,则AC边上的高的最大值为AB的长度,即三角形为直角三角形时面积最大;所以,在△ABC中,AC=4,AB=5,则△ABC面积的最大值为×AC×AB=10,故选:B.【点评】此题考查了三角形的面积,解题的关键是弄清三角形面积最大时的条件.10.(3分)已知正方形ABCD的边长为5,E在BC边上运动,DE的中点G,EG绕E顺时针旋转90°得EF,问CE为多少时A、C、F在一条直线上()A.B.C.D.【分析】过F作FN⊥BC,交BC延长线于N点,连接AC,构造直角△EFN,利用三角形相似的判定,得出Rt△FNE∽Rt△ECD,根据相似三角形的对应边成比例,求得NE=CD=,运用正方形性质,可得出△CNF是等腰直角三角形,从而求出CE.【解答】解:如图,过F作FN⊥BC,交BC延长线于N点,连接AC.∵DE的中点为G,EG绕E顺时针旋转90°得EF,∴DE:EF=2:1.∵∠DCE=∠ENF=90°,∠DEC+∠NEF=90°,∠NEF+∠EFN=90°,∴∠DEC=∠EFN,∴Rt△FNE∽Rt△ECD,∴CE:FN=DE:EF=DC:NE=2:1,∴CE=2NF,NE=CD=.∵∠ACB=45°,∴当∠NCF=45°时,A、C、F在一条直线上.则△CNF是等腰直角三角形,∴CN=NF,∴CE=2CN,∴CE=NE=×=,∴CE=时,A、C、F在一条直线上.故选:D.【点评】此题考查了旋转的性质、相似三角形的判定与性质、正方形的性质以及直角三角形的性质.此题难度适中,解题的关键是构造Rt△FNE∽Rt△ECD,求得△FCN是等腰直角三角形,然后根据相似三角形的性质求解.二、填空题(本大题共8小题,每小题2分,共16分)11.(2分)因式分解:2a2﹣8=2(a+2)(a﹣2).【分析】首先提取公因式2,进而利用平方差公式分解因式即可.【解答】解:2a2﹣8=2(a2﹣4)=2(a+2)(a﹣2).故答案为:2(a+2)(a﹣2).【点评】此题主要考查了提取公因式法以及公式法分解因式,熟练应用乘法公式是解题关键.12.(2分)太阳半径大约是696 000千米,用科学记数法表示为 6.96×108米.【分析】先把696 000千米转化成696 000 000米,然后再用科学记数法记数记为6.96×108米.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:696 000千米=696 000 000米=6.96×108米.【点评】用科学记数法表示一个数的方法是:(1)确定a:a是只有一位整数的数;(2)确定n:当原数的绝对值≥10时,n为正整数,n等于原数的整数位数减1;当原数的绝对值<1时,n为负整数,n的绝对值等于原数中左起第一个非零数前零的个数(含整数位数上的零).13.(2分)若反比例函数的图象经过第一、三象限,则k的取值范围是k<.【分析】先根据反比例函数的性质列出关于k的不等式,求出k的取值范围即可.【解答】解:∵反比例函数的图象经过第一、三象限,∴1﹣3k≥0,解得k<.故答案为:k<.【点评】本题考查的是反比例函数的性质,熟知反比例函数y=(k≠0)的图象是双曲线;当k>0,双曲线的两支分别位于第一、第三象限是解答此题的关键.14.(2分)用一个圆心角为120°,半径为6的扇形作一个圆锥的侧面,这个圆锥的底面圆的半径是2.【分析】易得扇形的弧长,除以2π即为圆锥的底面半径.【解答】解:扇形的弧长==4π,∴圆锥的底面半径为4π÷2π=2.故答案为:2.【点评】考查了扇形的弧长公式;圆的周长公式;用到的知识点为:圆锥的弧长等于底面周长.15.(2分)如图,在▱ABCD中,E是边BC上的点,分别连结AE、BD相交于点O,若AD=10,=,则EC=4.【分析】根据平行四边形的性质得到AD∥BC,AD=BC,推出△BEO∽△DAO,根据相似三角形的性质得到,求得BE=6,即可得到结论.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴△BEO∽△DAO,∴,∵AD=10,∴BE=6,∴CE=10﹣6=4,故答案为:4.【点评】此题考查了平行四边形的性质以及相似三角形的判定与性质.熟练掌握相似三角形的判定和性质是解题的关键.16.(2分)如图,每个小正方形边长为1,则△ABC 边AC 上的高BD 的长为 .【分析】根据网格,利用勾股定理求出AC 的长,AB 的长,以及AB 边上的高,利用三角形面积公式求出三角形ABC 面积,而三角形ABC 面积可以由AC 与BD 乘积的一半来求,利用面积法即可求出BD 的长.【解答】解:根据勾股定理得:AC ==5,由网格得:S △ABC =×2×4=4,且S △ABC =AC •BD =×5BD ,∴×5BD =4,解得:BD =.故答案为:【点评】此题考查了勾股定理,以及三角形的面积,熟练掌握勾股定理是解本题的关键.17.(2分)如图,在边长为2的菱形ABCD 中,∠B =45°,AE 为BC 边上的高,将△ABE 沿AE 所在直线翻折至△AGE ,那么△AGE 与四边形AECD 重叠部分的面积是 2﹣2 .【分析】阴影部分面积=S △ABG ﹣S △COG ﹣S △ABE .【解答】解:在边长为2的菱形ABCD 中,∠B =45°,AE 为BC 边上的高,故AE =,由折叠易得△ABG 为等腰直角三角形,∴S △ABG =BA •AG =2,S △ABE =1,∴CG =2BE ﹣BC =2﹣2,∵AB∥CD,∴∠OCG=∠B=45°,又由折叠的性质知,∠G=∠B=45°,=3﹣2,∴CO=OG=2﹣.∴S△COG∴重叠部分的面积为2﹣1﹣(3﹣2)=2﹣2.【点评】本题通过折叠变换考查学生的逻辑思维能力,解决此类问题,找到所求量的等量关系是解决问题的关键注意运用相似三角形的面积比等于相似比的平方的性质.18.(2分)如图,在△ABC中,∠ABC=60°,AB=3,BC=12,以AC为腰,点A 为顶点作等腰△ACD,且∠DAC=120°,则BD的长为15.【分析】以A为旋转中心,把△BAC逆时针旋转120°,得到△EAD,连接BE,作AP ⊥BE于P,根据等腰三角形的性质、余弦的概念求出BE,根据旋转变换的性质得到∠AEB=90°,根据勾股定理计算即可.【解答】解:以A为旋转中心,把△BAC逆时针旋转120°,得到△EAD,连接BE,作AP⊥BE于P,则∠BAE=120°,AB=AE,DE=BE,∴∠ABE=∠AEB=30°,∴BP=AB•cos∠ABP=,∠AEB=90°,∴ED=BE=2BP=9,在Rt△BED中,BD==15,故答案为:15.【点评】本题考查的是勾股定理、直角三角形的性质、等腰三角形的性质,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.三、解答题(本大题共10小题,共84分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤).19.(8分)计算:(1)2﹣1﹣(﹣0.5)0﹣﹣sin30°;(2)(x﹣2)2﹣x(x﹣3).【分析】(1)根据负整数指数幂,零指数幂,开平方以及特殊角的三角函数值解答;(2)利用完全平方公式和单项式乘多项式法则进行解答.【解答】解:(1)原式=﹣1﹣2﹣=﹣3;(2)原式=x2﹣4x+4﹣x2+3x=﹣x+4.【点评】考查了负整数指数幂,零指数幂,开平方以及特殊角的三角函数值,属于基础计算题.20.(8分)(1)解方程:=;(2)解不等式组:【分析】(1)首先找出最简公分母,进而去分母解方程即可;(2)先解第一个不等式得x≥﹣1,再解第二个不等式得x<3,然后取公共部分即可解集.【解答】解:(1)=;方程两边同时乘以(x﹣1)(x+1)得:3(x+1)=2(x﹣1),3x+3=2x﹣2,3x﹣2x=﹣2﹣3,x=﹣5,经检验:x=﹣5是原方程的解;(2),由①得:x≥﹣1,由②得:x<3,∴不等式组的解集是:﹣1≤x≤3.【点评】此题主要考查了解分式方程和解一元一次不等式组,注意分式方程要正确找出最简公分母,不等式组要注意不等式的两边同时乘以或除以一个负数时不等号的方向改变.21.(6分)如图,E,F是四边形ABCD的对角线AC上两点,AF=CE,DF=BE,DF∥BE.求证:(1)△AFD≌△CEB;(2)四边形ABCD是平行四边形.【分析】(1)利用平行线的性质可得∠DFA=∠BEC,然后利用SAS判定△AFD≌△CEB 即可;(2)利用全等三角形的性质可得AD=BC,∠DAF=∠BCE,然后可判定AD∥BC,进而可根据一组对边平行且相等的四边形是平行四边形可得四边形ABCD是平行四边形.【解答】证明:(1)∵DF∥BE,∴∠DFA=∠BEC,在△ADF和△CBE中,∴△AFD≌△CEB(SAS);(2)∵△AFD≌△CEB,∴AD=BC,∠DAF=∠BCE,∴AD∥BC,∴四边形ABCD是平行四边形.【点评】此题主要考查了平行四边形的判定和全等三角形的判定和性质,关键是掌握一组对边平行且相等的四边形是平行四边形.22.(8分)学习了统计知识后,某中学小光同学,为了解本校九年级学生晚间睡眠时间,进行了一次抽样调查,设睡眠时间为t小时,所得数据按以下四个时间段进行统计:A.t <6 B.6≤t<7 C.7≤t<8 D.t≥8图1,图2是根据调查结果绘制的两幅不完整的统计图.请根据图中提供的信息,解答以下问题:(1)这次调查中,共抽查了80名学生;(2)在扇形统计图中,“D时间段”部分所对应的圆心角是18度;(3)补全两幅统计图;(4)本校九年级共有800名学生.若睡眠时间不足8小时均为睡眠不足,估计本校九年级学生睡眠不足的人数?【分析】(1)用D级的人数除以它占得百分比即可解答.(2)用“D时间段”部分的百分比乘以360度即可.(3)求出B时间段人数,再求出所占百分比即可解答.(4)根据样本估计总体的方法解答即可.【解答】解:(1)4÷5%=80人;(2)360×5%=18°;(3)如图(4)800×(35%+40%+20%)=760名.答:估计本校九年级学生睡眠不足的人数为760名.【点评】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图能够清楚地表示各部分所占的百分比.23.(8分)小明参加某个智力竞答节目,答对最后两道单选题就顺利通关.第一道单选题有3个选项,第二道单选题有4个选项,这两道题小明都不会,不过小明还有一个“求助”没有用(使用“求助”可以让主持人去掉其中一题的一个错误选项).(1)如果小明第一题不使用“求助”,那么小明答对第一道题的概率是.(2)如果小明将“求助”留在第二题使用,请用树状图或者列表来分析小明顺利通关的概率.【分析】(1)由第一道单选题有3个选项,直接利用概率公式求解即可求得答案;(2)首先分别用A,B,C表示第一道单选题的3个选项,a,b,c表示剩下的第二道单选题的3个选项,然后根据题意画出树状图,再由树状图求得所有等可能的结果与小明顺利通关的情况,再利用概率公式即可求得答案.【解答】解:(1)∵第一道单选题有3个选项,∴小明第一题不使用“求助”,那么小明答对第一道题的概率是:;故答案为:;(2)分别用A,B,C表示第一道单选题的3个选项,a,b,c表示剩下的第二道单选题的3个选项,画树状图得:∵共有9种等可能的结果,小明顺利通关的只有1种情况,∴小明顺利通关的概率为:.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.24.(8分)如图,在△ABC中,AB=AC,以AB为直径作圆O,分别交BC于点D,交CA的延长线于点E,过点D作DH⊥AC于点H,连接DE交线段OA于点F.(1)求证:DH是圆O的切线;(2)若A为EH的中点,求的值;(3)若EA=EF=1,求圆O的半径.【分析】(1)根据同圆的半径相等和等边对等角证明:∠ODB=∠OBD=∠ACB,则DH⊥OD,DH是圆O的切线;(2)如图2,先证明∠E=∠B=∠C,则H是EC的中点,设AE=x,EC=4x,则AC =3x,由OD是△ABC的中位线,得:OD=AC=,证明△AEF∽△ODF,列比例式可得结论;(3)如图2,设⊙O的半径为r,即OD=OB=r,证明DF=OD=r,则DE=DF+EF=r+1,BD=CD=DE=r+1,证明△BFD∽△EFA,列比例式为:,则=,求出r的值即可.【解答】证明:(1)连接OD,如图1,∵OB=OD,∴△ODB是等腰三角形,∠OBD=∠ODB①,在△ABC中,∵AB=AC,∴∠ABC=∠ACB②,由①②得:∠ODB=∠OBD=∠ACB,∴OD∥AC,∵DH⊥AC,∴DH⊥OD,∴DH是圆O的切线;(2)如图2,在⊙O中,∵∠E=∠B,∴由(1)可知:∠E=∠B=∠C,∴△EDC是等腰三角形,∵DH⊥AC,且点A是EH中点,设AE=x,EC=4x,则AC=3x,连接AD,则在⊙O中,∠ADB=90°,AD⊥BD,∵AB=AC,∴D是BC的中点,∴OD是△ABC的中位线,∴OD∥AC,OD=AC=×3x=,∵OD∥AC,∴∠E=∠ODF,在△AEF和△ODF中,∵∠E=∠ODF,∠OFD=∠AFE,∴△AEF∽△ODF,∴,∴==,∴=;(3)如图2,设⊙O的半径为r,即OD=OB=r,∵EF=EA,∴∠EFA=∠EAF,∵OD∥EC,∴∠FOD=∠EAF,则∠FOD=∠EAF=∠EFA=∠OFD,∴DF=OD=r,∴DE=DF+EF=r+1,∴BD=CD=DE=r+1,在⊙O中,∵∠BDE=∠EAB,∴∠BFD=∠EFA=∠EAB=∠BDE,∴BF=BD,△BDF是等腰三角形,∴BF=BD=r+1,∴AF=AB﹣BF=2OB﹣BF=2r﹣(1+r)=r﹣1,在△BFD和△EFA中,∵,∴△BFD∽△EFA,∴,∴=,解得:r1=,r2=(舍),综上所述,⊙O的半径为.【点评】本题是圆的综合题,考查了等腰三角形的性质和判定、切线的性质和判定、三角形的中位线、三角形相似的性质和判定、圆周角定理,第三问设圆的半径为r,根据等边对等角表示其它边长,利用比例列方程解决问题.25.(8分)某乒乓球训练馆准备购买n副某种品牌的乒乓球拍,每副球拍配k(k≥3)个乒乓球.已知A、B两家超市都有这个品牌的乒乓球拍和乒乓球出售,且每副球拍的标价都为20元,每个乒乓球的标价都为1元.现两家超市正在促销,A超市所有商品均打九折(按原价的90%付费)销售,而B超市买1副乒乓球拍送3个乒乓球.若仅考虑购买球拍和乒乓球的费用,请解答下列问题:(1)如果只在某一家超市购买所需球拍和乒乓球,那么去A超市还是B超市买更合算?(2)当k=12时,请设计最省钱的购买方案.【分析】(1)本题可根据去超市花的总费用=购买球拍的费用+购买乒乓球的费用,列出去A,B超市所需的总费用,然后比较这两个总费用,分别得出不同的自变量的取值范围中哪个超市最合算.(2)可分别计算出只在A超市购买,只在B超市购买和在A,B超市同时购买的三种不同情况下,所需的费用,然后比较出最省钱的方案.【解答】解:(1)由题意,去A超市购买n副球拍和kn个乒乓球的费用为0.9(20n+kn)元,去B超市购买n副球拍和k个乒乓球的费用为[20n+n(k﹣3)]元,由0.9(20n+kn)<20n+n(k﹣3),解得k>10;由0.9(20n+kn)=20n+n(k﹣3),解得k=10;由0.9(20n+kn)>20n+n(k﹣3),解得k<10.∴当k>10时,去A超市购买更合算;当k=10时,去A、B两家超市购买都一样;当3≤k<10时,去B超市购买更合算.(2)当k=12时,购买n副球拍应配12n个乒乓球.若只在A超市购买,则费用为0.9(20n+12n)=28.8n(元);若只在B超市购买,则费用为20n+(12n﹣3n)=29n(元);若在B超市购买n副球拍,然后再在A超市购买不足的乒乓球,则费用为20n+0.9×(12﹣3)n=28.1n(元)显然28.1n<28.8n<29n∴最省钱的购买方案为:在B超市购买n副球拍同时获得送的3n个乒乓球,然后在A 超市按九折购买9n个乒乓球.【点评】解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系.本题要注意根据A,B超市所需的总费用,分情况讨论分别得出合理的选择.26.(10分)(1)如图1是某个多面体的表面展开图.①请你写出这个多面体的名称,并指出图中哪三个字母表示多面体的同一点;②如果沿BC、GH将展开图剪成三块,恰好拼成一个矩形,那么△BMC应满足什么条件?(不必说理)(2)如果将一个三棱柱的表面展开图剪成四块,恰好拼成一个三角形,如图2,那么该三棱柱的侧面积与表面积的比值是多少?为什么?(注:以上剪拼中所有接缝均忽略不计)【分析】(1)①根据这个多面体的表面展开图,可得这个多面体是直三棱柱,点A、M、D三个字母表示多面体的同一点,据此解答即可.②根据图示,要使沿BC、GH将展开图剪成三块,恰好拼成一个矩形,则△BMC应满足两个条件:△BMC中的三个内角有一个是直角;△BMC中的一条直角边和DH的长度相等,据此解答即可.(2)首先判断出矩形ACKL、BIJC、AGHB为棱柱的三个侧面,且四边形DGAL、EIBH、FKCJ须拼成与底面△ABC全等的另一个底面的三角形,AC=LK,且AC=DL+FK,,同理,可得,据此判断出△ABC∽△DEF,即可判断出S△DEF ;然后求出该三棱柱的侧面积与表面积的比值是多少即可.=4S△ABC【解答】解:(1)①根据这个多面体的表面展开图,可得这个多面体是直三棱柱,点A、M、D三个字母表示多面体的同一点.②△BMC应满足的条件是:a、∠BMC=90°,且BM=DH,或CM=DH;。
江苏省无锡市新吴区2018年中考数学一模试卷及答案
2017—2018 学年度第二学期九年级期中测试数学试卷满分:130 分考试时间:120 分钟一、选择题(本大题共10 小题,每小题3 分,共30 分.在每小题所给出的四个选项中,只有一个是正确的,请将正确的选项编号填写在答.卷.纸.相.应.的.位.置.处.)1.﹣2 的倒数是………………………………………………………………………………(▲)A. 2B.12C. - 2D.12-2.二次根式1x-中,x 的取值范围是……………………………………………………(▲)A. x ≥1B. x >1C. x ≤1D. x <13.下列计算正确的是…………………………………………………………………………(▲)A.a2 +a3 =a5B.a2 ⋅a3 =a6C.(a2 )3 =a6D.(ab)2 =ab24.下列图形中,是轴对称图形的是…………………………………………………………(▲)A.B.C.D.5.抢微信红包成为节日期间人们最喜欢的活动之一,小明一家5 个人抢到的红包数据如下:4 ,5 ,10 ,6 ,10 .则这组数据的中位数和众数是……………………………(▲)A. 10,10B.7,8C. 6,10D. 8,56.在平面直角坐标系中,将抛物线y = (x +1)2 向右平移2 个单位,再向下平移4 个单位,得到的抛物线解析式是…………………………………………………………………………(▲)A.y = (x -2)2 -4 B.y = (x -1)2 -4 C.y = (x -2)2 -3 D.y = (x -1)2 -37.如图,点P 是反比例函数y=kx( x< 0) 图象上一点,过P 向x 轴作垂线,垂足为M,连接OP.若Rt△POM 的面积为2,则k 的值为…………………………………………………(▲)A.4B.2C.- 4D.- 28.如图,将四边形纸片ABCD 沿AE 向上折叠,使点B 落在DC 边上的点F 处.若△AFD 的周长为12,△ECF 的周长为3,四边形纸片ABCD 的周长为……………………………(▲)A.14 B.15 C.16 D.209.如图,在Rt△ABC 中,∠BAC=90°,D、E 分别是AB、BC 的中点,F 在CA 延长线上,∠FDA= ∠B,AC=3,AB=4,则四边形AEDF 的周长为…………………………………………(▲)A.8 B.9 C.10 D.11(第7 题)(第8 题)(第9 题)10.如图,以点G(0,1)为圆心,半径为2 的圆与x 轴交于A、B 两点,与y 轴交于C、D 两点,点E 为⊙G 上一动点,CF⊥AE 于F.当点E 从点B 出发顺时针运动到点D 时,点F 所经过的路径长为…………………………………………………………………………(▲)A.32πB.33πC.34πD.36π(第10 题)(第18 题)二、填空题(本大题共8 小题,每小题2 分,共16 分.不需写出解答过程,只需把答案填写在答.卷.纸.的.相.应.位.置.处.)11.9 的算术平方根是▲.12.分解因式:2a3 - 8a =▲ .13.据统计,2018 年无锡鼋头渚“樱花节”活动期间入园赏樱人数约803 万人次,用科学记数法可表示为▲人次.14.已知圆锥的底面圆半径为3,母线长为5,则圆锥的侧面积是▲ .15.关于x 的方程x2 + 5x +m = 0 的一个根为- 2 ,则另一个根是▲.16.已知一组数据:0,-1,7,1,x 的平均数为1,则这组数据的极差是▲ .17.不论a 取什么实数,点A(1 -a,3a - 4) 都在直线l 上,若B(m,n) 也是直线l 上的点,则3m +n =▲ .18.如图,在四边形ADBC 中,∠ACB=∠ADB=90°,AD=BD,AC=3,BC=4,则线段CD 的长等于▲.三、解答题(本大题共10 小题,共84 分.请在答卷纸上指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(本题满分8 分,每小题4 分)(1)计算100 1()2cos60(3) 6π----(2)化简:11x⋅-212xx--+1+2x20.(本题满分8 分,每小题4 分)(1)解方程:1277xx x-=--(2)解不等式组:2105132xx x+≥⎧⎪+⎨-⎪⎩f21.(本题满分6 分)央视热播节目“朗读者”激发了学生的阅读兴趣.某校为满足学生的阅读需求,欲购进一批学生喜欢的图书,学校组织学生会成员随机抽取部分学生进行问卷调查,被调查学生须从“文史类、社科类、小说类、生活类”中选择自己喜欢的一类,根据调查结果绘制了统计图(未完成),图2图1请根据图中信息,解答下列问题:(1)将图1 的条形统计图补充完整;(2)图2 中“小说类”所在扇形的圆心角为▲度;(3)若该校共有学生2500 人,估计该校喜欢“社科类”书籍的学生人数.22.(本题满分8 分) 为弘扬中华传统文化,新吴区近期举办了中小学生“国学经典大赛”.比赛项目为:A.唐诗;B.宋词;C.论语;D.三字经.比赛形式分“单人组”和“双人组”.(1)小丽参加“单人组”,她从中随机抽取一个比赛项目,恰好抽中“三字经”的概率是多少?(2)小红和小明组成一个小组参加“双人组”比赛,比赛规则是:同一小组的两名队员的比赛项目不能相同,且每人只能随机抽取一次,则恰好小红抽中“唐诗”且小明抽中“宋词”的概率是多少?请用画树状图或列表的方法进行说明.如图,已知矩形ABCD,AB=6,AD=10,请用直尺和圆规按下列步骤作图(不要求写作法,但要保留作图痕迹);(1)在BC 边上作出点E,使得cos ∠BAE =3 5(2)在(1)作出的图形中①在CD 上作出一点F,使得点D、E 关于AF 对称;②四边形AEFD 的面积= ▲ .24.(本题满分8 分)如图,AB 是⊙O 的直径,AD 是⊙O 的弦,点F⊙O 的切线交DF 于点E,CE⊥DF.(1)求证:AC 平分∠F AB;(2)若AE=1,CE=2,求⊙O 的半径.25.(本题满分8 分)定义:在△ABC 中,∠C=30°,我们把∠A 的对边与∠C 的对边的比叫做∠A 的邻弦,记作thi A,即thi A=A BCC AB∠=∠的对边的对边.请解答下列问题:已知:在△ABC 中,∠C=30°.(1)若∠A=thi A 的值;(2)若thi A=3,则∠A=▲;(3)若∠A 是锐角,探究thi A 与sin A 的数量关系.甲,乙两人同时各接受了300 个零件的加工任务,甲比乙每小时加工的数量多,两人同时开工,其中一人因机器故障停止加工若干小时后又继续按原速加工,直到他们完成任务。
2018年江苏省无锡市中考数学试卷含答案解析
2018年江苏省无锡市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分。
在每小题所给出的四个选项中,只有一项是正确的,请用2B铅笔把答题卡上相应的选项标号涂黑) 1.(3分)下列等式正确的是()A.()2=3 B.=﹣3 C.=3 D.(﹣)2=﹣32.(3分)函数y=中自变量x的取值范围是()A.x≠﹣4 B.x≠4 C.x≤﹣4 D.x≤43.(3分)下列运算正确的是()A.a2+a3=a5 B.(a2)3=a5C.a4﹣a3=a D.a4÷a3=a4.(3分)下面每个图形都是由6个边长相同的正方形拼成的图形,其中能折叠成正方体的是()A.B.C.D.5.(3分)下列图形中的五边形ABCDE都是正五边形,则这些图形中的轴对称图形有()A.1个 B.2个 C.3个 D.4个6.(3分)已知点P(a,m),Q(b,n)都在反比例函数y=的图象上,且a <0<b,则下列结论一定正确的是()A.m+n<0 B.m+n>0 C.m<n D.m>n7.(3分)某商场为了解产品A的销售情况,在上个月的销售记录中,随机抽取了5天A产品的销售记录,其售价x(元/件)与对应销量y(件)的全部数据如下表:则这5天中,A 产品平均每件的售价为( )A .100元B .95元C .98元D .97.5元8.(3分)如图,矩形ABCD 中,G 是BC 的中点,过A 、D 、G 三点的圆O与边AB 、CD 分别交于点E 、点F ,给出下列说法:(1)AC 与BD 的交点是圆O 的圆心;(2)AF 与DE 的交点是圆O 的圆心;(3)BC 与圆O 相切,其中正确说法的个数是( )A .0B .1C .2D .39.(3分)如图,已知点E 是矩形ABCD 的对角线AC 上的一动点,正方形EFGH 的顶点G 、H 都在边AD 上,若AB=3,BC=4,则tan ∠AFE 的值( )A .等于B .等于C .等于D .随点E 位置的变化而变化10.(3分)如图是一个沿3×3正方形方格纸的对角线AB 剪下的图形,一质点P 由A 点出发,沿格点线每次向右或向上运动1个单位长度,则点P 由A 点运动到B 点的不同路径共有( )A .4条B .5条C .6条D .7条二、填空题(本大题共8小题,每小题2分,共16分。
无锡市2018中考数学模拟试卷
无锡市2018中考数学模拟试卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是正确的,请把正确的选项填在相应的括号内)1.﹣2的相反数是A.2 B.﹣2 C.D.2.下列图形中,既是轴对称图形,又是中心对称图形的是A B C D3.函数中自变量x的取值范围是A.B.C.D.4.下列运算中,正确的是A.B.C.D.5.一个多边形的内角和等于它的外角和,则这个多边形的边数为A.3 B.4 C.5 D.66.已知圆锥的高为4,底面圆的半径为3,则该圆锥的全面积为A.15πB.24πC.21πD.20π7.如图,在菱形ABCD中,点M,N在对角线AC上,且ME⊥AD于E,NF⊥AB于F,若ME=MN=2,NF=3,则AN的值为A.3 B.4 C.5 D.6第7题第8题第10题8.如图,已知⊙O的直径AB,BC是⊙O的弦,过点C的切线交BA的延长线于点D,且∠BCD=105°,OD=2,则AD的长是A.B.C.D.9.已知反比例函数的图像与一次函数的图像有且只有一个交点P,则P的横坐标m的取值范围是A.B.C.D.10.如图,在矩形ABCD中,对角线BD的长为1,点P是线段BD上的一点,连结CP,将△BCP沿着直线CP翻折,若点B落在边AD上的点E处,且EP∥AB,则AB的长等于A.B.C.D.二、填空题(本大题共8小题,每小题2分,本大题共16分.不需要写出解答过程,只需把答案直接填写在相应的横线上)11.因式分解:=▲.12.2月7日晚,据央视数据显示,《中国诗词大会》这个节目全部10期累计收看观众达到11.63亿人次,其中11.63亿用科学记数法可表示为▲.13.分式方程的解是▲.14.某公司全体员工年薪的具体情况如下表:年薪/万元30 14 9 6 4 3.5 3员工数/人 1 1 1 2 7 6 2则该公司全体员工年薪的平均数比中位数多▲万元.15.命题“若m<n,则m²<n²”的逆命题是▲命题(填“真”或“假”).16.如图,点A、B、C、D在⊙O上,OB⊥AC,连结OC,若∠BOC=58°,则∠ADB的度数为▲.17.如图所示,正方形ABCD的顶点A、B与正方形EFGH的顶点G、H同在一段抛物线上,且抛物线的顶点在CD上,若正方形ABCD的边长为10,则正方形EFGH的边长为▲.18.在△ABC中,∠ABC=60°,BC=8,AC=10,点D、E在AB、AC边上,且AD=CE,则CD+BE的最小值为▲.第16题第17题第18题三、解答题(本大题共10小题,共84分.请在试卷相应的区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(本题满分8分)计算与化简:(1);(2).20.(本题满分8分)(1)解不等式:;(2)解方程:.21.(本题满分6分)如图,已知在△ABC中,∠B=45°,点D是BC边的中点,DE⊥BC于点D,交AB于点E,连结CE.(1)求∠AEC的度数;(2)请你判断AE、BE、AC三条线段之间的等量关系,并证明你的结论.22.(本题满分8分)已知:如图,在△ABC中,∠C=90°,请利用没有刻度的直尺和圆规,按下列要求作图(注:不写作法,保留作图痕迹,对图中涉及到的点用字母进行标注).(1)作出斜边AB边上的高CD;(2)过点A作一射线分别交线段CD、线段CB于点P、点Q,且使得CP=CQ;(3)若CA=4,CB=3,则CP=▲.23.(本题满分8分)我国二孩政策的落实引起了全社会的关注,某校学生数学兴趣小组为了了解本校同学对父母生育二孩的态度,随机对本校部分同学进行了问卷调查,同学们对父母生育二孩所持的态度,分别为“非常赞同”、“赞同”、“无所谓”、“不赞同”等四种态度,现将调查统计结果制成了如图两幅统计图.请结合两幅统计图,回答下列问题:(1)在这次问卷调查中一共随机调查了▲名学生;(2)请补全条形统计图和扇形统计图;(3)若该校有3000名学生,请你估计该校学生对父母生育二孩持“赞同”态度的是多少名学生?24.(本题满分8分)甲、乙、丙三人到东方大厦购物,他们同时在该商场的楼上车库等电梯,三人都任意从1至3层的某一层出电梯.(1)求甲、乙两人从同一层楼出电梯的概率(请用“画树状图”或“列表”等方法写出分析过程);(2)甲、乙、丙三人从同一层楼出电梯的概率为▲.25.(本题满分8分)无锡市为了节约用水,规定:每户每月用水量不超过最低限量a m3时,只付基本费8元和定额损耗费c元(c≤5);若用水量超过a m3时,除了付基本费和损耗费外,超过部分每1 m3付b元的超额费.萌萌家今年一月份、二月份和三月份的用水量和支付费用如下表所示:月份用水量(m3)交水费(元)一月份9 9二月份15 19三月份22 33(1)设每月用水量为x m3,支付水费为y元,请直接写出y关于x函数表达式(用a、b、c表示);(2)根据表格中的数据,求a、b、c的值;(3)萌萌家今年四月份的用水量30 m3,应交水费用多少元?26.(本题满分10分)经过原点的抛物线与x轴的另一个交点为A,过点P(1,m)作直线PM⊥x轴于M,交抛物线于B,点B关于抛物线对称轴的对称点为C(B、C不重合),连结CB,CP.(1)若△PBC面积为4,求抛物线的解析式;(2)若将PC绕P旋转90°,点C恰好落在坐标轴上,求抛物线的解析式.27.(本题满分10分)对于平面上两点A,B,给出如下定义:以点A或B为圆心,AB长为半径的圆称为点A,B的“限定圆”.如图为点A,B的“限定圆”的示意图.(1)已知点A的坐标为(﹣1,0),点B的坐标为(4,4),则点A,B的“限定圆”的面积为▲;(2)已知点A的坐标为(0,0),若直线上只存在一个点B,使得点A,B的“限定圆”的面积为16π,求点B的坐标;(3)已知点A在以P(m,0)为圆心,1为半径的圆上,点B在直线上,若要使所有点A,B的“限定圆”的面积都不小于16π,请求出m的范围.28.(本题满分10分)如图,在平面直角坐标系中,O为原点,平行四边形OABC的顶点A在x轴的正半轴上,OA=2,OC=1,且OC⊥AC,点P、Q分别是边BC,边AB上的点,连结AC、PQ,点B1是点B关于PQ的对称点.(1)当点Q与点A重合时,且点B1落在OA上,求点B1的坐标;(2)过点B1作B1F∥x轴,与对角线AC、边OC分别交于点E、点F.若B1E:B1F=1:3,点B1的横坐标为m,求点B1的纵坐标,并直接写出m的最大值与最小值.参考答案一、选择题题号1 2 3 4 5 6 7 8 9 10答案A D D C B B D C B A二、填空题题号11 12答案题号13 14答案2题号15 16答案假29°题号17 18答案三、解答题19.(1)8;(2).20.(1);(2),.21.(1)90°;(2)DE的长为.22.(1)垂规作图作高;(2)垂规作图作∠BAC的平分线;(3).23.(1)50;(2)补全统计图,赞同标20,扇形统计图中赞同40%,非常赞同20%,无所谓30%;(3)1200名.24.(1);(2).25.(1);(2)a=10,b=2,c=1;(3)49元.26.(1);(2).27.(1)41π;(2)( ,)或( ,);(3)m≤﹣2或m≥14.28.(1)(1,0);(2);。
江苏省无锡市2018年中考数学试题(解析版)
A. 0 B. 1 C. 2 D. 3 【答案】C 【解析】分析:连接 DG、AG,作 GH⊥AD 于 H,连接 OD,如图,先确定 AG=DG,则 GH 垂直 平分 AD,则可判断点 O 在 HG 上,再根据 HG⊥BC 可判定 BC 与圆 O 相切;接着利用 OG=OD 可 判断圆心 O 不是 AC 与 BD 的交点;然后根据四边形 AEFD 为⊙O 的内接矩形可判断 AF 与 DE 的 交点是圆 O 的圆心. 详解:连接 DG、AG,作 GH⊥AD 于 H,连接 OD,如图,
售价 x(元/件) 90
95
100
105
110
销量 y(件) 110
100
80
60
50
则这 5 天中,A 产品平均每件的售价为( ) A. 100 元 B. 95 元 C. 98 元 D. 97.5 元 【答案】C 【解析】分析:根据加权平均数列式计算可得. 详解:由表可知,这 5 天中,A 产品平均每件的售价为
学¥科¥网...学¥科¥网...学¥科¥网...学¥科¥网...学¥科¥网...学¥科¥网...学¥科¥网...学 ¥科¥网...学¥科¥网...学¥科¥网...学¥科¥网...学¥科¥网...学¥科¥网... 3. 下列运算正确的是( ) A. a2+a3=a5 B. (a2)3=a5 C. a4﹣a3=a D. a4÷a3=a 【答案】D
A. 等于 B. 等于
C. 等于 D. 随点 E 位置的变化而变化 【答案】A 【解析】分析:根据题意推知 EF∥AD,由该平行线的性质推知△AEH∽△ACD,结合该相似三角 形的对应边成比例和锐角三角函数的定义解答. 详解:∵EF∥AD, ∴∠AFE=∠FAG, ∴△AEH∽△ACD,
2018年江苏省无锡市中考数学试卷 真题答案(考点分析篇)
2018年江苏省无锡市中考数学试卷(真题答案)考点分析及讲解一、选择题(本大题共10小题,每小题3分,共30分。
)1.(3分)下列等式正确的是()A.()2=3 B.=﹣3 C.=3 D.(﹣)2=﹣3【分析】此题属于简单题。
根据二次根式的性质把各个二次根式化简,判断即可.【解答】选:A.【点评】本题考查的是二次根式的化简,掌握:=|a|是解题的关键.2.(3分)函数y=中自变量x的取值范围是()A.x≠﹣4 B.x≠4 C.x≤﹣4 D.x≤4【分析】此题属于简单题。
根据分母不等于0列式计算即可得解.【解答】选:B.【点评】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.3.(3分)下列运算正确的是()A.a2+a3=a5 B.(a2)3=a5C.a4﹣a3=a D.a4÷a3=a【分析】此题属于简单题。
根据合并同类项法则,把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;幂的乘方,底数不变指数相乘;同底数幂相除,底数不变指数相减,对各选项分析判断后利用排除法求解.【解答】选:D.【点评】本题考查合并同类项、幂的乘方、同底数幂的除法,熟练掌握运算性质和法则是解题的关键.4.(3分)下面每个图形都是由6个边长相同的正方形拼成的图形,其中能折叠成正方体的是()A.B.C.D.【分析】此题属于简单题。
利用正方体及其表面展开图的特点解题.能组成正方体的“一,四,一”“三,三”“二,二,二”“一,三,二”的基本形态要记牢.【解答】选:C.【点评】本题主要考查展开图折叠成几何体的知识点,熟练正方体的展开图是解题的关键.5.(3分)下列图形中的五边形ABCDE都是正五边形,则这些图形中的轴对称图形有()A.1个 B.2个 C.3个 D.4个【分析】此题属于简单题。
江苏省无锡市2018年中考数学试卷及答案解析
2018年江苏省无锡市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分。
在每小题所给出的四个选项中,只有一项是正确的,请用2B铅笔把答题卡上相应的选项标号涂黑)1.(3分)下列等式正确的是()A.()2=3 B .=﹣3 C .=3 D.(﹣)2=﹣32.(3分)函数y=中自变量x的取值范围是()A.x≠﹣4 B.x≠4 C.x≤﹣4 D.x≤43.(3分)下列运算正确的是()A.a2+a3=a5 B.(a2)3=a5C.a4﹣a3=a D.a4÷a3=a4.(3分)下面每个图形都是由6个边长相同的正方形拼成的图形,其中能折叠成正方体的是()A .B .C .D .5.(3分)下列图形中的五边形ABCDE都是正五边形,则这些图形中的轴对称图形有()A.1个 B.2个 C.3个 D.4个6.(3分)已知点P(a,m),Q(b,n)都在反比例函数y=的图象上,且a<0<b,则下列结论一定正确的是()A.m+n<0 B.m+n>0 C.m<n D.m>n7.(3分)某商场为了解产品A的销售情况,在上个月的销售记录中,随机抽取了5天A产品的销售记录,其售价x(元/件)与对应销量y(件)的全部数据如下表:则这5天中,A产品平均每件的售价为()A.100元B.95元C.98元D.97.5元8.(3分)如图,矩形ABCD中,G是BC的中点,过A、D、G三点的圆O与边AB、CD分别交于点E、点F,给出下列说法:(1)AC与BD的交点是圆O的圆心;(2)AF与DE的交点是圆O 的圆心;(3)BC与圆O相切,其中正确说法的个数是()A.0 B.1 C.2 D.39.(3分)如图,已知点E是矩形ABCD的对角线AC上的一动点,正方形EFGH的顶点G、H都在边AD上,若AB=3,BC=4,则tan∠AFE的值()A.等于B.等于C.等于D.随点E位置的变化而变化10.(3分)如图是一个沿3×3正方形方格纸的对角线AB剪下的图形,一质点P由A点出发,沿格点线每次向右或向上运动1个单位长度,则点P由A点运动到B点的不同路径共有()A.4条 B.5条 C.6条 D.7条二、填空题(本大题共8小题,每小题2分,共16分。
2018年江苏省无锡市中考数学试卷解析版
2018年江苏省无锡市中考数学试卷解析版一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是正确的,请把正确的选项填在相应的括号内)1.(3分)﹣3的绝对值是()A.−13B.﹣3C.13D.3【解答】解:﹣3的绝对值是3.故选:D.2.(3分)9的算术平方根是()A.3B.﹣3C.±3D.9【解答】解:9的算术平方根是3,故选:A.3.(3分)若一个多边形的每一个外角都是40°,则这个多边形是()A.七边形B.八边形C.九边形D.十边形【解答】解:360÷40=9,即这个多边形的边数是9,故选:C.4.(3分)下列计算正确的是()A.3a2﹣a2=3B.(a2)3=a6C.a2•a3=a6D.a6÷a2=a3【解答】解:A、3a2﹣a2=2a2,故此选项错误;B、(a2)3=a6,正确;C、a2•a3=a5,故此选项错误;D、a6÷a2=a4,故此选项错误;故选:B.5.(3分)有6个相同的小正方体搭成的几何体如图所示,则它的俯视图是()A.B.C.D.【解答】解:该几何体的俯视图为故选:A.6.(3分)如图,正方形ABCD中,E是对角线AC上一点,且AE=AB,则∠AEB的度数为()A.45°B.60°C.67.5°D.70°【解答】解:∵四边形ABCD是正方形,∴∠BAC=45°,∵AE=AB,∴∠BEA=∠ABE=180°−45°2=67.5°.故选:C.7.(3分)若3a﹣2b=2,则代数式2b﹣3a+1的值等于()A.﹣1B.﹣3C.3D.5【解答】解:当3a﹣2b=2时,原式=﹣(3a﹣2b)+1=﹣2+1=﹣1,故选:A.8.(3分)蚊香长度y (厘米)与燃烧时间t (小时)之间的函数表达式为y =105﹣10t .则蚊香燃烧的速度是( ) A .10厘米/小时 B .105厘米/小时C .10.5厘米/小时D .不能确定【解答】解:设时间t 1时蚊香长度为y 1,时间t 2时蚊香长度为y 2 ∴y 1=105﹣10t 1,y 2=105﹣10t 2则:速度=(y 1﹣y 2)÷(t 1﹣t 2)=[(105﹣10t 1)﹣(105﹣10t 2)]÷(t 1﹣t 2)=﹣10∴蚊香燃烧的速度是10厘米/小时 故选:A .9.(3分)若关于x 的不等式3x +m ≥0有且仅有两个负整数解,则m 的取值范围是( ) A .6≤m ≤9B .6<m <9C .6<m ≤9D .6≤m <9【解答】解:∵3x +m ≥0, ∴x ≥−m3,∵不等式3x +m ≥0有且仅有两个负整数解, ∴﹣3<−m3≤−2. ∴6≤m <9, 故选:D .10.(3分)如图,矩形ABCD 中,AB =4,AD =2,E 为边AD 上一个动点,连结BE ,取BE 的中点G ,点G 绕点E 逆时针旋转90°得到点F ,连结CF ,则△CEF 面积的最小值是( )A .4B .154C .3D .114【解答】解:过点F 作AD 的垂线交AD 的延长线于点H ,∵∠A =∠H =90°,∠FEB =90°, ∴∠FEH =90°﹣∠BEA =∠EBA , ∴△FEH ∽△EBA , ∴HF AE=HE AB=EF BE=12,设AE =x , ∵AB =4,AD =2,∴HF =12x ,EH =2,DH =x ,∴△CEF 面积=12×(12x +4)×x +12×4×(2−x)−12×2×12x =14x 2−12x +4=14(x −1)2+154, ∴当x =1时,△CEF 面积的最小值是154.故选:B .二、填空题(本大题共8小题,每小题2分,本大题共16分.不需要写出解答过程,只需把答案直接填写在相应的横线上)11.(2分)在函数y =√x −1中,自变量x 的取值范围是 x ≥1 . 【解答】解:根据题意得:x ﹣1≥0, 解得:x ≥1. 故答案为:x ≥1.12.(2分)因式分解:x 3﹣4x = x (x +2)(x ﹣2) . 【解答】解:x 3﹣4x =x (x 2﹣4) =x (x +2)(x ﹣2). 故答案为:x (x +2)(x ﹣2).13.(2分)我国某铁路年输送货物的能力是11 000 000吨,这个数据用科学记数法可记为1.1×107 .【解答】解:11 000 000吨,这个数据用科学记数法可记为1.1×107. 故答案为:1.1×107.14.(2分)数据﹣3,﹣1,0,2,4的极差是 7 . 【解答】解:由题意可知,极差为4﹣(﹣3)=7. 故答案为:7.15.(2分)若圆锥的底面半径为3,母线长为4,则这个圆锥的侧面积是 12π . 【解答】解:圆锥的侧面积=2π×3×4÷2=12π. 故答案为:12π.16.(2分)某种药品经过两次降价,由每盒50元调至36元,若第二次降价的百分率是第一次的2倍.设第一次降价的百分率为x ,由题意可列得方程: 50(1﹣x )(1﹣2x )=36 .【解答】解:设第一次降价的百分率为x ,则第二次降价的百分率为2x , 依题意,得:50(1﹣x )(1﹣2x )=36. 故答案为:50(1﹣x )(1﹣2x )=36.17.(2分)已知点A 、B 都在反比例函数y =6x(x >0)的图象上,其横坐标分别是m 、n (m <n ).过点A 分别向x 轴、y 轴作垂线,垂足分别是C 、D ;过点B 分别向x 轴、y 轴作垂线,垂足分别是E 、F ,AC 与BF 交于点P .当点P 在线段DE 上、且m (n ﹣2)=3时,m 的值等于 1+√72.【解答】解:如图,A (m ,6m),B (n ,6n),则P (m ,6n),∵点P 在线段DE 上,AD ∥CE , ∴△ADP ∽△CEP , ∴AD CE=AP PC,即mn−m=6m −6n 6n, ∴m 2=(n ﹣m )2, 而n >m >0,∴m =n ﹣m ,即n =2m ,把n =2m 代入m (n ﹣2)=2得m (2m ﹣2)=3,整理得2m 2﹣2m ﹣3=0,解得m 1=1+√72,m 2=1−√72(舍去), 即m 的值为1+√72.故答案为1+√72.18.(2分)如图,点A 的坐标是(a ,0)(a <0),点C 是以OA 为直径的⊙B 上一动点,点A 关于点C 的对称点为P .当点C 在⊙B 上运动时,所有这样的点P 组成的图形与直线y =−13x ﹣1有且只有一个公共点,则a 的值等于 −3√1010 .【解答】解:如图,连接BC ,OD ,设直线y =−13x ﹣1交x 轴于点E (﹣3,0),交y 轴于点F (0,﹣1),∵AC =CD ,AB =OB , ∴OD =2BC =﹣a ,∴点D 的运动轨迹是以O 为圆心﹣a 为半径的圆,当⊙O 与直线y =−13x ﹣1相切时,点P 组成的图形与直线y =−13x ﹣1有且只有一个公共点,设切点为G ,连接OG . 在Rt △EOF 中,∵OG ⊥EF ,EF =√12+32=√10,12•OE •OF =12•EF •OG ,∴OG =3√1010, ∴a =−3√1010, 故答案为:−3√1010. 三、解答题(本大题共10小题,共84分.请在试卷相应的区域内作答,解答时应写出文字说明、证明过程或演算步骤) 19.(8分)计算:(1)tan60°+(3−√3)−12; (2)(2x ﹣1)2﹣(x +1)(x ﹣1). 【解答】解:(1)tan60°+(3−√3)−12 =√3+3−√3−12=212;(2)(2x ﹣1)2﹣(x +1)(x ﹣1) =4x 2﹣4x +1﹣x 2+1 =3x 2﹣4x +2.20.(8分)解方程(组): (1)1x−2=1−x 2−x−3;(2){2x +3y =44x +4y =42【解答】解:(1)两边都乘以x ﹣2,得:1=x ﹣1﹣3(x ﹣2), 解得:x =2,检验:x =2时,x ﹣2=0, ∴x =2是分式方程的增根, 则原分式方程无解.(2){2x +3y =44①x +4y =42②,②×2﹣①,得:5y =40, 解得y =8,将y =8代入②,得:x +32=42, 解得:x =10,则方程组的解为{x =10y =8.21.(6分)如图,已知五边形ABCDE 是正五边形,连结AC 、AD .证明:∠ACD =∠ADC .【解答】证明:∵正五边形ABCDE 中, ∴AB =AE =BC =ED ,∠B =∠E , 在△ABC 和△AED 中, {AB =AE ∠B =∠E BC =ED, ∴△ABC ≌△AED (SAS ), ∴AC =AD , ∴∠ACD =∠ADC .22.(6分)某市教育局组织全市中小学教师开展“请千家”活动.活动过程中,教有局随机抽取了近两周家访的教师人数及家访次数,将采集到的全部数据按家访次数分成五类,由甲、乙两人分别绘制了下面的两幅统计图(图都不完整).请根据以上信息,解答下列问题:(1)请把这幅条形统计图补充完整(画图后请标注相应的数据);(2)在采集到的数据中,近两周平均每位教师家访 3.24次;(3)若该市有12000名教师,则近两周家访不少于3次的教师约有9120人.【解答】解:(1)∵被调查的总人数为54÷36%=150(人),则家访4次的人数为150×28%=42(人),补全图形如下:(2)在采集到的数据中,近两周平均每位教师家访1×6+2×30+3×54+4×42+5×18150=3.24(次),故答案为:3.24;(3)近两周家访不少于3次的教师约有12000×54+42+18150=9120(人),故答案为:9120.23.(8分)某校4月份八年级的生物实验考查,有A、B、C、D四个考查实验,规定每位学生只参加其中一个实验的考查,并由学生自己抽签决定具体的考查实验.小明、小丽都参加了本次考查.(1)小丽参加实验A考查的概率是14;(2)用列表或画树状图的方法求小明、小丽都参加实验A考查的概率.【解答】解:(1)小丽参加实验A 考查的概率是14,故答案为:14;(2)列表如下:A B C D A AA BA CA DA B AB BB CB DB C AC BC CC DC DADBDCDDD所有等可能的情况有16种,其中小明、小丽都参加实验A 考查的只有1种情况, 所以小明、小丽都参加实验A 考查的概率为116.24.(10分)如图,在Rt △ABC 中,∠C =90°,AD 是△ABC 的角平分线,点O 在边AB 上.过点A 、D 的圆的圆心O 在边AB 上,它与边AB 交于另一点E . (1)试判断BC 与圆O 的位置关系,并说明理由; (2)若AC =6,sin B =35,求AD 的长.【解答】解:(1)BC 与圆O 相切, 理由如下:如图,连接OD∵OA =OD∴∠ODA=∠OAD,∵AD平分∠CAB∴∠CAD=∠DAO∴∠CAD=∠ODA∴DO∥AC∵AC⊥CD∴OD⊥BC,且D在圆O上,∴BC与圆O相切(2)在Rt△ABC中,∵AC=6,sin B=3 5,∴AB=10,BC=8在Rt△BDO中,sin B=35=DOBO=DOAB−DO,∴30=8DO∴DO=154=AO∴BO=AB﹣AO=25 4∴BD=√BO2−DO2=5∴CD=BC﹣BD=3在Rt△ACD中,AD=√AC2+CD2=√9+36=3√525.(8分)A商场从某厂以75元/件的价格采购一种商品,售价是100元/件.厂家与商场约定:若商场一次性采购达到或超过400件,厂家按每件5元返利给A商场.商场没有售完的,可以以65元/件退还给厂家.设A商场售出该商品x件,问:A商场对这种商品的销量至少要多少时,他们的获利能达到9600元?【解答】解:设A商场售出该商品x件.①当A商城的采购量小于400件且完全销售完时,有(100﹣75)x≥9600,解得:x≥384,∴当购进的商品完全销售完时,商城对这种商品的销量至少要384件;②当A商城的采购量小于400件且没有销售完时,有100x﹣399×75≥9600,解得:x≥395.25,∵x为正整数,∴x ≥396.∴当购进的商品少于400件且未全部销售完时,商城对这种商品的销量至少要396件; ③当A 商城的采购量等于400件时,有100x ﹣400×75+65(400﹣x )+400×5≥9600, 解得:x ≥33137, ∵x 为正整数,∴x ≥332,∴当A 商城的采购量等于400件时,商城对这种商品的销量至少要332件;④当A 商城的采购量大于400件时,销售量必须大于332件,才能保证获利达到9600元.答:当A 商场购进这种商品400件且销量至少是332件时,他们的获利能达到9600元.26.(10分)如图,∠AOB =60°,点P 为射线OA 上的一动点.过点P 作PC ⊥OB 于点C .点D 在∠AOB 内,且满足∠APD =∠OPC ,DP +PC =10.(1)当PC =6时,求点D 到OB 的距离;(2)在射线OA 上是否存在一定点M ,使得MD =MC ?若存在,请用直尺(不带刻度)和圆规作出点M (不必写作法,但要保留作图痕迹),并求OM 的长;若不存在,说明理由.【解答】解:(1)作DH ⊥OB 于H ,PE ⊥DH 于E ,如图1,∵DP +PC =10,PC =6,∴PD =4,∵∠AOB =60°,∴∠OPC =∠APD =30°,∴∠DPE =30°,∴DE =12PD =2,易得四边形PCHE为矩形,∴EH=PC=6,∴DH=DE+EH=2+6=8,即点D到OB的距离为8;(2)存在.如图2,延长CP到D′,使PD′=PD,则CD′=PC+PD=10,作CD′的垂直平分线交OA于M,则点M为所作;作MN⊥OB于N,如图2,则MN=12×10=5,在Rt△OMN中,ON=√33MN=5√33,∴OM=2ON=10√3 3.27.(10分)如图,在△ABC中,∠ACB=90°,AC=m,BC=n,m>n,点P是边AB上一点,连结CP,将△ACP沿CP翻折得到△QCP.(1)若m=4,n=3,且PQ⊥AB,求BP的长;(2)连结BQ,若四边形BCPQ是平行四边形,求m与n之间的关系式.【解答】解:(1)如图,作CH ⊥AB 于H .由翻折的性质可知:∠APC =∠QPC ,∵PQ ⊥P A ,∴∠APQ =90°,∴∠APC =∠QPC =135°,∴∠BPC +∠QPB =135°,∵∠QPB =90°,∴∠BPC =45°,∵CH ⊥AB ,∴CH =PH ,在Rt △ABC 中,AB =√AC 2+BC 2=√32+42=5,∵12•AB •CH =12•AC •BC , ∴CH =125,BH =√BC 2−CH 2=95,∴PB =PH +BH =125+95=215.(2)如图2中,连接BQ .由翻折不变性可知:P A=PQ,∠QPC=∠APC,∵四边形BCPQ是平行四边形,∴PQ=BC=P A=n,PQ∥BC,∴∠QPC+∠PCB=180°,∵∠BPC+∠APC=180°,∴∠PCB=∠BPC,∴PB=BC=n,∴AP=PB=n,AB=2n,在Rt△ABC中,则有(2n)2=m2+n2,∴m2=3n2,∵m>0.n>0,∴m=√3n.28.(10分)已知:如图,在平面直角坐标系中,点P(√3m,m)(m>0),过点P的直线AB与x轴正半轴交于点A,与直线y=√3x交于点B.(1)当m=3且∠OAB=90°时,求BP的长度;(2)若点A的坐标是(6,0),且AP=2PB,求经过点P且以点B为顶点的抛物线的函数表达式.【解答】解:(1)由题意得:OA =√3m =3√3,将x =3√3代入y =√3x ,可得:y =9,故:点B 的坐标(3√3,9),∴BP =6;(2)过点B 作BC ⊥OA 于点C ,过点P 作PD ⊥OA ,由题意得:∠BOC =60°,∵PD ∥BC ,∴CD :DA =BP :P A =1:2,PD :BC =P A :PB =2:3,∵PD =m ,OD =√3m ,∴BC =32m ,在Rt △OBC 中,OC =√32m ,∴CD =√32m ,AD =√3m ,∴OA =√32m +√32m +√3m =6,解得:m =√3,∴点B (32,3√32),P (3,√3),故抛物线表达式为:y =a (x −32)2+3√32, 将点P 坐标代入上式并解得:a =−2√39, 故抛物线的表达式为:y =−2√39(x −32)2+3√32.2018年江苏省无锡市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是正确的,请把正确的选项填在相应的括号内)1.(3分)﹣3的绝对值是()A.−13B.﹣3C.13D.32.(3分)9的算术平方根是()A.3B.﹣3C.±3D.93.(3分)若一个多边形的每一个外角都是40°,则这个多边形是()A.七边形B.八边形C.九边形D.十边形4.(3分)下列计算正确的是()A.3a2﹣a2=3B.(a2)3=a6C.a2•a3=a6D.a6÷a2=a3 5.(3分)有6个相同的小正方体搭成的几何体如图所示,则它的俯视图是()A.B.C.D.6.(3分)如图,正方形ABCD中,E是对角线AC上一点,且AE=AB,则∠AEB的度数为()A.45°B.60°C.67.5°D.70°7.(3分)若3a﹣2b=2,则代数式2b﹣3a+1的值等于()A .﹣1B .﹣3C .3D .58.(3分)蚊香长度y (厘米)与燃烧时间t (小时)之间的函数表达式为y =105﹣10t .则蚊香燃烧的速度是( )A .10厘米/小时B .105厘米/小时C .10.5厘米/小时D .不能确定 9.(3分)若关于x 的不等式3x +m ≥0有且仅有两个负整数解,则m 的取值范围是( )A .6≤m ≤9B .6<m <9C .6<m ≤9D .6≤m <910.(3分)如图,矩形ABCD 中,AB =4,AD =2,E 为边AD 上一个动点,连结BE ,取BE 的中点G ,点G 绕点E 逆时针旋转90°得到点F ,连结CF ,则△CEF 面积的最小值是( )A .4B .154C .3D .114二、填空题(本大题共8小题,每小题2分,本大题共16分.不需要写出解答过程,只需把答案直接填写在相应的横线上)11.(2分)在函数y =√x −1中,自变量x 的取值范围是 .12.(2分)因式分解:x 3﹣4x = .13.(2分)我国某铁路年输送货物的能力是11 000 000吨,这个数据用科学记数法可记为 .14.(2分)数据﹣3,﹣1,0,2,4的极差是 .15.(2分)若圆锥的底面半径为3,母线长为4,则这个圆锥的侧面积是 .16.(2分)某种药品经过两次降价,由每盒50元调至36元,若第二次降价的百分率是第一次的2倍.设第一次降价的百分率为x ,由题意可列得方程: .17.(2分)已知点A 、B 都在反比例函数y =6x (x >0)的图象上,其横坐标分别是m 、n (m<n ).过点A 分别向x 轴、y 轴作垂线,垂足分别是C 、D ;过点B 分别向x 轴、y 轴作垂线,垂足分别是E 、F ,AC 与BF 交于点P .当点P 在线段DE 上、且m (n ﹣2)=3时,m 的值等于 .18.(2分)如图,点A 的坐标是(a ,0)(a <0),点C 是以OA 为直径的⊙B 上一动点,点A 关于点C 的对称点为P .当点C 在⊙B 上运动时,所有这样的点P 组成的图形与直线y =−13x ﹣1有且只有一个公共点,则a 的值等于 .三、解答题(本大题共10小题,共84分.请在试卷相应的区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(8分)计算:(1)tan60°+(3−√3)−12;(2)(2x ﹣1)2﹣(x +1)(x ﹣1).20.(8分)解方程(组):(1)1x−2=1−x 2−x −3;(2){2x +3y =44x +4y =4221.(6分)如图,已知五边形ABCDE 是正五边形,连结AC 、AD .证明:∠ACD =∠ADC .22.(6分)某市教育局组织全市中小学教师开展“请千家”活动.活动过程中,教有局随机抽取了近两周家访的教师人数及家访次数,将采集到的全部数据按家访次数分成五类,由甲、乙两人分别绘制了下面的两幅统计图(图都不完整).请根据以上信息,解答下列问题:(1)请把这幅条形统计图补充完整(画图后请标注相应的数据);(2)在采集到的数据中,近两周平均每位教师家访次;(3)若该市有12000名教师,则近两周家访不少于3次的教师约有人.23.(8分)某校4月份八年级的生物实验考查,有A、B、C、D四个考查实验,规定每位学生只参加其中一个实验的考查,并由学生自己抽签决定具体的考查实验.小明、小丽都参加了本次考查.(1)小丽参加实验A考查的概率是;(2)用列表或画树状图的方法求小明、小丽都参加实验A考查的概率.24.(10分)如图,在Rt△ABC中,∠C=90°,AD是△ABC的角平分线,点O在边AB 上.过点A、D的圆的圆心O在边AB上,它与边AB交于另一点E.(1)试判断BC与圆O的位置关系,并说明理由;(2)若AC=6,sin B=35,求AD的长.25.(8分)A商场从某厂以75元/件的价格采购一种商品,售价是100元/件.厂家与商场约定:若商场一次性采购达到或超过400件,厂家按每件5元返利给A商场.商场没有售完的,可以以65元/件退还给厂家.设A商场售出该商品x件,问:A商场对这种商品的销量至少要多少时,他们的获利能达到9600元?26.(10分)如图,∠AOB=60°,点P为射线OA上的一动点.过点P作PC⊥OB于点C.点D在∠AOB内,且满足∠APD=∠OPC,DP+PC=10.(1)当PC=6时,求点D到OB的距离;(2)在射线OA上是否存在一定点M,使得MD=MC?若存在,请用直尺(不带刻度)和圆规作出点M(不必写作法,但要保留作图痕迹),并求OM的长;若不存在,说明理由.27.(10分)如图,在△ABC中,∠ACB=90°,AC=m,BC=n,m>n,点P是边AB上一点,连结CP,将△ACP沿CP翻折得到△QCP.(1)若m=4,n=3,且PQ⊥AB,求BP的长;(2)连结BQ,若四边形BCPQ是平行四边形,求m与n之间的关系式.28.(10分)已知:如图,在平面直角坐标系中,点P(√3m,m)(m>0),过点P的直线AB与x轴正半轴交于点A,与直线y=√3x交于点B.(1)当m=3且∠OAB=90°时,求BP的长度;(2)若点A的坐标是(6,0),且AP=2PB,求经过点P且以点B为顶点的抛物线的函数表达式.。
2018年江苏省无锡市中考数学试卷含答案解析
2018年江苏省无锡市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分。
在每小题所给出的四个选项中,只有一项是正确的,请用2B铅笔把答题卡上相应的选项标号涂黑) 1.(3分)下列等式正确的是()A.()2=3 B.=﹣3 C.=3 D.(﹣)2=﹣32.(3分)函数y=中自变量x的取值范围是()A.x≠﹣4 B.x≠4 C.x≤﹣4 D.x≤43.(3分)下列运算正确的是()A.a2+a3=a5 B.(a2)3=a5C.a4﹣a3=a D.a4÷a3=a4.(3分)下面每个图形都是由6个边长相同的正方形拼成的图形,其中能折叠成正方体的是()A.B.C.D.5.(3分)下列图形中的五边形ABCDE都是正五边形,则这些图形中的轴对称图形有()A.1个 B.2个 C.3个 D.4个6.(3分)已知点P(a,m),Q(b,n)都在反比例函数y=的图象上,且a <0<b,则下列结论一定正确的是()A.m+n<0 B.m+n>0 C.m<n D.m>n7.(3分)某商场为了解产品A 的销售情况,在上个月的销售记录中,随机抽取了5天A 产品的销售记录,其售价x (元/件)与对应销量y (件)的全部数据如下表:则这5天中,A 产品平均每件的售价为( )A .100元B .95元C .98元D .97.5元8.(3分)如图,矩形ABCD 中,G 是BC 的中点,过A 、D 、G 三点的圆O与边AB 、CD 分别交于点E 、点F ,给出下列说法:(1)AC 与BD 的交点是圆O 的圆心;(2)AF 与DE 的交点是圆O 的圆心;(3)BC 与圆O 相切,其中正确说法的个数是( )A .0B .1C .2D .39.(3分)如图,已知点E 是矩形ABCD 的对角线AC 上的一动点,正方形EFGH 的顶点G 、H 都在边AD 上,若AB=3,BC=4,则tan ∠AFE 的值( )A .等于B .等于C .等于D .随点E 位置的变化而变化10.(3分)如图是一个沿3×3正方形方格纸的对角线AB 剪下的图形,一质点P 由A 点出发,沿格点线每次向右或向上运动1个单位长度,则点P 由A 点运动到B 点的不同路径共有( )A.4条 B.5条 C.6条 D.7条二、填空题(本大题共8小题,每小题2分,共16分。
江苏省无锡市2018届数学中考模拟试卷-有参考答案
江苏省无锡市2018届数学中考模拟试卷一、选择题1.的倒数是()A. 2B.C.D.【答案】C【考点】有理数的倒数【解析】【解答】解:-2的倒数是-故答案为:C【分析】求一个数的倒数就是用1除以这个数。
2.式子在实数范围内有意义,则x的取值范围是()A. >1B. ≥1C. <1D. ≤1【答案】B【考点】二次根式有意义的条件【解析】【解答】解:根据题意得x-1≥0解之:x≥1故答案为:B【分析】要使二次根式有意义,则被开方数是非负数,列不等式,求解即可。
3.下列运算正确的是()A. a2·a3﹦a6B. a3+ a3﹦a6C. |-a2|﹦a2D. (-a2)3﹦a6【答案】C【考点】绝对值及有理数的绝对值,同底数幂的乘法,幂的乘方与积的乘方,合并同类项法则及应用【解析】【解答】解:A、a2·a3﹦a5,故A不符合题意;B、a3+ a3﹦2a3,故B不符合题意;C、|-a2|﹦a2,故C符合题意;D、(-a2)3﹦-a6,故D不符合题意;故答案为:C【分析】根据同底数幂相乘,底数不变指数相加,可对A作出判断;利用合并同类项的法则,可对B作出判断;根据绝对值的意义,可对C作出判断;利用幂的乘方的法则,可对D作出判断;即可得出答案。
4.一元二次方程x2+5x+7=0解的情况是()A. 有两个不相等的实数根B. 有两个相等的实数根C. 没有实数根D. 无法确定【答案】C【考点】一元二次方程根的判别式及应用【解析】【解答】解:∵b2-4ac=25-28=-3<0∴此方程没有实数根。
故答案为:C【分析】先求出b2-4ac的值,再根据其值可判断方程根的情况。
5.若二次函数y=(a-1)x2+3x+a2-1的图象经过原点,则a的值必为()A. 1或-1B. 1C. -1D. 0【答案】C【考点】二次函数的定义,二次函数图象上点的坐标特征【解析】【解答】解:∵二次函数y=(a-1)x2+3x+a2-1的图象经过原点∴a2-1=0且a-1≠0解之:a=±1,a≠1∴a=-1故答案为:C【分析】根据二次函数的定义及二次函数的图像经过原点,得出a2-1=0且a-1≠0,即可求出a 的值。
江苏省无锡市新吴区2018年中考数学一模试卷答案_
12017—2018 学年度第二学期九年级期中测试数学试卷参考答案及评分标准一、选择题(每题 3 分)D A C B C B C B AB二、填空题(每题 2 分)11. 312. 2a (a + 2)(a - 2) 13. 8.03⨯10614. 15π15. - 316. 917. -118.三、解答题19. (1)原式= 6 - 2 ⨯ 1-1 .................................................................................... (2 分)2= 4 x + 1 (2)原式= -x + 2 …………………………………………………………………………(4 分) 1 ..................................................................................................(2 分) x + 2= x .............................................................................................................. (4 分) x + 220.(1) x +1 = 2x -14 ...................................................................................................... (2 分)x = 15 ................................................................................................................................... (3 分) 经检验: x = 15 是原方程的根 .................................................. (4 分)1(2)由①式得:x ≥ - …………………………………………………………………………(1 分)2由②式得:x < 4 ................................................................................................. (3 分)1∴ 此不等式组的解集为- 2≤ x < 4 .................................................................................... (4 分)21. (1)图略(条形统计图补到 30 和 70) ......................................... (2 分)(2)126 ....................................................................................................................................... (4 分)24(3)由题意得: 2500 ⨯200= 300 (人) ..................................... (6 分)22.(1)P (小丽抽中“三字经”)=1 ....................................................................................(2 分)4(2)画树状图或列表(略) ................................................... (6 分)所有可能的结果共有 12 种,其中符合要求的结果有 1 种........................ (7 分)故 P (小红抽中“唐诗”且小明抽中“宋词”) =(8 分)1223.(1)图略,以 A 为圆心,AD 长度为半径作弧,与 BC 交于点 E ........................................... (4 分) (2)①图略,作∠EAD 的角平分线,与 CD 交于点 F ...........................................................(6 分)100 ② ..................................................................... (8 分)324. 解:(1)证明:连接 OC .∵CE 是⊙O 的切线,∴∠OCE =90° ...................................... (1 分)∵CE ⊥DF ,∴∠CEA =90°,∴OC ∥AF ,∴∠CAE =∠OCA . ................... (2 分) ∵OC =OA ,∴∠OCA =∠OAC . ............................................. (3 分) ∴∠CAE =∠OAC ,即 AC 平分∠FAB ; .......................................... (4 分)7 2 25(2) 解:连接 BC .∵AB 是⊙O 的直径,∴∠ACB =∠AEC =90°. ....................... (5 分)∵∠CAE =∠OAC ,∴△ACB ∽△AEC , ∴AB AC AC. ........................ (6 分) AE∵AE =1,CE =2,∠AEC =90°,∴ AC= = . ........................... (7 分)5∴ AB =1= 5 , ∴⊙O 的半径为 2. ................................. (8 分)25. (1)解:如图,作 BH ⊥AC ,垂足为 H .在 Rt △BHC 中,sin C =BH BC BH= 1,即 BC =2BH . ................................ (1 分) 2 在 Rt △BHA 中,sinA= = AB BC,即 AB = 2BH . ............................. (2 分)∴thi A = = AB; ........................................................... (3 分)(2)60 或 120; ............................................................. (5 分)(3) 在 Rt △ABC 中,thiA= BC AB .在 Rt △BHA 中,sinA= BH AB. ................... (6 分)在 Rt △BHC 中,sinC= BH BC = 1,即 BC =2BH . ............................... (7 分)2∴thi A =2sin A . ........................................................... (8 分)26.(1)1, C 点表示的实际意义是:甲工作 6 小时后完成任务, 60 ......................................... (3 分) (2)BC 函数关系式: y = 30x - 60 ............................................................................................ (4 分)D (10,0) ............................................................... (5 分) (3)4.5 或 7.5 小时 ........................................................... (7 分)12+ 22( 5)22 2 2 =(4)设丙应在第x小时时开始帮助乙,30080 +30> 2 ,∴x >2,由题意得:30x + (80 +30)(6 -x) = 300 ,.......................... (8 分)x =4.5,则丙应在第4.5 小时时开始帮助乙; ........................... (9 分)丙帮助后y 与x 之间的函数关系的图象如图所示. ....................... (10 分)27. (1)y =x + 2 ............................................................................................................. (2 分)1 + 17 (2)Q1 (0,0)、Q2 (1,1)、Q3 (29 +17,21 - 17) 、Q1(29 -17,2) ................. (6 分)(3)t1 = 1、t2 = 0 、t3 = 1- 、t4 = 3 - …………………………………………(10 分)28. 【解决问题】(1)OC=AE,理由:可证△ABE≌△CBO(SAS) ................... (2 分)(2)OC 的最大值为3 ....................................................................................... (3 分)【灵活运用】如图1,连接BM,∵将△APM 绕着点P 顺时针旋转90°得到△PBN,连接AN,则△APN 是等腰直角三角形,∴PN=PA=2,BN=AM,∵A 的坐标为(2,0),点B 的坐标为(5,0),∴OA=2,OB=5,∴AB=3,332 2 2 2 2 2 2 6 6 ∴线段 AM 长的最大值=线段 BN 长的最大值,∴当 N 在线段 BA 的延长线时,线段 BN 取得最大值,最大值=AB +AN∵AN= AP = 2 ,∴AM 最大值为2 + 3 ; ................................. (5 分)如图 2,过 P 作 PE ⊥ x 轴于 E ,∵△APN 是等腰直角三角形,∴PE =AE = ,∴OE =BO ﹣AB ﹣AE =5﹣3﹣ =2﹣ ,∴P (2﹣ , ).................................................................................................................................................................................................................................................................................................(6 分)【迁移拓展】AC 最大值为2 + 2,最小值为2 - 2………………………………………………(10 分)2 2 2。
2018年无锡中考模拟数学试卷含答案
2018年无锡中考模拟数学试卷含答案 2018.4一、选择题(本大题共8小题,每小题3分,共24分.)1.23-的倒数是( ▲ ) A . 32- B . 32C . 23-D .232.将161000用科学计数法表示为( ▲ ) A .6101610⨯.B .510611⨯.C .410116⨯.D .310161⨯3.下列运算正确的是( ▲ )A==.326a a a =÷ D .2)2(2-=- 4.为参加2016年“无锡市初中毕业生升学体育考试”,小芳同学刻苦训练,在跳绳练习中,测得5次跳绳的成绩(单位:个/分钟)为:150,158,162,158,166.这组数据的众数、中位数依次是( ▲ ) A .158,158B .158,162C .162,160D .160,1605.已知一元二次方程062=--c x x 有一个根为2,则另一个根为( ▲ )A .2B .3C .4D .-86.在△ABC 中,AB =5,BC =6,B 为锐角且B sin =53,则∠C 的正弦值等于( ▲ ) A .56 B .23CD7.已知点),(m A 3-与点),(n B 2是直线b x y +-=32上的两点,则m 与n 的大小关系是( ▲ )A .n m >B .n m =C . n m <D .无法确定8.如图,3个正方形在⊙O 直径的同侧,顶点B 、C 、G 、H 都在⊙O 的直径上,正方形ABCD 的顶点A 在⊙O 上,顶点D 在PC 上,正方形EFGH 的顶点E 在⊙O 上、顶点F 在QG 上,正方形PCGQ 的顶点P 也在⊙O 上.若BC =1,GH =2,则CG 的长为( ▲ )A .512B .6C .12+D .22二、填空题(每小题2分,共20分) 9.12)1(-+-π= ▲ .10.若式子53-x 有意义,则x 的取值范围是 ▲ . 11.分解因式:22363y xy x +-= ▲ .12.如图,线段AD 与BC 相交于点O ,CD AB ∥,若AB ∶CD =2∶3,ABO △的面积是2,则CD O △的面积等于 ▲ . 13.方程x x 5-+xx 21+=0的解是 ▲ . 14.已知圆锥的高是4 cm ,圆锥的底面半径是3 cm ,则该圆锥的侧面积是 ▲ 2cm . 15.若二次函数122+-=mx x y 的图像与x 轴有且只有一个公共点,则=m ▲ .16.如图,AB 与⊙O 相切于点B ,AO 的延长线交⊙O 于点C ,连结BC ,若∠A =36°,则∠C = ▲ °.17.已知点A 是反比例函数)(02>=x xy 图像上的一点,点'A 是点A 关于y 轴的对称点,当'AOA △为直角三角形时,点A 的坐标是 ▲ .18.如图,圆心都在x 轴正半轴上的半圆1O ,半圆2O ,…,半圆n O 与直线x y 33=相切,设半圆1O ,半圆2O ,…,半圆n O 的半径分别是1r ,2r ,…,n r ,则当11=r 时,r 2018= ▲ .三、解答题(10小题,共86分)19.(6分)先化简,再求值:)(n m n n m ++-2)(2,其中2=m ,3=n .20.(8分)解方程和不等式组 (1)332-=-x x x (2) ⎪⎩⎪⎨⎧>+-≥.31222x x x x ,21.(8分)为了解某区九年级学生身体素质情况,该区从全区九年级学生中随机抽取了部分学生进行了一次体育考试科目测试(把测试结果分为四个等级:A 级:优秀;B 级:良好;C 级:及格;D 级:不及格),并将测试结果绘成了如下两幅不完整的统计图.请根据统计图中的信息解答下列问题:⑴ 本次抽样测试的学生人数是 ▲ ;⑵ 图1中∠α的度数是 ▲ ° ,把图2条形统计图补充完整;⑶ 该区九年级有学生3500名,如果全部参加这次体育科目测试,请估计不及格的人数ABCD O第12题第16题为 ▲ .22.(8分)小明在学习反比例函数的图像时,他的老师要求同学们根据“探索一次函数11+=x y 的图像”的基本步骤,在纸上逐步探索函数xy 22=的图像,并且在黑板上写出4个点的坐标:)3423(,A ,)21(,B ,)211(,C ,)1-2-(,D . ⑴ 在A 、B 、C 、D 四个点中,任取一个点,这个点既在直线11+=x y 又在双曲线xy 22=上的概率是多少?⑵ 小明从A 、B 、C 、D 四个点中任取两个点进行描点,求两点都落在双曲线xy 22=上的概率.23.(8分)已知:如图,在△ABC 中,AD ⊥BC ,垂足是D ,E 是线段AD 上的点,且AD =BD ,DE =DC . ⑴ 求证:∠BED =∠C ;⑵ 若AC =13,DC =5,求AE 的长.24.(8分)图1,图2分别是7×6的网格,网格中的每个小正方形的边长均为1,点A 、B 在小正方形的顶点上.请在网格中按照下列要求画出图形:⑴ 在图1中以AB 为边作四边形ABCD (点C 、D 在小正方形的顶点上),使得四边形ABCD 是中ABCE图2体育测试各等级学生人数条形统计图 体育测试各等级学生人数扇形统计图 图1心对称图形,且△ABD 是轴对称图形;⑵ 在图2中以AB 为边作四边形ABEF (点E 、F 在小正方形的顶点上),使得四边形ABEF 是中心对称图形但不是轴对称图形,且tan ∠FAB =3.25.(9分)怡然美食店的A 、B 两种菜品,每份成本均为14元,售价分别为20元、18元,这两种菜品每天的营业额共为1120元,总利润为280元. (1)该店每天卖出这两种菜品共多少份?(2)该店为了增加利润,准备降低A 种菜品的售价,同时提高B 种菜品的售价,售卖时发现,A 种菜品售价每降0.5元可多卖1份;B 种菜品售价每提高0.5元就少卖1份,如果这两种菜品每天销售总份数不变,那么这两种菜品一天的总利润最多是多少?26.(10分)如图,甲、乙两只捕捞船同时从A 港出海捕鱼.甲船以每小时215千米的速度沿北偏西60°方向前进,乙船以每小时15千米的速度东北方向前进.甲船航行2小时到达C 处,此时甲船发现渔具丢在乙船上,于是甲船当即快速(匀速)沿北偏东75°方向追赶,结果两船恰好在B 处相遇.⑴ 甲船从C 处追赶上乙船用了多少时间? ⑵ 甲船追赶上乙船的速度是每小时多少千米?27.(10分)如图,△ABC 中,∠ACB =90°,BC =6,AC =8.点E 与点B 在AC 的同侧,且AE ⊥AC .⑴ 如图1,点E 不与点A 重合,连结CE 交AB 于点P .设AE =x ,AP =y ,求y 关于x 的函数解析式,并写出自变量x 的取值范围;⑵ 是否存在点E ,使△PAE 与△ABC 相似,若存在,求AE 的长;若不存在,请说明理由;A 图2图1⑶ 如图2,过点B 作BD ⊥AE ,垂足为D .将以点E 为圆心,ED 为半径的圆记为⊙E .若点C 到⊙E 上点的距离的最小值为8,求⊙E 的半径.28.(11分)如图,在平面直角坐标系xOy 中,直线y =kx -7与y 轴交于点C ,与x 轴交于点B .抛图1E图2物线y =a 2x +bx +14a 经过B 、C 两点,与x 轴的正半轴交于另一点A ,且OA :OC =2∶7. ⑴ 求抛物线的解析式;⑵ 点D 在线段BC 上,点P 在对称轴右侧的抛物线上,PD =PB .当tan ∠PDB =2时,求点P 的坐标;⑶ 在⑵的条件下,点Q (7,n )在第四象限内,点R 在对称轴右侧的抛物线上,若以点P 、D 、Q 、R 为顶点的四边形为平行四边形,求点Q 、R 的坐标.初三第一次适应性练习数学答案 2018.4一.选择题(本大题有8小题,每小题3分,共24分)二.填空题 (每小题2分,共20分)9.23 10.3≥x 11.23)(y x - 12.4.5 13.3 14.π15 15.22± 16.27° 17.),(22 18.32017 三、解答题(共86分)19.化简求值:⑴原式=222222-n mn n mn m +++ ----------------------------------------------- 2分=223n m + -------------------------------------------------------------- 4分当m =2,3=n 时上式=3322⨯+ --------------------------------------------------------------------- 5分=13 -------------------------------------------------------------------------------- 6分20.⑴ 解方程: 332-=-x x x解: 0)3()3(=---x x x ------------------------------------------------------- 1分0)3)(1(=--x x ------------------------------------------------------- 2分3,121==x x . -----------------------------------------------------4分 ⑵ 解不等式组:⎪⎩⎪⎨⎧>+-≥x x x x 31222 解: 解不等式①得: 2-≥x ----------------------------------------------------- 1分解不等式②得: 1<x ----------------------------------------------------- 2分 ∴ 原不等式组的解集是-2≤x <1. --------------------------------------- 4分21.⑴ 本次抽样测试的人数是40人. ----------------------------------------------------------------- 2分⑵ 图1中α∠=144° -------------------------------------------------------------------------------- 4分图2条形统计图中C 级的人数是8人 -------------------------------------------------------- 6分 ⑶ 估计不及格的人数为175人. ----------------------------------------------------------------- 8分 22.解:⑴点B 与点D 既在直线y =x +1上,又在双曲线y =x 2上 --------------------------- 2′ 因此任取一个点,既在直线又在双曲线上的概率是21----------------------- 4′⑵ 由(1)可得,“从A 、B 、C 、D 四个点中任意挑选两个点进行描点”有6种等可能的情况,分别是:AB ,AC ,AD ,BC ,BD ,CD ------------- 6′ 其中,“两点都落在双曲线x y 22=上”有AB 、AD 、BD 三种情况. ------- 7′∴ P (两点都落在双曲线x y 22=上)=2163=. ----------------------------------- 8′23.证明:∵ AD ⊥BC, ∴ ∠BDE =∠ADC =90°. ---------------------------------------------- 1分∵AD =BD ,DE =DC,∴△BDE ≌△ADC ----------------------------------------------------------------------------- 3分 ∴ ∠BED =∠C. ------------------------------------------------------------------------------- 4分∵ ∠ADC =90°,AC =13,DC =5, ∴AD =12 -------------------------------------- 5分∵ △BDE ≌△ADC, DE =DC =5 ---------------------------------------------------------- 6分∴ AE =AD -DE =12-5=7 --------------------------------------------------------------- 8分24.每个图4分,共8分.图1图2或图1图225.=(6﹣0.5a )(20+a )+(4+0.5a )(40﹣a ) =(﹣0.5a 2﹣4a+120)+(﹣0.5a 2+16a+160) =﹣a 2+12a+280 =﹣(a ﹣6)2+316 当a=6,w 最大,w=316答:这两种菜品每天的总利润最多是316元.26.⑴ 解:过点A 作AD ⊥BC ,垂足为点D. 根据题意可得:△ABC 中,∠CAB =105°,∠ACB =45°, ∠B =30°,AC =302,AD =CD =30,BD =303,AB =60 ------------------------------ 共4分甲船从C 处追赶上乙船用的时间是:(60-15×2)÷15=2 小时 ------------------- 7分 ⑵ 甲船追赶上乙船的速度是:(30+330)÷2=(31515 )千米/小时 ----- 10分27.解:⑴ ∵ AE ⊥AC ,∠ACB =90°∴ AE ∥BC ∴BPAPBC AE = ∵ BC =6,AC =8, ∴ AB =10 ∵ AE =x ,AP =y ∴ yy x -=106∴ y =610+x x(x >0) --------------------------------------------------------------------- 2分 ⑵ 考虑∠ACB =90°,而∠P AE 与∠PEA 都是锐角,因此要使△P AE 与△ABC 相似,只有∠EP A =90°,即CE ⊥AB ,此时△ABC ∽△EAC ,则688=AE ,AE =332.故存在点E ,使△ABC ∽△EAP ,此时AE =332. ------------------------------- 5分 ⑶ 显然点C 必在⊙E 外部,此时点C 到⊙E 上点的距离的最小值为CE -DE . --------------------------------------------------------------------------------- 6分设AE =x .①当点E 在线段AD 上时,ED =x -6,EC =x x -=+-1486 222)14(8x x -=+ 解得:733=x即⊙E 的半径为79. ----------------------------------------------------------------------- 8分 ②当点E 在线段AD 延长线上时, ED =6-x ,EC =286+=+-x x 222)2(8+=+x x 解得:15=x即⊙E 的半径为9.因此⊙E 的半径为9或79. ------------------------------------------------------------- 10分 28.解:⑴ OC =7,OA =2,14a =-7,a =-21将点A (2,0)代入y =-212x +bx -7得 b =29因此抛物线的解析式为y =-212x +29x -7. --------------------------------- 3分⑵ 如图,取BD 中点M ,连结PM ,则PM ⊥BD .作ME ⊥x 轴于点E ,PG ⊥x 轴于点G ,PF ⊥ME 于点F .由∠MBE =45°,可设BE =ME =m ,则BM =2m .由tan ∠PBD =tan ∠PDB =2得,PM =22m ,MF =FP =3m ,因此PG =3m ,BG =m . --------------------------------------------------------------- 3分∵ 点B (7,0) ∴ 可设点P (7+m ,-3m )(m >0) --------------- 5分代入y =-212x +29x -7得 -3m =-21(m +5)·m解得 m =1 因此点P 的坐标为(8,-3). -------------------------------------------------------- 6分⑶ D (5,-2),P (8,-3),Q (7,n ). ----------------------------------------- 7分 ①当PD 为边时,边PR 可以看成由边DQ 平移得到,其中D →P ,Q →R ,因此R (10,n -1),代入y =-212x +29x -7得 n =-11.即此时点Q (7,-11),R (10,-12). ---------------------------------------------------------------------------------- 8分②当PD 为对角线时,边PR 可以看成由边QD 平移得到,其中Q →P ,D →R ,因此R (6,-5-n ),代入y =-212x +29x -7得 n =-7.即此时点Q (7,-7),R (6,2). --------------------------------------------------------------------------------------------- 11分。
2018届江苏省无锡市数学中考模拟试卷(有答案)
江苏省无锡市2018届中考模拟试卷数学一、选择题1.的倒数是()A. 2B.C.D.【答案】C【考点】有理数的倒数【解析】【解答】解:-2的倒数是-故答案为:C【分析】求一个数的倒数就是用1除以这个数。
2.式子在实数范围内有意义,则x的取值范围是()A. >1B. ≥1C. <1D. ≤1【答案】B【考点】二次根式有意义的条件【解析】【解答】解:根据题意得x-1≥0解之:x≥1故答案为:B【分析】要使二次根式有意义,则被开方数是非负数,列不等式,求解即可。
3.下列运算正确的是()A. a2·a3﹦a6B. a3+ a3﹦a6C. |-a2|﹦a2D. (-a2)3﹦a6【答案】C【考点】绝对值及有理数的绝对值,同底数幂的乘法,幂的乘方与积的乘方,合并同类项法则及应用【解析】【解答】解:A、a2·a3﹦a5,故A不符合题意;B、a3+ a3﹦2a3,故B不符合题意;C、|-a2|﹦a2,故C符合题意;D、(-a2)3﹦-a6,故D不符合题意;故答案为:C【分析】根据同底数幂相乘,底数不变指数相加,可对A作出判断;利用合并同类项的法则,可对B作出判断;根据绝对值的意义,可对C作出判断;利用幂的乘方的法则,可对D作出判断;即可得出答案。
4.一元二次方程x2+5x+7=0解的情况是()A. 有两个不相等的实数根B. 有两个相等的实数根C. 没有实数根D. 无法确定【答案】C【考点】一元二次方程根的判别式及应用【解析】【解答】解:∵b2-4ac=25-28=-3<0∴此方程没有实数根。
故答案为:C【分析】先求出b2-4ac的值,再根据其值可判断方程根的情况。
5.若二次函数y=(a-1)x2+3x+a2-1的图象经过原点,则a的值必为()A. 1或-1B. 1C. -1D. 0【答案】C【考点】二次函数的定义,二次函数图象上点的坐标特征【解析】【解答】解:∵二次函数y=(a-1)x2+3x+a2-1的图象经过原点∴a2-1=0且a-1≠0解之:a=±1,a≠1∴a=-1故答案为:C【分析】根据二次函数的定义及二次函数的图像经过原点,得出a2-1=0且a-1≠0,即可求出a 的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年江苏省无锡市中考数学一模试卷一、选择题(本大题共10小题,每题3分,共30分)1.2的相反数是()A.2 B.﹣2 C.﹣D.2.函数y=中,自变量x的取值范围是()A.x≥﹣5 B.x≤﹣5 C.x≥5 D.x≤53.截止到2015年6月1日,北京市已建成34个地下调蓄设施,蓄水能力达到140000立方米,将140000用科学记数法表示应为()A.14×104B.1.4×105 C.1.4×106 D.14×1064.下列说法正确的是()A.一个游戏中奖的概率是,则做100次这样的游戏一定会中奖B.为了了解全国中学生的心理健康状况,应采用普查的方式C.一组数据0,1,2,1,1的众数和中位数都是1D.若甲组数据的方差S甲2=0.2,乙组数据的方差S乙2=0.5,则乙组数据比甲组数据稳定5.将二次函数y=x2﹣2x+3化为y=(x﹣h)2+k的形式,结果为()A.y=(x+1)2+4 B.y=(x+1)2+2 C.y=(x﹣1)2+4 D.y=(x﹣1)2+26.在平面直角坐标系中,把点P(﹣3,2)绕原点O顺时针旋转180°,所得到的对应点P′的坐标为()A.(3,2)B.(2,﹣3)C.(﹣3,﹣2)D.(3,﹣2)7.在边长为1的小正方形组成的网格中,有如图所示的A,B两点,在格点上任意放置点C,恰好能使得△ABC的面积为1的概率为()A.B.C.D.8.在长方形ABCD中,AB=2,BC=1,动点P从点B出发,沿路线B→C→D做匀速运动,那么△ABP的面积S与点P运动的路程x之间的函数图象大致为()A. B. C. D.9.如图,以平行四边形ABCD的边CD为斜边向内作等腰直角△CDE,使AD=DE=CE,∠DEC=90°,且点E在平行四边形内部,连接AE、BE,则∠AEB的度数是()A.120°B.135°C.150°D.45°10.如图,AB为直径,AB=4,C、D为圆上两个动点,N为CD中点,CM⊥AB于M,当C、D在圆上运动时保持∠CMN=30°,则CD的长()A.随C、D的运动位置而变化,且最大值为4B.随C、D的运动位置而变化,且最小值为2C.随C、D的运动位置长度保持不变,等于2D.随C、D的运动位置而变化,没有最值二、填空题(本大题共8小题,每题2分,共16分)11.分解因式:5x2﹣10x+5= .12.化简得.13.同一温度的华氏度数y(℉)与摄氏度数x(℃)之间的函数关系是y=x+32,如果某一温度的摄氏度数是25℃,那么它的华氏度数是℉.14.若反比例函数的图象经过第一、三象限,则k的取值范围是.15.如图是由射线AB,BC,CD,DE,EA组成的平面图形,则∠1+∠2+∠3+∠4+∠5= .16.如图,已知AD、BC相交于点O,AB∥CD∥EF,如果CE=2,EB=4,FD=1.5,那么AD= .17.如图,等边△ABC中,D是边BC上的一点,且BD:DC=1:3,把△ABC折叠,使点A落在边BC上的点D处,那么的值为.18.若m1,m2,…m2016是从0,1,2这三个数中取值的一列数,若m1+m2+…+m2016=1546,(m1﹣1)2+(m2﹣1)2+…+(m2016﹣1)2=1510,则在m1,m2,…m2016中,取值为2的个数为.三、解答题(本大题共10小题,共84分)19.计算:(1)()﹣1﹣+(5﹣π)0+6tan60°(2)(x+1)2﹣2(x﹣2).20.(1)解方程:+=1(2)解不等式组:.21.如图,在平行四边形ABCD中,已知点E在AB上,点F在CD上,且AE=CF.求证:DE=BF.22.如图,AB是半圆O的直径,点P在BA的延长线上,PD切⊙O于点C,BD⊥PD,垂足为D,连接BC.(1)求证:BC平分∠PBD;(2)求证:BC2=AB•BD;(3)若PA=6,PC=6,求BD的长.23.四川雅安发生地震后,某校学生会向全校1900名学生发起了“心系雅安”捐款活动,为了解捐款情况,学生会随机调查了部分学生的捐款金额,并用得到的数据绘制了如下统计图①和图②,请根据相关信息,解答下列是问题:(Ⅰ)本次接受随机抽样调查的学生人数为,图①中m的值是;(Ⅱ)求本次调查获取的样本数据的平均数、众数和中位数;(Ⅲ)根据样本数据,估计该校本次活动捐款金额为10元的学生人数.24.九(1)班组织班级联欢会,最后进入抽奖环节,每名同学都有一次抽奖机会,抽奖方案如下:将一副扑克牌中点数为“2”,“3”,“3”,“5”,“6”的五张牌背面朝上洗匀,先从中抽出1张牌,再从余下的4张牌中抽出1张牌,记录两张牌点数后放回,完成一次抽奖,记每次抽出两张牌点数之差为x,按表格要求确定奖项.奖项一等奖二等奖三等奖|x| |x|=4 |x|=3 1≤|x|<3(1)用列表或画树状图的方法求出甲同学获得一等奖的概率;(2)是否每次抽奖都会获奖,为什么?25.甲、乙两人匀速从同一地点到1500米处的图书馆看书,甲出发5分钟后,乙以50米/分的速度沿同一路线行走.设甲、乙两人相距s(米),甲行走的时间为t(分),s关于t 的函数图象的一部分如图所示.(1)求甲行走的速度;(2)在坐标系中,补画s关于t的函数图象的其余部分;(3)问甲、乙两人何时相距360米?26.某地质公园为了方便游客,计划修建一条栈道BC连接两条进入观景台OA的栈道AC 和OB,其中AC⊥BC,同时为减少对地质地貌的破坏,设立一个圆形保护区⊙M(如图所示),M是OA上一点,⊙M与BC相切,观景台的两端A、O到⊙M上任意一点的距离均不小于80米.经测量,OA=60米,OB=170米,tan∠OBC=.(1)求栈道BC的长度;(2)当点M位于何处时,可以使该圆形保护区的面积最大?27.如图,在平面直角坐标系xOy内,正方形AOBC顶点C的坐标为(2,2),过点B的直线∥OC,P是直线上一个动点,抛物线y=ax2+bx过O、C、P三点.(1)填空:直线的函数解析式为;a,b的关系式是.(2)当△PBC是等腰Rt△时,求抛物线的解析式;(3)当抛物线的对称轴与正方形有交点时,直接写出点P横坐标x的取值范围.28.在初中数学中,我们学习了“两点间的距离”、“点到直线的距离”、“平行线之间的距离”,距离的本质是“最短”,图形之间的距离总可以转化为两点之间的距离,如“垂线段最短”的性质,把点到直线的距离转化为点到点(垂足)的距离.一般的,一个图形上的任意点A与另一个图形上的任意点B之间的距离的最小值叫做两个图形的距离.(1)如图1,过A,B分别作垂线段AC、AD、BE、BF,则线段AB和直线l的距离为垂线段的长度.(2)如图2,Rt△ABC中,∠ACB=90°,∠B=30°,CD⊥AB,AD=2,那么线段AD与线段BC的距离为.(3)如图3,若长为1cm的线段CD与已知线段AB的距离为1.5cm,请用适当的方法表示满足条件的所有线段CD.注:若满足条件的线段是有限的,请画出;若满足条件的线段是无限的,请用阴影表示其所在区域.(保留画图痕迹)参考答案与试题解析一、选择题(本大题共10小题,每题3分,共30分)1.2的相反数是()A.2 B.﹣2 C.﹣D.【考点】相反数.【分析】根据相反数的概念作答即可.【解答】解:根据相反数的定义可知:2的相反数是﹣2.故选:B.2.函数y=中,自变量x的取值范围是()A.x≥﹣5 B.x≤﹣5 C.x≥5 D.x≤5【考点】函数自变量的取值范围.【分析】根据被开方数大于等于0列式计算即可得解.【解答】解:由题意得,x﹣5≥0,解得x≥5.故选:C.3.截止到2015年6月1日,北京市已建成34个地下调蓄设施,蓄水能力达到140000立方米,将140000用科学记数法表示应为()A.14×104B.1.4×105 C.1.4×106 D.14×106【考点】科学记数法—表示较大的数.【分析】将140000用科学记数法表示即可.【解答】解:140000=1.4×105,故选B.4.下列说法正确的是()A.一个游戏中奖的概率是,则做100次这样的游戏一定会中奖B.为了了解全国中学生的心理健康状况,应采用普查的方式C.一组数据0,1,2,1,1的众数和中位数都是1D.若甲组数据的方差S甲2=0.2,乙组数据的方差S乙2=0.5,则乙组数据比甲组数据稳定【考点】概率的意义;全面调查与抽样调查;中位数;众数;方差.【分析】根据概率、方差、众数、中位数的定义对各选项进行判断即可.【解答】A、一个游戏中奖的概率是,则做100次这样的游戏有可能中奖一次,该说法错误,故本选项错误;B、为了了解全国中学生的心理健康状况,应采用抽样调查的方式,该说法错误,故本选项错误;C、这组数据的众数是1,中位数是1,故本选项正确;D、方差越大,则平均值的离散程度越大,稳定性也越小,则甲组数据比乙组稳定,故本选项错误;故选C.5.将二次函数y=x2﹣2x+3化为y=(x﹣h)2+k的形式,结果为()A.y=(x+1)2+4 B.y=(x+1)2+2 C.y=(x﹣1)2+4 D.y=(x﹣1)2+2【考点】二次函数的三种形式.【分析】根据配方法进行整理即可得解.【解答】解:y=x2﹣2x+3,=(x2﹣2x+1)+2,=(x﹣1)2+2.故选:D.6.在平面直角坐标系中,把点P(﹣3,2)绕原点O顺时针旋转180°,所得到的对应点P′的坐标为()A.(3,2)B.(2,﹣3)C.(﹣3,﹣2)D.(3,﹣2)【考点】坐标与图形变化-旋转.【分析】将点P绕原点O顺时针旋转180°,实际上是求点P关于原点的对称点的坐标.【解答】解:根据题意得,点P关于原点的对称点是点P′,∵P点坐标为(﹣3,2),∴点P′的坐标(3,﹣2).故选:D.7.在边长为1的小正方形组成的网格中,有如图所示的A,B两点,在格点上任意放置点C,恰好能使得△ABC的面积为1的概率为()A.B.C.D.【考点】概率公式;三角形的面积.【分析】按照题意分别找出点C所在的位置:当点C与点A在同一条直线上时,AC边上的高为1,AC=2,符合条件的点C有2个;当点C与点B在同一条直线上时,BC边上的高为1,BC=2,符合条件的点C有2个,再根据概率公式求出概率即可.【解答】解:可以找到4个恰好能使△ABC的面积为1的点,则概率为:4÷16=.故选:C.8.在长方形ABCD中,AB=2,BC=1,动点P从点B出发,沿路线B→C→D做匀速运动,那么△ABP的面积S与点P运动的路程x之间的函数图象大致为()A.B.C.D.【考点】动点问题的函数图象.【分析】运用动点函数进行分段分析,当P在BC上与CD上时,分别求出函数解析式,再结合图象得出符合要求的解析式.【解答】解:∵AB=2,BC=1,动点P从点B出发,P点在BC上时,BP=x,AB=2,∴△ABP的面积S=×AB×BP=×2x=x;动点P从点B出发,P点在CD上时,△ABP的高是1,底边是2,所以面积是1,即s=1;∴s=x时是正比例函数,且y随x的增大而增大,s=1时,是一个常数函数,是一条平行于x轴的直线.所以只有C符合要求.故选C.9.如图,以平行四边形ABCD的边CD为斜边向内作等腰直角△CDE,使AD=DE=CE,∠DEC=90°,且点E在平行四边形内部,连接AE、BE,则∠AEB的度数是()A.120°B.135°C.150°D.45°【考点】平行四边形的性质;等腰三角形的性质;等腰直角三角形.【分析】先证明AD=DE=CE=BC,得出∠DAE=∠AED,∠CBE=∠CEB,∠EDC=∠ECD=45°,设∠DAE=∠AED=x,∠CBE=∠CEB=y,求出∠ADC=225°﹣2x,∠BAD=2x ﹣45°,由平行四边形的对角相等得出方程,求出x+y=135°,即可得出结果.【解答】解:∵四边形ABCD是平行四边形,∴AD=BC,∠BAD=∠BCD,∠BAD+∠ADC=180°,∵AD=DE=CE,∴AD=DE=CE=BC,∴∠DAE=∠AED,∠CBE=∠CEB,∵∠DEC=90°,∴∠EDC=∠ECD=45°,设∠DAE=∠AED=x,∠CBE=∠CEB=y,∴∠ADE=180°﹣2x,∠BCE=180°﹣2y,∴∠ADC=180°﹣2x+45°=225°﹣2x,∠BCD=225°﹣2y,∴∠BAD=180°﹣=2x﹣45°,∴2x﹣45°=225°﹣2y,∴x+y=135°,∴∠AEB=360°﹣135°﹣90°=135°;故选:B.10.如图,AB为直径,AB=4,C、D为圆上两个动点,N为CD中点,CM⊥AB于M,当C、D在圆上运动时保持∠CMN=30°,则CD的长()A.随C、D的运动位置而变化,且最大值为4B.随C、D的运动位置而变化,且最小值为2C.随C、D的运动位置长度保持不变,等于2D.随C、D的运动位置而变化,没有最值【考点】轨迹.【分析】连接OC、ON、OD,由垂径定理可知ON⊥CD,∠CON=∠DON,然后由∠ONC+∠CMO=180°,可证明O、N、C、M四点共圆,从而可得到∠NOC=∠NMC=30°,于是可证明△OCD为等边三角形,从而得到CD=2.【解答】解;连接:OC、ON、OD.∵N是CD的中点,∴ON⊥CD,∠CON=∠DON.又∵CM⊥AB,∴∠ONC+∠CMO=180°.∴O、N、C、M四点共圆.∴∠NOC=∠NMC=30°.∴∠COD=60°.又∵OC=OD,∴△OCD为等边三角形.∴CD=.故选:C.二、填空题(本大题共8小题,每题2分,共16分)11.分解因式:5x2﹣10x+5= 5(x﹣1)2.【考点】提公因式法与公式法的综合运用.【分析】观察原式5x2﹣10x+5,找到公因式5后,提出公因式后发现x2﹣2x+1是完全平方公式,利用完全平方式继续分解即可.【解答】解:5x2﹣10x+5,=5(x2﹣2x+1),=5(x﹣1)2.12.化简得.【考点】约分.【分析】首先分别把分式的分母、分子因式分解,然后约去分式的分子与分母的公因式即可.【解答】解:==故答案为:.13.同一温度的华氏度数y(℉)与摄氏度数x(℃)之间的函数关系是y=x+32,如果某一温度的摄氏度数是25℃,那么它的华氏度数是77 ℉.【考点】函数值.【分析】把x的值代入函数关系式计算求出y值即可.【解答】解:当x=25°时,y=×25+32=77,故答案为:77.14.若反比例函数的图象经过第一、三象限,则k的取值范围是k<.【考点】反比例函数的性质.【分析】先根据反比例函数的性质列出关于k的不等式,求出k的取值范围即可.【解答】解:∵反比例函数的图象经过第一、三象限,∴1﹣3k≥0,解得k<.故答案为:k<.15.如图是由射线AB,BC,CD,DE,EA组成的平面图形,则∠1+∠2+∠3+∠4+∠5= 360°.【考点】多边形内角与外角.【分析】首先根据图示,可得∠1=180°﹣∠BAE,∠2=180°﹣∠ABC,∠3=180°﹣∠BCD,∠4=180°﹣∠CDE,∠5=180°﹣∠DEA,然后根据三角形的内角和定理,求出五边形ABCDE的内角和是多少,再用180°×5减去五边形ABCDE的内角和,求出∠1+∠2+∠3+∠4+∠5等于多少即可.【解答】解:∠1+∠2+∠3+∠4+∠5=++++=180°×5﹣(∠BAE+∠ABC+∠BCD+∠CDE+∠DEA)=900°﹣(5﹣2)×180°=900°﹣540°=360°.故答案为:360°.16.如图,已知AD、BC相交于点O,AB∥CD∥EF,如果CE=2,EB=4,FD=1.5,那么AD= 4.5 .【考点】平行线分线段成比例.【分析】根据平行线分线段成比例、比例的基本性质求得AF=3,则AD=AF+FD=4.5即可.【解答】解:∵AB∥EF,∴,则,又EF∥CD,∴,则,∴,即,解得:AF=3,∴AD=AF+FD=3+1.5=4.5,即AD的长是4.5;故答案为:4.5.17.如图,等边△ABC中,D是边BC上的一点,且BD:DC=1:3,把△ABC折叠,使点A落在边BC上的点D处,那么的值为.【考点】翻折变换(折叠问题).【分析】由BD:DC=1:3,可设BD=a,则CD=3a,根据等边三角形的性质和折叠的性质可得:BM+MD+BD=5a,DN+NC+DC=7a,再通过证明△BMD∽△CDN即可证明AM:AN的值.【解答】解:∵BD:DC=1:3,∴设BD=a,则CD=3a,∵△ABC是等边三角形,∴AB=BC=AC=4a,∠ABC=∠ACB=∠BAC=60°,由折叠的性质可知:MN是线段AD的垂直平分线,∴AM=DM,AN=DN,∴BM+MD+BD=5a,DN+NC+DC=7a,∵∠MDN=∠BAC=∠ABC=60°,∴∠NDC+∠MDB=∠BMD+∠MBD=120°,∴∠NDC=∠BMD,∵∠ABC=∠ACB=60°,∴△BMD∽△CDN,∴(BM+MD+BD):(DN+NC+CD)=AM:AN,即AM:AN=5:7,故答案为.18.若m1,m2,…m2016是从0,1,2这三个数中取值的一列数,若m1+m2+…+m2016=1546,(m1﹣1)2+(m2﹣1)2+…+(m2016﹣1)2=1510,则在m1,m2,…m2016中,取值为2的个数为520 .【考点】规律型:数字的变化类.【分析】解决此题可以先设0有a个,1有b个,2有c个,根据据题意列出方程组求解即可.【解答】解:设0有a个,1有b个,2有c个,由题意得,解得,故取值为2的个数为502个,故答案为:520.三、解答题(本大题共10小题,共84分)19.计算:(1)()﹣1﹣+(5﹣π)0+6tan60°(2)(x+1)2﹣2(x﹣2).【考点】特殊角的三角函数值;实数的运算;整式的混合运算;零指数幂.【分析】(1)根据负整数指数幂与正整数指数幂互为倒数,开平方运算,非零的零次幂等于1,特殊角三角函数值,可得答案;(2)根据完全平方公式,整式的加减,可得答案.【解答】解:(1)原式=4﹣3+1+6×=5+3.(2)原式=x2+2x+1﹣2x+4=x2+5.20.(1)解方程:+=1(2)解不等式组:.【考点】解一元一次不等式组;解分式方程.【分析】(1)方程两边都乘以x﹣3,化分式方程为整式方程,解整式方程求得x的值,再检验即可;(2)分别求出每一个不等式的解集,根据口诀:大小小大中间找,确定不等式组的解集.【解答】解:(1)去分母得2﹣x﹣1=x﹣3.解得:x=2,经检验,x=2都是原方程的根.(2)解不等式2(x﹣2)≤4x﹣3,得:x≥﹣;解不等式2x﹣5<1﹣x,得x<2;∴此不等式组的解集为:﹣≤x<2.21.如图,在平行四边形ABCD中,已知点E在AB上,点F在CD上,且AE=CF.求证:DE=BF.【考点】平行四边形的判定与性质.【分析】由“平行四边形ABCD的对边平行且相等”的性质推知AB=CD,AB∥CD.然后根据图形中相关线段间的和差关系求得BE=FD,易证四边形EBFD是平行四边形.【解答】证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD.∵AE=CF.∴BE=FD,BE∥FD,∴四边形EBFD是平行四边形,∴DE=BF.22.如图,AB 是半圆O 的直径,点P 在BA 的延长线上,PD 切⊙O 于点C ,BD ⊥PD ,垂足为D ,连接BC .(1)求证:BC 平分∠PBD ;(2)求证:BC 2=AB •BD ;(3)若PA=6,PC=6,求BD 的长.【考点】切线的性质;相似三角形的判定与性质.【分析】(1)连接OC ,由PD 为圆O 的切线,利用切线的性质得到OC 垂直于PD ,由BD 垂直于PD ,得到OC 与BD 平行,利用两直线平行得到一对内错角相等,再由OC=OB ,利用等边对等角得到一对角相等,等量代换即可得证;(2)连接AC ,由AB 为圆O 的直径,利用直径所对的圆周角为直角得到△ABC 为直角三角形,根据一对直角相等,以及第一问的结论得到一对角相等,确定出△ABC 与△BCD 相似,由相似得比例,变形即可得证;(3)由切割线定理列出关系式,将PA ,PC 的长代入求出PB 的长,由PB ﹣PA 求出AB 的长,确定出圆的半径,由OC 与BD 平行得到△PCO 与△DPB 相似,由相似得比例,将OC ,OP ,以及PB 的长代入即可求出BD 的长.【解答】(1)证明:连接OC ,∵PD 为圆O 的切线,∴OC ⊥PD ,∵BD ⊥PD ,∴OC ∥BD ,∴∠OCB=∠CBD ,∵OC=OB ,∴∠OCB=∠OBC ,∴∠CBD=∠OBC ,则BC 平分∠PBD ;(2)证明:连接AC ,∵AB 为圆O 的直径,∴∠ACB=90°,∵∠ACB=∠CDB=90°,∠ABC=∠CBD ,∴△ABC ∽△CBD ,∴=,即BC 2=AB •BD ;(3)解:∵PC 为圆O 的切线,PAB 为割线,∴PC 2=PA •PB ,即72=6PB ,解得:PB=12,∴AB=PB﹣PA=12﹣6=6,∴OC=3,PO=PA+AO=9,∵△OCP∽△BDP,∴=,即=,则BD=4.23.四川雅安发生地震后,某校学生会向全校1900名学生发起了“心系雅安”捐款活动,为了解捐款情况,学生会随机调查了部分学生的捐款金额,并用得到的数据绘制了如下统计图①和图②,请根据相关信息,解答下列是问题:(Ⅰ)本次接受随机抽样调查的学生人数为50 ,图①中m的值是32 ;(Ⅱ)求本次调查获取的样本数据的平均数、众数和中位数;(Ⅲ)根据样本数据,估计该校本次活动捐款金额为10元的学生人数.【考点】条形统计图;用样本估计总体;扇形统计图;加权平均数;中位数;众数.【分析】(1)根据条形统计图即可得出样本容量根据扇形统计图得出m的值即可;(2)利用平均数、中位数、众数的定义分别求出即可;(3)根据样本中捐款10元的人数,进而得出该校本次活动捐款金额为10元的学生人数.【解答】解:(1)根据条形图4+16+12+10+8=50(人),m=100﹣20﹣24﹣16﹣8=32;(2)∵=(5×4+10×16+15×12+20×10+30×8)=16,∴这组数据的平均数为:16,∵在这组样本数据中,10出现次数最多为16次,∴这组数据的众数为:10,∵将这组样本数据按从小到大的顺序排列,其中处于中间的两个数都是15,∴这组数据的中位数为:(15+15)=15;(3)∵在50名学生中,捐款金额为10元的学生人数比例为32%,∴由样本数据,估计该校1900名学生中捐款金额为10元的学生人数比例为32%,有1900×32%=608,∴该校本次活动捐款金额为10元的学生约有608名.故答案为:50,32.24.九(1)班组织班级联欢会,最后进入抽奖环节,每名同学都有一次抽奖机会,抽奖方案如下:将一副扑克牌中点数为“2”,“3”,“3”,“5”,“6”的五张牌背面朝上洗匀,先从中抽出1张牌,再从余下的4张牌中抽出1张牌,记录两张牌点数后放回,完成一次抽奖,记每次抽出两张牌点数之差为x,按表格要求确定奖项.奖项一等奖二等奖三等奖|x| |x|=4 |x|=3 1≤|x|<3(1)用列表或画树状图的方法求出甲同学获得一等奖的概率;(2)是否每次抽奖都会获奖,为什么?【考点】列表法与树状图法.【分析】(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与甲同学获得一等奖的情况,再利用概率公式即可求得答案;(2)由树状图可得:当两张牌都是3时,|x|=0,不会有奖.【解答】解:(1)画树状图得:∵共有20种等可能的结果,甲同学获得一等奖的有2种情况,∴甲同学获得一等奖的概率为:=;(2)不一定,当两张牌都是3时,|x|=0,不会有奖.25.甲、乙两人匀速从同一地点到1500米处的图书馆看书,甲出发5分钟后,乙以50米/分的速度沿同一路线行走.设甲、乙两人相距s(米),甲行走的时间为t(分),s关于t 的函数图象的一部分如图所示.(1)求甲行走的速度;(2)在坐标系中,补画s关于t的函数图象的其余部分;(3)问甲、乙两人何时相距360米?【考点】一次函数的应用.【分析】(1)由图象可知t=5时,s=150米,根据速度=路程÷时间,即可解答;(2)根据图象提供的信息,可知当t=35时,乙已经到达图书馆,甲距图书馆的路程还有=450米,甲到达图书馆还需时间;450÷30=15(分),所以35+15=50(分),所以当s=0时,横轴上对应的时间为50.(3)分别求出当12.5≤t≤35时和当35<t≤50时的函数解析式,根据甲、乙两人相距360米,即s=360,分别求出t的值即可.【解答】解:(1)甲行走的速度:150÷5=30(米/分);(2)当t=35时,甲行走的路程为:30×35=1050(米),乙行走的路程为:(35﹣5)×50=1500(米),∴当t=35时,乙已经到达图书馆,甲距图书馆的路程还有=450米,∴甲到达图书馆还需时间;450÷30=15(分),∴35+15=50(分),∴当s=0时,横轴上对应的时间为50.补画的图象如图所示(横轴上对应的时间为50),(3)如图2,设乙出发经过x分和甲第一次相遇,根据题意得:150+30x=50x,解得:x=7.5,7.5+5=12.5(分),由函数图象可知,当t=12.5时,s=0,∴点B的坐标为(12.5,0),当12.5≤t≤35时,设BC的解析式为:s=kt+b,(k≠0),把C(35,450),B(12.5,0)代入可得:解得:,∴s=20t﹣250,当35<t≤50时,设CD的解析式为s=k1x+b1,(k1≠0),把D(50,0),C(35,450)代入得:解得:∴s=﹣30t+1500,∵甲、乙两人相距360米,即s=360,解得:t1=30.5,t2=38,∴当甲行走30.5分钟或38分钟时,甲、乙两人相距360米.26.某地质公园为了方便游客,计划修建一条栈道BC连接两条进入观景台OA的栈道AC 和OB,其中AC⊥BC,同时为减少对地质地貌的破坏,设立一个圆形保护区⊙M(如图所示),M是OA上一点,⊙M与BC相切,观景台的两端A、O到⊙M上任意一点的距离均不小于80米.经测量,OA=60米,OB=170米,tan∠OBC=.(1)求栈道BC的长度;(2)当点M位于何处时,可以使该圆形保护区的面积最大?【考点】解直角三角形的应用;切线的性质.【分析】(1)过C点作CE⊥OB于E,过A作AF⊥CE于F,设出AF,然后通过解直角三角形求得CE,进一步得到BE,然后由勾股定理得出答案;(2)设BC与⊙M相切于Q,延长QM交直线BO于P,设OM=x,把PB、PQ用含有x 的代数式不是,再结合观景台的两端A、O到⊙M上任意一点的距离均不小于80米列式求得x的范围,得到x取最小值时圆的半径最大,即圆形保护区的面积最大.【解答】解:(1)如图1,过C点作CE⊥OB于E,过A作AF⊥CE于F,∵∠ACB=90°∠BEC=90°,∴∠ACF=∠CBE,∴tan∠ACF=tan∠OBC=,设AF=4x,则CF=3x,∵∠AOE=∠AFE=∠OEF=90°,∴OE=AF=4x,EF=OA=60,∴CE=3x+60,∵tan∠OBC=.∴BE=CE=x+45,∴OB=OE+BE=4x+x+45,∴4x+x+45=170,解得:x=20,∴CE=120(米),BE=90(米),∴BC==150(米).(2)如图2,设BC与⊙M相切于Q,延长QM交直线BO于P,∵∠POM=∠PQB=90°,∴∠PMO=∠CBO,∴tan∠OBC=.∴tan∠PMO=.设OM=x,则OP=x,PM=x,∴PB=x+170,在RT△PQB中,tan∠PBQ==.∴=,∴PQ=(x+170)=x+136,设⊙M的半径为R,∴R=MQ=x+136﹣x=136﹣x,∵A、O到⊙M上任意一点的距离均不小于80米,∴R﹣AM≥80,R﹣OM≥80,∴136﹣x﹣(60﹣x)≥80,136﹣x﹣x≥80,解得:10≤x≤35,∴当且仅当x=10时R取最大值,∴OM=10米时,保护区的面积最大.27.如图,在平面直角坐标系xOy内,正方形AOBC顶点C的坐标为(2,2),过点B 的直线∥OC,P是直线上一个动点,抛物线y=ax2+bx过O、C、P三点.(1)填空:直线的函数解析式为y=x﹣2 ;a,b的关系式是2a+b=1 .(2)当△PBC是等腰Rt△时,求抛物线的解析式;(3)当抛物线的对称轴与正方形有交点时,直接写出点P横坐标x的取值范围≤x≤,且x≠0和2 .【考点】二次函数综合题.【分析】(1)根据题意求得B(2,0)和直线OC的解析式为y=x,设直线l的解析式为y=x+b,根据待定系数法即可求得直线的函数解析式,把C的坐标代入y=ax2+bx即可求得a,b的关系式;(2)分两种情况求得P的坐标,利用待定系数法即可求得;(3)求得抛物线是顶点为C时的抛物线的解析式求得与直线l的交点坐标即可求得符合题意的点P横坐标x的取值范围.【解答】解:(1)∵正方形AOBC顶点C的坐标为(2,2),∴B(2,0),∵直线OC的解析式y=x,∴设直线l的解析式为y=x+b,∴0=2+b,∴b=﹣2,∴直线l的函数解析式为y=x﹣2,把(2,2)代入y=ax2+bx得,2=4a+2b∴2a+b=1;(2)当∠BCP=90°时,则P的坐标为(4,2),如图2,把C(2,2),P(4,2)代入y=ax2+bx得,解,∴抛物线的解析式为y=﹣x2+x;当∠BPC=90°时,则P的坐标为(3,1),如图3,把C(2,2),P(3,1)代入y=ax2+bx得解得,∴抛物线的解析式为;(3)当抛物线的顶点为C时,﹣=2,∴b=﹣4a,∵2a+b=1,∴a=﹣,b=2,∴抛物线的解析式为y=﹣x2+2x,解得x=1±,∴点P横坐标x的取值范围≤x≤,且x≠0和2.故答案为:y=x﹣2,2a+b=1,≤x≤,且x≠0和2.28.在初中数学中,我们学习了“两点间的距离”、“点到直线的距离”、“平行线之间的距离”,距离的本质是“最短”,图形之间的距离总可以转化为两点之间的距离,如“垂线段最短”的性质,把点到直线的距离转化为点到点(垂足)的距离.一般的,一个图形上的任意点A与另一个图形上的任意点B之间的距离的最小值叫做两个图形的距离.(1)如图1,过A,B分别作垂线段AC、AD、BE、BF,则线段AB和直线l的距离为垂线段AC 的长度.(2)如图2,Rt△ABC中,∠ACB=90°,∠B=30°,CD⊥AB,AD=2,那么线段AD与线段BC的距离为 3 .(3)如图3,若长为1cm的线段CD与已知线段AB的距离为1.5cm,请用适当的方法表示满足条件的所有线段CD.注:若满足条件的线段是有限的,请画出;若满足条件的线段是无限的,请用阴影表示其所在区域.(保留画图痕迹)【考点】作图—应用与设计作图;直线的性质:两点确定一条直线;垂线段最短;点到直线的距离;平行线之间的距离.【分析】(1)根据两图形之间距离定义,得出线段AB和直线l的距离即可;(2)首先过点D作DE⊥BC于点E,进而利用直角三角形中30°所对的边等于斜边的一半,进而求出DE的长;(3)根据两图形之间距离定义,利用CD的长为1cm,且线段CD与已知线段AB的距离为1.5cm,得出符合题意的图形是两个半圆以及矩形组成的图形.【解答】解:(1)如图所示:过A,B分别作垂线段AC、AD、BE、BF,则线段AB和直线l的距离为垂线段为:AC的长度;故答案为:AC;(2)如图2,过点D作DE⊥BC于点E,∵∠ACB=90°,∠B=30°,CD⊥AB,AD=2,∴∠A=60°则∠ACD=30°,∴AC=2AD=4,∴AB=2AC=8,∴BD=6,则DE=BD=3;故答案为:3;(3)如图3所示:.2016年6月3日。