56.高考物理一轮复习第七章 第3讲
2025高考物理复习自由落体运动和竖直上抛运动课件教案练习题
平均速度为
v =ht
=5 m/s,当t=
2+
7
s时,小球通过的路程为s3=
2hm+h=55 m,平均速度为 v =2-+157 m/s=10-5
7
m/s,故B错误,
C正确;整个运动过程的加速度一直为重力加速度,方向一直竖直向下,
故D错误。故选C。
返回
聚焦学科素养 刹车类问题与双向可逆 类运动
应用1.小明驾驶他的SUV以时速72 km/h匀速行
驶在320国道上,看到前方十字路口闪烁的绿灯只
有5 s了,他立即刹车,此后轿车做匀减速直线运
动,加速度大小为5 m/s2,等车子稳稳地停下来
后,他挂好空挡,拉好手刹,抬头发现闪烁2 s的
黄灯刚好变成红灯。则小明刹车后这7 s内车子的
位移是
A.17.5 m
方法技巧
竖直上抛运动的研究方法 1.分段法:将全程分为两个阶段: (1)上升过程:匀减速直线运动; (2)下降过程:自由落体运动。
方法技巧
2.全程法:取v0的方向为正方向,将全过程视为初速度为v0、加
速度为a=-g的匀变速直线运动,则有v=v0-gt,h=v0t-
1 2
gt2。
此时要注意v、h的矢量性及其意义:
(1)v>0时,物体正在上升;v<0时,物体正在下降。
(2)h>0时,物体在抛出点上方;h<0时,物体在抛出点下方。
对点练1.一个从地面上竖直上抛的物体,它两次经过一个较低点A的时间
间隔是5 s,两次经过一个较高点B的时间间隔是3 s,则A、B之间的距离
是(不计空气阻力,g=10 m/s2)
A.80 m
审题指导 木杆通过圆筒的上端A所用的时间:木杆的下端到达圆筒上端 A时开始计时,木杆的上端到达圆筒上端A时结束计时。
新课标2023版高考物理一轮总复习第七章静电场第3讲电容器带电粒子在电场中的运动课件
一、电容器及电容 1.电容器 (1)组成:由两个彼此__绝__缘__又相距很近的导体组成。 (2)带电荷量:一个极板所带电荷量的绝对值。 (3)电容器的充、放电
①充电:使电容器带电的过程,充电后电容器两极板带上等量的_异__种__电__荷___, 电容器中储存电场能。 ②放电:使充电后的电容器失去电荷的过程,放电过程中电场能转化为其他形 式的能。
A.该电子做匀变速直线运动 B.x 轴上各点的电场强度方向都沿 x 轴负方向 C.M 点的电势是 P 点电势的12 D.图像中的 E0 的数值为 1.2 解析:由题图可知电子从 M 点运动到 P 点过程中,电场强度逐渐减小,所以该电场不 是匀强电场,即电子受到的电场力不是恒定的,所以该电子不做匀变速直线运动,故 A 错误;若一电子仅在电场力作用下自 M 点运动至 P 点,电势能减小,则电场力做正 功,由功能关系可得 WMP=EpM-EpP>0,又 WMP=-UMPe,所以 UMP<0,即 φM<φP, 而电场线由高电势指向低电势,可知 x 轴上各点的电场强度方向都沿 x 轴负方向,故 B 正确;电势零点未知,所以无法确定两点的电势数值关系,故 C 错误;
3.[带电体受力及运动情况的判断] (多选)如图所示,平行板电容器A、B间有一带电油滴P正好静止 在极板正中间,现将B极板匀速向下移动到虚线位置,其他条件 不变。则在B极板移动的过程中 A.油滴将向下做匀加速运动 B.电流计中电流由b流向a C.油滴运动的加速度逐渐变大 D.极板带的电荷量减少
()
(√)
(6)我们能在手机屏幕上看到各种各样的信息是因为电子束高速撞击荧光屏得
到的。
( ×)
(一) 平行板电容器的动态分析(固基点)
[题点全练通]
高考物理大一轮复习专题一运动的描述直线运动第3讲自由落体运动和竖直上抛运动课件
什么叫“超前思考,比较听课”?简单地说,就是同学们在上课的时候不仅要跟着老师的思路走,还要力争走在老师思路的前面,用自己的思路和老师的思路进行对 比,从而发现不同之处,优化思维。
比如在讲《林冲棒打洪教头》一文,老师会提出一些问题,如林冲当时为什么要戴着枷锁?林冲、洪教头是什么关系?林冲为什么要棒打洪教头?••••••
3.能量对称性
图 1-3-2
物体从 A→B 和从 B→A 重力势能变化量的大小相等,均等
于 mghAB.
例 2:一个小球做竖直上抛运动,经过时间 t1 上升到位置 x1,上升到位置 x2 的时间为 t2,小球上升到最高点后下落到位
置 x2 的时间为 t3,继续下落到位置 x1 的时间为 t4(说明:各时间
答案:D
》》》考点 2 竖直上抛运动的规律 ⊙重点归纳 1.分段法分析竖直上抛运动 上升过程:vt=0、a=-g 的匀减速直线运动. 下降过程:自由落体运动. 2.整体法分析竖直上抛运动 将上升和下降过程统一看成是初速度 v0 向上,加速度 g 向 下的匀变速直线运动. 速度公式:vt=v0-gt.
位移公式:h=v0t-12gt2. 当 h<0 时,表示物体抛出后落回抛出点后继续下落到抛出 点下方的某一位置.此时 t 有两解:一解为正值,表示物体下落 到抛出点下方某处时所用时间;另一解为负值,应舍去. 注意:当物体经过抛出点上方某个位置时,可能处于上升
阶段,也可能处于下降阶段,造成多解.vt 与 h 有正有负,正负 代表不同的意义.
解析:小球被竖直向上抛出,做的是匀变速直线运动,平 均速度可以用匀变速直线运动的平均速度公式-v =v0+2 v求出, 规定竖直向上为正方向,当小球的末速度大小为 10 m/s、方向 竖直向上时,v=10 m/s,用公式求得平均速度为 15 m/s,方向 竖直向上;当小球的末速度大小为 10 m/s、方向竖直向下时, v =-10 m/s,用公式求得平均速度大小为 5 m/s,方向竖直向上, 故 A、B、C 错误;由于末速度大小为 10 m/s 时,球的位置一 定,距起点的位移 h=v20- 2gv2=15 m,D 正确.
第3讲 机械能守恒定律及其应用-2025版创新设计高考物理一轮复习
第3讲机械能守恒定律及其应用学习目标 1.理解重力势能和弹性势能,知道机械能守恒的条件。
2.会判断研究对象在某一过程机械能是否守恒。
3.会用机械能守恒定律解决单个物体或系统的机械能守恒问题。
1.2.3.4.1.思考判断(1)重力势能的变化量与零势能参考面的选取无关。
(√)(2)被举到高处的物体重力势能一定不为零。
(×)(3)发生弹性形变的物体都具有弹性势能。
(√)(4)弹力做正功,弹性势能一定增加。
(×)(5)物体所受的合外力为零,物体的机械能一定守恒。
(×)(6)物体的速度增大时,其机械能可能减小。
(√)(7)物体除受重力外,还受其他力,但其他力不做功,则物体的机械能一定守恒。
(√)2.如图所示是“弹簧跳跳杆”,杆的上下两部分通过弹簧连接。
当人和跳杆从一定高度由静止竖直下落时,弹簧先压缩后弹起。
则人从静止竖直下落到最低点的过程中()A.弹簧弹性势能一直增加B.杆下端刚触地时人的动能最大C.人的重力势能一直减小D.人的机械能保持不变答案C考点一机械能守恒的理解与判断例1(多选)在如图1所示的物理过程示意图中,甲图中一端固定有小球的轻杆从右偏上30°角释放后绕光滑支点摆动;乙图中轻绳一端连着一小球,从右偏上30°角处自由释放;丙图中物体A正在压缩弹簧;丁图中不计任何阻力和定滑轮质量,A加速下落,B加速上升。
关于这几个物理过程(空气阻力忽略不计),下列判断中正确的是()图1A.甲图中小球机械能守恒B.乙图中小球机械能守恒C.丙图中物体A的机械能守恒D.丁图中A、B组成的系统机械能守恒答案AD解析甲图过程中轻杆对小球不做功,只有重力做功,小球的机械能守恒,故A 正确;乙图过程中小球在绳子绷紧的瞬间有动能损失,机械能不守恒,故B错误;丙图中重力和系统内弹力做功,物体A和弹簧组成的系统机械能守恒,但物体A 的机械能不守恒,故C错误;丁图中绳子张力对A做负功,对B做正功,代数和为零,A、B组成的系统机械能守恒,故D正确。
2025年高考物理一轮复习(新人教版)第7章实验8 验证动量守恒定律
(2)验证的表达式:m1v1+m2v2=m1v1′+m2v2′.
案例二:研究斜槽末端小球碰撞时的动量守恒 1.实验器材 斜槽、小球(两个)、天平、复写纸、白纸、圆规、铅垂线等. 2.实验过程 (1)测质量:用天平测出两小球的质量,并选定质量大的小球为入射小球. (2)安装:按照如图甲所示安装实验装置.调整固定斜槽 使斜槽底端水平. (3)铺纸:白纸在下,复写纸在上且在适当位置铺放好. 记下铅垂线所指的位置O.
A.在小滑块a上固定一个宽度为 d的窄挡光片; B.用天平分别测出小滑块a(含挡 光片)和小球b的质量ma、mb; C.a和b间用细线连接,中间夹一被压缩了的轻短弹簧(与a、b不连接), 静止放置在平台上; D.细线烧断后,a、b瞬间被弹开,向相反方向运动; E.记录滑块a通过光电门时挡光片的遮光时间t; F.小球b从平台边缘飞出后,落在水平地面的B点,用刻度尺测出平台距 水平地面的高度h及平台边缘铅垂线与B点之间的水平距离s; G.改变弹簧压缩量,进行多次测量.
④将小球m2放在斜槽末端B处,仍让小球m1从斜槽顶端A处由静止释放, 两球发生碰撞,分别标记小球m1、m2在斜面上的落点位置; ⑤用毫米刻度尺测出各落点位置到斜槽末端B的距离.图中M、P、N三点 是实验过程中记下的小球在斜面上的三个落点位置,从M、P、N到B的 距离分别为sM、sP、sN.
依据上述实验步骤,请回答下面问题: (1)两小球的质量m1、m2应满足m1___>__m2(填“>”“=”或“<”);
弹性碰撞时满足动量守恒和机械能守恒,可得m1v0=-m1v1+m2v2 12m1v02=12m1v12+12m2v22 联立解得vv12=m22-m1m1,代入数据可得vv12=0.34.
考向2 研究斜槽末端小球碰撞时的动量守恒
《走向高考》2013高考物理总复习 7-3电学实验基础 42张
0、
走向高考 ·高考一轮总复习 ·人教版 ·物理
伏法电 安测阻
考自 点清 1. 理 部 电 欧 定 原:分路姆律 2. 种 量 阻 电 : 两测电的路 U R= I (如 所 图示 )
内法 接 ______
外法 接 ______
必考内容 第七章
第3讲
走向高考 ·高考一轮总复习 ·人教版 ·物理
必考内容 第七章
第3讲
走向高考 ·高考一轮总复习 ·人教版 ·物理
两个电压表甲、乙是由完全相同的电流表改装成的,它 们量分是 的程别 5V、1V , 了 量 5 为测 ( 15~2V 的 压 把 、 0 电 ,甲 )
乙个压串使,两的 两电表联用则表 A. 数 同 读相 B. 针 转 度 同 指偏角相 C. 数 比 表 内 读正于的阻 D. 针 转 度 比 表 内 指偏角正于的阻
必考内容 第七章
第3讲
走向高考 ·高考一轮总复习 ·人教版 ·物理
() 负 电 的 值 3 载阻阻
Rx 小 变 器 电 于阻总阻
R或 差 多 相不,
且压电变不求零起,采限接。 电、流化要从调时可取流法 () 两 电 均 使 的 况 , 优 采 限 式 法 4 种 路 可 用 情 下应 先 用 流 接 , 因限接总率小 为流法功较。 () 特 问 中 要 据 压 和 流 量 以 电 允 5 殊题还 根电 表电表程及 阻 许 过 最 电 值复 敲 以 减 误的 接 式 通 的 大 流 反 推 , 能 小 差 连 方 为 好。
必考内容 第七章
第3讲
走向高考 ·高考一轮总复习 ·人教版 ·物理
伏法电 安测阻
命题规律 根 题 要 选 适 仪 , 计 合 求 据设求择当器设符要 的路并出测阻。 电,求待电值 如图所示为用伏安法测量一个定值电阻的实验所 需器实图器规如: 的材物,材格下
高考物理总复习第七章 第3讲 测定金属的电阻率、描绘小灯泡的伏安特性曲线
有志者事竟成
12
高考复习· 物理
附: 一、螺旋测微器的原理及使用 1.构造. 如图7-3-2所示是常用的螺旋测微器,它的小砧A和固 定刻度B固定在框架C上,旋钮D、微调旋钮D′和可动刻度 E,测微螺杆F连在一起,通过精密螺纹套在B上.
2013-11-27
有志者事竟成
13
高考复习· 物理
图7-3-2
2013-11-27
有志者事竟成
7
高考复习· 物理
4.把滑动变阻器的滑片调节到使接入电路中的电阻值 最大的位置,电路经检查确认无误后,闭合开关S.改变滑动 变阻器滑片的位置,读出几组相应的电流表、电压表的示数 I和U的值,填入记录表格内.断开开关S.求出导线电阻R的 平均值. 5.将测得的R、l、d的值代入电阻率计算公式ρ= 中,计算出金属导线的电阻率. 6.拆去实验线路,整理好实验器事竟成
6
高考复习· 物理
四、实验步骤 1.用螺旋测微器在被测金属导线上三个不同的位置各 测一次直径,求出其平均值d,计算出导线的横截面积S. 2.按图7-3-1所示电路图连接好用伏安法测电阻的实 验电路. 3.用米尺测量接入电路中的被测金属导线的有效长 度,反复测量3次,求出其平均值l.
有志者事竟成
RS l
2013-11-27
8
高考复习· 物理
五、注意事项 1.本实验中被测金属导线的电阻值较小,因此实验电 路必须用电流表外接法. 2.实验连线时,应先从电源的正极出发,依次将电 源、开关、电流表、待测金属导线、滑动变阻器连成主干线 路,然后再把电压表并联在待测金属导线的两端.
2013-11-27
2013-11-27 有志者事竟成 11
高考复习· 物理
六、实验误差分析 1.金属丝直径、长度的测量带来误差. 2.测量电路中电流表及电压表对电阻测量的影响,因 l 为电流表外接,所以R测<R真,由R=ρS,知ρ测<ρ真. 3.通电电流过大,时间过长,致使金属丝发热,电阻 率随之变化带来误差.
高考物理一轮总复习 第七章 第3讲 电容器与电容 带电粒子在电场中的运动(含解析)
电容器与电容 带电粒子在电场中的运动[基础知识·填一填][知识点1] 电容器及电容 1.电容器(1)组成:由两个彼此 绝缘 又相互靠近的导体组成. (2)带电荷量:一个极板所带电荷量的 绝对值 . (3)电容器的充、放电①充电:使电容器带电的过程,充电后电容器两极板带上等量的 异种电荷_ ,电容器中储存电场能.②放电:使充电后的电容器失去电荷的过程,放电过程中 电能 转化为其他形式的能.2.电容(1)定义:电容器所带的 电荷量 与两个极板间的 电势差 的比值. (2)定义式: C =Q U.(3)单位:法拉(F)、微法(μF)、皮法(pF).1 F = 106μF= 1012pF. (4)意义:表示电容器 容纳电荷 本领的高低.(5)决定因素:由电容器本身物理条件(大小、形状、相对位置及电介质)决定,与电容器是否 带电 及 电压 无关.3.平行板电容器的电容(1)决定因素:正对面积、介电常数、两板间的距离. (2)决定式: C =εr S4πkd.判断正误,正确的划“√”,错误的划“×”.(1)电容器所带的电荷量是指每个极板所带电荷量的代数和.(×) (2)电容器的电容与电容器所带电荷量成反比.(×) (3)放电后的电容器电荷量为零,电容也为零.(×) [知识点2] 带电粒子在电场中的运动 1.加速问题(1)在匀强电场中:W =qEd =qU =12mv 2-12mv 20.(2)在非匀强电场中:W =qU =12mv 2-12mv 20.2.偏转问题(1)条件分析:不计重力的带电粒子以速度v 0垂直于电场线方向飞入匀强电场. (2)运动性质: 匀变速曲线 运动. (3)处理方法:利用运动的合成与分解. ①沿初速度方向:做 匀速 运动.②沿电场方向:做初速度为零的 匀加速 运动. 判断正误,正确的划“√”,错误的划“×”. (1)带电粒子在匀强电场中只能做类平抛运动.(×)(2)带电粒子在电场中,只受电场力时,也可以做匀速圆周运动.(√) (3)带电粒子在电场中运动时重力一定可以忽略不计.(×) [知识点3] 示波管1.装置:示波管由电子枪、偏转电极和荧光屏组成,管内抽成真空,如图所示. 2.原理(1)如果在偏转电极XX ′和YY ′之间都没有加电压,则电子枪射出的电子沿直线传播,打在荧光屏 中心 ,在那里产生一个亮斑.(2)YY ′上加的是待显示的 信号电压 ,XX ′上是机器自身产生的锯齿形电压,叫做扫描电压.若所加扫描电压和信号电压的周期相同,就可以在荧光屏上得到待测信号在一个周期内变化的图象.[教材挖掘·做一做]1.(人教版选修3-1 P32第1题改编)(多选)如图所示,用静电计可以测量已充电的平行板电容器两极板之间的电势差U ,电容器已带电,则下列判断正确的是( )A .增大两极板间的距离,指针张角变大B .将A 板稍微上移,静电计指针张角变大C .若将玻璃板插入两板之间,则静电计指针张角变大D .若减小两板间的距离,则静电计指针张角变小解析:ABD [电势差U 变大(小),指针张角变大(小).电容器所带电荷量一定,由公式C =εr S 4πkd 知,当d 变大时,C 变小,再由C =QU得U 变大;当A 板上移时,正对面积S 变小,C 也变小,U 变大;当插入玻璃板时,C 变大,U 变小;而两板间的距离减小时,C 变大,U 变小,所以选项A 、B 、D 正确.]2.(人教版选修3-1 P39第2题改编)两平行金属板相距为d ,电势差为U ,一电子质量为m ,电荷量为e ,从O 点沿垂直于极板的方向射出,最远到达A 点,然后返回,如图所示,OA =h ,此电子具有的初动能是( )A.edhU B .edUhC.eU dhD.eUh d解析:D [电子从O 点到A 点,因受电场力作用,速度逐渐减小.根据题意和图示判断,电子仅受电场力,不计重力.这样,我们可以用能量守恒定律来研究问题,即12mv 20=eU OA .因E =U d ,U OA =Eh =Uh d ,故12mv 20=eUhd,故选项D 正确.] 3.(人教版选修3-1 P39第4题改编)如图所示,含有大量11H 、21H 、42He 的粒子流无初速度进入某一加速电场,然后沿平行金属板中心线上的O 点进入同一偏转电场,最后打在荧光屏上.下列有关荧光屏上亮点分布的说法正确的是( )A .出现三个亮点,偏离O 点最远的是11H B .出现三个亮点,偏离O 点最远的是42He C .出现两个亮点 D .只会出现一个亮点 答案:D4.(人教版选修3-1 P36思考与讨论改编)如图是示波管的原理图,它由电子枪、偏转电极(XX ′和YY ′)、荧光屏组成.管内抽成真空.给电子枪通电后,如果在偏转电极XX ′和YY ′上都没有加电压,电子束将打在荧光屏的中心O 点.(1)带电粒子在 __________ 区域是加速的,在 ________ 区域是偏转的. (2)若U YY ′>0,U XX ′=0,则粒子向 ________ 板偏转,若U YY ′=0,U XX ′>0,则粒子向 ________ 板偏转.答案:(1)Ⅰ Ⅱ (2)Y X考点一 平行板电容器的动态分析[考点解读]1.两类典型问题(1)电容器始终与恒压电源相连,电容器两极板间的电势差U 保持不变. (2)电容器充电后与电源断开,电容器两极板所带的电荷量Q 保持不变. 2.动态分析思路 (1)U 不变①根据C =Q U =εr S4πkd 先分析电容的变化,再分析Q 的变化.②根据E =U d分析场强的变化. ③根据U AB =Ed 分析某点电势变化. (2)Q 不变①根据C =Q U =εr S4πkd先分析电容的变化,再分析U 的变化.②根据E =U d=4k πQεr S分析场强变化.[典例赏析][典例1] (多选)如图所示,平行板电容器与直流电源连接,下极板接地,一带电油滴位于电容器中的P 点且处于静止状态,现将上极板竖直向上移动一小段距离,则( )A .带电油滴将沿竖直方向向上运动B .P 点电势将降低C .电容器的电容减小,极板带电荷量减小D .带电油滴的电势能保持不变[解析] BC [电容器与电源相连,两极板间电压不变,下极板接地,电势为0.油滴位于P 点处于静止状态,因此有mg =qE .当上极板向上移动一小段距离时,板间距离d 增大,由C =εr S 4πkd 可知电容器电容减小,板间场强E 场=Ud 减小,油滴所受的电场力减小,mg>qE ,合力向下,带电油滴将向下加速运动,A 错;P 点电势等于P 点到下极板间的电势差,由于P 到下极板间距离h 不变,由φP =ΔU =Eh 可知,场强E 减小时P 点电势降低,B 对;由C =Q U可知电容器所带电荷量减小,C 对;带电油滴所处P 点电势下降,而由题图可知油滴带负电,所以油滴电势能增大,D 错.]分析平行板电容器动态变化的三点关键1.确定不变量:先明确动态变化过程中的哪些量不变,是电荷量保持不变还是极板间电压不变.2.恰当选择公式:灵活选取电容的决定式和定义式,分析电容的变化,同时用公式E =U d分析极板间电场强度的变化情况.3.若两极板间有带电微粒,则通过分析电场力的变化,分析其运动情况的变化.[题组巩固]1.(2016·全国卷Ⅰ)一平行板电容器两极板之间充满云母介质,接在恒压直流电源上,若将云母介质移出,则电容器( )A .极板上的电荷量变大,极板间电场强度变大B .极板上的电荷量变小,极板间电场强度变大C .极板上的电荷量变大,极板间电场强度不变D .极板上的电荷量变小,极板间电场强度不变解析:D [据C =εr S4πkd 可知,将云母介质移出电容器,C 变小,电容器接在恒压直流电源上,电压不变,据Q =CU 可知极板上的电荷量变小,据E =U d可知极板间电场强度不变,故选D.]2.(2018·北京卷) 研究与平行板电容器电容有关因素的实验装置如图所示.下列说法正确的是( )A .实验前,只用带电玻璃棒与电容器a 板接触,能使电容器带电B .实验中,只将电容器b 板向上平移,静电计指针的张角变小C .实验中,只在极板间插入有机玻璃板, 静电计指针的张角变大D .实验中,只增加极板带电荷量,静电计指针的张角变大,表明电容增大解析:A [当用带电玻璃棒与电容器a 板接触,由于静电感应,从而在b 板感应出等量的异种电荷,从而使电容器带电,故选项A 正确;根据电容器电容的决定式:C =εr S 4πkd ,将电容器b 板向上平移,即正对面积S 减小,则电容C 减小,根据C =QU可知, 电荷量Q 不变,则电压U 增大,则静电计指针的张角变大,故选项B 错误;根据电容器电容的决定式:C =εr S4πkd,只在极板间插入有机玻璃板,则介电常数εr 增大,则电容C 增大,根据C =Q U可知, 电荷量Q 不变,则电压U 减小,则静电计指针的张角减小,故选项C 错误;根据C =Q U可知,电荷量Q 增大,则电压U 也会增大,而电容由电容器本身决定,C不变,故选项D 错误.]考点二 带电粒子在电场中的直线运动[考点解读]1.做直线运动的条件(1)粒子所受合外力F 合=0,粒子或静止,或做匀速直线运动.(2)粒子所受合外力F 合≠0,且与初速度方向在同一条直线上,带电粒子将做匀加速直线运动或匀减速直线运动.2.用动力学观点分析a =qE m ,E =Ud,v 2-v 20=2ad .3.用功能观点分析匀强电场中:W =Eqd =qU =12mv 2-12mv 2非匀强电场中:W =qU =E k2-E k1.[典例赏析][典例2] (2019·湖南长沙模拟)如图所示,在A 点固定一正电荷,电荷量为Q ,在离A 高度为H 的C 处由静止释放某带同种电荷的液珠,开始运动瞬间向上的加速度大小恰好等于重力加速度g .已知静电力常量为k ,两电荷均可看成点电荷,不计空气阻力.求:(1)液珠的比荷;(2)液珠速度最大时离A 点的距离h ;(3)若已知在点电荷Q 的电场中,某点的电势可表示成φ=kQr,其中r 为该点到Q 的距离(选无限远的电势为零).求液珠能到达的最高点B 离A 点的高度r B .[解析] (1)设液珠的电荷量为q ,质量为m ,由题意知,当液珠在C 点时k QqH2-mg =mg 比荷为q m =2gH 2kQ(2)当液珠速度最大时,k Qq h2=mg 得h =2H(3)设BC 间的电势差大小为U CB ,由题意得U CB =φC -φB =kQ H -kQr B对液珠由释放处至液珠到达最高点(速度为零)的全过程应用动能定理得qU CB -mg (r B -H )=0即q ⎝ ⎛⎭⎪⎫kQ H -kQr B -mg (r B -H )=0解得:r B =2H ,r B =H (舍去). [答案] (1)2gH 2kQ(2)2H (3)2H带电体在匀强电场中的直线运动问题的解题步骤[题组巩固]1.(多选)如图所示,带电小球自O 点由静止释放,经C 孔进入两水平位置的平行金属板之间,由于电场的作用,刚好下落到D 孔时速度减为零.对于小球从C 到D 的运动过程,已知从C 运动到CD 中点位置用时t 1,从C 运动到速度等于C 点速度一半的位置用时t 2,下列说法正确的是( )A .小球带负电B .t 1<t 2C .t 1>t 2D .将B 板向上平移少许后小球可能从D 孔落下解析:AB [由题图可知,A 、B 间的电场强度方向向下,小球从C 到D 做减速运动,受电场力方向向上,所以小球带负电,选项A 正确;由于小球在电场中受到的重力和电场力都是恒力,所以小球做匀减速直线运动,其速度图象如图所示,由图可知,t 1<t 2,选项B 正确,C 错误;将B 板向上平移少许时两板间的电压不变,根据动能定理可知,mg (h +d )-qU =0,mg (h +x )-qUx d ′=0,联立得x =h h +d -d ′d ′<d ′,即小球不到D 孔就要向上返回,所以选项D 错误.]2.(2017·江苏卷)如图所示,三块平行放置的带电金属薄板A 、B 、C 中央各有一小孔,小孔分别位于O 、M 、P 点.由O 点静止释放的电子恰好能运动到P 点.现将C 板向右平移到P ′点,则由O 点静止释放的电子( )A .运动到P 点返回B .运动到P 和P ′点之间返回C .运动到P ′点返回D .穿过P ′点解析:A [设A 、B 板间的电势差为U 1,B 、C 间电势差为U 2,板间距为d ,电场强度为E ,第一次由O 点静止释放的电子恰好能运动到P 点,根据动能定理得:qU 1=qU 2=qEd ,将C 板向右移动,B 、C 板间的电场强度:E =U 2d =Q C 0d =4πkQεr S不变,所以电子还是运动到P 点速度减小为零,然后返回,故A 正确,B 、C 、D 错误.]考点三 带电粒子在匀强电场中的偏转[考点解读]1.运动规律(1)沿初速度方向做匀速直线运动,运动时间⎩⎪⎨⎪⎧a.能飞出电容器:t =lv 0b.不能飞出电容器:y =12at 2=qU 2mdt 2,t =2mdyqU(2)沿电场力方向,做匀加速直线运动⎩⎪⎨⎪⎧加速度:a =F m =qE m =qUmd离开电场时的偏移量:y =12at 2=qUl 22mdv2离开电场时的偏转角:tan θ=v y v 0=qUl mdv202.两个结论(1)不同的带电粒子从静止开始经过同一电场加速后再从同一偏转电场射出时,偏移量和偏转角总是相同的.证明:由qU 0=12mv 2y =12at 2=12·qU 1md ·⎝ ⎛⎭⎪⎫l v 02tan θ=qU 1lmdv 20得:y =U 1l 24U 0d ,tan θ=U 1l2U 0d.(2)粒子经电场偏转后,合速度的反向延长线与初速度延长线的交点O 为粒子水平位移的中点,即O 到偏转电场边缘的距离为l2.3.功能关系当讨论带电粒子的末速度v 时也可以从能量的角度进行求解:qU y =12mv 2-12mv 20,其中U y =Udy ,指初、末位置间的电势差.[典例赏析][典例3] 如图所示,水平放置的平行板电容器与某一电源相连,它的极板长L =0.4 m ,两板间距离d =4×10-3m ,有一束由相同带电微粒组成的粒子流,以相同的速度v 0从两板中央平行极板射入,开关S 闭合前,两板不带电,由于重力作用微粒能落到下极板的正中央,已知微粒质量为m =4×10-5kg ,电荷量q =+1×10-8C ,g 取10 m/s 2.求:(1)微粒入射速度v 0为多少?(2)为使微粒能从平行板电容器的右边射出电场,电容器的上极板应与电源的正极还是负极相连?所加的电压U 应取什么范围?[审题指导] 开关闭合前,微粒做平抛运动,开关闭合后,微粒做类平抛运动,两个过程的分析方法相同,都要用到运动的合成与分解.[解析] (1)开关S 闭合前,由L 2=v 0t ,d 2=12gt 2可解得v 0=L2gd=10 m/s. (2)电容器的上极板应接电源的负极.当所加的电压为U 1时,微粒恰好从下板的右边缘射出,即d 2=12a 1⎝ ⎛⎭⎪⎫L v 02, 又a 1=mg -qU 1dm,解得U 1=120 V当所加的电压为U 2时,微粒恰好从上极板的右边缘射出,即d 2=12a 2⎝ ⎛⎭⎪⎫L v 02, 又a 2=q U 2d-mg m,解得U 2=200 V所以120 V ≤U ≤200 V.[答案] (1)10 m/s (2)与负极相连,120 V ≤U ≤200 V带电粒子在电场中偏转问题求解通法1.解决带电粒子先加速后偏转模型的通法:加速电场中的运动一般运用动能定理qU =12mv 2进行计算;在偏转电场中的运动为类平抛运动,可利用运动的分解进行计算;二者靠速度相等联系在一起.2.计算粒子打到屏上的位置离屏中心的距离Y 的四种方法: (1)Y =y +d tan θ(d 为屏到偏转电场的水平距离).(2)Y =⎝ ⎛⎭⎪⎫L2+d tan θ(L 为电场宽度). (3)Y =y +v y ·d v 0.(4)根据三角形相似Y y =L2+d L2.[题组巩固]1.(多选)如图所示,带电荷量之比为q A ∶q B =1∶3的带电粒子A 、B 以相等的速度v 0从同一点出发,沿着跟电场强度垂直的方向射入平行板电容器中,分别打在C 、D 点,若OC =CD ,忽略粒子重力的影响,则( )A .A 和B 在电场中运动的时间之比为1∶2 B .A 和B 运动的加速度大小之比为4∶1C .A 和B 的质量之比为1∶12D .A 和B 的位移大小之比为1∶1解析:ABC [粒子A 和B 在匀强电场中做类平抛运动,水平方向由x =v 0t 及OC =CD 得,t A ∶t B =1∶2,选项A 正确;竖直方向由h =12at 2得a =2ht 2,它们沿竖直方向下落的加速度大小之比为a A ∶a B =4∶1,选项B 正确;根据a =qE m 得m =qEa,故m A ∶m B =1∶12,选项C 正确;A 和B 的位移大小不相等,选项D 错误.]2.(2016·北京卷23题改编)如图所示,电子由静止开始经加速电场加速后,沿平行于板面的方向射入偏转电场,并从另一侧射出.已知电子质量为m ,电荷量为e ,加速电场电压为U 0,偏转电场可看做匀强电场,极板间电压为U ,极板长度为L ,板间距为d .(1)忽略电子所受重力,求电子射入偏转电场时的初速度v 0和从电场射出时沿垂直板面方向的偏转距离Δy ;(2)分析物理量的数量级,是解决物理问题的常用方法.在解决(1)问时忽略了电子所受重力,请利用下列数据分析说明其原因.已知U =2.0×102 V ,d =4.0×10-2m ,m =9.1×10-31 kg ,e =1.6×10-19 C ,g =10 m/s 2. 解析:(1)根据动能定理,有eU 0=12mv 20, 电子射入偏转电场时的初速度v 0=2eU 0m 在偏转电场中,电子的运动时间Δt =Lv 0=L m 2eU 0加速度a =eE m =eU md偏转距离Δy =12a (Δt )2=UL 24U 0d(2)只考虑电子所受重力和电场力的数量级,有重力 G =mg ≈10-29 N 电场力F =eUd ≈10-15 N由于F ≫G ,因此不需要考虑电子所受的重力.答案:(1) 2eU 0m UL 24U 0d(2)见解析 思想方法(十四) 电容器在现代科技生活中的应用[典例] (多选)目前智能手机普遍采用了电容触摸屏,电容触摸屏是利用人体的电流感应进行工作的,它是一块四层复合玻璃屏,玻璃屏的内表面和夹层各涂一层ITO(纳米铟锡金属氧化物),夹层ITO 涂层作为工作面,四个角引出四个电极,当用户手指触摸电容触摸屏时,手指和工作面形成一个电容器,因为工作面上接有高频信号,电流通过这个电容器分别从屏的四个角上的电极中流出,且理论上流经四个电极的电流与手指到四个角的距离成比例,控制器通过对四个电流比例的精密计算来确定手指位置.对于电容触摸屏,下列说法正确的是( )A.电容触摸屏只需要触摸,不需要压力即能产生位置信号B.使用绝缘笔在电容触摸屏上也能进行触控操作C.手指压力变大时,由于手指与屏的夹层工作面距离变小,电容变小D.手指与屏的接触面积变大时,电容变大[解析]AD [据题意知,电容触摸屏只需要触摸,由于流经四个电极的电流与手指到四个角的距离成比例,控制器就能确定手指的位置,因此不需要手指有压力,故A正确;绝缘笔与工作面不能形成一个电容器,所以不能在电容屏上进行触控操作,故B错误;手指压力变大时,由于手指与屏的夹层工作面距离变小,电容将变大,故C错误;手指与屏的接触面积变大时,电容变大,故D正确.][题组巩固]1.(2019·汕头模拟)图示为某电容传声器结构示意图,当人对着传声器讲话,膜片会振动.若某次膜片振动时,膜片与极板距离增大,则在此过程中( ) A.膜片与极板间的电容增大B.极板所带电荷量增大C.膜片与极板间的电场强度增大D.电阻R中有电流通过解析:D [根据C=εr S4πkd可知,膜片与极板距离增大,膜片与极板间的电容减小,选项A错误;根据Q=CU可知极板所带电荷量减小,因此电容器要通过电阻R放电,所以选项D正确,B错误;根据E=Ud可知,膜片与极板间的电场强度减小,选项C错误.]2.(多选)电容式加速度传感器的原理如图所示,质量块左、右侧连接电介质、轻质弹簧,弹簧与电容器固定在外框上,质量块可带动电介质移动,改变电容.则( ) A.电介质插入极板间越深,电容器电容越小B.当传感器以恒定加速度运动时,电路中有恒定电流C.若传感器原来向右匀速运动,突然减速时弹簧会压缩D.当传感器由静止突然向右加速时,电路中有顺时针方向的电流解析:CD [由C =εr S 4πkd知,电介质插入越深,εr 越大,即C 越大,A 错;当传感器以恒定加速度运动时,电介质相对电容器静止,电容不变,电路中没有电流,B 错;传感器向右匀速运动,突然减速时,质量块由于惯性相对传感器向右运动,弹簧压缩变短,C 对;传感器由静止突然向右加速时,电介质相对电容器向左运动,εr 增大,C 增大,电源电动势不变,由C =Q U 知,Q 增大,上极板电荷量增大,即电路中有顺时针方向的电流,D 对.。
2025高考物理总复习自由落体运动和竖直上抛运动多过程问题
第一章 运动的描述 匀变速直线运动的研究
高考一轮总复习 • 物理
返回导航
►考向2 自由落体运动规律的综合应用
(多选)一熟透的苹果从O点自由下落,通过频闪照相得到一张 苹果自由下落过程中的局部照片,如图所示(照片中没拍到O点)。已知 频闪仪每隔时间T闪光一次,a、b间的实际距离为l,重力加速度为g, 忽略空气阻力,将苹果视为质点。下列说法正确的是( BC )
第一章
运动的描述 匀变速直线运动的研究
第3讲 自由落体运动和竖直上抛运动 多过程问题
高考一轮总复习 • 物理
返回பைடு நூலகம்航
1.自由落体运动 (1)定义:物体只在__重__力___作用下从__静__止___开始下落的运动。 (2) 运 动 性 质 : 初 速 度 v0 = 0 、 加 速 度 为 重 力 加 速 度 g 的 __匀__加__速__直__线___运动。 (3)基本规律 ①②速 位度 移与 与时 时间间的的关关系系式式::vh==____g__t__。__12_g_t2____。 ③速度与位移的关系式:v2=_2_g_h__。
第一章 运动的描述 匀变速直线运动的研究
高考一轮总复习 • 物理
返回导航
1.物体从高处下落就是自由落体运动。( × ) 2.同一地点,轻重不同的物体的g值一样大。( √ ) 3.做自由落体运动的物体在1 s内速度增加约9.8 m/s。( √ ) 4.不计空气阻力,物体从某高度由静止下落,任意两个连续相等 的时间间隔T内的位移之差恒定。( √ ) 5.物体做竖直上抛运动,速度为负值时,位移也一定为负值。 (×)
第一章 运动的描述 匀变速直线运动的研究
高考一轮总复习 • 物理
返回导航
2.竖直上抛运动 (1)运动特点:加速度为g,上升阶段做__匀__减__速___运动,下降阶段做 __自__由__落__体___运动。
第3讲 自由落体运动和竖直上抛运动 多运动过程问题-2025版创新设计高考物理一轮复习
第3讲自由落体运动和竖直上抛运动多运动过程问题学习目标1.掌握自由落体运动和竖直上抛运动的特点,并能解决实际问题。
2.理解竖直上抛运动的对称性和多解性。
3.灵活运用匀变速直线运动的规律解决多过程问题。
1.自由落体运动2.竖直上抛运动1.思考判断(1)同一地点,轻重不同的物体的g 值一样大。
(√)(2)物体做竖直上抛运动,速度为负值时,位移也一定为负值。
(×)(3)做竖直上抛运动的物体,在上升过程中,速度变化量方向是竖直向下的。
(√)2.一物体从离地H 高处自由下落,经过时间t 落地,则当它下落t2时,离地的高度为()A.14H B.12HC.3 4HD.45H答案C解析根据自由落体运动的规律知H=12gt2,它下落t2的位移为h=12g,此时物体离地的高度为H0=H-h=34H,故C正确。
考点一自由落体运动1.运动特点初速度为0,加速度为g的匀加速直线运动。
2.解题方法(1)初速度为0的匀变速直线运动规律都适用。
①从开始下落,连续相等时间内下落的高度之比为1∶3∶5∶7∶…。
②由Δv=gΔt知,相等时间内,速度变化量相同。
③连续相等时间T内下落的高度之差Δs=gT2。
(2)物体由静止开始的自由下落过程才是自由落体运动,从中间截取的一段运动过程不是自由落体运动,等效于竖直下抛运动,应该用初速度不为零的匀变速直线运动规律去解决此类问题。
例1(2024·广东省深圳市调研)如图1所示,一个小孩在公园里玩“眼疾手快”游戏。
游戏者需接住从支架顶部随机落下的圆棒。
已知支架顶部距离地面2.3m,圆棒长0.4m,小孩站在支架旁边,手能触及所有圆棒的下落轨迹的某一段范围AB,上边界A距离地面1.1m,下边界B距离地面0.5m。
不计空气阻力,重力加速度g=10m/s2。
求:图1(1)圆棒下落到A 点所用的时间t 1;(2)圆棒通过AB 所用的时间t 2。
答案(1)0.4s(2)0.2s解析(1)圆棒底部距离A 点的高度h 1=2.3m -0.4m -1.1m =0.8m圆棒做自由落体运动下落到A 点,有h 1=12gt 21代入数据解得t 1=0.4s 。
高中物理精品试题:高考物理一轮新题赏析:第3讲 板块模型
第3讲板块模型1、如图所示,长木板放置在水平面上,一小物块置于长木板的中央,长木板和物块的质量均为m,物块与木板间的动摩擦因数为μ,木板与水平面间动摩擦因数为13μ,已知最大静摩擦力与滑动摩擦力大小相等,重力加速度为g。
现对物块施加一水平向右的拉力F,则木板加速度大小a可能是( )A.a=μg B.a=23g C. a=13g D. a=123Fgm2、如图所示,一辆小车静止在水平面上,在小车上放一个质量m=8 kg的物体,它被一根水平方向上拉伸了的弹簧拉住而静止在小车上,这时弹簧的弹力为6 N。
现沿水平向右的方向对小车施以作用力,使小车由静止开始运动起来,运动中加速度由零逐渐增大到1m/s2,随即以1 m/s2的加速度做匀加速直线运动。
以下说法正确的是( )A.物体受到的摩擦力一直减小B.当小车加速度大小为0.75 m/s2时,物体不受摩擦力作用C.物体与小车始终保持相对静止,弹簧对物体的作用力始终没有发生变化D.小车以1 m/s2的加速度做匀加速直线运动时,物体受到的摩擦力为8 N3、如图甲所示,静止在光滑水平面上的长木板B(长木板足够长)的左端放着小物块A.某时刻,A受到水平向右的外力F作用,F随时间t的变化规律如图乙所示,即F=kt,其中k 为已知常数.若物体之间的滑动摩擦力F f的大小等于最大静摩擦力,且A、B的质量相等,则下列图中可以定性地描述长木板B运动的v-t图象的是().4、如图所示,一足够长的木板静止在光滑水平面上,一物块静止在木板上,木板和物块间有摩擦。
现用水平力向右拉木板,当物块相对木板滑动了一段距离但仍有相对运动时,撤掉拉力,此后木板和物块相对于水平面的运动情况为()A.物块先向左运动,再向右运动B.物块向右运动,速度逐渐增大,直到做匀速运动C.木板向右运动,速度逐渐变小,直到做匀速运动D.木板和物块的速度都逐渐变小,直到为零5、质量为m0=20 kg、长为L=5 m的木板放在水平面上,木板与水平面的动摩擦因数为μ1=0.15。
2025届高考物理一轮复习课件: 第3讲 力的合成与分解
≤F1+F2+F3
3N、4N、9N
①排除最大的力 ②找剩下的力的范围
3N、7N、9N
③与最大的力比较
1.两个共点力作用于一个物体上,力的方向可以任意调节,其中一个力为20 N,
另一个力是F,它们的合力是50 N。则F的大小可能是( C )
升降梯的力学模型简图,剪叉支架AB和CD支撑轿厢。完成任务后,升降梯
缓慢送该电工下降的过程中( B )
A.该电工处于失重状态
B.轿厢对剪叉支架AB的压力逐渐增大
C.剪叉支架AB对轿厢的支持力大小等于轿
厢的重力
D.液压升降梯对水平地面的压力逐渐减小
图9
5 3 N
三个力合力的大小为:
F
15 ( 5 3 )
2
10 3 N
2
N
2.如图1所示,一个重为G的吊椅用轻绳AO、BO固定,绳AO、BO相互垂直,
α>β,且两绳中的拉力分别为FA、FB,物体受到的重力为G,则( B )
A.FA一定大于G
B.FA一定大于FB
C.FA一定小于FB
D.FA与FB大小之和一定等于G
3.(2023·湖南长沙高三月考)如图2所示,一个“Y”形弹弓顶部跨度为L,两根相
同的橡皮筋自由长度均为L,在两橡皮筋的末端用一块软羊皮(长度不计)做成
皮兜。若橡皮筋的弹力与形变量的关系满足胡克定律,且劲度系数为k,发
射弹丸时每根橡皮筋的最大长度为1.5L(弹性限度内),则发射过程中皮兜对
②不同性质的力也可以合成
③合力与分力,是作用效果上的一种等效替代不能同时出现
列宾《伏尔加河上的纤夫》
【人教版】2020届高考物理一轮复习第7章静电场第3讲电容器带电粒子在电场中的运动课时作业(含解析)
3、电容器 带电粒子在电场中的运动[基础训练]1.(2018·云南曲靖联考)(多选)如图所示电路中,A 、B 为两块竖直放置的金属板,G 是一只静电计,开关S 合上后,静电计指针张开一个角度,下述哪些做法可使指针张角增大( )A .使A 、B 两板靠近一些 B .使A 、B 两板正对面积错开一些C .断开S 后,使B 板向右平移拉开一些D .断开S 后,使A 、B 两板正对面积错开一些答案:CD 解析:图中静电计的金属杆接A 板,外壳和B 板均接地,静电计显示的是A 、B 两极板间的电压,指针张角越大,表示两板间的电压越高.当合上S 后,A 、B 两板与电源两极相连,板间电压等于电源电压不变,静电计指针张角不变;当断开S 后,板间距离增大,正对面积减小,都将使电容器的电容变小,而电容器电荷量不变,由U =Q C可知,板间电压U 增大,从而使静电计指针张角增大.综上所述,选项C 、D 正确.2.(2018·山东菏泽期末)(多选)一平行板电容器充电后与电源断开,负极板接地,在两极板间有一带正电小球(电荷量很小)固定在P 点,如图所示.以U 表示两极板间的电压,E 表示两极板间的场强,E p 表示该小球在P 点的电势能,若保持负极板不动,而将正极板移至图中虚线所示位置,则( )A .U 变小B .U 不变C .E 变大D .E p 不变答案:AD 解析:根据电容器充电后与电源断开可知,Q 不变,将正极板移至图中虚线所示位置,间距d 减小,由C =εr S 4πkd ,知电容C 增大,又U =Q C ,电压U 减小,因E =U d =Q Cd =4πkQ εr S,E 不变,P 点到下极板的距离不变,则P 点与下极板的电势差不变,P 点的电势φ不变,P 点电势能E p =φq 不变,选项A 、D 正确.3.如图所示,从F 处由静止释放一个电子,电子向B 板方向运动,设电源电动势为U (V),下列对电子运动的描述中错误的是( )A .电子到达B 板时的动能是U (eV)B .电子从B 板到达C 板的过程中,动能的变化量为零 C .电子到达D 板时动能是3U (eV) D .电子在A 板和D 板之间做往复运动答案:C 解析:由题图可知,电子在A 、B 板间做加速运动,电场力做的正功为U (eV);电子在B 、C 板间做匀速运动,动能变化量为零;电子在C 、D 板间做减速运动,电场力做的功为-U (eV),电子在D 板处速度为零,故电子在A 板和D 板之间做往复运动,选C.4.如图所示,电子(不计重力,电荷量为e ,质量为m )由静止经加速电场加速,然后从相互平行的A 、B 两板的正中间射入,已知加速电场两极间电压为U 1,A 、B 两板之间电压为U 2,则下列说法中正确的是( )A .电子穿过A 、B 板时,其动能一定等于e ⎝ ⎛⎭⎪⎫U 1+U 22B .为使电子能飞出A 、B 板,则要求U 1>U 2C .若把电子换成另一种带负电的粒子(忽略重力),它将沿着电子的运动轨迹运动D .在A 、B 板间,沿电子的运动轨迹,电势越来越低答案:C 解析:电子穿过A 、B 板时不一定从板的边缘射出,所以动能不一定等于e ⎝ ⎛⎭⎪⎫U 1+U 22,故A 错误.为使电子能飞出A 、B 板,不能只要求U 1>U 2,因为竖直位移还与板长、板间距离有关,故B 错误.电子在A 、B 板间的水平位移x =v 0t ,竖直位移y =12at 2,其中a =eU 2md ,eU 1=12mv 20,联立得y =U 2x24U 1d,与电荷量、质量无关,所以C 正确.在A 、B 板间,电场力对电子做正功,电势能减少,沿电子的运动轨迹电势升高,所以D 错误.5.(2018·湖北宜昌模拟)如图所示,一个带电粒子从粒子源飘入(初速度很小,可忽略不计)电压为U 1的加速电场,经加速后从小孔S 沿平行金属板A 、B 的中线射入,A 、B 板长为L ,相距为d ,电压为U 2.则带电粒子能从A 、B 板间飞出应该满足的条件是( )A.U 2U 1<2dL B.U 2U 1<d LC.U 2U 1<2d 2L2 D.U 2U 1<d 2L2 答案:C 解析:根据qU 1=12mv 2,再根据t =L v 和y =12at 2=12·qU 2md ·⎝ ⎛⎭⎪⎫L v 2,由题意知,y <12d ,解得U 2U 1<2d2L 2,故C正确.6.如图所示的示波管,电子由阴极K 发射后,初速度可以忽略,经加速电场加速后垂直于电场方向飞入偏转电场,最后打在荧光屏上.已知加速电压为U 1,偏转电压为U 2,两偏转极板间距为d ,板长为L ,偏转极板右端到荧光屏的距离为D ,不计重力,求:(1)电子飞出偏转电场时的偏转位移y ; (2)电子打在荧光屏上的偏转距离OP .答案:(1)U 2L 24dU 1 (2)U 2L4dU 1(L +2D )解析:设电子加速后速度为v 0,则eU 1=12mv 20在偏转电场中水平方向:L =v 0t 竖直方向:y =12eU 2dmt 2联立解得y =U 2L 24dU 1.(2)由类平抛运动的推论可得y OP =12L L2+D联立解得OP =y +2D L y =U 2L 24dU 1+U 2LD 2dU 1=U 2L4dU 1(L +2D ).[能力提升]7.(2018·河北张家口模拟)如图所示,P 、Q 为平行板电容器,两极板竖直放置,在两板间用绝缘线悬挂一带电小球.将该电容器与电源连接,闭合开关后,悬线与竖直方向夹角为α,则()A .保持开关闭合,缩小P 、Q 两板间的距离,角度α会减小B .保持开关闭合,加大P 、Q 两板间的距离,角度α会增大C .断开开关,加大P 、Q 两板间的距离,角度α会增大D .断开开关,缩小P 、Q 两板间的距离,角度α不变化答案:D 解析:保持开关闭合,电容器两端的电压不变,减小两板间距离,根据E =Ud,电场强度增大,角度α增大,A 错误;增大两板间距离,场强减小,角度α减小,B 错误;将开关断开,Q 不变,则有E =U d =Q Cd=Q εr S4πkd·d =4πkQεr S,改变距离d ,场强不变,角度α不变,C 错误,D 正确.8.如图所示,在空间中有平行于xOy 平面的匀强电场,一群带正电粒子(电荷量为e ,重力不计,不计粒子间相互作用)从P 点出发,可以到达以原点O 为圆心、R =25 cm 为半径的圆上的任意位置,比较圆上这些位置,发现粒子到达圆与x 轴正半轴的交点A 时,动能增加量最大,为60 eV ,已知∠OAP =30°.则下列说法正确的是( )A .该匀强电场的方向沿x 轴负方向B .匀强电场的电场强度是240 V/mC .过A 点的电场线与x 轴垂直D .P 、A 两点间的电势差为60 V答案:D 解析:到A 点时,动能增加量最大,说明等势面在A 点与圆相切(否则一定还可以在圆上找到比A 点电势低的点,粒子到达这点,动能增加量比到达A 点时动能增加量大),即等势面与y 轴平行,电场力做正功,所以电场沿x 轴正方向,P 、A 两点间的电势差U PA =W e=60 V ,由匀强电场中电场强度与电势差的关系可得E =U PA2R cos 30°cos 30°=160 V/m ,故D 正确,A 、B 、C 错误.9.(多选)两个相同的电容器A 和B 如图所示连接,它们的极板均水平放置,当它们都带有一定电荷并处于静电平衡时,电容器A 中的一带电粒子恰好静止,现在电容器B 的两极板间插入一长度与板长相同的金属块,且两极板的间距d 不变,这时带电粒子的加速度大小为12g ,重力加速度的大小为g .则下列说法正确的是( )A .带电粒子加速度方向向下B .电容器A 的带电量增加为原来的2倍C .金属块的厚度为23dD .电容器B 两板间的电压保持不变答案:AC 解析:带电粒子静止,则有mg =qU d ,得U =mgdq①,当在电容器B 的两极板间插入一长度与板长相同的金属块时,板间距减小,则由C =εr S4πkd 可知,电容器B 的电容C 增大,而两个电容器的总电量不变,电压相等,则知电容器B 两端的带电量增大,电容器A 两端的电量减小,则由C =Q U知电容器A 板间电压减小,场强减小,粒子所受的电场力减小,所以粒子向下加速运动,故A 项正确;带电粒子向下加速运动,根据牛顿第二定律得mg -qU ′d =m g 2②,由①②解得U ′=12mgd q ,则板间电压变为原来的12,根据电容的定义式C =QU,可知电容器A 的带电量变为原来的12,则电容器B 的带电量变为原来的32倍,由电容的定义式C =QU ,可知电容器B 的电容变为原来的3倍,则电容器B 的板间距减小到原来的13,故金属块的厚度为23d ,C 项正确,B 、D 项错误.10.如图所示,矩形区域ABCD 内存在竖直向下的匀强电场,两个带正电的粒子a 和b 以相同的水平速度射入电场,粒子a 由顶点A 射入,从BC 的中点P 射出,粒子b 由AB 的中点O 射入,从顶点C 射出.若不计重力,则a 和b 的比荷之比是()A .1∶2B .2∶1C .1∶8D .8∶1答案:D 解析:如图所示,设AB 长为2h ,BC 长为2l ,对a 粒子有2h =12a a t 2a =q a E 2m a t 2a ,l =v 0t a ,解得2h =q a E 2m a ⎝ ⎛⎭⎪⎫l v 02,对b 粒子有h =12a b t 2b =q b E 2m b t 2b ,2l =v 0t b ,解得h =q b E 2m b ⎝ ⎛⎭⎪⎫2l v 02,可得q am a q b m b=81,D 正确.11.如图甲所示,质量为m 、电荷量为e 的电子经加速电压U 1加速后,在水平方向沿O 1O 2垂直进入偏转电场.已知形成偏转电场的平行板电容器的极板长为L (不考虑电场边缘效应),两极板间距为d ,O 1O 2为两极板的中线,P 是足够大的荧光屏,且屏与极板右边缘的距离也为L .甲乙(1)求电子进入偏转电场时的速度大小v ;(2)若偏转电场两板间加恒定电压,电子经过偏转电场后正好打中屏上的A 点,A 点与极板M 在同一水平线上,求偏转电场所加电压U 2;(3)若偏转电场两板间的电压按如图乙所示做周期性变化,要使电子经加速电场后在t =0时刻进入偏转电场,最后水平击中A 点,求偏转电场电压U 0以及周期T 分别应该满足的条件.答案:见解析 解析:(1)电子经加速电场加速eU 1=12mv 2解得v =2eU 1m.(2)由题意知,电子经偏转电场偏转后做匀速直线运动到达A 点,设电子离开偏转电场时的偏转角为θ,由几何关系得d 2=⎝⎛⎭⎪⎫L +12L tan θ解得tan θ=d3L又tan θ=v y v =eU 2md ·L v v =eU 2L mdv 2=U 2L2U 1d解得U 2=2U 1d23L2.(3)要使电子在水平方向击中A 点,电子必向上极板偏转,且v y =0,则电子应在t =0时刻进入偏转电场,且电子在偏转电场中运动的时间为整数个周期,因为电子水平射出,则电子在偏转电场中的运动时间满足t =Lv =nT T =L nv=L n2eU 1m=L n m2eU 1(n =1,2,3,…) 在竖直方向满足d2=2n ×12a ⎝ ⎛⎭⎪⎫T 22=2n ×12·eU 0md ⎝ ⎛⎭⎪⎫T 22解得U 0=4nU 1d2L2(n =1,2,3,…).。
高考物理总复习 专题一 第3讲 自由落体运动和竖直上抛运动
v20
(4)两个特征量:最大高度 h=____2_g_____;从抛出到落回
2v0
抛出点的运动时间 t=_____g_____.
【基础检测】 1.两物体分别从不同高度自由下落,同时落地,第一个物
体下落时间为
t,第二个物体下落时间为
t 2
,当第二个物体开始
下落时,两物体相距( )
A.gt2 C.34gt2
答案:D
》》》考点 2 竖直上抛运动的规律 ⊙重点归纳
1.分段法分析竖直上抛运动 上升过程:vt=0、a=-g 的匀减速直线运动. 下降过程:自由落体运动. 2.整体法分析竖直上抛运动 将上升和下降过程统一看成是初速度 v0 向上,加速度 g 向 下的匀变速直线运动.
速度公式:vt=v0-gt.
1
图 1-3-1
解析:小球 a、b 释放后均做自由落体运动,则有 h=12gt2, 代入计算得 ta=2 s,tb= 3 s,小球 a 提前 1 s 释放,所以 b 释 放后 a 运动 ta-1 s=1 s 落入 C 盘,比 b 球早落入.选项 A、C 错误.b 球释放时 a 下落 1 s,此时下落的高度 h=12gt′2=5 m, 刚好到达小球 b 的同高处,此时 b 开始释放,所以二者在 B 点 相遇,然后 a 球超过 b 球先落入盘中.选项 D 正确,B 错误.
t=2gv0=2 3 s.
》》》考点1 自由落体运动的规律 ⊙重点归纳
所有匀变速直线运动的推论,包括初速度为零的比例式结 论,都适用于自由落体运动.
【考点练透】 1.(2015 年上海十三校联考)在真空中,将苹果和羽毛同时
从同一高度由静止释放,下列频闪照片中符合事实的是( )
A
B
C
高考物理一轮复习 课时作业 第3讲 自由落体运动 竖直方向上的抛体运动
2013届高三物理总复习精品课时作业 第3讲 自由落体运动 竖直方向上的抛体运动1.从足够高处释放一石子甲,经0.5 s ,从同一位置再释放另一石子乙,不计空气阻力,则在两石子落地前,下列说法中正确的是( )A .它们间的距离与乙石子运动的时间成正比B .甲石子落地后,经0.5 s 乙石子还在空中运动C .它们在空中运动的时间相同D .它们在空中运动的时间与其质量无关【解析】两石子做自由落体运动,设t 时刻甲下落的高度h 1=12gt 2,则乙下落的高度h 1=12g (t -0.5)2,它们之间的距离h 1-h 2=12g (t -0.25)=12g [(t -0.5)+0.25]与乙石子运动的时间(t -0.5)不成正比,A 错误;由于两石子下落的高度相同,因此下落的时间相同,甲石子落地后,经0.5 s 乙石子刚好落地,B 错误,C 正确;由于不计空气阻力,由t =2hg可知,两石子在空中运动的时间与质量无关,D 正确. 【答案】CD2.一个小石子从离地某一高度处由静止自由落下,某摄影爱好者恰好拍到了它下落的一段轨迹AB .该爱好者用直尺量出轨迹的长度,如图所示.已知曝光时间为11000 s ,则小石子出发点离A 点约为( )A .6.5 cmB .10 mC .20 mD .45 m【解析】由图可知AB =2 cm =0.02 m ,AB 中点的速度v 中=ABΔt=20 m/s ,由v 2=2gh可得:AB 中点到出发点的高度h 中=v 2中2g=20 m≈h A ,故C 正确.【答案】C3.将两个小球分别拴在一根轻绳的两端,一人用手拿住一球将它们从三楼阳台上由静止释放,两球先后落地的时间差为Δt 1;若将它们从四楼阳台上由静止释放,则它们落地的时间差为Δt 2.不计空气阻力,则Δt 1、Δt 2满足( )A .Δt 1=Δt 2B .Δt 1<Δt 2C .Δt 1>Δt 2D .以上都有可能【解析】时间差等于轻绳长度除以下面小球落地后上面小球运动的平均速度,故Δt 1>Δt 2.【答案】C4.在地质、地震、勘探、气象和地球物理等领域的研究中,需要精确的重力加速度g 值,g 值可由实验精确测定.近年来测g 值的一种方法叫“对称自由下落法”,它是将测g 值归于测长度和时间,以稳定的氦氖激光的波长为长度标准,用光学干涉的方法测距离,以铷原子钟或其他手段测时间,此方法能将g 值测得很准.具体做法是:将真空长直管沿竖直方向放置,自其中的O 点向上抛小球,从抛出小球至小球又落回抛出点的时间为T 2;小球在运动过程中经过比O 点高H 的P 点,小球离开P 点至又回到P 点所用的时间为T 1.由T 1、T 2和H 的值可求得g 等于( )A.8HT 22-T 21B.4HT 22-T 21C.8HT 2-T 21D.H4T 2-T 21【解析】设小球上升的最大高度为h ,由题意知:h =12g (T 22)2,h -H =12g (T 12)2,解得:g=8HT 2-T 1. 【答案】A5.一杂技演员用一只手抛接球.他每隔0.40 s 抛出一球,接到球便立即把球抛出.已知除抛、接球的时刻外,空中总有4个球,将球的运动近似看做是竖直方向的运动,球到达的最大高度是(高度从抛球点算起,取g =10 m/s 2)( )A .1.6 mB .2.4 mC .3.2 mD .4.0 m【解析】被杂技演员抛出的小球在空中应做竖直上抛运动.考虑到空中总有四个小球,其边界情况是:演员手中的球将要被抛出时,空中第4个小球刚到演员的手中,如图所示.也就是说,抛出的小球在空中运动的时间是1.6 s .再根据竖直上抛运动上升过程和下降过程具有对称性,可知第二个小球抛出后经过0.80 s 到达最高点.小球到达的最大高度H =12gt 2=3.2 m .选项C 正确.【答案】C6.跳水是一项优美的水上运动,图甲是2008年北京奥运会跳水比赛中小将陈若琳和王鑫在跳台上腾空而起的英姿.其中陈若琳的体重约为30 kg ,身高约为1.40 m ,她站在离水面10 m 高的跳台上,重心离跳台面的高度约为0.80 m ,竖直向上跃起后重心升高0.45 m 到达最高点,入水时身体竖直,当手触及水面时伸直双臂做一个翻掌压水花的动作,如图乙所示,这时陈若琳的重心离水面约为0.80 m .设运动员在入水及在水中下沉过程中受到的水的作用力大小不变.空气阻力可忽略不计,重力加速度g 取10 m/s 2.(结果保留两位有效数字)(1)求陈若琳从离开跳台到手触及水面的过程中可用于完成一系列动作的时间.(2)假设陈若琳入水后重心下沉到离水面约2.2 m 处速度变为零,试估算水对陈若琳的阻力大小.【解析】(1)陈若琳跃起后可看做竖直向上的匀减速运动,重心上升的高度h 1=0.45 m 设起跳速度为v 0,则v 20=2gh 1,上升过程的时间t 1=v 0g解得:t 1=2h 1g=0.3 s陈若琳从最高处自由下落到手触及水面的过程中重心下落的高度h =10.45 m ,设下落过程的时间为t 2,则:h =12gt 22解得:t 2=2hg= 2.09 s≈1.4 s陈若琳完成一系列动作可利用的时间t =t 1+t 2=1.7 s.(2)陈若琳的手触及水面到她的重心下沉到离水面约2.2 m 处的位移x =3.0 m 手触及水面时的瞬时速度v =2gh设水对运动员的作用力为f ,依据动能定理有: (mg -f )x =0-12mv 2,解得:f =1.3×103N.【答案】(1)1.4 s (2)1.3×103N7.自同一地点自由下落的A 、B 两物体,A 的质量是B 的质量的2倍,B 比A 晚2 s 开始下落.忽略空气阻力,取g =10 m/s 2,下述结论不正确...的是( ) A .两物体落地时速度相同B .两物体下落所用的时间相同C .在A 落地前、B 下落后的任一时刻,A 、B 两物体间的距离之差均为20 mD .在A 落地前、B 下落后的任一时刻,A 、B 两物体的速度之差均为20 m/s【解析】自由落体的运动规律与质量无关,A 、B 结论正确.距离之差Δh =12gt 2-12g (t-2)2与时间t 有关,C 结论不正确.速度之差Δv =gt -g (t -2)=2g 与时间无关,D 结论正确.综上所述,选C.【答案】C8.两物体分别从不同高度自由下落,同时落地,第一个物体下落时间为t ,第二个物体下落时间为t2.当第二个物体开始下落时,两物体相距( )A .gt 2B.3gt 28 C.3gt 24 D.gt24【解析】当第二个物体开始下落时,第一个物体已下落t 2时间,此时离地高度h 1=12gt 2-12g ⎝ ⎛⎭⎪⎫t 2)2,第二个物体下落时的高度h 2=12g ⎝ ⎛⎭⎪⎫t 2)2,则待求距离Δh =h 1-h 2=gt 24.【答案】D9.小球从空中自由下落,与水平地面相碰后弹到空中某一高度,其v -t 图象如图所示.则由图可知( )A .小球下落的最大速度为5 m/sB .小球第一次反弹后瞬时速度的大小为3 m/sC .小球能弹起的最大高度为0.45 mD .小球能弹起的最大高度为0.9 m【解析】第0.5 s 末小球着地,由图象可知,着地前的瞬时速度为5 m/s ,反弹速度为-3 m/s ,故选项A 、B 正确.因为v -t 图象和t 轴所围的面积即表示小球的位移,故在0.5~0.8 s 内的位移为-0.45 m ,负号表示方向向上,选项C 正确.【答案】ABC10.某人站在高楼的平台边缘处,以v 0=20 m/s 的初速度竖直向上抛出一石子.求抛出后石子经过距抛出点15 m 处所需的时间.(不计空气阻力,取g =10 m/s 2)【解析】当石块在抛出点上方距抛出点15 m 处时,取向上为正方向,则位移x =+15 m a =-g =-10 m/s 2代入公式x =v 0t +12gt 2有:15=20·t +12×(-10)·t 2化简得:5t 2-20·t +15=0 解得:t 1=1 s ,t 2=3 s(注:t 1=1 s 对应着石块上升时到达“距抛出点15 m 处”时所用的时间,而t 2=3 s 则对应着从最高点往回落时第二次经过“距抛出点15 m 处”时所用的时间)由于石块上升的最大高度H =20 m所以石块落到抛出点下方“距抛出点15 m 处”时,自由下落的总高度为: H OB =20 m +15 m =35 m下落此段距离所用的时间为:t =2H OBg=2×3510s =7 s 这样石块从抛出点到第三次经过“距抛出点15 m 处”所用的时间为:t 3=2 s +7 s =(2+7) s.【答案】有三个:1 s 、3 s 、(2+7) s11.甲、乙两位同学在一次做“测量楼的高度”研究性课题时,设计了以下一个方案(假设该方案在实践中能成功):由甲同学在楼顶自由释放一个小球,而乙同学则通过一数字计时器测量小球通过地面上高1.2 m 的物体P 的时间,从而估算楼高.(由于小球在经过物体P 时,速度的变化和它的瞬时速度相比较,可以忽略不计,因而可以看成是匀速直线运动 .取g =10 m/s 2)(1)若乙同学测得的实验数据如下表,试估算高楼楼顶到物体P 顶端的距离.(2)若甲同学和乙同学开玩笑,以某一初速度竖直向下抛小球,乙同学以为是从静止释放,通过数据最终测得高楼楼顶到物体P 顶端的距离大约是180.8 m ,试求出甲同学抛球时的速度大小.【解析】(1)小球通过物体P 的平均时间Δt =0.02 s物体经过P 时的速度v =Δh Δt =1.20.02m/s =60 m/s则楼顶到P 顶端的距离h =v 22g =36002×10m =180 m.(2)设甲同学抛球的初速度为v 0,小球到达物体P 顶端的速度为v t ,则:v 2t -v 20=2gh =3600 v 2t =2gh =3616联立解得:v 0=4 m/s.【答案】(1)180 m (2)4 m/s。
备考2024届高考物理一轮复习讲义第七章动量守恒定律专题十一动量守恒中的四类典型模型题型3滑块 斜曲
题型3 滑块+斜(曲)面模型模型图示水平地面光滑、曲面光滑模型特点(1)最高点:m 与M 具有共同水平速度v 共,m 不会从此处或提前偏离轨道,系统水平方向动量守恒,mv 0=(M +m )v 共;系统机械能守恒,12m v 02=12(M +m )v 共2+mgh ,其中h 为滑块上升的最大高度,不一定等于圆弧轨道的高度(完全非弹性碰撞拓展模型);(2)最低点:m 与M 分离点,系统水平方向动量守恒,mv 0=mv 1+Mv 2;系统机械能守恒,12m v 02=12m v 12+12M v 22(弹性碰撞拓展模型)研透高考 明确方向5.[滑块脱离曲面]如图所示,在光滑的水平地面上,静置一质量为m 的四分之一光滑圆弧滑块,圆弧半径为R ,一质量也为m 的小球,以水平速度v 0自滑块的左端A 处滑上滑块,当二者共速时,小球刚好到达圆弧上端B .若将小球的初速度增大为2v 0,不计空气阻力,则小球能达到距B 点的最大高度为( C )A.RB.1.5RC.3RD.4R解析 若小球以水平速度v 0滑上滑块,小球上升到圆弧的上端时,小球与滑块速度 相同,设为v 1,以小球的初速度v 0的方向为正方向,在水平方向上,由动量守恒定律得mv 0=2mv 1,由机械能守恒定律得12m v 02=12×2m v 12+mgR ,代入数据解得v 0=2√gR ,若小球以水平速度2v 0冲上滑块,小球上升到圆弧的上端时,小球与滑块水 平方向上速度相同,设为v 2,以小球的初速度方向为正方向,在水平方向上,由动量守恒定律得2mv 0=2mv 2,由能量守恒定律得12m ×(2v 0)2=12×2m v 22+mgR +12m v y 2,解得v y =√6gR ,小球离开圆弧后做斜抛运动,竖直方向做匀减速运动,则h =v y22g=3R ,故距B 点的最大高度为3R ,故选C. 命题拓展情境不变,一题多设问以水平速度v 0自滑块的左端A 处滑上滑块,小球与滑块分离时的速度是多少?答案 0解析 从小球滑上滑块至小球离开滑块的过程中,根据能量守恒定律得12m v 02=12m v 球2+12m v 块2,小球和滑块系统水平方向动量守恒,有mv 0=mv 球+mv 块,解得v 球=0. 6.[滑块不脱离曲面/2024广东广州部分学校联考]如图所示,质量m 0=5g 的小球用长l =1m 的轻绳悬挂在固定点O ,质量m 1=10g 的物块静止在质量m 2=30g 的14光滑圆弧轨道的最低点,圆弧轨道静止在光滑水平面上,悬点O 在物块m 1的正上方,将小球拉至轻绳与竖直方向成37°角后,由静止释放小球,小球下摆至最低点时与物块发生弹性正碰,碰后物块恰能到达圆弧轨道的最上端.若小球、物块可视为质点,不计空气阻力,重力加速度g 取10m/s 2,sin37°=0.6,cos37°=0.8.求:(1)小球与物块碰撞前瞬间小球的速度v 0;(2)小球与物块碰撞后瞬间物块的速度v 1; (3)圆弧轨道的半径R .答案 (1)v 0=2m/s (2)v 1=43m/s (3)R =115m解析 (1)小球下摆至最低点,满足机械能守恒定律,有m 0gl (1-cos37°)=12m 0v 02解得v 0=√2gl (1-cos37°)=2m/s(2)小球与物块碰撞,满足动量守恒定律、机械能守恒定律,有m 0v 0=m 0v 01+m 1v 112m 0v 02=12m 0v 012+12m 1v 12解得v 1=43m/s(3)物块滑到圆弧轨道最高点的过程,满足动量守恒定律、机械能守恒定律,则有m 1v 1=(m 1+m 2)v 212m 1v 12=12(m 1+m 2)v 22+m 1gR解得R =115m.7.[滑块与斜面结合]如图,光滑冰面上静止放置一表面光滑的斜面体,斜面体右侧一蹲在滑板上的小孩和其面前的冰块均静止于冰面上.某时刻小孩将冰块以相对冰面3m/s 的速度向斜面体推出,冰块平滑地滑上斜面体,在斜面体上上升的最大高度为h =0.3m (h 小于斜面体的高度).已知小孩与滑板的总质量为m 1=30kg ,冰块的质量为m 2=10kg ,小孩与滑板始终无相对运动.取重力加速度的大小g =10m/s 2.(1)求斜面体的质量;(2)通过计算判断,冰块与斜面体分离后能否追上小孩?答案 (1)20kg (2)不能,理由见解析解析 (1)规定向左为正方向.冰块在斜面体上上升到最大高度时两者达到共同速度,设此共同速度为v ,斜面体的质量为m 3.对冰块与斜面体,由水平方向动量守恒和机械能守恒定律得m 2v 0=(m 2+m 3)v ①12m 2v 02=12(m 2+m 3)v 2+m 2gh ②式中v 0=3m/s 为冰块推出时的速度,联立①②式并代入题给数据得v =1m/s ,m 3=20kg ③.(2)设小孩推出冰块后的速度为v 1,对小孩与冰块,由动量守恒定律有m 1v 1+m 2v 0=0 ④代入数据得v 1=-1m/s ⑤设冰块与斜面体分离后的速度分别为v 2和v 3,对冰块与斜面体,由动量守恒定律和机械能守恒定律有m 2v 0=m 2v 2+m 3v 3 ⑥12m 2v 02=12m 2v 22+12m 3v 32 ⑦联立③⑥⑦式并代入数据得v 2=-1m/s ⑧由于冰块与斜面体分离后的速度与小孩推出冰块后的速度相同且冰块处在小孩后方,故冰块不能追上小孩.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
内容索引
NEIRONGSUOYIN
过好双基关 研透命题点 课时精练
过好双基关
01
一 电容器及电容
1.电容器 (1)组成:由两个彼此 绝缘 又相互靠近的导体组成. (2)带电荷量:一个极板所带电荷量的绝对值 . (3)电容器的充、放电: ①充电:使电容器带电的过程,充电后电容器两极板带上等量的 异种电荷 ,电 容器中储存电场能. ②放电:使充电后的电容器失去电荷的过程,放电过程中 电场能 转化为其他 形式的能.
2.电容 (1)定义:电容器所带的 电荷量 与电容器两极板间的 电势差 的比值.
Q (2)定义式:C=_____U____. (3)单位:法拉(F)、微法(μF)、皮法(pF).1 F= 106 μF= 1012 pF. (4)意义:表示电容器 容纳电荷 本领的高低. (5)决定因素:由电容器本身物理条件(大小、形状、极板相对位置及电介质)决 定,与电容器是否 带电 及 电压 无关. 3.平行板电容器的电容 (1)决定因素:正对面积,相对介电常数,两板间的距离. (2)决定式:_C_=__4_επ_rkS_d__.
(3)基本关系式:运动时间 t=vl0,加速度 a=mF=qmE=qmUd,偏转量 y=21at2=2_mq_U_d_vl2_02, 偏转角 θ 的正切值:tan θ=vv0y=va0t=__m_q_dU_vl_02__.
自测2 (2019·安徽安庆市二模)如图2所示,一水平放置的平行板电容器与电源
命题点三 带电粒子(带电体)在电场中的偏转
1.运动规律
(1)沿初速度方向做匀速直线运动 a.能飞出电容器:t=vl0.
b.不能飞出电容器:y=12at2=2qmUd t2,t= (2)沿电场力方向做匀加速直线运动
加速度:a=mF=qmE=qmUd
离开电场时的偏移量:y=12at2=2mqUdvl202.
C.M点的电场强度变小了
图5
√D.在a板移动前后两种情况下,若将液滴从a板移到b板,电场力做功相同
解析 极板始终与电源连接,电压不变,d 减小,由 E=Ud 可知, 电场强度E增大,则带电液滴所受电场力增大,液滴将向上加
速运动,故A、C错误;
b点电势为零, UMb=φM-φb=φM=EdMb,场强增大,M点电势升高,由题意,
相连,开始时开关闭合.一带电粒子沿两极板中心线方向以一初速度射入,恰好
沿中心线①通过电容器.则下列判断正确的是
A.粒子带正电
√B.保持开关闭合,将B板向上平移一定距离,
可使粒子沿轨迹②运动
C.保持开关闭合,将A板向上平移一定距离,
可使粒子仍沿轨迹①运动
图2
D.断开开关,将B板向上平移一定距离,
可使粒子沿轨迹②运动
例2 如图6所示,空间存在两块平行的彼此绝缘的带电薄金属板A、B,间距为 d,中央分别开有小孔O、P.现有甲电子以速率v0从O点沿OP方向运动,恰能运 动到P点.若仅将B板向右平移距离d,再将乙电子从P′点由静止释放,则 A.金属板A、B组成的平行板电容器的电容C不变 B.金属板A、B间的电压减小
三 示波管
1.示波管的构造 ①电子枪,② 偏转电极,③荧光屏(如图3所示)
图3 2.示波管的工作原理 (1)YY′偏转电极上加的是待显示的 信号电压 ,XX′偏转电极上是仪器自身产 生的锯齿形电压,叫做 扫描电压 .
(2)观察到的现象 ①如果在偏转电极XX′和YY′之间都没有加电压,则电子枪射出的电子沿直线 运动,打在荧光屏 中心 ,在那里产生一个亮斑. ②若所加扫描电压和 信号电压 的周期相等,就可以在荧光屏上得到待测信号在 一个周期内变化的稳定图象.
二 带电粒子在电场中的运动
1.加速 (1)在匀强电场中,W= qEd (2)在非匀强电场中,W= qU
=qU=21mv2-12mv02. =12mv2-12mv02.
2.偏转
(1)运动情况:如果带电粒子以初速度v0 垂直场强方向进入匀强电场中,则带电
粒子在电场中做类平抛运动,如图1所示.
图1
(2)处理方法:将粒子的运动分解为沿初速度方向的 匀速直线 运动和沿电场力方 向的 匀加速直线 运动.根据 运动的合成与分解 的知识解决有关问题.
③根据 UAB=E·d 分析某点电势变化.
(2)Q 不变 ①根据 C=UQ=4επrkSd先分析电容的变化,再分析 U 的变化. ②根据 E=Ud =4kεrπSQ分析场强变化.
例1 (2016·全国卷Ⅰ·14)一平行板电容器两极板之间充满云母介质,接在恒压
直流电源上.若将云母介质移出,则电容器
变式3 (多选)(2020·贵州贵阳市一模)如图7所示,一个质量为m、电荷量为q
的带正电油滴,在平行于纸面的匀强电场中由静止沿斜向右下方做直线运动,
其轨迹与竖直方向的夹角为θ,重力加速度大小为g,不计空气阻力,则下列判
断正确的是
A.电场强度的最小值等于mqg
B.电场强度的最大值等于mgsqin θ
解析 开关闭合时,粒子做匀速直线运动,电场力与重力平衡,A极板和电源
正极相连,所以场强方向向下,故粒子带负电,A错误;
保持开关闭合,电容器两端电压不变,B板上移,板间距d变小, 由公式 E=Ud 知场强增大,电场力大于重力,粒子可沿轨迹②运动,故 B 正确; 保持开关闭合,将A板向上平移一定距离,板间距d增大, 由公式 E=Ud 知场强减小,电场力小于重力,所以粒子向下偏转,故 C 错误; 断开开关,电容器电荷量不变,将B板向上平移一定距离, 由公式 C=UQ,C=4επrkSd,E=Ud 得,E=4πεrkSQ,与板间距离无关, 故场强不变,所以粒子沿轨迹①运动,故D错误.
离开电场时的偏转角:tan
θ=vv0y=mqdUvl02.
2q个结论
(1)不同的带电粒子从静止开始经过同一电场加速后再从同一偏转电场射出时,
偏移量和偏转角总是相同的. 证明:由 qU0=12mv02 y=12at2=21·qmUd1·(vl0)2
tan θ=mqdUv10l2 得:y=4UU10l2d ,tan θ=2UU10ld (2)粒子经电场偏转后射出,合速度的反向延长线与初速度延长线的交点O为粒 子水平位移的中点,即O到偏转电场边缘的距离为 l .
自测1 对于某一电容器,下列说法正确的是
A.电容器所带的电荷量越多,电容越大
B.电容器两极板间的电势差越大,电容越大
√C.电容器所带的电荷量增加一倍,两极板间的电势差也增加一倍
D.电容器两极板间的电势差减小到原来的12,它的电容也减小到原来的21
解析 根据公式 C=4επrkSd可得, 电容的大小跟电容两端的电势差以及电容器所带的电荷量的多少无关, 根据公式 C=QU可得电容器所带的电荷量增加一倍, 两极板间的电势差也增加一倍,所以C正确,A、B、D错误.
解析 实验前,只用带电玻璃棒与电容器a板接触,
由于静电感应,在b板上将感应出异种电荷,A正确;
b 板向上平移,正对面积 S 变小,
由 C=4επrkSd知,电容 C 变小, 插 由 由入CC= =有QUQU机知 知玻, ,璃QQ板不 不,变 变相, ,对UU介变 变电大 小常, ,数因 因ε此 此r 变静 静大电 电,计 计由指 指C针 针=的 的4επ张 张rkSd角 角知变变,大小电,,容BCC错错变误误大;;, 由 C=QU知,实验中,只增加极板带电荷量,静电计指针的张角变大, 是由于C不变导致的,D错误.
2
3.功能关系 当讨论带电粒子的末速度 v 时也可以从能量的角度进行求解: qUy=21mv2-12mv02,其中 Uy=Ud y,指初、末位置间的电势差.
例3 (2019·全国卷Ⅱ·24)如图8,两金属板P、Q水平放置,
间距为d.两金属板正中间有一水平放置的金属网G,P、Q、
G的尺寸相同.G接地,P、Q的电势均为φ(φ>0).质量为m,
研透命题点
02
命题点一 平行板电容器的动态分析
基础考点 自主悟透
1.两类典型问题
(1)电容器始终与恒压电源相连,电容器两极板间的电势差U保持不变.
(2)电容器充电后与电源断开,电容器两极板所带的电荷量Q保持不变.
2.动态分析思路
(1)U不变 ①根据 C=UQ=4επrkSd先分析电容的变化,再分析 Q 的变化. ②根据 E=Ud 分析场强的变化.
√C. 带电油滴的机械能可能增加
√D.电场力可能对带电油滴不做功
图7
解析 带电油滴的运动轨迹为直线,在电场中受到重力mg和电场
力F,其合力必定沿此直线向下,根据三角形定则作出合力,由
图可知,当电场力F与此直线垂直时,电场力F最小,场强最小, 则有 F=qEmin=mgsin θ,得到 Emin=mgsqin θ,
由图可知,电场强度无最大值,故A、B错误; 当 E=mgsqin θ时,电场力方向与速度方向垂直, 电场力不做功,带电油滴的电势能一定不变;这种情况下只有重力做功,带电
油滴的机械能不变,故D正确;
当
mgsin E> q
θ时,当电场力方向与速度方向成锐角时,电场力做正功,
带电油滴的机械能增加,故C正确.
电荷量为q(q>0)的粒子自G的左端上方距离G为h的位置,
以速度v0平行于纸面水平射入电场,重力忽略不计.
图8
(1)求粒子第一次穿过G时的动能,以及它从射入电场至此时在水平方向上的位
移大小;
答案 12mv02+2dφqh v0
mdh qφ
解析 PG、QG间场强大小相等,均为E.粒子在PG间所受电场力F的方向竖直
变式2 (多选)(2019·天津市南开区下学期二模)如图5所示,两块水平放置的平
行正对的金属板a、b与恒压电源相连,在距离两板等距的M点有一个带电液滴
处于静止状态.若将a板向下平移一小段距离,但仍在M点上方,稳定后,下列