分式的运算

合集下载

分式及其运算

分式及其运算

分式函数:解决实际问题中的函数关系
03
分式不等式:解决实际问题中的不等关系
04
分式数列:解决实际问题中的数列关系
05
分式极限:解决实际问题中的极限关系
06
分式积分:解决实际问题中的积分关系
数学公式的推导
分式的定义:形如A/B,其中A、B
01
是整式,B≠0 分式的运算:包括加法、减法、乘
03
法、除法、乘方、开方等 分式的应用:包括求解方程、不等
整式,分式的值不变
分式的通分:将两个或 多个分式的分母化为相 同,以便进行加减运算
分式的约分:将分式的 分子、分母同时除以它 们的最大公因式,以简
化分式
分式的加减法:将分式 的分子、分母分别相加 或相减,得到新的分式
分式的乘除法:将分式 的分子、分母分别相乘 或相除,得到新的分式
分式的幂运算:将分式 的分子、分母分别进行 幂运算,得到新的分式
乘方和开方:分式乘方,分式开 方
添加标题
添加标题
添加标题
添加标题
分式除法:分子相除,分母相除
混合运算:分式乘法、除法、乘 方、开方混合运算
乘方和开方
01
乘方:分式乘方时,分子和 分母分别乘方,分母中如果 有平方项,需要先开方
03
运算顺序:先乘方,后开方, 遵循先乘除后加减的运算顺 序
开方:分式开方时,分子和 分母分别开方,分母中如果 有平方项,需要先开方
分式分解
01
分式分解的定义:将分式分解为两 个或多个分式的过程
02
分式分解的方法:提取公因式、分 组分解、公式分解等
03
分式分解的步骤:观察分式的结构, 选择合适的分解方法,进行分解

分式的概念与运算

分式的概念与运算

分式的概念与运算分式,也可称为有理数的形式,是表示两个整数之间关系的一种数学表达式。

它由一个分子和一个分母组成,分子表示除法的被除数,分母表示除法的除数。

在数学中,分式广泛应用于各种实际问题的求解与计算中。

本文将介绍分式的概念、基本性质,以及分式的加减乘除运算。

一、分式的概念分式的本质是一个数的表达方式,它可以表示两个整数之间的比例关系。

例如,$\frac{1}{2}$表示整数1与整数2之间的比值,读作“1除以2”。

在分式中,分子和分母可以是任意整数,并且分母不能为零。

当分子为0时,分式的值为0。

二、分式的基本性质1. 分式的值可以是一个整数、一个真分数或带分数。

当分子大于分母时,分式的值大于1;当分子小于分母时,分式的值小于1。

2. 分式可以进行化简。

也就是说,可以约分分式中的分子和分母,将它们的公约数约掉,使得分子和分母互质。

例如,$\frac{2}{4}$可以化简为$\frac{1}{2}$。

3. 分式可以进行扩展。

也就是说,可以将分子和分母同时乘以一个非零整数,得到等价的分式。

例如,$\frac{3}{5}$可以扩展为$\frac{6}{10}$。

三、分式的加减乘除运算1. 分式的加法和减法分式的加法和减法遵循公式:$$\frac{a}{b} \pm \frac{c}{d} = \frac{ad \pm bc}{bd}$$其中$a$、$b$、$c$和$d$为任意整数。

具体来说,对于分式$\frac{a}{b}$和$\frac{c}{d}$,只需将两个分式的分母取公倍数得到新的分母,然后将分子相应操作后得到新的分子,即可得到结果。

示例:$$\frac{3}{5} + \frac{2}{3} = \frac{9}{15} + \frac{10}{15} =\frac{19}{15}$$$$\frac{7}{8} - \frac{1}{4} = \frac{7}{8} - \frac{2}{8} = \frac{5}{8} $$2. 分式的乘法和除法分式的乘法和除法遵循公式:$$\frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{bd}$$$$\frac{a}{b} \div \frac{c}{d} = \frac{a}{b} \cdot \frac{d}{c} =\frac{ad}{bc}$$其中$a$、$b$、$c$和$d$为任意整数。

分式的运算知识点总结

分式的运算知识点总结

分式的运算知识点总结一、分式的含义和性质1. 分式的定义分式是指两个整数的比例,通常用a/b表示,其中a称为分子,b称为分母,b不等于0。

分式通常表示成有理数的形式,例如1/2、3/4等。

2. 分式的性质分式有以下性质:(1)分式的分母不可以为0,因为0不能作为除数。

(2)分式可以化简,即约分,将分子与分母的公因数约掉。

(3)分式可以相互转换,即通过乘以相同的数或者分式和分数的换算,可以将分式相互转换。

二、分式的加减法1. 分式的相加分式的相加即将两个分式的分子相加,分母不变,然后化简得到最简分式。

例如:1/2 + 1/3 = (1*3+1*2)/(2*3) = 5/6。

2. 分式的相减分式的相减即将两个分式的分子相减,分母不变,然后化简得到最简分式。

例如:2/3 - 1/4 = (2*4-1*3)/(3*4) = 5/12。

三、分式的乘除法1. 分式的相乘分式的相乘即将两个分式的分子相乘作为新的分子,分母相乘作为新的分母,然后化简得到最简分式。

例如:1/2 * 2/3 = (1*2)/(2*3) = 2/6 = 1/3。

2. 分式的相除分式的相除即将两个分式的分子相除作为新的分子,分母相除作为新的分母,然后化简得到最简分式。

例如:3/4 ÷ 1/2 = (3*2)/(4*1) = 6/4 = 3/2。

四、分式的乘方和括号的运算1. 分式的乘方分式的乘方即将分式的分子和分母分别进行乘方运算,得到新的分子和分母,然后化简得到最简分式。

例如:(1/2)^2 = 1^2/2^2 = 1/4。

2. 分式的括号运算分式的括号运算即根据括号内的运算顺序进行计算,先乘除后加减,然后化简得到最简分式。

例如:(1/2 + 1/4) ÷ (1/2 - 1/4) = (2/4 + 1/4) ÷ (2/4 - 1/4) = 3/4 ÷ 1/2 = 3/4 * 2/1 = 3/2。

分式的运算

分式的运算

分式的运算概念总汇1、分式的乘法法则与分数的乘法法则类似,我们得到分式的乘法法则:两个分式相乘,用分子的积作为积的分子,分母的积作为积的分母.符号表示:.说明:(1)分式与分式相乘时,若分子和分母都是多项式,则先分解因式,看能否约分,然后再相乘。

(2)整式与分式相乘,可以直接把整式(整式的分母看作1)与分式的分子相乘作为积的分子,分母不变,当然能约分的要约分。

2、分式的除法法则与分数的除法法则类似,我们得到分式的除法法则:两个分式相除,把除式的分子、分母颠倒位置后,与被除式相乘.符号表示:.说明:(1)当分式的分子与分母都是单项式时,运算步骤是:把除式中的分子与分母颠倒位置后,与被除式相乘,其它与乘法运算步骤相同。

(2)当分子与分母都是多项式时:运算步骤是:①把各个分式的分子与分母分解因式;②把除式的分子与分母颠倒位置后,与被除式相乘;③约分,得到计算结果.3、分式的乘方几个相同分式的积的运算叫做分式的乘方。

法则:分式的乘方,等于把分式的分子、分母分别乘方。

符号表示:(为正整数)。

说明:(1)分式的乘方,必须把分式加上括号。

(2)在一个算式中同时含有分式的乘方、乘法、除法时,应先算乘方,再算乘、除,有多项式时应先分解因式,再约分。

4、分式的加减法则同分母分式相加减,分母不变,把分子相加减;异分母分式相加减,先通分,变为同分母的分式,再加减. 符号表示: ,.说明:(1)同分母分式相加减时应注意:①当分式的分子是多项式时,应先添括号,再去括号合并同类项,从而避免符号错误。

②分式的分子相加减后,若结果为多项式,应先考虑因式分解后与分母约分,将结果化为最简分式或整式。

(2)异分母分式相加减时应注意:①把异分母的分式化成同分母的分式,在这个过程中必须保证化成的分式与其原来的分式相等;②通分的根据是分式的基本性质,分母需要乘“什么”,分子也必须随之乘“什么”;分式的分子、分母同时乘的整式是最简公分母除以分母所得的商。

11.分式的运算

11.分式的运算

③相同字母的幂取指数最高的。

4,(1)
1 2ab2c3d
+
1 3a3b2c
+
1 4a2b2c2
(2)
1+1− x x
1− 1− xy xy
注意:整式与分式的运算,根据题目特点,将整式化为分母为“1”的分式;
例 5:(1)已知: 2m − 5n = 0 ,求下式的值: (1+ n − m ) ÷ (1+ n − m )
m m−n
m m+n
(2)
1+
n m
− −
m 2n
÷
m2
m2 − n2 − 4mn +
4n2
一题多解
例 6:已知:= x2 M− y2
2xy − y2 + x − y x2 − y2 x + y
,则 M
=
________
例 7:
[ (a
1 + b)2

(a
1 − b)2
]÷( a
1 +b

a
1) −b
11.分式的运算
基础知识 1、分式的定义与意义(变成习惯思维,见到分式想到分母不能为 0)
A
定义:(A、B为整式,B中含有字母,不是系数且B ≠ 0)
B
2x + 2
例 1: 取什么值时试判断 (3x −1)(x +1) 有意义。
2x +1
例 2,当 x 取何值时,分式 1− 1 有意义?
x
2、分式的乘除法法则:注意约分,找公因式

D. x x -1

7.
(2011

数学八下分式

数学八下分式

数学八下分式
八年级下册数学课程中有关分式的主题主要包括分式的运算、分式的化简、分式方程等内容。

以下是八年级下册数学中关于分式的一些常见知识点:
1. 分式的乘法和除法:学习如何进行分式的乘法和除法运算,包括分子乘法、分母乘法、分子除法和分母除法等。

2. 分式的加法和减法:掌握分式的加法和减法运算规则,包括通分、合并同类项等操作。

3. 分式的化简:学习如何化简分式,包括约分、提取公因式、分子分母同乘同除等方法,使分式的表达更简洁。

4. 分式方程:解决涉及分式的方程,包括一元一次分式方程和一元二次分式方程等,掌握解题的方法和技巧。

5. 分式的应用:了解分式在实际问题中的应用,如物品分配、比例关系、时间速度等问题,通过分式运算解决实际生活中的计算问题。

八年级下册数学中的分式知识是数学学习中的重要内容,需要通过练习和实践来加深理解和掌握。

建议学生多做练习题,加强对分式运算规则的理解和掌握,提高解决问题的能力和技巧。

分式的认识与运算

分式的认识与运算

分式的认识与运算分式是数学中的一种表达形式,它由分子和分母组成,用分子除以分母表示。

在分式中,分子和分母可以是整数、小数、甚至是其他分式。

分式在数学中具有广泛的应用,特别是在代数、方程式求解以及实际问题中的运用。

一、分式的认识分式的基本形式是a/b,其中a称为分子,b称为分母。

分式可以用来表示实数的比值、比例或部分数额。

例如,10/5表示10和5的比值,即2;3/4表示3的四分之三。

分式也可以表示为小数,比如1/2等于0.5。

分式可以化简为最简形式。

即分子和分母的公因数要被约去,使得分子和分母没有公因数。

例如,4/8可以化简为1/2,16/20可以化简为4/5。

化简分式使其更加简洁明了,方便运算和理解。

二、分式的运算1. 分式的加减运算:两个分式相加减,要求分母相同,可以先找到它们的最小公倍数,然后对分子进行运算,并保持分母不变。

例如,1/3 + 2/3 = 3/3 = 1。

2. 分式的乘法运算:两个分式相乘,直接将它们的分子和分母相乘即可。

例如,1/4 × 3/2 = 3/8。

3. 分式的除法运算:两个分式相除,可以将除法转化为乘法,即将除数的分子和除数的倒数的分子相乘,同时分母作同样的操作。

例如,1/4 ÷ 3/2 = 1/4 × 2/3 = 2/12 = 1/6。

在进行分式的运算时,可以先将分式化简为最简形式,然后再进行运算,最后再将结果化简为最简形式,以保证结果的准确性。

三、应用实例1. 比例问题:分式可以用来表示比例关系,例如三个数a、b、c成比例,可以写为a/b = c/d。

通过解方程,可以求出未知数的值。

2. 面积和体积问题:对于一些复杂的几何图形,可以通过设立分式表示其面积或体积与已知量之间的关系。

通过解方程,可以求出未知量的值。

3. 财务问题:分式可以用来描述资金的分配比例、投资收益率等内容。

通过运算,可以帮助实际问题的解决。

总结:分式在数学中起着重要的作用,它可以用来表示比例、比值、部分数额等内容。

数学分式的计算方法

数学分式的计算方法

数学分式的计算方法数学分式是一种数学表达式,由分子和分母组成,分子和分母都可以是整数、自然数、小数或其他数学表达式。

在数学中,分式的计算是一个重要的基础知识点,掌握分式的计算方法可以帮助我们解决各种实际问题。

一、分式的加减要计算分式的加减,首先要求出分式的公共分母。

如果两个分式的分母相同,那么直接将分子相加或相减即可,分母保持不变。

如果两个分式的分母不同,就需要找到它们的公共分母,然后将分子按照公共分母进行相加或相减,分母保持不变。

例如,计算分式1/3 + 1/4。

分母不同,公共分母可以是12,那么将分子相加得到(1*4+1*3)/12=7/12。

二、分式的乘除分式的乘法就是将分子相乘,分母相乘。

例如,计算分式1/3乘以2/5,得到(1*2)/(3*5)=2/15。

分式的除法就是将第一个分式的分子乘以第二个分式的倒数。

例如,计算分式1/3除以2/5,得到(1/3)*(5/2)=5/6。

三、分式的化简分式的化简是将分子和分母约分到最简形式。

要化简一个分式,需要找到分子和分母的最大公约数,然后将分子和分母都除以最大公约数。

例如,化简分式12/18,最大公约数是6,所以将分子和分母都除以6,得到2/3。

四、分式的比较要比较两个分式的大小,可以通过将两个分式的分子和分母相乘,然后比较乘积的大小。

例如,比较分式1/3和2/5的大小,计算(1*5)/(3*2)和(2*3)/(5*1),得到5/6和6/5,显然5/6小于6/5,所以1/3小于2/5。

五、分式的应用分式在实际问题中有广泛的应用。

例如,在分数运算中,我们常常需要将一个整数转化为分数形式,然后进行运算。

在比例和百分比的计算中,我们也需要使用分式。

此外,在经济学、物理学等领域的问题中,分式也经常用于求解。

掌握数学分式的计算方法是数学学习的重要一步。

通过理解和熟练运用分式的加减乘除、化简和比较等方法,我们可以更好地解决实际问题,提高数学思维和计算能力。

分式的运算

分式的运算

a
b
c
12、若 1 + 1 = 5 ,则分式 2x − 3xy + 2 y = _______
xy
x + 2xy + y
13、计算:
第4页共6页
(1) ( 2x − 3 −1) ÷ x2 − 9
x
x
E you education
(2)
1 − 1 ÷ x +1 x +1 x2 −1 x2 − 2x +1
遇到括号时,要先算括号里面的。
(2)注意事项:(1)分式的混合运算关键是弄清运算顺序;(2)有理数的运算顺序和运算
规律对分式运算同样适用,要灵活运用交换律、结合律和分配律;(3)分式运算结果
必须化到最简,能约分的要约分,保证运算结果是最简分式或整式。
5、例题解析: 例题 1:将分式 x +1 化成分母分别为下列整式的分式:
⎞n ⎟⎠
=
an bn
(其中
n
为正整数,a≠0);
(3)注意事项:(1)乘方时,一定要把分式加上括号;(2)在一个算式中同时含有乘方、
乘法、除法时,应先算乘方,再算乘除,有多项式时应先因式分解,再约分;(3)最
后结果要化到最简。
第1页共6页
E you education
4、分式的混合运算:
(1)运算规则:分式的加、减、乘、除、乘方混合运算,先乘方,再乘除,最后算加减。
后进行通分。(3)当分子的次数高于或等于分母的次数时,应将其分离为整式与真分
式之和的形式参与运算,可使运算简便。
3、分式的乘方:
(1)规定 a− p
=
1 ap
(其中 a

0 ,p

分式的运算(含例题)

分式的运算(含例题)

1.分式的乘除(1)分式的乘法法则:分式乘分式,用分子的积作为积的__________,分母的积作为积的__________. (2)分式的除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式__________. 用式子表示为a c a c a c a d a db d b d b d bc b c⋅⋅⋅=÷=⋅=⋅⋅, 【归纳】分式的乘法与分数的乘法类似,可类比分数的乘法学习.(1)分式与分式相乘时,①若分子、分母是单项式,可先将分子、分母分别相乘,然后约去公因式,化为最简分式;②若分子、分母是多项式,先分解因式,看能否约分,然后再相乘.(2)当整式与分式相乘时,要把整式(看作是分母为1的式子)与分式的分子相乘作为积的分子,分式的分母作为积的分母.当整式是多项式时,同样要先分解因式,看能否约分,然后再相乘. (3)分式除以分式,可以先确定商的符号,再转化为分式的乘法.也可先转化为分式的乘法后,再确定符号,这与实数的除法运算法则是一致的.当除式(或被除式)是整式时,可以看作是分母是“1”的式子,然后依照分式除法法则计算.(4)分式的乘除运算结果要通过约分化为最简分式(分式的分子、分母没有公因式)或整式的形式. (5)分式的乘除混合运算,如果没有其他附加条件(如括号等),则应按照由左到右的顺序进行计算.2.分式的乘方分式乘方的法则:分式乘方要把分子、分母分别__________.【注意】(1)进行分式的乘方运算时,一定要把分子、分母分别乘方,不要把()n n n a a b b =写成()nn a a b b=.(2)分式乘方时,先确定乘方结果的符号,它和实数乘方确定符号的方法相同:正数的任何次方都是正数;负数的偶次方为正数,负数的奇次方为负数. (3)分式乘方时,应把分子、分母分别看作一个整体.3.分式的加减(1)同分母分式相加减法则:同分母分式相加减,分母__________,把分子相加减.用式子表示为a bc c±=__________. (2)异分母分式相加减法则:异分母分式相加减,先通分,变为同分母的分式,再加减. 用式子表示为a c ad bcb d bb bd±=±=__________. 【注意】(1)分式加减运算的结果要化成最简分式或整式.(2)同分母分式相加减时要注意:“把分子相加减”就是把各个分式的分子“整体”相加减,“分母不支”就是加减后所得分母是原分式中的分母. (3)异分母分式相加减的一般步骤: ①通分:将异分母分式转化成同分母分式; ②加减:写成分母不变,分子相加减的形式; ③合并:分子去括号,合并同类项;④约分:分子、分母约分,将结果化成最简分式或整式.因此,异分母分式加减运算的关键是通分.4.分式的混合运算(1)分式的混合运算,关键是弄清运算顺序,与分数的加、减、乘、除及乘方的混合运算一样,先算乘方,再算乘除,最后算__________,有括号要先算括号里面的,在运算过程中要注意正确地运用运算法则,灵活地运用运算律,使运算尽量简便.(2)分式的混合运算中要注意各分式中分子、分母符号的处理,结果中分子或分母的系数是负数时,要把“-”号提到分式的前边.5.整数指数幂与科学记数法(1)整数指数幂:若m ,n 为正整数,a ≠0,则1=m mm nm n n a a aa a a+÷=⋅. 又因为()=m m n m m n n a a a a +-+-÷=,所以n a -=__________. 一般地,当n 是正整数时,1(0)nn a a a-=≠,这就是说,(0)n a a -≠是n a 的倒数. 整数指数幂的运算性质①m n m n a a a +⋅=;②()m n mn a a =;③()n n n ab a b =; ④(0)mnm na a aa -÷=≠;⑤()nn n a a b b=.上述式子中,m ,n 均为任意整数. (2)科学记数法用科学记数法表示小于1的正数时,可表示为a ×10-n 的形式,其中n 为原数左起第1个不为0的数字前面所有0的个数(包括小数点前的那个0),1≤a <10.K 知识参考答案:1.分子,分母,相乘2.乘方3.不变,a b c ±,ad bc bd ±4.加减5.1n aK —重点 分式的加减乘除的运算,整数指数幂的运算,科学记数法的应用 K —难点 分式的混合运算K —易错分式的减法运算中,忽视减号一、分式的乘除分式的乘除运算应注意的“四类问题”(1)理解法则并能正确运用,若是除法运算,则先转化为乘法运算. (2)分子、分母能分解因式的先分解因式,然后约分. (3)运算的结果要化为最简分式或整式.(4)自选数值的代入求值问题,不要忽视分母不为0的条件. 【例1】计算2211(2)x x x x -+⋅+-的结果是 A .12x - B .12-C .yD .x【答案】A 【解析】2211(2)x x x x -+⋅+-=12x -,故选A . 【例2】下列计算正确的是A .3522()22b b a a = B .22239()24b b a a --= C .33328()327y y x x=--D .222239()x x x a x a=-- 【答案】C【例3】化简211m mm m--÷是 A .mB .-mC .1mD .-1m【答案】B【解析】原式211m m m m m -=⨯=--.故选B .二、分式的加减异分母分式相加减,化异分母分式为同分母分式是解此类题的关键.在整式与分式进行加减运算时,把整 式看作分母为1的式子,并按照异分母分式相加减的法则完成计算. 【例4】计算23211x xx x +-++的结果为 A .1B .3C .31x + D .31x x ++ 【答案】C【解析】原式=232311x x x x +-=++.故选C .【例5】计算37444a a b ba b b a a b ++----得 A .264a b a b+--B .264a ba b+-C .2-D .2【答案】D 【解析】37444a a b b a b b a a b ++----=37444a a b b a b a b a b +-----=374a a b b a b ----=284a b a b --=2(4)4a b a b-- =2.故选D .三、分式的混合运算分式混合运算应根据式子的特点,选择灵活简便的方法计算或化简,注意使用运算律,寻求合理的运算途径.【例6】化简11()()x y y x-÷-的结果是 A .1B .xyC .y xD .-1【答案】B【解析】11()()x y y x -÷-=11xy xy y x --÷=1·1xy x y xy --=x y .故选B . 【例7】计算4()222x x x x x x -÷-+-的结果是 A .-12x + B .12x + C .-1 D .1 【答案】A四、整数指数幂与科学记数法用科学记数法表示小于1的正数时,要注意小数点位置的变化,即小数点向右移了几位,10的指数就是负 几.【例8】某桑蚕丝的直径用科学记数法表示为1.6×10-5米,则这个数的原数是 A .0.0000016 B .0.000016 C .0.00016 D .0.0016【答案】B【解析】根据科学记数法的定义1.6×10-5=0.000016.故选B . 【例9】百合花的花粉的直径约0.000000087米,这里0.000000087用科学记数法表示为 A .8.7×10-7B .8.7×10-8C .8.7×10-9D .0.87×10-8【答案】B【解析】80.0000000878.710-=⨯.故选B . 【例10】计算: (1)32222()()x y x y --;(2)212123(3)(2)x yz x y ---; (3)3212232(3)(5)x y z xy z ---; (4)32232()(2)m n m n ----.五、分式的化简求值分式化简求值的三种类型(1)将分式化简后直接代入数据求值.(2)利用“整体”思想,将式子的值整体代入化简后的式子,再求值. (3)通过引入参数,以参数为媒介减少字母的个数,实现问题转化的目的.【例11】先化简22()339x x xx x x -÷-+-,再选取一个既使原式有意义,又是你喜欢的数代入求值. 【解析】22()339x x xx x x-÷-+- =2(3)(3)(3)(3)(9)(3)(3)(3)(3)(3)(3)x x x x x x x x x x x x x x x x+---+-+-+-⋅=⋅+-+-9x =--,∵30x -≠,30x +≠,0x ≠, ∴x 取1,代入得:原式1910=--=-.。

分式的运算法则公式

分式的运算法则公式

分式的运算法则公式一、分式的加法法则公式设a/b和c/d是两个分式,那么它们的和可以表示为一个新的分式:a/b + c/d = (ad + bc)/bd例如:1/2+2/3=(1*3+2*2)/(2*3)=7/6二、分式的减法法则公式设a/b和c/d是两个分式,那么它们的差可以表示为一个新的分式:a/b - c/d = (ad - bc)/bd例如:2/3-1/4=(2*4-1*3)/(3*4)=5/12三、分式的乘法法则公式设a/b和c/d是两个分式,那么它们的乘积可以表示为一个新的分式:(a/b) * (c/d) = (ac)/(bd)例如:1/2*2/3=(1*2)/(2*3)=1/3四、分式的除法法则公式设a/b和c/d是两个分式,那么它们的除法可以表示为一个新的分式:(a/b)/(c/d)=(a/b)*(d/c)=(a*d)/(b*c)例如:1/2÷2/3=(1/2)*(3/2)=(1*3)/(2*2)=3/4五、带分数的乘积法则公式设a是一个整数,b/c是一个带分数,那么它们的乘积可以表示为一个新的分式:a*(b/c)=(a*b)/c例如:2*(11/2)=(2*3)/2=3设a/b是一个分式,并且a/b不等于0,那么它的倒数可以表示为一个新的分式:1/(a/b)=b/a例如:1/(2/3)=3/2设a/b是一个分式,并且a/b不等于0,那么它的负数可以表示为一个新的分式:-(a/b)=(-a)/b=a/(-b)例如:-(2/3)=(-2)/3=2/(-3)以上就是关于分式的运算法则公式的详细介绍。

通过运用这些公式,我们可以简化分式的运算,更加方便地求解分式的加减乘除问题。

分式的加减乘除乘方混合运算

分式的加减乘除乘方混合运算

分式的加减乘除乘方混合运算在数学中,分式是由分子和分母组成的表达式,表示两个数的商。

分式可以进行加、减、乘、除以及乘方等混合运算。

本文将介绍和讲解如何进行分式的加减乘除乘方混合运算。

一、分式的加法运算分式的加法运算是指将两个分式相加的操作。

要进行分式的加法运算,需要保证两个分式的分母相同,然后分别将分子相加,再将分子写在分式的分子位置上,分母不变。

例如:1/3 + 2/3 = (1+2)/3 = 3/3 = 1二、分式的减法运算分式的减法运算是指将两个分式相减的操作。

同样地,要进行分式的减法运算,也需要保证两个分式的分母相同,然后分别将分子相减,再将分子写在分式的分子位置上,分母不变。

例如:5/6 - 1/6 = (5-1)/6 = 4/6 = 2/3三、分式的乘法运算分式的乘法运算是指将两个分式相乘的操作。

要进行分式的乘法运算,只需要将两个分式的分子相乘,将两个分式的分母相乘,然后将得到的新分子写在新分式的分子位置上,得到的新分母写在新分式的分母位置上。

例如:2/5 * 3/4 = (2*3)/(5*4) = 6/20 = 3/10四、分式的除法运算分式的除法运算是指将一个分式除以另一个分式的操作。

要进行分式的除法运算,需要将第一个分式的分子乘以第二个分式的倒数,也就是将第一个分式的分子乘以第二个分式分数倒数的分子,将第一个分式的分母乘以第二个分式分数倒数的分母。

例如:1/2 ÷ 2/3 = (1/2)*(3/2) = 3/4五、分式的乘方运算分式的乘方运算是指将一个分式进行指数运算的操作。

要进行分式的乘方运算,需要将分式的分子和分母分别进行指数运算,然后将得到的新分子写在新分式的分子位置上,得到的新分母写在新分式的分母位置上。

例如:(1/2)^2 = 1^2 / 2^2 = 1/4六、分式的混合运算分式的混合运算是指将分式的加减乘除以及乘方运算混合在一起进行的操作。

在进行混合运算时,需要根据运算法则依次进行各个运算的步骤,最终得到结果。

分式的运算

分式的运算

分式的运算1. 基本概念分式是数学中常见的一种数的表示形式,它可以用分子与分母的比值来表示一个数。

分式的基本形式为$\\frac{a}{b}$,其中a为分子,a为分母。

分子和分母都可以是整数、小数或变量。

2. 分式的四则运算2.1 加法和减法分式的加法和减法运算规则如下:加法:两个分式$\\frac{a}{b}$和$\\frac{c}{d}$相加的结果为$\\frac{ad + bc}{bd}$。

减法:两个分式$\\frac{a}{b}$和$\\frac{c}{d}$相减的结果为$\\frac{ad - bc}{bd}$。

2.2 乘法和除法分式的乘法和除法运算规则如下:乘法:两个分式$\\frac{a}{b}$和$\\frac{c}{d}$相乘的结果为$\\frac{ac}{bd}$。

除法:两个分式$\\frac{a}{b}$和$\\frac{c}{d}$相除的结果为$\\frac{ad}{bc}$。

3. 分式的化简在进行分式的运算时,化简是十分重要的一步,它可以简化计算过程,使结果更加直观。

对分式进行化简的方法主要有约分和合并同类项。

3.1 约分约分是指将分式的分子和分母的公因子约去,使分数的结果更简洁。

例如,对于分式$\\frac{6}{12}$,可以约分为$\\frac{1}{2}$,因为6和12都可以被2整除。

3.2 合并同类项合并同类项是指将具有相同分母的多个分式进行合并,得到一个分式。

例如,对于分式$\\frac{1}{2} + \\frac{1}{3}$,可以合并同类项得到$\\frac{3}{6} + \\frac{2}{6} =\\frac{5}{6}$。

4. 分式的应用分式在实际生活中有很多应用,例如在物理学中,分式可以用来表示单位速度和单位加速度;在化学中,分式可以用来表示物质的摩尔比例;在经济学中,分式可以用来表示成本和利润的比例等等。

5. 总结分式是数学中一种常见的数的表示形式,它可以用分子和分母的比值来表示一个数。

分式的运算

分式的运算

分式的运算分式是数学中一种常见的表示形式,它由分子和分母组成,中间用分数线表示。

分式可以进行加、减、乘、除等运算,下面我将分别介绍这几种运算的方法和规则。

一、分式的加法和减法运算分式的加法和减法运算可以通过求出分母的最小公倍数来进行。

下面通过几个例子来具体说明。

例1:计算分式2/3 + 1/4。

首先找出2/3和1/4的最小公倍数,即12。

然后通过保持分子不变,将两个分式的分母都改为最小公倍数12。

计算得到(2×4)/(3×4) + (1×3)/(4×3) = 8/12 + 3/12 = 11/12。

例2:计算分式5/8 - 3/5。

同样地,求出5/8和3/5的最小公倍数,即40。

然后将两个分式的分母都改为最小公倍数40。

计算得到(5×5)/(8×5) - (3×8)/(5×8)= 25/40 - 24/40 = 1/40。

二、分式的乘法运算分式的乘法运算很简单,只需要将两个分式的分子和分母相乘即可。

下面通过一个例子来说明。

例3:计算分式3/5 × 4/7。

将分子相乘得到3×4=12,将分母相乘得到5×7=35,所以3/5 × 4/7 = 12/35。

三、分式的除法运算分式的除法运算可以通过求出两个分式的倒数,然后进行乘法运算来实现。

下面通过一个例子来说明。

例4:计算分式3/4 ÷ 2/3。

求出2/3的倒数,即3/2。

然后将3/4乘以3/2,得到(3×3)/(4×2) = 9/8。

四、分式的简化和化简有些分式可以进行简化,也就是将分子和分母的公因子约掉,使得分式的值保持不变。

下面通过一个例子来说明。

例5:将分式12/36化简为最简分式。

首先求出12和36的最大公因数,即12。

然后将分子和分母都除以12,得到1/3。

所以12/36化简为1/3。

有些分式也可以通过将分子和分母分别因式分解,然后约掉相同的因子,得到最简分式。

分式运算

分式运算

知识梳理:1.基本运算法则分式的运算法则与分数的运算法则类似,具体运算法则如下:;2.零指数.3.负整数指数4.约分把一个分式的分子和分母的公因式约去,这种变形称为分式的约分.5.通分根据分式的基本性质,异分母的分式可以化为同分母的分式,这一过程称为分式的通分.通分注意事项(1)通分的关键是确定最简公分母,最简公分母应为各分母系数的最小公倍数与所有相同因式的最高次幂的积;(2)不要把通分与去分母混淆,本是通分,却成了去分母,把分式中的分母丢掉.6.分式的加减法法则(1)同分母的分式相加减,分母不变,把分子相加减;(2)异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法则进行计算.7.分式的乘除法法则两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母;两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘.8.分式的混合运算顺序先算乘方,再算乘除,最后算加减,有括号先算括号里面的.例题:【例 1】 通分:a 25-,2432127,92ba cb a -.【例 2】 计算:(1)xyyx xy y x 3339+-+; (2)yx xy 2232121-; (3)a b abb b a a ----222; (4)2122442--++-x x x .【例 3】 下面是三位同学做的异分母的加减法,他们的解答正确吗?甲:计算:y x x -+22x xy y -.y x x -+22x xy y -=yx x --)(2y x x y -=)(22y x x y x --.乙:计算:122-x x -x -1.122-x x -x -1=122-x x -11+x =1122---x x x . 丙:计算:132--x x -x +12.132--x x -x +12=)1)(1(3-+-x x x -)1)(1()1(2-+-x x x =x -3-2(x -1)=-x -1.【例 4】 化简:yx yx -+11.【例 5】 请你阅读下列运算过程,再回答所提出的问题:132--x x -x-13=)1)(1(3-+-x x x -13-x (A ) =)1)(1(3-+-x x x -)1)(1()1(3-++x x x (B ) =x -3-3(x +1)(C ) =-2x -6.(D )(1)上述计算过程中,从哪一步开始出现错误? .(2)从(B )到(C )是否正确?______.若不正确,错误的原因是 . (3)请你正确解答.【例 6】 若x +x 1=3,则x 2+21x =______.【例 7】 计算: (1)2243nm -÷6mn 4; (2)2222b ab b ab a -++÷2222b ab a b ab +-+.【例 8】 计算: (1)yx y xy x -+-24422÷(4x 2-y 2);(2)222x ax a ax +-÷22x a ab -÷22x a bx-;(3)mn m nm -+2÷(m+n )·(m 2-n 2).【例 9】 化简求值:b a b -·32232b b a ab a -+÷222b ab b a +-,其中a=32,b=-3..【例 10】 小赵、小钱用电脑打字,小赵每分钟打m 个字,小钱每分钟打n 个字,则两人打1000字的时间比是 .【例 11】 在解题目:“当1949x =时,求代数式2224421142x x x x x x x-+-÷-+-+的值”时,聪聪认为x 只要任取一个使原式有意义的值代入都有相同结果.你认为他说的有理吗?请说明理由.【例 12】 给定下面一列分式:3579234,,,,x x x x y y y y-- ,(其中0x ≠)(1)把任意一个分式除以前面一个分式,你发现了什么规律? (2)根据你发现的规律,试写出给定的那列分式中的第7个分式。

分式的概念和运算

分式的概念和运算

分式的概念和运算分式作为数学中的重要概念,在实际生活和学习中都有着广泛的应用。

它可以帮助我们更好地理解和处理各种比例关系和分配问题。

本文将从基本概念、分式的运算规则和应用几个方面,对分式进行详细的阐述。

一、基本概念1. 分式的定义分式是指以“分子/分母”的形式表示的数,其中分子与分母均为整数,分母不等于零。

分子表示被分割的数量,分母表示整体的数量。

2. 分子与分母的含义分子表示分割出的部分数量,分母表示整体的数量。

例如,若将一个馅饼平均分给3个人,则分子为1(表示每个人份的馅饼数量),分母为3(表示总共有3个人)。

3. 分数与分式的关系分数是分式的一种特殊形式,它是指分子比分母小的分式。

例如,1/2、2/3都是分数,也是分式。

可以说所有的分数都是分式,但不是所有的分式都是分数。

二、分式的运算规则1. 分式的乘法和除法分式的乘法:两个分式相乘时,将分子相乘得到新的分子,分母相乘得到新的分母。

例如:2/3 × 3/4 = (2 × 3) / (3 × 4) = 6/12分式的除法:两个分式相除时,将被除数的分子与除数的分母相乘得到新的分子,将被除数的分母与除数的分子相乘得到新的分母。

例如:2/3 ÷ 3/4 = (2 × 4) / (3 × 3) = 8/92. 分式的加法和减法分式的加法:两个分式相加时,首先找到两个分式的公共分母,然后将各自的分子相加得到新的分子,分母保持不变。

例如:1/2 + 1/3 = (1×3 + 1×2) / 2×3 = 5/6分式的减法:两个分式相减时,首先找到两个分式的公共分母,然后将各自的分子相减得到新的分子,分母保持不变。

例如:1/2 - 1/3 = (1×3 - 1×2) / 2×3 = 1/6三、分式的应用1. 比例关系分式可以用来表示比例关系。

分式的运算

分式的运算

分式的运算1.约分把一个分式的分子与分母的公因式约去,叫做约分.约分的依据是分式的基本性质. 若分式的分子、分母是多项式,必须先把分子、分母分解因式,然后才能约去公因式. 分子与分母没有公因式的分式,叫做最简分式,又叫做既约分式.分式的运算结果一定要化为最简分式.2.分式的乘法3.分式的除法4.分式的乘方求n 个相同分式的积的运算就是分式的乘方,用式子表示就是(ba )n. 分式的乘方,是把分子、分母各自乘方.用式子表示为:例1、下列分式a bc 1215,a b b a --2)(3,)(222b a b a ++,b a b a +-22中最简分式的个数是( ).A.1B.2C.3D.4 例2.计算:3234)1(xyy x ∙ a a a a 2122)2(2+⋅-+x y xy 2263)3(÷ 41441)4(222--÷+--a a a a a例3、 ①已知:113x y-=,求代数式2x 14xy 2y x 2xy y ----的值.② 已知13x x +=,求2421x x x ++的值③ 若0<x<1,且xx x x 1,61-=+求 的值例4、计算(1)3322)(c b a - (2)43222)()()(xy x y y x -÷-⋅-(3)2332)3()2(c b a bc a -÷- (4)232222)()()(xy xy xy x y y x -⋅+÷-)56(3)1(122ab cd c b a -÷-、计算: (2)432643xy yx ÷-(3)(xy -x 2)÷x y xy - (4)(广州中考题)2223b a a ab -+÷b a ba -+3(5)3224)3()12(yx y x -÷- (6)322223322322)2()2()34(c b ab a c b a b a ab c +-÷-⋅2、填空(1) 一组按规律排列的式子:()0,,,,41138252≠--ab a b a b a b a b ,其中第7个式子是 第n 个式子是(2) 7m =3,7n =5,则72m-n=(3) ()231200841-+⎪⎭⎫⎝⎛--+-=(4) 若2222,2b a b ab a b a ++-=则=(5)(浙江中考题)如果32=b a ,且a ≠2,那么51-++-b a b a = .1、 计算(1)3254xy y x ⋅ (2)cd b a cb a 6532423-÷(3)x x x +÷-21)1( (4)44246322+++÷--x x x x x(5)(1)316412446222+⋅-+-÷+--x x x x x x x (6)yx y xy x -+-24422÷(4x 2-y 2)(7)4344516652222+-÷-++⋅-+-a a a a a a a a (8)22222x a bxx ax a ax -÷+-(9)(2334ba )2·(223ab -)3·(a b 3-)2 (10)(22932x x x --+)3·(-x x --13)2(南昌中考题)二、 化简(1) ()d cd b a cab 234322222-∙-÷(2) 111122----÷-a a a a a a(3 )⎪⎭⎫⎝⎛---÷--225262x x x x三、先化简,再求值1、(b a ab 22+)3÷2223)b a ab (-·[)(21b a -]2,其中a=-21,b=322、2(5)(1)5a a a a -+-÷(a 2+a ),其中a=-13.3、21x x x -+÷1x x +,其中4、.当x=-3时,求xx x xx x 43342323-++-的值 5、已知x+y1=1,y+z 1=1,求证z+x 1=1.四、找规律1.(杭州)给定下面一列分式:3x y ,-52x y ,73x y,-94x y ,…(其中x ≠0).(1)把任意一个分式除以前面一个分式,你发现了什么规律? (2)根据你发现的规律,试写出给定的那列分式中的第7个分式.2.(规律探究题)计算:222200420032004200220042004+.3.(结论开放题)请你先化简,再选取一个使原式有意义而你又喜爱的数代入求值:322m m m m--÷211m m -+.。

分式的运算与应用

分式的运算与应用

分式的运算与应用分式是数学中常见的运算形式,它可以表示两个数之间的比例关系或部分与整体的关系。

在实际生活和学习中,分式的运算和应用十分常见且有着重要的作用。

本文将介绍分式的基本运算法则和一些常见的应用场景。

一、基本运算法则1. 分式的加法和减法分式的加法和减法运算背后的基本原则是分母相同才能进行运算。

具体运算步骤如下:首先,判断两个分式的分母是否相同,如果不相同,则需要通过通分的方式将它们的分母转换为相同的分母。

其次,将分子相加或相减,并保持分母不变,得到最终的结果。

例如:⅔ + ¼ = (2 * 4 + 3 * 1)/(3 * 4) = 11/122. 分式的乘法分式的乘法运算可以直接将两个分式的分子相乘,分母相乘。

具体运算步骤如下:将两个分式的分子相乘得到新的分子,将两个分式的分母相乘得到新的分母,最后将得到的结果进行约分。

例如:2/3 * 3/4 = 6/12 = 1/23. 分式的除法分式的除法运算可以将一个分式看作另一个分式的倒数,然后进行乘法运算。

具体运算步骤如下:将第一个分式的分子乘以第二个分式的倒数的分子,第一个分式的分母乘以第二个分式的倒数的分母,最后将得到的结果进行约分。

例如:2/3 ÷ 3/4 = 2/3 * 4/3 = 8/9二、分式的应用1. 比例关系分式可以表示两个数之间的比例关系,常见于各种实际问题中。

通过比例关系,我们可以解决许多与数量关系相关的问题,比如商业中的成本与收益、几何中的长度与面积等。

利用分式可以更加清晰地描述和计算这些比例问题。

2. 混合运算在一些复杂的计算中,我们常常需要对不同的数值进行混合运算,并使用分式来表示部分与整体的关系。

比如在物理学中,速度的计算往往涉及到距离和时间之间的关系,可以使用分式来表示速度的定义。

3. 分数的拆分与合并有时候,我们需要将一个分数表示为几个分数之和或差。

这可以通过分式的拆分和合并来实现。

拆分使用加法和减法运算,合并使用加法和减法运算。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分式的运算 课堂学习检测
一、选择题
1.下列各式计算结果是分式的是( ).
(A)b
a m n ÷
(B)n
m m n 23.
(C)x
x 53÷
(D)32
23473y
x y x ÷
2.下列计算中正确的是( ). (A)(-1)0
=-1 (B)(-1)-1
=1 (C)3
321
2a
a =
-
(D)4731)()(a
a a =
-÷- 3.下列各式计算正确的是( ). (A)m ÷n ·m =m (B)m n
n m =⋅
÷1
(C)
11
=⋅÷m m m
(D)n ÷m ·m =n 4.计算5
4)()(a
b a a b a -⋅-的结果是( ). (A)-1 (B)1 (C)a 1 (D)b
a a
--
5.下列分式中,最简分式是( ).
(A)2
1521y xy
(B)y x y x +-2
2 (C)y
x y xy x -+-.22
2
(D)y x y x -+2
2
6.下列运算中,计算正确的是( ). (A))
(21
2121b a b a +=
+ (B)ac
b c b a b 2=+ (C)
a
a c a c 11=+- (D)
01
1=-+-a
b b α 7.a
b a b a -++2
的结果是( ).
(A)a
2-
(B)a
4
(C)b a b --2
(D)
a
b
-
8.化简2
2)11(y
x xy
y x -⋅-的结果是( ). (A)
y
x +1
(B)y
x +-
1
(C)x -y (D)y -x
二、填空题
9.2
232)()(y
x y x -÷=______.
10.2
32])[(x y -=______. 11.a 、b 为实数,且ab =1,设1
1
11,11++
+=+++=
b a Q b b a a P ,则P ______Q (填“>”、“<”或“=”). 12.
a
a a -+-21
422
=______. 13.若x <0,则
|
3|1
||31---x x =______ 14.若ab =2,a +b =3,则
b
a 1
1+=______. 综合、运用、诊断
三、解答题
15.计算:)()()(432b a b
a
b a -÷-⋅-.
16.计算:⋅-+++22224442x y y
x y y x
17.计算:⋅-÷+--+1
1
)1211(2
2x x x x
18.已知222
22
22y x y x N y x xy M -+=-=、,用“+”或“-”连结M 、N ,有三种不同
的形式:M +N 、M -N 、N -M ,请你任选其中一种进行计算,并化简求值,其中x ∶y =5∶2.
19.先化简,再求值:1
112
+---x x
x x ,其中x =2.
20.已知x 2
-2=0,求代数式11
)1(2
22++--x x x x 的值.
拓展、探究、思考
21.等式⋅-++=-++2
36982
x B
x A x x x 对于任何使分母不为0的x 均成立,求A 、B 的值.
22.A 玉米试验田是边长为a m 的正方形减去边长为1m 的蓄水池后余下部分,B
玉米试验田是边长为(a -1)m 的正方形,两块试验田的玉米都收获了500kg . (1)哪种玉米田的单位面积产量高?
(2)高的单位面积产量是低的单位面积产量的多少倍?
参考答案
1.A . 2.D . 3.D . 4.D . 5.D . 6.D . 7.C . 8.B .
9.x 4
y . 10.⋅612x y 11.=. 12.
⋅+21a 13.⋅-922x x 14.⋅2
3
15.⋅6b
a 16.
⋅+y x x 22
提示:分步通分. 17.2x .
18.选择一:y
x y x N M -+=
+,当x ∶y =5∶2时,原式37
=
选择二:y
x x y N M +-=
-,当x ∶y =5∶2时,原式⋅-=73
选择三:y x y
x M N +-=
-,当x ∶y =5∶2时,原式7
3=. 注:只写一种即可. 19.化简得
1)
1(+--x x ,把x =2代入得3
1-. 20.原式1
1
2+-+=x x x
∵x 2-2=0,∴x 2=2,∴原式1
1
2+-+=x x ,∴原式=1 21.A =3,B =5.
22.(1)A 面积(a 2-1)米2,单位产量
1
500
2
-a 千克/米;B 玉米田面积(a -1)2米2,单位产量是2)1(500-a 千克/米2
,2
2)
1(5001500-<-a a ,B 玉米的单位面积产量高; (2)1
1
-+a a 倍.。

相关文档
最新文档