【北师版七年级数学下册】3.2 用关系式表示的变量间关系
北师版初中七下数学3.2 用关系式表示的变量间关系(课件)
当堂检测
4.如图,用一段长为60 m的篱笆围成一个一边靠墙(墙的长 度不限)的长方形菜园ABCD,设与墙平行的篱笆AB的长为x m,菜园的面积为y m2. (1)试写出y与x之间的关系式(不必写出x的取值范围); (2)当AB的长为10 m,20 m时,菜园的面积各是多少?
当堂检测
解:(1)根据题意,得AD的长为(30-0.5x)m, 则y=x(30-0.5x),即y=-0.5x2+30x (2)当x=10时,y=250; 当x=20时,y=400. 故当AB的长为10 m,20 m时,菜园的面积分 别是250 m2,400 m2.
讲授新课
(2)在上述关系式中,耗电量每增加 1kW·h,二氧化碳排放量增加__0_.7_8_5_k_g__. 当耗电量从1kW·h增加到100kW·h时,二 氧化碳排放量从__0_.7_8_5_k_g__增加到 __7_8_.5_k_g___.
当堂检测
1.弹簧挂上物体后会伸长,测得一弹簧的长度y(cm)与所
(3)当底边长从 12 cm变化到 3 cm时,三角形的面积 从___9___cm2变化到 ___3_6__cm2.
讲授新课
关系式是我们表示变量之间关系的另一种方法,如y=3x, 我们可以根据任何一个自变量值求出相应的因变量的值.
关系式法: 1.关系式是两个变量之间关系的定量表达; 2.关系式是在给定自变量值后能确定相应的因 变量的值,但是因变量可能不唯一,如y=x2
关系式的基本特征是: ①等式的左边是因变量,等式的右边是关于自变
量的代数式; ②等式中只含有自变量和因变量这两个变量,其
他的量都是常量; ③自变量可在允许的范围内任意取值.
讲授新课
2.求两个变量之间的关系式常用的方法: (1)利用公式:如图形的周长公式、面积公式、体积公
北师大版七年级数学下册第三章 变量之间的关系(考点讲解)(含解析)
第三章 变量之间的关系【学习目标】1.知道现实生活中存在变量和常量,变量在变化的过程中有其固有的范围(即变量的取值范围); 2.感受生活中存在的变量之间的依赖关系. 3.能读懂以不同方式呈现的变量之间的关系.4.能用适当的方式表示实际情境中变量之间的关系,并进行简单的预测. 【考点总结】要点一、变量、常量的概念在一个变化过程中,我们称数值发生变化的量为变量.数值始终不变的量叫做常量.特别说明:一般地,常量是不发生变化的量,变量是发生变化的量,这些都是针对某个变化过程而言的.例如,60s t =,速度60千米/时是常量,时间t 和里程s 为变量. t 是自变量,s 是因变量. 要点二、用表格表示变量间关系借助表格,我们可以表示因变量随自变量的变化而变化的情况.特别说明:表格可以清楚地列出一些自变量和因变量的对应值,这会对某些特定的数值带来一目了然的效果,例如火车的时刻表,平方表等. 要点三、用关系式表示变量间关系关系式是我们表示变量之间关系的另一种方法.利用关系式(如3y x =),我们可以根据任何一个自变量的值求出相应的因变量的值.特别说明:关系式能揭示出变量之间的内在联系,但较抽象,不是所有的变量之间都能列出关系式. 要点四、用图象表示变量间关系图象是我们表示变量之间关系的又一种方法,它的特点是非常直观.用图象表达两个变量之间的关系时,通常用水平方向的数轴(称为横轴)上的点表示自变量,用竖直方向的数轴(称为纵轴)上的点表示因变量.特别说明:图象法可以直观形象地反映变量的变化趋势,而且对于一些无法用关系式表达的变量,图象可以充当重要角色. 【例题讲解】类型一、常量、自变量与因变量例1、根据心理学家研究发现,学生对一个新概念的接受能力y 与提出概念所用的时间x (分钟)之间有如表所示的关系:(1)上表中反映的两个变量之间的关系,哪个是自变量?哪个是因变量?(2)根据表格中的数据,提出概念所用时间是多少分钟时,学生的接受能力最强?(3)学生对一个新概念的接受能力从什么时间开始逐渐减弱?【答案】(1)“提出概念所用时间”是自变量,“对概念的接受能力”为因变量;(2)13分钟;(3)从第13分钟以后开始逐渐减弱【分析】(1)根据表格中提供的数量的变化关系,得出答案;(2)根据表格中两个变量变化数据得出答案;(3)提供变化情况得出结论.【详解】解:(1)表格中反映的是:提出概念所用时间与对概念的接受能力这两个变量,其中“提出概念所用时间”是自变量,“对概念的接受能力”为因变量;(2)根据表格中的数据,提出概念所用时间是13分钟时,学生的接受能力最强达到59.9;(3)学生对一个新概念的接受能力从第13分钟以后开始逐渐减弱.【点睛】本题考查用表格表示变量之间的关系,理解自变量、因变量的意义以及变化关系是解决问题的关键.【训练】某公交车每月的支出费用为4000元,每月的乘车人数x(人)与每月利润(利润=收入费用﹣支出费用)y(元)的变化关系如表所示(每位乘客的公交票价是固定不变的).(1)在这个变化过程中,每月的乘车人数x与每月利润y分别是变量和变量;(2)观察表中数据可知,每月乘客量达到人以上时,该公交车才不会亏损;(3)当每月乘车人数为4000人时,每月利润为多少元?【答案】(1)每月的乘车人数,每月利润;(2)2000人;(3)4000元【分析】(1)根据函数的定义即可求解;(2)根据表格可得:当每月乘客量达到2000人以上时,该公交车才不会亏损,即可求解;(3)有表中的数据推理即可求解.【详解】解:(1)在这个变化过程中,每月的乘车人数是自变量,每月利润是因变量;故答案为:每月的乘车人数,每月利润;(2)根据表格可得:当每月乘客量达到2000人以上时,该公交车才不会亏损,故答案为:2000;(3)有表中的数据可知,每月的乘车人数每增加500人,每月的利润可增加1000元,当每月的乘车人数为2000人时,利润为0元,故每月乘车人数为4000人时,每月的利润是(4000-2000)÷500×1000=4000元.【点睛】本题考查了根据表格与函数知识,正确读懂表格,理解表格体现变化趋势是解题关键.类型二、用表格表示变量间关系例2、一辆小汽车在告诉公路上从静止到起动10秒内的速度经测量如下表:(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)如果用时间t表示时间,v表示速度,那么随着t的变化,v的变化趋势是什么?(3)当t每增加1秒,v的变化情况相同吗?在哪个时间段内,v增加的最快?(4)若高速公路上小汽车行驶速度的上限为120千米/小时,试估计大约还需几秒这辆小汽车的速度就将达到这个上限.【答案】(1)时间与速度;时间;速度;(2)0到3和4到10,v随着t的增大而增大,而3到4,v随着t的增大而减小;(3)不相同;第9秒时;(4)1秒.【分析】(1)根据表中的数据,即可得出两个变量以及自变量、因变量;(2)根据时间与速度之间的关系,即可求出v的变化趋势;(3)根据表中的数据可得出V的变化情况以及在哪1秒钟,V的增加最大;(4)根据小汽车行驶速度的上限为120千米/小时,再根据时间与速度的关系式即可得出答案.【详解】解:(1)上表反映了时间与速度之间的关系,时间是自变量,速度是因变量;(2)如果用t 表示时间,v 表示速度,那么随着t 的变化,v 的变化趋势是0到3和4到10,v 随着t 的增大而增大,而3到4,v 随着t 的增大而减小;(3)当t 每增加1秒,v 的变化情况不相同,在第9秒时,v 的增加最大; (4)由题意得:120千米/小时=12010003600⨯(米/秒),由33.328.9 4.4-=,且28.924.2 4.7 4.4-=>, 所以估计大约还需1秒.【点睛】本题主要考查函数的表示方法,常量与变量;关键是理解题意判断常量与变量,然后结合图表得到问题的答案即可.【训练】某路公交车每月有x 人次乘坐,每月的收入为y 元,每人次乘坐的票价相同,下面的表格是y 与x 的部分数据.x /人次500 1000 1500 2000 2500 3000 … y /元1000200040006000…(1)上表中反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量? (2)请将表格补充完整.(3)若该路公交车每月的支出费用为4000元,如果该路公交车每月的利润要达到10000元,则每月乘坐该路公交车要达到多少人次?(利润=收入-支出费用)【答案】(1)反映了收入y 与人次x 两个变量之间的关系,其中x 是自变量,y 是因变量;(2)表格见解析;(3)7000人次. 【分析】(1)根据表格即可得出结论;(2)由表格可知:每增加500人次乘坐,每月的收入就增加1000元,即可得出结论; (3)先求出每增加1人次乘坐,每月的收入就增加2元,然后求出总收入即可求出结论; 解:(1)反映了收入y 与人次x 两个变量之间的关系,其中x 是自变量,y 是因变量. (2)由表格可知:每增加500人次乘坐,每月的收入就增加1000元, 表格补充如下:÷=(元)(3)10005002()÷(人次)4000+100002=7000答:每月乘坐该路公交车要达到7000人次【点睛】此题考查的是变量与常量的应用,掌握实际问题中的等量关系是解决此题的关键.类型三、用关系式表示变量间关系例3.按如图方式摆放餐桌和椅子.用x来表示餐桌的张数,用y来表示可坐人数.①题中有几个变量?②你能写出两个变量之间的关系吗?【答案】①有2个变量;②能,函数关系式可以为y=4x+2.【解析】试题分析:①根据变量和常量的定义可得结果;②由图形可知,第一张餐桌上可以摆放6把椅子,进一步观察发现:多一张餐桌,多放4把椅子.x张餐桌共有6+4(x﹣1)=4x+2.试题解析:①观察图形:x=1时,y=6,x=2时,y=10;x=3时,y=14;…可见每增加一张桌子,便增加4个座位,因此x张餐桌共有6+4(x﹣1)=4x+2个座位.故可坐人数y=4x+2,故答案为:有2个变量;②能,由①分析可得:函数关系式可以为y=4x+2.【训练】已知,如图,在直角三角形ABC中,∠ABC=90°,AC=10,BC=6,AB=8.P是线段AC上的一个动点,当点P从点C向点A运动时,运动到点A停止,设PC=x,△ABP的面积为y.求y与x之间的关系式.【答案】y=﹣125x+24.【分析】过点B作BD⊥AC于D,则BD为AC边上的高.根据△ABC的面积不变即可求出BD;根据三角形的面积公式得出S△ABP=12AP•BD,代入数值,即可求出y与x之间的关系式.【详解】如图,过点B作BD⊥AC于D.∵S△ABC=12AC•BD=12AB•BC,∴BD=8624105 AB BCAC⋅⨯==;∵AC=10,PC=x,∴AP=AC﹣PC=10﹣x,∴S△ABP=12AP•BD=12×(10﹣x)×245=﹣125x+24,∴y与x之间的关系式为:y=﹣125x+24.【点睛】此题考查直角三角形的面积求法,列关系式的方法,能理解图形中三角形的面积求法得到高线BD的值是解题的关键.类型四、用图象表示变量间关系例4、巴蜀中学的小明和朱老师一起到一条笔直的跑道上锻炼身体,到达起点后小明做了一会准备活动,朱老师先跑.当小明出发时,朱老师已经距起点200米了.他们距起点的距离s(米)与小明出发的时间t(秒)之间的关系如图所示(不完整).据图中给出的信息,解答下列问题:(1)在上述变化过程中,自变量是______,因变量是______;(2)朱老师的速度为_____米/秒,小明的速度为______米/秒;(3)当小明第一次追上朱老师时,求小明距起点的距离是多少米?【答案】(1)t,s;(2)2,6;(3)小明距起点的距离为300米.【分析】解析(1)观察函数图象即可找出谁是自变量谁是因变(2)根据速度=路程÷时间,即可分别算出朱老师以及小明的速度;(3)设t秒时,小明第一次追上朱老师,列出关系式即可解答【详解】解:(1)在上述变化过程中,自变量是t,因变量是s;(2)朱老师的速度420200110=2(米/秒),小明的速度为42070=6(米/秒);故答案为t,s;2,6;(3)设t秒时,小明第一次追上朱老师根据题意得6t=200+2t,解得t=50(s),则50×6=300(米),所以当小明第一次追上朱老师时,小明距起点的距离为300米.【点睛】此题考查一次函数的应用,解题关键在于看懂图中数据【训练】如图是甲、乙两人同一地点出发后,路程随时间变化的图象.(1)此变化过程中, 是自变量, 是因变量;(2)甲的速度乙的速度(大于、等于、小于);(3)6时表示;(4)路程为150km,甲行驶了小时,乙行驶了小时;(5)9时甲在乙的(前面、后面、相同位置);(6)乙比甲先走了3小时,对吗?.【答案】(1)t;s;(2)小于;(3)乙追赶上了甲;(4)9;4;(5)后面;(6)不对. 【解析】试题分析:(1)根据自变量与因变量的含义得到时间是自变量,路程是因变量;(2)甲走6小时行驶100千米,乙走3小时走100千米,则可得到他们的速度的大小;(3)6时两图象相交,说明他们相遇;(4)观察图形得到路程为150千米,甲行驶9小时,乙行驶了7-3=4小时;(5)观察图象得到t=9时,乙的图象在甲的上方,即乙行驶的路程远些;(6)观察图象得到甲先出发3小时后,乙才开始出发.试题解析:解:(1)函数图象反映路程随时间变化的图象,则t是自变量,s是因变量;(2)甲的速度是100÷6=503千米/小时,乙的速度是100÷3=1003千米/小时,所以甲的速度小于乙的速度;(3)6时表示他们相遇,即乙追赶上了甲;(4)路程为150千米,甲行驶9小时,乙行驶了7-3=4小时;(5)t=9时,乙的图象在甲的上方,即乙行驶的路程远些,所以9时甲在乙的后面;(6)不对,是乙比甲晚走了3小时.故答案为(1)t;s;(2)小于;(3)乙追赶上了甲;(4)9;4;(5)后面;(6)不对. 考点:函数的图象.【训练】根据图回答下列问题.(1)图中表示哪两个变量间的关系?(2)A、B两点代表了什么?(3)你能设计一个实际事例与图中表示的情况一致吗?【答案】(1)时间与价钱;(2)A点表示250元,B点表示150元;(3)这可以表示某户人家在“五一”长假中的消费情况:5月1日花150元5月2日花100元5月3日花250元5月4日花200元5月5日花300元5月6日花150元5月7日花250元【解析】试题分析:认真分析表中数据再结合身边的事例即可得到结果.(1)图中表示时间与价钱的关系;(2)A点表示250元,B点表示150元;(3)这可以表示某户人家在“五一”长假中的消费情况:5月1日花150元5月2日花100元5月3日花250元5月4日花200元5月5日花300元5月6日花150元5月7日花250元考点:本题考查的是函数的图象点评:解答本题的关键是读懂图象,得到图象的特征及规律,再根据这个规律解决问题.。
北师大版七年级数学下册 3.2 用关系式表示的变量间的关系 %28共20张PPT%29
(C) A.y=x2
B.y=(12-x)2
C.y=(12-x)·x
D.y=2(12-x)
导引:因为长方形的周长为24 cm,其中一边长为x cm, 所以另一边长为(12-x) cm,因为面积为y cm2,
所以该长方形中y与x的关系可以写为y=(12-x)·x.
总结
解决此类问题时,关键是要运用建模思想,先分 析题意,用两个不同的字母分别表示出两个变量,如 此题中用x表示自变量,用y表示因变量,然后根据问 题中所蕴含的等量关系列出等式,最后将等式转化为 用含自变量的代数式表示因变量的形式.
第三章 变量之间的关系
3.2 用关系式表示的变量间的关系
学习目标
一、学会课用堂关讲系式表示的变量间的关系并和表格互化 二、知道如何用关系式求值
温故知新
1.变量与常量的意义是什么?
一般地,在某一变化过程中,数值发生变化的量叫做变 量.在变化过程中,数值始终不变的量叫做常量.
2.什么是自变量、因变量?
因变量各是什么? (2)如果圆锥底面半径为r(cm),那么圆锥的体积V(cm3)
与r的关系式为________. (3)当底面半径由1cm变化到10cm时,圆锥的体积由
________cm3变化到________cm3.
例1 长方形的周长为24 cm,其中一边长为x cm(x>0), 面积为y cm2,则该长方形中y与x的关系可以写为
C.y=0.12x,0≤x≤500
D.y=60-0.12x,0≤x≤500
3.百货大楼进了一批花布,出售时要在进价(进货价 格)的基础上加一定的利润,其长度x与售价y如下表:
长度x/m 1
2
3
4…
售价y/元 8+0.3 16+0.6 24+0.9 32+1.2 …
3.2 用关系式表示的变量间关系 七年级下册堂堂练(含答案)
3.2用关系式表示的变量间关系——2022-2023学年北师大版数学七年级下册堂堂练1.某地海拔高度h 与温度T 之间的关系可用(温度单位:℃,海拔高度单位:km)来表示,则该地区海拔高度为2 km 的山顶上的温度为( )A.15℃B.9℃C.3℃D.7℃2.移动电话在南京地区的通话收费标准:前3分钟(不足3分钟按3分钟计)为0.2元;3分钟后每分钟收0.1元,则一次通话x 分钟与这次通话的费用y 元之间的函数关系式是( )A. B.C. D.3.公式表示当重力为P 的物体作用在弹簧上时弹簧的长度,代表弹簧的初始长度,用厘米(cm )表示,K 表示单位重力物体作用在弹簧上时弹簧拉伸的长度,用厘米(cm )表示.下面给出的四个公式中,表明这是一个短而硬的弹簧的是( )A. B.C.D.4.在烧开水时,水温达到100℃水就会沸腾,下表是小红同学做“观察水的沸腾”试验时所记录的时间t (min )和水温T (℃)的数据:t /min 024********…T /℃3044587268100100100…在水烧开之前(即),水温T 与时间t 之间的关系式及因变量分别为( )A. B.C.D.5.端午节期间,某商场搞优惠促销活动,活动内容是:凡在本商场一次性购买粽子超过100元者,超过100元的部分按8折优惠.在此活动中,李明一次性购买单价为60元的粽子礼盒()件,则应付款(元)与礼盒件数(件)之间的关系式是( )A. B.C.D.6.已知一个水池有水50吨,现将水排出,如果排水管每小时的流量是10吨,水池中的余水量Q (吨)与排水时间t (小时)的关系式为:_________.7.如表反映的是高速路上匀速行驶的汽车在行驶过程中时间x(时)与油箱的余油量y (升)之间的关系,这种关系可以表示为_______.8.据测定,海底扩张的速度是很缓慢的,在太平洋底,某海沟的某处宽度为100米,其地壳向外扩张的速度是每年6厘米,假设海沟扩张速度恒定,扩张时间为x年,海沟的宽度为y米.(1)写出海沟扩张时间x(年)与海沟的宽度y(米)之间的关系式;(2)计算出海沟宽度扩张到400米需要的年数.答案以及解析1.答案:B解析:把代入,得.故选B.2.答案:C解析:由题意,得,即,故选C.3.答案:A解析:,,A和B中,,表示弹簧短;A和C中,,表示弹簧硬,A选项表示这是一个短而硬的弹簧.故选A.4.答案:A解析:开始时水温为30℃,每增加1 min,水温增加7 ℃,所以水温T与时间t之间的关系式为.因为水温T随时间t的变化而变化,所以因变量为T.故选A.5.答案:B解析:根据题意,李明应付款(元)与礼盒件数(件)之间的关系式是.故选B.6.答案:解析:由题意得:.故答案为.7.答案:解析:由表格数据可知,行驶时间每延长1小时,剩余油量减少10升,即耗油量为10升/时,所以.8.答案:(1)根据题意得,海沟每年扩张的宽度为0.06米,海沟扩张时间x(年)与海沟的宽度y(米)之间的关系式为.(2)当时,,解得.答:海沟宽度扩张到400米需要5000年.。
3.2 用关系式表示的变量间关系 北师大版七年级数学下册优选同步练习(含答案)
3.2 用关系式表示的变量间关系随堂练习一、单选题1.将一根长为10cm的铁丝制作成一个长方形,则这个长方形的长y(cm)与宽x(cm)之间的关系式为()A.y=−x+5B.y=x+5C.y=−x+10D.y=x+10 2.若x=2m+1,y=4m﹣3,则下列x,y关系式成立的是()A.y=(x﹣1)2﹣4B.y=x2﹣4C.y=2(x﹣1)﹣3D.y=(x﹣1)2﹣33.如图,李大爷用24米长的篱笆靠墙围成一个矩形(ABCD)菜园,若菜园靠墙的一边(AD)长为x(米),那么菜园的面积y(平方米)与x的关系式为()A.y=x(12−x)2B.y=x(12−x)C.y=x(24−x)2D.y=x(24−x)4.用100元钱在网上书店恰好可购买m本书,但是每本书需另加邮寄费6角,购买n 本书共需费用y元,则可列出关系式()A.y=n(100m+0.6)B.y=n(100m)+0.6C.y=n(100m+0.6)D.y=100mn+0.65.对于关系式y=3x+5,下列说法:①x是自变量,y是因变量;②x的数值可以任意选择;③y是变量,它的值与x无关;④这个关系式表示的变量之间的关系不能用图象表示;⑤y与x的关系还可以用表格和图象表示,其中正确的是() A.①②③B.①②④C.①③⑤D.①②⑤6.一个长方体木箱的长为4㎝,宽为xcm,高为宽的2倍,则这个长方体的表面积S与x的关系及长方体的体积V与x的关系分别是()A.S=2x2+12x,V=8x2B.S=8x2,V=6x+8C.S=4x+8,V=8xD.S = 4 x 2+ 24 x ,V = 8 x 27.已知圆柱的高为3 cm,当圆柱的底面半径r(cm)由小变大时,圆柱的体积V(cm3)随之变化,则V与r的关系式是()A.V=πr2B.V=9πr2C.V= 13πr2D.V=3πr2 8.在关系式y=3x+5中有下列说法:①x是自变量,y是因变量;②x的数值可以任意选择;③y是变量,它的值与x无关;④用关系式表示的不能用图象表示;⑤y 与x的关系还可以用列表法和图象法表示,其中说法正确的是().A.①②⑤B.①②④C.①③⑤D.①④⑤二、填空题9.随着各行各业有序复工复产,企业提倡员工实行“两点一线”上下班模式,减少不必要的聚集.小华爸爸早上开车以60km/ℎ的平均速度行驶20min到达单位,下班按原路返回,若返回时平均速度为v,则路上所用时间t(单位:ℎ)与速度v(单位:km/ℎ)之间的关系可表示为.10.如图是汽车加油站在加油过程中,加油器仪表某一瞬间的显示,请你结合图片信息,解答下列问题:(1)加油过程中的常量是,变量是;(2)设加油数量是x升,金额是y元,请表示加油过程中变量之间的关系.11.一个边长为2厘米的正方形,如果它的边长增加x(x>0)厘米,则面积随之增加y平方厘米,那么y关于x的函数解析式为.12.阅读下面材料并填空.当x分别取0,1,-1,2,-2,……时,求多项式−x−2的值.当x=0时,−x−2=.当x=1时,−x−2=.当x=−1时,−x−2=.当x=2时,−x−2=.当x=−2时,−x−2=.……以上的求解过程中,和都是变化的,是的变化引起了的变化.13.如图,在长方形ABCD中,AB=8cm,AD=6cm,点M,N从A点出发,点M沿线段AB运动,点N沿线段AD运动(其中一点停止运动,另一点也随之停止运动).若设AM= AN=xcm,阴影部分的面积为ycm2,则y与x之间的关系式为.三、解答题14.为了解某种品牌小汽车的耗油量,我们对这种车在高速公路上做了耗油试验,并把试验的数据记录下来,制成下表:①根据上表的数据,请你写出Q与t的关系式;②汽车行驶5h后,油箱中的剩余油量是多少;③该品牌汽车的油箱加满50L,若以100km/h的速度匀速行驶,该车最多能行驶多远.15.已知,如图,在直角三角形ABC中,∠ABC=90°,AC=10,BC=6,AB=8.P是线段AC上的一个动点,当点P从点C向点A运动时,运动到点A停止,设PC=x,∠ABP的面积为y.求y与x之间的关系式.16.如图,圆柱的底面半径是1cm,圆柱的高由小到大变化.(1)圆柱的侧面积如何变化?在这个变化过程中,自变量和因变量各是什么?圆柱的侧面积S(cm2)与圆柱的高h(cm)之间的关系式是什么?(2)圆柱的体积如何变化?在这个变化过程中,自变量和因变量各是什么?圆柱的体积V(cm3)与圆柱的高h(cm)之间的关系式是什么?(3)当圆柱的高为2cm时,圆柱的侧面积和体积分别是多少?参考答案与试题解析1.A2.D3.C4.A5.D6.D7.D8.A9.t=20 v10.单价;数量和金额;y=5.80x11.y=x2+4x12.-2;-3;-1;-4;0;x;-x-2;x;-x-213.y=-12x2+4814.解:①Q与t的关系式为:Q=100﹣6t②当t=5时,Q=100﹣6×5=70,答:汽车行驶5h后,油箱中的剩余油量是70L当Q=0时,0=50﹣6t,③6t=50,解得:t= 25 3,100× 253= 25003km.答:该车最多能行驶25003km.15.解:如图,过点B作BD∠AC于D.∵S∠ABC=12AC•BD=12AB•BC,∴BD=AB⋅BCAC=8×610=245;∵AC=10,PC=x,∴AP=AC﹣PC=10﹣x,∴S∠ABP=12AP•BD=12×(10﹣x)× 245=﹣125x+24,∴y与x之间的关系式为:y=﹣125x+24.16.(1)解:圆柱的铡面积在增加;圆柱的高是自变量,圆柱的侧面积是因变量;S=2×π×1×h=2πh;(2)解:圆柱的体积在增加;圆柱的高是自变量,圆柱的体积是因变量;V=π×12×h=πh;(3)解:当r=2cm时,S=2πh=2π×2=4π,V=π×2=2π.即当圆柱的高为2cm时,圆柱的侧面积和体积分别是4πcm2和2πcm3.。
广东省佛冈县潖江中学北师大版七年级数学下册公开课(教案)3.2用关系式的表示变量间关系
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“关系式在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
a.线性方程表示变量间的线性关系。
b.不等式表示变量间的非确定性关系。
3.通过实际例子,让学生体会关系式在描述现实问题中的应用。
例如:根据身高和体重的数据,建立关系式描述两者之间的关系。
4.完成教材中提供的练习题,巩固用关系式表达变量关系的技能。
例如:练习题3.2的第1、3、5小题,涉及单价、总价和数量之间的关系。
二、核心素养目标
本章节的核心素养目标主要包括以下方面:
1.培养学生运用数学语言进行表达和交流的能力,通过关系式的建立,让学生学会用数学语言描述现实世界中的变量关系。
2.培养学生的数据分析观念,使学生能够从实际问题中抽象出数学关系,并运用关系式进行数据分析。
3.提高学生解决问题的能力,让学生掌握用方程和不等式解决实际问题的方法,培养其将数学知识应用于解决现实问题的素养。
广东省佛冈县潖江中学北师大版七年级数学下册公开课(教案)3.2用关系式的表示变量间关系
一、教学内容
本节内容依据广东省佛冈县潖江中学使用的北师大版七年级数学下册教材第3章第2节“用关系式的表示变量间关系”展开。主要内容包括:
1.变量间关系的理解,强调变量间存在的相互依赖关系。
2.学习如何用方程和不等式来表示变量间的数量关系。
五、教学反思
在上完这节课后,我进行了深入的思考。首先,我发现学生在理解变量间关系这一概念上存在一定难度。他们在将实际问题抽象成数学关系式时,往往感到困惑。针对这一点,我考虑在今后的教学中,可以多举一些生活中的实例,让学生更好地理解关系式的含义和应用。
北师大版七下数学3.2用关系式表示的变量间关系教案
北师大版七下数学3.2用关系式表示的变量间关系教案一. 教材分析本节课的主题是“用关系式表示的变量间关系”,属于北师大版七下数学的第三章“多变量的关系”的第二节。
通过本节课的学习,学生能够理解变量间的关系,并能够用关系式进行表示。
教材通过丰富的实例,引导学生探究变量之间的关系,从而达到理解并掌握关系式的目的。
二. 学情分析学生在学习本节课之前,已经掌握了变量和函数的概念,能够理解一个变量随另一个变量的变化而变化。
但是,对于用关系式表示变量间的关系,可能还存在一定的困难。
因此,在教学过程中,教师需要通过实例引导学生,让学生能够逐步理解和掌握关系式的表示方法。
三. 教学目标1.理解变量间的关系,并能够用关系式进行表示。
2.能够分析实际问题中的变量关系,并用关系式进行表达。
3.培养学生的逻辑思维能力和解决问题的能力。
四. 教学重难点1.教学重点:理解变量间的关系,并能够用关系式进行表示。
2.教学难点:对于复杂的关系式,能够理解和运用。
五. 教学方法采用问题驱动的教学方法,通过丰富的实例,引导学生探究变量之间的关系,从而达到理解并掌握关系式的目的。
在教学过程中,注重学生的参与和思考,培养学生的逻辑思维能力和解决问题的能力。
六. 教学准备1.准备相关的实例,用于引导学生探究变量之间的关系。
2.准备关系式的模板,方便学生进行填写和练习。
七. 教学过程1.导入(5分钟)通过一个实际问题,引出变量间的关系,例如“两个人共同完成一项任务,他们的工作效率与工作时间之间的关系是什么?”让学生思考并回答。
2.呈现(10分钟)呈现一些实例,让学生观察并分析变量间的关系。
例如,一个人跑步的速度与时间的关系,一个人的工资与工作时间的关系等。
引导学生发现,变量间的关系可以用关系式进行表示。
3.操练(10分钟)让学生分组讨论,每组找出一个实例,分析变量间的关系,并用关系式进行表示。
教师巡回指导,给予学生帮助和指导。
4.巩固(10分钟)让学生独立完成一些练习题,巩固所学的关系式的表示方法。
北师大版数学七年级下3.2 用关系式表示的变量间关系
初中数学试卷3.2 用关系式表示的变量间关系基础训练1.有一本书,每20页厚1 mm,设从第1页到第x 页的厚度为y mm,则( )A.y=120x B.y=20xC.y=120+x D.y=20x2.某油箱容量为60 L 的汽车,加满汽油后行驶了100 km 时,油箱中的汽油大约消耗了15.如果加满汽油后汽车行驶的路程为x km,油箱中剩油量为y L,则y 与x 之间的关系式和自变量取值范围分别是( ) A.y=0.12x,x>0 B.y=60-0.12x,x>0 C.y=0.12x,0≤x ≤500 D.y=60-0.12x,0≤x ≤5003.已知圆柱的高为3 cm,当圆柱的底面半径r(cm)由小变大时,圆柱的体积V(cm 3)随之变化,则V 与r 的关系式是( )A.V=πr2B.V=3πr2C.V=1πr2 D.V=9πr234.一个长方形的周长为30,则长方形的面积y与长方形一边长x的关系式为( )A.y=x(15-x)B.y=x(30-x)C.y=x(30-2x)D.y=x(15+x)5.百货大楼进了一批花布,出售时要在进价(进货价格)的基础上加一定的利润,其长度x与售价y如下表:下列用长度x表示售价y的关系式中,正确的是( )A.y=8x+0.3B.y=(8+0.3)xC.y=8+0.3xD.y=8+0.3+xx2+1,当自变量x=2时,因变量y的6.变量y与x之间的关系式是y=12值是( )A.-2B.-1C.1D.37.某地海拔高度h与温度T的关系可用T=21-6h来表示(其中温度单位为℃,海拔高度单位为km),则该地区某海拔高度为2 000 m的山顶上的温度为( )A.15 ℃B.9 ℃C.3 ℃D.7 ℃8.一个长方体的体积为12 cm3,当底面积不变,高增大时,长方体的体积发生变化,若底面积不变,高变为原来的3倍,则体积变为( )A.12 cm3B.24 cm3C.36 cm3D.48 cm39.根据图中的程序计算y的值,若输入的x值为32,则输出的y值为( )A.72B.94C.12D.9210.已知三角形ABC的底边BC上的高为8 cm,当底边BC从16 cm 变化到5 cm时,三角形ABC的面积( )A.从20 cm2变化到64 cm2B.从64 cm2变化到20 cm2C.从128 cm2变化到40 cm2D.从40 cm2变化到128 cm211.如图,梯形的上底长是5 cm,下底长是11 cm.当梯形的高由大变小时,梯形的面积也随之发生变化.(1)在这个变化过程中,自变量是____________,因变量是____________;(2)梯形的面积y(cm2)与高x(cm)之间的关系式为____________;(3)当梯形的高由10 cm变化到1 cm时,梯形的面积由____________变化到____________.12.有一种粗细均匀的电线,为了确定其长度,从一捆上剪下1 m,称得它的质量是0.06 kg.(1)写出这种电线长度与质量之间的关系式;(2)如果一捆电线剪下1 m后的质量为b kg,请写出这捆电线的总长度.提升训练13.某市出租车车费标准如下:3 km以内(含3 km)收费8元;超过3 km 的部分每千米收费1.6元.(1)写出应收费y(元)与出租车行驶路程x(km)之间的关系式(其中x≥3).(2)小亮乘出租车行驶4 km,应付车费多少元?(3)小波付车费16元,那么出租车行驶了多少千米?14.如图,在三角形ABC中,底边BC=8 cm,高AD=6 cm,点E为AD上一动点,当点E从点D附近向点A运动时,三角形BEC的面积发生了变化.(1)在这个变化过程中,哪些量是变量?哪些量是常量?(2)如果设DE的长为x cm,三角形BEC的面积为y cm2,那么怎样用含x的式子表示y?15.自行车每节链条的长度为2.5 cm,交叉重叠部分的圆的直径为0.8 cm.(1)观察图形,填写下表:链条的节数/节 2 3 4 …链条的长度/cm …(2)如果x节链条的长度为y(cm),那么y与x之间的关系式是什么?(3)如果一辆某种型号自行车的链条(安装前)由60节这样的链条组成,那么这辆自行车上的链条(安装后)总长度是多少?.........16.某超市为方便顾客购买,将瓜子放入包装袋内出售,其质量x(kg)与售价y(元)之间的关系如下表(售价中的0.10元是包装袋的费用):(1)观察表格,写出y与x之间的关系式.(2)买8 kg这种瓜子需花费多少元?(3)用100元去买这种瓜子,最多能买多少千克?参考答案1.【答案】A解:每20页厚1 mm,则每页厚120mm,故y=120x.2.【答案】D解:由题意知每千米的耗油量为15×60÷100=12100=0.12(L),所以行驶xkm 消耗汽油0.12x L.所以剩油量y=60-0.12x,60 L 汽油最多行驶500 km.故选D.3.【答案】B4.【答案】A5.【答案】B6.【答案】D7.【答案】B8.【答案】C9.【答案】C解:因为x=32,所以它在1<x ≤2这个范围内.所以应选择的关系式为y=-x+2.当x=32时,y=-32+2=12,故选C.10.【答案】B11.【答案】(1)梯形的高;梯形的面积 (2)y=8x (3)80 cm 2;8 cm 2 12.错解:(1)设电线的长度为l m,质量为m kg,则根据题意有m=0.06l. (2)设这捆电线的总长度为L m,把l=L,m=b 代入m=0.06l,得L=b 0.06,即这捆电线的总长度为b 0.06m.诊断:在实际生活中,可以用质量来确定电线的长度,把长度看成是随着质量的变化而变化的量.因此在这个问题中,质量是自变量,长度是因变量.第(2)问的结果忽略了已经剪下的1 m. 正解:(1)设电线的长度为l m,质量为m kg,则有l=m 0.06.(2)设这捆电线的总长度为L m,则L=b 0.06+1,即这捆电线的总长度为(b0.06+1) m.13.解:(1)根据题意,可得y=8+(x-3)×1.6,所以y=1.6x+3.2(x≥3).(2)当x=4时,y=1.6x+3.2=1.6×4+3.2=9.6.答:应付车费9.6元.(3)当y=16时,16=1.6x+3.2,解得x=8.答:出租车行驶了8 km.14.解:(1)底边BC的长是常量,DE的长和三角形BEC的面积是变量.×8×x=4x(0<x≤6).(2)y=1215.解:(1)4.2;5.9;7.6(2)y=2.5+(2.5-0.8)(x-1),即y=1.7x+0.8.(3)当x=60时,y=1.7×60+0.8=102.8.102.8-0.8=102(cm).所以这辆自行车上的链条(安装后)总长度为102 cm.16.解:(1)y=15x+0.1.(2)当x=8时,y=15×8+0.1=120.1.所以买8 kg这种瓜子需花费120.1元.(3)当y=100时,15x+0.1=100,x=6.66.所以用100元去买这种瓜子,最多能买6.66 kg.解:先列出售价y(元)和质量x (kg)之间的关系式,再求变量的值.。
七年级数学北师大版下册教学课件 3.2用关系式表示的变量间关系
三、情境导入
活动1 旧知回顾
1.什么是常量?什么是变量? 答:在一个变化过程中,数值始终不变的量叫常量.数值发生变化的量叫变 量.
2.汽车以60 km/h的速度匀速行驶,行驶里程为s km,行驶时间为t h.先填写
下表:
t/h
1
2
3
4
5
…
s/km 60
120
180
240
300
…
(4)当圆柱的高每增加1 cm时,它的体积增加____cm3.
(家1用)自梯做来形水一面的积做二S氧与化上碳底:长a之间的关系式是什么?
5(出__x2租+_)_车5_用_0的1小_0表_、起0_格到_步_表如价_大示_为_图当变_1.2a,从元化1(圆5时0公变锥里,到D以1的圆.5内时高均锥(为度每的1次2是元体增)4加,积超厘1过)也米5,公随S,里的之的当相路应发圆程值生每锥;公了的里变另的收化底2元。面,则半路程径为由x公里(x>4米5厘)时收费y元,y与x的关系式是
练习
9.如图,圆柱的底面直径是2 cm,当圆柱的高h cm由大到小变化时,圆柱的体积 V(cm3)随之发生变化. (1)在这个变化中,自变量和因变量各
是什么?
自变量是圆柱的高,因变量是圆柱的体积. (2)写出圆柱的体积V与高h之间的关系式.
V= ( 2 )2 h =πh.
2
练习
9.如图,圆柱的底面直径是2 cm,当圆柱的高h cm由大到小变化时,圆柱的体积 V(cm3)随之发生变化. (3)当h由10 cm变化到5 cm时,V是怎样变化的?
a
50 n
D.以上书写均不规范
2.张老师带领 x 名学生到某动物园参观,已知成人票每张10元,学生票 每张5元,设门票的总费用为y元,则 y = 5x+10 .
北师版数学七年级下册2 用关系式表示的变量间关系教案与反思
2用关系式表示的变量间关系教学目标一、基本目标1.能根据具体情境用关系式表示某些变量之间的关系.2.能根据关系式求值,初步体会自变量和因变量的数值对应关系.二、重难点目标【教学重点】找出题中的自变量和因变量.【教学难点】根据关系式找自变量和因变量之间的对应关系.教学过程环节1自学提纲,生成问题【5 min阅读】阅读教材P66~P67的内容,完成下面练习.【3 min反馈】1.(教材P66引入问题)如图,三角形ABC底边BC上的高是6 cm.当三角形的顶点C沿底边所在直线向点B运动时,三角形的面积发生了变化.(1)在这个变化过程中,自变量是底边BC长,因变量是△ABC的面积;(2)如果三角形的底边长为x( cm),那么三角形的面积y( cm2)可以表示为y =3x;(3)当底边长从12 cm变化到3 cm时,三角形的面积从36 cm2变化到9 cm2.2.(教材P67“议一议”)“低碳生活”是指人们生活中尽量减少所耗能量,从而降低碳(特别是二氧化碳)的排放量的一种生活方式.如下表:排碳计算公式家居用电的二氧化碳排放量(kg)=耗电量(kW·h)×0.785开私家车的二氧化碳排放量(kg)=耗油量(L)×2.7家用天然气二氧化碳排放量(kg)=天然气使用量(m3)×0.19家用自来水二氧化碳排放量(kg)=自来水使用量(t)×0.91(1)用字母表示家居用电的二氧化碳排放量的公式为y=0.785x,其中的字母表示y表示家居用电的二氧化碳排放量,x表示耗电量;(2)在上述关系式中,耗电量每增加1 kW·h,二氧化碳排放量增加0.875 kg.当耗电量从1 kW·h增加到100 kW·h时,二氧化碳排放量从0.875 kg增加到87.5 kg;(3)小明家本月用电大约110 kW·h、天然气20 m3、自来水5 t、耗油75 L,请你计算一下小明家这几项的二氧化碳排放量.解:110×0.785+75×2.7+20×0.19+5×0.91=297.2(kg).即小明家这几项的二氧化碳排放量是297.2 kg.环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】一个小球由静止开始一个斜坡向下滚动,通过仪器观察得到小球滚动的距离s(m)与时间t(s)的数据如下表:写出用t表示【互动探索】(引发学生思考)观察表中给出的t与s的对应值→分析数据→归纳得出关系式.【分析】t=1时,s=2×12;t=2时,s=2×22;t=3时,s=2×32;t=4时,s=2×42,…所以s与t的关系式为s=2t2,其中t≥0.【答案】s=2t2(t≥0)【互动总结】(生总结,老师点评)(1)关系式一般是用含有自变量的代数式表示因变量的等式;(2)关系式通常把因变量写在等号的左边,含有自变量的代数式写在等号的右边;(3)利用关系式可以根据任何一个符合条件的自变量的值求出因变量的值,但已知一个变量的值求另一个变量的值时,一定要分清已知的是自变量还是因变量,不要代错了.【例2】一辆加满汽油的汽车在匀速行驶中,油箱中的剩余油量Q(L)与行驶的时间t(h)的关如下表所示:(1)请直接写出Q与t的关系式,并求出这辆汽车在连续行驶6 h后,油箱中的剩余油量;(2)这辆车在中途不加油的情况下,最多能连续行驶的时间是多少?【互动探索】(引发学生思考)(1)分析表中数据可知,每行驶1 h耗油为7.5 L,由此可出油箱中剩余油量Q(L)与行驶时间t(h)的关系式;(2)由(1)知,汽车每小时耗油7.5 L,油箱原有汽油54 L,用后者除以前者即可求出油箱中原有汽油可以供汽车行驶多少小时.【解答】(1)Q=54-7.5t.把t=6代入,得Q=54-7.5×6=9.即这辆汽车在连续行驶6 h后,油箱中剩余油量为9 L.(2)54÷7.5=7.2(h).即这车在中途不加油的情况下,最多能连续行驶7.2 h.【互动总结】(学生总结,老师点评)观察表中的数据,发现其中的变化规律,然后根据其增减趋势写出自变量与因变量之间的关系式.活动2巩固练习(学生独学)1.变量x与y之间的关系式是y=x2-3,当自变量x=2时,因变量y的值是(C)A.-2B.-1C.1D.22.图中的圆点是有规律地从里到外逐层排列的,设y为第n层(n为正整数)圆点的个数,则下列函数关系中正确的是(B)A.y=4n-4B.y=4nC.y=4n+4D.y=n23.如图是一个简单的数值运算程序,当输入x的值为1时,则输出的数值为2.输入x―→×-1―→+3―→输出4.已知水池中有800立方米的水,每小时抽50立方米.(1)写出剩余水的体积Q(立方米)与时间t(小时)之间的关系式;(2)6小时后池中还有多少水?(3)几小时后,池中还有200立方米的水?解:(1)Q=800-50t(0≤t≤16).(2)当t=6时,Q=800-50×6=500.即6小时后池中还剩500立方米水.(3)当Q=200时,800-50t=200,解得t=12.即12小时后,池中还有200立方米的水.环节3课堂小结,当堂达标(学生总结,老师点评)求变量之间关系式的“三途径”:(1)根据表格中所列的数据,归纳、总结两个变量的关系式;(2)利用公式写出两个变量之间的关系式;(3)结合实际问题写出两个变量之间的关系式.练习设计请完成本课时对应练习!【素材积累】不要叹人生苦短,若把人一生的足迹连接起来,也是一条长长的路;若把人一生的光阴装订起来,也是一本厚厚的书。
北师版七年级数学下册3.2 用关系式表示的变量间关系1
3.2 用关系式表示的变量间关系学习目标:1、经历探索某些图形中变量之间的关系的过程,进一步体会一个变量对另一个变量的影响,发展符号感。
2、能根据具体情景,用关系式表示某些变量之间的关系。
3、能根据关系式求值,初步体会自变量和因变量的数值对应关系。
学习重点:1、找问题中的自变量和因变量。
2、根据关系式找自变量和因变量之间的对应关系。
学习难点:根据关系式找自变量和因变量之间的对应关系。
一、预习(一)、预习课本相关内容(二)、思考:确定关系式的步骤?(三)、预习作业:1、会议厅共有30排座位,第一排有20个座位,后排每排比前一排多一个座位.(1)你知道第九排有多少个座位吗?第26排呢?(2)每排的座位数y可用排数x来表示吗?(3)可不可能某一排的座位数是52?为什么?二、学习过程:(一)要点引导1、通过表格可表示两个变量之间的关系,本节中利用_______也可表示两个变量之间的关系.2、确定关系式的步骤:先找出题目中关于________与________的相等关系,再用________的代数式表示________3、半径为R的圆面积S=________,当R=3时,S=________方法小结:1、涉及到图形的面积或体积时,写关系式的关键是利用面积或体积公式写出等式;2、一定要将表示因变量的字母单独写在等号的左边;3、已知一个变量的值求另一个变量的值时,一定要分清已知的是自变量还是因变量,千万不要代错了.(二)例题例1、如图,ABC底边BC上的高是6厘米,当三角形的顶点C沿底边所在直线向点B运动时,三角形的面积发生了变化.(1)在这个变化过程中,自变量、因变量各是什么?(2)如果三角形的底边长为x(厘米),那么三角形的面积y(厘米2)可以表示为_________(3)当底边长从12厘米变化到3厘米时,三角形的面积从____厘米2变化到____厘米2变式1、如图,已知梯形的上底为x,下底为8,高为4.A CB 123C8 4x(1)求梯形面积y 与x 的关系;(2)用表格表示,当x 从3到7(每次增加1)时,y 的相应值;(3)当x 每增加1时,y 如何变化?(4)当y=50时,x 为多少?(5)当x=0时,y 等于多少?此时它表示的是什么?例2、将若干张长为20cm 、宽为10cm 的长方形白纸,按下图所示的方法粘合起来,粘合部分的宽为2cm . (1)求4张白纸粘合后的总长度;(2)设x 张白纸粘合后的总长度为ycm ,写出y 与x 之间的关系式;(3)并求当x=20时,y 的值变式2、 声音在空气中传播的速度y (米/秒)与气温x C 之间有如下关系:33315y x =+[来 (1)在这一变化过程中,自变量是________、因变量是________;(2)当气温15x C =时,声音速度y=________米/秒;(3)当气温22x C =时,某人看到烟花燃放5秒后才听到声响,那么此人与燃放烟花所在地约相距________米;(三)拓展1、如图,在Rt ABC ∆中,已知90C ∠=,边AC=4cm ,BC=5cm ,点P 为CB 边上一动点,当点P 沿CB 从点C 向点B 运动时,APC ∆的面积发生了变化. (1)在这个变化过程中,自变量和因变量各是什么?[ (2)如果设CP 长为xcm ,APC ∆的面积为2ycm ,则y 与x 的关系可表示为__________;(3)当点P 从点D (点D 为BC 的中点)运动到点B 时,则APC ∆的面积从______2cm 变到______2cm(四)回顾小结:自变量和因变量之间的关系;根据关系式找出与自变量相应的因变量的数值。
最新北师大版七年级数学下册32用关系式表示变量之间的关系
那一把蒲扇。蒲扇,是记忆中的农村 ,夏季 经常用 的一件 物品。
记忆中的故
乡,每逢进入夏天,集市上最常见的 便是蒲 扇、凉 席,不 论男女 老少, 个个手 持
一把,忽闪忽闪个不停,嘴里叨叨着 “怎么 这么热 ”,于 是三五 成群, 聚在大 树
4cm
4.5cm
2、某轿车油箱中原来有油40千克,现在知道
行驶时间t(时)与剩下油量Q(千克)的关系如下表
: 行驶时间t/时
剩下油量Q/千克
1
40-6
2
40-12
3
40-18
4
40-24
5
40-30
…
…
请写出用t表示Q的关系式。 Q 40 6t
并思考轿车能行驶7小时吗?
3.有一边长为 3 cm的正方形,若边长增加时, 则其面积也随之变化。 (1)若边长增加了x cm,则其面积 y(cm2) 关于x的关系式是__y_=_(__3_+__x_)_2____ (2)当 x 由 3cm 变化到 7cm 时, 其面积 y 由___3_6____cm2变化到___1_0_0____cm2
4.某市出租车计费标准如下:行驶路程不超过 3千米时,收费8元;行驶路程超过3千米的 部分,按每千米1.60元计费。
(1)求出租车收费y(元)与行驶路程x(千米) 之间的关系式;
(2)若某人一次乘出租车时,付了车费14.40元, 求他这次乘车坐了多少千米的路程?
解:
(1)当x≤3时,y=8;
当x>3时,y=8+1.6(x-3) =1.6x+3.2
是那么凉快,那么的温馨幸福,有母 亲的味 道!
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【解析】由题意,有y=2(5-x),即y=10-2x.
3.如图是一个简单的数值运算程序,当输入x的值 2 为1时,则输出的数值为示为: -x+3 ,
所以当x=1时,原式=-1+3=2.
60 4.在关系式S=40t中,当t=1.5时,S=____.
【解析】把t=1.5代入S=40t中,得S=40×1.5=60.
这个游戏你能继 续玩下去吗?
讲授新课
用关系式表示变量间的关系
探究
确定一个三角形面积的量有哪些? 三角形的底和高 A
B
D
C
如图,三角形ABC底边BC上的高是6厘米.当三角 形的顶点C沿底边所在的直线向点B运动时,三角 形的面积发生了怎样的变化?
(1)在这个变化过程中,自变量和因变量分别是
什么?
三角形的底边长度是自变量,
(3)当底面半径由1cm变化到10cm时,圆锥的体 积由
4 3
cm3变化到
400 3
cm3 .
典例精析 例1 一个小球由静止开始沿一个斜坡向下滚动,
通过仪器观察得到小球滚动的距离s(m)与时间t(s) 的数据如下表:
时间t(s)
距离s(m)
1
2
2
8
3
4
…
18 32 …
写出用t表示s的关系式:________ s=2t2 .
5.对于气温,有的地方用摄氏温度表
示,有的地方用华氏温度表示,摄氏
温度x(℃)与华氏温度y(°F)之间存在 的关系为:y=1.8x+32,如图所示: (1)用表格表示当x从-10到30(每次增加10),y的相 应的值.
解:(1)
(2)某天,连云港的最高气温是8℃,悉尼的最高气
温是91°F,问这一天悉尼的最高气温比连云港
例3
图中的圆点是有规律地从里到外逐层排列
的.设y为第n层(n为正整数)圆点的个数,则下 列函数关系中正确的是( B ) A.y=4n-4 B.y=4n
C.y=4n+4
D.y=n2
解析:由图可知n=1时,圆点有4个,即y=4;
n=2时,圆点有8个,即y=8;n=3时,圆点有
12个,即y=12,∴y=4n.
家居用电的二氧化碳: 110×0.785=86.35(kg) 开私家车的二氧化碳: 75×2.7=202.5(kg) 家用天然气的二氧化碳: 20×0.19=3.8(kg) 家用自来水的二氧化碳: 5×0.91=4.55(kg)
素材
可在对应输入框中输入数字进行计算
当堂练习
1.变量x与y之间的关系式是y=x2-3,当自变量x=2 时,因变量y的值是( C )
方法总结:认真观察表中给出的t与s的对应值, 分析s随t的变化而变化的规律,再列出关系式.
例2 汽车在行驶过程中,由于惯性的作用刹车后 仍将滑行一段距离才能停住,这段距离称为刹车
距离.刹车距离是分析事故原因的一个重要因素.
某型号的汽车在平整路面上的刹车距离sm与车 速vkm/h之间有下列经验公式:
(2)在上述关系式中,耗电量 每增加1 KW·h,二氧化 0.785kg 碳排放量增加___________. 当耗电量从1 KW·h增加到 100KW·h时,二氧化碳排 放量从_________ 0.785kg 增加到 _________. 78.5kg
(3)小明家本月用电大约110kW· h、天然气20m3、 自来水5t、油耗75L,请你计算一下小明家这 几项的二氧化碳排放量.
v2 s 256
(1)式中哪个量是常量?哪个量是变量?哪个量 是自变量?哪个量是因变量?
256 s,v v s.
(2)当刹车时车速v 分别是40、80、120km/h时, 相应的滑行距离s分别是多少? 当v=40km/h时,s=6.25m;
当 v=80km/h时, s=25m;
当 v=120km/h时,s=56.25m.
的能力.(难点)
复习巩固
在“小车下滑的时间”中,
1.支撑物的高度h和小车下滑的时间t都在变化, 它们都是变量.其中小车下滑的时间t随支撑物
的高度h的变化而变化,
2.支撑物的高度h是自变量,
3.小车下滑的时间t是因变量.
导入新课
情境导入 游戏:数青蛙 一只青蛙一张嘴,两只眼睛四条腿; 两只青蛙两张嘴,四只眼睛八条腿; 三只青蛙三张嘴,六只眼睛十二条腿; …… 1.青蛙的眼睛数和只数有关系吗?能用数学式表达吗? 2.青蛙的腿数和只数有关系吗?能用数学式表达吗?
的最高气温高多少摄氏度(结果保留整数)? 解:(2)y=91,则1.8x+32=91, 所以有x≈33, 33-8=25(℃). 所以这一天悉尼的最高气温比连云港的高25℃.
课堂小结
求变量之间关系式的“三途径”
1.根据表格中所列的数据,归纳总结两个变量的关 系式. 2.利用公式写出两个变量之间的关系式,比如各类 几何图形的周长、面积、体积公式等. 3.结合实际问题写出两个变量之间的关系式,比如 销量×(售价-进价)=利润等.
A.-2
B.-1
C.1
D.2
【解析】将x=2代入y=x2-3,得y=22-3=1.
2.一块长为 5 米,宽为 2 米的长方形木板,现要在长
边上截取一边长为x米的一小长方形(如图),则剩余
木板的面积y(平方米)与x(米)之间的关系式为( B )
A.y=2x
C.y=5x
B.y=10-2x
D.y=10-5x
做一做 如图,圆锥的高度是4厘米,当圆锥的底面半径 由小到大变化时,圆锥的体积也随之发生了变化. (1)在这个变化过程中,自变量、因变量各是 什么? 圆锥的底面半径的长度是自变量, 圆锥的体积是因变量.
(2)如果圆锥底面半径为 r(cm),那么圆锥的
4 2 V r 3 3 体积V(cm )与r的关系式为________.
议一议
你知道什么是“低碳生活”吗?“低碳生活” 是指人们生活中尽量减少所耗能量,从而降低 碳、特别是二氧化碳的排放量的一种方式.
(1)家居用电的二氧化碳排放量可以用关系式 y=0.785x ,其中的字母分别表 表示为_____________ 示__________________________. 二氧化碳排放量 耗电量
第三章 变量之间的关系
3.2 用关系式表示的变量间关系
学习目标
1.能根据具体情景,用关系式表示变量间的关系, 根据关系式解决相关问题;(重点) 2.并会根据关系式求值,初步体会自变量和因变量 的数值对应关系;(重点)
3.通过动手实践与探索,让学生参与变量的发现和
函数概念的形成过程,提高分析问题和解决问题
(3)当h由10 cm变化到5 cm时,V是怎样变化的?
当h=10cm时,V=πh=10πcm3; 当h=5cm时,V=πh=5πcm3. 所以当h由10cm变化到5cm时,
V从10πcm3变化到5πcm3. (4)当h=0时,V等于多少?此时表示什么?
V=0,此时表示平面图形——直径为2cm的圆.
5.如图,圆柱的底面直径是2 cm,当圆柱的高h cm由 大到小变化时,圆柱的体积V(cm3)随之发生变化. (1)在这个变化中,自变量和因变量各 是什么? 自变量是圆柱的高,因变量是圆柱的体积. (2)写出圆柱的体积V与高h之间的关系式. V=
2 2 ( ) h 2
=πh.
5.如图,圆柱的底面直径是2 cm,当圆柱的高h cm由 大到小变化时,圆柱的体积V(cm3)随之发生变化.
三角形的面积是因变量.
(2)如果三角形的底边长为x(厘米),那么三 y=3x 角形的面积y(厘米2)可以表示为________. (3)当底边长从12厘米变化到3厘米时,三角形 的面积从_____ 9 厘米2. 36 厘米2变化到_____
可在对应输入框中输入数字进行计算
归纳总结
y=3x表示了三角形面积和三角形底边长之间的关 系,它是变量y随x变化的关系式. 注意:关系式是我们表示变量
之间关系的另一种方法,
利用关系式,如y=3x,
我们可以根据任何一个
自变量值求出相应的因 变量的值.
思考 你还记得圆锥的体积公式是什么吗?
1 2 V r h 3
r 其中的字母表示什么?
h
变化中的圆锥
高不变 底面半径变 底面半径不变 高变
h r
圆锥随半径的动态变化.exe
h
r
双击图标查看
圆锥随高度的动态变化.exe