第8章-开 环 聚 合
开环聚合
项目一 概述
开环聚合的推动力是环张力的释放。从机理上分析,大部分开环聚合属 于连锁机理的离子聚合,小部分属于逐步聚合。
可以进行开环聚合的单体包括环醚、环缩醛、环酯、环酰胺、环硅烷等。 环氧乙烷、环氧丙烷、己内酰胺、三聚甲醛等的开环聚合都是重要的工 业化开环聚合反应。
环的大小(元数)、构成环的元素(碳环或杂环)、环上的取代基等对 开环的难易都有影响。有的环状化合物难以开环,如γ-丁氧内酯、六 元环醚等;有的聚合过程中环状单体和聚合物之间存在平衡,如己内酰 胺。此外,双官能度单体线形缩聚还有环化倾向。这些现象都取决于环 和线形结构的相对稳定性,属于热力学因素。
单元二 聚硅氧烷 聚硅氧烷,俗名硅氧烷,是工业化最早的一类半有机高分子材料,具有
耐高温、耐化学品的特点,主要产品有硅油、硅橡胶和硅树脂。原料是 氯硅烷,如二甲基二氯硅烷。 氯硅烷水解速率很快,生成的硅醇难以分离,只是反应的中间产物。碱 性条件下水解时有利于形成相对分子质量较高的线性聚合物;酸性条件 下水解有利于形成环状或低相对分子质量线性聚合物。
上一页 下一页 返回
项目四 其他环状化合物的开环聚合
聚氮化硫可以成膜和成纤,在室温下对空气和水都稳定,但长期放置或 加热,将分解成硫和其他产物,应用受到限制。
上一页
返回
谢谢观赏
模块八 开环聚合
1 项目一 概述 2 项目二 环醚和环缩醛的开环聚合反应 3 项目三 环烯的开环聚合 4 项目四 其他环状化合物的开环聚合
返回
项目一 概述
在聚合反应原理中,除了我们熟知的逐步聚合反应、自由基聚合、离子 聚合和配位聚合外,还存在一种特殊的反应,即开环聚合。环状单体开 环后聚合成线形聚合物的反应,称作开环聚合。与缩聚反应相比,其聚 合过程中无小分子生成,大部分开环聚合物属于杂链高分子,和缩聚物 相似;与烯烃加聚相比,其聚合过程中无双键断裂,仅仅由环变成了线 形聚合物,无副产物产生,聚合物与单体元素组成相同,貌似加聚反应, 因此是一类独特的聚合反应。开环聚合与缩聚、加聚并列,称为第三大 类聚合反应。通式为
第八章 开环聚合
A M
+ SiR2 (OSiR2)3
O
A (SiR2O)3SiR2O M
SiR2O M
+ SiR2 (OSiR2)3
O
(SiR2O)4SiR2O M
强质子酸或 Lewis 酸也可使硅氧烷开环聚合,
活性种是硅烷阳离子
Si(R2) A
,环状单体插入而
增长;也可形成氧鎓离子而后重排成硅阳离子。
因此对引发剂的选择和单体的精制要求较高。 例如以五氟化磷为催化剂,在30℃聚合6小时,分
子量为30万左右;而以五氯化锑作催化剂时,聚合速率
和分子量要低的得多。
8.3.3 羰基化合物的聚合和三氧六环的阳离子聚合 1、羰基化合物
羰基化合物中的羰基C=O极性较大,有异裂倾向, 适于离子聚合,产物为聚缩醛。
8.2 环烷烃开环聚合热力学
8.2.1 环的大小 碳的四面体结构,C—C—C 键角为109°28’ 环状单体热力学稳定性: 3,4《 5,7~11〈 12以上,6
构象张力 角张力
实际上较少用到九元以上的环状单体。环烷烃在 热力学上容易开环聚合的程度为3、4 > 8 > 7、5。
三、四元环烷烃由键角变化引起的环张力很大 (三元环60°,四元环90°),环不稳定而易开环聚合。 五元环键角接近正常键角(108 °),张力较小,环 较稳定。
酰化的内酰胺比较活泼,是聚合的活性中心,因
此可以采用酰氯、酸酐、异氰酸酯等酰化剂与单体反
应,使己内酰胺先形成N-酰化己内酰胺。这样可消除 诱导期,加速反应,缩短聚合周期。
O C (CH2)3 NH + RCOCl
O C (CH2)3 N O C R + HCl
8.3.5 环硅氧烷
开环聚合
第八章 开环聚合8.1 概述高分子化学中,以环状单体通过开环聚合来合成聚合物,同样具有重要的地位。
在这种聚合过程中,增长链通过不断地打开环状结构,形成高聚物:以环醚为例,环氧乙烷经开环聚合反应,得到一种聚醚,即聚氧化乙烯。
这在工业上已得到应用。
能够进行开环聚合的单体很多,如环状烯烃,以及内酯、内酰胺、环醚、环硅氧烷等环内含有一个或多个杂原子的杂环化合物。
开环聚合既具有某些加成聚合的特征,也具有缩合聚合的特征。
由开环聚合得到的聚合物,重复单元与环状单体开裂时的结构相同,这与加成聚合相似;而聚合物主链中往往含有醚键、酯键、酰胺键等,与缩聚反应得到的聚合物常具有相同的结构,只是无小分子放出。
开环聚合与缩聚反应相比,还具有聚合条件温和、能够自动保持官能团等物质的量等特点,因此开环聚合所得聚合物的平均分子质量,通常要比缩聚物高得多。
有些单体如乳酸,采用缩聚反应无法得到高分子质量的聚合物;而采用乳交酯的开环聚合,就能够获得高分子质量的聚乳酸。
但是,与缩聚反应相比,开环聚合可供选择的单体较少,例如二元酸与二元醇能够通过缩聚获得聚酯;而开环聚合,只有相当于α,ω-羟基酸的环内酯可供选择。
聚酰胺的情况也是如此。
另外,有些环状单体合成困难,因此由开环聚合所得到的聚合物品种受到限制。
开环聚合就机理而言,有些属于逐步聚合,有些属于连锁聚合。
8.1.1 聚合范围及单体可聚性如前所述,环醚、环酯、环酰胺、环硅氧烷等能够进行开环聚合。
此外,环胺、环硫化物、环烯烃、以及N-羧基-α-氨基酸酐等同样也能进行开环聚合。
环状单体能否转变为聚合物,取决于聚合过程中自由能的变化情况,与环状单体和线形聚合物的相对稳定性有关。
Dainton 以环烷烃作为环状单体的母体,研究了环大小与聚合能力的关系。
表6-1列出了环烷烃在假想开环聚合时的自由能变化ΔG lc 0、焓变ΔH lc 0、及熵变ΔS lc 0。
R X [ R X ]n n [ CH 2 CH 2 O ]n n H 2C CH 2O聚合过程中,液态的环烷烃(l )转变为无定型的聚合物(c )。
第八章开环聚合
量很高的聚合物。 环氧丙烷用适当的引发剂还可制得光学活性聚合物。
12
环氧化合物的阴离子开环聚合
引发剂:氢氧化物、烷氧基化合物等;
作用:制得重要的聚醚类非离子表面活性剂。
特点:无终止反应,具有活性聚合特征,加入
终止剂(如酚类)使链终止。
环氧乙烷(Ethylene oxide)聚合后加入环氧丙烷 会生成嵌段共聚物,是聚醚类表面活性剂的重 要品种。
10
三. 工业上重要的开环聚合
3. 1 环醚(cyclic ether)
简单的环醚中,常见有3、4、5元环可以开环聚合。 3元环醚由于其环张力大,阳离子、阴离子、配位聚 合都可以。4、5元环醚只能进行阳离子聚合。
R O
环氧化物
O O
环丙醚
O
四氢呋喃
O
O
三聚甲醛
11
环氧化物的开环聚合
3元环醚即环氧化物(epoxide) 阳离子聚合:副反应多,工业上不常用; 配位聚合:环氧化物的配位阴离子聚合可得到分子
开环聚合,具体引发反应如下:
n C4H9Li + CH3
O C (CH2)5 NH + n C4H9-Li+
O CH CH2
n C4H9 CH2
O C
CH3 - + CH O Li
(CH2)5 N Me + n C4H10
Ring-Opening Polymrization of Cyclic Acetals(醛)
Polymerization of Lactones(内酯)
1
Development of Ring-Opening Polymerization Ring-Opening polymerization has been developed and studied since 1950s. A lot of products which have been industrialized, such as, polycaproamide, polyformaldehyde, polytetrahydrofuran, polyethylene oxide, polypropylene oxide etc. As the late direction, isomerized ring-opening polymerization of cycloolefin (环烯) and spirocyclic (螺环化合物) monomer have been studied.
第八章开环聚合
氯化聚醚
• 丁氧环醚:丁氧环醚可以开环聚合,但是有应用价值的是3, 3‘-二(氯亚甲基)丁氧环。聚合产物俗称氯化聚醚,又称聚 氯醚。结晶性成膜材料,熔点177℃,机械强度比氟树脂好, 吸水性低,耐化学药品腐蚀,尺寸稳定性好,电性能优良, 可作为工程塑料。 • 由于分子中的次甲基上的碳无取代基,因而赋予大分子以良 好的柔顺性,另由于分子链上季碳原子上连有两个位阻较大 的氯甲基,又增加了链的刚性,因此,CPT的分子链为刚柔 兼备并以柔为主。另一方面,由于具有极性的氯甲基的对称 排列而不显极性,同时由于氯原子为憎水基,使它具有极低 的吸水率和良好的电绝缘性。
Cl
O
Cl Cl
Cl
Cl Cl
Cl
O
TCDD 二噁英
Cl
Cl
O
Cl Cl Cl
Cl
二噁英:指结构和化学性质相近的多氯二苯二恶英(PCDDs) 和多氯二苯并呋喃(PCDFs)。某些类二恶英多氯联苯(PCBs) 具有相似毒性,归在“二恶英”名下。大约有419种类似二 恶英的化合物被确定, 但其中只有近30种被认为具有相当的 毒性,以TCDD的毒性最大。
链引发
如果用醇钠引 发,必须脱除 副产醇,以氢 氧化钠引发, 脱除水
聚硅氧烷
• 八元环的硅氧烷开环聚合,热力学特征:1、 ∆H接近于零,∆S却是正值,熵增成为聚合 动力。 • 2、存在环-线平衡,聚合时线性单体和环状 单体共存;在较高的温度下,解聚成6至12 元环的环状低聚物。 • 反应可以采用阴离子引发,也可采用阳离 子引发,阳离子引发产品分子量低,常用 于硅油合成。
• 硅原子半径大于C,硅氧键及硅碳键比较长,硅 侧基相互作用小,容易绕硅氧键旋转,Tg-130℃。 在很宽的温度范围内保持柔顺性和高弹性,耐化 学品、耐氧化、疏水、电绝缘等优点。 • 高分子线性主要做硅橡胶,低分子线性和环状的 做硅油,有三官能度存在的,可以固化交联,做 涂料。 • 低分子的具有良好的表面活性,可以做表面活性 剂。聚氨酯工业用的泡沫稳定剂基本上都是硅油 类产品。 • 聚硅氧烷使用温度在180℃以下,加热至250℃, 降解成环状低聚物。
开环聚合
头、窗框、洗漱盆、水箱、滑轮、水表壳体等),汽车工业 (散
热器水管阀门、散热器箱盖、冷却液的备用箱、燃料油箱盖、气 化器壳体、油门踏板等零件),电子电器 (电话、无线电、电视 机、计算机和传真机)
8.2.2 环硅氧烷 最常见的环硅氧烷单体八甲基环四硅氧烷 (D4):
H 3C CH3 Si O CH 3 O Si n H3 C CH 3 Si O O Si H3 C H 3C CH 3
活性单体机理 聚合体系的阳离子不位于增长链末端,而是
在单体分子上。 活性单体
O + H+ O H O H RO CH2CH2OH2 + O 快 RO CH2CH2OH + O H
R-OH +
链增长
外加醇实际起引发剂作用,增长链活性末端为 -OH
(5) 应用
三聚甲醛(三氧六环)的阳离子开环聚合:
O H+ + O O H O O O + O O O H ( OCH 2OCH2 OCH2 )nO O H2O 终止 O H OCH 2OCH2 OCH2 O O H (OCH 2OCH2OCH2 ) OH n+1 O 三聚甲醛
R O
环氧化物
O O
环丙醚
O
四氢呋喃
O
O
三聚甲醛
(1)链引发反应
许多用于乙烯基单体阳离子聚合反应的引发剂也可用于环醚 的阳离子开环聚合,包括强质子酸、Lewis酸、碳阳离子源 /Lewis酸复合体系等。 以质子酸引发四氢呋喃聚合为例:
H+A- + O H O A二级环氧鎓离子 HO CH2CH2CH2CH2 O A三级氧鎓离子链增长活性中心 α-C具有缺电子性
C[M]0 Xn [I]0
第8章 开环聚合
(ring opening polymerization)
开环聚合是指具有环状结构的单体经引发聚合,将环打 开形成高分子化合物的一类聚合反应。
一、开环聚合的特征 开环聚合既不同于连锁聚合,也不同于逐步聚合,其 特征为: ⒈ 聚合过程中只发生环的破裂,基团或者杂原子由 分子内连接变为分子间连接,并没有新的化学键和新 的基团产生。 ⒉ 与连锁聚合相比较 连锁聚合的推动力是化学键键型的改变,虽然大 多数环状单体是按离子型聚合机理进行的,但开环聚 合的推动力是单体的环张力,这一点与连锁聚合不同。 开环聚合所得的聚合物其结构单元的化学组成与 单体的化学组成完全相同合反应相比较 开环聚合虽然也是制备杂链聚合物的一种方法, 但聚合过程中并无小分子缩出。 开环聚合的推动力是单体的环张力,聚合条件比 较温和,而逐步聚合的推动力是官能团性质的改变, 聚合条件比较苛刻.所以,用缩聚难以合成的聚合物, 用开环聚合较易合成。
二. 环状单体的聚合活性
——能否开环及聚合能力的大小
环状单体的聚合活性取决于主要是热力学因素,即环状 单体和线型结构聚合物的相对稳定性。
环状单体热力学稳定性次序: 3,4《5,7~11〈12以上,6 对于杂环化合物,如环醚、环酯、环酰胺等,由于 杂原子提供了引发剂亲核或亲电进攻的位置,所以在 动力学上它们比环烷烃更有利于开环聚合。
第8章 开环聚合反应
¾ 酰化的内酰胺比较活泼,是聚合的活性中心,因此可 以采用酰氯、酸酐、异氰酸酯等酰化剂与单体反应, 使己内酰胺先形成N-酰化己内酰胺。这样可消除诱导 期,加速反应,缩短聚合周期。
O C (CH2)3 NH + RCOCl
O C
O (CH2)3 N C R + HCl
(4) 环硅氧烷的开环聚合
¾ 三、四元环烷烃由键角变化引起的环张力很大(三元环 60o,四元环90o);
¾ 五元环和七元环的键角接近正常键角(108o),环上因邻近氢 原子相互排斥形成构象张力,而易开环。
¾ 六元环烷烃呈椅式结构,键角变形为0,不能开环聚合。 ¾ 八元以上的环有跨环张力(属构象张力),即环上氢或取
代基处于拥挤状态造成相斥,其聚合能力较强。十一元以 上环的跨环张力消失,环较稳定,不易聚合。
− d[N] = ktr,M = CM d[M] kp + ktr,M 1 + CM
其中CM为向单体转移常数。
将上式积分,得:
[N]
=
[N]0
+
1
CM + CM
([M]0
−
[M])
[N]o 、(Xn)o为无向单体转移时的聚合物浓度和平均 聚合度。
向单体链转移时的平均聚合度分别为:
X n = [M] 0 − [M] [N]
¾ 其他六元的环酰胺、环酐都较易聚合。如:丙交酯开环 聚合成聚乳酸。
O
CH3
C
CH
O
O
CH
C
C H3
O
CH3
H [ OCH
C ]n O H
环上有取代基时对聚合不利,有大侧基的线性大分 子不稳定,易解聚成环。如四氢呋喃能聚合,2-甲基 四氢呋喃却不能聚合。
第章开环聚合
本章重点 (1)开环聚合的概念; (2)开环聚合的热力学和动力学特征; (3)哪些单体可以进行开环聚合? (4)了解常见的可进行开环聚合的单体及其聚合物。
课堂作业讲解: 1.环氧乙烷阴离子开环聚合可以获得高分子量的聚合物,而环 氧丙烷则只能得到分子量较低的聚合物,这是因为_________ 。
2.相比于环烷烃,杂环化合物从动力学上更易进行开环聚合, 这是因为_____________。
动力学因素:动力学上可行的开环方式和反应。
环烷烃的键极性小,不易受引发活性种进攻而开环。
杂环化合物中的杂原子易受引发活性种进攻并引发开 环,在动力学上比环烷烃更有利于开环聚合。
因此,绝大多数的开环聚合单体都是杂环化合物,包括 环醚、环缩醛、内酯、内酰胺、环胺、环硫醚、环酸酐等。
同类环单体的聚合反应活性与环大小密切相关: 3~4元环 > 7~11元环 > 5元环
+O
HO CH2CH2CH2CH2 O A-
三级氧鎓离子链增长活性中心
在四氢呋喃等活性较低环醚单体的聚合反应中,常加入少量 活泼三元环醚单体如环氧乙烷提高引发速率。此时引发反应首 先通过活泼单体形成二级或三级氧鎓离子活性种,再引发低活 性的单体聚合,此时活泼单体可看作是引发促进剂。
(2)链增长反应
链增长反应为单体的 O 对增长链的三级环氧鎓离子活性中 心的α- C的亲核进攻反应。以四氢呋喃的聚合为例:
环氧丙烷的阴离子开环聚合通常只能得到分子量较低的聚合物 (<6000),主要原因是聚合反应过程中向单体的链转移反应:
CH3
O
CH2 CH O- Na+ + CH3 CH CH2
CH3
O
CH2 CH OH + H2C CH CH2-Na+
第8章 开环聚合
O CH CH2
ktr.M
CH2
O CH OH + CH2 CH
CH3
CH2 Na
CH2
CH
CH2 O Na
•当存在向单体链转移时,单体消失速率为:
d[M] (k p k tr,M )[C][M] dt
由转移生成的聚合物链的速率为:
d[N] k tr,M [C][M ] dt 两式相除,得:
热稳定性较好的-OCH2CH2-基团,可阻止聚合物链进一步
分解。
nO
CH2O CH2O
CH2 CH2 CH2 + O
OH
(OCH2OCH2OCH2)nOCH2CH2OH
在聚甲醛中含有百分之几的-OCH2CH2-结构单元,即可 以达到热稳定的目的。
另一方面-OCH2CH2-结构单元在共聚物中的分布对聚甲
O + H+[Al(C2H5)3OH]-
ClCH2 CH2
ClCH2 CH2
(三级氧鎓离子活性中心)
b.链增长
ClCH2 CH2 H C O+[Al(C2H5)3OH]- + nO CH2Cl CH2Cl CH2 CH2Cl
C
CH2 CH2Cl CH2Cl
n-1
ClCH2 CH2
CH2 CH2Cl
开环聚合 目前,工业生产中大多数的高分子化合物是通过连锁
聚合和逐步聚合而制得的,但由开环聚合合成的高分子化
合物也为数不少,所以开环聚合同样是很重要的一种聚合 反应。 定义: 开环聚合反应是指环状单体在离子型催化剂的作用下,
经过开环、聚合转变成线型聚合物的一类反应。
反应 通式:
nR Z [R Z] n
经12 ~24h,可制得聚合物。其聚合反应简式可表示为
8.开环聚合
开 环 聚 合 Ring-Opening Polymerization
1/24
2/24
3/24
8.1 环烷烃开环聚合热力学
环的开环能力可用环张力初步判断。 影响环张力的三大因素:环的大小、环上取代基和构成环的 元素(碳环或杂环) 1)环大小的影响 不同大小环烷烃的热力学稳定性次序大致为: 3、4《5、7~11<12以上,6 实际九元以上的环较少,3、4>8>7、5 2)环上取代基的影响 环上取代基的存在不利于开环聚合。 有大侧基的线形大分子不稳定,易解聚成环。原因是环 上侧基间的距离大,斥力或内能小,比线形大分子更稳定。 小侧基环状低聚物和线形聚合物中分子内斥力相近,并 不影响聚合。
23/24
有机硅的主要工业产品有硅油、硅橡胶等。高分子量 线形聚硅氧烷进一步交联,为硅橡胶,低分子线型聚 硅氧烷或环状齐聚物的混合物为硅油。
24/24
4/24
5/24
6/24
7/24
8/24
9/24
10/24
(聚氧乙烯链段)
(R是C、H疏水基,X为连接元素,O、S、N等)
11/24
12/24
3
2
1
13/24
14/24
15/24
16/24
10-5~10-4
17/24
18/24
19/24Βιβλιοθήκη 20/2421/24
22/24
高分子化学8 开环聚合
+
+
+
2、环上取代基的影响 有大侧基的线性大分子不稳定,易解聚成环。
杂原子的影响:杂原子的存在能引起键能、键角、环张力 的变化,以致五、六元杂环的开环倾向有所变化。五元环 醚可以聚合,但是五元环内酯不能聚合,六元环醚和二氧 六环不能聚合,六元环酯能够聚合。
环烯如环戊烯、环辛烯等单环烯,环辛二烯、环辛四 烯等环多烯也能开环聚合,环烯开环聚合时,聚合物 保留双键,多数可作为橡胶使用。
单体
环氧化合物 环氧丁烷 四氢呋喃 噻丙环 噻丁环 吖丙啶 吖啶 环缩醛 环酯 环酰胺 ZCA 环烯烃
聚合类型
实例
阳离子、阴离子、配位阴离子 阳离子 阳离子 阳离子、阴离子、配位阴离子 阳离子、阴离子 阳离子 阳离子 阳离子 阳离子、阴离子、配位阴离子 阳离子、阴离子、水解聚合 阴离子 异位开环聚合
五元环,活性低,对引发剂和单体的纯度要求 比较高,PF5、SbF5、[Ph3C]+[SbCl6]-均可以 作为引发剂。
四氢呋喃主要聚合成分子量在2000-4000的端 羟基聚醚,俗称PTMG,是一种重要的聚氨酯 基础料,具有良好的低温柔顺性、高强度、耐 水解性、耐磨性。PTMG主要用来生产氨纶和 高档聚氨酯弹性体、皮革等。
单体与高分子链中O的亲核性之比随单体环的增大而增大。 三元环醚单体如环氧乙烷聚合链增长时:
OCH2CH2 O A-
+O
OCH2OCH2CH2 O A-
单体中sp3杂化的O转变为聚合物中sp2杂化的氧鎓离子,使键角张
力增大,单体与高分子链中O亲核性之比最小,不利于链增长。
由于高分子中所含醚基的亲核性更强,有利于向高分子的链 转移,生成环状低聚物。事实上通常的环氧乙烷阳离子聚合的主要 产物为1,4-二氧六环(80%~90%),因此环氧乙烷的阳离子开环聚 合对于合成线形聚合物并无实用价值。
高分子化学8-开环聚合
中心,所以可用阳离子引发开环聚合。
• 烯类单体的阳离子聚合活性种为碳正离子,其
活性高,在低温下,反应速率很快,还伴随有
许多副反应。
• 阳离子开环聚合的活性种常为氧鎓离子、氮正、
硫正及硅正离子等,其稳定性远大于碳正离子, 使阳离子开环聚合具有许多特点。
1.3,3’-双(氯亚甲基)丁氧环和THF的阳离子聚合
(3) 终止和转移反应
① 转移反应
聚合链的氧原子亲核进攻增长链活性中心 -碳原子:
(CH2)4
+O
(CH2)4O
(CH2)4 O(CH2)4 O(CH2)4 O+ A (CH2)4
+
O (CH2)4
A O
O(CH2)4O(CH2)4O(CH2)4
例:甲醇钠引发环氧乙烷聚合反应:
聚合速率表达式:
Rp k
app p
[ M ][ M ] k
app p
[CH 3ONa][ M ]
1. 环氧乙烷(EO)和环氧丙烷(PO)的阴离子聚合 (1) 聚合反应
例:甲醇钠引发环氧乙烷聚合反应:
在反应时间 t 时,聚合物的聚合度可由已经反 应的单体浓度除以引发剂的起始浓度[I]0得到:
高分子化学
Polymer Chemistry
第八章 开 环 聚 合
8.1 离子开环聚合
一、概
述
开环聚合:环状单体在某种引发剂作用下 开环,形成线形聚合物的过程。 环状单体:环烷烃、环醚、环缩醛、环酰 胺、环硅氧烷等。
已工业化的开环聚合:环氧乙烷、环氧 丙烷、三聚甲醛(POM)、己内酰胺(PA6)、3,3’-二(氯甲基)环丁醚(PCE)、 八甲基环四硅氧烷(SI)等。
高分子第八章+开环聚合
) [C][M ]
(5—24)
由转移生成的聚合物链的速率为:
d[N] dt k
tr, M
[C][M ]
(5—25)
两式相除,得:
d[N] d[M ] k tr, M k p k tr, M CM 1 CM
(5—26)
其中CM为向单体转移常数。
将式(5—26)积分,得:
[N] [N]
( I)
增长反应首先是活性较高的N—酰化内酰胺与内酰胺阴离 子反应,使N—酰化内酰胺开环。
O C (C H 2 ) 3 N M O C O (C H 2 ) 3 N C (C H 2 ) 5 M N + O C (C H 2 ) 5 N O C (C H 2 ) 5 NH2
O C (C H 2 ) 5 NH2
例如丙交酯开环聚合成聚乳酸。
CH3 CH O C O C O CH CH3 CH3 H [ OCH C ]n O H
环上有取代基时对聚合不利。如四氢呋喃能聚合,2-甲 基四氢呋喃却不能聚合。
6.2 工业上重要的开环聚合
5.5.2.1 环醚的开环聚合 醚是Lewis碱,故环醚一般可用阳离子引发剂引发开环聚 合。但三元环的张力较大,阴、阳离子聚合均可进行,为一 例外。 简单的环醚只有3、4、5元环能够聚合,复杂的环醚(环 内有多个醚键)较易聚合,如三聚甲醛。 工业上最重要的环醚聚合有:环氧乙烷、1,2—环氧丙烷 的阴离子开环聚合,3,3’—二(氯甲叉)丁氧环和三聚甲醛 的阳离子开环聚合等。
H 2O
H O C H 2O C H 2O C H 2
O C H 2O C H 2O H
三聚甲醛开环聚合的聚合上限温度较低,存在聚甲醛—甲 醛平衡现象,诱导期相当于产生平衡甲醛的时间,因此可以 通过添加适量甲醛来消除诱导期,减少聚合时间。
第八章-开环聚合
8.4 环醚的阳离子开环聚合
1)丁氧环(四元环醚)
在0º C或较低温度下,丁氧环经Lewis酸引发,易开环聚 合成聚氧化三亚甲基。但有应用价值的单体却是 3,3’-二氯亚 甲基丁氧环(丁氧环的衍生物,聚合产物俗称氯化聚醚), 机械强度比氟树脂好,可用作工程塑料。
2)四氢呋喃(Tetrahydrofuran)的阳离子开环聚合 四氢呋喃为五元环,环张力较小,对引发剂选择和单体 精制要求高。PF5为催化剂,分子量在30万左右。
两式相除:
[N]:聚合物链的浓度
k tr,M CM d[N] = = d[M] k p + k tr,M 1+ CM
CM:向单体转移常数
上式积分,得:
CM [N] = [N]0 + ([M]0 -[M]) 1+ CM
[N]0:无向单体转移时的聚合物链浓度
CM d[N] = d[M] 1+ CM
有、无向单体链转移时的平均聚合度分别为:
以 OP-10 [C8H17C6H4O(EO)10H] 为例,辛基酚起始剂提 供端基分子量为 189,10单元的环氧乙烷分子量 440,属于低 聚物,端基不能忽略。
Example
RX(EO)nH
改变疏水基 R、连接元素X、环氧烷烃种类及聚合度 n, 可衍生出上万种聚醚产品。起始剂有脂肪醇、烷基酚、脂肪 酸、胺类等,可形成多种聚醚型表面活性剂。 起始剂RXH
剂亲核或亲电进攻的位置,通常比环烷烃聚聚合。
聚合能力与环中杂原子性质有关。 如五元环中的四氢呋喃能够聚合,而 γ-丁氧内酯却不能 聚合。六元环醚不能聚合,如 1,4- 二氧六环,但相应的环酯 却都能聚合,如环戊内酯。
2)引发剂和动力学因素
杂环开环聚合的引发剂有离子型和分子型两类。
开环聚合
这是一个平衡反应,必须真空除去副产物BH, 使平衡向右移动。然后,内酰胺阴离子与单体 反应而开环,生成活泼的胺阴离子(II)。
(2)内酰胺阴离子活性种(I)与另一己内酰胺单 体分子反应,形成活泼的胺阴离子活性种(II):
O C (H2C)5 (I) N M HN O C (CH2)5
慢
O C (H2C)5 N C O (CH2)5 (II) (反应2) H N M
8.4环醚的阳离子开环聚合 (3、4、5元环)
8.4 环醚的阳离子开环聚合机理
有些环醚阳离子开环聚合具有活性聚合的特性,如活 性种寿命长,分子量分布窄,引发比增长速率快,所 谓快引发慢增长。但往往伴有链转移和解聚反应,使 分子量分布变宽;也有终止反应。结合四、五元环醚 阳离子开环聚合,介绍各基元反应的特征。 (1)链引发与活化 有许多种阳离子引发剂可使四、 五元环醚开环聚合。 ①质子酸和Lewis酸。如浓硫酸、三氟乙酸、氟磺酸、 三氟甲基磺酸等强质子酸(H+A-),以及BF3、PF5、 SnCl4、SbCl5等Lewis酸,都可用来引发环醚开环聚合。 • Lewis酸与微量共引发剂(如水、醇等)形成络合物, 而后转变成离子对(B+A-),提供质子或阳离子。有些 Lewis酸自身也能形成离子对。
M O N C (CH2)5 NH
(反应4)
(反应4)
增长反应首先是活性较高的N—酰化内酰胺与内 酰胺阴离子反应,使N—酰化内酰胺开环。
O C (CH2)3 N M O C (CH2)3 N O C (CH2)5 + O C (CH2)5 N O C (CH2)5 NH2
( III )
M N O C (CH2)5
胺阴离子(II)无共轭作用,较活泼,很快夺取 另一单体己内酰胺分子上的一个质子,生成二聚 体( III ),同时再生内酰胺阴离子(I)。
高分子化学 第八章_开环聚合
三元、四元、七元和八元杂环—开环聚合
五元杂环—环醚(四氢呋喃)、环酰胺能够聚合
环内酯(γ-丁氧内酯)不能聚合。
六元杂环—环内酯(环戊内酯)、环酰胺、环酐能聚合。
环醚(1,4-二氧六环、四氢吡喃)不能聚合
环烯—能开环
O
O
O
OO
结论: 3, 4 >> 5,711 > 6,12以上
8.1 开环聚合热力学
甲基的位阻效应,聚合热低(29 kJ/mol),因而聚合上限温度 很低(-31℃); 甲基的诱导效应,使羰基氧上的电荷密度增加,降低了活性种 的稳定性,对聚合不利。
乙醛高活性阳/阴离子引发剂,得低分子量产物; 醛上的氢被卤素原子取代,由于卤素的吸电子性,使氧上的 负电荷密度分散,活性种得到稳定,容易被弱碱引发阴离子聚 合。如三氯乙醛、三氟乙醛。
8.2 环醚的开环聚合
2、环氧丙烷的阴离子开环聚合
(1)聚合机理
2种开环方式:
H CH3 C CH2
O
CHCH2O-B+ OR CH3
主
CH2CHO-B+ CH3
副
β-C(CH2)原子空间位阻较小,易受亲核进攻。 两种开环方式最终产物的头-尾结构是相同的。
8.2 环醚的开环聚合
链转移—环氧丙烷分子中甲基上的氢原子容易被夺取而转移
8.2 环醚的开环聚合
2、四氢呋喃的阳离子开环聚合
四氢呋喃环张力较小,聚合活性较低 引发剂选择和单体精制要求高。PF5、 SbF5为催化剂。
PF5, THF
O
OCH2CH2CH2CH2 n
以PF5为催化剂,在30 ℃聚合6小时,分子量为30万左右; 以SbCl5作催化剂时,聚合速率和分子量要低的得多。 少量环氧乙烷可作四氢呋喃开环促进剂
开环聚合-2010
表示分子之间连接的几率,即 生成线型聚合物的几率
分子内连接的几率,即生成环状物 的几率,与分子链两端的距离成反 比
8.2 阴离子开环聚合
阴离子开环聚合的环状单体:环氧化合物、环内酯、 单体 环内酰胺、环脲和环硫醚等。 阴离子开环聚合的引发剂:烷氧基碱金属(NaOR、 引发剂 KOR、LiOR)、氢氧化物、氢化物、萘钠、芴衍生物 碱金属盐及叔胺等。 阴离子开环聚合的两种机理: 机理 • 环氧烷烃:由引发反应产生的阴离子与环状单体的 α-碳原子进行亲核加成而增长。环硫醚和环内酯 等属此类。 • 己内酰胺:阴离子开环聚合具有特殊的机理。
从热力学角度分析,取决于聚合自由焓的变化ΔG, 它与焓变ΔH 及熵变ΔS 值有关。
ΔG =ΔH - T ΔS
• 影响ΔG值的另一因素为熵变ΔS值。ΔS值可用 分子链 ( CH2 )n 两端进行分子内连接和分子间连 接的相对几率之差值来量度。
S2为一常数
Δ S = S2 - S1
S1值随n值增大而减少 ΔS值随n值增大而增大
R为疏水基,X为连接元素,H为活泼氢
起始剂(RXH): • 脂肪醇(ROH)、烷基酚(RC6H4OH) 脂肪酸(RCOOH)、胺类(RNH2) • 聚环氧丙烷:n > 15时为疏水基团
8.2.2 己内酰胺的阴离子开环聚合
己内酰胺是七元环,热力学上,有开环聚合倾向。 产物中线形聚合物和环状单体并存,构成平衡。 动力学上,己内酰胺可用酸、碱或水引发开环。 阳离子(酸)引发:转化率和分子量都不高,最高 分子量可以达到1-2万,工业上较少采用。 逐步聚合:采用水引发,在250-270℃的高温下 聚合,合成尼龙-6纤维。 阴离子(碱)引发:以碱金属或其衍生物引发,引 发由两步组成。
链增长
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(RCO)2O
O RC O [ CH2O ] n CH2 O
O CR
2. 与少量二氧五环共聚,在主链中引入 —OCH2CH2— 链 节,使聚甲醛降解直此即停止。称为共聚甲醛。
CH2O CH2CH2O CH2O CH2OH
19
3、环酰胺(cyclic amide) 的开环聚合 内酰胺4-12环都能聚合
R
Z +C
M * C:引发后生成的活性种,可以是
离子、中性分子
离子型引发剂:包括阴离子和阳离子; 分子型引发剂:水。 开环聚合动力学按其机理可用类似于连锁或逐步 聚合的方程表达。聚合过程常有聚合—解聚平衡。 10
三. 工业上重要的开环聚合
1、 环醚(cyclic ether)
简单的环醚中,常见有3、4、5元环可以开环聚合。
第八章 开 环 聚 合
(ring opening polymerization)
1
目 录
8.1 8.2 8.3 概述 杂环开环聚合热力学和动力学特征 工业上重要的开环聚合
2
8.1 概述
开环聚合 ——环状单体在引发剂作用下开环,形成线型聚合物。 反应通式:
[R Z] n
Z:杂原子(O、P、 N、S等)或官能团。
环上取代基对聚合都不利。
取代环比较难开环。 四氢呋喃可以开环聚合,2-甲基四氢呋喃不能。
8
1. 少量环烷烃可以开环聚合 2. 杂环烷烃比环烷烃更易开环聚合 3. 对于所有的环,取代基的存在不利聚合
9
开环聚合机理和动力学
可以用离子聚合引发剂或分子引发开环聚合。
Z:环状单体中的杂原子或进攻点,
环烷烃在热力学上的易开环程度为:
3,4 > 8 > 7,5。
除六元环外,环烷烃在热力学上都有开环可能。但实
际 环烷烃只有少数可以开环聚合,且产物分子量很低,无 经济价值。(动力学因素) 工业上很少用环烷烃作开环聚合的原料。
7
杂环中的杂原子提供了引发剂亲核或亲电进攻的 位置,在动力学上比环烷烃等容易开环。
24
链增长
O C (CH2)5 N H C (CH2)5 N M+ O C + (CH2)5 NH
O
O C ì ¿ (CH2)5 N O C
C (CH2)5 N H2 O
+
(CH2)5
N- M +
二聚体
25
O C (CH2)5 N - M+
O C + (CH2)5 N C (CH2)5 NH O
聚硅氧烷分子量较低时呈液态,称硅油,而高分子量 时呈橡胶类的高弹性,称硅橡胶。
28
阳离子聚合机理:与环醚阳离子开环聚合相似
强质子酸或Lewis酸可引发阳离子开环聚合。
29
H (BF3OH)
三聚甲醛
HOCH2OCH2OCH2
OCH2OCH2OH
18
存在聚甲醛—甲醛平衡现象,诱导期相当于产生平衡甲醛的时 间,因此可以通过添加适量甲醛来消除诱导期,减少聚合时间。
OCH2OCH2OCH2 OCH2OCH2
+
CH2O
降低聚甲醛解聚倾向的方法:
1. 聚合结束前加入酸酐类物质,使端羟基乙酰化,防止其 从端基开始解聚。称为均聚甲醛。
12
环氧化合物的阴离子开环聚合
引发剂:氢氧化物、烷氧基化合物等; 作用:制得重要的聚醚类非离子表面活性剂。
特点:无终止反应,具有活性聚合特征,加入
终止剂(如酚类)使链终止。
环氧乙烷(Ethylene oxide)聚合后加入环氧丙
烷会生成嵌段共聚物,是聚醚类表面活性剂的 重要品种。
13
以醇钠为引发剂为例,环氧化物开环聚合的机理如下: 链引发:
O C (CH2)5 NH - + + B M
碱金属衍生物
O C (CH2)5 (I) N- M + + BH
23
O C (CH2)5 (I) N - M+ +
O C (CH2)5 NH ý Â
O C (CH2)5 N H C (CH2)5 N M+
O
存在“诱导期”
( II )
二聚体胺负离子(Ⅱ)
26
内酰胺负离子开环聚合的特点:
1、活性种特殊,不是自由基、正离子
或负离子,而是N-酰化了的环酰胺键。
2 、增长反应不是单体加到活性链上,
O C (CH2)5 N - M+
而是单体负离子 ( 又称活化单体)加到活
性链上。
27
5、环硅氧烷
最常见的环硅氧烷单体八甲基环四硅氧烷 (D4):
H 3C CH3 Si O CH 3 O Si n H3 C CH 3 Si O O Si H3 C H 3C CH 3 CH3 H ( O Si ) n CH3
3元环醚由于其环张力大,阳离子、阴离子、配位聚 合都可以。4、5元环醚只能进行阳离子聚合。
R O
环氧化物
O O
环丙醚
O
四氢呋喃
O
O
三聚甲醛
11
环氧化物的开环聚合
3元环醚即环氧化物(epoxide)
阳离子聚合:副反应多,工业上不常用; 配位聚合:环氧化物的配位阴离子聚合可得到分子
量很高的聚合物。
环氧丙烷用适当的引发剂还可制得光学活性聚合物。
已工业化的有环氧乙烷、环氧丙烷、环氧氯丙烷、四氢
呋喃、己内酰胺、三聚甲醛等。
5
二、环烷烃开环聚合活性
从热力学角度分析,取决于过程的自由能变化ΔG,它 与焓变ΔH及熵变ΔS值有关
ΔG =ΔH -TΔS
而ΔH 的大小则与环张力相关
6
环张力与环的大小(元数)、构成环的元素(碳环或
杂环)、环上取代基有关。 一般键的变形程度愈大,环的张力能和聚合热也愈大, 聚合自由焓负的更厉害,则环的稳定性愈低,愈易开环。
诱导效应,使羰基氧上的电子云密度增加,降低 了活性种的稳定性,对聚合不利。 丙酮不能聚合 两个甲基导致的位阻效应和诱导效应。
17
三聚甲醛的阳离子开环聚合
O H2C O CH2 CH2 O O H2C O CH2 CH2 O HOCH2OCH2OCH2 A CH2 HOCH2OCH2OCH2 O A H2O CH2 O O CH2 OCH2OCH2OCH2 A CH2 O O CH2 CH2 O A H
O C MC (CH2)5 N C (CH2)5 N H
+
O C ¿ ì (CH2)5 MN C (CH2)5 N C (CH2)5 NH
+
O
O C + (CH2)5
O
(CH2)5
N
NH
O
O C ì ¿ (CH2)5 N
O
O C
C (CH2)5 N H O
C (CH2)5 N H O
+
(CH2)5
N- M +
(2)氨基酸本身逐步缩聚形成线型长链分子
COOH + H2N COHN + H2O
21
(3) 末端氨基氮原子向己内酰胺单体的羰基进攻, 导致内酰胺的开环聚合,生成长链分子
O C HOOC(CH2)5NH2 + (CH2)5
O C NH2 + (CH2)5 NH NHOC(CH2)5NH2
NH
HOOC(CH2)5NHOC(CH2)5NH2
M +A- + CH2CH2 O
链增长:
RO CH2 CH2 O M + CH2 O
A CH2CH2O-M+
CH2
RO [CH2 CH2 O] nCH2 CH2 O M
14
15
(2)四氢呋喃的阳离子开环聚合
引发促进剂
O H A + CH2 CH2
CH2 HO A CH2
THF
HOCH2CH2 O A
THF
PTHF
THF是五元环,环张力较小,聚合活性较低。
16
2、 羰基化合物和缩醛 的阳离子开环聚合
R' R
C O
δ
δ
R' C O R
R' C R O
甲醛:既可阴离子聚合又可阳离子聚合。但其精制 困难,往往先制成预聚物三聚甲醛,再开环聚合。 乙醛以上的高级醛类都不能聚合,
由于烷基的位阻效应,聚合热降低。同时甲基的
nR
Z
3
一、开环聚合的特征 ⒈ 聚合过程中只发生环的破裂, 没有新的化学键
和基团产生。
⒉ 与连锁聚合相比较
不同点:开环聚合的推动力是单体的环张力。
相同点:聚合物与单体的元素组成相同。
⒊ 与逐步聚合反应相比较
不同点:聚合过程中并无小分子缩出。 相同点:制备杂链聚合物。
4
开环聚合的单体:
环烷烃、环醚、环酯、环酰胺、环硅氧烷、环硫化物等。
环酰胺(内酰胺)可以用碱、酸、水引发开环聚合。
•
由水引发聚合为尼龙—6,属逐步聚合。
• 由阳离子聚合,转化率和分子量不高,无工业价 值。 • 由Na、NaOH等引发,属阴离子聚合,引发后可直 接浇入模内聚合,有铸型尼龙之称。 20
4、逐步开环聚合 (1) 己内酰胺水解开环成氨基酸
O C (CH2)5 NH + H2O HOOC(CH2)5NH2
己内酰胺开环增长(3)的速率较氨基酸自缩聚(2) 的速率大一个数量级以上。因此氨基酸的自缩聚只占总聚 合反应的百分之几,主要由开环聚合(3)形成聚合物。 22
环酰胺的阴离子开环聚合
链引发反应
O C (CH2)5 NH + M