人教版七年级数学下册实数知识点归纳及常见考题。-

合集下载

人教版七年级实数知识点总结和压轴题练习(附答案解析)

人教版七年级实数知识点总结和压轴题练习(附答案解析)

初一实数所有知识点总结和常考题知识点:一、实数的概念及分类1、实数的分类正有理数有理数 零 有限小数和无限循环小数实数 负有理数正无理数无理数 无限不循环小数负无理数整数包括正整数、零、负整数。

正整数又叫自然数。

正整数、零、负整数、正分数、负分数统称为有理数。

2、无理数在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:(1)开方开不尽的数,如32,7等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等; (3)有特定结构的数,如0.1010010001…等;二、实数的倒数、相反数和绝对值1、相反数实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a 与b 互为相反数,则有a+b=0,a=—b ,反之亦成立。

2、绝对值一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0。

零的绝对值时它本身,也可看成它的相反数,若|a|=a ,则a≥0;若|a|=-a ,则a≤0。

正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小。

3、倒数如果a 与b 互为倒数,则有ab=1,反之亦成立。

倒数等于本身的数是1和-1。

零没有倒数。

4. 实数与数轴上点的关系:每一个无理数都可以用数轴上的一个点表示出来,数轴上的点有些表示有理数,有些表示无理数,实数与数轴上的点就是一一对应的,即每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都是表示一个实数。

三、平方根、算数平方根和立方根1、平方根(1)平方根的定义:如果一个数x 的平方等于a ,那么这个数x 就叫做a 的平方根.即:如果a x 2,那么x 叫做a 的平方根.(2)开平方的定义:求一个数的平方根的运算,叫做开平方.开平方运算的被开方数必须是非负数才有意义。

(3)平方与开平方互为逆运算:±3的平方等于9,9的平方根是±3(4)一个正数有两个平方根,即正数进行开平方运算有两个结果;一个负数没有平方根,即负数不能进行开平方运算(5)符号:正数a 的正的平方根可用a 表示,a 也是a 的算术平方根;正数a 的负的平方根可用-a 表示.(6)a x =2 <—> a x ±=a 是x 的平方 x 的平方是ax 是a 的平方根 a 的平方根是x2、算术平方根(1)算术平方根的定义: 一般地,如果一个正数x 的平方等于a ,即a x =2,那么这个正数x 叫做a 的算术平方根.a 的算术平方根记为a ,读作“根号a”,a 叫做被开方数.规定:0的算术平方根是0.也就是,在等式a x =2 (x≥0)中,规定a x =。

七年级下册人教版数学第六章实数知识要点及经典题型

七年级下册人教版数学第六章实数知识要点及经典题型

七年级下册人教版数学第六章实数知识要点及经典题型
实数知识要点:
1. 整数与有理数的关系:整数包含了有理数的全部内容,即整数是有理数的一种特殊形式。

2. 无理数:不能表示为两个整数的比的数,无理数是一类不是有理数的实数。

3. 实数的分类:实数可以分为有理数和无理数两种。

4. 实数的四则运算法则:实数的加减、乘除运算满足相应的运算法则。

5. 整式的运算:根据四则运算法则,对整式进行加减乘除运算。

6. 实数的比较:对于任意两个实数a和b,有以下三种情况:
a>b,a=b,a<b。

7. 绝对值的定义:实数a的绝对值表示为|a|,定义为a的值和
0的距离,即|a|=a(a≥0),|a|=-a(a<0)。

经典题型:
例1:计算下列各式的值:a) -3+5; b) 4-(-7); c) -2×3.
解答:
a) -3+5 = 5-3 = 2
b) 4-(-7) = 4+7 = 11
c) -2×3 = -6
例2:比较大小:a) -5和-3;b) -3和4-7.
解答:
a) -5<-3
b) -3<4-7,即-3<-3,两个数比较大小结果相同。

例3:计算下列各式的绝对值:a) |5|; b) |-7|; c) |-3+4|.
解答:
a) |5| = 5
b) |-7| = 7
c) |-3+4| = |1| = 1。

部编人教版七年级数学下册第六章实数(知识点归纳+达标检测)

部编人教版七年级数学下册第六章实数(知识点归纳+达标检测)

第六章实数(知识点归纳+达标检测)6.1.1平方根【我会学】自学教材40页,回答问题:1. 一般地,如果一个___ 数x的平方等于a,即2x=a,那么这个______叫做a的_________.a的算术平方根记为a,读作“根号a”,a叫做被开方数.规定:______的算术平方根是0. 记作0=2.由以上定义可知如果2x=a,那么x就叫a的算术平方根吗?判断下列语句是否正确?①5是25的算术平方根()②-6是36的算术平方根()③0.01是0.1的算术平方根()④-5是-25的算术平方根()3.3的算术平方根可表示为,4的算术平方根可表示为,你还能表示出那些数的算术平方根?写在下面,和同座交流一下4.试一试:你能根据等式:212=144说出144的算术平方根是多少吗?并用等式表示出来.(巩固学生自学的成果,加深学生对算术平方根的定义的理解,加强对表示方法的训练)【我们来交流】思考:-4有算术算术平方根吗?为什么?总结:1.正数有的算术平方根0的算术平方根是负数【检测】1.求下列各数的算术平方根:(1)100;(2) ;(3) 0.0001 ;⑷ 0;2.课本p41练习和习题6.1第1、2题3.配套练习册。

【小结与反思】1.算术平方根的定义、表示方法和性质。

2.求一个非负数的算术平方根。

3.a 的双重非负性.6.1.2平方根【我会学】1、算术平方根的意义及表示方法。

2、说出下列各数的算术平方根。

100 0049.0 25 42 25【我们来交流】某同学用一张正方形纸片折小船,但他手头上没有现成的正方形纸片,于是他撕下一张作业本上的纸,按照如图,沿AE 对折使点B 落在点F 的位置上,•再把多余部分FECD 剪下,如果他事先量得矩形ABCD 的面积为90cm 2,又测量剪下的多余的矩形纸片的面积为F E D CB A40cm2.•请根据上述条件算出剪出的正方形纸片的边长是多少厘米.(到底它为多少呢?它是一个小数吗?你有什么办法确定这个值呢?由这一系列问题进入这节课要讨论的问题.)【活动1】怎样用两个面积为1的正方形拼成一个面积为2的大正方形动手画一画,若确实不会,则学生间进行交流。

人教版七年级数学下册实数知识点归纳及常见考题。

人教版七年级数学下册实数知识点归纳及常见考题。

实数【知识要点】1.算术平方根:正数a 的正的平方根叫做a 的算术平方根,记作“a ”。

2. 如果x2=a ,则x 叫做a 的平方根,记作“±a ”(a 称为被开方数)。

3. 正数的平方根有两个,它们互为相反数;0的平方根是0;负数没有平方根。

4. 平方根和算术平方根的区别与联系:区别:正数的平方根有两个,而它的算术平方根只有一个。

联系:(1)被开方数必须都为非负数;(2)正数的负平方根是它的算术平方根的相反数,根据它的算术平方根可以立即写出它的负平方根。

(3)0的算术平方根与平方根同为0。

5. 如果x 3=a ,则x 叫做a 的立方根,记作“3a ”(a 称为被开方数)。

6. 正数有一个正的立方根;0的立方根是0;负数有一个负的立方根。

7. 求一个数的平方根(立方根)的运算叫开平方(开立方)。

8. 立方根与平方根的区别:一个数只有一个立方根,并且符号与这个数一致;只有正数和0有平方根,负数没有平方根,正数的平方根有2个,并且互为相反数,0的平方根只有一个且为0.9. 一般来说,被开放数扩大(或缩小)n 倍,算术平方根扩大(或缩小)n 倍,例如502500,525==.10.平方表:(自行完成) 12=62= 112= 162= 212= 22=72= 122= 172= 222= 32=82= 132= 182= 232= 42=92= 142= 192= 242= 52= 102= 152= 202= 252= 题型规律总结:1、平方根是其本身的数是0;算术平方根是其本身的数是0和1;立方根是其本身的数是0和±1。

2、每一个正数都有两个互为相反数的平方根,其中正的那个是算术平方根;任何一个数都有唯一一个立方根,这个立方根的符号与原数相同。

3a a ≥0a a ≥0。

4、公式:⑴a )2=a (a ≥0)3a -=3a (a 取任何数)。

5、区分a 2=a (a ≥0),与 2a =a6.非负数的重要性质:若几个非负数之和等于0,则每一个非负数都为0(此性质应用很广,务必掌握)。

七年级下册实数知识点总结及常见问题

七年级下册实数知识点总结及常见问题

七年级下册实数知识点总结及常见问题一、知识点总结1. 实数的定义:实数是指有理数和无理数的总称。

有理数包括整数、分数和小数,而无理数指不能表示为有理数的数。

2. 实数的分类:- 正数:大于零的实数,可以表示为有限小数或无限循环小数。

- 负数:小于零的实数,可以表示为有限小数或无限循环小数。

- 零:不大于零也不小于零的实数,可以表示为有限小数。

3. 实数的比较:可以利用大小关系符号(>、<、≥、≤、=)来比较两个实数的大小。

4. 实数的运算:- 加法:实数的加法满足交换律和结合律,可以利用数轴理解实数的加法。

- 减法:实数的减法可以转化为加法运算,即a - b = a + (-b)。

- 乘法:实数的乘法满足交换律和结合律,可以利用数轴理解实数的乘法。

- 除法:实数的除法可以转化为乘法运算,即a ÷b = a ×(1/b)。

5. 实数的绝对值:实数a的绝对值是其到零点的距离,表示为|a|。

非负实数的绝对值即为其本身,而负数的绝对值为其相反数。

6. 实数的分数形式和小数形式相互转化:分数形式可以转化为小数形式,小数形式也可以转化为分数形式。

二、常见问题1. 如何判断一个实数是正数、负数还是零?- 如果一个实数大于零,则它是正数。

- 如果一个实数小于零,则它是负数。

- 如果一个实数等于零,则它是零。

2. 实数的加法和减法有哪些特点?- 加法满足交换律和结合律,即a + b = b + a,(a + b) + c = a + (b + c)。

- 减法可以转化为加法,即a - b = a + (-b)。

3. 实数的乘法和除法有哪些特点?- 乘法满足交换律和结合律,即a × b = b × a,(a × b) × c = a ×(b × c)。

- 除法可以转化为乘法,即a ÷ b = a × (1/b)。

七年级下册实数知识点概括及常见题目

七年级下册实数知识点概括及常见题目

七年级下册实数知识点概括及常见题目
一、知识点概括
1.实数的概念
实数是包括有理数和无理数的数的集合,它们可以表示在数轴
上的位置。

实数具有加法、减法、乘法和除法等运算规则。

2.有理数
有理数是可以表示为两个整数之比的数,包括正整数、负整数、零、正分数和负分数。

有理数之间可以进行加减乘除运算,还可以
比较大小。

3.无理数
无理数是不能表示为两个整数之比的数,它们的十进制表示是
无限不循环的小数。

无理数包括根号2、根号3等。

4.实数的分布
实数可以在数轴上表示出来,正数在右侧,负数在左侧。

实数
之间可以进行大小比较。

二、常见题目
以下是七年级下册实数部分常见的题目类型:
1.判断题:给出一个数,判断它是有理数还是无理数。

2.计算运算结果:计算两个实数的和、差、积、商。

3.比较大小:给出两个实数,判断它们的大小关系。

4.补全数轴:给出数轴上的几个点,补全数轴上其它的实数点。

5.排序实数:给出几个实数,按大小顺序排列它们。

6.选择题:根据题目描述选择符合条件的实数。

以上是七年级下册实数知识点的概括及常见题目类型。

通过熟
练掌握这些知识点和题目类型,可以提高对实数的理解和应用能力。

七年级下册实数知识点总结与常见题

七年级下册实数知识点总结与常见题
联系:(1)被开方数必须都为非负数;(2)正数的负平方根是它的算术
平方根的相
反数,根据它的算术平方根可以立即写出它的负平方根。(3)0的算术平
方根与平
方根同为0。
5.如果x3=a,则x叫做a的立方根,记作“3a”
(a称为被开方数)。
6.正数有一个正的立方根;0的立方根是0;负数有一个负的立方根。
7.求一个数的平方根(立方根)的运算叫开平方(开立方)。
七年级下册第六章实数
实数
1.算术平方根:正数a的正的平方根 叫做a的算术平方根,记作”“。
2a,则x叫做a的平方根,记作“土a”(a称为被开方
.如果x数)。
3正数的平方根有两个,它们互为相0的平方根是0;负数没有平方
.反数;根。
4.平方根和算术平方根的区别与联系:
区别:正数的平方根有两个,而它的算术平方根只有一个且为正。
8.立方根与平方根的区别:
一个数只有一个立方根,并且符号与这个数一致;只
有正数和0有平方根,负数没
有平方根,正数的平方根有2个,并且互为相反数,
0的平方根只有一个且为0.
9.实数:有理数和无理数统称为实数
有理数:有限小数或无限循环小数(分数又可以转化成无限循环小 数)
无理数:无限不循环小数(常见无理
⑴.a2( >⑵
6.非负数的重要性质:若几个非负数 之和等于
a a
0,则每一个非负数 都为
0(此性 质
握用很广,务必掌
1.下列语句中,正确的是()
A—个实数的平方根有两个,它们互为相反数
B.负数没有立方根
C・一个实数的立方根不是正数就是负数
D.立方根是这个数本身的数共有三个
2.下列说法正确的是()

人教版七年级数学下册实数知识点归纳及常见考题。[2]

人教版七年级数学下册实数知识点归纳及常见考题。[2]

人教版七年级数学下册实数知识点归纳及常见考题。

(word版可编辑修改) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(人教版七年级数学下册实数知识点归纳及常见考题。

(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为人教版七年级数学下册实数知识点归纳及常见考题。

(word版可编辑修改)的全部内容。

实数【知识要点】1。

算术平方根:正数a的正的平方根叫做a的算术平方根,记作“错误!".2. 如果x2=a,则x叫做a的平方根,记作“±错误!"(a称为被开方数)。

3. 正数的平方根有两个,它们互为相反数;0的平方根是0;负数没有平方根.4. 平方根和算术平方根的区别与联系:区别:正数的平方根有两个,而它的算术平方根只有一个。

联系:(1)被开方数必须都为非负数;(2)正数的负平方根是它的算术平方根的相反数,根据它的算术平方根可以立即写出它的负平方根.(3)0的算术平方根与平方根同为0.5。

如果x3=a,则x叫做a的立方根,记作“错误!"(a称为被开方数)。

6. 正数有一个正的立方根;0的立方根是0;负数有一个负的立方根.7. 求一个数的平方根(立方根)的运算叫开平方(开立方).8. 立方根与平方根的区别:一个数只有一个立方根,并且符号与这个数一致;只有正数和0有平方根,负数没有平方根,正数的平方根有2个,并且互为相反数,0的平方根只有一个且为0。

9. 一般来说,被开放数扩大(或缩小)n倍,算术平方根扩大(或缩小)n倍,例如=.25=50,5250010。

平方表:(自行完成)题型规律总结:1、平方根是其本身的数是0;算术平方根是其本身的数是0和1;立方根是其本身的数是0和±1。

初一数学七下实数所有知识点总结和常考题型练习题

初一数学七下实数所有知识点总结和常考题型练习题

实数知识点一、实数的倒数、相反数和绝对值1、相反数只有符号不同的两个数叫做互为相反数(零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a 与b 互为相反数,则有a+b=0,a=—b ,反之亦成立。

2、绝对值一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0。

零的绝对值时它本身,也可看成它的相反数,若|a|=a ,则a ≥0;若|a|=-a ,则a ≤0。

正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小。

3、倒数如果a 与b 互为倒数,则有ab=1,反之亦成立。

倒数等于本身的数是1和-1。

零没有倒数。

二、平方根、算数平方根和立方根1、平方根如果一个数的平方等于a ,那么这个数就叫做a 的平方根(或二次方跟)。

一个数有两个平方根,他们互为相反数;零的平方根是零;负数没有平方根。

正数a 的平方根记做“a ±”。

2、算术平方根正数a 的正的平方根叫做a 的算术平方根,记作“a ”。

正数和零的算术平方根都只有一个,零的算术平方根是零。

a (a ≥0) 0≥a ==a a 2 ;注意a 的双重非负性:-a (a <0) a ≥03、立方根如果一个数的立方等于a ,那么这个数就叫做a 的立方根(或a 的三次方根)。

一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。

注意:33a a -=-,这说明三次根号内的负号可以移到根号外面。

三、科学记数法和近似数1、有效数字一个近似数四舍五入到哪一位,就说它精确到哪一位,这时,从左边第一个不是零的数字起到右边精确的数位止的所有数字,都叫做这个数的有效数字。

2、科学记数法把一个数写做na 10⨯±的形式,其中101<≤a ,n 是整数,这种记数法叫做科学记数法。

四、实数大小的比较1、数轴规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。

初一数学七下实数所有知识点总结和常考题型练习题

初一数学七下实数所有知识点总结和常考题型练习题

初一数学七下实数所有知识点总结和常考题型练习题实数知识点一、实数的倒数、相反数和绝对值1、相反数只有符号不同的两个数叫做互为相反数(零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a与b互为相反数,则有a+b=0,a=—b,反之亦成立。

2、绝对值一个数的绝对值就是表示这个数的点与原点的距离,|a|?0。

零的绝对值时它本身,也可看成它的相反数,若|a|=a,则a?0;若|a|=-a,则a?0。

正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小。

3、倒数如果a与b互为倒数,则有ab=1,反之亦成立。

倒数等于本身的数是1和-1。

零没有倒数。

二、平方根、算数平方根和立方根1、平方根如果一个数的平方等于a,那么这个数就叫做a的平方根(或二次方跟)。

一个数有两个平方根,他们互为相反数;零的平方根是零;负数没有平方根。

,a正数a的平方根记做“”。

2、算术平方根a正数a的正的平方根叫做a的算术平方根,记作“”。

正数和零的算术平方根都只有一个,零的算术平方根是零。

a,0 (0) aa,2a,a,a ;注意的双重非负性:-(<0) 0 aaa,3、立方根如果一个数的立方等于a,那么这个数就叫做a 的立方根(或a 的三次方根)。

一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。

33,a,,a注意:,这说明三次根号内的负号可以移到根号外面。

三、科学记数法和近似数1、有效数字一个近似数四舍五入到哪一位,就说它精确到哪一位,这时,从左边第一个不是零的数字起到右边精确的数位止的所有数字,都叫做这个数的有效数字。

2、科学记数法n1,a,10,a,10把一个数写做的形式,其中,n是整数,这种记数法叫做科学记数法。

四、实数大小的比较1、数轴规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。

2、实数大小比较的几种常用方法(1)数轴比较:在数轴上表示的两个数,右边的数总比左边的数大。

人教版七年级数学下册第六章实数知识点汇总

人教版七年级数学下册第六章实数知识点汇总

人教版七年级数学下册第六章实数知识点汇总【知识点一】实数的分类 1、按定义分类: 2.按性质符号分类:注:0既不是正数也不是负数.【知识点二】实数的相关概念1.相反数(1)代数意义:只有符号不同的两个数,我们说其中一个是另一个的相反数.0的相反数是0.(2)几何意义:在数轴上原点的两侧,与原点距离相等的两个点表示的两个数互为相反数,或数轴上,互为相反数的两个数所对应的点关于原点对称.(3)互为相反数的两个数之和等于0.a、b互为相反数a+b=0.2.绝对值|a|≥0.3.倒数(1)0没有倒数(2)乘积是1的两个数互为倒数.a、b互为倒数.▲▲平方根【知识要点】1.算术平方根:正数a的正的平方根叫做a的算术平方根,记作“a”。

2. 如果x2=a,则x叫做a的平方根,记作“±a”(a称为被开方数)。

3. 正数的平方根有两个,它们互为相反数;0的平方根是0;负数没有平方根。

4. 平方根和算术平方根的区别与联系:区别:正数的平方根有两个,而它的算术平方根只有一个。

联系:(1)被开方数必须都为非负数;(2)正数的负平方根是它的算术平方根的相反数,根据它的算术平方根可以立即写出它的负平方根。

(3)0的算术平方根与平方根同为0。

5. 如果x3=a,则x叫做a的立方根,记作“3a”(a称为被开方数)。

6. 正数有一个正的立方根;0的立方根是0;负数有一个负的立方根。

7. 求一个数的平方根(立方根)的运算叫开平方(开立方)。

8.立方根与平方根的区别:一个数只有一个立方根,并且符号与这个数一致;只有正数和0有平方根,负数没有平方根,正数的平方根有2个,并且互为相反数,0的平方根只有一个且为0.9. 一般来说,被开放数扩大(或缩小)n倍,算术平方根扩大(或缩小)n倍,例如502500,525==.10.平方表:(自行完成)____________________________________________________________________________________________________题型规律总结:1、平方根是其本身的数是0;算术平方根是其本身的数是0和1;立方根是其本身的数是0和±1。

人教版七年级教学的数学下册实数知识总结点总结归纳以及常见考题

人教版七年级教学的数学下册实数知识总结点总结归纳以及常见考题

七年级数学(下)指导资料(4)【知识重点】1.算术平方根:正数a的正的平方根叫做a的算术平方根,记作“a”。

假如x2=a,则x叫做a的平方根,记作“±a”(a称为被开方数)。

正数的平方根有两个,它们互为相反数;0的平方根是0;负数没有平方根。

平方根和算术平方根的差别与联系:差别:正数的平方根有两个,而它的算术平方根只有一个。

联系:(1)被开方数一定都为非负数;(2)正数的负平方根是它的算术平方根的相反数,依据它的算术平方根能够立刻写出它的负平方根。

(3)0的算术平方根与平方根同为0。

假如x3=a,则x叫做a的立方根,记作“3a”(a称为被开方数)。

正数有一个正的立方根;0的立方根是0;负数有一个负的立方根。

求一个数的平方根(立方根)的运算叫开平方(开立方)。

立方根与平方根的差别:一个数只有一个立方根,而且符号与这个数一致;只有正数和0有平方根,负数没有平方根,正数的平方根有2个,而且互为相反数,0的平方根只有一个且为0.一般来说,被开放数扩大(或减小)n倍,算术平方根扩大(或减小)n倍,比如255,250050.10.平方表:(自行达成)12=62=112=162=212=22=72=122=172=222=32=82=132=182=232=42=92=142=192=242=52=102=152=202=252=题型规律总结:1、平方根是其自己的数是0;算术平方根是其自己的2、每一个正数都有两个互为相反数的平方根,此中正的那个是算术平方根;任何一个数都有独一一个立方根,这个立方根的符号与原数同样。

3、a自己为非负数,有非负性,即a≥0;a有意义的条件是a≥0。

4、公式:⑴(a)2=a(a≥0);⑵3a=3a(a取任何数)。

5、划分(a)2=a(a≥0),与a2=a非负数的重要性质:若几个非负数之和等于0,则每一个非负数都为0(此性质应用很广,务必掌握)。

【典型例题】1.以下语句中,正确的选项是(D).一个实数的平方根有两个,它们互为相反数.负数没有立方根C.一个实数的立方根不是正数就是负数.立方根是这个数自己的数共有三个2.以下说法正确的选项是(C)A.-2是(-2)2的算术平方根B.3是-9的算术平方根C.16的平方根是±4D.27的立方根是±33.已知实数x,y知足x22+(y+1)=0,则x-y等于解答:依据题意得,x-2=0,y+1=0,解得x=2,y=-1,因此,x-y=2-(-1)=2+1=3.数是0和1;立方根是其自己的数是0和±1。

(完整word版)初一数学七下实数所有知识点总结和常考题型练习题,文档

(完整word版)初一数学七下实数所有知识点总结和常考题型练习题,文档

实数知识点一、实数的倒数、相反数和绝对值1、相反数只有符号不同样的两个数叫做互为相反数〔零的相反数是零〕,从数轴上看,互为相反数的两个数所对应的点关于原点对称,若是 a 与 b 互为相反数,那么有 a+b=0, a=— b,反之亦成立。

2、绝对值一个数的绝对值就是表示这个数的点与原点的距离,|a| ≥0。

零的绝对值时它自己,也可看作它的相反数,假设 |a|=a ,那么 a≥ 0;假设 |a|=-a ,那么 a≤ 0。

正数大于零,负数小于零,正数大于所有负数,两个负数,绝对值大的反而小。

3、倒数若是 a 与 b 互为倒数,那么有ab=1,反之亦成立。

倒数等于自己的数是 1 和 -1 。

零没有倒数。

二、平方根、算数平方根和立方根1、平方根若是一个数的平方等于a,那么这个数就叫做 a 的平方根〔或二次方跟〕。

一个数有两个平方根,他们互为相反数;零的平方根是零;负数没有平方根。

正数 a 的平方根记做“ a 〞。

2、算术平方根正数 a 的正的平方根叫做 a 的算术平方根,记作“ a 〞。

正数和零的算术平方根都只有一个,零的算术平方根是零。

a 〔 a0〕a0a 2a;注意 a 的双重非负性:- a〔a <0〕a03、立方根若是一个数的立方等于a,那么这个数就叫做 a 的立方根〔或 a 的三次方根〕。

一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。

注意:3a 3 a,这说明三次根号内的负号可以移到根号外面。

三、科学记数法和近似数1、有效数字一个近似数四舍五入到哪一位,就说它精确到哪一位,这时,从左边第一个不是零的数字起到右边精确的数位止的所有数字,都叫做这个数的有效数字。

2、科学记数法把一个数写做 a 10n的形式,其中1a10 ,n是整数,这种记数法叫做科学记数法。

四、实数大小的比较1、数轴规定了原点、正方向和单位长度的直线叫做数轴〔画数轴时,要注意上述规定的三要素缺一不可以〕。

2、实数大小比较的几种常用方法(1〕数轴比较:在数轴上表示的两个数,右边的数总比左边的数大。

(完整版)人教版七年级数学下册第六章实数知识点汇总

(完整版)人教版七年级数学下册第六章实数知识点汇总
1.算术平方根:正数 a 的正的平方根叫做 a 的算术平方根,记作“ a”。
2. 如果 x2=a,则 x 叫做 a 的平方根,记作“± a”
(a 称为被开方数)。
4. 平方根和算术平方根的区别与联系: 区别:正数的平方根有两个,而它的算术平方根只有一个。
联系:(1)被开方数必须都为非负数;(2)正数的负平方根是它的 算术平方根的相反数,根据它的算术平方根可以立即写出它的负平方 根。(3)0 的算术平方根与平方根同为 0。 5. 如果 x3=a,则 x 叫做 a 的立方根,记作“ a” (a 称为被开方数)。 6. 正数有一个正的立方根;0 的立方根是 0;负数有一个负的立方根。
立方根是 2,④ 3 82 4 。其中正确的有
( )A、1 个
B、2 个
C、3 个 D、4 个
7.易混淆的三个数
(1) a2 (2) ( a )2 (3) 3 a3
2. 下列说法正确的是( )
综合演练一、填空题
A.-2 是(-2)2 的算术平方根 B.3 是-9 的算术平方根 C16 的平方根 是±4 D 27 的立方根是±3
D. 92 9
4、 3 4 = ____________5、若 m、n 互为相反数,则 m 5 n =_________
3.下列说法中正确的是( ) A.9 的平方根是 3 B. 16 的算术平方根是±2 C. 16 的算术平方根
6、若 a 2 a ,则 a______07、若 3x 7 有意义,则 x 的取值范
三、利用平方根解下列方程.
(1)(2x-1)2-169=0; (2)4(3x+1)2-1=0;
3、若 x 1 (3x y 1)2 0 ,求 5x y 2 的值。
The shortest way to do many things is to only one thin

人教版七年级数学下册第六章实数知识点汇总

人教版七年级数学下册第六章实数知识点汇总

人教版七年级数学下册第六章实数知识点汇总【知识点一】实数的分类1、按定义分类:2、按性质符号分类: 注:0既不就是正数也不就是负数、【知识点二】实数的相关概念1、相反数(1)代数意义:只有符号不同的两个数,我们说其中一个就是另一个的相反数.0的相反数就是0、(2)几何意义:在数轴上原点的两侧,与原点距离相等的两个点表示的两个数互为相反数,或数轴上,互为相反数的两个数所对应的点关于原点对称、(3)互为相反数的两个数之与等于0、a、b互为相反数a+b=0、2、绝对值|a|≥0.3、倒数(1)0没有倒数(2)乘积就是1的两个数互为倒数.a、b互为倒数、▲▲平方根【知识要点】1、算术平方根:正数a的正的平方根叫做a的算术平方根,记作“a”。

2、如果x2=a,则x叫做a的平方根,记作“±a”(a称为被开方数)。

3、正数的平方根有两个,它们互为相反数;0的平方根就是0;负数没有平方根。

4、平方根与算术平方根的区别与联系:区别:正数的平方根有两个,而它的算术平方根只有一个。

联系:(1)被开方数必须都为非负数;(2)正数的负平方根就是它的算术平方根的相反数,根据它的算术平方根可以立即写出它的负平方根。

(3)0的算术平方根与平方根同为0。

5、如果x3=a,则x叫做a的立方根,记作“3a”(a称为被开方数)。

6、正数有一个正的立方根;0的立方根就是0;负数有一个负的立方根。

7、求一个数的平方根(立方根)的运算叫开平方(开立方)。

8、立方根与平方根的区别:一个数只有一个立方根,并且符号与这个数一致;只有正数与0有平方根,负数没有平方根,正数的平方根有2个,并且互为相反数,0的平方根只有一个且为0、9、一般来说,被开放数扩大(或缩小)n倍,算术平方根扩大(或缩小)n 倍,例如502500,525==、10、平方表:(自行完成)题型规律总结:1、平方根就是其本身的数就是0;算术平方根就是其本身的数就是0与1;立方根就是其本身的数就是0与±1。

七年级数学下册实数知识点汇总及经典练习题

七年级数学下册实数知识点汇总及经典练习题

)(无限不循环小数负有理数正有理数无理数⎩⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧--⎩⎨⎧---)()32,21()32,21()()3,2,1()3,2,1,0(无限循环小数有限小数整数负分数正分数小数分数负整数自然数整数有理数、、 ⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧实数2015年实数知识点汇总及经典练习题 一,知识点归纳1.实数的分类(1)按实数的定义分类:(2)按实数的正负分类:⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧⎩⎨⎧负无理数负分数负整数负有理数负实数负数)零(既不是正数也不是正无理数正分数正整数正有理数正实数实数2.实数与数轴的关系每一个实数都可以用数轴上的一个点表示;反之,数轴上每一个点都表示一个实数,即数轴上的点与实数是一一对应关系.3..算术平方根:一般地,如果一个正数x 的平方等于a ,即x 2=a ,那么正数x 叫做a 的算术平方根,记作a 。

0的算术平方根为0;从定义可知,只有当a ≥0时,a 才有算术平方根。

4.平方根:一般地,如果一个数x 的平方根等于a ,即x 2=a ,那么数x 就叫做a 的平方根。

正数有两个平方根(一正一负)它们互为相反数;0只有一个平方根,就是它本身;负数没有平方根。

5.正数的立方根是正数;0的立方根是0;负数的立方根是负数。

6.())0,0(0,0>≥=≥≥=⨯b a b a b a b a ab b a二【典型例题】例1若a 为实数,下列代数式中,一定是负数的是( )A. -a 2B. -( a +1)2C.-2aD.-(a -+1)例2 实数a 在数轴上的位置如图所示,化简:2)2(1-+-a a =例3 如图所示,数轴上A 、B 两点分别表示实数1,5,点B 关于点A 的对称点为C ,则点C 所表示的实数为( ) A.5-2 B. 2-5 C. 5-3 D.3-5例4 已知a 、b 是有理数,且满足(a -2)2+3-b =0,则a b 的值为三【能力训练】1.已知52-=a ,则a 的相反数是 ; a 的倒数是 ;若在数轴上表示a ,它在原点的 侧(填“左”或“右”);且到原点的距离是 .2. 10在两个连续整数a 和b 之间, a ﹤10﹤b ,那么a 、b 的值分别是3. ,,,,已知:24552455154415448338333223222222⨯=+⨯=+⨯=+⨯=+ …,若符合前面式子的规律,则。

七年级下册实数基础知识总结及常见练习

七年级下册实数基础知识总结及常见练习

七年级下册实数基础知识总结及常见练习一、实数的概念和性质1. 实数的定义实数是包括有理数和无理数在内的数的集合。

2. 实数的分类实数可以分为有理数和无理数两类。

有理数是可以表示为两个整数之比的数,无理数是不能表示为两个整数之比的数。

3. 实数的性质- 实数满足传递性,即若a < b且b < c,则a < c。

- 实数满足加法和乘法的结合律、交换律和分配律。

- 实数满足相反数存在性,即对于任意实数a,都存在一个实数-b,使得a + (-b) = 0。

- 实数满足乘法逆元存在性,即对于任意非零实数a,都存在一个实数1/a,使得a × (1/a) = 1。

二、实数的运算1. 实数的加法和减法实数的加法满足交换律和结合律。

两个实数相加得到的实数称为它们的和。

减法可以看作是加法的逆运算。

2. 实数的乘法和除法实数的乘法满足交换律和结合律。

两个实数相乘得到的实数称为它们的积。

除法可以看作是乘法的逆运算。

三、实数的比较与排序1. 实数的大小比较实数可以通过比较大小来确定它们的相对大小关系。

常用的比较符号有小于号(<)、大于号(>)、小于等于号(≤)和大于等于号(≥)。

2. 实数的排序实数可以通过大小比较来进行排序。

从小到大排列实数可以用升序表示,从大到小排列实数可以用降序表示。

四、实数的常见练1. 给出下列实数的有理数和无理数表示形式:π,√5,-3,0.25。

2. 计算下列实数的和:-2.5 +3.7。

3. 计算下列实数的差:4.2 - (-1.8)。

4. 计算下列实数的积:0.6 × (-2.5)。

5. 计算下列实数的商:-1.5 ÷ 0.5。

五、总结本文总结了七年级下册实数基础知识,包括实数的定义和分类、实数的性质、实数的运算、实数的比较与排序,并提供了常见练习题供练习。

掌握实数的基础知识对于数学的学习和应用具有重要意义。

七年级下册实数知识点总结及常见题

七年级下册实数知识点总结及常见题

实数1.算术平方根:正数a 的正的平方根叫做a 的算术平方根,记作“a ”。

2. 如果a x =2,则x 叫做a 的平方根,记作“±a ” (a 称为被开方数)。

3. 正数的平方根有两个,它们互为相反数;0的平方根是0;负数没有平方根。

4. 平方根和算术平方根的区别与联系:区别:正数的平方根有两个,而它的算术平方根只有一个且为正。

联系:(1)被开方数必须都为非负数;(2)正数的负平方根是它的算术平方根的相反数,根据它的算术平方根可以立即写出它的负平方根。

(3)0的算术平方根与平方根同为0。

5. 如果x 3=a ,则x 叫做a 的立方根,记作“a ” (a 称为被开方数)。

6. 正数有一个正的立方根;0的立方根是0;负数有一个负的立方根。

7. 求一个数的平方根(立方根)的运算叫开平方(开立方)。

8. 立方根与平方根的区别:一个数只有一个立方根,并且符号与这个数一致;只有正数和0有平方根,负数没有平方根,正数的平方根有2个,并且互为相反数,0的平方根只有一个且为0. 9. 实数:有理数和无理数统称为实数有理数:有限小数或无限循环小数(分数又可以转化成无限循环小数) 无理数:无限不循环小数(常见无理数有2,3,π等) 10. 数轴上的点和实数一一对应。

题型规律总结:1、平方根是其本身的数是0;算术平方根是其本身的数是0和1;立方根是其本身的数是0和±1。

2、每一个正数都有两个互为相反数的平方根,其中正的那个是算术平方根;任何一个数都有唯一一个立方根,这个立方根的符号与原数相同。

3a ≥0。

4、公式:⑴2=a (a ≥0)a 取任何数)。

5、区分2=a (a ≥0),与2a =a6.非负数的重要性质:若几个非负数之和等于0,则每一个非负数都为0(此性质应用很广,务必掌握)。

【典型例题】1.下列语句中,正确的是( )A .一个实数的平方根有两个,它们互为相反数B .负数没有立方根C .一个实数的立方根不是正数就是负数D .立方根是这个数本身的数共有三个 2. 下列说法正确的是( ) A .-2是2)2(-的算术平方根 B .3是-9的算术平方根 C .16的平方根是±4 D .27的立方根是±3 3. 已知实数x ,y 满足2=0,则x-y 等于4.求下列各式的值(1)81±;(2)16-;(3)259;(4)2)4(-5. 已知实数x ,y 满足2=0,则x-y 等于6. (1)64的立方根是4(2)下列说法中:①3±都是27的立方根,②y y =33,③64的立方根是2, ④()4832±=±。

七年级数学下册实数知识点归纳及常见考题

七年级数学下册实数知识点归纳及常见考题

七年级数学(下)辅导资料(4)【知识要点】1.算术平方根:正数a 的正的平方根叫做a 的算术平方根,记作“”。

2.如果x2=a ,则x 叫做a 的平方根,记作“±” (a 称为被开方数)。

3.正数的平方根有两个,它们互为相反数;0的平方根是0;负数没有平方根。

4.平方根和算术平方根的区别与联系:区别:正数的平方根有两个,而它的算术平方根只有一个。

联系:(1)被开方数必须都为非负数;(2)正数的负平方根是它的算术平方根的相反数,根据它的算术平方根可以立即写出它的负平方根。

(3)0的算术平方根与平方根同为0。

5.如果x 3=a ,则x 叫做a 的立方根,记作“” (a 称为被开方数)。

6.正数有一个正的立方根;0的立方根是0;负数有一个负的立方根。

7.求一个数的平方根(立方根)的运算叫开平方(开立方)。

8.立方根与平方根的区别:一个数只有一个立方根,并且符号与这个数一致;只有正数和0有平方根,负数没有平方根,正数的平方根有2个,并且互为相反数,0的平方根只有一个且为0.9.一般来说,被开放数扩大(或缩小)n 倍,算术平方根扩大(或缩小)n 倍,例如502500,525==.10.平方表:(自行完成)题型规律总结:1、平方根是其本身的数是0;算术平方根是其本身的数是0和1;立方根是其本身的数是0和±1。

2、每一个正数都有两个互为相反数的平方根,其中正的那个是算术平方根;任何一个数都有唯一一个立方根,这个立方根的符号与原数相同。

3、0;意义的条件是a ≥0。

4、公式:⑴(2=a (a ≥0)a 取任何数)。

5、区分2=a (a ≥0),与2a =a 6.非负数的重要性质:若几个非负数之和等于0,则每一个非负数都为0(此性质应用很广,务必掌握)。

【典型例题】1.下列语句中,正确的是( D )A .一个实数的平方根有两个,它们互为相反数B .负数没有立方根C .一个实数的立方根不是正数就是负数D .立方根是这个数本身的数共有三个 2.下列说法正确的是( C ) A .-2是(-2)2的算术平方根 B .3是-9的算术平方根C .16的平方根是±4D .27的立方根是±3 3.已知实数x ,y 2=0,则x-y 等于解答:根据题意得,x-2=0,y+1=0,解得x=2,y=-1,所以,x-y=2-(-1)=2+1=3.4.求下列各式的值(1)81±;(2)16-;(3)259;(4)2)4(-解答:(1)因为8192=,所以±81=±9.(2)因为1642=,所以-416-=.(3)因为253⎪⎭⎫ ⎝⎛=259,所以259=53.(4)因为22)4(4-=,所以4)4(2=-.5.已知实数x ,y2=0,则x-y 等于解答:根据题意得,x-2=0,y+1=0,解得x=2,y=-1,所以,x-y=2-(-1)=2+1=3.6.计算(1)64的立方根是???4????? (2)下列说法中:①3±都是27的立方根,②y y =33,③64的立方根是2,④()4832±=±。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
8.立方根与平方根的区别:
一个数只有一个立方根,并且符号与这个数一致;只有正数和0有平方根,负数没有平方根,正数的平方根有2个,并且互为相反数,0的平方根只有一个且为0.
9.一般来说,被开放数扩大(或缩小) 倍,算术平方根扩大(或缩小) 倍,例如 .
10.平方表:(自行完成)
12=
62=
112=
162=
A.-3 B.3 C.±3 D.81
2.下列计算正确的是( )
A. =±2 B. =9
C. D.
3.下列说法中正确的是( )
A.9的平方根是3 B. 的算术平方根是±2
C. 的算术平方根是4 D. 的平方根是±2
4. 64的平方根是( )
A.±8 B.±4 C.±2 D.±
5. 4的平方的倒数的算术平方根是( )
(1)(2x-1)2-169=0;
(2)4(3x+1)2-1=0;
四、解答题
1、求 的平方根和算术平方根。
2、计算 的值
3、若 ,求 的值。
4、若a、b、c满足 ,求代数式 的值。
5、已知 ,求7(x+y)-20的立方根。
6、阅读下列材料,然后回答问题。
在进行二次根式去处时,我们有时会碰上如 , , 一样的式子,其实我们还可以将其进一步化简:
A.4 B. C.- D.
6.下列结论正确的是( )
A B
C D
7.以下语句及写成式子正确的是( )
A、7是49的算术平方根,即
B、7是 的平方根,即
C、 是49的平方根,即
D、 是49的平方根,即
8.下列语句中正确的是( )
A、 的平方根是 B、 的平方根是
C、 的算术平方根是 D、 的算术平方根是
A.一个实数的平方根有两个,它们互为相反数
B.负数没有立方根
C.一个实数的立方根不是正数就是负数
D.立方根是这个数本身的数共有三个
2.下列说法正确的是( C )
A.-2是(-2)2的算术平方根
B.3是-9的算术平方根
C.16的平方根是±4
D.27的立方根是±3
3.已知实数x,y满足 +(y+1)2=0,则x-y等于
212=
22=
72=
122=
172=
222=
32=
82=
132=
182=
232=
42=
92=
142=
192=
242=
52=
102=
152=
202=
252=
题型规律总结:
1、平方根是其本身的数是0;算术平方根是其本身的数是0和1;立方根是其本身的数是0和±1。
2、每一个正数都有两个互为相反数的平方根,其中正的那个是算术平方根;任何一个数都有唯一一个立方根,这个立方根的符号与原数相同。
综合演练
一、填空题
1、()2的平方根是
2、若 =25, =3,则a+b=
3、已知一个正数的两个平方根分别是2a﹣2和a﹣4,则a的值是
4、 =____________
5、若m、n互为相反数,则 =_________
6、若 ,则a______0
7、若 有意义,则x的取值范围是
8、16的平方根是±4”用数学式子表示为
七年级数学(Байду номын сангаас)辅导资料(4)
【知识要点】
1.算术平方根:正数a的正的平方根叫做a的算术平方根,记作“ ”。
2. 如果x2=a,则x叫做a的平方根,记作“± ”
(a称为被开方数)。
3. 正数的平方根有两个,它们互为相反数;0的平方根是0;负数没有平方根。
4.平方根和算术平方根的区别与联系:
区别:正数的平方根有两个,而它的算术平方根只有一个。
9、大于- ,小于 的整数有______个。
10、一个正数x的两个平方根分别是a+2和a-4,则a=_____,x=_____。
11、当 时, 有意义。
12、当 时, 有意义。
13、当 时, 有意义。
14、当 时,式子 有意义。
15、若 有意义,则 能取的最小整数为
二、选择题
1. 9的算术平方根是( )
3、 本身为非负数,有非负性,即 ≥0; 有意义的条件是a≥0。
4、公式:⑴( )2=a(a≥0);⑵ = (a取任何数)。
5、区分( )2=a(a≥0),与 =
6.非负数的重要性质:若几个非负数之和等于0,则每一个非负数都为0(此性质应用很广,务必掌握)。
【典型例题】
1.下列语句中,正确的是( D)
= ;(一)
= (二)
= = (三)
以上这种化简的步骤叫做分母有理化。
还可以用以下方法化简:
= (四)
(1)请用不同的方法化简 :
参照(三)式得 =__________________;
参照(四)式得 =___________________。
(2)化简:
9.下列说法:(1) 是9的平方根;(2)9的平方根是 ;(3)3是9的平方根;(4)9的平方根是3,其中正确的有( )
A.3个 B.2个C.1个 D.4个
10.下列语句中正确的是( )
A、任意算术平方根是正数
B、只有正数才有算术平方根
C、∵3的平方是9,∴9的平方根是3
D、 是1的平方根
三、利用平方根解下列方程.
解答:根据题意得,x-2=0,y+1=0,
解得x=2,y=-1,
所以,x-y=2-(-1)=2+1=3.
6.计算
(1)64的立方根是4
(2)下列说法中:① 都是27的立方根,② ,③ 的立方根是2,④ 。其中正确的有(B)
A、1个 B、2个 C、3个 D、4个
7.易混淆的三个数(自行分析它们)
(1) (2) (3)
解答:根据题意得,x-2=0,y+1=0,
解得x=2,y=-1,
所以,x-y=2-(-1)=2+1=3.
4.求下列各式的值
(1) ;(2) ;(3) ;(4)
解答:(1)因为 ,所以± =±9.
(2)因为 ,所以- .
(3)因为 = ,所以 = .
(4)因为 ,所以 .
5.已知实数x,y满足 +(y+1)2=0,则x-y等于
联系:(1)被开方数必须都为非负数;(2)正数的负平方根是它的算术平方根的相反数,根据它的算术平方根可以立即写出它的负平方根。(3)0的算术平方根与平方根同为0。
5. 如果x3=a,则x叫做a的立方根,记作“ ”
(a称为被开方数)。
6. 正数有一个正的立方根;0的立方根是0;负数有一个负的立方根。
7. 求一个数的平方根(立方根)的运算叫开平方(开立方)。
相关文档
最新文档