工程数学教案12行列式的性质与计算
行列式知识点
行列式知识点行列式是线性代数中的重要概念之一,广泛应用于数学、物理、工程和计算机科学等领域。
本文将介绍行列式的基本概念、性质和计算方法,帮助读者更好地理解和应用行列式知识。
一、行列式的定义行列式是一个与矩阵相关的数值。
对于一个n阶方阵A,它的行列式表示为det(A),其中n表示方阵的阶数。
行列式的计算涉及到矩阵的元素和排列的概念,下面将详细介绍。
二、行列式的性质1. 行列式的对角线规则:对于一个n阶方阵A,行列式det(A)等于主对角线元素相乘的积减去次对角线元素相乘的积。
2. 行列式的性质之一:交换行(列)位置,行列式的值不变。
3. 行列式的性质之二:若行(列)中有两行(列)元素成比例,行列式的值为0。
4. 行列式的性质之三:行列式的某一行(列)乘以一个数k,等于行列式的值乘以k。
三、行列式的计算方法1. 二阶和三阶行列式的计算:对于二阶行列式A,可以用交叉相乘法计算,即ad-bc。
对于三阶行列式A,可以用Sarrus法则计算。
2. 高阶行列式的计算:对于n阶行列式A,可以利用拉普拉斯展开定理进行计算。
具体步骤是选择一行(列)作为展开行(列),将行列式展开为以该行(列)元素为首的n个代数余子式的乘积之和。
四、行列式的应用1. 线性方程组的解:行列式可以用于求解线性方程组的解。
若系数矩阵的行列式不为0,则方程组有唯一解;若行列式为0,则方程组无解或有无穷解。
2. 矩阵的逆:若一个n阶方阵A的行列式不为0,则矩阵A可逆,且其逆矩阵A^{-1}的元素可以用A的伴随矩阵元素和行列式的倒数表示。
3. 坐标变换:在几何学中,行列式可以用于坐标变换。
例如,二维平面上坐标变换时,坐标的旋转、平移和缩放可以用行列式进行表示。
五、总结本文介绍了行列式的基本概念、性质和计算方法,并提供了行列式在线性方程组、矩阵逆和坐标变换中的应用。
行列式作为线性代数中的基础知识,对于深入理解和应用相关领域的知识具有重要作用。
通过学习和掌握行列式的知识点,读者可以更好地理解相关的数学和科学问题,并灵活运用行列式进行问题求解和分析。
行列式的定义计算方法
行列式的定义计算方法行列式是线性代数中一个重要的概念,用于描述线性方程组的解的性质。
行列式广泛应用于数学、物理、工程等领域,具有重要的理论和实际价值。
本文将详细介绍行列式的定义和计算方法,并通过实例加以说明。
行列式是线性代数中独特的一个概念,它起源于19世纪初,由日本数学家关孝和引入并发展起来。
行列式在线性代数中具有非常重要的地位,它与线性方程组的解有密切的关联。
掌握行列式的定义和计算方法,对于理解线性代数的相关概念和解决实际问题具有重要的意义。
一、行列式的定义行列式是一个方阵的一个标量值,它可以用来判断矩阵的很多性质和计算线性方程组的解。
对于一个n阶矩阵A=(a_ij),它的行列式记作det(A),其中a_ij表示在矩阵A中第i行、第j列的元素。
二、行列式的计算方法1. 二阶行列式的计算:对于一个2x2的矩阵A=(a_11 a_12; a_21 a_22),它的行列式计算公式为:det(A) = a_11 * a_22 - a_12 * a_212. 三阶行列式的计算:对于一个3x3的矩阵A=(a_11 a_12 a_13; a_21 a_22 a_23; a_31 a_32 a_33),它的行列式计算公式为:det(A) = a_11 * a_22 * a_33 + a_12 * a_23 * a_31 + a_13 * a_21 * a_32- a_31 * a_22 * a_13 - a_32 * a_23 * a_11 - a_33 * a_21 * a_123. 高阶行列式的计算:对于高于三阶的行列式,我们通常使用拉普拉斯展开法来计算。
选择行或列,然后对该行或列的元素依次乘以其代数余子式,再按正负号加和,即可得到行列式的值。
【举例说明】为了更好地理解行列式的计算方法,我们通过一个实例来进行说明。
考虑一个3x3的矩阵A=(1 2 3; 4 5 6; 7 8 9),我们将按照上述的计算方法来求解其行列式值。
行列式定义性质与计算
二阶行列式是所有位于对角线上的元素和它们不相邻的元素的 总和。
计算方法
用代数余子式展开,然后进行简单的代数运算。
例子
对于二阶行列式
二阶行列式的计算方法
``` |ab| |cd|
二阶行列式的计算方法
```
其值为 a*d - b*c。
三阶行列式的计算方法
01
02
定义
计算方法
三阶行列式是所有位于对角线上的元 素和它们不相邻的元素的总和,共有 6个项,每个项都是不同行不同列的 三个元素的乘积。
矩阵除法中行列式的应用
总结词
矩阵除法中,行列式可以帮助我们确定可 逆矩阵的逆矩阵。
VS
详细描述
在矩阵除法中,我们经常需要求出可逆矩 阵的逆矩阵。这时,行列式可以帮助我们 确定逆矩阵。具体来说,对于一个可逆矩 阵A,其行列式值|A|不为0,这意味着A 存在逆矩阵。通过使用行列式,我们可以 轻松地找到A的逆矩阵。
n阶行列式定义
01
n阶行列式是由n行n列组成的矩阵, 其值由其元素的代数余子式决定。
02
n阶行列式的一般形式为: D=a11a22...ann=(1)^t(P)i=1n(ai1j1+ai2j2+...+ainjn)j 1j2...jn(P)i=1n(ai1j1+ai2j2+...+ainj n)j1j2...jn其中t为P的逆序数,P为排 列。
解法
通过将方程组转化为行列式形式,可以求解未知数 的值。
步骤
将方程组转化为行列式形式后,根据行列式的性质 ,通过展开行列式得到未知数的值。
三阶线性方程组的解法
定义
三阶线性方程组是由三个方程组成的,每个方 程中包含未知数的三阶线性项和常数项。
§12行列式的性质与计算
§1.2 行列式的性质与计算行列式是线性代数中的基本概念之一,它是一种特殊的方阵,由一个方阵中的所有元素按照一定规则构成。
行列式具有一些重要的性质和计算方法,以下是关于行列式的性质与计算的介绍。
一、行列式的性质1.行列式的行和列具有相同的独立性。
即对于一个n阶行列式,它的行和列都是n个独立的元素,可以独立进行变换,而不影响其他元素的位置。
2.行列式的行和列具有相同的代数余子式。
即对于一个n阶行列式,它的行代数余子式和列代数余子式都是n阶行列式,可以通过伴随矩阵的方式求得。
3.行列式的行和列具有相同的转置矩阵。
即对于一个n阶行列式,它的行转置矩阵和列转置矩阵都是n阶矩阵,可以通过转置矩阵的方式求得。
4.行列式的行和列具有相同的逆矩阵。
即对于一个n阶行列式,它的行逆矩阵和列逆矩阵都是n阶矩阵,可以通过逆矩阵的方式求得。
5.行列式的行和列具有相同的特征值。
即对于一个n阶行列式,它的行特征值和列特征值都是n个独立的特征值,可以通过特征多项式的方式求得。
二、行列式的计算1.按照定义计算。
行列式的定义是一个由方阵中的元素按照一定规则构成的多项式,可以按照定义直接计算。
2.化简计算。
行列式中的元素可以进行化简和约分,使得计算更加简便。
3.公式计算。
行列式有一些常用的公式,可以通过这些公式进行计算。
4.软件计算。
现在有很多数学软件可以用来计算行列式,例如MATLAB、Mathematica等等。
三、特殊行列式的计算1.二阶行列式的计算。
二阶行列式只有两个元素,可以通过交叉相乘的方式计算。
2.三阶行列式的计算。
三阶行列式有六个元素,可以按照展开式的公式进行计算,也可以通过软件计算。
3.n阶行列式的计算。
对于n阶行列式,可以使用Laplace展开式进行计算,也可以使用软件进行计算。
四、行列式的应用1.在解线性方程组中的应用。
通过求解线性方程组的系数矩阵和常数向量,可以得到方程组的解。
而系数矩阵就是一个n阶行列式,因此行列式在解线性方程组中有着重要的应用。
线性代数行列式的性质与计算
线性代数行列式的性质与计算线性代数中的行列式是一种非常重要的数学工具,它在各个领域的数学和物理问题中都具有广泛的应用和重要性。
行列式是一个数,它与矩阵的元素有关,在许多情况下可以通过一些算法进行计算。
一、行列式的性质1.行列式有可加性:若A为n阶方阵,有两列完全相同,则行列式的值为0;若A为n阶方阵,交换两列,行列式的值变号。
2.行列式有因子约束:若A的其中一行或其中一列的元素是两个数之和,则A的行列式等于这两个数的和的行列式之和。
3.行列式有数乘的性质:若将A的其中一行或其中一列的元素都乘以k,则A的行列式等于k乘以这个行列式。
4.行列式对其中一行与另一行的代换变号,对其中一列与另一列的代换变号,换行、换列对行列式无影响。
5.方阵A与其转置矩阵A'行列式相等,即,A,=,A'。
6.若A为可逆的方阵,则,A,≠0;若A的其中一行全为0,则,A,=0。
二、行列式的计算1.二阶行列式的计算:设A为二阶方阵。
2.三阶行列式的计算:设A为三阶方阵a11a12a1A=,a21a22a23a31a32a33.高阶行列式的计算:a)拉普拉斯展开法:以行或列为基准进行展开,逐步减小行列式的阶数,直至计算到二阶行列式。
b)三角形矩阵法:若A为上(下)三角矩阵,则A的行列式等于对角元素的乘积。
c)伴随矩阵法:设A为n阶方阵,A的伴随矩阵的转置矩阵为A*,则,A,=,A*,=A*A^-1d)特征值法:设A的特征值为λ1,λ2,…,λn,则,A,=λ1λ2…λn.e)克拉默法则:若Ax=b为线性方程组,其中A为n阶方阵,且,A,≠0,则方程组有唯一解x=A^-1b.总之,行列式作为一种数学工具,在线性代数中具有重要的地位和作用。
它不仅可以帮助我们判断矩阵的可逆性,还可以求解线性方程组、计算矩阵的秩、判断矩阵的相似性等。
行列式的性质和计算方法可以帮助我们更好地理解和应用线性代数的相关知识。
1.2 行列式的性质与计算
n
nDT
n a~kl A~kl n
n a~kl (1)kl M~ kl
l 1 k1
l 1 k1
nn
nn
al k
( 1)k l
M
T lk
al k (1)kl Ml k
l 1 k1
l 1 k1
nn
alk Alk nD ,
l 1 k1
由归纳假设
DT D . 即性质对于 n 阶行列式也成立。
6
§1.2 行列式的性质与计算
第 三、行列式的三个基本操作及其性质
一 章
1. 三个基本操作
2. 相应的三个性质
行 列
性质1
将行列式的某一行(列)中所有的元素 k 倍,则行列式
式 P8 性质2 的值 k 倍,即
a11 a12 a1n
a11 a12 a1n
kai1 kai2 kain k ai1 ai2 ain .
式 175 715
6 6 2 6 6 2 .
3 58 538
9
§1.2 行列式的性质与计算
第 性质2 交换行列式中的两行(列), 行列式的值反号.
一 章
证明 (利用数学归纳法证明) 对于 2 阶行列式, 结论显然成立;
假设对于 n 1 阶行列式结论成立,下证对于 n 阶行列式
行
列
结论也成立。(注意此时 n 3)
§1.2 行列式的性质与计算
第
一
a11 a1n
章
行
ai1 ain
第i行
列 式
ai1 Aj1 ain Ajn
,
ai1 ain
相同 第 j行
an1 ann
当 i j 时, ai1 Aj1 ai2 Aj2 ain Ajn 0, (i j).
行列式的性质及求解方法
行列式的性质及求解方法行列式是线性代数中的一个重要概念,具有广泛的应用领域,例如矩阵求逆、线性方程组的解法、空间向量的叉积等。
在本文中,我们将探讨行列式的性质及其求解方法。
一、行列式的定义及性质1.1 行列式的定义对于一个$n$阶方阵$A=[a_{ij}]$,定义它的行列式为:$$\begin{vmatrix}a_{11} & a_{12} & \cdots & a_{1n} \\a_{21} & a_{22} & \cdots & a_{2n} \\\vdots & \vdots & \ddots & \vdots \\a_{n1} & a_{n2} & \cdots & a_{nn}\\\end{vmatrix}=\sum_{\sigma \in S_n}(-1)^{\mathrm{sgn}(\sigma)}a_{1\sigma(1)}a_{2\sigma(2)}\cdotsa_{n\sigma(n)}$$其中,$\sigma$是$n$个元素的全排列,$S_n$表示$n$个元素的置换群,$\mathrm{sgn}(\sigma)$表示$\sigma$的符号,即$(-1)^k$,其中$k$为$\sigma$的逆序数。
1.2 行列式的性质- 行列式的值不变性行列式的值只与矩阵的元素有关,而与矩阵的行列变换或线性组合无关。
- 互换矩阵的两行或两列,行列式变号将矩阵的两行(列)互换,则该行列式的值取相反数。
- 矩阵的某一行(列)乘以一个数$k$,行列式的值乘以$k$将矩阵的某一行(列)乘以一个数$k$,则该行列式的值乘以$k$。
- 矩阵的某一行(列)加上另一行(列)的k倍,行列式不变将矩阵的某一行(列)加上另一行(列)的k倍,行列式的值不变。
- 方阵的行列式等于其转置矩阵的行列式$$\begin{vmatrix}a_{11} & a_{12} & \cdots & a_{1n} \\a_{21} & a_{22} & \cdots & a_{2n} \\\vdots & \vdots & \ddots & \vdots \\a_{n1} & a_{n2} & \cdots & a_{nn}\\\end{vmatrix}=\begin{vmatrix}a_{11} & a_{21} & \cdots & a_{n1} \\a_{12} & a_{22} & \cdots & a_{n2} \\\vdots & \vdots & \ddots & \vdots \\a_{1n} & a_{2n} & \cdots & a_{nn}\\\end{vmatrix}$$二、行列式的求解方法2.1 按定义计算法按照上述定义,计算行列式涉及到全排列的遍历与逆序数的计算,这种方法虽然理论上可行,但计算量较大,不适用于较大的矩阵。
12行列式的性质与计算1111
a11 a12 a13
4a11 2a11 3a12 a13
D a21 a22 a23 1, D1 4a21 2a21 3a22 a23 ,
a31 a32 a33
4a31 2a31 3a32 a33
那么D1=( ) (A) 8 (B) -12 (C) 24 (D)-24
性质5: 把行列式的某一行(列)的各元素乘以同一 数然后加到另一行 (列)对应的元素上去,行列 式不变.
x+1+…+n 2 3 n
x+ x x 0 0
x+ x 0 x 0
x+ x 0 0 x
x 00
(
x
n(n 2
1)
)
0
x
0
0 0x n1
xn1( x n(n 1)). 2
a b bb b a bb 例4: 计算n 阶行列式 D b b a b b b ba
例如:
a11 a1i a1 j a1n
a21 a2i k a2 j a2 j
an1 ani anj anj
a11
ci
kc j
a21
an1
(a1i ka1 j ) a1 j
(a2i ka2 j ) a2 j
(ani kanj ) anj
按第1列展开,并把每列的公因子 ( xi x1 ) 提出, 就有
1 11
( x2 x1 )( x3 x1 )( xn x1 )
x2
x3 xn
行列式的性质与计算
1b bb
a (n 1)b
ab
ab 0
0 ab
a (n 1)b(a b)n1.
a0 1 1
1
1 a1 0
0
例 求行列式的值 D 1 0 a2
0
100
an
解
D
c1
(
1 a1
)c2
(
1 an
)cn1
a0
1 a1
0
0
0
1 an
1 a1 0
0
1 0 a2
0
1 0 0
an
(a0
3
2 2
0 0 0 1 0 0 0 2 2 2
1 1 2 3 1
0 2 1 5 3 r5 2r3 0 0 1 1 2
0 0 0 1 0 4
0 0 0 4 6
1 1 2 3 1
0 2 1 5 3
r5 4r4 0 0 1 1 2 2 1 6 12.
0 0 0 1 0
0 0 0 0 6
ni j1
x1n1 x2n1 xnn1
证 用数学归纳法
1 D2 x1
1
x2
x2 x1
( xi x j ),
2i j1
当 n 2 时(1)式成立.
假设(1)对于 n 1 阶范德蒙德行列式成立,
11
1
x1 x2
xn
Dn x12
x22
xn2
x x n1
n1
1
2
x n1 n
rn ( x1 )rn1 1 rn1 ( x1 )rn2 0
1 16 81 256 625
解 D5 是 5 阶范德蒙行列式
D5
(xi xj )
行列式计算教学设计
行列式计算教学设计介绍本教学设计旨在帮助学生理解和掌握行列式的计算方法。
通过合理的教学安排和教学策略,学生将能够正确地计算行列式并应用它们解决实际问题。
教学目标- 理解行列式的概念和性质- 掌握行列式的计算方法- 能够应用行列式解决实际问题- 培养学生的逻辑思维和问题解决能力教学内容1. 行列式的定义和基本性质2. 行列式的计算方法3. 行列式的性质与应用4. 利用行列式解决线性方程组教学步骤1. 介绍行列式的定义和基本性质,通过示例说明行列式的概念和特点。
2. 讲解行列式的计算方法,包括按行展开和按列展开两种方法。
通过实例演示和练,让学生掌握计算行列式的步骤和技巧。
3. 引导学生在解决实际问题时应用行列式,如求解二元线性方程组、计算面积和体积等。
通过实例讲解和练,培养学生的应用能力。
4. 强化学生对行列式性质的理解和应用,如行列式的性质与矩阵运算的关系、行列式的性质与方程解的关系等。
通过实例演示和思考题让学生深入理解。
5. 针对行列式的应用领域,如数学、物理、工程等,引导学生探索更多实际问题,并鼓励他们用行列式解决这些问题。
6. 总结教学内容,让学生回顾和巩固所学知识。
教学评估1. 练题和作业:布置相关练题和作业,检验学生对行列式的计算和应用能力。
2. 课堂参与和回答问题:观察学生在课堂上的参与度和回答问题的准确性与深度,评估他们的理解和掌握程度。
3. 实际问题解决能力:观察学生在实际问题中是否能够灵活运用行列式进行解决,评估他们的应用能力。
教学资源1. 教材:使用相关教材中的行列式章节作为主要教学内容的依据。
2. 练题和作业:提供相关的练题和作业,帮助学生巩固所学知识。
3. 计算工具:提供计算器或电脑软件,帮助学生进行行列式的计算。
参考资料1. 高等数学教材2. 行列式相关的数学书籍和资料教学设计仅供参考,具体实施过程可根据学生的实际情况和教学环境进行调整和优化。
祝您教学成功!。
行列式的性质与计算
行列式的性质与计算行列式是线性代数中的基本概念之一,它是一个非常重要的工具,在数学和许多其他领域中都有广泛的应用。
行列式的性质和计算是学习线性代数的基础之一。
一、行列式的定义行列式是由n个数字aij(i=1,2,n;j=1,2,n)组成的矩形表格,通常用大写字母D表示。
这些数字按照一定的规则排列,形成一个n阶方阵。
行列式D的值是一个与方阵有关的唯一的数,它反映了方阵线性变换的性质。
二、行列式的性质1.行列式的行和列具有相同的地位,因此行列式的性质可以按照行或列来描述。
2.交换两行或两列的位置,行列式的值不变。
即,如果i≠j,那么Dij=Dji。
3.行列式的某一行或某一列中所有元素的公因子可以提取出来,提取后剩余的元素按照原来的相对位置排列组成的行列式与原来的行列式相等。
即,如果k为常数,那么Dk=kD。
4.行列式中两行或两列对应元素相同,行列式的值为零。
即,如果i=j,那么Dij=0。
5.行列式可以按照某一行或某一列展开,展开后得到的行列式与原来的行列式相等。
6.行列式可以按照主对角线进行展开,展开后得到的行列式与原来的行列式相等。
7.行列式可以按照某一行或某一列进行递推展开,展开后得到的行列式与原来的行列式相等。
8.行列式可以按照某一行或某一列进行递归展开,展开后得到的行列式与原来的行列式相等。
三、行列式的计算行列式的计算是线性代数中的基本技能之一,也是解决许多问题的关键步骤。
下面介绍几种常见的计算方法:1.利用定义计算根据行列式的定义,我们可以直接计算行列式的值。
对于n阶方阵A,其行列式的定义为D=a11A11+a12A12+.+anAn,其中Aii是元素aij的代数余子式。
利用这个公式,我们可以直接计算任意一个n阶方阵的行列式。
2.利用性质计算利用行列式的性质,我们可以简化行列式的计算。
例如,根据行列式的交换律,我们可以将两行或两列交换位置;根据行列式的倍数律,我们可以将一行或一列乘以一个常数;根据行列式的零律,我们可以将一行或一列中所有元素设置为零;根据行列式的展开律,我们可以将行列式按照某一行或某一列展开等等。
工程数学教案行列式的性质与计算
教案头教学详案一、 回顾导入(20分钟)——复习行列式概念, 根据定义计算一个四阶行列式, 通常需要计算四个三阶行列式, 假如计算阶数较高行列式利用定义直接计算会比较麻烦, 为简化行列式计算, 我们需要研究行列式关键性质。
二、 关键教学过程(60分钟, 其中学生练习20分钟)一、 行列式性质定义 将行列式D 行换为同序数列就得到D 转置行列式, 记为T D 。
性质1 行列式与它转置行列式相等。
性质2 交换行列式两行(列),行列式变号。
推论 假如行列式有两行(列)完全相同, 则此行列式为零。
性质3 行列式某一行(列)中全部元素都乘以同一数k , 等于用数k 乘此行列式。
推论 行列式某一行(列)中全部元素公因子能够提到行列式符号外面。
性质4 行列式中假如有两行(列)元素成百分比, 则此行列式为零。
性质5 若行列式某一列(行)元素都是两数之和。
性质6 把行列式某一列(行)各元素乘以同一数然后加到另一列(行)对应元素上去, 行列式不变。
二、 行列式按行(列)展开定义 在n 阶行列式中, 把元素ij a 所在第i 行和第j 列划去后, 留下来1-n 阶行列式叫做元素ij a 余子式, 记作ij A 。
记ij j i ij M A +-=)1(, 叫做元素ij a 代数余子式。
引理 一个n 阶行列式, 假如其中第i 行全部元素除ij a 外都为零, 那末这行列式等于ij a 与它代数余子式乘积, 即ij ij A a D =。
定理 行列式等于它任一行(列)各元素与其对应代数余子式乘积之和, 即),,2,1(,2211n i A a A a A a D in in i i i i =+++=。
推论 行列式任一行(列)元素与另一行(列)对应元素代数余子式乘积之和等于零, 即ji A a A a A a D jn in j i j i ≠+++=,2211 。
行列式代数余子式关键性质:范德蒙德(Vandermonde )行列式二、 克莱姆法则定理 假如线性方程组(1)⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++n n nn n n n n n n b x a x a x a b x a x a x a b x a x a x a 22112222212111212111系数行列式不等于零, 即那么线性方程组(1)有解, 而且解是唯一, 解能够表示为D D x D D x D D x n n ===,,,2211 。
行列式的性质与计算行列式的性质有哪些行列式的计算方法
一、行列式的性质有哪些
(1) 行列式行列互换,其值不变;
(2) 互换两行(列),行列式的值变号;
(3) 某行(列)有公因子,可将公因子提出;
(4) 某行(列)的每个元素为两数之和,可以将行列式拆为两个行列式之和;
(5) 某行(列)的k倍加另一行(列),其值不变.
(6) 两行(列)成比例,其值为零;
行列式在数学中,是一个函数,其定义域为det的矩阵A,取值为一个标量,写作det(A)或 | A | 。
无论是在线性代数、多项式理论,还是在微积分学中(比如说换元积分法中),行列式作为基本的数学工具,都有着重要的应用。
行列式可以看做是有向面积或体积的概念在一般的欧几里得空间中的推广。
或者说,在 n 维欧几里得空间中,行列式描述的是一个线性变换对“体积”所造成的影响。
二、行列式的计算方法是什么
1.若能把一个行列式经过适当变换化为三角形,其结果为行列式主对角线上元素的乘积。
因此化三角形是行列式计算中的一个重要方法。
2.化三角形法是将原行列式化为上(下)三角形行列式或对角形行列式计算的一种方法。
这是计算行列式的基本方法重要方法之一。
因为利用行列式的定义容易求得上(下)三角形行列式或对角形行列式的性质将行列式化为三角形行列式计算。
3.原则上,每个行列式都可利用行列式的性质化为三角形行列式。
但对于阶数高的行列式,在一般情况下,计算往往较繁。
因此,在许多情况下,总是先利用行列式的性质将其作为某种保值变形,再将其化为三角形行列式。
行列式性质及其计算方法
目录页
Contents Page
1. 行列式基本定义与性质 2. 行列式的基本运算规则 3. 行列式的展开定理证明 4. 特殊行列式的计算方法 5. 行列式与矩阵的关系 6. 行列式在线性方程组中的应用 7. 行列式的几何意义解释 8. 行列式计算实例与解析
行列式性质及其计算方法
行列式与矩阵的关系
▪ 行列式与矩阵在计算科学中的实现
1.在计算机中,可以通过编写程序来实现行列式和矩阵的计算 。 2.常用的计算行列式的方法包括:化三角形法、按行(列)展 开法等。 3.对于大型矩阵,可以采用一些高效算法来计算行列式,例如 LU分解法、QR分解法等。
行列式性质及其计算方法
行列式在线性方程组中的应用
行列式的基本运算规则
▪ 拉普拉斯定理
1.在n阶行列式中,取定k行(列),由这k行(列)的元素所 构成的一切k阶子式与其代数余子式的乘积的和等于行列式。 2.拉普拉斯定理亦称按k行展开定理,是行列式计算的重要工 具之一,可以用于化简和计算行列式。在使用拉普拉斯定理时 ,需要选择合适的k行(列)进行展开,并注意计算过程中的 符号变化。 以上内容仅供参考,建议查阅线性代数书籍或咨询专业人士获 取更全面和准确的信息。
行列式性质及其计算方法
行列式的基本运算规则
行列式的基本运算规则
▪ 行列式基本性质
1.行列式与其转置行列式相等。 2.互换行列式的两行(列),行列式变号。 3.行列式的某一行(列)的所有的元素都乘以同一数k,等于 用数k乘此行列式。 行列式的基本性质是行列式计算的基础,必须熟练掌握。这些 性质表明了行列式的一些基本特性和变化规律,为行列式的计 算和化简提供了重要的依据和方法。在利用性质进行计算时, 需要注意性质的适用条件和范围,以及计算过程中的符殊行列式的计算方法
行列式的性质及应用知识点总结
行列式的性质及应用知识点总结行列式是线性代数中一个重要的概念,对于矩阵运算和求解线性方程组等问题具有重要的应用价值。
本文将对行列式的性质及其在实际问题中的应用进行总结,以帮助读者更好地理解和应用这一概念。
一、行列式的定义和性质1. 行列式的定义行列式是一个与方阵相关的标量,在实际运算中通常用大写字母表示。
对于一个n阶方阵A = (a_ij),其行列式记作det(A)或|A|,其中a_ij代表矩阵A的第i行第j列的元素。
2. 行列式的性质(1)行列互换性:如果交换矩阵的两行(列),行列式的值不变,即|A| = -|A' |,其中A'是A行列互换后的矩阵。
(2)行列式的倍乘性:如果矩阵A的某一行(列)的元素分别乘以同一常数k,那么行列式的值也相应地乘以k,即|kA|=k^n|A|。
(3)行列式的加性:如果有两个矩阵A和B,它们唯一的区别是其中某一行(列)不同,那么这两个行列式的和等于另一个行列式,即|A+B|=|A'|+|B|。
(4)行列式的三角形性质:如果矩阵A是一个上(下)三角矩阵,那么它的行列式等于对角线上各元素的乘积,即|A| = a_11 * a_22 * ... *a_nn。
二、行列式的应用1. 矩阵的逆行列式在求解矩阵的逆时起到关键作用。
如果一个n阶方阵A存在逆矩阵A^-1,那么有A * A^-1 = I,其中I是单位矩阵。
利用行列式的性质,我们可以通过求解行列式的值来判断矩阵是否可逆,即当|A| ≠ 0时,矩阵A可逆。
2. 线性方程组的求解行列式也可以应用于求解线性方程组。
对于一个有n个未知数和n 个方程的线性方程组,可以使用Cramer法则来求解,其中每个未知数的值等于其对应行列式除以总行列式的值,即x_i = |A_i| / |A|,其中A_i是将方程组中第i个未知数对应的列替换为方程组右侧的常数列得到的矩阵。
3. 矩阵的秩行列式还可以用于求解矩阵的秩。
矩阵的秩是一个衡量矩阵线性无关性的指标,它表示矩阵的行(列)向量组的最大线性无关组的向量个数。
1.2 行列式的性质与计算
n n x3 2 ( x3 x1 ) xn 2 ( xn x1 )
按第一列展开,并把每一列的共因子 ( xi x1 ) 提出,有
1 x2 Dn ( x2 x1 )( x3 x1 ) ( xn x1 ) n x2 2 1 1 x3 xn n n x3 2 xn 2
一、行列式的性质 a11 a12 a1n 记 a21 a22 a2 n D an1 an 2 ann
a11 a21 an1 a12 a22 an 2 T D
a1n a2 n ann
行列式 D T 称为行列式 D 的转置行列式. 性质1 行列式与它的转置行列式相等.即D=DT。 证明 令 D det(aij ) T 则 D det aij 的转置行列式为 D det a ji
性质3
证明
互换行列式的两行(列),行列式变号.
设行列式 D ( 1) a1 p1 aipi a jp j anpn
t
其中 1 i j n 为标准排列
t 为排列 p1 pi p j pn 的逆序数
ri rj
D1 1 a1 p1 a jpi aip j anpn
4 5 0
c3 c2
3 100 1 1
8 4 5 0 0 0
100 20 2000
例2
1 1 1 x1
1 1 x 1 1
1 x 1 x 1 1 1 1 1 1 1 1 1 x 1 0 0 x x x 0 0 0 x x x 0 0 0 x
解 D
1 xn 2 xn
n n x2 1 xn 1
解
将前一行乘以 x1 加到后一行上 (从后往前)
工程数学II第二节 行列式的性质和计算
a1n
ai1
ai 2
ain
ai1 ai2
ain
a j1 kai1 a j2 .kai2
a jn kain a j1 a j2
a jn
an1
an 2
ann
an1 an2
ann
为叙述方便,引进以下记号:
(1)交换行列式的 i, j 两行(列),记
为 ri rj (ci c j;)
i (2)第 行(列)乘以 k ,记作 ri k (ci k ), 第 i行(列)提出公因子 k ,记作ri k (ci k); i (3)将行列式的第 行(列)乘k 加到第 j 行
(列)上,记为 rj kri (c j kci ).
.
例1 计算
1201
1350 D
置行列式,即 (DT)T D
性质1 行列式与其转置行列式相等,即 DT D
性质2 行列式的两行(列)互换,行列式变号. 推论 行列式有两行(列)相同,则此行列式为 零. 性质3 行列式的某一行(列)的所有元素都乘以
k k 同一数 ,等于用数 乘此行列式.
推论1 行列式的某一行(列)中所有元素的公因子可 以提到行列式符号的外面.
推论2 行列式的某一行(列)中所有元素为零,则 此行列式为零.
性质4 行列式中有两行(列)的元素对应成比例,则 此行列式为零.
性质5 将行列式某一行(列)的各元素乘以同一数 后加到另一行(列)对应的元素上,行列式的值不
变.即第 k 行乘i 加到第 j 行上,有
a11
a12
a1n
a11 a12
babb D
bbab
解
bbba
行列式性质详解及应用
行列式性质详解及应用行列式是线性代数中的一个重要概念,用于描述矩阵的性质和解决线性方程组的问题。
本文将详细解析行列式的性质以及其在数学和实际问题中的应用。
一、行列式的定义与基本性质行列式是一个方阵所对应的一个数值,它由矩阵中的元素按照一定的规则组合而成。
设A为n阶矩阵,A的行列式记作|A|或det(A)。
根据定义,当n=1时,矩阵A的行列式即为该矩阵的唯一元素;当n>1时,A的行列式由以下公式计算:|A| = a11·A11 + a12·A12 + … + a1n·A1n其中,a11为A的元素,A11是删去第1行第1列后的(n-1)阶子矩阵的行列式。
行列式具有以下基本性质:1. 行列式与转置矩阵:若A与A'是同阶矩阵,则|A'| = |A|2. 行列式与元素交换:若把方阵A的两列(两行)互换,行列式的值变号,即|A| = -|A'|3. 行列式的奇偶性:方阵A的行列式是其元素的排列的一个定义。
若有奇数对元素互换位置,行列式的值为负数;若有偶数对元素互换位置,行列式的值为正数。
二、行列式的求解方法1. 拉普拉斯展开法拉普拉斯展开法是求解行列式的一种常用方法。
该方法通过选取某一行或某一列,构造与之对应的代数余子式,然后利用代数余子式的性质进行递归计算。
2. 三角矩阵法三角矩阵法是一种简化行列式计算的方法。
通过进行初等行变换,将矩阵化为上三角矩阵或下三角矩阵,然后计算对角线上元素的乘积即可。
三、行列式的性质及应用行列式除了在数学理论中的应用外,还广泛地应用于各个领域,包括物理、经济、计算机科学等。
1. 线性方程组的解行列式可以用于求解线性方程组的解。
对于n个未知数、n个线性方程的齐次线性方程组,当系数矩阵的行列式不为零时,方程组有唯一解;当行列式为零时,方程组有无穷多解或者无解。
2. 矩阵的可逆性对于n阶方阵A,当行列式|A|不等于零时,矩阵A可逆,即存在逆矩阵A-1,使得A·A-1 = A-1·A = I;当|A|等于零时,矩阵A不可逆。
大学数学行列式性质教案
课时:2课时教学目标:1. 理解行列式的概念和性质,掌握行列式的计算方法。
2. 能够运用行列式的性质解决实际问题,如解线性方程组、判断线性方程组的解的存在性等。
3. 培养学生的逻辑思维能力和数学素养。
教学重点:1. 行列式的概念和性质2. 行列式的计算方法3. 应用行列式解决实际问题教学难点:1. 行列式的性质的理解和运用2. 行列式的计算技巧教学过程:第一课时:一、导入1. 复习线性方程组的解法,引出行列式的概念。
2. 介绍行列式的定义和性质。
二、行列式的概念1. 行列式的定义:n阶行列式是由n行n列的元素按一定的顺序排列而成的一个数。
2. 行列式的表示方法:用符号D表示n阶行列式,例如,三阶行列式可以表示为D。
三、行列式的性质1. 性质1:行列式与它的转置行列式相等。
2. 性质2:互换行列式的两行(列),行列式变号。
3. 性质3:行列式的某一行(列)中所有的元素都乘以同一数k,等于用数k乘此行列式。
4. 性质4:行列式中如果有两行(列)元素成比例,则此行列式等于零。
5. 性质5:若行列式的某一列(行)的元素都是两数之和,例如第i列元素都是两数之和,则D等于下列两个行列式之和:D = D1 + D2,其中D1为第i列元素为第一数的行列式,D2为第i列元素为第二数的行列式。
6. 性质6:把行列式的某一列(行)的各元素乘以同一数然后加到另一列(行)对应的元素上去,行列式不变。
四、行列式的计算方法1. 利用行列式的性质进行计算,如按行(列)展开、降阶等。
2. 利用行列式的性质简化计算,如化简行列式、求逆矩阵等。
五、课堂练习1. 计算以下行列式:(1)三阶行列式(2)四阶行列式2. 利用行列式的性质判断以下线性方程组的解的存在性:(1)二元线性方程组(2)三元线性方程组第二课时:一、复习1. 复习行列式的概念、性质和计算方法。
2. 回顾课堂练习。
二、应用行列式解决实际问题1. 利用行列式解线性方程组。
行列式的教案
行列式的教案教案标题:探索行列式的概念和性质一、教学目标:1. 理解行列式的概念和基本性质2. 掌握计算2阶和3阶行列式的方法3. 能够应用行列式解决实际问题二、教学重点和难点:1. 行列式的定义和性质2. 行列式的计算方法3. 实际问题的行列式应用三、教学准备:1. 教材:包括行列式的定义、性质和计算方法的相关知识点2. 教学工具:黑板、彩色粉笔、投影仪3. 教学素材:包括行列式的相关例题和实际问题四、教学过程:1. 导入:通过引入一个实际问题,引出行列式的概念和应用背景2. 概念讲解:介绍行列式的定义、性质和基本概念,引导学生理解行列式的含义和作用3. 计算方法:详细讲解2阶和3阶行列式的计算方法,并通过示例演示4. 实际问题:结合实际问题,演示如何应用行列式解决实际情况5. 练习与讲评:布置相关练习题,让学生进行练习,并及时进行讲评和指导6. 拓展:介绍更高阶行列式的计算方法和应用,拓展学生的知识面五、教学方法:1. 启发式教学法:通过引入实际问题,激发学生的学习兴趣2. 演示法:通过示例演示行列式的计算方法,帮助学生理解3. 问题导向法:引导学生通过解决实际问题,掌握行列式的应用技巧六、教学评估:1. 课堂练习:通过课堂练习和讲评,检验学生对行列式概念和计算方法的掌握程度2. 实际问题解决能力:通过实际问题的解决过程,评估学生的应用能力和思维能力七、教学反思:1. 教学方法:根据学生的反馈和表现,及时调整教学方法,提高教学效果2. 教学内容:根据学生的学习情况,进行教学内容的调整和优化,确保教学目标的实现以上教案是围绕行列式的概念和性质展开的,通过引入实际问题和具体计算方法,帮助学生理解和掌握行列式的相关知识,同时注重实际问题的应用,培养学生的解决问题能力和思维能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
教案头
教学详案
一、回顾导入(20分钟)
——复习行列式的概念,按照定义计算一个四阶行列式,一般需要计算四个三阶行列式,如果计算阶数较高的行列式利用定义直接计算会比较麻烦,为简化行列式的计算,我们需要研究行列式的主要性质。
二、主要教学过程(60分钟,其中学生练习20分钟)
一、行列式的性质
定义 将行列式D 的行换为同序数的列就得到D 的转置行列式,记为T
D 。
性质1 行列式与它的转置行列式相等。
性质2 互换行列式的两行(列),行列式变号。
推论 如果行列式有两行(列)完全相同,则此行列式为零。
性质3 行列式的某一行(列)中所有的元素都乘以同一数k ,等于用数k 乘此行列式。
推论 行列式的某一行(列)中所有元素的公因子可以提到行列式符号的外面。
性质4 行列式中如果有两行(列)元素成比例,则此行列式为零。
性质5 若行列式的某一列(行)的元素都是两数之和。
性质6 把行列式的某一列(行)的各元素乘以同一数然后加到另一列(行)对应的元素上去,行列式不变。
二、行列式按行(列)展开
定义 在n 阶行列式中,把元素
ij a 所在的第i 行和第j 列划去后,留下来的1-n 阶行列式叫做元素ij a 的余子式,记作ij A 。
记ij j i ij M A +-=)1(,叫做元素ij a 的代数余子式。
引理 一个n 阶行列式,如果其中第i 行所有元素除ij a 外都为零,那末这行列式等于ij a 与它的代数余子式的乘积,即
ij ij A a D =。
定理 行
列式等于它的任一行(列)的各元素与其对应的代数余子式乘积之和,即 ),,2,1(,2211n i A a A a A a D in in i i i i =+++=。
推论 行列式任一行(列)的元素与另一行(列)的对应元素的代数余子式乘积之和等于零,即
j
i A a A a A a D jn in j i j i ≠+++=,2211 。
行列式的代数余子式的重要性质:
⎩⎨⎧≠===∑=;,0,,1j i j i D D A a ij n k kj ki 当当δ⎩⎨⎧≠===∑=;,0,
,1j i j i D D A a ij n k jk ik 当当δ
范德蒙德(Vandermonde )行列式
二、克莱姆法则
定理 如果线性方程组(1) ⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++n n nn n n n n n n b x a x a x a b x a x a x a b x a x a x a 22112222212111212111的系数行列式不等于零,即
那么线性方程组(1)有解,并且解是唯一的,解可以表示为
D D x D D x D D x n n ===,,,2211 。
其中j D 是把系数行列式D 中第j 列的元素用方程组右端的常数项代替后所得到的n 阶行列式,即
定理 如果线性方程组(1)的系数行列式0≠D ,则(1)一定有解,且解是唯一的。
定理 如果线性方程组(1)无解或有两个不同的解,则它的系数行列式必为零。
定理 如果齐次线性方程组
⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++n n nn n n n n n n b x a x a x a b x a x a x a b x a x a x a 22112222212111212111 (2)
的系数行列式0≠D ,则齐次线性方程组(2)没有非零解。
定理 如果齐次线性方程组(2)有非零解,则齐次线性方程组(2)的系数行列式必为零。
三、归纳总结(10分钟)
应用行列式的性质计算行列式特别是高阶行列式,可以简化计算;用克莱姆法则解线性方程组的基本步骤。
四、课后作业
练习:1.如果行列式有两行的对应元素成比例,则此行列式的值为 ;
2.如果行列式有两行的对应元素相同,则此行列式的值为( )
.0212222111211≠=nn
n n n n a a a a a a a a a D .1,1,111,111,111nn
j n n j n n n
j j j a a b a a a a b a a D +-+-=⎩⎨⎧≠==.,0,1j i j i ij 当,当其中δ∏≥>≥----==1112112222121).(111j i n j i n n
n n n n n x x x x x x x x x x x D
3.=c c b b a a 212121 ;=+++b a c a c b c
b a 111 ;。