清华大学有机化学李艳梅课件(全)第2章资料
清华大学李艳梅有机化学课件
烷烃名称的写出
A 将支链(取代基)写在主链名称的前面 B 取代基按“次序规则”小的基团优先列出
烷基的大小次序: 甲基<乙基<丙基<丁基<戊基<己基<异戊基<异丁基<异丙基。
C 相同基团合并写出,位置用2,3……标出, 取代基数目用二, 三……标出。
D 表示位置的数字间要用逗号隔开,位次和取代基名称之间要用 “半字线”隔开。
在烃分子中仅与一个碳相连的碳原子叫做伯碳原子(或一级碳原子,用1°表示) 与两个碳相连的碳原子叫做仲碳原子(或二级碳原子,用2°表示) 与三个碳相连的碳原子叫做叔碳原子(或三级碳原子,用3°表示) 与四个碳相连的碳原子叫做季碳原子(或四级碳原子,用4°表示)
与伯,仲,叔碳原子相连的H原子,分别称为 伯,仲,叔H原子
(3)同系物
烷烃的通式 CnH2n+2, 直链烃的通式可写为: H-(-CH2-)n-H
同系物—在组成上相差一个或多个 CH2,且结构和性质(官 能团种类和个数相同)相似的一系列化合物称为同系
列.同系列中的各化合物互称同系物.系差—同系列相邻的两 个分子式的差值 CH2 称为系差.
(4)烷烃中碳原子的分类:
CH 3CH 2CH CH 3
(CH3)3C—
• (1) 直链烷烃按碳原子数命名 • 10以内:依次用天干:甲乙丙丁戊己庚辛壬癸. • 10以上:用中文数字:十一....烷.
(2)带有支链的烷烃
•选择主链
(1)选择分子中最长的碳链作为主链,按这个链所含的 碳原子数称为某烷,并以此作为母体。
(2) 分子中有两条以上等长碳链时,则选择支链多的 一条为主链。
或: CnH2n+2
•同分异构体——由于分子式相同,但它们的构 造不同(分子中各原子相连的方式和次序不同). 又叫构造异构体。
1李艳梅有机化学
Starch(淀粉)
Gasoline (汽油)
O O H * C R1 C N R2
H N
* n
CmHn
m value around 8
O OH O O CH3
乙酰水杨酸(阿斯匹林)
O OH O O CH3
O OH OH
H3C
C O
O
C O
CH3
Salicylic acid
Acetylsalicylic acid
H3C C O OH
制醋
Dyeing has become am important industry before Zhou dynasty.
茜 草
染色
In ancient ages, mixtures of organic compounds were abstracted from natural products. Chinese traditional drug, dye, and perfume are of this kind.
Milestone of organic chemistry By Wöhler 1865 Bringing forward that carbon is quadrivalent Milestone of structural theory By A. Kekulé
1874
Saturated carbon atoms share tetrahedral topology
Hint
分类的关键:
“性质”!
而不是“组成”
H H
B N
H N B H
B N
H H
1. Organic compounds and organic chemistry 第一部分 有机化合物和有机化学
李艳梅有机化学(课堂PPT)
“对旋”
21.2.1
4n电子体系
(一)丁二烯电环化
共轭烯烃分子轨道数目等于组成分子轨道的原子轨道(p 轨道)的数,亦即等于参加共轭的碳原子数。
由各碳原子上的p轨道的不同方式线性组合构成
E4 LUMO
E3
LUMO
HOMO
E2
HOMO
E1
Ground State 加热时
Activated State 光照时
环加成反应:
两分子烯烃或多烯烃经无中间体的反应生成环状化合物。 可以认为是两个烯烃平面相互接近成键
关键:反应条件 不同体系反应条件不同
21.3.1 2+2 体系
电子流向: 甲分子 HOMO LUMO
乙分子 LUMO HOMO
轨道相互作用 关键:位相匹配
甲分子: 乙分子:
LUMO HOMO
2+2 体系:加热时(基态)
21.1 周环反应的理论
AB
A +B
AB
A +B
Reactant
Free radical Ion
Product
No intermediate
协同反应
反应中不形成离子或自由基中间体, 化学键的断裂和生成同时发生的反应
周环反应
CH3 H
CH3 H
175oC
5CH3
4H
hv
3
CH3
21
H
(2E,4Z)-hexa-2,4-diene
在加热或光照条件下,共轭多烯烃的两端环化成环烯烃
的反应,或其逆反应。
“分子内的周环反应”
CH3 H CH3
H
Cis
5CH3
175oC 4
最新清华大学有机化学李艳梅老师课件教学讲义ppt
Pauli电子交换作用:
乙烷的能量随扭转角的变化。0º、120º对应于重叠式,60º对应 于交叉式。以交叉式的能量为零点。实线为实际情形,虚线为 去掉Pauli电子交换排斥作用之后的理论值。
Pauli电子交换排斥作用降低了旋转能 垒,对旋转能垒的产生起的是“反作用”
静 电 作 用 :
原子核间(nn)、电子之间(ee)的静电斥力能随扭转角的变化。0º、120º对应于重 叠式,60º对应于交叉式。以交叉式的能量为零点。图中,“RR”线是指分子 骨架固定不变,只有两甲基绕轴旋转的情况;“FR”线是考虑了所有静电效应 之后的结果。
同系物具有相似的化学性质,其物理性质一般随分 子量的改变而规律性变化。 系差: CH2为同系列的系差
构造式:代表分子中原子的种类、数目和排列次序的 式子。
结构式:除了代表分子中原子的种类、数目和排列次 序的之外,还包括了空间及原子、电子、构 型、构象等信息的式子。
同分异构:分子式相同而结构不同的现象。
HH
Newman projection
将乙烷模型置于纸面上,使C—C键与纸面垂直, 从C—C键上方往下看,用一个点表示前面的碳原子, 与这一个点相连的线表示碳原子上的键,用周围表 示后面的碳原子,从周围的、向外伸出的线表示后 一个碳原子上的键。
H HH HH
mation 交叉式(能量较低)
Nature杂志2001年5月的一篇报道指出: 文献:V. Pophristic, L. Goodman, Nature 411, 565-568 (31 May 2001)
Pauli电子交换作用
空
Pauli不相容原理
间 阻
碍
决定乙烷构 象的因素
静电作用
效 应
清华大学有机化学李艳梅课件全共7文档
清华大学有机化学李艳梅课件全共7文档•课程介绍与有机化学概述•烃类化合物及其衍生物•羰基化合物及其衍生物•碳碳重键与芳香性目录•立体化学基础与手性合成策略•有机合成方法与路线设计•现代有机化学实验技术与方法01课程介绍与有机化学概述介绍清华大学有机化学课程的开设背景、历史沿革以及在国内外的学术地位。
课程背景课程内容教学方法概述本课程的主要教学内容,包括有机化合物的结构、性质、合成方法以及反应机理等。
介绍本课程采用的教学方法,如课堂讲授、实验操作、小组讨论等。
030201清华大学有机化学课程简介有机化学研究对象与特点研究对象阐述有机化学的研究对象,即有机化合物,包括其结构、性质、合成和反应等方面。
特点介绍有机化学的特点,如化合物种类繁多、结构复杂、反应条件温和等。
有机化学发展历史及现状发展历史回顾有机化学的发展历程,包括早期有机化学、近代有机化学和现代有机化学等阶段。
现状介绍当前有机化学的研究热点和前沿领域,如有机合成、有机材料、生物有机化学等。
本课程教学目标与要求教学目标明确本课程的教学目标,包括知识目标、能力目标和素质目标等。
教学要求提出本课程对学生的教学要求,如掌握基本概念和原理、具备实验技能和创新能力等。
02烃类化合物及其衍生物烷烃饱和链烃,分子中只含有单键,通式为CnH2n+2,性质稳定,主要发生取代反应。
烯烃含有碳碳双键的链烃,通式为CnH2n,性质活泼,可以发生加成、氧化、聚合等反应。
炔烃含有碳碳三键的链烃,通式为CnH2n-2,性质活泼,可以发生加成、氧化、聚合等反应。
烷烃、烯烃、炔烃结构和性质苯的结构和性质苯分子为平面正六边形结构,6个碳原子和6个氢原子共平面。
苯环上的碳碳键是介于碳碳单键和碳碳双键之间的独特键,使得苯具有特殊的稳定性。
芳香烃含有苯环的烃类化合物,具有特殊的芳香气味,通式为CnH2n-6。
芳香烃的取代反应芳香烃在催化剂作用下可以发生取代反应,如硝化、磺化、卤化等。
清华大学有机化学李艳梅课件全75页PPT
21、没有人陪你走一辈子,所以你要 适应孤 独,没 有人会 帮你一 辈子, 所以你 要奋斗 一生。 22、当眼泪流尽的时候,留下的应该 是坚强 。 23、要改变命运,首先改变自己。
24、勇气很有理由被当作人类德性之 首,因 为这种 德性保 证了所 有其余 的德性 。--温 斯顿. 丘吉尔 。 25、梯子的梯阶从来不是用来搁脚的 ,它只 是让人 们的脚 放上一 段时间 ,以便 让别一 只脚能 够再往 上登。
66、节制使快乐增加并使享受加强。 ——德 谟克利 特 67、今天应做的事没有做,明天再早也 是耽误 了。——裴斯 泰洛齐 68、决定一个人的一生,以及整个命运 的,只 是一瞬 之间。 ——歌 德 69、懒人无法享受休息之乐。——拉布 克 70、浪费时间是一桩大罪过。——卢梭
清华大学李艳梅有机化学课件
CH3 (CH2)2CH3
Bond line formula(键线式)
键
键
s-s s-p sp3-sp3
-bond
-bond
Hybridization
sp3
sp2
sp
(二)分子轨道理论
要点:原子形成分子后,成键电子并不局限于某 一个原子或某几个原子之间,而是在整个分子中运动。 通过薛定谔方程可求出描述分子中电子运动状态的波 函数 (分子轨道)。成键电子按一定规则填充在不同 分子轨道中。 优点:将分子视为一个整体,某一电子的运动状 态不仅受某一原子的影响,而是受所组成分子的原子 的共同作用。 缺点:求解困难 改进:原子轨道线性组合法(LCAO) 即:将分子轨道视为所属原子轨道的线性组合。
0.134nm
平均键长
0.109nm
(三)键角 两个共价键之间的夹角反映了分 子的空间结构。
eg:
CH4
HC CH
<HCH=109 28'
<HCC=180
0
0
(四) 极性
相同原子形成共价键时 正电荷中心与负 电子云对称分布在两个原子核之间 电荷中心相重叠 两核正中位置电子云密度最大 不同电子形成共价键时 电子云偏向于电负性大的,使之微负 -
离解能:指定的某一种离解方式
键能:具有平均的概念
键能
键的强度
越不易断裂
(二) 键长
成键的两个原子核之间的平均距离: (形成共价键的两个原子之间存在着一定的 吸引力和排斥力,使原子核之间保存着一定 的距离,此距离为键长。) (一定的共价键的键长是一定的) eg:
C C C H C C C C
0.154nm 0.120nm
清华大学李艳梅有机化学课件教学提纲
名称 分子式
甲烷
CH4
乙烷 C2H6
结构式
丙烷 C3H8 丁烷 C4H10
戊烷 C5H12
结构简式
CH4 CH3CH3 CH3CH2CH3 CH3(CH2)2CH3 CH3(CH2)3CH3
注意:键线式书写烷烃的分子结构:
•为了方便,只要写出锯齿形骨架,用锯齿形线的角及其端 点代表碳原子.不写出每个碳上所连的氢原子.但其它原子
E 如果支链上还有取代基时,则必须从与主链相连接的碳原子开始 ,给支链上的碳原子编号。然后补充支链上烷基的位次、名称及 数目。
CH3 CH CH CH CH2 CH3 CH2 CH3 CH3
CH3
主链
2,4-= 甲基-3-乙基己烷
2.3 烷烃的结构
2.3.1 甲烷的结构和sp3杂化轨道
烷烃分子之中碳原子为正四面体构型 。甲烷分子 之中,碳
CH 3CH 2CH CH 3
(CH3)3C—
• (1) 直链烷烃按碳原子数命名 • 10以内:依次用天干:甲乙丙丁戊己庚辛壬癸. • 10以上:用中文数字:十一....烷.
(2)带有支链的烷烃
•选择主链
(1)选择分子中最长的碳链作为主链,按这个链所含的 碳原子数称为某烷,并以此作为母体。
(2) 分子中有两条以上等长碳链时,则选择支链多的 一条为主链。
烷烃名称的写出
A 将支链(取代基)写在主链名称的前面 B 取代基按“次序规则”小的基团优先列出
烷基的大小次序: 甲基<乙基<丙基<丁基<戊基<己基<异戊基<异丁基<异丙基。
C 相同基团合并写出,位置用2,3……标出, 取代基数目用二,三 ……标出。
D 表示位置的数字间要用逗号隔开,位次和取代基名称之间要用“ 半字线”隔开。
2024版清华大学有机化学李艳梅老师课件PPT文档
目录•有机化学概述•碳原子结构与性质•官能团及其反应活性•立体异构现象与手性分子识别•有机合成策略与方法•绿色化学原理在有机合成中应用有机化学概述有机化学定义与发展历程定义研究有机化合物结构、性质、合成、反应机理及其应用的科学发展历程从早期对天然产物的提取和分离,到合成有机化合物的探索,再到现代有机化学的飞速发展有机化合物分类及特点分类按碳骨架分类(开链化合物、碳环化合物、杂环化合物等)、按官能团分类(烃类、醇类、醛类、酮类等)特点种类繁多、结构复杂、性质各异,具有广泛的应用价值有机化学在科研与工业中应用科研应用研究生命现象的本质、探索新药物和新材料、发展高效低毒的农药和化肥等工业应用合成纤维、塑料、橡胶等高分子材料,生产染料、香料、涂料等精细化学品,制备医药、农药等中间体。
碳原子结构与性质碳原子杂化类型及空间构型sp杂化碳原子形成两个σ键,呈直线型构型,如乙炔中的碳原子。
sp²杂化碳原子形成三个σ键,呈平面三角形构型,如乙烯中的碳原子。
sp³杂化碳原子形成四个σ键,呈四面体构型,如甲烷中的碳原子。
0102 03σ键由两个原子轨道沿键轴方向重叠而形成,具有方向性和饱和性。
π键由两个原子轨道垂直于键轴方向重叠而形成,具有方向性和不饱和性。
共价键的极性由成键原子的电负性差异决定,差异越大,极性越强。
共价键形成与性质分析03疏水作用非极性分子间的相互作用力,使非极性分子在水溶液中相互聚集。
01范德华力普遍存在于分子间的相互作用力,与分子的大小和极性有关。
02氢键存在于含有氢原子的分子间的一种特殊相互作用力,具有方向性和饱和性。
碳原子间相互作用力探讨官能团及其反应活性卤素原子(-X )具有亲电性,可发生亲核取代、消除等反应。
-NH2)具有亲核性和碱性,可参与亲核取代、缩合等反应。
羧基(-COOH )具有酸性,可发生酯化、酰卤化等反应。
羟基(-OH )具有亲核性,可参与亲核取代、消除等反应。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
原则2:不等价的质子化学位移不同
影响化学位移的因素: 原子核外电子云的分布:电负性 原子核所受的额外磁场:各向异性效应
电负性的影响:
△E = hH有效/2 H有效=H0-H感应
邻近基团电负性 质子上电子云密度 H感应 H有效
2.5
C-CH3
=0.77-1.88
CH3Cl =3.05
3.0
N-CH3
m = -1
I=1
m=2 m=1 m=0 m = -1
m = -2 I=2
以I=1/2的核为例:
当外部给予的能 量恰为∆E时,原子核 则可吸收该能量,从 低能级运动方式跃迁 到高能级运动方式, 即发生“核磁共振”
问:是否所有的原子核都有核磁信号? 答: I=0 的原子核没有核磁信号。 因为: I=0 时 2I + 1 = 1
△E = hH有效/2 H有效=H0-H感应
△E = hH有效/2 H有效=H0-H感应
处于不同化学环境中的质子外 层电子分布情况不同
产生的感应磁场也不同
2.3 1H-NMR(核磁共振氢谱)
信号的位置:化学位移 信号的裂分:偶合常数
信号的强度:积分曲线
2.3.1 信号的位置:化学位移
相对于一个
H被裂分为: (2+1)(3+1)重峰
注:s: 单重峰 d: 二重峰 t: 叁重峰 q: 四重峰 m: 多重峰
Jab = Jba
2.3.3 信号的强度:积分曲线
简单谱图分析:
提示1:测试NMR谱图时采用什么溶剂?
氘代试剂 D: I=0 注意未完全氘代的溶剂峰
Solvent
1H Chemical
Modern Spectrometry
第二章 现代仪器分析方法及应用
Organic Chemistry A (1) By Prof. Li Yan-Mei Tsinghua University
Content
引言 第一部分 核磁共振谱(NMR) 第二部分 红外光谱法(IR) 第三部分 质谱法(MS) 第四部分 紫外-可见光谱法(UV-Vis)
HOD in 13C Chemical
Shift
JHD solvent
Shift
JCD B.P. M.P.
(Hz)
(Hz) (oC) (oC)
(multiplicity)
基准物的相 低
对值
场
样品 - 标准 仪器
单位():ppm
高 场
零点:TMS
CH3
CH3 Si CH3
CH3
原则1:等价的质子化学位移相同
化学环境相同 △E = hH有效/2
替代原则
H有效=H0-H感应
CH4 CH3CH3
CH3aCH2bCH3a
CH3aCH2bCH2cCl
O CH3CH2 C CH2CH3
2.2 核磁共振的基本原理
600 MHz NMR
750 MHz NMR
800 MHz NMR
NMR仪器的基本组成
原子核的磁矩和磁共振
原子核的自旋运动和自旋量子数 I 相关。 核自旋量子数:I 原子核置于磁场中,将有:2I + 1 个取向
m = 1/2
m = -1/2 I = 1/2
m=1 m=0
B不存在时,A的化学位移
偶合常数
2)裂分规律
• 相隔三根单键以上,一般J ≈ 0
O
CH3CH2 C CH3
• 等价质子(磁等价)互不裂分
CH4 CH3CH3 • 具有沿共价键的意味
CH3CH2Cl
C H 3c
C H 3d
• n + 1 规律
Ha
Hb
J ac ≠ Jad
n + 1 规律:一组化学等价的质子被一组数目为n的等 价质子裂分时,那么其吸收峰数目为n+1, 峰强比例符合二项式。
引言
2分.1 析引未知言化合物的步骤
?
C, H, O, …
C% H% O% , …
CmHnOy 利用其各种化学反应性质推测可能结构
分子的不同层次运动
Different motion
Translation Rotation Vibration Motion of the electron Motion of the nuclear
1H,13C,31P, 15N, 19F
12C,
14N,18F
I=1/2 I=0
1H-NMR 13C-NMR 31P-NMR 15N-NMR 19F-NMR
问:跃迁(“核磁共振”)时所需要吸收的能量∆E为多少?
△E = hH0/2 核磁共振时
:磁旋比(为各 △E = hH0/2 = h
种核的特征常数) h:plank常数 H0:外加磁场强度
=2.12-3.10
CH2Cl2 =5.30
3.5
O-CH3
= 3.24-4.02
CHCl3 =7.27
例如:
H > H >
CH3aCH2bCH2c
H
Cl
O
H>
CH3CH2 C CH2CH3H
O
思考!
CH3CH2 C OCH2CH3
各向异性效应的影响:
CH2 H
CH
= 4.5-5.9
= 7.2 = 2.8
HH
H
HCC
H
HH
外磁场方向
121
H被两个等价的H 裂分为叁重峰, 叁重峰的峰强比 为1:2:1
13 31
H被三个等价的H裂 分为四重峰,四重峰 的峰强比为1:3:3:1
如果一组化学等价的质子被两组数目分别为n和n’的等 价质子裂分时,那么其吸收峰数目为(n+1)(n’+1),
H2 BrH2C C CH3
CH
= 2.8
2.3.2 信号的裂分:偶合常数
• 表示法: J 单位:Hz mJn m:表示两个偶合核
之 间间隔键的数
目 n: 其它信息
1)偶合的产生:自旋-自旋偶合
HA
HB 场平行
HA
HB -1/2
R1 CA CB R4 R2 R3
屏蔽 B与外磁场反平行
far-infrared infrared ultraviolet & visible microwave
各种光谱分析方法
X ray
Ultraviolet Visual Infrared
Micro Radio wave wave
RFID
Electron Spectroscopy Ultraviolet Visual Infrared
200~400 nm
2.5μ~15μ
400~800 nm
short
wavelength
NMR 1n~5n
long
第一部分 核磁共振谱(NMR) Nuclear Magnetic Resonance
2.2 核磁共振的基本原理 2.3 1H-NMR(核磁共振氢谱) 2.4 13C-NMR(核磁共振碳谱)