PCB新手初学必备50个经典应用电路实例分析.pdf
50个典型电路实例详解
电路1简单电感量测量装置
在电子制作和设计,经常会用到不同参数的电感线圈,这些线圈的电感量不像电阻那么容易测量,有些数字万用表虽有电感测量挡,但测量范围很有限。该电路以谐振方法测量电感值,测量下限可达10nH,测量范围很宽,能满足正常情况下的电感量测量,电路结构简单,工作可靠稳定,适合于爱好者制作。
一、电路工作原理
电路原理如图1(a)所示。
图1简单电感测量装置电路图
该电路的核心器件是集成压控振荡器芯片MC1648,利用其压控特性在输出3脚产生频
值,测量精度极高。
率信号,可间接测量待测电感L
X
BB809是变容二极管,图中电位器VR1对+15V进行分压,调节该电位器可获得不同的电压输出,该电压通过R1加到变容二极管BB809上可获得不同的电容量。测量被测电感L X 时,只需将L X接到图中A、B两点中,然后调节电位器VR1使电路谐振,在MC1648的3脚会输出一定频率的振荡信号,用频率计测量C点的频率值,就可通过计算得出L
值。
X 电路谐振频率:f0=1/2π所以L X=1/4π2f02C
LxC
式中谐振频率f0即为MC1648的3脚输出频率值,C是电位器VR1调定的变容二极管的电容值,可见要计算L X的值还需先知道C值。为此需要对电位器VR1刻度与变容二极管的对应值作出校准。
为了校准变容二极管与电位器之间的电容量,我们要再自制一个标准的方形RF(射频)电感线圈L0。如图6—7(b)所示,该标准线圈电感量为0.44µH。校准时,将RF线圈L0接在图(a)的A、B两端,调节电位器VR1至不同的刻度位置,在C点可测量出相对应的测量值,再根据上面谐振公式可算出变容二极管在电位器VR1刻度盘不同刻度的电容量。附表给出了实测取样对应关系。
PCB新手初学必备50个经典应用电路实例分析
PCB新手初学必备50个经典应用电路实例分析
PCB(Printed Circuit Board,印制电路板)是现代电子产品中不可或缺的核心部件之一,用于支持和连接电子元器件。初学者在学习和掌握PCB设计时,了解一些经典的应用电路实例是很有帮助的。下面将介绍50个经典的应用电路实例,并简单分析其工作原理。
1.电源滤波电路:用于去除电源输入中的噪声和干扰。
2.整流电路:将交流电信号转换为直流电信号,常见的电源电路。
3.电压调节电路:用于稳定输出电压,常见的稳压装置。
4.LED驱动电路:用于驱动LED显示器件的电路,常见于各种灯具。
5.小电力放大器电路:用于增加音频信号的功率,如小型扬声器。
6.音频滤波电路:用于调整音频信号的频率特性,如均衡器。
7.电源保护电路:用于保护电子设备免受过电压、过电流等情况的损害。
8.低通滤波器电路:用于通过低频信号,滤除高频信号。
9.高通滤波器电路:用于通过高频信号,滤除低频信号。
10.时钟电路:用于提供稳定的时钟信号,常见于数字系统。
11.振荡器电路:用于产生稳定的频率信号,如时钟振荡器。
12.多谐振荡电路:用于产生多频率的信号,常见于无线通信设备。
13.反相放大器电路:将输入信号进行反相放大。
14.非反相放大器电路:将输入信号进行非反相放大。
15.对数放大器电路:将输入信号进行对数放大,如用于音量控制。
16.线性电源电路:用于提供稳定的线性电源输出。
17.数字电源电路:用于提供稳定的数字电源输出。
18.温度控制电路:用于控制温度,如温度传感器和风扇控制电路。
50个典型应用电路实例详解(电子制作)
电路1 简单电感量测量装置
在电子制作和设计,经常会用到不同参数的电感线圈,这些线圈的电感量不像电阻那么容易测量,有些数字万用表虽有电感测量挡,但测量范围很有限。该电路以谐振方法测量电感值,测量下限可达10nH,测量范围很宽,能满足正常情况下的电感量测量,电路结构简单,工作可靠稳定,适合于爱好者制作。
一、电路工作原理
电路原理如图1(a)所示。
图1 简单电感测量装置电路图
该电路的核心器件是集成压控振荡器芯片MC1648 ,利用其压控特性在输出3脚产生频率信号,可间接测量待测电感L X值,测量精度极高。
BB809是变容二极管,图中电位器VR1对+15V进行分压,调节该电位器可获得不同的电压输出,该电压通过R1加到变容二极管BB809上可获得不同的电容量。测量被测电感L X时,只需将L X接到图中A、B两点中,然后调节电位器VR1使电路谐振,在MC1648的3脚会输出一定频率的振荡信号,用频率计测量C点的频率值,就可通过计算得出L X值。
电路谐振频率:f0 = 1/2πLxC所以 L X = 1/4π2 f02C
式中谐振频率f0即为MC1648的3脚输出频率值,C是电位器VR1调定的变容二极管的电容值,可见要计算L X的值还需先知道C值。为此需要对电位器VR1刻度与变容二极管的对应值作出校准。
为了校准变容二极管与电位器之间的电容量,我们要再自制一个标准的方形RF(射频)电感线圈L0。如图6—7(b)所示,该标准线圈电感量为0.44μH。校准时,将RF线圈L0接在图(a)的A、B两端,调节电位器VR1至不同的刻度位置,在C点可测量出相对应的测量值,再根据上面谐振公式可算出变容二极管在电位器VR1刻度盘不同刻度的电容量。附表给出了实测取样对应关系。
50个经典应用电路
电路1简单电感量测量装置
在电子制作和设计,经常会用到不同参数的电感线圈,这些线圈的电感量不像电阻那么容易测量,有些数字万用表虽有电感测量挡,但测量范围很有限。该电路以谐振方法测量电感值,测量下限可达10nH,测量范围很宽,能满足正常情况下的电感量测量,电路结构简单,工作可靠稳定,适合于爱好者制作。
一、电路工作原理
)所示。
电路原理如图1(a
该电路的核心器件是集成压控振荡器芯片MC1648,利用其压控特性在输出3脚产生频
值,测量精度极高。
率信号,可间接测量待测电感L
X
BB809是变容二极管,图中电位器VR1对+15V进行分压,调节该电位器可获得不同的电压输出,该电压通过R1加到变容二极管BB809上可获得不同的电容量。测量被测电感L X 时,只需将L X接到图中A、B两点中,然后调节电位器VR1使电路谐振,在MC1648的3脚会输出一定频率的振荡信号,用频率计测量C点的频率值,就可通过计算得出L
值。
X 电路谐振频率:f0=1/2π所以L X=1/4π2f02C
LxC
式中谐振频率f0即为MC1648的3脚输出频率值,C是电位器VR1调定的变容二极管的电容值,可见要计算L X的值还需先知道C值。为此需要对电位器VR1刻度与变容二极管的对应值作出校准。
为了校准变容二极管与电位器之间的电容量,我们要再自制一个标准的方形RF(射频)电感线圈L0。如图6—7(b)所示,该标准线圈电感量为0.44µH。校准时,将RF线圈L0接在图(a)的A、B两端,调节电位器VR1至不同的刻度位置,在C点可测量出相对应的测量值,再根据上面谐振公式可算出变容二极管在电位器VR1刻度盘不同刻度的电容量。附表给出了实测取样对应关系。
新电工实用电路600例
新电工实用电路600例
电工实用电路是电力工程中的重要组成部分,它涵盖了电力系统、输配电设备和各种电器设备的电路设计和安装。下面将介绍600个新的电工实用电路示例,帮助读者更好地理解和运用电工实用电路。
1. 基本交流电路:
- 单相交流电路
- 三相交流电路
- 电路中的电阻、电感、电容的作用
2. 照明电路:
- 室内照明电路设计
- 室外照明电路设计
- 使用无线遥控开关的照明电路
3. 电机控制电路:
- 单相电机启动电路
- 三相电机正反转控制电路
- 电机保护和监测电路
4. 电力系统保护电路:
- 短路保护电路
- 过载保护电路
- 接地保护电路
5. 光伏发电系统:
- 光伏发电原理及组成
- 光伏逆变器控制电路
- 光伏电池充电控制电路
6. 电池管理系统:
- 锂电池充电保护电路
- 铅酸电池充电控制电路
- 电池容量测试电路
7. 家庭电器电路:
- 空调控制电路
- 冰箱控制电路
- 洗衣机控制电路
8. 电梯安全电路:
- 电梯门开关控制电路
- 电梯轿厢位置监测电路
- 电梯超载保护电路
9. 智能家居电路:
- 无线门锁控制电路
- 智能插座控制电路
- 温湿度监测电路
10. 输配电设备:
- 变压器控制电路
- 开关柜保护电路
- 电容器补偿电路
以上是其中的一些示例,共涵盖了不同类型和不同用途的电工实用电路。在实际应用中,读者可以根据具体要求和场景进行相应的电路设计和安装。
69编号50个典型经典应用电路实例分析(免费下载)
电路1简单电感量测量装置
在电子制作和设计,经常会用到不同参数的电感线圈,这些线圈的电感量不像电阻那么容易测量,有些数字万用表虽有电感测量挡,但测量范围很有限。该电路以谐振方法测量电感值,测量下限可达10nH,测量范围很宽,能满足正常情况下的电感量测量,电路结构简单,工作可靠稳定,适合于爱好者制作。
一、电路工作原理
电路原理如图1(a)所示。
图1简单电感测量装置电路图
该电路的核心器件是集成压控振荡器芯片MC1648,利用其压控特性在输出3脚产生频
值,测量精度极高。
率信号,可间接测量待测电感L
X
BB809是变容二极管,图中电位器VR1对+15V进行分压,调节该电位器可获得不同的电压输出,该电压通过R1加到变容二极管BB809上可获得不同的电容量。测量被测电感L X 时,只需将L X接到图中A、B两点中,然后调节电位器VR1使电路谐振,在MC1648的3脚会输出一定频率的振荡信号,用频率计测量C点的频率值,就可通过计算得出L
值。
X 电路谐振频率:f0=1/2π所以L X=1/4π2f02C
LxC
式中谐振频率f0即为MC1648的3脚输出频率值,C是电位器VR1调定的变容二极管的电容值,可见要计算L X的值还需先知道C值。为此需要对电位器VR1刻度与变容二极管的对应值作出校准。
为了校准变容二极管与电位器之间的电容量,我们要再自制一个标准的方形RF(射频)电感线圈L0。如图6—7(b)所示,该标准线圈电感量为0.44µH。校准时,将RF线圈L0接在图(a)的A、B两端,调节电位器VR1至不同的刻度位置,在C点可测量出相对应的测量值,再根据上面谐振公式可算出变容二极管在电位器VR1刻度盘不同刻度的电容量。附表给出了实测取样对应关系。
电子电路经典实例(PDF)
图2.2.1 PN结的形成
对于P型半导体和N型半导体结合面,离 子薄层形成的空间电荷区称为PN结。
在空间电荷区,由于缺少多子,所以也 将在称N耗型尽和层P型。半导体的结合面上发生如下物理过程:
2)若VI= VIMax ,IL= ILMin时, IZ≤ IZmax成立, 则其他情况下, IZ≤ IZmax恒成立。
稳压二极管
IZmin ≤ IZ ≤ IZmax
R
+
IR
IO
IZ
+
VI
DZ
VO
RL
-
-
思路二:
IZ= IR- Io=(VI-Vz)/R- Io IZmin ≤ IZ=(VI-Vz)/R- Io≤ IZmax
在VI=VIMin~VIMax,IL=ILMin~ILMax时, Rmin ≤ R ≤ Rmax必须恒成立。
所以, Rmin= (VIMax -Vz)/(IZmax + ILMin ); Rmax =(VIMin-Vz)/(IZmin + ILMax )。
验证例2.5.1
(VIMax -Vz)/(IZmax + ILMin ) ≤ R ≤ (VIMin-Vz)/(IZmin + ILMax );
典型应用电路实例详解电子制作
电路1 简单电感量测量装置
在电子制作和设计,经常会用到不同参数的电感线圈,这些线圈的电感量不像电阻那么容易测量,有些数字万用表虽有电感测量挡,但测量范围很有限。该电路以谐振方法测量电感值,测量下限可达10nH,测量范围很宽,能满足正常情况下的电感量测量,电路结构简单,工作可靠稳定,适合于爱好者制作。
一、电路工作原理
电路原理如图1(a)所示。
图1 简单电感测量装置电路图
该电路的核心器件是集成压控振荡器芯片MC1648 ,利用其压控特性在输出3脚产生频率信号,可间接测量待测电感L X值,测量精度极高。
BB809是变容二极管,图中电位器VR1对+15V进行分压,调节该电位器可获得不同的电压输出,该电压通过R1加到变容二极管BB809上可获得不同的电容量。测量被测电感L X时,只需将L X接到图中A、B两点中,然后调节电位器VR1使电路谐振,在MC1648的3脚会输出一定频率的振荡信号,用频率计测量C点的频率值,就可通过计算得出L X值。
电路谐振频率:f0 = 1/2πLxC所以L X = 1/4π2 f02C
式中谐振频率f0即为MC1648的3脚输出频率值,C是电位器VR1调定的变容二极管的电容值,可见要计算L X的值还需先知道C值。为此需要对电位器VR1刻度与变容二极管的对应值作出校准。
为了校准变容二极管与电位器之间的电容量,我们要再自制一个标准的方形RF(射频)电感线圈L0。如图6—7(b)所示,该标准线圈电感量为0.44μH。校准时,将RF线圈L0接在图(a)的A、B两端,调节电位器VR1至不同的刻度位置,在C点可测量出相对应的测量值,再根据上面谐振公式可算出变容二极管在电位器VR1刻度盘不同刻度的电容量。附表给出了实测取样对应关系。
50个典型应用电路实例详解(电子制作)
电路1 简单电感量测量装置
在电子制作和设计,经常会用到不同参数的电感线圈,这些线圈的电感量不像电阻那么容易测量,有些数字万用表虽有电感测量挡,但测量范围很有限。该电路以谐振方法测量电感值,测量下限可达10nH,测量范围很宽,能满足正常情况下的电感量测量,电路结构简单,工作可靠稳定,适合于爱好者制作。
一、电路工作原理
电路原理如图1(a)所示。
图1 简单电感测量装置电路图
该电路的核心器件是集成压控振荡器芯片MC1648 ,利用其压控特性在输出3脚产生频率信号,可间接测量待测电感L X值,测量精度极高。
BB809是变容二极管,图中电位器VR1对+15V进行分压,调节该电位器可获得不同的电压输出,该电压通过R1加到变容二极管BB809上可获得不同的电容量。测量被测电感L X 时,只需将L X接到图中A、B两点中,然后调节电位器VR1使电路谐振,在MC1648的3脚会输出一定频率的振荡信号,用频率计测量C点的频率值,就可通过计算得出L X值。
电路谐振频率:f0 = 1/2πLxC所以L X = 1/4π2 f02C
式中谐振频率f0即为MC1648的3脚输出频率值,C是电位器VR1调定的变容二极管的电容值,可见要计算L X的值还需先知道C值。为此需要对电位器VR1刻度与变容二极管的对应值作出校准。
为了校准变容二极管与电位器之间的电容量,我们要再自制一个标准的方形RF(射频)电感线圈L0。如图6—7(b)所示,该标准线圈电感量为0.44μH。校准时,将RF线圈L0接在图(a)的A、B两端,调节电位器VR1至不同的刻度位置,在C点可测量出相对应的测量值,再根据上面谐振公式可算出变容二极管在电位器VR1刻度盘不同刻度的电容量。附表给出了实测取样对应关系。
PCB硬件设计常用电路原理图
1、NCP1529A电路参考设计
5V转1.8V参考电路:
5V转4.2V参考电路:
1、SPX1117M3-L-3.3电路参考设计(5V转3.3V)
2、当处理器采用5V和电池同时供电时的复位电路参考设计
3、NAND Flash电路参考设计
4、无源蜂鸣器控制电路
5、有源蜂鸣器驱动电路
6、Mini SD卡(Micro SD卡/TF卡)接口电路
8、调试串口接口电路
10、网线接口电路(RJ45接口电路)
11、以太网收发器电路
50个典型应用电路实例详解(电子制作)
电路1 简单电感量测量装置
在电子制作和设计,经常会用到不同参数的电感线圈,这些线圈的电感量不像电阻那么容易测量,有些数字万用表虽有电感测量挡,但测量范围很有限。该电路以谐振方法测量电感值,测量下限可达10nH,测量范围很宽,能满足正常情况下的电感量测量,电路结构简单,工作可靠稳定,适合于爱好者制作。
一、电路工作原理
电路原理如图1(a)所示。
图1 简单电感测量装置电路图
该电路的核心器件是集成压控振荡器芯片MC1648 ,利用其压控特性在输出3脚产生频率信号,可间接测量待测电感L X值,测量精度极高。
BB809是变容二极管,图中电位器VR1对+15V进行分压,调节该电位器可获得不同的电压输出,该电压通过R1加到变容二极管BB809上可获得不同的电容量。测量被测电感L X时,只需将L X接到图中A、B两点中,然后调节电位器VR1使电路谐振,在MC1648的3脚会输出一定频率的振荡信号,用频率计测量C点的频率值,就可通过计算得出L X值。
电路谐振频率:f0 = 1/2πLxC所以L X = 1/4π2 f02C
式中谐振频率f0即为MC1648的3脚输出频率值,C是电位器VR1调定的变容二极管的电容值,可见要计算L X的值还需先知道C值。为此需要对电位器VR1刻度与变容二极管的对应值作出校准。
为了校准变容二极管与电位器之间的电容量,我们要再自制一个标准的方形RF(射频)电感线圈L0。如图6—7(b)所示,该标准线圈电感量为0.44μH。校准时,将RF线圈L0接在图(a)的A、B两端,调节电位器VR1至不同的刻度位置,在C点可测量出相对应的测量值,再根据上面谐振公式可算出变容二极管在电位器VR1刻度盘不同刻度的电容量。附表给出了实测取样对应关系。
50个典型应用电路实例详解
电路1 简单电感量测量装置
电路2 三位数字显示电容测试表
电路 3 市电电压双向越限报警保护器
电路4 红外线探测防盗报警器
电路5 禁烟警示器
电路6 采用555时基电路的简易温度控制器
电路7 采用555时基电路的自动温度控制器
电路8 采用CD4011的超温监测自动控制电路
电路9 数字温度计电路
电路10 热带鱼缸水温自动控制器
电路11 采用555时基电路的简易长延时电路
电路12 双555时基电路长延时电路
电路13 精确长延时电路
电路14 数字式长延时电路
电路15 循环工作定时控制器
电路16 多级循环定时控制器
电路17 抗干扰定时器
电路18 采用555集成电路的简易光电控制器
电路 19 采用功率开关集成电路TWH8751的路灯自动控制器电路20 采用双D触发器CD4013的路灯控制器
电路21 使用氖灯的单键触摸开关
电路22 双键触摸式照明灯
电路23 触摸式延时照明灯
电路24 家用简易闪烁壁灯控制器
电路25 自动应急灯电路
电路26 12V供电的电子节能灯
电路27 高响度警音发生器
电路28 电子仿声驱鼠器
电路29 由HY560构成的语音录放电路
电路30 闪烁灯光门铃电路
电路3 1 由LM386构成的3W简易OCL功放电路
电路32 由TDA2009构成的1W高保真BTL功率放大器
电路33 具有音调控制功能的25W混合式Hi—Fi放大器
电路34 超级广场效果的耳机放大器
电路35 家用电器过压自动断电装置
电路36 电话自动录音控制器
电路37 电风扇自动温控调速器
电路38 水开报知器
电路39 新颖的鱼缸灯
50个典型电路实例详解-
电路1简单电感量测量装置
在电子制作和设计,经常会用到不同参数的电感线圈,这些线圈的电感量不像电阻那么容易测量,有些数字万用表虽有电感测量挡,但测量范围很有限。该电路以谐振方法测量电感值,测量下限可达10nH,测量范围很宽,能满足正常情况下的电感量测量,电路结构简单,工作可靠稳定,适合于爱好者制作。
一、电路工作原理
电路原理如图1(a)所示。
图1简单电感测量装置电路图
该电路的核心器件是集成压控振荡器芯片MC1648,利用其压控特性在输出3脚产生频
值,测量精度极高。
率信号,可间接测量待测电感L
X
BB809是变容二极管,图中电位器VR1对+15V进行分压,调节该电位器可获得不同的电压输出,该电压通过R1加到变容二极管BB809上可获得不同的电容量。测量被测电感L X 时,只需将L X接到图中A、B两点中,然后调节电位器VR1使电路谐振,在MC1648的3脚会输出一定频率的振荡信号,用频率计测量C点的频率值,就可通过计算得出L
值。
X 电路谐振频率:f0=1/2π所以L X=1/4π2f02C
LxC
式中谐振频率f0即为MC1648的3脚输出频率值,C是电位器VR1调定的变容二极管的电容值,可见要计算L X的值还需先知道C值。为此需要对电位器VR1刻度与变容二极管的对应值作出校准。
为了校准变容二极管与电位器之间的电容量,我们要再自制一个标准的方形RF(射频)电感线圈L0。如图6—7(b)所示,该标准线圈电感量为0.44µH。校准时,将RF线圈L0接在图(a)的A、B两端,调节电位器VR1至不同的刻度位置,在C点可测量出相对应的测量值,再根据上面谐振公式可算出变容二极管在电位器VR1刻度盘不同刻度的电容量。附表给出了实测取样对应关系。
实用运放电路实例解析(经典)综述
从虚断、虚短分析基本运放电路
运算放大器组成的电路五花八门,令人眼花瞭乱,是模拟电路中学习的重点。在分析它的工作原理时倘没有抓住核心,往往令人头大。为此本人特搜罗天下运放电路之应用,来个“庖丁解牛”,希望各位看完后有所斩获。
遍观所有模拟电子技朮的书籍和课程,在介绍运算放大器电路的时候,无非是先给电路来个定性,比如这是一个同向放大器,然后去推导它的输出与输入的关系,然后得出Vo=(1+Rf)Vi,那是一个反向放大器,然后得出
Vo=-Rf*Vi……最后学生往往得出这样一个印象:记住公式就可以了!如果我们将电路稍稍变换一下,他们就找不着北了!
今天,教各位战无不胜的两招,这两招在所有运放电路的教材里都写得明白,就是“虚短”和“虚断”,不过要把它运用得出神入化,就要有较深厚的功底了。
虚短和虚断的概念
由于运放的电压放大倍数很大,一般通用型运算放大器的开环电压放大倍数都在80 dB以上。而运放的输出电压是有限的,一般在 10 V~14 V。因此运放的差模输入电压不足1 mV,两输入端近似等电位,相当于“短路”。开环电压放大倍数越大,两输入端的电位越接近相等。
“虚短”是指在分析运算放大器处于线性状态时,可把两输入端视为等电位,这一特性称为虚假短路,简称虚短。显然不能将两输入端真正短路。
由于运放的差模输入电阻很大,一般通用型运算放大器的输入电阻都在1MΩ以上。因此流入运放输入端的电流往往不足1uA,远小于输入端外电路的电流。故通常可把运放的两输入端视为开路,且输入电阻越大,两输入
端越接近开路。“虚断”是指在分析运放处于线性状态时,可以把两输入端视为等效开路,这一特性称为虚假开路,简称虚断。显然不能将两输入端真正断路。
实用运放电路实例解析(经典)
从虚断、虚短分析基本运放电路
运算放大器组成的电路五花八门,令人眼花瞭乱,是模拟电路中学习的重点。在分析它的工作原理时倘没有抓住核心,往往令人头大。为此本人特搜罗天下运放电路之应用,来个“庖丁解牛”,希望各位看完后有所斩获。
遍观所有模拟电子技朮的书籍和课程,在介绍运算放大器电路的时候,无非是先给电路来个定性,比如这是一个同向放大器,然后去推导它的输出与输入的关系,然后得出Vo=(1+Rf)Vi,那是一个反向放大器,然后得出
Vo=-Rf*Vi……最后学生往往得出这样一个印象:记住公式就可以了!如果我们将电路稍稍变换一下,他们就找不着北了!
今天,教各位战无不胜的两招,这两招在所有运放电路的教材里都写得明白,就是“虚短”和“虚断”,不过要把它运用得出神入化,就要有较深厚的功底了。
虚短和虚断的概念
由于运放的电压放大倍数很大,一般通用型运算放大器的开环电压放大倍数都在80 dB以上。而运放的输出电压是有限的,一般在 10 V~14 V。因此运放的差模输入电压不足1 mV,两输入端近似等电位,相当于“短路”。开环电压放大倍数越大,两输入端的电位越接近相等。
“虚短”是指在分析运算放大器处于线性状态时,可把两输入端视为等电位,这一特性称为虚假短路,简称虚短。显然不能将两输入端真正短路。
由于运放的差模输入电阻很大,一般通用型运算放大器的输入电阻都在1MΩ以上。因此流入运放输入端的电流往往不足1uA,远小于输入端外电路的电流。故通常可把运放的两输入端视为开路,且输入电阻越大,两输入
端越接近开路。“虚断”是指在分析运放处于线性状态时,可以把两输入端视为等效开路,这一特性称为虚假开路,简称虚断。显然不能将两输入端真正断路。
PCB基础知识学习-经典
制造规则
确保电路板满足制造工 艺要求,如孔径、层数
等。
测试规则
确保电路板满足测试要 求,如测试点、测试设
备接口等。
03 PCB制造
制造流程
电路设计
根据产品需求进行电路原理图设计, 确定PCB布局和布线。
02
制作光绘
将设计好的PCB布局和布线转换为光 绘文件,用于后续的曝光和蚀刻。
01
组装
将电子元件焊接到PCB上,完成电路 板的组装。
05
03
曝光和蚀刻
将光绘文件通过曝光机曝光到覆铜板 上,然后进行蚀刻处理,形成PCB的 线路和孔。
04
表面处理
对PCB进行表面处理,如镀金、喷锡 等,以提高导电性能和耐腐蚀性。
制造材料
覆铜板
作为PCB的基材,提供电路板 的结构和导电性能。
铜箔
贴在覆铜板上的导电材料,用 于形成PCB的线路。
绝缘材料
计算机硬件
计算机硬件是另一个广泛使用PCB的领域。从主板、显卡、 内存条到硬盘驱动器,PCB在计算机硬件中发挥着至关重要 的作用。
在计算机硬件中,PCB需要承受高频率的工作负载和热量, 因此需要具备优秀的散热性能和稳定性。此外,随着计算机 硬件性能的提升,PCB也需要不断升级以适应新的集成需求 和更小的体积限制。
PCB功能
总结词
PCB的主要功能是支撑和连接电子元件, 传递信号和电流,实现电子设备的功能 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电路原理如图 2 所示。
图 2 三位数字显示电容测试表 电路图
该电容表电路由基准脉冲发生器、待测电容容量时间转换器、闸门控制器、译码器和显 示器等部分组成。
待测电容容量时间转换器把所测电容的容量转换成与其容量值成正比的单稳时Baidu Nhomakorabea td。基
2
准脉冲发生器产生标准的周期计数脉冲。闸门控制器的开通时间就是单稳时间 td。在td 时间 内,周期计数脉冲通过闸门送到后面计数器计数,译码器译码后驱动显示器显示数值。计数 脉冲的周期 T 乘以显示器显示的计数值 N 就是单稳时间 td,由于 td 与被测电容的容量成正 比,所以也就知道了被测电容的容量。
电路 1 简单电感量测量装置
在电子制作和设计,经常会用到不同参数的电感线圈,这些线圈的电感量不像电阻那么 容易测量,有些数字万用表虽有电感测量挡,但测量范围很有限。该电路以谐振方法测量电 感值,测量下限可达 10nH,测量范围很宽,能满足正常情况下的电感量测量,电路结构简 单,工作可靠稳定,适合于爱好者制作。 一、电路工作原理
振荡频率(MHz) 98 76 62 53 43 38 34
1
变容二极管 C 值
6
10 15 20 30 40 5
二、元器件选择 集成电路 IC 可选择 Motoroia 公司的 VCO(压控振荡器)芯片。VR1 选择多圈高精度
电位器。其它元器件按电路图所示选择即可。 三、制作与调试方法
制作时,需在多圈电位器轴上自制一个刻度盘,并带上指针。RF 标准线圈按图(b)所 给尺寸自制。电路安装正确即可正常工作,调节电位器 VR1 取滑动的多个点与变容二极管 的对应关系,可保证测量方便。该测量方法属于间接测量,但测量范围宽,测量准确,所以 对电子爱好者和实验室检测电感量有可取之处。该装置若固定电感可变成一个可调频率的信 号发生器。
C7 的作用是当电源开启时在 R10 上产生一个上升脉冲,对计数器自动清零。 二、元器件选择
电路中,IC1 选用 NE556;IC2 选用 CD4001;IC3 选用 CD4543;IC4 选用 CD4553。七 段数码管可选用三字共阴极数码管。T1~T3 选用 8550(或其它 PNP 型三极管)。 C1 不应大 于 0.01µF,C3 选用小型金属化电容。R3~R9 选用 1/8W 金属膜电阻。其他元器件没有特殊 要求,按电路标注选择即可。 三、制作与调试方法
IC3 构成译码器驱动器,它把 IC4 送来的 BCD 码译成十进制数字笔段码,经 R11~R17 限流后直接驱动七段数码管。集成电路 CD4553 的 15 脚、1 脚、2 脚为数字选择输出端,经 R18~R20 选择脉冲送到三极管 T1~T3 的基极使其轮流导通,这两部分电路配合就完成了三 位十进制数字显示。
电路原理如图 1(a)所示。
图 1 简单电感测量装置电路图
该电路的核心器件是集成压控振荡器芯片 MC1648 ,利用其压控特性在输出 3 脚产生频
率信号,可间接测量待测电感 LX 值,测量精度极高。 BB809 是变容二极管,图中电位器 VR1 对+15V 进行分压,调节该电位器可获得不同的
电压输出,该电压通过 R1 加到变容二极管 BB80 9 上可获得不同的电容量。测量被测电感 LX 时,只需将 LX 接到图中 A、B 两点中,然后调节电位器 VR1 使电路谐振,在 MC1648 的 3 脚会输出一定频率的振荡信号,用频率计测量 C 点的频率值,就可通过计算得出 LX 值。
图 2 中,集成电路 IC1B 电阻 R7~R9 和电容 C3 构成基准脉冲发生器(实质上是一个无 稳多谐振荡器),其输出的脉冲信号周期 T 与 R7~R9 和 C3 有关,在 C3 固定的情况下通过 量程开关 K1 b 对 R7、R8 、R9 的不同选择,可得到周期为 11 µs、1.1ms 和 11 ms 的三个脉冲 信号。
电路谐振频率:f0 = 1/2π LxC
所以 LX = 1/4π2 f 02C
式中谐振频率 f0 即为 MC1648 的 3 脚输出频率值,C 是电位器 VR1 调定的变容二极管 的电容值,可见要计算 LX 的值还需先知道 C 值。为此需要对电位器 VR1 刻度与变容二极管 的对应值作出校准。
为了校准变容二极管与电位器之间的电容量,我们要再自制一个标准的方形 RF(射频) 电感线圈 L0。如图 6—7(b)所示,该标准线圈电感量为 0.44µH。校准时,将RF 线圈 L0 接在 图(a)的 A、B 两端,调节电位器 VR1 至不同的刻度位置,在 C 点可测量出相对应的测量 值,再根据上面谐振公式可算出变容二极管在电位器 VR1 刻度盘不同刻度的电容量。附表 给出了实测取样对应关系。
电路 2 三位数字显示电容测试表
广大电子爱好者都有这样的体会,中、高档数字万用表虽有电容测试挡位,但测量范围 一般仅为 1pF~20µF,往往不能满足使用者的需要,给电容测量带来不便。本电路介绍的三 位数显示电容测试表采用四块集成电路,电路简洁、容易制作、数字显示直观、精度较高, 测量范围可达 1nF~104µF。特别适合爱好者和电气维修人员自制和使用。 一、电路工作原理