Electrochemical performance of Al–Si–graphite composite as anode for lithium–ion batteries

合集下载

基于埃洛石的硅纳米管制备及储锂性能

基于埃洛石的硅纳米管制备及储锂性能

第49卷第7期 2021年7月硅 酸 盐 学 报Vol. 49,No. 7 July ,2021JOURNAL OF THE CHINESE CERAMIC SOCIETY DOI :10.14062/j.issn.0454-5648.20200971基于埃洛石的硅纳米管制备及储锂性能赵明远1,杨绍斌2,董 伟2,赵玲敏2,沈 丁2(1. 辽宁工程技术大学矿业学院,辽宁 阜新 123000;2. 辽宁工程技术大学材料科学与工程学院,辽宁 阜新 123000)摘 要:以天然埃洛石为前驱体,通过低温铝热还原法和自模板法合成硅纳米管,研究了结构形貌在还原过程中的维持机理及储锂性能。

结果表明:在低温铝热还原过程中,天然埃洛石中的铝氧八面体有助于维持埃洛石一维纳米管状结构进而得到硅纳米管。

基于埃洛石的硅纳米管作为锂离子电池负极时具有优异的电化学性能,电极首次比放电容量高达 3 150.2 (mA·h)/g ,50次循环后显示出1 786.0 (mA·h)/g 的高容量,为商业硅材料比容量的2倍以上,采用2 A/g 大电流密度循环时,电极在200次循环后比容量能够保持1 197.6 mA·h/g,远高于商业硅电极。

关键词:埃洛石;低温铝热还原;硅纳米管;锂离子电池;负极材料中图分类号:TM538 文献标志码:A 文章编号:0454–5648(2021)07–1457–09 网络出版时间:2021–06–25Preparation and Lithium Storage Properties of Silicon Nanotubes Based on HalloysiteZHAO Mingyuan 1, YANG Shaobin 2, DONG Wei 2, ZHAO Lingmin 2, SHEN Ding 2 (1. College of Mines, Liaoning Technical University, Fuxin 123000, Liaoning, China;2. College of Materials Science and Engineering, Liaoning Technical University, Fuxin 123000, Liaoning, China)Abstract: Natural halloysite was used as precursor and template to prepare silicon nanotubes through low temperature aluminothermic reduction. The mechanism of variation in morphology during the reduction process and the lithium storage performance of the silicon nanotube were studied. It was found that the alumina octahedron in the natural halloysite was helpful to maintain the one-dimensional nanotube structure of the products during the low temperature aluminothermic reduction process, leading to the formation of silicon nanotubes. The silicon nanotubes had excellent electrochemical performance when used as anode of lithium-ion batteries, with an initial specific capacity of 3 150 mA·h/g. After 50 cycles, the specific capacity was still 1 977 mA·h/g, which is more than twice the value of commercial silicon anode. At a current density of 2 A/g, the capacity was maintained to be 913 mA·h/g after 200 cycles, which is also much higher than that of commercial silicon anode.Keywords: halloysite; low temperature aluminothermic reduction; silicon nanotube; lithium-ion battery; anode material锂离子电池具有能量密度高、循环寿命长的优点,目前已广泛应用于便携式电子器件及动力汽车中。

硅负极添加剂对锂离子电池的影响_冯明燕

硅负极添加剂对锂离子电池的影响_冯明燕

第30卷 第6期 无 机 材 料 学 报Vol. 30No. 62015年6月Journal of Inorganic Materials Jun., 2015收稿日期: 2014-12-05; 收到修改稿日期: 2015-02-27基金项目: 国家自然科学基金(11372217); 天津市重点基金项目(14JCZDJC32400)National Natural Science Foundation of China (11372217); Tianjin Committee of Science and Technoogy (14JCZDJC32400) 作者简介: 冯明燕(1990–), 女, 硕士研究生. E-mail: fmyxinya125@ 通讯作者: 田建华, 教授. E-mail: jhtian@文章编号: 1000-324X(2015)06-0647-06 DOI: 10.15541/jim20140633硅负极添加剂对锂离子电池的影响冯明燕, 田建华, 刘园园, 单忠强(天津大学 化工学院, 天津 300072)摘 要: 选用乙炔黑(AB)、SuperP 、VulcanXC-72和BP2000四种导电剂, 研究其物化性能及含量对硅电极电化学性能的影响; 探讨了粘合剂种类和用量对硅电极电化学性能的影响。

采用场发射扫描电子显微镜对硅电极的形貌进行表征; 采用恒流充放电测试及循环伏安法对硅电极的电化学性能进行测试。

结果表明, 导电剂SuperP 具有良好的导电性、适中的比表面积(75.8 m 2/g)和颗粒尺寸(39.2 nm), 有利于提高硅负极的循环性能及倍率循环性能。

采用15wt%的导电剂 SuperP 与15wt%的粘合剂CMC 所制备的电极循环50次后可逆比容量保持在1143.8 mAh/g 。

关 键 词:锂离子电池; 硅负极; 导电剂; 粘合剂 中图分类号: TM911 文献标识码: AEffect of Silicon Anode Additives on Lithium Ion BatteriesFENG Ming-Yan, TIAN Jian-Huan, LIU Yuan-Yuan, SHAN Zhong-Qiang(School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China)Abstract: Silicon anode of lithium ion batteries was fabricated with different binders and conductive additives(acetylene black, SuperP, VulcanXC-72, BP2000), and the electrochemical performance was investigated in detail. The effect of morphology and addition amount of conductive additives on the electrochemical performance of silicon elec-trode were investigated. Then, the appropriate type and content of binder in the silicon electrode was optimized. The morphology of silicon electrodes were characterized by scanning electron microscope(SEM). Electrochemical per-formances of the silicon electrodes were measured by constant current charge-discharge and cyclic voltammetry(CV). The results shows that SuperP has good electrical conductivity, a suitable surface area of 75.8 m 2/g and average particle size of 39.24 nm, which can improve cycling performance and rate performance of the silicon electrode. With 15wt% SuperP and 15wt% CMC, the electrode exhibits a reversible capacity of 1143.8 mAh/g after 50 cycles.Key words: lithium ion batteries; silicon anode; conductive additives; binders商品化的锂离子电池负极材料主要是石墨碳材料, 其理论容量仅为372 mAh/g, 寻找更高容量和更为环保的非碳类负极材料是目前锂离子电池负极材料研究的重要方向之一。

关于磷酸铁锂的英文文献翻译

关于磷酸铁锂的英文文献翻译

锂离子电池正极材料覆碳LiFePO4的制备和表征摘要:用两种方法合成纳米LiFePO4/C复合材料,用国产的非晶体纳米FePO4作离子前驱体,可溶性淀粉、蔗糖、柠檬酸和间苯二酚甲醛聚合物四种物质分别作碳的前驱体。

其中可溶性淀粉、蔗糖、柠檬酸作碳前驱体时用第一种方法合成,间苯二酚甲醛聚合物作碳前驱体时用第二种方法合成。

得到样品后用XRD,TEM ,拉曼波谱和循环伏安法对制得样品的晶体结构,形貌,相成分以及电化学特性进行测试研究。

研究结果显示用可溶性淀粉和蔗糖作碳的前驱体制得的LiFePO4颗粒表面的碳的包覆层不充分,而用柠檬酸和间苯二酚甲醛聚合物作前驱体所得的样品实现了在LiFePO4颗粒表面得到均匀一致的碳包覆层的目的,并且相应的碳包覆层的厚度分别为2.5 nm和4.5 nm。

在制得的四种样品中,使用间二苯酚甲醛聚合物作碳的前驱体时,样品的首次放电比容量最高(室温下0.2 C 时放电比容量为138.4 mAh/ g),倍率性能最好。

第一章引言LiFePO4作为锂离子电池正极材料由于其理论比容量高(170mAh/g),环保,热稳定性好而受到广泛关注。

然而其低于10−13Scm−1的电导率限制了其电池性能【1】,例如在高电流密度下功率的显著减小是其商业化发展的主要障碍。

目前人们已经引进了很多有效的方法克服LiFePO4电导率低的缺点,诸如金属替换法【2-5】,金属粉末混合法【6】,以及传导性碳包覆法【7-15】,通过形成良好的导电通路来提高最终产物的电导率。

在这些方法中,制备LiFePO4/C 复合材料是最受关注的。

此外,碳还可以用作还原剂使Fe3+降价为Fe2+。

值得提及的是包括纳米尺寸的磷酸铁锂的合成在内的很多研究用昂贵的Fe2+盐作前驱体【3.16-20】,例如FeC2O4·2H2O 和(CH 3COO)2Fe。

因此,研究新的制备方法和应用廉价的材料对磷酸铁锂作为锂离子电池正极材料的产业发展至关重要。

二氧化碳电催化英文文献

二氧化碳电催化英文文献

二氧化碳电催化英文文献1.In situ Probing the Electrochemical Performance of Nanoscale Amorphous Ni-Fe Oxides for CO2 ReductionAbstractCO2 electroreduction into liquid chemical products is a carbon-neutral technology that converts a non-renewable carbon resource into renewable chemicals, offering promising opportunities for chemical production and for sustainability. Materials that could efficiently catalyze the electrochemical conversion of CO2 are highly attractive, yet few studies have investigated the intrinsic behaviour of catalysts during electrolysis with in situ methods. Here, we use a multitechnique approach (in situ spectroelectrochemistry, impedance spectroscopy,X-ray photoelectron spectroscopy, and optical-grade cryofixation) to track the electrochemical behaviour of amorphous Ni-Fe oxides down to nanometer scale during CO2 electrolysis. The results unambiguously confirm that under CO2 electrolysis the electrochemical performance of amorphous Ni-Fe oxides, down to 6 nm crystallite size, does not appreciably depend on the particle morphology or on the crystallite size. Such findings are a must for the development of CO2 electrolysisreactors that require nanostructured materials with improved performance.2.Catalytic oxidation of formaldehyde to CO2 and H2O oxidation on Iridium oxide-based thin filmsAbstractThe catalytic oxidation of formaldehyde to CO2 and H2O on thin films of mainly Iridium oxide-based catalysts with composition IrOx/CeO2 and reinforcements of TiO2 and La2O3 is studied. Samples with Ir/Ce molar ratios equal to 1, 0.75, and 0.5 are studied. The films were synthesised by pulsed laser deposition on aluminosilicate substrates. The FBRM particle size distributions obtained by laser diffraction showed particles between 10 and 250 nm, in all the films. The BET surface area measured were 22, 26 and 36 m2 /g for Ir 1, Ir 0.75 and Ir 0.5, respectively. The XRD showed that the films were only composed by amorphous around Iridium, for the different molar ratios. The catalytic performance was evaluated in a fixed-bed flow reactor and carbon dioxide and water vapour selectivitiesobtained with Ir 0.75 as high as 100%. Temporal stability tests showed fast and monotonic deterioration in the activity of the Ir 1, while the Ir 0.75 showed the highest stability on 60 h of operation. These results are promising results for the development of thin film-catalysts for the fine chemicals industry.。

高比能量锂离子电池硅基负极材料研究进展

高比能量锂离子电池硅基负极材料研究进展

高比能量锂离子电池硅基负极材料研究进展谭毅;王凯【摘要】硅的理论嵌锂比容量是石墨材料比容量的十倍以上,脱锂电位低,资源丰富,倍率特性较好,故高比能量的硅基材料成为了电动汽车?可再生能源储能系统等领域的研究热点?但由于其在脱嵌锂过程中巨大的体积膨胀效应会导致硅电极材料粉化和结构崩塌,并且在电解液中硅表面重复形成的固相电解质层(SEI)使极化增大?库伦效率降低,最终导致电化学性能的恶化?为了解决上述问题,加快实现硅基电极的商业化应用,本文系统总结了通过硅基材料的选择和结构设计来解决充放电过程中体积效应的工作,并深入分析和讨论了具有代表性的硅基复合材料的制备方法?电化学性能和相应机理,重点介绍了硅碳复合材料和SiOx(0<x≤2)基复合材料?最后对硅基负极材料存在的问题进行了分析,并展望了其研究前景.【期刊名称】《无机材料学报》【年(卷),期】2019(034)004【总页数】9页(P349-357)【关键词】硅基材料;负极材料;锂离子电池;综述【作者】谭毅;王凯【作者单位】大连理工大学材料科学与工程学院, 大连 116024;大连理工大学辽宁省太阳能光伏系统重点实验室, 大连 116024;大连理工大学材料科学与工程学院, 大连 116024;大连理工大学辽宁省太阳能光伏系统重点实验室, 大连 116024【正文语种】中文【中图分类】TM912锂离子电池由于脱锂电位低,资源丰富,绿色环保,比能量较高、无记忆效应和工作电压高等优势,在手机、笔记本电脑及数码相机等电子产品领域得到了广泛应用。

高比能量的锂离子电池从电子终端设备走向电动汽车和储能技术领域势在必行[1-2]。

常见的锂离子电池负极材料有软碳、硬碳、中间相碳微球(MCMB)、人造石墨、天然石墨、钛酸锂(LTO)和硅基材料等。

目前,锂离子电池商用负极材料石墨的比容量已接近理论值(372 mAh/g),很难再有质的提升,LTO虽然循环安全性较好,但是比容量太低(176 mAh/g),难以满足未来高比能量电池的发展需求。

磷酸锰铁锂的分解温度

磷酸锰铁锂的分解温度

磷酸锰铁锂的分解温度磷酸锰铁锂是一种锂离子电池正极材料,具有高能量密度、长循环寿命和较高的工作电压等优点。

但是,磷酸锰铁锂也存在着分解和失效的问题,尤其是在高温下。

本文将就磷酸锰铁锂的分解温度及相关参考内容进行探讨。

磷酸锰铁锂的分解温度是指其在加热过程中开始失去活性或结构改变的温度。

一般来说,磷酸锰铁锂的分解温度取决于多种因素,如化学成分、晶体结构、添加剂等,因此不同材料的分解温度会有所差异。

磷酸锰铁锂通常是由磷酸锰锂(LiMnPO4)和磷酸铁锂(LiFePO4)两种相互掺杂的化合物组成。

在正常使用条件下,磷酸锰铁锂的分解温度往往在200°C至250°C之间。

然而,在高温条件下,尤其是超过350°C时,磷酸锰铁锂的结构会发生严重变化,导致材料的电化学性能下降,丧失长循环寿命的特点。

为了提高磷酸锰铁锂的热稳定性和循环寿命,研究人员通过不断改进材料制备工艺、优化添加剂配方等方式进行了大量的研究工作。

以下是一些相关研究的参考内容:1. Chen Z, et al.(2012). "Improving electrochemical performance of LiFePO4–Li3 V2(PO4)3 composite cathode material by Li3V2(PO4)3-coating.” Journal of Power Sources, 218, 208-215.该研究通过在磷酸锰铁锂颗粒表面涂覆Li3V2(PO4)3,提高了材料的热稳定性和电化学性能。

2. Zuo X, et al.(2014). "Structure and electrochemical performance of LiMnPO4 coated with Li3PO4 by sol–gel method.” Journal of Thermal Analysis and Calorimetry, 115(1), 585-590.该研究采用溶胶-凝胶方法,在磷酸锰铁锂颗粒表面涂覆Li3PO4薄层,提高了材料的热稳定性和电化学性能。

长寿命锰酸锂锂离子电池(中英文)

长寿命锰酸锂锂离子电池(中英文)

120
Capacity retention rate / %
5C charge/10C discharge
100
80
60
3000cycles-80%
40
20
0 0 500 1000 1500 2000 2500 3000
Cycle number
Cyclic performance of Modified LiMn2O4/C Li-ion batteries (3.0-4.2V)
痕量酸作用下,LiMn2O4发生歧化反应:
The disproportion reaction of LiMn2O4 in trace amount acids
LiMn 2 O 4 + 4H + → Li + + λ MnO 2 + Mn 2+ + 2H 2 O
添加剂 Additives
控制HF含量添加剂: Additives for decreasing HF
与电解质相容性影响因素包括:正极表 面膜的稳定性,电解液组分的氧化分解和 LiMn2O4在电解液中溶解.
电解液组分氧化:Electrolyte oxidation
CH3OCO CH3 (DMC) 3O2 → 3CO2 + 3H2O + 2
LiMn2O4高温分解:
LiMn2O4 decomposition at high temperature
mobile phones Electric bicycles Power tools Electric toys Mining lamps, emergency lamps Vacuum cleaner
LiMn2O4的特点

染料敏化太阳能电池用琼脂糖基磁性聚合物电解质的电化学性能

染料敏化太阳能电池用琼脂糖基磁性聚合物电解质的电化学性能

染料敏化太阳能电池用琼脂糖基磁性聚合物电解质的电化学性能郭学益易鹏飞王惟嘉杨英*(中南大学冶金科学与工程学院,长沙410083)摘要:以琼脂糖为聚合物基质,N -甲基吡咯烷酮为溶剂,磁性纳米粒子四氧化三铁为无机纳米颗粒添加剂制备了用于染料敏化太阳能电池(DSSC)的磁性聚合物电解质.通过研究不同小分子表面活性剂,聚乙二醇(PEG 200)、曲拉通(Triton X-100)、乙酰丙酮和三者混合的表面活性剂对掺杂有1%(w )Fe 3O 4的磁性聚合物电解质离子电导率的影响,发现PEG 200的加入可有效提高琼脂糖基磁性聚合物电解质的离子电导率.同时,对不同PEG 200浓度添加下的电解质进行离子电导率测试研究发现:当PEG 200加入量为61.8%(w )时,电解质具有最佳的离子电导率(2.88×10-3S ·cm -1);对染料敏化太阳能电池进行电化学交流阻抗谱(EIS)测试的结果表明:染料敏化太阳能电池的电子寿命和复合电阻随着PEG 200浓度的增加是先增大后减小,最大的电子寿命和复合电阻出现在PEG 200浓度为68.3%(w )处.关键词:磁性聚合物电解质;琼脂糖;纳米Fe 3O 4;PEG 200;染料敏化太阳能电池中图分类号:O646Electrochemical Properties of an Agarose-Based Magnetic PolymerElectrolyte in Dye-Sensitized Solar CellsGUO Xue-YiYI Peng-FeiWANG Wei-JiaYANG Ying *(School of Metallurgical Science and Engineering,Central South University,Changsha 410083,P .R.China )Abstract:In order to enhance the dispersion of Fe 3O 4nanoparticles in polymer electrolytes for dye-sensitized solar cell (DSSC)applications,the ionic conductivity of the polymer electrolytes with different small molecular surfactants was studied.The surfactants used were polyethylene glycol (PEG 200),Triton X-100,acetyl acetone,and mixture of these three active agents at 1%(w )doping concentration of Fe 3O 4nanoparticles in parison of the electrochemical properties of Fe 3O 4-doped polymer electrolytes containing different surfactants showed that PEG 200was suitable for modifying Fe 3O 4nanoparticles to disperse in agarose-based polymer electrolytes.When the mass fraction of PEG 200was 61.8%(w ),the electrolyte had excellent conductivity (2.88×10-3S ·cm -1).Electrochemical impedance spectra (EIS)revealed that when the concentration of PEG 200increased,the electron lifetime and combination resistance of a dye-sensitized solar cell increase initially and then decreasd.The longest electron lifetime and the largest combination resistance were achieved when the concentration of PEG 200was 68.3%(w ).Key Words:Magnetical polymer electrolyte;Agarose;Nano-Fe 3O 4;PEG 200;Dye-sensitized solarcell[Article]doi:10.3866/PKU.WHXB201112302物理化学学报(Wuli Huaxue Xuebao )Acta Phys.-Chim.Sin .2012,28(3),585-590March Received:September 15,2011;Revised:December 12,2011;Published on Web:December 30,2011.∗Corresponding author.Email:muyicaoyang@;Tel:+86-731-88877863.The project was supported by the National Natural Science Foundation of China (61006047).国家自然科学基金(61006047)资助项目ⒸEditorial office of Acta Physico-Chimica Sinica1引言染料敏化太阳能电池(DSSC)是一种新型的太阳能电池,这种电池工艺简单,原材料丰富,制作成本低(仅为硅太阳能电池的1/5-1/10),能耗少,在大585Acta Phys.-Chim.Sin.2012Vol.28面积工业化生产中具有较大的优势.1-3同时部分材料可以得到充分的回收,对保护环境具有重要的意义.电解质在染料敏化太阳能电池中主要起再生染料和传输空穴的作用,并且对电池体系的热力学和动力学特性以及电池的光电性能有很大影响.4目前得到光电转化效率最高的是液体电解质,光电转化效率可达10%-12.7%,2,5但液态电解质存在着有机溶剂易挥发、封装难、易泄漏及长期稳定性差等问题,使其很难广泛应用和商业化.6使用聚合物电解质是解决液态电解质密封和稳定性等问题的有效途径之一.聚合物电解质有着较低的蒸汽压,与纳米电极和对电极之间有良好的收缩和填充性能,并有较高的离子导电率和良好的热稳定性.7因此它被广泛地运用在染料敏化太阳能电池中.Lan等8采用PAA-PEG作为聚合物固体基质得到效率为5.25%的电池;Wu等9研究开发一种新的热塑型准固态聚合物电解质体系用于DSSC,其效率可达到7.22%.在聚合物体系中添加无机纳米颗粒一直以来被认为是提高聚合物电解质体系离子电导率的有效方法.10,11因为无机纳米颗粒的表面活性很大,其表面含有丰富的羟基,这使得它可以与聚合物基质当中的各个成分形成氢键连接而成为电解质体系的固态骨架结构;同时纳米粒子的加入可以显著地增加聚合物的非晶性,有利于离子的传输,提高电解质体系离子电导率.12本文选择磁性纳米Fe3O4颗粒作为琼脂糖聚合物电解质体系的无机添加剂,纳米Fe3O4不同于传统的无机纳米颗粒,由于其本身的磁性,在外加磁场的作用下纳米Fe3O4与聚合物结合所形成的磁性聚合物会产生定向排列,离子电导率将会显著提高,13,14不仅如此,磁场作用下定向排列的磁性聚合物电解质具有比无序聚合物电解质更低的界面电阻以及更好的填充性能.由于纳米Fe3O4颗粒粒径小,表面能大,易发生团聚,影响它在聚合物中的均匀分散.因此,为了增加纳米Fe3O4颗粒与聚合物的界面结合力,提高纳米Fe3O4颗粒的分散能力,需要对纳米Fe3O4颗粒的表面进行改性,加入表面活性剂能使纳米Fe3O4颗粒的表面能态降低,消除纳米Fe3O4颗粒的表面电荷,提高纳米Fe3O4颗粒与有机相的亲和力,减弱粒子的表面极性,15-18使得纳米Fe3O4颗粒在聚合物体系里保持稳定,不易出现聚沉、团聚,从而有效地提高聚合物电解质的性能.本文尝试了四种不同的表面活性剂:聚乙二醇(PEG200)、曲拉通(Triton X-100)、乙酰丙酮和三者混合的表面活性剂.将其加入1%(w)的磁性纳米Fe3O4颗粒掺杂的琼脂糖基聚合物电解质中,通过电化学性能的测试找到最适合此体系的表面活性剂.同时改变Fe3O4纳米颗粒掺杂的琼脂糖聚合物电解质中分散剂聚乙二醇(PEG200)的浓度,考察了不同PEG200浓度对磁性聚合物电解质离子电导率及其相应染料敏化太阳能电池电化学性能的影响.2实验部分2.1实验试剂TiO2(P25,20-30nm,Degussa AG),导电玻璃(30Ω·□-1,FTO),染料(N719,苏州中晟化工有限公司),纳米Fe3O4(99.5%,20nm,Aladdin Chemistry Co.Ltd);琼脂糖(AG,分子量:3000-5000,生化试剂)、N-甲基吡咯烷酮(NMP,化学纯)、聚乙二醇(PEG200,化学纯)均为上海国药集团化学试剂有限公司产品;碘化锂(LiI,99%,Acros Organics);碘(I2,分析纯,湖南汇虹试剂有限公司);曲拉通(Triton X-100,化学纯,汕头市西陇化工厂);乙酰丙酮(分析纯,天津市福晨化学试剂厂).2.2磁性聚合物电解质溶液的制备2.2.1不同表面活性剂改性下磁性聚合物电解质溶液的制备将2%(w)的琼脂糖加入5g N-甲基吡咯烷酮中在80°C恒温水浴下磁力搅拌4h,之后加入0.034g 的LiI和0.0018g的I2到以上体系,在常温下磁力搅拌4h,制成琼脂糖基聚合物电解质体系.向聚合物电解质体系中加入不同小分子表面活性剂各0.1 mL,分别为空白、PEG200、曲拉通、乙酰丙酮和混合活性剂(0.04mL PEG200,0.03mL曲拉通和0.03mL 乙酰丙酮),常温磁力搅拌4h.最后,加入1%(w)的纳米Fe3O4颗粒,超声分散2h(KQ-700DE数控超声清洗器,昆山市超声仪器有限公司),得到不同表面活性剂改性的琼脂糖基磁性聚合物电解质溶液.2.2.2不同PEG200浓度添加下磁性聚合物电解质溶液的制备将2%(w)的琼脂糖加入5g N-甲基吡咯烷酮中在80°C恒温水浴下磁力搅拌4h,之后加入0.034g 的LiI和0.0018g的I2到以上体系在常温下磁力搅拌4h,制成琼脂糖基聚合物电解质体系.然后,向以上溶液体系中加入不同含量的PEG200,分别为0、0.05、0.1、0.15、0.2、0.25mL(含量分别为0%、35.0%、586郭学益等:染料敏化太阳能电池用琼脂糖基磁性聚合物电解质的电化学性能No.352.1%、61.8%、68.3%、72.9%(w,下同),计算公式为:m PEG200/(m AG+m PEG200+m Fe3O4),常温磁力搅拌4h.最后,加入1%的纳米Fe3O4颗粒,超声分散2h(KQ-700DE 数控超声清洗器,昆山市超声仪器有限公司),得到不同含量PEG200改性的琼脂糖基磁性聚合物电解质溶液.2.3表征方法2.3.1磁性聚合物电解质表面形貌的扫描电镜(SEM)测试不同PEG200浓度添加下的磁性聚合物电解质的表面形貌是通过JSM-6360LV高低真空扫描电镜(SEM)(日本电子)来观测的.扫描电镜测试下聚合物电解质膜样的制备:在载玻片上滴加配置好的电解质溶液,放入烘箱在80°C下烘4h.得到电解质膜,放入干燥器中.2.3.2磁性聚合物电解质的离子电导率的测试琼脂糖基聚合物电解质的离子电导率测试是在电化学工作站CHI604D(上海辰华仪器有限公司)上在室温下完成的,频率范围为10Hz-1MHz,扰动电压为10mV.离子电导率测试的样品制备如下:在Pt电极上滴加配置好的聚合物电解质溶液,放入烘箱,80°C下烘烤一定时间至电解质变粘稠,之后将另一块Pt电极盖在上面,用夹子夹紧,放入烘箱80°C 下烘2h.取出放入干燥器中,待测.离子电导率可以通过以下公式进行计算:σ=L/AR b(1)其中,L是聚合物电解质膜的厚度;A是电解质膜接触到铂电极的面积;R b是聚合物电解质的体电阻. 2.3.3染料敏化太阳能半电池交流阻抗的测试为了更直接地了解不同浓度PEG200改性的磁性琼脂糖电解质对染料敏化太阳能电池内部TiO2/电解质界面,以及对光阳极TiO2内部电子输运的影响,我们将一系列磁性聚合物电解质滴加到未敏化的TiO2光阳极上,烘烤后加盖对电极制成未敏化的电池进行电化学交流阻抗测试.我们将未敏化的电池定义为半电池.不同小分子改性的染料敏化太阳能电池的电化学交流阻抗(EIS)测试是在电化学工作站CHI604D上完成,频率范围是0.05-0.1MHz,所加的扰动电压是10mV,所加偏压为-0.8V.交流阻抗样品制备如下:将制备好的聚合物电解质溶液滴加在未敏化的的光阳极上,控制电解质溶液在80°C下烘烤使溶剂挥发,当电解质溶液浓缩成粘稠状时加上Pt电极,用夹子将两部分夹紧.再将此半电池在烘箱中80°C下继续烘烤2h,取出放入干燥器中,待测.3结果与讨论3.1不同分散剂改性的磁性聚合物电解质的离子电导率分析图1所示为不同分散剂对聚合物电解质离子电导率的影响.从图中可以看出,聚合物电解质中乙酰丙酮作为分散剂时,电解质离子电导率最高,为2.52×10-3S·cm-1;其次是添加混合活性剂的电解质,再次为含PEG200的电解质;向聚合物电解质中加入曲拉通会降低其离子电导率.通过分析三种分散剂的分子结构可知,PEG200为短链分散剂,曲拉通为长链分散剂(C34H62O11).由于熵排斥能的大小主要取决于高分子化合物的链长,链越长,熵排斥能越高,质点越稳定.但链太长却会在粒子表面发生折叠而产生压缩空间位阻层或引起架桥絮凝,19所以PEG200能有效提高电解质的电导而曲拉通会降低其电导;而当乙酰丙酮做为表面活性剂时,我们发现含有乙酰丙酮的聚合物电解质溶液的颜色会从没有加活性剂时的棕红色逐渐变淡至基本无色.产生此现象的原因在于乙酰丙酮会与碘发生类似丙酮与碘的碘化反应,20反应方程式为:CH3COCH2COCH3+I2→CH3COCH2COCH2I+H++I-(2)乙酰丙酮的加入使得聚合物电解质中的I2变成I-,电解质中的I-离子增加有利于电子的传输,离子电导率将会提升.而I2的消耗使得溶液的颜色变淡,完全吻合了实验现象.但同时,由于I2的减少,光电反应(I2+e-→I-3)的速度急剧降低,可能导致整个染料敏化太阳能电池的光电循环速度减缓,使其光电性能图1不同表面活性剂对聚合物电解质离子电导率的影响Fig.1Effect of different surfactans on ionic conductivityof polymerelectrolyte587Acta Phys.-Chim.Sin.2012Vol.28不理想,因此乙酰丙酮添加的聚合物电解质不适合用于染料敏化太阳能电池.3.2不同PEG200浓度下琼脂糖磁性聚合物电解质表面形貌分析图2是不同含量PEG200改性下的聚合物电解质的扫描电镜(SEM)图,从图中可以看出,当PEG200含量小于61.8%时,电解质表面较为平滑,无明显的大颗粒、孔洞等缺陷,纳米Fe3O4颗粒和PEG200之间的相互作用不明显;但在PEG200含量为61.8%和68.3%时,电解质中出现球状物,可能是由于PEG200与纳米Fe3O4颗粒表面羟基形成氢键作用,包覆于纳米Fe3O4颗粒表面,形成空间位阻作用,阻止纳米颗粒的相互团聚,使电解质有良好的分散性和稳定性.21,22当PEG200含量进一步提升到72.9%时,电解质表面出现孔洞这是由于当PEG200含量较大时,分子链之间相互缠绕,磁性纳米颗粒的分散性降低出现团聚和孔洞,影响了电解质的表面形貌.3.3不同PEG200浓度下琼脂糖磁性聚合物电解质离子电导率的分析图3所示为聚乙二醇含量对聚合物电解质离子电导率的影响,从图中可以看出,随着聚乙二醇含量的增加,聚合物电解质的离子电导率不断增加,当聚乙二醇含量为61.8%时,其离子电导率到达最大值2.88×10-3S·cm-1.之后随着聚乙二醇含量的增加,离子电导率将会降低并逐渐趋于稳定.出现这样的规律是因为当加入少量PEG200时,纳米Fe3O4表图2不同含量PEG200改性的聚合物电解质的扫描电镜(SEM)图Fig.2Scanning electron microscopy(SEM)images of polymer electrolyte with different contents of PEG200w PEG200/%:(a)0,(b)35.0,(c)52.1,(d)61.8,(e)68.3,(f)72.9 588郭学益等:染料敏化太阳能电池用琼脂糖基磁性聚合物电解质的电化学性能No.3面与PEG 200作用,PEG 200分子之间的位阻作用有利于纳米Fe 3O 4的分散,因此随着PEG 200浓度增加,磁性粒子在聚合物电解质中的分散性会更好,从而使得聚合物电解质离子电导率增加;当PEG 200加入量过大时,如图2所示,PEG 200分子链之间会互相缠绕,使得颗粒聚集而沉降,阻碍了纳米Fe 3O 4分散,从而使得电解质体系的离子电导率降低.3.4不同PEG 200浓度下的琼脂糖基磁性聚合物电解质染料敏化半电池交流阻抗的分析图4是不同含量聚乙二醇改性的EIS 图.从图4(a)可以看出,不同含量聚乙二醇改性的半电池的Bode 图的峰值都集中在约1Hz -1000Hz 的中频部分,此部分反映的是TiO 2/电解质界面的电化学性质.23-25图4(b)中中频部分半圆起止位置所对应的阻抗差值即为TiO 2薄膜/电解质界面的复合电阻(R 2).R 2的大小是用来衡量电子在该界面发生复合反应的难易程度.26-28图5是TiO 2/电解质界面电荷复合电阻R 2与PEG 200浓度的关系图,从图中可以看出随着PEG 200浓度的增加TiO 2/电解质界面电荷复合电阻R 2先增加后减低,这说明TiO 2导带电子与I -3之间的电子复合随着PEG 200浓度的增加先变得更难然后变容易,从而可能会使DSSC 的开路电压先增加后减小.24根据EIS 理论,在Bode 图当中(图4(a))中频区域特征峰峰值位频率(ω)的倒数等于电子寿命(τ).29通过ω=τ-1我们可以计算得到TiO 2多孔膜当中电子寿命与PEG 200浓度的关系图,如图6所示.由图4知,随着PEG 200浓度的增加,其特征峰峰图3PEG 200含量对聚合物电解质离子电导率的影响Fig.3Effect of different PEG 200contents on ionicconductivity of polymerelectrolyte4不同含量PEG 200改性的聚合物电解质的EIS 图Fig.4EIS of polymer electrolytes with different contentsof PEG 200(a)Bode plots;(b)Nyquistplots5PEG 200含量对TiO 2/电解质界面电荷复合电阻R 2的影响Fig.5Effect of PEG 200contents on combination resistance(R 2)of TiO 2/electrolyteinterface6PEG 200含量对光阳极中电荷电子寿命的影响Fig.6Effect of PEG 200contents on electron lifetime ofelectron charges inphotoanodeActa Phys.-Chim.Sin.2012Vol.28值频率从PEG200含量0.0%时的117.2Hz降低到PEG200含量68.3%时的81.38Hz,再升高到PEG200含量72.9%时的97.66Hz.从图6中可以看出,随着PEG200加入量的增加,电子寿命先增加后降低,并且当PEG200加入量为68.3%时,电子寿命最高.电子寿命的增加表明TiO2导带的准费米能级增加,从而提高开路电压,30,31可见向磁性聚合物电解质中加入PEG200可能会一定程度上增加其开路电压,提高染料敏化太阳能电池的性能,且最大开路电压可能出现在PEG200含量为68.3%处.4结论考察了纳米Fe3O4颗粒含量为1%(w)时,不同表面活性剂改性的琼脂糖基磁性聚合物电解质的电导性能以及不同PEG浓度添加下琼脂糖磁性聚合物电解质的电化学性能.实验表明,加入不同表面活性剂时,其电解质离子电导率变化趋势为乙酰丙酮>混合表面活性剂>PEG200>无表面活性剂>Triton X-100.但由于乙酰丙酮会与I2发生碘化反应,消耗了电解质中的氧化还原电对,不利于染料敏化太阳能电池的光电转换.我们选用PEG200作为本体系的表面活性剂.在不同浓度PEG200添加下,随着PEG200浓度的增加,聚合物电解质的离子电导率是先增加后降低,最大离子电导率(2.88×10-3S·cm-1)出现在61.8%(w)时;随着PEG200浓度增加染料敏化太阳能半电池的电子寿命和复合电阻均呈现出先增加后降低的趋势,最大值均出现在68.3%(w)处.References(1)OʹRegan,B.;Grätzel,M.Nature1991,353,737.(2)Nazeeruddin,M.K.;Kay,A.;Rodicio,I.;Grätzel,M.J.Chem.Soc.1993,115,6382.(3)Li,J.;Sun,M.X.;Zhang,X.Y.;Cui,X.L.Acta Phys.-Chim.Sin.2011,27,2255.[李静,孙明轩,张晓艳,崔晓莉.物理化学学报,2011,27,2255.](4)Yang,S.M.Dye-Sensitized Nanocrystalline Solar Cells;Zhengzhou University Press:Zhengzhou,2007;pp113-116.[杨术明.染料敏化纳米晶太阳能电池.郑州:郑州大学出版社,2007:113-116.](5)Yella,A.;Lee,H.W.;Tsao,H.N.;Yi,C.;Chandiran,A.K.;Nazeeruddin,M.K.;Diau,E.W.G.;Yeh,C.Y.;Zakeeruddin,S.M.;Grätzel,M.Science2011,334,629.(6)Wang,W.J.;Yang,Y.Chemistry2011,74,144.[王惟嘉,杨英.化学通报,2011,74,144.](7)Kubo,W.;Murakoshi,K.;Kitamura,T.Chem.Lett.1998,12,1241.(8)Lan,Z.;Wu,J.;Lin,J.;Huang,M.;Yin,S.;Sato,T.Electrochim.Acta2007,52,6673.(9)Wu,J.;Hao,S.;Lan,Z.;Lin,J.;Huang,M.;Huang,Y.;Fang,L.;Yin,S.;Sato,T.Adv.Funct.Mater.2007,17,2645.(10)Khan,S.A.;Baker,G.L.;Colson,S.Chem.Mater.1996,6,2359.(11)Croce,F.;Appetecchi,G.B.;Persi,L.;Scrosati,B.Nature1998,394,456.(12)Han,H.W.;Liu,W.;Zhang,J.;Zhao,X.Z.Adv.Funct.Mater.2005,15,1940.(13)Golodnitsky,D.;Livshits,E.;Kovarsky,R.;Peled,E.;Chung,S.H.;Uarez,S.;Greenbaum,S.G.Electrochem.Solid-State Lett.2004,7,A412.(14)Livshits,E.;Kovarsky,R.;Lavie,N.;Hayashi,Y.;Golodnitsky,D.;Peled,E.Electrochim.Acta2005,50,3805.(15)Yang,Y.;Zhou,C.H.;Xu,S.;Zhang,J.Nanotechnology2009,20,105204.(16)Wang,P.;Zakeeruddin,S.M.;Comte,P.;Exnar,I.;Grätzel,M.J.Am.Chem.Soc.2003,125,1166.(17)Ma,Y.Z.;Fan,J.L.;Huang,B.Y.Min.Metall.Eng.2003,23,43.[马运柱,范景莲,黄伯云.矿冶工程,2003,23,43.] (18)Xu,Y.L.The Function of Surfactant;Chemical Industry Press:Beijing,2000;pp203-204.[徐燕莉.表面活性剂的功能.北京:化学工业出版社,2000:203-204.](19)An,S.H.;Zhang,Z.Z.Foundry Technol.2007,28,1498.[安少华,张振忠.锻造技术,2007,28,1498.](20)Zhang,P.M.Advanced Chemistry for Engineering;HunanEducational Publishing House:Changsha,2002;V ol.2,pp209-211.[张平民.工科大学化学,下册.长沙:湖南教育出版社,2002:209-211.](21)Zhang,F.;Zhu,H.J.Magn.Mater.Devices2009,40,27.[张峰,朱宏.磁性材料及器件,2009,40,27.](22)Liu,J.;Zhang,L.J.;Ye,X.C.Inorg.Chem.Ind.2010,8,28.[刘甲,张林进,叶旭初.无机盐工业,2010,8,28.](23)Fuke,N.;Fukui,A.;Komiya,R.;Islam,A.;Chiba,Y.;Yanagida,M.;Yamanaka,R.;Han,L.Chem.Mater.2008,20,497. (24)Wang,M.;Lin,Y.;Zhou,X.W.;Xiao,X.R.;Yang,L.;Feng,S.J.;Li,X.P.Mater.Chem.Phys.2008,107,61.(25)Wang,W.J.;Guo,X.Y.;Yang,Y.Electrochim.Acta2011,56,7347.(26)Adachi,M.;Sakamoto,M.;Jiu,J.;Ogata,Y.;Isoda,S.J.Phys.Chem.B2006,110,13872.(27)Wang,Q.;Ito,S.;Grätzel,M.;Fabregat-Santiago,F.;Mora-Sero,I.;Bisquert,J.;Bessho,T.;Imai,H.J.Phys.Chem.B2006,110,25210.(28)Gao,R.;Ma,B.B.;Wang,L.D.;Shi,Y.T.;Dong,H.P.;Qiu,Y.Acta Phys.-Chim.Sin.2011,27,413.[高瑞,马蓓蓓,王立铎,史彦涛,董豪鹏,邱勇.物理化学学报,2011,27,413.] (29)Wang,Q.;Moser,J.E.;Grätzel,M.Electrochim.Acta2002,47,4213.(30)He,J.;Benkö,G.;Korodi,F.;Polívka,T.;Lomoth,R.;Åkermark,B.;Sun,L.;Hagfeldt,A.;Sundström,V.J.Am.Chem.Soc.2002,124,4922.(31)Zhang,Z.P.;Zakeeruddin,S.M.;OʹRegan,B.;Humphry-Baker,R.;Grätzel,M.J.Phys.Chem.B2005,109,21818.590。

汉中市人民政府关于表彰第十一届自然科学优秀学术论文的通报

汉中市人民政府关于表彰第十一届自然科学优秀学术论文的通报

汉中市人民政府关于表彰第十一届自然科学优秀学术论文的通报文章属性•【制定机关】汉中市人民政府•【公布日期】2018.08.09•【字号】汉政函〔2018〕44号•【施行日期】2018.08.09•【效力等级】地方规范性文件•【时效性】现行有效•【主题分类】教育正文汉中市人民政府关于表彰第十一届自然科学优秀学术论文的通报各县区人民政府,汉中经济开发区管委会,市政府各工作部门、直属机构:近年来,全市上下认真实施“科教兴汉”、“人才强市”战略,全市广大科技工作者潜心钻研,大胆创新,取得了一批自然科学成果及优秀学术论文。

根据《汉中市自然科学优秀学术论文评选办法》,经汉中市第十一届自然科学优秀论文评选委员会评审,评选出本届自然科学类优秀学术论文102篇。

其中:《HCV感染者中血清外泌体miRNA-122的检测及其临床意义》等10篇论文评为一等奖;《不同分子分型的乳腺癌前哨淋巴结转移与临床病理特征的关系研究》等41篇论文评为二等奖;《不同性诱剂对亚洲玉米螟的引诱效果比较及田间应用初探》等51篇论文评为三等奖。

为了鼓励全市科技工作者不断加强学术创新,为促进汉中“三市”建设和经济社会持续科学发展做贡献,市政府决定对全市第十一届自然科学优秀学术论文及作者予以表彰。

希望受到表彰的同志再接再厉,不断探索奋进,在各自工作领域作出新的更大成绩。

全市科技工作者要向受表彰的同志学习,紧紧围绕我市科技、经济、社会科学发展的重大课题,深入研究,克难攻关,锐意进取,多出成果,全面推进我市科技进步和经济社会又好又快发展。

附件:汉中市第十一届自然科学优秀学术论文获奖名单汉中市人民政府2018年8月9日附件:汉中市第十一届自然科学优秀学术论文获奖名单一等奖论文(10篇)论文名称HCV感染者中血清外泌体miRNA-122的检测及其临床意义carcinoma identified by cross talk genes in disease related pathways 通过疾病相关通路的串扰头皮轴型血管网皮瓣或带阔筋膜的股前外侧穿支皮瓣修复头皮恶性肿瘤患者根治性切除术缺损的效果籼稻骨干亲本稻瘟病抗性基因pi-b的检测基于STR分型检测技术的89份茶树种质资源遗传多样性分析秦巴山区黄牛群体的微卫星DNA遗传多样性陕南老茶树扦插茶苗资源遗传多样性分析原位水热法在介孔TiO2光阳极中生长ZnO纳米线增强量子点敏化太阳能电池的光捕获dots and their application in constructing a fluorescent turn-on nanoprobe for imaging of 荧光碳点的制备及在构建细胞内硒醇纳米探针中的应用)Interfacial properties of stanene–metal contacts(锡烯与金属接触的界面性质)二等奖论文(41篇)不同分子分型的乳腺癌前哨淋巴结转移与临床病理特征的关系研究might participate in protecting the pupating larva from microbial infection(家蚕茧丝中的蛋白染)汉中市中心城区常绿行道树综合评价is associated with the risk of intrahepatic cholangiocarcinoma MicroRNA-150在胆管细胞性肝癌秸秆还田对汉中盆地稻田土壤有机碳组分、碳储量及水稻产量的影响大棚温湿条件对草莓生长结实及土传病害的影响西瓜雄性不育系“se18”抗氧化酶活性和内源激素含量变化分析汉中面皮水磨米粉的加工技术优化研究三倍体毛白杨生长量数学模型建立及验证抗凝剂对动物布鲁氏杆菌病虎红平板凝集试验的影响421CC were significantly Associated with longer progression-free survival in Chinese breast 应用液相阻断EISA试验和正向间接血凝试验(IHA)检测猪(O)型口蹄疫抗体的比较分析机插秧不同插植密度对水稻纹枯病发生及危害影响的初步研究不同栽培规格对魔芋根状茎生长特性及产量的影响6个蓝莓品种在汉中地区的丰产性试验不同厂家猪O型口蹄疫灭活苗免疫效果研究城固县农作物病虫害绿色防控技术示范实践探索地佐辛治疗晚期癌症患者伴中度及中度疼痛的疗效及安全性观察籼粳交水稻花药培养条件的优化不同果桑品种资源的生长结实特性调查初报可见分光度法在布鲁氏杆菌病试管凝集试验结果判定中的应用不同基质对曼地亚红豆杉扦插成活率的影响MODS患者外周血单个核细胞内PPARγ与NF-κB的表达和关系两种不同途径胆道金属支架植入治疗恶性阻塞性黄疸的对比研究腔镜保留残胃的双通道重建术在食管胃结合部癌中的应用mphocyte ratio improves the predictive power of GRACE risk score for long-acute coronary syndrome 血小板与淋巴细胞比例改善GRACE风险评分对急性冠状动脉综合征患者长期心血管小儿颈深部感染33例分析早期24h内血浆BNP动态变化与重症急性胰腺炎近期死亡的相关性研究the Interface Optical Phonon Spectrum in Wurtzite GaN/AlxGa1?xN Quantum Wells 中文:纤锌矿xN 的界面光学声子谱及其混晶效应阴道镜Reid评分对HIV阳性妇女宫颈癌筛查的诊断价值新方法初治结核性胸膜炎的疗效观察对有乳头发育的乳头内陷采用钢丝十字交叉牵引矫正术的临床体会electrochemical performance of Al-doped ZnO thin films hydrothermally grown on graphene-te bilayer flexible substrates (PET?石墨烯双层柔性衬底上水热生长Al掺杂ZnO薄膜的光电和电化学性基于图像技术的空中加油辅助指引系统via scanning a one dimensional linear unfocused ultrasound array 基于非聚焦多元线性阵列探汉中市空气污染特征及其气象条件分析f Well-Aligned ZnO Nanorod Arrays by Chemical Bath Deposition for Schottky Diode Applicatio陕钢集团烧结配加兰炭的工业试验lic acids and fluorescence properties in the solid state (苯并[c]香豆素羧酸衍生物的合及固体human immunoglobulin G: Elucidation of the cytotoxicity of CNPs and perturbation of immunog颗粒与人免疫球蛋白之间的相互作用:碳纳米颗粒的毒性及其对人免疫球蛋白构象影响的研究)ness of TC4-Based Laminated Composites Reinforced with Ti Aluminide and Carbide (TiAl合金层复合板材的弯曲强度和断裂韧性)三等奖论文(51篇)不同性诱剂对亚洲玉米螟的引诱效果比较及田间应用初探甘蓝型半冬性三隐性细胞核雄性不育系SY12A的选育秦巴山区珠芽魔芋种芋繁育方法比较及示范植酸与植酸酶在家禽生产中的应用研究缓释肥对机插稻生长发育及产量的影响中山柏苗木大小与移植成活率的关系汉中超级稻品种筛选试验汉中市元胡种植气候区划奶牛结核病PPD皮内变态反应检测技术应用中的问题讨论汉中茶树病虫害绿色防控存在的问题及对策汉中市森林生态文化体系建设规划与思考汉中水稻机械插秧插值深度试验初报喷施不同浓度的氨基寡糖素对柑橘生产的影响齐口裂鳆鱼人工繁育技术研究小麦茎基腐病的初步研究黄连木矮化林分的建设与探讨汉中水稻机械化插秧适宜新品种筛选试验初报汉中盆地水稻土有机质状况分析研究新型大鲵仿生态繁殖池建造结构及使用方法不同育秧剂对陕南稻麦油两熟区机插秧秧苗素质与栽插质量的影响一例鸭舟形嗜气管吸虫病诊断与治疗热疗联合FOLFOX4方案治疗晚期原发性肝癌的临床观察陕南油菜机械化生产现状及关键技术汉江河滩林下段木香菇高效栽培技术探讨一起疑似鸡白痢的诊治体会不同质量的魔芋球茎及药剂处理对魔芋软腐病田间控病保苗效果研究血栓弹力图在隧道式带涤纶套导管血栓栓塞中的作用晚期鼻咽癌同步放化疗临床研究以肺外症状为首发表现的儿童肺炎支原体感染85例特征分析改良预埋球囊技术对分叉病变分支小血管保护的临床疗效观察免散瞳数码眼底照相在老年眼底病中的筛查价值成人噬血细胞综合征8例临床分析普通型骨水泥股骨头假体置换与内固定治疗老年股骨粗隆间粉碎性骨折的对比研究喜炎平注射液联合小儿豉翘清热颗粒治疗儿童急性上呼吸道感染的临床研究某三级综合医院住院患者医院感染情况调查外源H2O2对低温胁迫下柑橘叶片抗寒性的影响近10年汉台区酸雨变化特征及气象条件分析具有最小荧光响应伪影的低亲和锌传感器汉江上游纤毛虫群落结构及与环境理化因子的关系汉钢1号高炉延长寿命的途径探析依帕司他联合甲钴胺治疗糖尿病周围神经病变的疗效及复发率pBabe-GLS1 真核表达载体构建及其对结肠癌细胞增殖、谷氨酰胺摄取的影响中医综合外治法治疗婴幼儿伤食泻254例临床观察儿童面部擦伤后真菌感染1例with cyclopentanone and furfural derived from Hemicellulose (用来源于半纤维素的环戊酮与糠料前驱体)开口箭大小孢子发生及雌雄配子体发育研究oil and its effects on microbial communities metabolism and enzyme activities (汉江上游铁壤微生物群落代谢和酶活性的影响)GaN:Mn 纳米粒子的磁性量子隧穿效应SBA-15 with thick pore wall and high hydrothermal stability (厚孔壁高水热稳定性SBA-15的合单侧开窗减压椎间融合内固定治疗老年退行性腰椎管狭窄症辛伐他汀对尿毒症患者微炎症的影响。

钾离子电池电极材料研究进展

钾离子电池电极材料研究进展

第48卷第7期 2020年7月硅 酸 盐 学 报Vol. 48,No. 7 July ,2020JOURNAL OF THE CHINESE CERAMIC SOCIETY DOI :10.14062/j.issn.0454-5648.2020.07.20200036钾离子电池电极材料研究进展王 振1,韩 坤1,徐 丽2,刘双宇2,李 慧2,李 平1,曲选辉1(1. 北京科技大学新材料技术研究院,北京 100083;2. 全球能源互联网研究院有限公司,先进输电技术国家重点实验室,北京 102211)摘 要:综述了近几年来钾离子电池正、负极材料的最新研究状况,分析了影响不同类型正负极材料比容量、倍率性能、循环稳定性的主要因素,总结了钾离子电池电极材料的改性方法,如原子掺杂、包覆和结构设计等,展望了未来钾离子电池的发展方向。

关键词:钾离子电池;正极材料;负极材料;能源存储中图分类号:TM911 文献标志码:A 文章编号:0454–5648(2020)07–1013–12 网络出版时间:2020–04–13Electrode Materials for Potassium-ion Batteries—A Short ReviewWANG Zhen 1, HAN Kun 1, XU Li 2, LIU Shuangyu 2, LI Hui 2, LI Ping 1, QU Xuanhui 1(1. Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China; 2. State Key Laboratory of Advanced Power Transmission Technology, Global Energy Interconnection Research Institute Co. Ltd.,Beijing 102211, China)Abstract: This review presents recent research progress on cathode and anode materials for potassium ion batteries (KIBs) and analyzes main factors affecting the specific capacity, rate performance and cycle stability of different types of cathode and anode materials. Moreover, some approaches for improving the performance of electrode materials for KIBs were summarized, including heteroatom doping, surface coating, microstructural regulation, etc .. In addition, a perspective for future research direction of KIBs was also presented.Keywords: potassium-ion batteries; cathode material; anode material; energy storage锂离子电池成本的日益上涨以及锂资源的不断消耗,使得锂离子电池已无法满足大规模储能的应用需求。

锂离子电池硅碳复合负极材料的研究

锂离子电池硅碳复合负极材料的研究

锂离子电池硅碳复合负极材料的研究王英;孙文;唐仁衡;肖方明;黄玲【摘要】以商品化纳米硅粉和沥青为原料,采用喷雾干燥热解法制得Si@C复合物.将Si@C复合物和人造石墨混合,制得Si@C/G硅碳复合材料作为锂离子电池的负极材料.借助X射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)和电化学测试等方法,对Si@C复合物和Si@C/G复合材料的结构、形貌和电化学性能进行表征.结果表明,当硅碳复合材料中Si@C复合物和石墨的质量比为15∶85时,在100 mA/g的恒电流下,首次放电比容量为695.4 mAh/g,首次库仑效率为86.1%,循环80周后容量仍有596.6mAh/g.【期刊名称】《材料研究与应用》【年(卷),期】2018(012)003【总页数】6页(P161-166)【关键词】锂离子电池;硅碳复合负极材料;纳米硅;人造石墨;碳包覆【作者】王英;孙文;唐仁衡;肖方明;黄玲【作者单位】广东省稀有金属研究所,广东省稀土开发及应用重点实验室,广东广州510650;广东省稀有金属研究所,广东省稀土开发及应用重点实验室,广东广州510650;华南理工大学材料科学与工程学院,广东广州510641;广东省稀有金属研究所,广东省稀土开发及应用重点实验室,广东广州510650;广东省稀有金属研究所,广东省稀土开发及应用重点实验室,广东广州510650;广东省稀有金属研究所,广东省稀土开发及应用重点实验室,广东广州510650【正文语种】中文【中图分类】TM912 9;TM531为了不断提升新能源汽车的续航里程,近年来对锂离子电池的能量密度要求越来越高.到2020年,我国对锂离子电池电芯能量密度的期望值将达到350 Wh/kg.由于现有的商用负极材料石墨难以满足上述要求,因此,开发新型高容量负极材料成为研究热点.硅的理论嵌锂容量高达4200 mAh/g,且具有脱锂电位低、资源丰富、成本低和环境友好等优势,成为综合性能最具发展潜力的新型负极材料[1-5].硅材料虽然储锂容量较大,但锂离子在嵌入硅过程中会引起体积膨胀(300%),易造成材料结构的崩塌和活性物质的脱落,使循环稳定性大大下降.同时,这种体积效应也使电极表面难以形成稳定的固体电解质界面膜(SEI膜),导致不断有硅裸露到电解液中.针对硅负极材料循环稳定性的问题,近年来,研究人员将硅进行纳米化处理,即硅单质材料体系的改性.通过制备各种纳米硅材料来缓解硅嵌锂产生的体积膨胀.研究表明[6-7],当硅颗粒尺寸小于单个硅纳米颗粒嵌锂过程中的破碎临界值,纳米硅颗粒在参与电化学反应过程所产生的应力能不足以使得电极表面生成裂纹,从而避免颗粒的破碎粉化.但是,纳米硅的高活性表面则会使电极发生较多的副反应,造成较高的不可逆容量损失.因此,除了硅纳米化改性技术外,还应通过硅与碳材料的二元或多元复合来制备复合材料,即建立硅复合材料体系[8-12].基本原理是利用第二相的机械性能和导电性来抑制硅的体积效应和增强硅的导电性,减少电极副反应的发生,并防止嵌脱锂过程中纳米颗粒的团聚.李纯莉[13]先采用酸浸蚀方法从铝硅合金得到纳米硅,然后将纳米硅与石墨烯进行复合制得石墨烯/多孔硅复合负极材料.复合结构中的石墨烯片或均匀分散在多孔纳米硅颗粒间,或包裹着小尺寸的纳米硅颗粒,有效改善了纳米硅的导电性和减缓多孔硅结构的衰变.用复合材料制成的电极在循环120周后,其放电比容量仍可达1843 mAh/g.Julien[14]利用激光化学沉积热解法(LCVP)制备出包覆1 nm厚度碳层的纳米非晶硅复合材料,经充放电循环后,极片厚度从循环前的12.6 μm到嵌脱锂300周后的14.9 μm,体积膨胀率仅18%,表现出良好的循环性能,所设计的核壳结构保持了材料结构和电极的稳定性.Zhuang[15]以纳米氧化镁为造孔剂,将纳米硅嵌入多孔碳中,制备的复合材料在循环40周后仍有1172 mAh/g的可逆容量,主要归功于多孔碳支架为纳米硅提供充足的空间以缓冲硅的体积变化.综上所述,采用硅纳米化和复合化相结合的方法制备电化学性能优异的硅碳复合材料是切实可行的.本文以纳米硅粉和沥青为原料,通过喷雾干燥热解法在纳米硅颗粒表面包覆一层无定形碳层制得Si@C复合物,将Si@C复合物和人造石墨颗粒混合可制得用于锂离子动力电池的Si@C/G复合负极材料.1 试验部分1.1 硅碳材料的制备以平均粒径80 nm硅粉、沥青为原料,按硅粉和沥青质量比为1∶1混合均匀,然后依次加入无水乙醇和去离子水搅拌,搅拌均匀后得到浆料,再经喷雾干燥制得Si@C前驱物(喷雾干燥设备进口温度180 ℃,出口温度110 ℃).将前驱物放入充有高纯氩气保护的管式炉内在1050 ℃保温3 h,然后冷却至室温,再研磨筛分,获得Si@C复合物.将Si@C复合物和人造石墨分别按质量比10∶90,15∶85,20∶80混合,制得硅碳复合负极材料Si@C/G,分别标记为样品a、样品b和样品c.1.2 硅碳材料的性能表征将活性物质(Si@C或Si@C/G)、导电乙炔黑和粘结剂(羧甲基纤维素钠CMC和丁苯橡胶SBR混合物,质量比3∶5)按质量比8∶1∶1混合,以去离子水为溶剂混合成浆料,然后将浆料均匀涂敷于铜箔基体上,充分干燥后制成正极.以金属锂片为负极,Celgard 2500型聚丙烯多孔膜为隔膜,1 mol/L的LiPF6溶于碳酸乙烯酯(EC)、碳酸甲基乙基酯(EMC)和碳酸二甲酯(DMC)(体积比1∶1∶1)为电解液,在真空手套箱中组装成2032型扣式电池.采用蓝电CT2001A二次电池性能检测装置对电池进行充放电性能测试,测试电流密度为100 mA/g,电压范围为0.01~1.5 V.采用荷兰Philips X'pert MPD diffractometer XRD衍射仪(20 kV,40 mA,Cu Kα)分析样品结构,扫描角度为10°~90°,步长为0.02°/s;用德国蔡司公司Zeiss supra 40扫描电镜(SEM)和日本精工JOEL JSM-2100F透射电镜(TEM)观察复合材料的微观形貌.2 试验结果与讨论2.1 Si@C复合物的性能图1为纳米硅和Si@C复合物的XRD谱图.由图1可知,Si和Si@C均在位于2θ为28.43°,47.29°,56.13°,69.13°,76.45°,88.07°左右处出现Si峰,分别对应硅的晶面(111),(220),(311),(400),(331),(422).包覆碳前后硅特征峰的位置基本一致.图谱中2θ为25°左右处有一个宽化的弥散峰,没有观察到其他明显的特征峰,表明沥青热解生成的碳为无定形态.图1 材料的XRD图Fig.1 XRD patterns of the materials图2为 Si@C复合物的SEM和TEM及Si材料SEM图.由图2(a~e)给出的Si@C 复合物的SEM和TEM图可以清晰地看出,纳米硅颗粒表面包覆着一层稳定致密的碳层,硅颗粒通过包覆碳层连接成的导电性骨架形成良好的电接触.多个这样的一次小颗粒组成较大的二次颗粒,如图2(b)、2(c)和2(e)所示.Si@C二次颗粒尺寸大小均匀,分散性较好.图2(f)为纳米硅的SEM图,与图2(c)相比,发现通过喷雾干燥热解可以有效地在纳米硅表面包覆碳膜.图2 Si@C复合物的SEM和TEM图及Si材料SEM图(a),(b),(c)Si@C复合物的SEM;(d),(e) Si@C复合物的TEM;(f) Si材料的SEMFig.2SEM(a,b,c) ,TEM(d,e) images of Si@C composites and image of SEM(f) of Si 图3 Si和Si@C复合物的电化学性能 (a) 首次充放电曲线;(b)循环性能曲线Fig.3 The electrochemical performance of Si@C composites and Si (a) the first charge/discharge curves;(b) the cycling performance curves将Si和Si@C复合物分别组装模拟电池进行充放电循环测试,其电化学性能如图3所示.图3(a)为电池的首次充放电曲线.由图3(a)可知,两种硅材料在首次放电曲线0.9 V左右处均出现倾斜下降的一个小平台,对应电解液浸润活性物质时,在活性物质颗粒表面形成SEI膜的过程.包覆Si@C复合物的平台电压略低于未包覆Si 材料,说明包碳可以促进电极表面SEI膜的生成.首次放电曲线上较长的电压平台是典型的晶体硅嵌锂电压平台.与Si材料的嵌锂平台电压相比,Si@C复合物的嵌锂平台低,主要原因是碳包覆层增强了Si@C复合物的表面电性,降低了电极表面极化.图3(b)为电池的循环曲线.由图3(b)可知,Si@C的首次循环放电比容量为1706.4 mAh/g,首次库仑效率为86.5%.循环80周后,容量仍有731.2 mAh/g,容量保持率达到42.9%;纳米硅的首次放电比容量为2915.8 mAh/g,首次库伦效率为79.4%.经80周循环后,放电比容量仅有66.6 mAh/g.与纯硅材料相比,Si@C复合物的库仑效率和循环性能明显提高.将硅颗粒均匀分散于碳基体获得具有包覆型的Si@C复合物,热解碳在硅颗粒表面形成的一层无定形碳膜具有缓冲硅体积效应和增强复合材料电子导电率的作用,可避免内部硅颗粒与电解液直接接触,形成完整的SEI膜,在一定程度上改善了复合材料电极的充放电性能.2.2 Si@C/G复合材料的性能将Si@C复合物直接应用于锂离子动力电池,循环稳定性仍然难以达到使用要求.基于石墨的高导电性,在牺牲一定放电容量的前提下,将Si@C复合物和石墨混合后制得Si@C/G复合材料,可进一步提升负极材料的充放电性能.图4(a)为Si@C/G复合材料样品a,b,c的首次充放电曲线.由图4(a)可知,首次放电曲线在0~0.2 V之间的一个明显的放电平台与锂离子嵌入活性物质硅和石墨的过程相对应,由于两种物质的嵌锂电位较相近,曲线上仅显示出一个平台.首次充电曲线上位于0.15 V,0.45V左右的两个电压平台则分别对应着锂离子从石墨、硅中脱出的过程.随着样品a,b,c中Si@C复合物含量的增加,充电平台延长,复合材料的比容量增大.图4 Si@C/G复合材料的电化学性能(a)首次充放电曲线;(b)循环性能曲线Fig.4 The electrochemical performance of Si@C/G composites (a) the first charge/discharge curves;(b) the cycling performance curves图4(b)为Si@C/G复合材料a,b,c三种样品的循环性能曲线.由图4(b)可知,三种复合材料首次放电比容量分别为559.5 mAh/g,695.4 mAh/g和779 mAh/g,首次库仑效率分别为86.8%,86.1%,86.2%.循环80周后,放电比容量分别为497 mAh/g,596.6 mAh/g和627.1 mAh/g,容量保持率分别为88.8%,85.8%和80.5%,平均每周容量衰减率分别仅为0.14%,0.18%和0.24%.三种复合材料表现出良好的循环稳定性,主要是由于纳米硅颗粒的表面包覆碳层和石墨有效缓解了硅材料在锂化过程中的体积膨胀.特别是石墨基体在硅颗粒膨胀时能够承受较大的弹性形变,使嵌锂过程中的残余应力较小.同时,石墨的良好导电性和容量特性也显著改善了Si@C复合物的综合电化学性能.从平衡放电容量、首次库仑效率和循环稳定性的角度来看,Si@C复合物和石墨的质量比为15∶85(样品b)的硅碳复合材料的电化学性能稍优.该复合材料的XRD图如图5所示.图5 复合材料样品b的XRD图Fig.5 XRD patterns of sample b从图5可以看出,在2θ为26.56°,44.39°和54.54°处出现石墨特征峰.复合材料的Si@C复合物颗粒均匀地附着在石墨表面,分散性较好,见图6.图6 复合材料样品b不同放大倍数的SEM图Fig.6 SEM images of sample b3 结论通过喷雾干燥热解的方法制备核壳型Si@C复合物,将Si@C复合物和石墨混合制得Si@C/G复合材料,可作为锂离子动力电池的负极材料.当Si@C/G复合材料中Si@C复合物和石墨的质量比为15∶85时,在100 mA/g的恒电流下,首次放电比容量为695.4 mAh/g,首次库仑效率为86.1%.循环80周后容量仍有596.6 mAh/g,容量保持率达到85.8%.【相关文献】[1] 王静,陈志柠,郭玉忠,等.有序介孔硅/碳复合结构负极材料的制备与电化学性能研究[J].无机材料学报,2018,33(3):313-319.[2] 罗金华,倪伟.三维纳米硅/多孔碳的储锂性能[J].电池,2017,47(6):328-331.[3] 白雪君,刘婵,侯敏,等.锂离子电池硅/碳纳米管/石墨烯自支撑负极材料研究[J].无机材料学报,2017,32(7):705-712.[4] PAIREAU C,JOUANNEAU S,AMMAR M R,et al. Si/C composites prepared by spary drying from cross-linked polyvinyl alcohol as Li-ion batteries anodes[J]. Electrochimica Acta,2015,174:361-368[5] LAI Jun,GUO Hua-jun,LI Xiang-qun,et al.Silicon/flake graphite/carbon anode materials prepared with different dispersants by spray-drying method for lithium ion batteries[J].Trans Nonferrous Met Soc China,2013,23:1413-1420.[6] LIU Xiaohua,LI Zhong,SHAN Huang,et al.Size-dependent fracture of silicon nanoparticle during lithiation [J].ACS Nano,2012,6(2):1522-1531.[7] LI Hong,HUANG Xuejie,CHEN Liquan,et al.A high capacity nano-Si composite anode material for lithium rechargeable batteries[J].Electrochemical and solid-state letters,1999,2(11):547-549.[8] ZHOU Yu,GUO Huajun,WANG Zhixing,et al.Improved electrochemical performance of Si/C material based on the interface stability[J].Journal of Alloys and Compounds,2017,725:1304-1312.[9] CHEN Hedong,WANG Zhoulu,HOU Xianhua,et al.Mass-producible method for preparation of a carbon-coated graphite@plasma nano-silicon@carbon composite with enhanced performance as lithium ion battery anode[J].Electrochimica Acta,2017,249:113-121.[10] LI Xiaotian,YANG Dandan,HOU Xiaocun,et al.Scalable preparation of mesoporous silicon@C/graphite hybrid as stable anodes for lithium-ion batteries[J].Journal of Alloys and Compounds,2017,728:1-9.[11] YUN Qinbai,QIN Xianying,HE Yanbing,et al.Micron-sized spherical Si/C hybrids assembled via Water/Oil system for high-performance lithium ionbattery[J].Electrochimica Acta,2016,211:982-988.[12] 杨昱霖,高铭,梁静爽,等.硅纳米粒子聚苯胺包覆改性及其嵌/脱锂电化学性能[J].无机化学学报,2017,33(12):2262-2270.[13] 李纯莉,杨广,张平,等.石墨烯/多孔纳米硅负极的电化学性能[J].电化学,2015,21(6):572-576.[14] SOURIC J,BORDE A,BOULINEAU A,et al.Core-shell amorphous silicon-carbon nanoparticles for high performance anodes in lithium ion batteries[J].Journal of Power Sources,2016,328:527-535.[15] ZHUANG Xiangyang,ZHANG Yao,HE Lingxiao,et al.Scalable synthesis of nano-Si embedded in porous C and its enhanced performance as anode of Li-ionbatteries[J].Electrochimica Acta,2017,249:166-172.。

锂电池高温存放后的电化学容量衰减

锂电池高温存放后的电化学容量衰减

Electrochemical Investigations on Capacity Fading of Advanced Lithium-Ion Batteries after Storing at Elevated TemperatureMao-Sung Wu,*,z Pin-Chi Julia Chiang,and Jung-Cheng LinIndustrial Technology Research Institute,Materials Research Laboratories,Hsinchu 310,TaiwanCapacity fading of advanced lithium-ion batteries after elevated temperature storage was investigated by three-electrode measure-ments.Capacity fading of a battery increases by increasing the state-of-charge ͑SOC ͒during storage,especially at elevated temperatures.The reversible capacity of a battery ͑SOC =100%͒at 60°C decreases from 820to 650mAh ͑79.3%capacity retention ͒after 60days.At room temperature,a battery SOC influences the capacity fading only slightly;after 65days of storage,the reversible capacity decreases from 820to 805mAh ͑98.2%capacity retention ͒.Individual effects by the anode,cathode,and electrolyte on capacity fading are analyzed with three-electrode electrochemical ac impedance.The major contribution,from X-ray photoelectron spectroscopy ͑XPS ͒and energy-dispersive spectroscopy results,comes from cathode degradation as a result of cobalt dissolution at the LiCoO 2surface layer.A minor contribution comes from the continuous reactions between lithiated mesocarbon microbead ͑MCMB ͒electrode and electrolyte components,which in turn thicken the SEI film and consume available lithium ions.From X-ray diffraction and XPS results,high-temperature storage influences only the surface properties of MCMB and LiCoO 2electrodes;bulk properties remain unchanged.©2005The Electrochemical Society.͓DOI:10.1149/1.1896325͔All rights reserved.Manuscript submitted August 17,2004;revised manuscript received December 15,2004.Available electronically April 21,2005.In recent years,a new type of lithium-ion battery,the advanced lithium-ion battery ͑ALB,with laminated aluminum foil exterior ͒,has emerged because of its high energy density,long cycle life,and low self-discharge properties.ALB offers similar energy character-istics as the traditional lithium-ion battery but with a higher flexibil-ity on the wide variety of sizes and shapes in design.1,2In practical application,batteries are operated and stored at vari-ous conditions ͑temperature and humidity ͒.Temperature is a crucial factor in the performance of lithium-ion batteries.Detriments may result from high temperature because it significantly affects capacity fading.3-5Amatucci et al.3report that LiMn 2O 4-based lithium-ion rechargeable batteries suffer from poor storage and cycling perfor-mance at elevated temperatures.A LiMn 1.7Al 0.3O 4-hard carbon bat-tery is deteriorated because of anode film formation between 50and 75°C.The film is generated from the decomposed products of LiPF 6,polymerized ethylene carbonate ͑EC ͒,and Mn ions dissoci-ated from the positive active materials.4Wang et al.5propose a mechanism for irreversible capacity loss of lithium-ion spinel cells ͑coin cell ͒in high-temperature storage.Loss of cyclable lithium ions to the carbonaceous anode because of cathode acid generation is the reason.Another effect of the acid is that spinels form from Mn dissolution,but the formation cannot be accounted for capacity loss,nor does it cause degradation of the SEI layer on the carbonaceous anode.Capacity fading of the commercially available LiCoO 2-based lithium-ion batteries cycled at room temperature has been investi-gated by means of electrochemical impedance spectroscopy.Results show that cycled positive electrode contributes more to the fading because of continuous electrolyte oxidation.6Capacity fading of Sony 18650cells cycled at elevated temperatures has been investi-gated by Ramadass et al.,7concluding that the fading was due to a repeated film formation and dissolution over the surface of anode.This repetition increases the rate of lithium loss and increases the anode resistance.In both cases,6,7the external metallic cans are opened for electrode retrieval,and new half-cells are made in glove boxes filled with ultrapure argon to test for the electrodes’separate properties.Reassembly is inconvenient and may cause damage to the electrodes.As mentioned earlier,capacity fading of lithium-ion batteries may result from the anode,the cathode,and the electrolyte.It is difficult to analyze the phenomena with a two-electrode system.If areference electrode may be added,then more mechanisms may be studied and phenomena understood.Therefore,this paper is to in-vestigate the capacity fading of commercial ALB after high-temperature storage using a three-electrode system.Three-electrode electrochemical impedance is used to analyze the individual effects by the anode,the cathode,and the electrolyte.Structural changes in the electrode materials after storage are also studied.ExperimentalComposition of the lithium-cobalt-oxide electrode was 90wt %LiCoO 2͑10␮m diam,Nippon Chemical ͒,7wt %KS6͑Timcal SA ͒,and 3wt %polyvinylidene fluoride ͑PVDF,Kuraha Chemical ͒binder.Powder was mixed in a solvent of N -methyl-2-pyrrolidone ͑NMP,Mitsubishi Chemical ͒to form slurry.The slurry was coated onto aluminum foil ͑20␮m in thickness ͒and dried at 140°C.The electrode ͑200␮m in thickness ͒was then pressed to a resultant thickness of 150␮m.The mesocarbon microbead ͑MCMB ͒elec-trode,composed of 92wt %MCMB ͑Osaka Gas,25␮m diam ͒with 8wt %PVDF binder and NMP,was subjected to the same processing steps as the lithium-cobalt-oxide electrode,except that it was coated onto copper foil ͑15␮m thick ͒.Resultant thickness of the MCMB electrode was 135␮m ͑before pressing the thickness was 180␮m ͒.Batteries were assembled in a dry room.The manufacturing pro-cess was as follows:Both electrodes were dried at 120°C for 3h in vacuum and then cut into appropriate sizes for winding with sepa-rator ͑Celgard 2320,20␮m in thickness ͒.The roll of electrodes and separator was inserted into an aluminum-plastic laminated film case.3.2g of electrolyte was injected and then the case was sealed off at a reduced pressure.Electrolyte was 1M lithium hexafluorophos-phate ͑LiPF 6,Tomiyama Pure Chemical ͒in a mixture of 25%EC ͑Merck ͒,25%propylene carbonate ͑PC,Merck ͒,and 50%diethyl-ene carbonate ͑DEC,Merck ͒by volume.Water content of the elec-trolyte measured via Carl Fischer titration in an argon-filled glove box was less than 10ppm.The fresh battery had external dimen-sions of 3.8ϫ35ϫ70mm.The capacity was about 820mAh and weighed 17.5g.To monitor changes in voltage and impedance of the anode or cathode,a reference electrode was placed in the center of the battery between the two electrodes.A lithium chip was pressed onto one end of a fine copper wire to make the reference electrode.Before stor-age,the three-electrode batteries were cycled between 4.2and 2.75V for three times with a charge/discharge unit ͑Maccor model series 4000͒.The procedure consisted of constant current at 82mA followed by constant voltage at 4.2V until the current tapered down*Electrochemical Society Active Member.zE-mail:ms គwu@Journal of The Electrochemical Society,152͑6͒A1041-A1046͑2005͒0013-4651/2005/152͑6͒/A1041/6/$7.00©The Electrochemical Society,Inc.A1041to 20mA.Discharge current was 82mA.The batteries were charged to different SOCs ͑40,70,and 100%͒and stored open-circuited at room temperature and at 60°C for 1-65days.During storage,in order to determine the reversible capacity,batteries were charged/discharged occasionally for two cycles at 82mA ͑about 0.1C ͒at room temperature.Then the batteries were charged again to the desired SOC ͑s ͒and the storage process continued.Maccor facilitated simultaneous and independent recordings of the total cell voltage and the half-cell voltage for both positive and negative electrodes vs.the reference electrode.Three-electrode im-pedance measurements were taken by means of a potentiostat/galvanostat ͑Schlumberger SI 1286͒and a frequency response ana-lyzer ͑Schlumberger SI 1255͒.Scanning frequencies ranged from 50kHz to 0.01Hz,perturbation amplitude 10mV.Scanning electron microscopy ͑SEM ͒and energy-dispersive spectrometry ͑EDS ͒were done with a field emission SEM ͑FE-SEM,LEO-1530at an accelerating voltage of 15keV and coupled with an EDS ͑LEO-1550͒.Crystal structures of the MCMB and LiCoO 2were identified by X-ray diffraction ͑XRD,XD-5͒with a Cu K ␣target ͑wavelength 1.54056Å͒.Diffraction data were col-lected for 1s at each 0.04°step width over 2␪,ranging from 10to 90°.Surface properties of the cathode after storage were confirmed by X-ray photoelectron spectroscopy ͑XPS;Perkin Elmer,PHI Quantera SXM ͒with a focused monochromatic Al K ␣radiation ͑1486.6eV ͒.Before any experiment,batteries were fully charged,disassembled in a glove box,washed with DEC,and dried in vacuum at 100°C for 5h.Sample powders of anode and cathode were scraped off the electrodes’current collector.Results and DiscussionCapacity variations of ALB during storage .—Figure 1shows the capacity variation of ALBs during storage at different SOCs and temperatures.Capacity decay at room-temperature storage ͑Fig.1a ͒is negligible as compared with 60°C ͑Fig.1b ͒.At room temperature,a battery’s SOC influences the fading trend slightly.The original capacity of a battery SOC =100%is 820mAh;after 65days of room-temperature storage it decreased to 805mAh ͑98.2%capacity retention ͒.Lowering a battery’s SOC hinders its capacity decay,as one can see from Fig.1a that the capacity remains unchanged for a battery SOC =40%.Therefore,in addition to the storage tempera-ture,a battery’s SOC is a factor in capacity fading.Batteries stored at 60°C show a steeper capacity fading trend,and the decrease is most significant in the first few days ͑Fig.1b ͒.The fading depends strongly on a battery’s SOC;the higher the SOC,the more the fading.Capacity of a fully charged battery ͑SOC =100%͒decreases from 820to 650mAh after 60days at60°C ͑79.3%capacity retention ͒.The fade of a battery SOC =40%is relatively less,from 820to 750mAh ͑91.5%capacity re-tention ͒.The influence of SOC on capacity fading becomes more pronounced with elevating the storage temperature.Three-electrode electrochemical impedance analysis .—Early re-searchers believed that impedance of a battery is contributed by different factors,such as the electrolyte,the passivation film,charge transfer,lithium-ion diffusion in electrodes,etc.8-13Three-electrode electrochemical impedance spectroscopy ͑EIS ͒has been developed to analyze the individual effects of each component on capacity paring the Nyquist plot with an equivalent circuit model identifies the sources of impedance.Figure 2a shows both the measured and the simulated impedance spectra of a full battery before and after 15days of storage at 60°C ͑batteries are fully charged,SOC =100%͒.With respect to the ref-erence lithium electrode,impedance of the anode ͑Fig.2b ͒,and cathode ͑Fig.2c ͒are also shown in the figure.Before any measure-ment,the spectra of individual anode and cathode are summed up to check the method validity by ensuring that the resultant combined spectra are to be equal to the full battery spectra ͑Fig.2a ͒.The nearly overlapping curves prove its applicability and reliability.Cor-responding equivalent circuits of the anode and cathode are pre-sented in Fig.3.R e resembles the ohmic electrolyte resistance.R 1,Figure 1.Capacity variations of ALB with different SOCs during storage at ͑a ͒room temperature and ͑b ͒60°C.Figure 2.Measured and simulated impedance spectra of the ͑a ͒full battery,͑b ͒anode,and ͑c ͒cathode before and after 15days storage at 60°C.͑Bat-teries are fully charged,SOC =100%.͒Figure 3.The corresponding equivalent circuit used for the analysis of the impedance spectra of ͑a ͒anode and ͑b ͒cathode.11A1042Journal of The Electrochemical Society ,152͑6͒A1041-A1046͑2005͒R 2,and R 3are the different-layer SEI-film resistances.C 1,C 2,and C 3are the corresponding capacitance to R 1,R 2,and R 3.R CT is the charge-transfer resistance and C DL is the double-layer capacitance.W is the Warburg impedance.The semicircle in the high-frequency range,corresponding to the surface film resistance,is composed of smaller semicircles.Each contributes resistance and capacitance from different layers of the SEI.In the low-frequency range,the semicircle resembles the charge-transfer resistance,and the linear section resembles the solid-state lithium-ion diffusion.11In general,the presence of such a linear portion implies that diffusion of lithium ions is the semi-infinite diffusion condition.Semi-infinite diffusion in host materials is slower than in the electrolyte solution;therefore,the linear portion is assumed to be the semi-infinite diffusion in solid materials.Literature has shown many different corresponding cir-cuits to simulate the anode and cathode precisely.10-13In order to have a higher precision in modeling,different circuits have been simulated,shown in Fig.3.There are three R-C combinations in parallel to resemble anode SEI,but only one in the cathode circuit.Simulation results are identical to the experimental measurements.From Fig.2,changes in the cathode spectra are quite different from that of the anode after storage.The two electrodes have different resistance and surface chemistry,and therefore are affected differ-ently by high temperature.Individual contribution from each of the electrolyte resistance,film resistance,and charge-transfer resistance in anode and cathode are presented,respectively,in Fig.4.During high-temperature stor-age,changes in the anode resistance are smaller than that of the cathode.In the anode ͑Fig.4a ͒,resistance changes are larger in the surface film ͑the sum of R1,R2,and R3͒and charge-transfer than in the electrolyte.Both resistances are increased with time,especially the film resistance.Electrolyte is believed to decompose partially and continuously on the MCMB surface to thicken the SEI film,and this process is accelerated above room temperature.14As the SEI film thickens,lithium-ion migration in the film may be delayed and results in increased film resistance.The thickened film covers the active sites on the MCMB surface and blocks lithium ions from intercalating/deintercalating into the layer structure and charge-transfer resistance increases.Resistance of the electrolyte does not change because the decomposition amount is small ͑compared with the total electrolyte amount in a test battery ͒and therefore has little effect.In the cathode ͑Fig.4b ͒,resistance change patterns are similar;electrolyte resistance remains unchanged,and both the resistance of surface film and charge transfer are increased.The increase in film resistance comes from the formation of SEI on the surface of theLiCoO 2electrode.However,unlike the anode,the major contribu-tion to cathode impedance is the charge-transfer resistance,which increases most significantly with storage at 60°C.Charge-transfer resistance generally depends strongly on the surface properties of electrode materials.Therefore,a possible source for the increased charge-transfer resistance is the structural collapse of the LiCoO 2electrode surface during high-temperature storage.The deteriorated surface may block lithium ions from intercalating/deintercalating into the layer structure and increases the charge-transfer resistance.When the anode and cathode componential resistances are com-pared,the resistance that is most high-temperature-storage affected and controlled is the charge-transfer resistance of the cathode.With the three-electrode system,individual resistances of the ALB com-ponents may be studied separately,so improvements on the electro-chemical performance of each and even of the whole battery are possible.As the cathode resistance contributes primarily to the total cell resistance after high-temperature storage,it is also interesting to investigate the changes in the diffusion resistance of cathode after storage.In general,at low frequencies,the electrochemical interca-lation process is controlled by the semi-infinite diffusion.Ideally Z Јvs.Z Љis a 45°straight line ͑Warburg region ͒.15-17The slope of the straight line in the Warburg region yields the Warburg prefactor ͑␴͒.Apparent diffusion coefficients of lithium intercalation can be cal-culated according to the following equation 16,17␴=RTn 2F 2A ͱ2ͩ1C LiD Li0.5͓ͪ1͔where C Li is the concentration of Li ion incorporated inside a com-posite electrode,D Li is the apparent diffusion coefficient,A the geo-metrical area of the composite electrode,n the number of electrons transferred,F is Faraday’s constant,R the ideal gas constant,T absolute temperature,and ␻is the angular frequency.The real part of the complex impedance ͑Z Ј͒obtained from the cathode before and after 15days storage at 60°C plotted vs.␻−1/2is shown in Fig.5͑batteries are fully charged,SOC =100%͒.When comparing these two plots,lithium-ion concentration is assumed to be the same be-cause the electrodes are charged to the same state;composition of the materials,geometrical area,and the density are the same too.The change in Warburg prefactor value is only attributed to the diffusion coefficient.Warburg prefactors for the fresh and high-temperature-aged cathode obtained from the slopes are 0.00072⍀s −1/2and 0.0011⍀s −1/2,respectively.A small Warburg prefactor value may lead to high utilization of the electrodeunderFigure 4.Individual contribution from each of the electrolyte resistance,film resistance,and charge-transfer resistance in the ͑a ͒anode and ͑b ͒cath-ode.͑Batteries are fully charged,SOC =100%.͒Figure 5.Real part of the complex impedance ͑Z Ј͒obtained from the cath-ode ͑a ͒before and ͑b ͒after 15days of storage at 60°C plotted vs.␻−1/2.͑Batteries are fully charged,SOC =100%.͒A1043Journal of The Electrochemical Society ,152͑6͒A1041-A1046͑2005͒high-rate discharge conditions ͑diffusion control ͒.After high-temperature storage,the cathode surface layer structure has changed and the destructed layers may reduce the amount of diffusion path-ways,decreasing the utilization of active materials.In order to show the significant changes in charge-transfer resis-tance,impedance spectra of the cathode are measured while passing through with a C/10current.Generally,discharging a battery during impedance scanning,the battery’s charge-transfer resistance de-creases with increasing the current value,because of the increasing driving force in the electrode kinetics.Figure 6shows the EIS after different storage periods at 60°C by passing a C/10current through.The EIS spectrum of a battery after 3day storage ͑Fig.6a ͒shows significant changes.Charge-transfer resistance changes from 0.03to 0.0245⍀with the addition of C/10current.The decrease in charge-transfer resistance shows that an imposing current acceler-ates electrochemical reactions on the electrode surface.However,the battery after 30day storage at 60°C ͑Fig.6b ͒shows no signifi-cant changes.Charge-transfer resistance changes only from 0.1365to 0.1339⍀with the addition of C/10current.When a bat-tery with an original higher charge-transfer resistance is applied with a C/10current density,electrochemical reactions are not enhanced significantly.Electrochemical reactions are improved by increasing the driving force,i.e.,increased the implied currents,so to decrease the charge-transfer resistance.It may be concluded that the charge-transfer resistance of a LiCoO 2electrode after high-temperature storage for a period of time has increased significantly.Surface properties and bulk structures of the MCMB and LiCo O 2electrodes .—It has been reported that LiCoO 2is unstable at an open-circuit potential ͑OCP ͒higher than 4.2V vs.Li/Li +due to a possibility of cobalt dissolution from LiCoO 2.18Dissolved cobalt ions therefore should be deposited onto MCMB surfaces in fully charged batteries because the reduction potential of cobalt is much higher than the potential for lithium ions to intercalate into MCMB during charging.19EDS,XPS,and XRD are used to observe the changes in surface properties and bulk structure of the electrodes after storage.Figure 7shows the EDS patterns of fully charged MCMB electrodes during storage at different temperatures after 25days.The battery stored at 60°C shows a cobalt peak,indicating the presence of cobalt on the MCMB electrode surface.After high-temperature storage,the LiCoO 2surface structure has deteriorated,and cobalt is dissociated and deposited onto the MCMB surface during charging.Cathode surface deterioration is responsible for the increased charge-transfer resistance ͑Fig.4b ͒.High storage tempera-ture and high SOC of a battery may be the reasons for the acceler-ated dissolution rate of cobalt.The XPS technique was chosen to observe the changes on sur-face properties after high-temperature storage.The Co 2p XPS spec-tra of the fully charged cathode electrodes at different storing tem-peratures after 25days is shown in Fig.8.There are two main peaks of binding energies,corresponding to Co 2p 1/2͑around 795eV ͒and Co 2p 3/2͑around 780eV ͒.20The two XPS spectra have a similar shape except a shift in their binding energy.The binding energy of cathode after high-temperature storage shifts to a higher value and has a shoulder on the high-energy side of the Co 2p 1/2component.This difference indicates that the oxidation state of cobalt in the cathode after storage is higher than that of a fresh cathode.Previous publications show that when the amount of Co 4+ions increases in a redox system of lithium-cobalt-oxide ͑Co 4+/Co 3+͒,the XPS peaks of Co shift toward the high-energy side.20Accordingly,as both the lithium and oxygen contents are kept constant in the lithium-cobalt-oxide electrode,an increase of the cobalt oxidation state increases the amount of cobalt dissolution,suitably explaining the XPSdata.Figure 6.EIS of cathode after ͑a ͒3-day and ͑b ͒30-day storage at 60°C.EIS is measured while passing a current ͑C/10͒through.͑Batteries are fully charged,SOC =100%.͒Figure 7.EDS pattern of MCMB electrodes at fully charged states after 25days of storage at ͑a ͒room temperature,and ͑b ͒60°C.Figure 8.Co 2p XPS peaks of cathodes with different storage temperature at fully charged state after 25days of storage at ͑a ͒room temperature,and ͑b ͒60°C.A1044Journal of The Electrochemical Society ,152͑6͒A1041-A1046͑2005͒According to Amatucci et al.,18LiCoO 2starts structural deterio-ration when the voltage charged is higher than 4.20V ͑vs.Li/Li +͒.Lithium ions may not be able to intercalate/deintercalate into the cathode,leading to a decrease in battery capacity.The OCP of com-mercial lithium-ion batteries in fully charged state ͑SOC =100%͒is around 4.2V,referring to an OCP of LiCoO 2electrode higher than 4.2V vs.Li/Li +.Therefore,in practical usages,capacity fading of high-temperature storage lithium-ion batteries is inevitable.Figure 9shows the XRD pattern of MCMB and LiCoO 2elec-trodes ͑SOC =100%͒after storing at different temperatures.Changes in the patterns of MCMB are small ͑Fig.9a ͒,referring to a very little changed MCMB in its bulk structure.The only noticeable change occurs on the surface film,according to the ac impedance data ͑Fig.4a ͒.Similar results are found in the LiCoO 2electrode:high-temperature storage has little effect on the bulk structure,with the only difference being in its surface chemistry.From XPS data,cobalt dissolution occurs at the cathode.From EDS,these dissoci-ated cobalt ions are deposited on the anode.Cobalt dissolution af-fects the surface structure of lithium-cobalt-oxide electrodes,and affects the surface film of MCMB electrodes.A generality may be concluded that capacity fading of ALBs after high-temperature stor-age is not caused by structural changes of the materials but the surface phenomena on both the MCMB and LiCoO 2electrodes.OCP and charge/discharge curve of ALB after high temperature storage .—During storage,batteries are charged/discharged occa-sionally for two cycles at 82mA ͑about 0.1C ͒to determine their reversible capacity.After two cycles,batteries are charged to their original SOCs and the storage process continues.During the two-cycle capacity-determining step,batteries are charged at room tem-perature and OCP measured.Figure 10shows the OCP variations of the MCMB and LiCoO 2electrodes after 60°C storage at their fully charged states ͑SOC =100%͒.OCP of the MCMB electrode in-creases with the storage time,from 0.01to 0.06V after 25days.A fully charged MCMB electrode self-discharges and loses lithium ions during storage,leading to an increase in its OCP ͑OCP is de-pendent on the lithium-ion concentration in a particular electrode ͒.The loss is mainly attributed by the SEI.As partial dissolution and decomposition of the SEI film possibly thins itself,slowly becoming more porous and less protective,the film becomes incapable of pre-venting electrons from tunneling through anymore.14Intercalated lithium ions may continuously diffuse out from the interior of the MCMB electrode through the damaged SEI to react with the elec-trolyte;consequently,a decrease in the lithium-ion concentration in the MCMB electrode ͑higher OCP ͒has resulted.In LiCoO 2,OCP increases from 4.20to 4.25V after 25days of storage at 60°C.Increase in OCP indicates a decreased lithium-ionconcentration in LiCoO 2electrode,and the decrease results from the consumption of lithiated lithium ions with electrolyte.In both elec-trodes,lithium-ion concentration decreases because reversible lithium ions from LiCoO 2are decreased after high-temperature stor-age;in which anode SEI and surface structural deterioration of LiCoO 2͑cobalt dissolution ͒are the two major sources.Generally,high temperature accelerates the continuous decomposition-formation process of the SEI and accelerates the surface structure deterioration.When a battery is fully charged ͑SOC =100%͒,MCMB has high reactivity with the electrolyte,and LiCoO 2has a low structural stability which favors the cobalt dissolution.Figure 11shows the charge/discharge curves of a MCMB elec-trode before and after 25days of storage.Below 0.2V ͑vs.Li/Li +͒,there are three significant oxidation-reduction plateaus ͑marked 1,2,3͒,each representing the formation and decomposition of lithiated carbons.According to previous studies on lithiation of carbon fiber and graphite,these oxidation-reduction plateaus correspond to the potentials of two-phase coexistence.21-23Charge/discharge curves before and after storage are almost identical,different only in poten-tial plateau 3.Due to a shortage in the reversible lithium ions,con-sumed by anode SEI and cobalt dissolution from cathode,the bat-tery after storage can never be fully charged back to its original capacity,and the difference in plateau yer structuresofFigure 9.XRD patterns of ͑a ͒MCMB and ͑b ͒LiCoO 2electrodes after storage at room temperature and 60°C ͑SOC =100%͒.Figure 10.OCP variations of MCMB and LiCoO 2electrodes after 60°C storage at fully charged state ͑SOC =100%͒.Figure 11.Charge/discharge curves of the MCMB electrode before and after 25days of storage.A1045Journal of The Electrochemical Society ,152͑6͒A1041-A1046͑2005͒MCMB remain unchanged after storage͑Fig.11͒,corresponding to the XRD pattern͑Fig.9͒.The only difference is in the surface char-acteristics.ConclusionsCapacity fading of an ALB after storage depends on the battery’s SOC and its storage temperature.The relationships are directly pro-portional.Capacity of the battery SOC=100%decreases from 820to650mAh after60days of storage at60°C.Three-electrode electrochemical ac impedance technique is used to analyze the indi-vidual effects by the anode,cathode,and electrolyte on capacity fading.After storage,changes in the anode resistance are smaller than that of the cathode.In anode,changes in electrolyte resistance are small.Both thefilm and charge-transfer resistance increase slightly with storage time.But a different resistance result has been obtained for the cathode.After high-temperature storage,the surface layer structure has changed.The binding energy of cathode after high-temperature storage shifts to a higher value and has a shoulder on the high-energy side of the Co2p1/2component,indicating the cobalt dissolution.The destructed cathode layers therefore reduce the amount of diffusion pathways for lithium ions and decrease the utilization of the active material.A major contribution to capacity fading is the cathode degradation due to cobalt dissolution from the surface layer.Lithium-ion concentration decrease in both the MCMB and LiCoO2electrodes after storage suggests less reversible lithium ions,mainly due to the continual SEI formation/ decomposition on MCMB electrode,and to the surface structural deterioration of LiCoO2electrode͑cobalt dissolution͒.From the XRD results,high-temperature storage affects only the surface prop-erties of electrodes,the original bulk properties remain unchanged. Charge/discharge curves of MCMB electrodes demonstrate a short-age of reversible lithium ions,and most importantly,an undamaged internal structure.AcknowledgmentsThis work was supported by the Ministry of Economic Affairs of Taiwan under Contract no.93-EC-17-A-08-R7-0312.The authors also thank Dr.J.T.Lee for assistance with sample preparation and XPS analysis.The Industrial Technology Research Institute assisted in meeting the pub-lication costs of this article.References1.N.Takami,T.Ohsaki,H.Hasebe,and M.Yamamoto,J.Electrochem.Soc.,149,A9͑2002͒.2.N.Takami,M.Sekino,T.Ohsaki,M.Kanda,and M.Yamamoto,J.Power Sources,97-98,677͑2001͒.3.G.G.Amatucci,C.N.Schmutz,A.Blyr,C.Sigala,A.S.Gozdz,rcher,andJ.M.Tarascon,J.Power Sources,69,11͑1997͒.4.K.Araki and N.Sato,J.Power Sources,124,124͑2003͒.5. E.Wang,D.Ofer,W.Bowden,N.Iltchev,R.Moses,and K.Brandt,J.Electro-chem.Soc.,147,4023͑2000͒.6. D.Zhang,B.S.Haran,A.Durairajan,R.E.White,Y.Podrazhansky,and B.N.Popov,J.Power Sources,91,122͑2000͒.7.P.Ramadass,B.Haran,R.White,and B.N.Popov,J.Power Sources,112,614͑2002͒.8. A.Funabiki,M.Inaba,Z.Ogumi,S.Yuasa,J.Otsuji,and A.Tasaka,J.Electro-chem.Soc.,145,172͑1998͒.9.M.S.Wu,P.C.Chiang,J.C.Lin,and Y.S.Jan,Electrochim.Acta,49,1803͑2004͒.10.M.S.Wu,P.C.Chiang,and J.C.Lin,J.Electrochem.Soc.,152,A47͑2005͒.11. D.Aurbach,J.Power Sources,89,206͑2000͒.12.S.Zhang,M.S.Ding,K.Xu,J.Allen,and T.R.Richard,Electrochem.Solid-StateLett.,4,A206͑2001͒.13. C.R.Yang,J.Y.Song,Y.Y.Yang,and C.C.Wan,J.Appl.Electrochem.,30,29͑2000͒.14.T.Zheng,A.S.Gozdz,and G.G.Amatucci,J.Electrochem.Soc.,146,4014͑1999͒.15. C.Ho,I.D.Raistrick,and R.A.Huggins,J.Electrochem.Soc.,127,343͑1980͒.16.T.S.Ong and H.Yang,Electrochem.Solid-State Lett.,4,A89͑2001͒.17. A.J.Bard and L.R.Faulkner,Electrochemical Methods;Fundamentals and Ap-plications,p.328,John Wiley&Sons,Inc.,New York͑1980͒.18.G.G.Amatucci,J.M.Tarascon,and L.C.Klein,Solid State Ionics,83,167͑1996͒.19.S.Komaba,N.Kumagai,and Y.Kataoka,Electrochim.Acta,47,1229͑2002͒.20.J.C.Dupin,D.Gonbeau,H.Benqlilou-Moudden,P.Vinatier,and A.Levasseur,Thin Solid Films,384,23͑2001͒.21.T.Ohzuku,Y.Iwakoshi,and K.Sawai,J.Electrochem.Soc.,140,2490͑1993͒.22.N.Takami,A.Satoh,M.Hara,and T.Ohsaki,J.Electrochem.Soc.,142,2564͑1995͒.23.N.Takami,A.Satoh,M.Hara,and T.Ohsaki,J.Electrochem.Soc.,142,371͑1995͒.A1046Journal of The Electrochemical Society,152͑6͒A1041-A1046͑2005͒。

电催化氧化处理苯酚废水

电催化氧化处理苯酚废水

电催化氧化处理苯酚废水张闯; 贾志奇; 赵永祥【期刊名称】《《化学与生物工程》》【年(卷),期】2019(036)011【总页数】5页(P47-51)【关键词】苯酚废水; 电催化氧化; 处理【作者】张闯; 贾志奇; 赵永祥【作者单位】山西大学化学化工学院山西太原 030006; 精细化学品教育部工程研究中心山西太原 030006; 山西大学固废利用襄垣研发基地山西太原 030006【正文语种】中文【中图分类】X703.1在我国水污染控制中,含酚废水被列为重点解决的有害废水之一。

含酚废水主要来源于医药、纺织、化工、能源等领域,具有高毒性、高COD值,生物降解性差。

因此,未经处理的含酚废水直接排放,会对环境和人体造成严重危害。

含酚废水的处理方法包括生物法、萃取法、液膜法、化学氧化法等。

生物法对环境无害,但合成染料在自然界很难被生物降解,该方法适用于处理浓度很低的含酚废水;萃取法、液膜法的第三组分和膜污染会造成二次污染;化学氧化法工艺简单,但氧化剂不能重复使用,且价格昂贵,操作费用较高。

从综合处理的角度看,这些方法都难以达到稳定、安全的处理目的。

电催化氧化法是一种新的取代传统工艺的废水处理方法。

包括含酚废水在内的各种废水的电化学氧化已有报道[1-3],电催化反应可有效氧化有毒有机物[4-5]。

由于装置结构和操作简单,电催化过程可作为一种经济有效的技术用于处理酚类有机污染物。

在电催化过程中,有机污染物可以通过直接和间接机制去除,这取决于阳极和工艺条件。

在阳极表面上发生直接氧化,并且通过氧化还原反应发生间接氧化。

研究[6]表明,以涂覆RuO2并掺杂Pt(Ti/RuO2-Pt)的Ti电极和涂覆IrO2并掺杂Pt(Ti/IrO2-Pt)的Ti电极作阳极时,苯酚易被氧化成马来酸,如果有足够的羟基等自由基,马来酸可以被直接氧化成草酸,草酸易被氧化成二氧化碳[7-8]。

作者采用固定尺寸的铱钌镀层钛电极作阳极、不锈钢电极作阴极、锰炭复合材料作粒子电极,利用三维电极对苯酚模拟废水进行电催化降解。

Electrochemical performance of La1-xSrxCuO3-δ-Sm0.15Ce0.85O1.925 composite cathodes in IT-SOFCs

Electrochemical performance of La1-xSrxCuO3-δ-Sm0.15Ce0.85O1.925 composite cathodes in IT-SOFCs
!"##$%& "’()’ * +,-."# : !"# $%&’()%* * / 01+) 2:+%&’()%,%-./0 1%2&3) 4&68’E) (&6)7%&, !&; < ! =7 ! >-?@ <( ! P B3 ;. , B3 D, B 3 @,B3 Q)R&1 1J268)1%S)E TJ & 1’,AM), ()68’E3 $A7&J ! E%::7&46%’2 7)L)&,1 68&6 & 1%2M,) 98&1) ’: 9)7’L1U%6) %1 :’7()E3 F8) %2L)16%M&6%’2 ’: 68) ),)467%4&, 97’9)76%)1 1-MM)161 68&6 !& B3 V =7 B3 @ >-? @ < ! 8&1 68) 8%M8)16 ),)467%4&, 4’2E-46%L%6J3 !&B3 V =7B3 @ >-?@ < ! 9’RE)7 R&1 (%+)E R%68 E%::)7)26 &(’-26 =H> ( =(B3 ;. >) B3 /. ?;3 CD. ) 9’RE)7( . R63 W < @B R63 W ) &1 4’(9’1%6) 4&68’E)13 5,)467’48)(%4&, 97’9)76%)1 ’: 68) 4’(9’1%6) 4&68’E)1 R)7) 7)1)&748)E :-768)73 "2L)16%M&6%’2 1-MM)161 68&6 68) &EE%6%’2 ’: &997’97%&6) &(’-26 =H> 6’ !& B3 V =7B3 @ >-?@ < ! 4&2 %(97’L) 68) ),)467’48)(%4&, 97’9)76%)1 &2E ’T6&%2 T)66)7 4&68’E%4 9)7:’7(&24)3 #1%2M !& B3 V =7 B3 @ >-?@ < ! A=H> 4’(9’1%6) (&6)7%&,1 &1 & 4&68’E) T&1)E ’2 =H> ),)467’,J6) , 8%M8)7 4-77)26 E)21%6J &2E 9’R)7 E)21%6J &6 %26)7()E%&6) 6)(9)7&6-7)1 4&2 T) ’T6&%2)E3 6$7 8"#(%:=?G> ;>’(9’1%6) >&68’E);!& ; < ! =7 ! >-?@ < ! ;=H>

聚合物固态电解质的研究进展

聚合物固态电解质的研究进展

第37卷第2期高分子材料科学与工程Vol.37,No.2 2021年2月POLYMER MATERIALS SCIENCE AND ENGINEERING Feb.2021聚合物固态电解质的研究进展胡方圆」,王琳1,王哲2,宋子晖」,王锦艳2,张守海2,刘程2,蹇锡高12(1.大连理工大学材料科学与工程学院;2.大连理工大学化工学院,辽宁大连116024)摘要:固态储能器件由于其在安全性和潜在的高能量密度方面的优势,被认为是下一代能量存储设备。

固态电解质作为固态储能器件的关键元件,具有高的安全系数,近年来受到了广泛的关注。

其中聚合物固态电解质由于其制备简便,价格低廉且界面相容性好等优点,成为固态电解质的重要组成部分。

文中从聚合物的微观结构和聚合物固态电解质的宏观形态出发,分别概述了聚环氧乙烷(PEO)、聚碳酸酯(PC),聚硅氧烷和其他聚合物基固态电解质的传输机理及在各领域的发展与应用,并对聚合物固态电解质未来的发展进行展望。

关键词:固态储能器件;聚合物固态电解质;离子传导机理;电化学性能中图分类号:TM912文献标识码:A文章编号:1000-7555(2021)02-0157-111前言能源作为社会可持续发展的永恒动力之一,一直受到科学界的广泛关注。

在能量转换与储能系统当中,电化学储能设备是最便捷最高效的设备之一除去传统的锂离子电池外,锂硫电池⑵、钠离子电池⑷和超级电容器⑷等新型储能器件也在飞速发展。

电化学储能器件由4部分构成,分别为正极、负极、隔膜和电解质。

其中,电解质起到了传导离子与隔绝电子的作用,是整个器件中不可或缺的一部分。

然而,目前所采用的电解质通常包含具有可燃性的有机溶剂,使得目前的储能器件存在较高的安全隐患[5]。

因此,发展具有高安全性的固态电解质代替液态电解质是解决高储能器件安全性的重要途径[6,]。

固态电解质以固体形式存在,替代了原有的电解液和隔膜,具有传导离子和隔绝电子的作用。

《沈阳化工大学学报》2020年总目次

《沈阳化工大学学报》2020年总目次

沈阳化工大学学报JOURNAL OF SHENYANG UNIVERSITY OF CHEMICAL TECHNOLOGY第34卷第4期2020.12Vol. 34 No. 4Dec. 20202020年总目次-化学与化学工程-CUO-WO 3纳米立方块的合成及气体传感特性研究司建朋,王明月,孟高耐碱表面活性剂的开发及在工业清洗中的应用张冬喜,李新钰,石磊,王Co/g - C 3N 4- CHIT/GCE 修饰电极的制备及其对H 2PO 4-的测定陈异构十三醇聚氧乙烯醚磷酸酯的合成及性能研究十六烷值改进剂的制备与性能研究离子液体分离乙酸甲酯-甲醇共沸物系的模拟研究离子液体-环己烷(乙醇)二元体系气液相平衡研究萃取精馏分离苯-甲醇共沸体系的模拟碳纳米管对 C u O - ZnO - Ga 2 O 3/HZSM - 5催化剂性能的影响低品位菱镁矿浮选剂实验研究均三乙苯的合成研究甲基丙烯酸混合醇酯-苯乙烯-醋酸乙烯酯三元聚合物的合成与降凝性能研究车用水蜡的研究新型银制品洗涤剂的研制间氨基乙酰苯胺的合成及分离研究岩,思,李文秀,王英文,丹,刘冬雨,赵 嘉,李玉娇,江寒峰1 (1)张志刚,郭禹含,李晓茜,许光文2 (97)刘坤,于丹舟,杨旺,姚慧2 (107)-魏田,张芮,王瑞灵,陈永杰 2 (115)宋明龙,龙小柱 2 (120)李继鹏,张羽,张志刚,张弢3 (193)-李宏辉,李文秀,张志刚,张弢3(198)-尹海鹰,李文秀,张志刚,张弢3 (205)王 开,于欣瑞,刘 楠,张雅静3 (210)康坤红,龙小柱3 (216)-马婉莹,张风雨,丁茯,王东平 4 (289)-徐妍,龙小柱,靳璐璐,于海洋4 (295)-高鹏飞,龙小柱,靳璐璐,高碌4 (301)-卢羲亚,于媛,韩英男,龙小柱 4 (306)-王瑞灵,陈永杰,曹爽,张芮4 (310)高效液相色谱法同时测定邻位香兰素、香兰素、甲基香兰素和乙基香兰素贾璇,王国胜4 (314)Pd/N 3 - SiO 2催化剂制备及其催化乙烘气相加氢性能研究王梦娇,王康军,李东楠4(319)2沈阳化工大学学报2020年-生物与环境工程-积雪草酸A环衍生物的合成及其抗肿瘤活性研究.........................李孝孝,佟贺,熊果酸衍生物的合成及体外抗肿瘤活性研究.......................................徐川东,N-金刚烷基-N,-芳杂基二酰肼类化合物的合成..............刘丹,关月月,张淑曼,齐墩果酸A环衍生物的合成与体外抗肿瘤活性研究...............................王强,模板剂对MnO”催化剂微观形貌的调控及其催化氧化甲苯性能.......................................项文杰,刘威,赵恒,齐墩果酸衍生物的合成及其与MEK靶点分子对接研究.............................张蓬勃,齐墩果酸硫脲类衍生物的合成及以VEGFR-2为靶点的分子对接研究........................................................李杰,2-(漠甲基)-3-取代丙烯酸酯的合成及生物活性研究.............................廖桥,WBS-RBS和AHP的方法在化工园区安全容量评价的应用.........................孟宇强,-材料科学与工程-以三(二乙胺基)环硼氮烷为前驱体制备六方氮化硼李宗鹏,王长松,石墨烯/二氧化锰复合材料的制备及其电化学性能的研究李静梅,不同分散剂对天然橡胶性能的影响孟唯,刘浩,武文斌,张舒雅,肉豆蔻酸/棕榈醇共晶物作为相变材料的热性能研究李蛟龙,任子真,Ni2P/Cu3P复合纳米材料的制备、表征及电催化性能研究鲍彤,祁佳音,赵国庆,g-C3N4/CeVO4/Ag纳米复合材料的制备及光催化性能的研究钱坤,邱永堃,高雨,丁茯,孙亚光,两相闭式热虹吸管的强化传热新能源集成厨用加热系统结构形式对挡板岀口截面流体力学性能的影响多孔板旋流静态混合器强化传热性能分析基于声发射技术的减速顶故障诊断三聚磷酸钠对镁合金阳极氧化膜性能的影响•机械工程•蔡长庸,'战洪仁,史胜,张倩倩,惠尧,惠尧,陈彤,翟雪发,战洪仁,张海春,周圆圆,龚斌,吴剑华,龚斌,刘海良,王巍,周圆圆,金志浩,迟展,孟艳秋1(9)孟艳秋1(18)王然1(22)孟艳秋2(125)张学军3(222)宋艳玲3(230)宋艳玲4(324)杨桂秋4(330)宫博4(334)梁兵1(25)张辉1(31)王重2(130)李贵强3(236)郭卓4(338)徐振和4(345)王立鹏1(41)曾祥福1(47)张静2(135)张静2(142)于宝刚2(147)付广艳,姜天琪,钱神华2(153)第4期《沈阳化工大学学报》2020年总目次3稳流器结构对消防直流水枪水力学性能的影响风载荷作用下倾斜塔板压降的数值模拟...... Mg-xZn合金的制备及腐蚀性能研究..........带有内螺纹的重力热管仿真模拟研究........带有开槽中性捏合块和反向螺纹双螺杆挤岀机的三维流场分析.........................张静,陈生国,张平,张丽,张平,王豪,付广艳,钱神华,许文兰,战洪仁,张倩倩,史胜,王立鹏,郭树国,于淼,王丽艳,汤霖森,陈科昊,网格类型对管内旋流特性数值计算的影响•信息与计算机工程-BP神经网络算法在“摇头”避障小车中的应用.....................................任帅男,基于GPRS DTU远程通讯技术在油气集输管线上的应用..................赵思渊,何戡,基于通信节点的WSN自主聚类非均匀分簇路由协议......................刘一珏,王军,基于冗余节点间歇性的WSN路由协议的设计..................马德朋,王军,田鹍,基于Python爬虫的电影数据可视化分析.................................高巍,孙盼盼,基于STM32的CAN总线数据采集卡设计..........................................李蛟龙,基于物联网的雾化降尘效果优化研究...................................安然然,路晨贺,基于SPA-SVDD方法对间歇过程的故障检测...........................谢彦红,薛志强,基于Labview的三容水箱液位控制系统设计.............................李凌,曹纪中,基于数据分片的WSN安全数据融合方案优化..................王军,陈羽,田鹍,基于加权优化树的WSN分簇路由算法............................................刘一珏,筛分车间矿料仓除尘优化策略.................................安然然,路晨贺,高文文,多路光功率监测系统的设计......................................................高淑芝,餐饮业液化气罐物联网智能管理系统...................................汪滢,于洋,布袋除尘器耗损件生命周期监控策略...........................路晨贺,安然然,孙晓鑫,仿海底洋流实验中水流动状况智能监控系统..........王金亮,安然然,路晨贺,孙晓鑫,基于潜隐变量自相关性子空间划分的故障检测策略......................张成,郭青秀,无混载校车路线分析模型优化实现方法.................................高巍,陈泽颖,-数理科学•非定常对流占优扩散方程的龙格库塔伽辽金有限元方法.............................冯立伟,龚斌3(239)秦然3(245)姜天琪3(250)惠尧4(352)韩彦林4(358)王宗勇4(363)王庆辉1(51)宗学军1(56)田鹍1(60)徐万一1(67)李大舟1(73)任子真1(79)张蔓蔓1(85)李元2(158)王璐2(165)赵子君2(171)王军2(178)张蔓蔓2(187)徐林涛3(255)张延华3(261)张语仙3(268)张语仙3(275)李元4(369)李大舟4(377)席伟1(91)外磁场下的双层类石墨烯系统的元激发能谱赵宇星,成泰民3(282)4沈阳化工大学学报2020年Comprehensive Table of Contents2020・Chemistry and Chemical Engineering・Synthesis and Gas Sensing Properties of CuO-WO3Nanocubes SI Jian-peng,et al1(i) Development of High Alkali-Resistant Surfactant and ItsApplication in Industrial Cleaning ZHANG Dong-xi,et al2(97) Preparation of Co/g-C;N4-CHIT/GCE Modified Electrode andDetermination of Dihydrogen Phosphate CHEN Si,et al2(i07) Study on the Synthesis and Properties of the Phosphate Ester ofIso-Tridecanol Polyoxyethylene WEI Tian,et al2(115) Preparation and Properties of Cetane Number Improver SONG Ming-long,et al2(120) Simulation Study on Separation of Methyl Acetate-MethanolAzeotrope System by Ionic Liquid LI Wen-xiu,et al3(193) Vapor-Liquid Equilibrium of Ionic Liquids with Cyclohexane orEthanol Binary System LI Hong-hui,et al3(198) Simulation of Azeotrope Separation of Benzene-Methanol byExtractive Distillation YIN Hai-ying,et al3(205) Effect of Carbon Nanotubes on the Performance ofCuO-ZnO-Ga2O3/HZSM-5Catalysts WANG Ying-wen,et al3(210) Experimental Study on Flotation Agentfor the Low Grade Magnesite KANG Kun-hong,et al3(216) The Synthesis of1,3,5-Triethylbenzene MA Wan-ying,et al4(289) Study on Synthesis and Pour Point Depressing Performance of Methyl AcrylicAcid Mixed Alcohol Ester-Styrene-Vinyl Acetate Terpolymer XU Yan,et al4(295) Study on Vehicle Water Wax GAO Peng-fei,et al4(301) Development of New Detergent for Silver Products LU Xi-ya,et al4(306) Synthesis and Separation of m-Acetamidoaniline WANG Rui-ling,et al4(310) Simultaneous Determination of o-Vanillin,Methyl Vanillin,Ethyl Vanillin andVanillin by High Performance Liquid Chromatography JIA Xuan,et al4(314) Synthesis of Pd/N s-SiO?Catalyst and its Catalytic Performance forAcetylene Hydrogenation to Ethylene WANG Meng-jiao,et al4(319)・Biological and Environmental Engineering・Synthesis and Antitumor Activity of A-Ring Derivatives of Asiatic Acid LI Xiao-xiao,et al1(9) Synthesis and Antitumor Activity in Vitro of Ursolic Acid Derivatives XU Chuan-dong,et al1(18) Synthesis of N-adamantyl-N'-arylheterodihydrazides LIU Dan,et al1(22) Synthesis and Anti-Tumor Activity of Oleanolic AcidA Ring Derivatives in Vitro WANG Qiang,et al2(125) Tunable Synthesis of Morphologies of MnO^Catalyst by Template andIts Catalytic Oxidation Performance for Toluene XIANG Wen-jie,et al3(222)第4期《沈阳化工大学学报》2020年总目次5Synthesis of Oleanolic Acid Derivatives and MolecularDocking Studies with MEK.............................................................................................ZHANG Peng-bo,et al3(230) Synthesis of Oleanolic Acid Thiourea Derivatives and MolecularDocking Study with VEGFR-2Kinase.............................................................................................LI Jie,et al4(324) Synthesis and Biological Activities of2-(bromomethyl)-3-substituted Acrylate.......................................................................................................................LIAO Qiao,et al4(330) Application of WBS-RBS and AHP in Safety Capacity Analysis ofChemical Industrial Park.................................................................................................MENG Y u-qiang,et al4(334)・Material Science and Engineering・Synthesis of the Hexagonal Boron Nitride Using Tris(diethylamino)borazine as Precursor...................................................................................................................LI Zong-peng,et al1(25) Preparation and Electrochemical Properties of Graphene/ManganeseDioxide Composites.......................................................................................................................LI Jing-mei,et al1(31) Effect of Different Dispersants on the Properties of Natural Rubber..............................................MENG Wei,et al2(130) Thermal Properties of Myristic Acid/1-hexadecanol EutecticMixture as Phase Change Material.........................................................................................LI Jiao-long,et al3(236) Hydrothermal Synthesis,Characterization and Electrocatalytic HydrogenEvolution of Nif/Cuf Nanomaterials.........................................................................................BAO Tong,et al4(338) Preparation of Photocatalytic Properties g-C3N4/CeVO q/Ag Nanocomposites........................QIAN Kun,et al4(345)・Mechanical Engineering・The Enhancement of Heat Transfer in Two-Phase Closed Thermosyphon....................ZHAN Hong-ren,et al1(41) New Energy Integrated Kitchen Heating System...................................................................CAI Chang-yong,et al1(47) Effect of the Baffle Structure on Hydrodynamic Performanceat the Outlet Section ZHANG Hai-chun,et al2(135) Analysis on Enhanced Heat Transfer Performance of Cyclone StaticMixer with the Porous PlateFault Diagnosis of Retarder in Railway Stations Based on Acoustic Emission TechnologyInfluence of Sodium Tripolyphosphate on the Properties of Anodizing Films of Magnesium AlloyEffect of the Stabilizer Structure on the Hydraulic Characteristics in the Fire Water GunGONG Bin,et al2(142) JIN Zhi-hao,et al2(147) FU Guang-yan,et al2(153) ZHANG Jing,et al3(239)Numerical Simulation of Pressure Drop of ObliqueTray under Wind Load ZHANG Ping,et al3(245)Preparation and Corrosion Properties of Mg-xZn Alloys.......... Numerical Simulation of Gravity Heat Pipe with Internal Threads Three Dimensional Flow Field Analysis of Twin Screw Extruder with Slotted Neutral Kneading Block and Reverse Thread.................■-FU Guang-yan,et al3(250) ZHAN Hong-ren,et al4(352)GUO Shu-guo,et al4(358)6沈阳化工大学学报2020年Influence of Grid Type on Numerical Calculation of SwirlCharacteristics in Tubes......................................................................................................CHEN Ke-hao,et al4(363)・I information and Computer Engineering・Application of BP Neural Network Algorithm in“Shaking Head”Vehicle forObstacle Avoidance..................................................................................................................REN Shuai-nan,et al1(51) The Application of GPRS DTU Remote Communication Technology inOil and Gas Gathering Pipeline.............................................................................................ZHAO Si-yuan,et al1(56) WSN Autonomous Cluster Heterogeneous Clustering Routing ProtocolBased on Communication Nodes.................................................................................................LIU Yi-jue,et al1(60) Design of WSN Routing Protocol Based on Redundancy Node Intermittent.............................MA De-peng,et al1(67) Visual Analysis of Film Data Based on Python Crawler...................................................................GAO Wei,et al1(73) Design of CAN Bus Data Acquisition Card Based on STM32..................................................LI Jiao-long,et al1(79) Study on Optimization of Atomization and Dust Reduction EffectBased on Internet of Things..........................................................................................................AN Ran-ran,et al1(85) Fault Detection Based on SPA-SVDD in Batch Process......................................................XIE Yan-hong,et al2(158) Design of Three Tank Level Control System Based on Labview...........................................................LI Ling,et al2(165) Optimization of WSN Secure Data Aggregation SchemeBased on Data Slice...................................................................................................................WANG Jun,et al2(171) A WSN Cluster Routing Algorithm Based on theOptimized-Weighting Tree......................................................................................................LIU Yi-jue,et al2(178) Optimization Strategy for Dust Removal of Mine MaterialWarehouse in Sieve Workshop.................................................................................................AN Ran-ran,et al2(187) Design of Multi-Channel Optical Power Monitoring System..................................................GAO Shu-zhi,et al3(255) The Internet of Things Intelligent Management System ofCatering Industry Liquefied Gas Tank.....................................................................................WANG Ying,et al3(261) Life Cycle Monitoring Strategy for Bag Filter Wearer...............................................................LU Chen-he,et al3(268) Intelligent Monitoring Scheme for Water Flow inImitation Ocean Current Experiment................................................................................WANG Jin-liang,et al3(275) Fault Detection Strategy Based on Dividing Autocorrelation ofLatent Variables.......................................................................................................................ZHANG Cheng,et al4(369) Optimization Implementation Method of No-Mixed SchoolBus Route Analysis Model..............................................................................................................GAO Wei,et al4(377)・Science of Mathematics and Physics・Rung-Kutta Galerkin FEM Method for Unsteady ConvectionDominated Diffusion Equation.................................................................................................FENG Li-wei,et al1(91) Elementary Excitation Energy Spectra of Double-Layer Graphene-LikeSystem Under External Magnetic Field ZHAO Yu-xing,et al3(282)。

锂电池铬氧化物材料研究进展

锂电池铬氧化物材料研究进展

锂电池铬氧化物材料研究进展彭庆文;刘兴江【摘要】过渡金属氧化物由于具有很高的容量可作为锂电池正极或负极材料而引起了众多学者的关注,其中铬氧化物因本身的三电子转移特性和非常高的储锂容量而得到广泛研究.铬氧化物(CrO3、CrO8、Cr2O5、CrO2、Cr2O3)中,重点介绍了正极材料Cr3O8和负极材料Cr2O3的最新研究成果.【期刊名称】《电源技术》【年(卷),期】2018(042)008【总页数】3页(P1223-1225)【关键词】锂电池;铬氧化物;正极材料;负极材料【作者】彭庆文;刘兴江【作者单位】中国电子科技集团公司第十八研究所化学与物理电源重点实验室,天津300384;中国电子科技集团公司第十八研究所化学与物理电源重点实验室,天津300384【正文语种】中文【中图分类】TM912近年来,随着环保意识的不断增强,电动汽车得到了大力推广,动力型锂电池需求巨大。

电动汽车对续航里程的要求越来越高,作为动力之源的锂电池需要不断提高自身的比能量才能与之匹配。

锂电池比能量的高低主要取决于组成电池的关键材料,包括正负极材料、隔膜及电解质,其中最重要的是锂电池正负极材料。

传统商业化的锂电池正负极材料已经发展到极限了,很难再继续提高,因此研究人员将目光转向开发新材料。

研究人员发现[1-5]几种过渡金属氧化物(TMO)具有可逆的储锂性能,如Fe3O4、Co3O4、NiO、MnO2、SnO2。

这些材料大多数具有很高的可逆比容量,一般在400~1 100 mAh/g,其缺点是首次循环效率不高(<75%)、脱锂电压较高(>1.8 Vvs.Li/Li+)。

铬氧化物也是这类过渡金属氧化物的一种,由于铬的三电子转移特性和非常高的储锂容量,铬的多种氧化物作为锂电池材料得到了广泛的研究。

本文从铬氧化物作为锂电池正极材料和负极材料两个方面详细介绍了铬氧化物材料的研究进展。

1 锂电池铬氧化物正极材料研究进展铬氧化物由于比容量高、能量密度高,作为锂电池正极材料吸引了很多研究学者的兴趣。

A01.能量转换与存储材料

A01.能量转换与存储材料

A01.能量转换与存储材料分会主席:武英、潘洪革、黄学杰、李箭A01-01LiNi0.5Mn1.5O4 as cathode material for Li-ion Batteries黄学杰中国科学院物理所Electrical vehicles represent one approach to reduce undesirable emissions from conventional internal combustion engines in heavily populated areas. Li-ion battery is becoming the key enabling technology for EVs. Presently, Li-ion batteries with LiMn2O4, NCM/NCA, LiFePO4 as cathode active material are widely used in EVs. High-voltage spinel LiNi0.5Mn1.5O4 cathode material has specific energy (~640 mAh/g due to the high operation voltage of ~4.7 V. The relatively inexpensive Ni and Mn in LiNi0.5Mn1.5O4 make this cathode material particularly desirable for large-scale applications. A detailed investigations of its local atomic-level structure with lithium extraction/insertion is observed via an aberration-corrected scanning transmission electron microscopy (STEM). The surface regions (~ 2nm) show an irreversible migration of TM ions into lithium tetrahedral sites to form a Mn3O4-like structure. It contributes to the dissolution of TM ions as well as the rocksalt-like structures with heavy TM ions on the lithium pathways blocks the migration of lithium ions, resulting in building-up of charge transfer impedance and degradation of capacity. When the surface LiNi0.5Mn1.5O4 was modified by Ti4+ and Ta5+ superficial doping, the cycling performance of the material at elevated temperatures has been much improved and the coulombic efficiency of discharge/charge is also obviously increased. Theoretical calculations analyses reveal that the stability of O at surface layer is enhanced by those surface modifications and detailed analyses will be reported.A01-02层状富锂锰基征集材料的研究进展夏定国北京大学A01-03Development of separators for high safety lithium-ion batteries赵金保厦门大学The lithium-ion batteries (LIBs) are regarded as the one of the most competitive candidates of the power source for electric vehicles (EVs), but its safety performance should be greatly improved. As a safety device inside the cell, separator acts as a last line of defense to ensure the battery safety. However, the currently used polyolefin-based separator usually fails its function at elevated temperature due to its intrinsic low melting point. Coating with ceramic particles has been proved to be a practical approach to minimize the risk of thermal damage of polyolefin-based separators. Based on the study of the effect of the thickness and the morphology of the ceramic layer, we have further developed several functional ceramic-coated separators, including the core–shell structured functional ceramic coated separator, and a stereocomplex structured separator which can maintain its dimensional stability up to 230 ℃. Another clue is to alter the substrates for the separator. We developed functional separator based on nonwoven. By coating PE particle layer onto the surface of the PI nonwoven fabric, a composite separator with shut-down function along with an excellent thermal stability was obtained. Through in situ polymerization, a modified core-shell structure greatly improves the thermal stability of PVDF-based nonwoven separator. The currently liquid electrolyte-based cell has an intrinsic safety risk. Adopting solid state electrolyte would essentially improve the safety performance. We developed a single lithium-ion conducting polymer electrolyte based on poly(hexafluoro butyl methacrylate-co-lithium allyl sulfonate). And further study on solid electrolyte is conducting. All these works will elaborate our understanding on the safety of LIBs in terms of the separator.A01-04三维多级孔金属集流体的储锂性能研究1施志聪广东工业大学稳定高效的金属锂电极是发展可充放电金属锂电池的关键。

溶胶级硅酸镁锂

溶胶级硅酸镁锂

溶胶级硅酸镁锂概述溶胶级硅酸镁锂是一种含有硅酸镁锂的溶胶,具有优异的物理和化学性质。

它在许多领域具有广泛的应用,并且在能源存储、催化剂和嵌入式电子领域等方面表现出了巨大的潜力。

物理性质1.微观结构:溶胶级硅酸镁锂的微观结构由硅酸镁锂纳米颗粒组成。

这些纳米颗粒具有高表面积和均匀的尺寸分布,有利于提高其吸附和催化性能。

2.热稳定性:溶胶级硅酸镁锂具有较高的热稳定性,可以在高温条件下保持其结构和性能稳定。

化学性质1.酸碱性:溶胶级硅酸镁锂呈现中性或弱碱性,可与酸和碱发生化学反应。

2.吸附性能:溶胶级硅酸镁锂表现出良好的吸附性能,可吸附溶液中的有机物和金属离子,具有净化和分离的潜力。

3.催化性能:溶胶级硅酸镁锂可以作为催化剂,广泛应用于催化反应中。

它可以提供活性表面,加速反应速率并提高选择性。

应用领域1. 能源存储溶胶级硅酸镁锂在能源存储中具有重要的应用潜力。

它可以作为电池、超级电容器和燃料电池等能量储存设备的关键材料。

通过控制其微观结构和组成,可以提高储能设备的性能和循环寿命。

2. 催化剂溶胶级硅酸镁锂作为催化剂在化学反应中发挥着重要作用。

它可以用于催化酸碱反应、氧化反应和加氢反应等。

通过调控其组成和形貌,可以提高催化剂的活性和选择性,加速反应速率。

3. 嵌入式电子溶胶级硅酸镁锂在嵌入式电子领域也有着广泛的应用。

它可以制备成薄膜,在可穿戴设备、传感器和微型电子组件中作为电子材料使用。

其高表面积和可调控的电学性质使其成为这些应用的理想材料。

制备方法溶胶级硅酸镁锂的制备方法主要包括溶胶凝胶法、水热合成法和溶剂热法等。

其中,溶胶凝胶法是最常用的制备方法之一。

该方法通过控制溶胶的成分、浓度和温度等参数,将硅酸镁锂溶液转化为凝胶,在高温条件下进行热处理,最终得到溶胶级硅酸镁锂。

总结溶胶级硅酸镁锂作为一种重要的功能材料,具有出色的物理和化学性质,广泛应用于能源存储、催化剂和嵌入式电子领域等。

通过进一步研究和开发,可以进一步提高其性能和应用价值。

硅基负极与电解液研究进展

硅基负极与电解液研究进展

Si负极技术路线
韩国以三星SDI为代表,通过化学气相沉积可制备 得到定向生长成具有一定孔隙率的非晶硅薄膜,其 比容量可达3000mAh/g。 日本以信越化学、松下为代表,侧重于采用硅氧化 物与掺杂硅及碳材料三种互为一体的方式制备硅负 极材料,其比容量约为800~1200mAh/g。 中国以贝特瑞、比亚迪为代表,采用纳米硅与碳材 料复合制备硅碳负极(往往只引入少量硅来提高负 极比容量),其比容量约为500~600mAh/g。
数据来源: 检索关键词:硅,负极,锂
Si负极文献分析
文献高峰 期2010年 至2013年
数据来源:www.webof 检索关键词:硅,负极,锂
Si负极文献分析
美中日韩 四国科研 人员主导 日本
数据来源:www.webof 检索关键词:硅,负极,锂
Si负极/VC
VC VC自由基 VC聚合物
+e-
聚合
n
VC形成碳酸酯类聚合物机理
ETACHERI V, HAIK O, GOFFER Y, et al. Effect of fluoroethylene carbonate (FEC) on the performance a surface chemistry of Si-nanowire Li-ion battery anodes [J]. Langmuir : the ACS journal of surfaces and col 2012, 28(1): 965-976.
Si负极/电解液ቤተ መጻሕፍቲ ባይዱ面
锂离子电池材料负极的发展:Li-石墨-硅负极,必 须要深入研究负极与电解液界面,金属锂作为负 极由于锂枝晶问题,适应石墨的成膜添加剂的出 现 ……类似的问题在硅负极材料中同样存在,保 证硅基负极材料表面SEI膜的稳定十分重要
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Electrochemical performance of Al –Si –graphite composite as anode for lithium –ion batteriesWenchao Zhou,Shailesh Upreti,M.Stanley Whittingham ⁎Institute for Materials Research,State University of New York at Binghamton,Binghamton,NY 13902-6000,USAa b s t r a c ta r t i c l e i n f o Article history:Received 16November 2010Received in revised form 2December 2010Accepted 3December 2010Available online 13December 2010Keywords:Lithium battery Anode AluminumAl –Si –graphite composite with low 7.9wt.%Si was synthesized by ball-milling eutectic Al –Si powder and graphite.Its reversible capacity remained above 0.65Ah/g after 10cycles,corresponding to 1.6Ah/cm 3,almost double that of graphite alone.Ex-situ XRD indicates that in Al –graphite the large volume change during lithium insertion/removal causes the active material to become isolated and not available for electrochemical reactions,while in Al –Si –graphite all the material remains available.©2010Elsevier B.V.All rights reserved.1.IntroductionThere is a need to replace the carbon anodes used in lithium batteries to increase their energy density and safety [1,2].Metal based anodes (Si,Sn,Sb,Al,etc.)are believed to be the most promising replacement candidates due to their high capacity and desirable working potential [3–6].However,the large volume change while alloying/dealloying with lithium causes quick capacity decay during cycling.Among those metals,Sn reacts with 4.4lithium,with a volume expansion of more than 400%,while Al reacts with one lithium atom with ~100%volume increase.However the gravimetric capacity of Al (0.99Ah/g)is comparable to Sn (0.99Ah/g)[7].In the past decade Si and Sn based alloys/composites have been intensively studied,while less is understood about Al based material as anode for lithium batteries.The Li –Al alloy was used in the first lithium rechargeable batteries in the 1970s [8,9]to minimize lithium dendrite formation in ether-based electrolytes.Al powder [10],Al thin films [11–14]and Al –Fe alloy/composites [15,16]in carbonate electrolytes lose most of their initial capacity in a few cycles.The cycling can be improved if Al particles are dispersed in a carbon matrix but capacity decay still cannot be avoided [15].Here we report that a small amount of Si (b 8%by wt.)enables the full utilization of Al and also helps the Al-based composite maintain good capacity during cycling.2.ExperimentalAl –Si –graphite (ASG)and Al –graphite (AG)samples were synthe-sized via ball-milling.eutectic Al –Si (−325mesh,99%,Al:Si=88:12wt.%,VWR),Al (−325mesh,99.5%,VWR)and graphite (b 20μm,synthetic,Aldrich)powders were used as received.The weight ratio of the metal powder to graphite was 2:1,so that the ASG composite contains 58.1%Al,7.9%Si and 34%carbon.Ball-milling was performed in a planetary machine at 450rpm for 1h.A Scintag XDS2000diffractometer was used for structural studies,and Kapton tape was used to protect cycled anodes from air,and a ZeissSupra-55SEM for morphology studies.2325-type coin cells,with a cathode composite,a lithium anode,a Celgard 3501separator,and a 1M solution of LiPF 6in a 1:1volume mixture of ethylene carbonate and dimethyl carbonate (Novolyte)were tested on a VMP2multi-channel potentiostat (Biologic)at 0.5mA/cm 2.The composites of the active material,carbon black (Cities Service Company)and sodium carboxymethyl cellulose (CMC,VWR)in a weight ratio of 80:10:10were cast on copper foil,using an ethanol:water slurry (30:70volume ratio)and dried at 90°C in air for 12h.Typical active material loading was about 4.5mg.Cyclic voltammetric (CV)was scanned at a rate of 0.1mV/s between 0.01V and 1.5V.3.Results and discussionBulk Al and Si are reported to be immiscible at room temperature [17];however,when nanosized they can form a solid solution with the lattice parameter obeying Vegard's law [18].The lattice parameter of the Al –rich phase used here was found to be 4.043(1)Å,slightly less than the 4.049(1)Åof the aluminum powder,indicating around 2at.%of silicon in aluminum.X-ray diffraction showed no new phases beingElectrochemistry Communications 13(2011)158–161⁎Corresponding author.Tel./fax:+16077774623.E-mail address:stanwhit@ (M.S.Whittingham).1388-2481/$–see front matter ©2010Elsevier B.V.All rights reserved.doi:10.1016/j.elecom.2010.12.001Contents lists available at ScienceDirectElectrochemistry Communicationsj o u r n a l h o m e p a g e :w ww.e l s ev i e r.c o m /l o c a t e /e l e c o mformed during the ball-milling process.For the ASG and AG samples,the main diffraction peaks can be indexed to Al,Si or graphite;however,two small peaks at 2θ=36.8and 42.7°,also found in the initial Al and Al –Si powders are believed to be due to the surface oxidation of aluminum.The crystallite sizes in the Al –Si starting material,determined using the Scherrer equation are 46and 20nm for the aluminum and silicon respectively,and 35nm for the aluminum in the ASG composite.Fig.1shows the SEM figures of the raw metal powders and the synthesized composites.The aluminum powder had an irregular shape and the Al –Si contained spheres with diameters ranging from 1to 8μm.In Al –graphite,Al and graphite were easily blended,due to their softness and ductility.However,the eutectic Al –Si has a totally different hardness and mechanical property from Al.Eutectic Al –Si is used to make engine blocks due to the high fatigue strength and good wear resistance [17,19].In the ASG some of the spheres of the AS could still be found,and the local microstructure of the Al –Si is maintained and simply buried in the carbon matrix after ball-milling.The electrochemical activity of the ASG composite was clearly evidenced by CV scan (Fig.2).The peak below 0.25V is associated with the lithiation of the active material [14].In the reversed scan another peak at around 0.6V indicates the delithiation process.Both peaks become sharp in the 5th scan,suggesting that the reaction of the ASG material toward lithium is highly reversible.The redox peaks are in good agreement with the galvanostatic plot (Fig.4(A)),where the discharge and charge plateaus can be clearly seen.The cycling of the ASG electrode is shown in Fig.3.In the full cycling window (0.01V –1.5V)the lithium removal capacity (charge)attains 0.70Ah/g.After 10cycles it is still 0.65Ah/g.When the cut-off voltage was set to 0.1V and 0.15V,restricting the material utilization the initial charge capacity drops to 0.67Ah/g and 0.52Ah/g.To our knowledge these values are the best for Al based bulk anode material reported so far.The cycling performances of ASG and AG electrode are compared in Fig.3.The cut-off voltages were 0.01V –pared with the AG electrode,ASG delivers 50%more capacity.Moreover,the capacity retention and coulombic ef ficiency are improved.The electrochemicalperformances of both electrodes are summarized in Table 1.After 10cycles,ASG retains 98.0%of its initial capacity (0.65Ah/g)while AG keeps only 73.2%(0.31Ah/g).In order to investigate the impact of Si in the ASG electrode,ex-situ XRD was carried out on both the ASG and the AG electrodes (Fig.4).During the first lithium reaction with the ASG electrode (Fig.4Ba –c),the Si peak is not seen either because it has broadened or because the silicon became amorphous as reported earlier [20];the graphite peak shifted to a lower angle indicative of lithium intercalation,and the aluminum formed the LiAl alloy [6].During the charging process lithium removal began before the voltage plateau (0.5V)was reached (Fig.4Bd).After 10cycles no LiAl alloy was found when the electrode was fully charged (Fig.4Bf).However,for the AG electrode where even after being fully charged in the 10th cycle,LiAl was still present (Fig.4D).This suggests that part of the reacted anode material was no longer available for electrochemical reaction.These studies show that a small amount of Si not only contributes to the reversible capacity but also maintains good contact between the Al particles,possibly enabling a more stable SEIlayer.Fig.1.SEM images of (A)Al powder,(B)Al –Si powder,(C)AG composite,and (D)ASGcomposite.Fig.2.CV scan of the ASG electrode.Scan rate:0.1mV/s.159W.Zhou et al./Electrochemistry Communications 13(2011)158–1614.ConclusionsAddition of 7.9%silicon to an aluminum anode not only contributes to the total capacity but also improves the capacity retention,as the result of a partial solubility of silicon in aluminum.In this composite Si appears to form a superior surface layer in carbonate electrolytes that reduces the degradation of the bulk material.AcknowledgementThis work was supported by the U.S.DOE,EERE,under Contract No.DE-AC02-05CH11231,BATT Program subcontract #6807148.References[1]M.S.Whittingham,Mater.Res.Bull.33(4)(2008)411.[2]J.B.Goodenough,Y.Kim,Chem.Mater.22(3)(2009)587.[3]H.Li,X.Huang,L.Chen,Z.Wu,Y.Liang,Electrochem.Solid State Lett.2(11)(1999)547.[4]Q.Fan,P.J.Chupas,M.S.Whittingham,Electrochem.Solid-State Lett.10(12)(2007)A274.[5]Z.Chen,Y.Cao,J.Qian,X.Ai,H.Yang,J.Phys.Chem.C 114(35)(2010)15196.[6] B.M.L.Rao,R.W.Francis,H.A.Christopher,J.Electrochem.Soc.124(10)(1977)1490.[7] rcher,S.Beattie,M.Morcrette,K.Edström,J.-C.Jumas,J.-M.Tarascon,J.Mater.Chem.17(36)(2007)3759.[8] C.J.Wen,B.A.Boukamp,R.A.Huggins,W.Weppner,J.Electrochem.Soc.126(12)(1979)2258.[9] A.N.Dey,J.Electrochem.Soc.118(10)(1971)1547.[10]X.Lei,C.Wang,Z.Yi,Y.Liang,J.Sun,pd.429(1–2)(2007)311.[11]M.D.Fleischauer,M.N.Obrovac,J.R.Dahn,J.Electrochem.Soc.155(11)(2008)A851.[12]Z.Y.Wang,Y.Li,J.Y.Lee,mun.11(6)(2009)1179.[13] C.Y.Wang,Y.S.Meng,G.Ceder,Y.Li,J.Electrochem.Soc.155(9)(2008)A615.[14]Y.Hamon,T.Brousse,F.Jousse,P.Topart,P.Buvat,D.M.Schleich,J.Power Sources97–98(2001)185.[15]Z.X.Chen,J.F.Qian,X.P.Ai,Y.L.Cao,H.X.Yang,Electrochim.Acta 54(16)(2009)4118.[16]M.J.Lindsay,G.X.Wang,H.K.Liu,J.Power Sources 119–121(2003)84.[17]H.Ye,J.Mater,Eng.Perform.12(3)(2003)288.[18]ligan,R.Vintila,M.Brochu,Mater.Sci.Eng.A 508(2009)43–49.[19]S.P.Nikanorov,M.P.Volkov,V.N.Gurin,Y.A.Burenkov,L.I.Derkachenko,B.K.Kardashev,L.L.Regel,W.R.Wilcox,Mater.Sci.Eng.A 390(1–2)(2005)63.[20]L.Pimpa,J.Young-Il,J.D.Nancy,Y.M.Chiang,Acta Mater.51(4)(2003)1103.Table 1The composition and electrochemical performance of the AG and ASG electrodes.Percentage by weight Theoretical capacity a (Ah/g/Ah/cm 3)First discharge/charge capacity (Ah/g)First cycle ef ficiency Discharge capacity in the 10th cycle (Ah/g)AlSi Graphite AG 66%–34%0.78/1.940.560.4274.6%0.31ASG58.1%7.9%a34%0.98/2.410.820.6780.8%0.65aThe theoretical capacity was calculated based on the capacity of the individual elements:Al 0.99Ah/g,Si 3.5Ah/g,and graphite 0.37Ah/g.Fig.3.(A)Capacity cycling of the ASG electrode with different discharge cut-off voltages,and (B)electrochemical comparison of AG and ASG composites cycled between 0.01and 1.5V.In all cases the current density is 0.5mA/cm 2.160W.Zhou et al./Electrochemistry Communications 13(2011)158–161Fig.4.(A)First discharge –charge pro file of the ASG electrode.(B)Ex-situ XRD of the ASG electrode.(a)Pristine electrode,(b)discharge to 0.1V,(c)discharge to 0.01V,(d)charge to 0.45V,(e)charge to 0.15V,and (f)charge to 1.5V in the 10th cycle.(C)The first discharge –charge pro file of the AG electrode,and (D)the ex-situ XRD of the AG electrode in various discharge states:(a)Pristine electrode,(b)discharge to 0.01V,and (c)charge to 1.5V in the 10th cycle.161W.Zhou et al./Electrochemistry Communications 13(2011)158–161。

相关文档
最新文档