高三数学第二轮复习选择题专题训练6 文 新人教A版

合集下载

高考数学二轮复习 专题三 第六讲 三角恒等变换与解三角形习题 文-人教版高三全册数学试题

高考数学二轮复习 专题三 第六讲 三角恒等变换与解三角形习题 文-人教版高三全册数学试题

第六讲 三角恒等变换与解三角形1.(2018某某某某模拟)已知tanα=34,α∈(0,π),则cos (α+π6)的值为( ) A.4√3-310B.4√3+310C.4-3√310D.3√3-4102.(2018某某某某模拟)√3cos15°-4sin 215°cos15°=( ) A.12 B.√22C.1D.√23.(2018课标全国Ⅲ(理),9,5分)△ABC 的内角A,B,C 的对边分别为a,b,c.若△ABC 的面积为α2+α2-α24,则C=( ) A.π2B.π3C.π4D.π64.(2018某某六校联考)在△ABC 中,cos 2α2=α+α2α(a,b,c 分别为角A,B,C 的对边),则△ABC 的形状为( )A.直角三角形B.等边三角形C.等腰三角形D.等腰三角形或直角三角形5.(2018某某某某第一次统考)在△ABC 中,角A,B,C 的对边分别是a,b,c,若a,b,c 成等比数列,且a 2=c 2+ac-bc,则ααsin α=( )A.2√33B.√32 C.12 D.√36.(2018某某某某调研)在△ABC 中,a,b,c 分别是角A,B,C 的对边,且2bcosC=2a+c,则B=( ) A.π6B.π4C.π3D.2π37.(2018某某某某监测)在△ABC 中,三个内角A,B,C 的对边分别为a,b,c,若12bcosA=sinB,且a=2√3,b+c=6,则△ABC 的面积为.8.(2018某某某某调研)在钝角△ABC 中,内角A,B,C 的对边分别为a,b,c,若a=4,b=3,则c 的取值X 围是.9.(2018某某某某模拟)如图,在直角梯形ABDE 中,已知∠ABD=∠EDB=90°,C 是BD 上一点,AB=3-√3,∠ACB=15°,∠ECD=60°,∠EAC=45°,则线段DE 的长度为.10.(2018某某某某模拟)在△ABC中,内角A,B,C的对边分别为a,b,c,btanB+btanA=2ctanB,且a=5,△ABC 的面积为2√3,则b+c的值为.11.(2018某某某某模拟)在△ABC中,D是BC边的中点,AB=3,AC=√13,AD=√7.(1)求BC边的长;(2)求△ABC的面积.). 12.(2018某某,16,13分)在△ABC中,内角A,B,C所对的边分别为a,b,c.已知bsinA=acos(α-π6(1)求角B的大小;(2)设a=2,c=3,求b和sin(2A-B)的值.13.(2018某某黄冈模拟)在△ABC中,角A,B,C所对的边分别为a,b,c.(1)若23cos 2A+cos2A=0,且△ABC 为锐角三角形,a=7,c=6,求b 的值; (2)若a=√3,A=π3,求b+c 的取值X 围.14.(2018某某湘东五校联考)已知函数f(x)=√32sin2x-cos 2x-12.(1)求f(x)的最小值,并写出取得最小值时的自变量x 的集合;(2)设△ABC 的内角A,B,C 所对的边分别为a,b,c,且c=√3,f(C)=0,若sinB=2sinA,求a,b 的值.答案精解精析1.A 因为tanα=34,α∈(0,π),所以sinα=35,cosα=45,故cos (α+π6)=cosαcos π6-sinαsin π6=45×√32-35×12=4√3-310,故选A.2.D 解法一:√3cos15°-4sin 215°cos15°=√3cos15°-2sin15°·2sin15°cos15°=√3cos15°-2sin15°·sin 30°=√3cos15°-sin15°=2cos(15°+30°)=2cos45°=√2.故选D. 解法二:因为cos15°=√6+√24,sin15°=√6-√24,所以√3cos15°-4sin215°·cos15°=√3×√6+√24-4×(√6-√24)2×√6+√24=√6+√24×(√3-8-4√34)=√2.故选D.3.C 根据余弦定理得a 2+b 2-c 2=2abcosC,因为S △ABC =α2+α2-α24,所以S △ABC =2ααcos α4,又S △ABC =12absinC,所以tanC=1,因为C∈(0,π),所以C=π4.故选C.4.A 已知等式变形得cosB+1=αα+1,即cosB=αα①.由余弦定理得cosB=α2+α2-α22αα,代入①得α2+α2-α22αα=αα,整理得b 2+a 2=c 2,即C 为直角,则△ABC 为直角三角形.5.A ∵a,b,c 成等比数列,∴b 2=ac,∴sin 2B=sinA×sinC,又a 2=c 2+ac-bc=c 2+b2-bc,∴cosA=α2+α2-α22αα=αα2αα=12,∴sinA=√32,∴ααsin α=sin αsin 2B =1sin α=√3=2√33,故选A.6.D 因为2bcosC=2a+c,所以由正弦定理可得2sinBcosC=2sinA+sinC=2sin(B+C)+sinC=2sinBcosC+2cosBsinC+sinC,即2cosBsinC=-sinC,又sinC≠0,所以cosB=-12,又0<B<π,所以B=2π3,故选D.7.答案 2√3 解析 由题意可知cos α2=sin αα=sin αα,又a=2√3,所以tanA=√3,所以A=π3,由余弦定理得12=b 2+c 2-bc,又b+c=6,所以bc=8,从而△ABC 的面积为12bcsinA=12×8×sin π3=2√3. 8.答案 (1,√7)∪(5,7)解析 三角形中两边之和大于第三边,两边之差小于第三边,据此可得1<c<7,① 若∠C 为钝角,则cosC=α2+α2-α22αα=25-α224<0,解得c>5,②若∠A 为钝角,则cosA=α2+α2-α22αα=α2-76α<0,解得0<c<√7,③结合①②③可得c 的取值X 围是(1,√7)∪(5,7). 9.答案 6解析 在Rt△ABC 中,因为AB=AC·sin∠ACB,所以3-√3=AC·sin15°, 又sin15°=√6-√24,所以可得AC=2√6.又易知∠AEC=30°,所以在△ACE 中,由ααsin45°=2√6sin30°,得EC=4√3.于是在Rt△CDE 中,由∠ECD=60°,可得DE=EC·sin60°=4√3×√32=6.10.答案 7解析 在△ABC 中,由btanB+btanA=2ctanB 及正弦定理,得sin 2B cos α+sin αsin αcos α=2sin αsin αcos α,由于sinB≠0,故sin αcos α=2sin α-sin αcos α,即sinAcosB=2sinCcosA-sinBcosA,整理得sinAcosB+sinBcosA=2sinCcosA,由两角和的正弦公式及诱导公式,得sin(A+B)=sinC=2sinCcosA,由于sinC≠0,故等式两端同除以sinC 可得cosA=12,所以sinA=√32,因为S △ABC =12bcsinA=√34bc=2√3,所以bc=8,由cosA=α2+α2-α22αα=(α+α)2-2bc -α22αα=12,a=5,可得b+c=7.11.解析 (1)设BD=x,则BC=2x, 在△ABD 中,有cos∠ABD=αα2+B α2-A α22αα·αα=9+α2-72×3α,在△ABC 中,有cos∠ABC=αα2+B α2-A α22αα·αα=9+4α2-132×3×2α, 且∠ABD=∠ABC,即9+α2-72×3α=9+4α2-132×3×2α,得x=2,∴BC=4.(2)由(1)可知,cosB=12,又由B∈(0,π),得sinB=√32, ∴S △ABC =12·AB·BC·sinB=12×3×4×√32=3√3.12.解析 (1)在△ABC 中,由αsin α=αsin α可得bsinA=asinB,又由bsinA=acos (α-π6),得asinB=acos (α-π6),即sinB=cos (α-π6),可得tanB=√3.又因为B∈(0,π),所以B=π3.(2)在△ABC 中,由余弦定理及a=2,c=3,B=π3,有b 2=a 2+c 2-2accosB=7,故b=√7. 由bsinA=acos (α-π6),可得sinA=√3√7.因为a<c,故cosA=√7.因此sin2A=2sinAcosA=4√37,cos2A=2cos 2A-1=17.所以,sin(2A-B)=sin2AcosB-cos2AsinB=4√37×12-17×√32=3√314.13.解析 (1)∵23cos 2A+cos2A=23cos 2A+2cos 2A-1=0, ∴cos 2A=125,又A 为锐角,∴cosA=15,由a 2=b 2+c 2-2bccosA,代入已知数据得b 2-125b-13=0, 解得b=5(负值舍去),∴b=5. (2)解法一:由正弦定理可得 b+c=2(sinB+sinC) =2[sin α+sin (2π3-B )]=2√3sin (α+π6),∵0<B<2π3,∴π6<B+π6<5π6,∴12<sin (α+π6)≤1, ∴b+c∈(√3,2√3].解法二:由余弦定理a 2=b 2+c 2-2bccosA 可得b 2+c 2-3=bc, 即(b+c)2-3=3bc≤34(b+c)2,当且仅当b=c 时取等号,∴b+c≤2√3,又由两边之和大于第三边可得b+c>√3, ∴b+c∈(√3,2√3]. 14.解析 (1)f(x)=√32sin2x-1+cos2α2-12=√32sin2x-cos2α2-1 =sin (2α-π6)-1.当2x-π6=2kπ-π2(k∈Z),即x=kπ-π6(k∈Z)时,f(x)取最小值-2, 此时自变量x 的集合为 {α|x =kπ-α6,k∈Z }.(也可写成{α|x =kπ+5α6,k∈Z }).(2)因为f(C)=0,所以sin (2α-π6)-1=0,又0<C<π, 所以2C-π6=π2,即C=π3.在△ABC 中,sinB=2sinA,由正弦定理知b=2a,又c=√3,所以由余弦定理知(√3)2=a 2+b 2-2abcos π3,即a 2+b 2-ab=3,联立,得{α2+α2-ab =3,α=2α,所以{α=1,α=2.。

专题6 绝对值不等式高二数学(文)下学期期中专项复习(人教A版选修1-2+4-4+4-5)(原卷版)

专题6 绝对值不等式高二数学(文)下学期期中专项复习(人教A版选修1-2+4-4+4-5)(原卷版)

专题06绝对值不等式【专项训练】-2020-2021学年高二数学下学期期中专项复习一、单选题1.(2020·江苏高一课时练习)函数y =|x ﹣3|+|x ﹣7|的最小值为( )A .2BC .4D .62.(2020·上海高一专题练习)若|a|<1,|b|<1,则|a+b|+|a-b|与2的大小关系是( ) A .|a+b|+|a-b|>2B .|a+b|+|a-b|<2C .|a+b|+|a-b|=2D .不确定3.(2020·贵溪市实验中学高三月考)不等式123x -<的解集是( )A .{}|1x x <B .{}|12x x -<<C .{}|2x x >D .{|1x x <-或}2x >4.(2021·陕西省黄陵县中学高二期末(文))设x ∈R ,则“30x -≥”是“11x -≤”的( ) A .必要不充分条件B .充分不必要条件C .充要条件D .既不充分也不必要条件5.(2021·全国)不等式33log log x x x x +<+的解集( )A .(),-∞+∞B .()0,1C .()1,+∞D .()0,∞+6.(2021·兴义市第二高级中学高二期末(文))不等式3529x ≤-<的解集为( ) A .[2,1)[4,7)- B .(2,1](4,7]-C .(2,1][4,7)--D .(2,1][4,7)-7.(2020·山西太原市·高三期中)若关于x 的不等式13x x m ++-<有实数解,则实数m 的取值范围为( )A .()2,+∞B .()2,4-C .()4,2-D .(],4-∞-8.(2020·江苏苏州市·吴江中学高一月考)不等式||22x x x x >--的解集为( ) A .{x |0<x <2} B .{x |x ≠2}C .∅D .{x |x <0或x >2}9.(2020·江苏高一课时练习)已知函数()f x 是定义在R 上的单调函数,(0,1)A ,(2,1)B -是其图象上的两点,则不等式(1)1f x ->的解集为 ( ) A .(1,1)- B .(,1)(1,)-∞-+∞ C .(1,3) D .(,1)(3,)-∞+∞ 10.(2020·上海高三专题练习)若关于x 的不等式|2||1|x x a ++-<的解集为∅,则实数a 的取值范围是( )A .3a >B .3a ≥C .3a ≤D .3a < 二、填空题 11.(2021·上海高一)存在实数x ,使得不等式2313x x a a ++-≤-有解,则实数a 的取值范围为______. 12.(2020·上海高一专题练习)求函数31y x x =--+的值域______________.13.(2020·河南南阳市·南阳中学高二月考(文))若函数()24f x x x m =++--R ,则实数m 的取值范围为______.14.(2020·上海市洋泾中学高一期中)定义运算,,x x y x y y x y ≤⎧*=⎨>⎩,若11-*=-m m m ,则m 的取值范围为______.三、解答题 15.(2021·全国高三专题练习(文))已知函数()1f x x a x =++-.(1)若0a =,解不等式()13f x -≤;(2)若不等式()21f x a ≥-对任意x ∈R 恒成立,求实数a 的取值范围.16.(2021·四川遂宁市·高三二模(文))设函数()2f x x x t =+--.(1)当1t =时,求不等式()2f x >的解集;(2)若对于任意实数x ,不等式()22f x t t ≤+恒成立,求实数t 的取值范围. 17.(2021·内蒙古包头市·高三一模(文))已知函数()131f x x x =-++.(1)画出()y f x =的图象;(2)求不等式()()1f x f x >-的解集.18.(2021·江西赣州市·高三期末(文))设函数()212f x x x a =++-,()12g x x x =++.(1)若1a =,解不等式()4f x ≥;(2)如果任意1x R ∈,都存在2x R ∈,使得()()12f x g x =,求实数a 的取值范围.。

人教A版数学课本优质习题总结训练-选择性必修二-2025届高三数学一轮复习

人教A版数学课本优质习题总结训练-选择性必修二-2025届高三数学一轮复习

人教A 版数学课本优质习题总结训练——选择性必修二P181.在等差数列{a n }中,a n =m ,a m =n ,且n ≠m ,求a m +n .P232.已知一个等差数列的项数为奇数,其中所有奇数项的和为290,所有偶数项的和为261.求此数列中间一项的值以及项数.P243.已知数列{a n }的前n 项和212343n S n n =++.求这个数列的通项公式.4.已知数列{a n }的通项公式为2215n n a n -=-,前n 项和为n S .求n S 取得最小值时n 的值.P255.(1)求从小到大排列的前n 个正偶数的和.(2)求从小到大排列的前n 个正奇数的和.(3)在三位正整数的集合中有多少个数是5的倍数?求这些数的和.(4)在小于100的正整数中,有多少个数被7除余2?这些数的和是多少?6.已知一个多边形的周长等于158cm ,所有各边的长成等差数列,最大的边长为44cm ,公差为3cm ,求这个多边形的边数.7.已知两个等差数列2,6,10,…,190及2,8,14,…,200,将这两个等差数列的公共项按从小到大的顺序组成一个新数列.求这个新数列的各项之和.P268.如图的形状出现在南宋数学家杨辉所著的《详解九章算法·商功》中,后人称为“三角垛”“三角垛”的最上层有1个球,第二层有3个球,第三层有6个球……设各层球数构成一个数列{a n }.(1)写出数列{a n }的一个递推公式;(2)根据(1)中的递推公式,写出数列{a n }的一个通项公式.P349.已知数列{a n }的通项公式为33n n n a =,求使n a 取得最大值时的n 的值.P3710.已知a ≠b ,且0ab ≠.对于N*n ∈,证明:111221n n n n n n na b a a b a b ab b a b ++----+++++=- .11.如果一个等比数列前5项的和等于10,前10项的和等于50,那么这个数列的公比等于多少?P4012.一个乒乓球从1m 高的高度自由落下,每次落下后反弹的高度都是原来高度的0.61倍.(1)当它第6次着地时,经过的总路程是多少(精确到1cm )(2)至少在第几次着地后,它经过的总路程能达到400cm ?13.求和:(1)(12235)(435)(235)n n ----⨯+-⨯++-⨯ ;(2)21123n x x nx -++++ .P4114.已知S n 是等比数列{a n }的前n 项和,S 3,S 9,S 6成等差数列.求证:2a ,a 8,a 5成等差数列.15.求下列数列的一个通项公式和一个前n 项和公式:1,11,111,1111,11111,….16.在数列{a n }中,已知a n +1+a n =3·n 2,a 1=1.(1)求证:{a n -2n }是等比数列.(2)求数列{a n }的前n 项和S n .17.已知数列{a n }的首项135a =,且满足1321n n n a a a +=+.(1)求证:数列11n a ⎧⎫-⎨⎬⎩⎭为等比数列.(2)若1231111100n a a a a ++++< ,求满足条件的最大整数n .18.已知数列{a n }为等差数列,a 1=1,a 3=22+1,前n 项和为n S ,数列{b n }满足n n S b n=,求证:(1)数列{b n }为等差数列;(2)数列{a n }中的任意三项均不能构成等比数列.P5519.已知数列{a n }为等比数列,a 1=1024,公比12q =.若n T 是数列{a n }的前n 项积,求n T 的最大值.20.《莱茵德纸草书》是世界上最古老的数学著作之一.书中有这样一道题目:把100个面包分给5个人,使每个人所得成等差数列,且使较大的三份之和的17是较小的两份之和,则最小的一份为()A .53B .103C .56D .11621.如图,雪花形状图形的作法是:从一个正三角形开始,把每条边分成三等份,然后以各边的中间一段为底边分别向外作正三角形,再去掉底边.反复进行这一过程,就得到一条“雪花”状的曲线.设原正三角形(图①)的边长为1,把图①,图②,图③,图④中图形的周长依次记为C 1,C 2,C 3,C4,则C 4=()A .649B .1289C .6427D .12827P5622.任取一个正整数,若是奇数,就将该数乘3再加上1;若是偶数,就将该数除以2.反复进行上述两种运算,经过有限次步骤后,必进入循环圈1→4→2→1.这就是数学史上著名的“冰雹猜想”(又称“角谷猜想”等).如取正整数6m =,根据上述运算法则得出6→3→10→5→16→8→4→2→1,共需经过8个步骤变成1(简称为8步“雹程”).现给出冰雹猜想的递推关系如下:已知数列{}n a 满足:1a m =(m 为正整数),1,231,n n n n n a a a a a +⎧⎪=⎨⎪+⎩当为偶数时当为奇数时.(1)当17m =时,试确定使得a n =1需要多少步雹程;(2)若a 8=1,求m 所有可能的取值集合M .23.已知等差数列{a n }的前n 项和为n S ,且424S S =,21*)2(n n a a n N =+∈.(1)求数列{a n }的通项公式;(2)若13n n b -=,令n n n c a b =,求数列{}n c 的前n 项和n T .24.已知等比数列{a n }的前n 项和为n S ,且12*()2n n a S n N +=+∈.(1)求数列{a n }的通项公式.(2)在a n 与a n +1之间插入n 个数,使这n +2个数组成一个公差为d n 的等差数列,在数列{d n }中是否存在3项d m ,d k ,d p ,(其中m ,k ,p 成等差数列)成等比数列?若存在,求出这样的3项,若不存在,请说明理由.25.类比等差数列和等比数列的定义、通项公式、常用性质等,发现它们具有如下的对偶关系:只要将等差数列的一个关系式中的运算“+”改为“×”改为“÷”,正整数倍改为正整数指数幂,相应地就可得到等比数列中一个形式相同的关系式,反之也成立.(1)根据上述说法,请你参照下表给出的信息推断出相关的对偶关系式;名称等差数列{a n }等比数列{b n }定义a n +1-a n =d 通项公式b n =b 1q n -1=b m q n -m 常用性质①a 1+a n =a 2+a n -1=a 3+a n -2=…②a n -k +a n +k =2a n (n >k )③④①②③若,,(),*m n k l m n k l N +=+∈,则n m k lb b b b =④b 1b 2……b n =(b 1b n )n 2(2)在等差数列{a n }中,若20180a =,则有12124035*,4()035n n a a a a a a n N n -++⋯+=++⋯+∈<.相应地,在等比数列{b n }中,若20191b =,请你类比推测出对偶的等式,并加以证明.P5726.在2015年苏州世乒赛期间,某景点用乒乓球堆成若干堆“正三棱锥”形的装饰品,其中第1堆只有1层,就一个球;第2,3,4,…堆最底层(第一层)分别按图中所示方式固定摆放,从第二层开始,每层的小球自然垒放在下一层之上,第n 堆第n 层就放一个乒乓球.记第n 堆的乒乓球总数为f (n ).(1)求出f (2);(2)试归纳出f (n +1)与f (n )的关系式,并根据你得到的关系式探求f (n )的表达式.参考公式:222112(1)(21)6n n n n +++=++ .27.有理数都能表示成(,m m n Z n ∈,且0n ≠,m 与n 互质)的形式,进而有理数集|Q={,m m n Z n ∈且0n ≠,m 与n 互质}.任何有理数m n 都可以化为有限小数或无限循环小数.反之,任一有限小数也可以化为m n的形式,从而是有理数;那么无限循环小数是否为有理数?思考下列问题:(1)1.2是有理数吗?请说明理由.(2)1.24 是有理数吗?请说明理由.28.平面上有,()3n n N n ∈≥个点,其中任何三点都不在同一条直线上.过这些点中任意两点作直线,这样的直线共有多少条?证明你的结论.P7029.函数y =f (x )的图象如图所示,它的导函数为y =f’(x ),下列导数值排序正确的是()A .f’(1)>f’(2)>f’(3)>0B .f’(1)<f’(2)<f’(3)<0C .0<f’(1)<f’(2)<f’(3)D .f’(1)>f’(2)>0>f’(3)P8130.已知函数f (x )满足()(cos 4f x f x x π'=-,求f (x )在4x π=的导数.P9831.用测量工具测量某物体的长度,由于工具的精度以及测量技术的原因,测得n 个数据1a ,2a ,3a ,…,n a .证明:用n 个数据的平均值11n i i x a n ==∑表示这个物体的长度,能使这n 个数据的方差211()()n i i f x x a n ==-∑最小.P10332.已知函数y =f (x )的图象是下列四个图象之一,且其导函数y =f′(x )的图象如图所示,则该函数的图象是()A .B .C .D .P10433.已知函数2()()f x x x c =-在2x =处有极大值,求c 的值.34.用总长14.8m 的钢条制作一个长方体容器的框架,若制作的容器的底面的一边长比另一边长0.5m .那么高为多少时,容器的容积最大?并求出它的最大容积?35.用半径为R 的圆形铁皮剪出一个圆心角为α的扇形,制成一个圆锥形容器,扇形的圆心角α为多大时,容器的容积最大?36.作函数(21)1x e x y x -=-的大致图象.37.1.已知函数()()()e ln R x f x x m =-+∈,证明:当2m ≤时,()0f x >.38.已知函数()()2e 2e x xf x a a x =+--.(1)讨论f (x )的单调性;(2)若f (x )有两个零点,求a 的取值范围.-选择性必修二结束-。

((新课标人教A版))[[高三数学试题]]高中数学专题训练《曲边梯形的面积与定积分》习题

((新课标人教A版))[[高三数学试题]]高中数学专题训练《曲边梯形的面积与定积分》习题

高中数学专题训练——曲边梯形的面积与定积分曲边梯形的面积与定积分【知识网络】1. 了解定积分的实际背景。

2. 初步了解定积分的概念,并能根据定积分的意义计算简单的定积分。

【典型例题】[例1](1)已知和式1123(0)p p p pP n p n +++++>当n →+∞时,无限趋近于一个常数A ,则A 可用定积分表示为()A .dx x ⎰101B .dx x p ⎰1C .dx x p ⎰10)1(D .dx n x p⎰10)((2)下列定积分为1是( )A .dx x ⎰1B .dx x ⎰+1)1(C .dx ⎰101D .dx ⎰1021(3)求由1,2,===y x e y x 围成的曲边梯形的面积时,若选择x为积分变量,则积分区间为 ( ) A .[0,2e ] B .[0,2] C .[1,2] D .[0,1](4)由y=cosx 及x 轴围成的介于0与2π之间的平面图形的面积,利用定积分应表达为 .(5)计算⎰= 。

[例2]①利用定积分的几何意义,判断下列定积分的值是正是负? (1)3π40sin d x x ⎰; (2)01e d xx -⎰; (3)1213ln d x x ⎰.②利用定积分的几何意义,比较下列定积分的大小.10d x x ⎰,120d x x ⎰,130d x x ⎰。

[例3]计算下列定积分:121(1)(1)d 3x x -+⎰; 41(2)(3)d x x -+⎰;20(3)cos d x x π⎰; 232(4)d x x -⎰。

[例4] 利用定积分表示图中四个图形的面积:【课内练习】1. 下列定积分值为1的是( )A .10tdt ⎰B 。

10(1)x dx +⎰ C 。

10dx ⎰ D 。

112dx ⎰2. 1321(tan sin )x x x x dx -++⎰=( )A .0B 。

13202(tan sin )x x x x dx ++⎰C .03212(tan sin )x x x x dx -++⎰D 。

天津市蓟县擂鼓台中学2014届高三数学第二次模拟考试试题 文 新人教A版

天津市蓟县擂鼓台中学2014届高三数学第二次模拟考试试题 文 新人教A版

天津市蓟县擂鼓台中学2014届高三第二次模拟考试数学(文)试题一、 选择题(本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的) 1. 设复数z 满足12ii z+=,则z = ( ) A .2i -+B .2i --C .2i -D .2i +2.在等差数列{a n }中,已知a 1=2,a 2+a 3=13,则a 5等于 ( ) A .13 B .14C .15D .163.双曲线1322=-y x 的焦距为( ). A .1 B .2 C .3 D .44.1-=m 是直线01)12(=+-+y m mx 和直线033=++my x 垂直的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件 5.已知α是第三象限角,135cos -=α,则sin2α=( )A .1312-B .1312C .169120-D .1691206.名工人某天生产同一零件,生产的件数是15,17,14,10,15,17,17,16,14,12,设其平均数为a ,中位数为b ,众数为c ,则有A.a b c >> B .a c b >> C .b a c >> D .c b a >> 7.如右程序框图,输出的结果为 ( ) A .1 B .2 C .4 D .168.同时具有性质“①最小正周期是π,②图象关于直线3π=x 对称的一个函数是A .)62sin(π+=x yB .)62cos(π+=x yC .)62sin(π-=x yD .)62cos(π-=x y9..若函数22)(23--+=x x x x f 的一个正数零点附近的函数值的参考数据如下:那么方程02223=--+x x x 的一个近似根(精确到0.1)为 ( )A .1.2B .1.3C .1.4D .1.510.已知)(x f 是以2为周期的偶函数,当[0,1]x ∈时,()f x x =,那么在区间[1,3]-内,关于x 的方程()1f x kx k =++(k R ∈且1k ≠-)有4个不同的根,则k 的取值范围是( ) A .1(,0)4-B .1(,0)3-C .1(,0)2- D .(1,0)-第Ⅱ卷(非选择题,共100分)二、填空题:本大题共6小题,每小题4分,共24分. 把答案填在题中横线上. 11.已知集合{|1},{|ln(2)}P y y Q x y x =≥==-,则P Q =12.已知点A (a ,1)与点B (a +1,3)位于直线x -y +1=0的两侧,则a 的取值范围 是 。

广东省佛山市2012届高三数学第二次模拟试题_理_新人教A版

广东省佛山市2012届高三数学第二次模拟试题_理_新人教A版

2012年佛山市普通高中高三教学质量检测(二)数 学 (理科)一、选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设全集{}1,2,3,4,5U =,集合{}1,2A =,{}2,3B =,则()U A B = ð( )A .{}4,5B .{}2,3C .{}1D .{}1 2.设向量a 、b 满足:1=a ,2=b ,()0⋅-=a a b ,则a 与b 的夹角是( )A .30︒B .60︒C .90︒D .120︒ 3.若0,0x y ≥≥,且21x y +=,则223x y +的最小值是( )A .2B .34 C .23D .0 4.已知,a b 为实数,则“||||1a b +<”是“1||2a <且1||2b <”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 5.函数xy =,()(),00,x ππ∈- 的图像可能是下列图像中的( ) A . B .6.已知直线m 、l 与平面α、β、γ满足l βγ= ,//l α,m α⊂,m γ⊥,则下列命题一定正确的是( )A .αγ⊥且 l m ⊥B .αγ⊥且//m βC .//m β且l m ⊥D .//αβ且αγ⊥ 7.如图所示为函数()()2sin f x x ωϕ=+(0,0ωϕπ>≤≤)的部 分图像,其中,A B 两点之间的距离为5,那么()1f -=( ) A .2 B C .D .2- 8.已知函数()M f x 的定义域为实数集R ,满足()1,0,M x Mf x x M∈⎧=⎨∉⎩(M 是R 的非空真子集),在R 上有两个非空真子集,A B ,且A B =∅ ,则()()()()11A B A B f x F x f x f x +=++ 的值域为( )A .20,3⎛⎤ ⎥⎝⎦B .{}1C .12,,123⎧⎫⎨⎬⎩⎭D .1,13⎡⎤⎢⎥⎣⎦2012年4月18日FAEDBC二、填空题:本题共7小题,考生作答6小题,每小题5分,共30分 (一)必做题(9~13题)9. 设i 为虚数单位,则()51i +的虚部为 .10. 设,x y 满足约束条件0201x x y x y ≥⎧⎪-≥⎨⎪-≤⎩,则2z x y =+的最大值是 .11. 抛掷一枚质地均匀的骰子,所得点数的样本空间为{}1,2,3,4,5,6S =,令事件{}2,3,5A =,事件{}1,2,4,5,6B =,则()|P A B 的值为 .12. 直线2y x =和圆221x y +=交于,A B 两点,以Ox 为始边,OA ,OB 为终边的角分别为,αβ,则()sin αβ+的值为 .13. 已知等比数列{}n a 的首项为2,公比为2,则1123n na a a a a a a a a a +=⋅⋅⋅⋅ .(二)选做题(14、15题,考生只能从中选做一题,两题全答的,只计前一题的得分) 14.(坐标系与参数方程选做题)在极坐标系中,射线()03πθρ=≥与曲线1C :4sin ρθ=的异于极点的交点为A ,与曲线2C :8sin ρθ=的异于极点的交点为B ,则||AB =________. 15.(几何证明选做题)如图,已知圆中两条弦AB 与CD 相交于点F ,E 是AB 延长线上一点,且DF CF ==:::4:2:1AF FB BE ,若CE与圆相切,则线段CE 的长为 .三、解答题:本大题共6小题,满分80分,解答须写出文字说明、证明过程或演算步骤. 16.(本题满分12分)在四边形ABCD 中,2AB =,4BC CD ==,6AD =,A C π∠+∠=.(Ⅰ)求AC 的长; (Ⅱ)求四边形ABCD 的面积.17.(本题满分12分)PCEFBA空气质量指数PM2.5(单位:3/g m μ)表示每立方米空气中可入肺颗粒物的含量,这个值越高,就代表空气污染越严重:形图:(Ⅰ)估计该城市一个月内空气质量类别为良的概率;(Ⅱ)在上述30个监测数据中任取2个,设X 为空气 质量类别为优的天数,求X 的分布列.18.(本题满分14分)如图所示四棱锥P ABCD -中,PA ⊥底面ABCD ,四边形ABCD 中,AB AD ⊥,//BC AD ,2PA AB BC ===,4AD =,E 为PD 的中 点,F 为PC 中点.(Ⅰ)求证:CD ⊥平面PAC ; (Ⅱ)求证://BF 平面ACE ;(Ⅲ)求直线PD 与平面PAC 所成的角的正弦值;19.(本题满分14分)已知椭圆E :()222210x y a b a b +=>>的一个交点为()1F ,而且过点12H ⎫⎪⎭.(Ⅰ)求椭圆E 的方程;(Ⅱ)设椭圆E 的上下顶点分别为12,A A ,P 是椭圆上异于 12,A A 的任一点,直线12,PA PA 分别交x 轴于点,N M ,若直线OT 与过点,M N 的圆G 相切,切点为T .证明:线段OT 的长为定值,并求出该定值.20.(本题满分14分)ABCD记函数()()()*112,nn f x x n n =+-≥∈N的导函数为()nf x ',函数()()ng x f x nx =-.(Ⅰ)讨论函数()g x 的单调区间和极值;(Ⅱ)若实数0x 和正数k 满足:()()()()0101n nn n f x f k f x f k ++'=',求证:00x k <<.21.(本题满分14分)设曲线C :221x y -=上的点P 到点()0,n n A a 的距离的最小值为n d ,若00a =,1n n a -,*n ∈N(Ⅰ)求数列{}n a 的通项公式; (Ⅱ)求证:321212435214622n n n n a a a a a aa a a a a a -+++++<+++ ; (Ⅲ)是否存在常数M ,使得对*n ∀∈N ,都有不等式:33312111nM a a a +++< 成立?请说明理由.2012年佛山市普通高中高三教学质量检测(二)参考答案数 学 (理科)二、填空题:本题共7小题,考生作答6小题,每小题5分,共30分 9.4-; 10.5; 11.25; 12.4-; 13.4;三、解答题:本大题共6小题,满分80分.解答应写出文字说明、证明过程和演算步骤 16.【解析】(Ⅰ)如图,连结AC ,依题意可知,B D π+=, 在ABC ∆中,由余弦定理得22224224cos AC B =+-⨯⨯ 2016cos B =-在ACD ∆中,由余弦定理得22264264cos AC D =+-⨯⨯ 5248cos 5248cos D B =-=+由2016cos 5248cos B B -=+,解得1cos 2B =-从而22016cos 28AC B =-=,即AC =6分2012年4月18日PC DEF BA OGP CD E F B AO G H (Ⅱ)由(Ⅰ)可知sin sin BD ==,所以11sinsin 22ABCD ABC ACD S S S AB BC B AD CD D ∆∆=+=⋅+⋅==………12分 17.【解析】(Ⅰ)由条形统计图可知,空气质量类别为良的天数为16天, 所以此次监测结果中空气质量类别为良的概率为 1683015=.…………………4分 (Ⅱ)随机变量X 的可能取值为0,1,2,则()2222302310435C P X C ===,()118222301761435C C P X C ===,()28230282435C P X C === 所以X 的分布列为:18. 所以PA CD ⊥,又因为直角梯形面ABCD 中,AC CD == 所以222AC CD AD +=,即AC CD ⊥,又PA AC A = ,所以CD ⊥平面PAC ;………4分(Ⅱ)解法一:如图,连接BD ,交AC 于O ,取PE 中点G , 连接,,BG FG EO ,则在PCE ∆中,//FG CE ,又EC ⊂平面ACE ,FG ⊄平面ACE ,所以//FG 平面ACE , 因为//BC AD ,所以BO GE OD ED =,则//OE BG , 又OE ⊂平面ACE ,BG ⊄平面ACE ,所以//BG 平面ACE ,又BG FG G = ,所以平面//BFG 平面ACE , 因为BF ⊂平面BFG ,所以//BF 平面ACE .………10分解法二:如图,连接BD ,交AC 于O ,取PE 中点G , 连接FD 交CE 于H ,连接OH ,则//FG CE ,在DFG ∆中,//HE FG ,则12GE FH ED HD ==, 在底面ABCD 中,//BC AD ,所以12BO BC OD AD ==, 所以12FH BOHD OD ==,故//BF OH ,又OH ⊂平面ACE ,BF ⊄平面ACE , 所以//BF 平面ACE .………10分(Ⅲ)由(Ⅰ)可知,CD ⊥平面PAC ,所以DPC ∠为直线PD 与平面PAC 所成的角,在Rt PCD ∆中,CD PD ===所以sin CD DPC PD ∠===, 所以直线PD 与平面PAC ………14分 19.【解析】(Ⅰ)解法一:由题意得223a b -=,223114a b+=,解得224,1a b ==,……12分所以椭圆E 的方程为2214x y +=.………………………………………………4分 解法二:椭圆的两个交点分别为())12,F F ,由椭圆的定义可得12712||||422a PF PF =+=+=,所以2a =,21b =, 所以椭圆E 的方程为2214x y +=.………………………………………………4分 (Ⅱ)解法一:由(Ⅰ)可知()()120,1,0,1A A -,设()00,P x y , 直线1PA :0011y y x x --=,令0y =,得001N x x y -=-; 直线2PA :0011y y x x ++=,令0y =,得001M xx y =+; 设圆G 的圆心为00001,211x x h y y ⎛⎫⎛⎫- ⎪ ⎪ ⎪+-⎝⎭⎝⎭, 则2r =22220000000000112111411x x x x x h h y y y y y ⎡⎤⎛⎫⎛⎫--+=++⎢⎥ ⎪ ⎪+-++-⎝⎭⎝⎭⎣⎦,22200001411x x OG h y y ⎛⎫=-+ ⎪+-⎝⎭ 2222222200000200000114114111x x x x x OT OG r h h y y y y y ⎛⎫⎛⎫=-=++---= ⎪ ⎪+-+--⎝⎭⎝⎭ 而220014x y +=,所以()220041x y =-,所以()202204141y OT y -==-, 所以||2OT =,即线段OT 的长度为定值2.…………………………………………14分 解法二:由(Ⅰ)可知()()120,1,0,1A A -,设()00,P x y , 直线1PA :0011y y x x --=,令0y =,得001N x x y -=-; 直线2PA :0011y y x x ++=,令0y =,得001M xx y =+; 则20002000||||111x x x OM ON y y y -⋅=⋅=-+-,而220014x y +=,所以()220041x y =-, 所以2020||||41x OM ON y ⋅==-,由切割线定理得2||||4OT OM ON =⋅= 所以||2OT =,即线段OT 的长度为定值2.…………………………………………14分 20.【解析】(Ⅰ)由已知得()()11ng x x nx =+--,所以()()111n g x n x -⎡⎤'=+-⎣⎦.………………2分① 当2n ≥且n 为偶数时,1n -是奇数,由()0g x '>得0x >;由()0g x '<得0x <.所以()g x 的递减区间为(),0-∞,递增区间为()0,+∞,极小值为()00g =.……………5分 ② 当2n ≥且n 为奇数时,1n -是偶数,由()0g x '>得2x <-或0x >;由()0g x '<得20x -<<. 所以()g x 的递减区间为()2,0-,递增区间为(),2-∞-和()0,+∞,此时()g x 的极大值为()222g n -=-,极小值为()00g =.……………8分(Ⅱ)由()()()()0101n nn n f x f k f x f k ++'='得()()()()()10101111111n nn n n x k n x k -+++-=+++-,所以()()()10111111n n n k x n k +⎡⎤+-⎣⎦+=⎡⎤++-⎣⎦,()()()()0111111nnnk k x n k -++=⎡⎤++-⎣⎦……………10分 显然分母()()1110n n k ⎡⎤++->⎣⎦,设分子为()()()()1110nh k nk k k =-++>则()()()()()()11111110n n n h k n k n k nk n n k k --'=+++-=++>所以()h k 是()0,+∞上的增函数,所以()()00h k h >=,故00x >……………12分 又()()()()10111111n nk n k x k n k +++-+-=⎡⎤++-⎣⎦,由(Ⅰ)知,()()11ng x x nx =+-- 是()0,+∞上的增函数,故当0x >时,()()00g x g >=,即()11nx nx +>+,所以()()1111n k n k +++>+所以00x k -<,从而0x k <. 综上,可知00x k <<.……………14分 21.【解析】(Ⅰ)设点(),P x y ,则221x y -=,所以||n PA == 因为y R ∈,所以当2n a y =时,||n PA 取得最小值n d,且n d =又1n n a -,所以1n n a +,即1n n d +=将1n n d +=代入n d=1n +=两边平方得2212n n a a +-=,又00a =,212a =故数列{}2n a 是首项212a =,公差为2的等差数列,所以22na n =, 因为1n n a -0>,所以n a ………………………………………6分(Ⅱ)因为()()()222122120n n n n +--+=-<,所以()()()2221221n n n n +-<+所以2221212n n n n a a a a +-+<所以2122122n n n n a a a a -++<,所以321212434562122,,,n n n n a a a a a aa a a a a a -++<<<以上n 个不等式相加得321212435214622n n n n a a a a a aa a a a a a -+++++<+++ .…………………10分 (Ⅲ)因为31k a =当2k≥时<===<=<=<2211n nk k==<=<∑所以3111142n ni kia===<=+∑.故存在常数14M=+对*n∀∈N,都有不等式:33312111nMa a a+++<成立. …………14分。

人教A版高考数学(文)二轮复习 专题 概率与统计课件第2讲

人教A版高考数学(文)二轮复习 专题 概率与统计课件第2讲

[微题型 3] 茎叶图与古典概型交汇 【例 2-3】 某中学高三年级从甲、乙两个班级各选出 7 名学生
参加数学竞赛,他们取得的成绩(满分 100 分)的茎叶图如图所 示,其中甲班学生成绩的平均分是 85,乙班学生成绩的中位 数是 83.
(1)求 x 和 y 的值; (2)计算甲班 7 位学生成绩的方差 s2;
(3)从成绩在 90 分以上的学生中随机抽取 2 名学生,求甲班至 少有 1 名学生的概率.
解 (1) 因 为 甲 班 学 生 成 绩 的 平 均 分 是 85 , 所 以 92+96+80+807+x+85+79+78=85.所以 x=5. 因为乙班学生成绩的中位数是 83, 所以 y=3.
(2)甲班 7 位学生成绩的方差为 s2=17[(79-85)2+(78-85)2+(80-85)2+(85-85)2+(85-85)2 +(92-85)2+(96-85)2]=40. (3)设“甲班至少有 1 名学生”为事件 M,则 M 为“抽取的两 名学生都是乙班的”. 甲班成绩在 90 分以上的学生有 2 名,分别记为 A,B, 乙班成绩在 90 分以上的学生有 3 名,分别记为 C,D,E. 从这 5 名学生中任取 2 名学生有(A,B),(A,C),(A,D),(A, E),(B,C),(B,D),(B,E),(C,D),(C,E),(D,E),共 10 种不同的结果.
解 (1)社区总数为 12+18+6=36,样本容量与总体中的个体 数比为366=16. 所以从 A,B,C 三个行政区中应分别抽取的社区个数为 2,3,1. (2)设 A1,A2 为在 A 行政区中抽得的 2 个社区,B1,B2,B3 为 在 B 行政区中抽得的 3 个社区,C 为在 C 行政区中抽得的社 区,在这 6 个社区中随机抽取 2 个,全部可能的结果有

高三数学选择题专题训练(12套)

高三数学选择题专题训练(12套)

高三数学选择题专题训练(一)1.已知集合{}1),(≤+=y x y x P ,{}1),(22≤+=y x y x Q ,则有 ( )A .Q P ⊂≠ B .Q P = C .P Q P = D .Q Q P = 2.函数11)(+-=x x e e x f 的反函数是( )A .)11( 11)(1<<-+-=-x xxLn x f B .)11(11)(1-<>+-=-x x xxLn x f 或 C .)11( 11)(1<<--+=-x x xLnx fD .)11(11)(1-<>-+=-x x xxLn x f 或 3.等差数列{}n a 的前n 项和为n S ,369-=S ,10413-=S ,等比数列{}n b 中,55a b =,77a b =,则6b 的值( )A .24B .24-C .24±D .无法确定 4.若α、β是两个不重合的平面, 、m 是两条不重合的直线,则α∥β的一个充分而非必要条件是( ) A . αα⊂⊂m 且 ∥β m ∥β B .βα⊂⊂m 且∥mC .βα⊥⊥m 且 ∥mD . ∥α m ∥β 且 ∥m 5.已知nn n x a x a a x x x +++=++++++ 102)1()1()1(,若na a a n -=+++-509121,则n 的值( )A .7B .8C .9D .106.已知O ,A ,M ,B 为平面上四点,则OA OB OM )1(λλ-+=,)2,1(∈λ,则( )A .点M 在线段AB 上 B .点B 在线段AM 上C .点A 在线段BM 上D .O ,A ,M ,B 四点共线 7.若A 为抛物线241x y =的顶点,过抛物线焦点的直线交抛物线于B 、C 两点,则ACAB ⋅等于( ) A .31-B .3-C .3D .43- 8.用四种不同颜色给正方体1111D C B A ABCD -的六个面涂色,要求相邻两个面涂不同的颜色,则共有涂色方法( )A .24种B .72种C .96种D .48种9.若函数x x a y 2cos 2sin -=的图象关于直线π87=x 对称,那么a 的值 ( )A .2B .2-C .1D .1-10.设1F ,2F 是双曲线12222=-by a x ,)00(>>b a ,的两个焦点,P 在双曲线上,若021=⋅PF PF ac 2=,(c 为半焦距),则双曲线的离心率为 ( ) A .231+ B .251+ C .2 D .221+高三数学选择题专题训练(二)1.已知集合S={}{}01,211x x T x x <<=-≤,则ST 等于A SB TC {}1x x ≤ D Φ 2.已知抛物线y =34x 2,则它的焦点坐标是A (0,316 )B ( 316 ,0)C (13 ,0)D (0, 13 )3.设等差数列{a n }的前n 项和为S n ,且S 1=1,点(n , S n )在曲线C 上,C 和直线x -y +1=0交于A,B 两点,|AB|= 6 ,那么这个数列的通项公式是A 21n a n =-B 32n a n =-C 43n a n =- D54n a n =-4.已知a =(1,2+sin x ),b =(2,cos x ),c =(-1,2),(a -c )∥b ,则锐角x 等于 A 15° B 30° C 45° D 60°5.函数y =f (x )的图像与函数y =lg(x -1)+9的图像关于直线y =x 对称,则f (9)的值为A 10B 9C 3D 2 6.若tan 2α=,则sin cos αα的值为 A .12B .23C .25D .17..坐平面内区域M=()()⎪⎩⎪⎨⎧⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧≤--≤≤≤-+≥+-01100101y kx k y x y x y ,x 的面积可用函数f(x)表示,若f(k)=8,则k 等于( ) A.21 B.31C.22 D.23 8.函数11)(2-+-=x x a x f 为奇函数的充要条件是\A 、10<<a B 、10≤<a C 、1>a D 、1≥a 9.若61()x展开式中的第5项是152,设12n n S x x x ---=+++,则lim n n S →∞=A .1B .12C .14D .16(文)点P 在曲线y =x 3-x +7上移动,过P 点的切线的倾斜角取值范围是 A.[0,π) B.(0,2π)∪[4π3,π)C.[0, 2π)∪(2π,4π3] D.[0, 2π)∪[4π3,π)10.如图正方体ABCD -A 1B 1C 1D 1,在它的12条棱及12条面对角线所在直线中,选取若干条直线确定平面。

2022高三总复习人教A版数学(理)配套练习:4-5第2讲

2022高三总复习人教A版数学(理)配套练习:4-5第2讲

(金榜教程)2022高三总复习人教A 版数学(理)配套练习:4-5第2讲(时刻:45分钟 分值:100分)一、选择题1. 若|a -c|<|b|,则下列不等式中正确的是( )A. a<b +cB. a>c -bC. |a|>|b|-|c|D. |a|<|b|+|c|答案:D解析:|a|-|c|≤|a -c|<|b|,即|a|<|b|+|c|.故选D.2. [2021·鸡西模拟]若实数x 、y 满足1x2+1y2=1,则x2+2y2有( )A. 最大值3+22 B . 最小值3+22C. 最大值6D. 最小值6答案:B解析:由题意知,x2+2y2=(x2+2y2)·(1x2+1y2)=3+2y2x2+x2y2≥3+22,当且仅当x2y2=2y2x2时,等号成立,故选B.3. [2021·广东调研]已知a ,b 为实数,且a>0,b>0.则(a +b +1a )(a2+1b +1a2)的最小值为( )A. 7 B . 8C. 9 D . 10答案:C解析:因为a>0,b>0, 因此a +b +1a ≥33a ×b ×1a =33b>0, ① 同理可证:a2+1b +1a2≥331b >0. ②由①②及不等式的性质得 (a +b +1a )(a2+1b +1a2)≥33b ×331b =9.4. [2021·柳州模拟]已知关于x 的不等式2x +2x -a≥7在x ∈(a ,+∞)上恒成立,则实数a 的最小值为( )A. 12 B . 1C. 32 D . 2答案:C 解析:2x +2x -a =2(x -a)+2x -a +2a ≥ 22x -a ·2x -a+2a =2a +4≥7,∴a ≥32. 5. [2021·金版原创]若q>0且q ≠1,m ,n ∈N*,则1+qm +n 与qm +qn 的大小关系是( )A. 1+qm +n>qm +qnB. 1+qm +n<qm +qnC. 1+qm +n =qm +qnD. 不能确定答案:A解析:1+qm +n -qm -qn =qm(qn -1)-(qn -1)=(qn -1)(qm -1),①当0<q<1时,qn<1,qm<1.②当q>1时,qn>1,qm>1.∴(qn -1)(qm -1)>0,∴1+qm +n>qm +qn ,故选A.6. [2021·湖北高考]设a ,b ,c ,x ,y ,z 是正数,且a2+b2+c2=10,x2+y2+z2=40,ax +by +cz =20,则a +b +c x +y +z =( ) A. 14 B . 13C. 12 D . 34答案:C解析:由柯西不等式得(a2+b2+c2)(x2+y2+z2)≥(ax +by +cz)2,而由已知有(a2+b2+c2)(x2+y2+z2)=10×40=202=(ax +by +cz)2,故a x =b y =c z =k ,代入得a2+b2+c2=k2(x2+y2+z2)=40k2=10,解得k =12(舍去负值),因此a +b +c x +y +z=k =12.故选C. 二、填空题7. 函数y =21-x +2x +1的最大值为________.答案:3解析:y2=(2·2-2x +1·2x +1)2≤[(2)2+12][(2-2x)2+(2x +1)2]=3×3,∴y ≤3.8. [2021·许昌模拟]关于任意实数a 、b ,若|a -b|≤1,|2a -1|≤1,则|4a -3b +2|的最大值为________.答案:6解析:因为|a -b|≤1,|2a -1|≤1,因此|3a -3b|≤3,|a -12|≤12,因此|4a -3b +2|=|(3a -3b)+(a -12)+52|≤|3a -3b|+|a -12|+52≤3+12+52=6,即|4a -3b +2|的最大值为6.9. 已知x ,y ,z 为正实数,且1x +1y +1z =1,则x +4y +9z 的最小值为________.答案:36解析:解法一:由柯西不等式,得x +4y +9z =[(x)2+(2y)2+(3z)2]·[(1x )2+(1y )2+(1z )2]≥(x ·1x +2y ·1y +3z ·1z)2=36. 当且仅当x =2y =3z 时等号成立,现在x =6,y =3,z =2.因此当x =6,y =3,z =2时,x +4y +9z 取得最小值36.解法二:∵1x +1y +1z =1,∴x +4y +9z =(x +4y +9z)(1x +1y +1z ), 即x +4y +9z =14+4y x +9z x +x y +9z y +x z +4y z ≥14+24y x ·x y +29z x ·x z +29z y ·4y z =36.(当且仅当x =2y =3z 时取“=”),即x =6,y =3,z =2时,(x +4y +9z)min =36.故填36. 三、解答题10. 已知a>0,证明: a2+1a2-2≥a +1a -2.解:要证 a2+1a2-2≥a +1a -2,只要证 a2+1a2+2≥a +1a +2,因为a>0,因此只要证( a2+1a2+2)2≥(a +1a +2)2,即证a2+1a2+4+4a2+1a2≥a2+1a2+4+22(a +1a ),故只需证 2 a2+1a2≥a +1a ,即证a 2+1a2≥2,而由差不多不等式可知a2+1a2≥2成立.故 a2+1a2-2≥a +1a -2.11. [2021·正定模拟]设正有理数x 是3的一个近似值,令y =1+21+x.(1)若x>3,求证:y<3; (2)求证:y 比x 更接近于 3. 证明:(1)y -3=1+21+x -3=3-3+x -3x 1+x =1-3x -31+x, ∵x>3,∴x -3>0,而1-3<0,∴y< 3.(2)∵|y -3|-|x -3| =⎪⎪⎪⎪⎪⎪1-3x -31+x -|x -3| =|x -3|(3-11+x -1)=|x -3|(3-2-x 1+x), ∵x>0,3-2<0,|x -3|>0,∴|y -3|-|x -3|<0,即|y -3|<|x -3|.∴y 比x 更接近于 3.12. [2021·南昌调研]已知x +y>0,且xy ≠0.(1)求证:x3+y3≥x2y +y2x ;(2)假如x y2+y x2≥m 2(1x +1y )恒成立,试求实数m 的取值范畴或值.解:(1)∵x3+y3-(x2y +y2x)=x2(x -y)-y2(x -y)=(x +y)(x -y)2,且x +y>0,(x -y)2≥0,∴x3+y3-(x2y +y2x)≥0.∴x3+y3≥x2y +y2x.(2)(ⅰ)若xy<0,则x y2+y x2≥m 2(1x +1y )等价于m 2≥x3+y3xy x +y =x2-xy +y2xy , 又∵x2-xy +y2xy =x +y 2-3xy xy <-3xy xy =-3, 即x3+y3xy x +y <-3,∴m>-6; (ⅱ)若xy>0,则x y2+y x2≥m 2(1x +1y )等价于m 2≤x3+y3xy x +y =x2-xy +y2xy , 又∵x2-xy +y2xy ≥2xy -xy xy =1,即x3+y3xy x +y≥1,∴m ≤2. 综上所述,实数m 的取值范畴是(-6,2].。

高考数学总复习 第二章 函数、导数及其应用 课时作业9 理(含解析)新人教A版-新人教A版高三全册数

高考数学总复习 第二章 函数、导数及其应用 课时作业9 理(含解析)新人教A版-新人教A版高三全册数

课时作业9 对数与对数函数1.(2019·某某某某统考)函数f (x )=1ln3x +1的定义域是( B )A.⎝ ⎛⎭⎪⎫-13,+∞B.⎝ ⎛⎭⎪⎫-13,0∪(0,+∞)C.⎣⎢⎡⎭⎪⎫-13,+∞ D .[0,+∞)解析:由⎩⎪⎨⎪⎧3x +1>0,ln 3x +1≠0,解得x >-13且x ≠0,故选B.2.(2019·某某某某模拟)设a =60.4,b =log 0.40.5,c =log 80.4,则a ,b ,c 的大小关系是( B )A .a <b <cB .c <b <aC .c <a <bD .b <c <a解析:∵a =60.4>1,b =log 0.40.5∈(0,1),c =log 80.4<0,∴a >b >c .故选B. 3.已知lg a ,lg b 是方程2x 2-4x +1=0的两个实根,则lg(ab )·⎝ ⎛⎭⎪⎫lg a b 2=( B )A .2B .4C .6D .8解析:由已知,得lg a +lg b =2,即lg(ab )=2. 又lg a ·lg b =12,所以lg(ab )·⎝ ⎛⎭⎪⎫lg a b2=2(lg a -lg b )2=2[(lg a +lg b )2-4lg a ·lg b ]=2×⎝⎛⎭⎪⎫22-4×12=2×2=4,故选B.4.若函数y =a -a x(a >0,a ≠1)的定义域和值域都是[0,1],则log a 37+log a 1123=( D )A .1B .2C .3D .4解析:若a >1,则y =a -a x在[0,1]上单调递减,则⎩⎨⎧a -a =0,a -1=1,解得a =2,此时,log a 37+log a 1123=log 216=4;若0<a <1,则y =a -a x在[0,1]上单调递增,则⎩⎨⎧a -a =1,a -1=0,无解,故选D.5.(2019·某某省际名校联考)已知f (x )满足对∀x ∈R ,f (-x )+f (x )=0,且当x ≤0时,f (x )=1ex +k (k 为常数),则f (ln5)的值为( B )A .4B .-4C .6D .-6解析:易知函数f (x )是奇函数,故f (0)=1e 0+k =1+k =0,即k =-1,所以f (ln5)=-f (-ln5)=-(e ln5-1)=-4.6.(2019·某某某某南雄模拟)函数f (x )=x a满足f (2)=4,那么函数g (x )=|log a (x +1)|的图象大致为( C )解析:∵f (2)=4,∴2a=4,解得a =2,∴g (x )=|log 2(x +1)|=⎩⎪⎨⎪⎧log 2x +1,x ≥0,-log 2x +1,-1<x <0,∴当x ≥0时,函数g (x )单调递增,且g (0)=0;当-1<x <0时,函数g (x )单调递减,故选C.7.已知函数f (x )=e x+2(x <0)与g (x )=ln(x +a )+2的图象上存在关于y 轴对称的点,则实数a 的取值X 围是( A )A .(-∞,e)B .(0,e)C .(e ,+∞)D .(-∞,1)解析:由题意知,方程f (-x )-g (x )=0在(0,+∞)上有解,即e -x-ln(x +a )=0在(0,+∞)上有解,即函数y =e -x与y =ln(x +a )的图象在(0,+∞)上有交点,则ln a <1,即0<a <e ,则a 的取值X 围是(0,e),当a ≤0时,y =e -x与y =ln(x +a )的图象总有交点,故a 的取值X 围是(-∞,e),故选A.8.(2019·某某省级名校模拟)已知函数f (x )=(e x-e-x)x ,f (log 5x )+f (log 15x )≤2f (1),则x 的取值X 围是( C )A.⎣⎢⎡⎦⎥⎤15,1 B .[1,5]C.⎣⎢⎡⎦⎥⎤15,5D.⎝⎛⎦⎥⎤-∞,15∪[5,+∞) 解析:∵f (x )=(e x-e -x)x ,∴f (-x )=-x (e -x -e x )=(e x -e -x)x =f (x ), ∴函数f (x )是偶函数.∵f ′(x )=(e x -e -x )+x (e x +e -x)>0在(0,+∞)上恒成立. ∴函数f (x )在(0,+∞)上单调递增. ∵f (log 5x )+f (log 15 x )≤2f (1), ∴2f (log 5x )≤2f (1),即f (log 5x )≤f (1), ∴|log 5x |≤1,∴15≤x ≤5.故选C.9.函数f (x )=log 2x ·log2(2x )的最小值为-14.解析:依题意得f (x )=12log 2x ·(2+2log 2x )=(log 2x )2+log 2x =⎝⎛⎭⎪⎫log 2x +122-14≥-14,当且仅当log 2x =-12,即x =22时等号成立,因此函数f (x )的最小值为-14.10.(2019·某某质检)已知函数f (x )=|log 3x |,实数m ,n 满足0<m <n ,且f (m )=f (n ),若f (x )在[m 2,n ]上的最大值为2,则nm=9__.解析:f (x )=|log 3x |=⎩⎪⎨⎪⎧-log 3x ,0<x <1,log 3x ,x ≥1,所以f (x )在(0,1)上单调递减,在(1,+∞)上单调递增, 由0<m <n 且f (m )=f (n ), 可得⎩⎪⎨⎪⎧0<m <1,n >1,log 3n =-log 3m ,则⎩⎪⎨⎪⎧0<m <1,n >1,mn =1,所以0<m 2<m <1,则f (x )在[m 2,1)上单调递减,在(1,n ]上单调递增,所以f (m 2)>f (m )=f (n ),则f (x )在[m 2,n ]上的最大值为f (m 2)=-log 3m 2=2,解得m =13,则n =3,所以nm=9. 11.设f (x )=log a (1+x )+log a (3-x )(a >0,a ≠1),且f (1)=2. (1)求a 的值及f (x )的定义域;(2)求f (x )在区间⎣⎢⎡⎦⎥⎤0,32上的最大值.解:(1)∵f (1)=2,∴log a 4=2(a >0,a ≠1),∴a =2.由⎩⎪⎨⎪⎧1+x >0,3-x >0,得-1<x <3,∴函数f (x )的定义域为(-1,3). (2)f (x )=log 2(1+x )+log 2(3-x )=log 2[(1+x )(3-x )]=log 2[-(x -1)2+4], ∴当x ∈(-1,1]时,f (x )是增函数; 当x ∈(1,3)时,f (x )是减函数,故函数f (x )在⎣⎢⎡⎦⎥⎤0,32上的最大值是f (1)=log 24=2.12.已知函数f (x )=log a (a 2x+t ),其中a >0且a ≠1. (1)当a =2时,若f (x )<x 无解,求t 的取值X 围;(2)若存在实数m ,n (m <n ),使得x ∈[m ,n ]时,函数f (x )的值域也为[m ,n ],求t 的取值X 围.解:(1)∵log 2(22x+t )<x =log 22x,∴22x+t <2x 无解,等价于22x +t ≥2x恒成立, 即t ≥-22x+2x=g (x )恒成立, 即t ≥g (x )max ,∵g (x )=-22x +2x=-⎝⎛⎭⎪⎫2x -122+14,∴当2x=12,即x =-1时,g (x )取得最大值14,∴t ≥14,故t 的取值X 围是⎣⎢⎡⎭⎪⎫14,+∞. (2)由题意知f (x )=log a (a 2x+t )在[m ,n ]上是单调增函数,∴⎩⎪⎨⎪⎧f m =m ,f n =n ,即⎩⎪⎨⎪⎧a 2m +t =a m,a 2n +t =a n,问题等价于关于k 的方程a 2k-a k+t =0有两个不相等的实根,令a k=u >0,则问题等价于关于u 的二次方程u 2-u +t =0在u ∈(0,+∞)上有两个不相等的实根,即⎩⎪⎨⎪⎧ u 1+u 2>0,u 1·u 2>0,Δ>0,即⎩⎪⎨⎪⎧t >0,t <14,得0<t <14.∴t 的取值X 围为⎝ ⎛⎭⎪⎫0,14.13.已知f (x )是定义在(0,+∞)上的函数.对任意两个不相等的正数x 1,x 2,都有x 2f x 1-x 1f x 2x 1-x 2>0,记a =f 30.230.2,b =f 0.320.32,c =f log 25log 25,则( B ) A .a <b <c B .b <a <c C .c <a <bD .c <b <a解析:已知f (x )是定义在(0,+∞)上的函数, 对任意两个不相等的正数x 1,x 2, 都有x 2f x 1-x 1f x 2x 1-x 2>0,故x 1-x 2与x 2f (x 1)-x 1f (x 2)同号, 则x 1-x 2与x 2f x 1-x 1f x 2x 1x 2⎝ ⎛⎭⎪⎫即f x 1x 1-f x 2x 2同号, ∴函数y =f xx是(0,+∞)上的增函数, ∵1<30.2<2,0<0.32<1,log 25>2, ∴0.32<30.2<log 25,∴b <a <c ,故选B.14.设f (x )是定义在R 上的偶函数,且f (2+x )=f (2-x ),当x ∈[-2,0]时,f (x )=⎝⎛⎭⎪⎫22x-1,若在区间(-2,6)内关于x 的方程f (x )-log a (x +2)=0(a >0且a ≠1)恰有4个不同的实数根,则实数a 的取值X 围是( D )A.⎝ ⎛⎭⎪⎫14,1B .(1,4)C .(1,8)D .(8,+∞)解析:依题意得f (x +2)=f (-(2-x ))=f (x -2),即f (x +4)=f (x ),则函数f (x )是以4为周期的函数,结合题意画出函数f (x )在x ∈(-2,6)上的图象与函数y =log a (x +2)的图象,结合图象分析可知.要使f (x )与y =log a (x +2)的图象有4个不同的交点,则有⎩⎪⎨⎪⎧a >1,log a 6+2<1,由此解得a >8,即a 的取值X 围是(8,+∞).15.(2019·某某某某模拟)已知函数f (x )=ln(x +x 2+1),g (x )=f (x )+2 017,下列命题:①f (x )的定义域为(-∞,+∞); ②f (x )是奇函数;③f (x )在(-∞,+∞)上单调递增;④若实数a ,b 满足f (a )+f (b -1)=0,则a +b =1;⑤设函数g (x )在[-2 017,2 017]上的最大值为M ,最小值为m ,则M +m =2 017. 其中真命题的序号是①②③④__.(写出所有真命题的序号) 解析:对于①,∵x 2+1>x 2=|x |≥-x , ∴x 2+1+x >0,∴f (x )的定义域为R ,∴①正确.对于②,f (x )+f (-x )=ln(x +x 2+1)+ln(-x +-x2+1)=ln[(x 2+1)-x 2]=ln1=0.∴f (x )是奇函数,∴②正确. 对于③,令u (x )=x +x 2+1, 则u (x )在[0,+∞)上单调递增. 当x ∈(-∞,0]时,u (x )=x +x 2+1=1x 2+1-x,而y =x 2+1-x 在(-∞,0]上单调递减,且x 2+1-x >0.∴u (x )=1x 2+1-x在(-∞,0]上单调递增,又u (0)=1,∴u (x )在R 上单调递增,∴f (x )=ln(x +x 2+1)在R 上单调递增,∴③正确. 对于④,∵f (x )是奇函数,而f (a )+f (b -1)=0,∴a +(b -1)=0, ∴a +b =1,∴④正确.对于⑤,f (x )=g (x )-2 017是奇函数,当x ∈[-2 017,2 017]时,f (x )max =M -2 017,f (x )min =m -2 017, ∴(M -2 017)+(m -2 017)=0, ∴M +m =4 034,∴⑤不正确. 16.已知函数f (x )=lnx +1x -1. (1)求函数f (x )的定义域,并判断函数f (x )的奇偶性; (2)对于x ∈[2,6],f (x )=lnx +1x -1>ln mx -17-x恒成立,某某数m 的取值X 围.解:(1)由x +1x -1>0,解得x <-1或x >1, ∴函数f (x )的定义域为(-∞,-1)∪(1,+∞), 当x ∈(-∞,-1)∪(1,+∞)时,f (-x )=ln-x +1-x -1=ln x -1x +1=ln ⎝ ⎛⎭⎪⎫x +1x -1-1=-ln x +1x -1=-f (x ).∴f (x )=lnx +1x -1是奇函数. (2)由于x ∈[2,6]时,f (x )=lnx +1x -1>ln mx -17-x恒成立, ∴x +1x -1>mx -17-x>0, ∵x ∈[2,6],∴0<m <(x +1)(7-x )在x ∈[2,6]上恒成立. 令g (x )=(x +1)(7-x )=-(x -3)2+16,x ∈[2,6],由二次函数的性质可知,x ∈[2,3]时函数g (x )单调递增,x ∈[3,6]时函数g (x )单调递减, 即x ∈[2,6]时,g (x )min =g (6)=7, ∴0<m <7.故实数m 的取值X 围为(0,7).。

高考数学二轮复习 第二部分 专题二 数学传统文化的创新应用问题习题-人教版高三全册数学试题

高考数学二轮复习 第二部分 专题二 数学传统文化的创新应用问题习题-人教版高三全册数学试题

专题二 数学传统文化的创新应用问题一、选择题1.宋元时期杰出的数学家朱世杰在其数学巨著《四元玉鉴》中提出了一个“茭草形段”问题:“今有茭草六百八十束,欲令‘落一形’(同垛)之,问底子几何?”他在这一问题中探讨了“垛积术”中的落一形垛(“落一形”即是指顶上一束,下一层3束,再下一层6束……)成三角锥的堆垛,故也称三角垛,如图,表示从上往下第二层开始的每层茭草束数,则本问题中三角垛倒数第二层茭草总束数为( )A .91B .105C .120D .210解析:由题意得,从上往下第n 层茭草束数为1+2+3+…+n =n n +12.∴1+3+6+…+n n +12=680,即12⎣⎢⎡⎦⎥⎤16n n +12n +1+12nn +1=16n (n +1)(n +2)=680,∴n (n +1)(n +2)=15×16×17,∴n =15.故倒数第二层为第14层,该层茭草总束数为14×152=105.答案:B2.《X 丘建算经》卷上第23题:今有女善织,日益功疾,初日织五尺,今一月织九匹三丈,问日益几何?意思是:现有一女子善于织布,若第1天织5尺布,从第2天起,每天比前一天多织相同量的布,现在一月(按30天计)共织930尺布(注:1匹=10丈,1丈=10尺),则每天比前一天多织( ) A.47尺布 B.5229尺布 C.815尺布 D.1631尺布 解析:设公差为d ,则由a 1=5,S 30=30×5+30×292d =930,解得d =5229.答案:B3.我国古代数学名著《九章算术》中,有已知长方形面积求一边的算法,其方法的前两步为: 第一步:构造数列1,12,13,14,…,1n.第二步:将数列①的各项乘以n ,得数列(记为)a 1,a 2,a 3,…,a n . 则a 1a 2+a 2a 3+…+a n -1a n 等于( ) A .n 2B .(n -1)2C .n (n -1)D .n (n +1)解析:a 1a 2+a 2a 3+…+a n -1a n =n 1·n 2+n 2·n 3+…+n n -1·n n =n 2⎣⎢⎡⎦⎥⎤11·2+12·3+…+1n -1n =n 2⎝ ⎛⎭⎪⎫1-12+12-13+…+1n -1-1n =n 2·n -1n =n (n -1). 答案:C4.我国古代数学名著《九章算术》中“开立圆术”曰:置积尺数,以十六乘之,九面一,所得开立方除之,即立圆径.“开立圆术”相当于给出了已知球的体积V ,求其直径d 的一个近似公式d ≈ 3169V .人们还用过一些类似的近似公式,根据π=3.141 59…判断,下列近似公式中最精确的一个是( ) A .d ≈ 3169VB .d ≈ 32V C .d ≈ 3300157VD .d ≈ 32111V解析:由球体积公式得d = 36πV ≈31.909 860 93V .因为169≈1.777 777 78,300157≈1.910 82803,2111≈1.909 090 91.而2111最接近于6π,所以选D.答案:D5.(2016·河西五市二联)我国明朝著名数学家程大位在其名著《算法统宗》中记载了如下数学问题:“远看巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯,”诗中描述的这个宝塔古称浮屠,本题说它一共有7层,每层悬挂的红灯数是上一层的2倍,共有381盏灯,那么塔顶有________盏灯.( ) A .2 B .3 C .5D .6解析:本题可抽象为一个公比为2的等比数列{a n }.∵S 7=a 11-271-2=381,∴可解得a 1=3,即塔顶有3盏灯,故选B. 答案:B6.(2017·某某调研)中国古代数学名著《九章算术》中记载了公元前344年商鞅监制的一种标准量器——商鞅铜方升,其三视图如图所示(单位:寸),若π取3,其体积为12.6(单位:立方寸),则图中的x 为( )A .1.2B .1.6C .1.8D .2.4解析:该几何体是一个组合体,左边是一个底面半径为12的圆柱,右边是一个长、宽、高分别为5.4-x 、3、1的长方体,∴组合体的体积V =V 圆柱+V 长方体=π·(12)2×x +(5.4-x )×3×1=12.6(其中π=3),解得x =1.6.故选B. 答案:B7.《九章算术》是我国古代著名数学经典,其中对勾股定理的论术比西方早一千多年,其中有这样一个问题:“今有圆材埋在壁中,不知大小;以锯锯之,深一寸,锯道长一尺,问径几何?”其意为:今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯该材料,锯口深1寸,锯道长1尺,问这块圆柱形木料的直径是多少?长为1丈的圆柱形木材部分镶嵌在墙体中,截面图如图所示(阴影部分为镶嵌在墙体内的部分).已知弦AB =1尺,弓形高CD =1寸,估算该木材镶嵌在墙中的体积约为( )(注:1丈=10尺=100寸,π≈3.14,sin 22.5°≈513)A .600立方寸B .610立方寸C .620立方寸D .633立方寸解析:连接OA ,OB ,OD ,设⊙O 的半径为R ,则(R -1)2+52=R 2,∴R =13.sin ∠AOD =AD AO =513.∴∠AOD ≈22.5°,即∠AOB ≈45°.故∠AOB ≈π4.∴S 弓形ACB =S扇形OACB-S △OAB =12×π4×132-12×10×12≈6.33平方寸.∴该木材镶嵌在墙中的体积为V =S 弓形ACB ×100≈633立方寸.选D.答案:D8.(2017·某某模拟)李冶( 1192—1279),真定栾城(今某某省某某市)人,金元时期的数学家、诗人,晚年在封龙山隐居讲学,数学著作多部,其中《益古演段》主要研究平面图形问题:求圆的直径、正方形的边长等.其中一问:现有正方形方田一块,内部有一个圆形水池,其中水池的边缘与方田四边之间的面积为13.75亩,若方田的四边到水池的最近距离均为二十步,则圆池直径和方田的边长分别是(注:240平方步为1亩,圆周率按3近似计算) ( ) A .10步,50步 B .20步,60步 C .30步,70步D .40步,80步解析:设圆池的半径为r 步,则方田的边长为(2r +40)步,由题意,得(2r +40)2-3r 2=13.75×240,解得r =10或r =-170(舍),所以圆池的直径为20步,方田的边长为60步.故选B. 答案:B 二、填空题9.《九章算术》“竹九节”问题:现有一根9节的竹子,自上而下各节的容积成等差数列.上面4节的容积共为3升,下面3节的容积共4升,则第5节的容积为________升.解析:设该数列{a n }的首项为a 1,公差为d ,依题意⎩⎪⎨⎪⎧a 1+a 2+a 3+a 4=3,a 7+a 8+a 9=4,即⎩⎪⎨⎪⎧4a 1+6d =3,3a 1+21d =4,解得⎩⎪⎨⎪⎧a 1+7d =43,d =766,则a 5=a 1+4d =a 1+7d -3d =43-2166=6766.答案:676610.“中国剩余定理”又称“孙子定理”.“中国剩余定理”讲的是一个关于整除的问题,现有这样一个整除问题:将1到2 016这2 016个数中能被3除余1且被5除余1的数按从小到大的顺序排成一列,构成数列{a n },则此数列的项数为________.解析:能被3除余1且被5除余1的数就是能被15除余1的数,故a n =15n -14.由a n =15n -14≤2 016,解得n ≤4063,又n ∈N *,故此数列的项数为135.答案:13511.传说古希腊毕达哥拉斯学派的数学家经常在沙滩上画点或用小石子表示数.他们研究过如图所示的三角形数:将三角形数1, 3,6,10,…记为数列{a n },将可被5整除的三角形数按从小到大的顺序组成一个新数列{b n },可以推测:(1)b 2 012是数列{a n }中的第________项; (2)b 2k -1=________(用k 表示). 解析:由题意可得a n =1+2+3+…+n =n n +12,n ∈N *,故b 1=a 4,b 2=a 5,b 3=a 9,b 4=a 10,b 5=a 14,b 6=a 15,由上述规律可知:b 2k =a 5k =5k5k +12(k 为正整数),b 2k -1=a 5k -1=5k -15k -1+12=5k5k -12, 故b 2 012=b 2×1 006=a 5×1 006=a 5 030,即b 2 012是数列{a n }中的第5 030项. 答案:(1)5 030 (2)5k5k -1212.我国南北朝时期的伟大科学家祖暅在数学上有突出贡献,他在实践的基础上,于5世纪末提出下面的体积计算原理(祖暅原理):“幂势既同,则积不容异”.“势”是几何体的高,“幂”是截面积.意思是,两等高立方体,若在每一等高处的截面积都相等,则两立方体体积相等.现有下题:在xOy 平面上,将两个半圆弧(x -1)2+y 2=1(x ≥1)和(x -3)2+y 2=1(x ≥3)、两条直线y =1和y =-1围成的封闭图形记为D ,如图所示阴影部分.记D 绕y 轴旋转一周而成的几何体为Ω,过(0,y )(|y |≤1)作Ω的水平截面,所得截面面积为4π1-y 2+8π,试利用祖暅原理、一个平放的圆柱和一个长方体,得出Ω的体积值为________.解析:根据提示,一个底面半径为1,高为2π的圆柱平放,一个高为2,底面积为8π的长方体,这两个几何体与Ω放在一起,根据祖暅原理,每个平行水平面的截面面积都相等,故它们的体积相等,即Ω的体积为π·12·2π+2·8π=2π2+16π. 答案:2π2+16π传统文化训练二一、选择题1.(2017·某某模拟)《九章算术》是我国古代第一部数学专著,全书收集了246个问题及其解法,其中一个问题为“现有一根九节的竹子,自上而下各节的容积成等差数列,上面四节容积之和为3升,下面三节的容积之和为4升,求中间两节的容积各为多少?”该问题中第2节、第3节、第8节竹子的容积之和为( ) A.176升 B.72升 C.11366升 D.10933升 解析:自上而下依次设各节竹子的容积分别为a 1,a 2,…,a 9,依题意有⎩⎪⎨⎪⎧a 1+a 2+a 3+a 4=3a 7+a 8+a 9=4,因为a 2+a 3=a 1+a 4,a 7+a 9=2a 8,故a 2+a 3+a 8=32+43=176.选A.答案:A2.(2017·某某模拟)中国古代数学著作《孙子算经》中有这样一道算术题:“今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?”人们把此类题目称为“中国剩余定理”.若正整数N 除以正整数m 后的余数为n ,则记为N ≡n (mod m ),例如11≡2(mod 3).现将该问题以程序框图给出,执行该程序框图,则输出的n 等于( )A .21B .22C .23D .24解析:当n =21时,21被3整除,执行否.当n =22时,22除以3余1,执行否; 当n =23时,23除以3余2,执行是;又23除以5余3,执行是,输出的n =23.故选C. 答案:C3.(2017·某某模拟)我国古代数学名著《九章算术》中有如下问题:今有甲乙丙三人持钱,甲语乙丙:各将公等所持钱,半以益我,钱成九十(意思是把你们两个手上的钱各分我一半,我手上就有90钱);乙复语甲丙,各将公等所持钱,半以益我,钱成七十;丙复语甲乙:各将公等所持钱,半以益我,钱成五十六,则乙手上有________钱.( ) A .28 B .32 C .56D .70解析:设甲、乙、丙三人各持有x ,y ,z 钱,则⎩⎪⎨⎪⎧x +y +z 2=90y +x +z 2=70z +x +y 2=56,解方程组得⎩⎪⎨⎪⎧x =72y =32z =4,所以乙手上有32钱. 答案:B4.(2017·某某模拟)在《九章算术》中,将四个面都是直角三角形的四面体称为鳖臑,在鳖臑A -BCD 中,AB ⊥平面BCD .且BD ⊥CD ,AB =BD =CD ,点P 在棱AC 上运动,设CP 的长度为x ,若△PBD 的面积为f (x ),则f (x )的图象大致是( )解析:如图,作PQ ⊥BC 于Q ,作QR ⊥BD 于R ,连接PR ,则由鳖臑的定义知PQ ∥AB ,QR ∥CD .设AB =BD =CD =1,则CP AC =x 3=PQ 1,即PQ =x 3,又QR 1=BQ BC =AP AC =3-x 3,所以QR =3-x3,所以PR =PQ 2+QR 2=x32+3-x 32=332x 2-23x +3, 所以f (x )=362x 2-23x +3=66x -322+34,故选A.答案:A5.欧拉公式e i x=cos x +isin x 是由瑞士著名数学家欧拉发明的,它将指数函数的定义域扩大到复数,建立了三角函数和指数函数之间的关系,它在复变函数论里占有非常重要的地位,被誉为“数学中的天桥”.根据欧拉公式,复数e π4i·e 3π4i +(1+i)2的虚部是( )A .-1B .1C .-2D .2解析:依题意得,e π4i·e 3π4i +(1+i)2=(cos π4+isin π4)(cos 3π4+isin 3π4)+2i =-1+2i ,其虚部是2,选D. 答案:D6.宋元时期数学名著《算学启蒙》中有关于“松竹并生”的问题:松长五尺,竹长两尺,松日自半,竹日自倍,松竹何日而长等.下图是源于其思想的一个程序框图,若输入的a ,b 分别为5,2,则输出的n =( )A .2B .3C .4D .5解析:程序运行如下:n =1,a =5+52=152,b =4,a >b ,继续循环;n =2,a =152+12×152=454,b =8,a >b ,继续循环;n =3,a =454+12×454=1358,b =16,a >b ,继续循环;n =4,a =1358+12×1358=40516, b =32,此时,a <b .输出n =4,故选C.答案:C7.(2017·某某中学调研)今有良马与驽马发长安至齐,齐去长安一千一百二十五里,良马初日行一百零三里,日增十三里;驽马初日行九十七里,日减半里;良马先至齐,复还迎驽马,问:几何日相逢?( ) A .12日 B .16日 C .8日D .9日解析:由题易知良马每日所行里数构成一等差数列其通项公式为a n =103+13(n -1)=13n +90,驽马每日所行里数也构成一等差数列,其通项公式为b n =97-12(n -1)=-12n +1952,二马相逢时所走路程之和为2×1 125=2 250,所以n a 1+a n2+n b 1+b n2=2 250,即n 103+13n +902+n 97-12n +19522=2 250,化简得n 2+31n -360=0,解得n =9或n =-40(舍去),故选D.答案:D8.埃及数学中有一个独特现象:除23用一个单独的符号表示以外,其他分数都要写成若干个单位分数和的形式,例如25=13+115,可以这样理解:假定有两个面包,要平均分给5个人,若每人分得一个面包的12,不够,若每人分得一个面包的13,还余13,再将这13分成5份,每人分得115,这样每人分得13+115.形如2n (n =5,7,9,11,…)的分数的分解:25=13+115,27=14+128,29=15+145,按此规律,2n=( )A.2n +1+2n n +1 B.1n +1+1n n +1C.1n +2+1nn +2 D.12n +1+12n +12n +3解析:根据分面包原理知,等式右边第一个数的分母应是等式左边数的分母加1的一半, 第二个数的分母是第一个数的分母与等式左边数的分母的乘积,两个数的原始分子都是1, 即2n =1n +12+1nn +12=2n +1+2n n +1.故选A. 答案:A 二、填空题9.某同学想求斐波那契数列0,1,1,2,…(从第三项起每一项等于前两项的和)的前10项和,他设计了一个程序框图,则满足条件的整数P 的值为________.解析:由题意,第1次循环:a =0,b =1,i =3,S =0+1=1,求出第3项c =1,求出前3项和 S =0+1+1=2,a =1,b =1,满足条件,i =4,执行循环体;第2次循环:求出第4项c =1+1=2,求出前4项和S =0+1+1+2=4,a =1,b =2,满足条件,i =5,执行循环体,…… 第8次循环:求出第10项c ,求出前10项和S ,此时i =10,由题意不满足条件,跳出循环,输出S 的值,故判断框内应为“i ≤9?”,所以P 的值为9.答案:910.古希腊毕达哥拉斯学派的数学家研究过各种多边形数.如三角形数1,3,6,10,…,第n 个三角形数为n n +12=12n 2+12n .记第n 个k 边形数为N (n ,k )(k ≥3),以下列出了部分k 边形数中第n 个数的表达式:三角形数 N (n,3)=12n 2+12n , 正方形数 N (n,4)=n 2,五边形数 N (n,5)=32n 2-12n , 六边形数 N (n,6)=2n 2-n ,……可以推测N (n ,k )的表达式,由此计算N (10,24)=________. 解析:由N (n,4)=n 2,N (n,6)=2n 2-n ,…,可以推测:当k 为偶数时,N (n ,k )=⎝ ⎛⎭⎪⎫k 2-1n 2-⎝ ⎛⎭⎪⎫k2-2n ,于是N (n,24)=11n 2-10n ,故N (10,24)=11×102-10×10=1 000.答案:1 00011.(2017·某某模拟)辗转相除法,又名欧几里得算法,乃求两个正整数之最大公因子的算法.它是已知最古老的算法之一,在中国则可以追溯至东汉时期出现的《九章算术》.图中的程序框图所描述的算法就是欧几里得辗转相除法.若输入m =5 280,n =12 155,则输出的m 的值为________.解析:通解:依题意,当输入m =5 280,n =12 155时,执行题中的程序框图,进行第一次循环时,m 除以n 的余数r =5 280,m =12 155,n =5 280,r ≠0;进行第二次循环时,m 除以n 的余数r =1 595,m =5 280,n =1 595,r ≠0;进行第三次循环时,m 除以n 的余数r =495,m =1 595,n =495,r ≠0;进行第四次循环时,m 除以n 的余数r =110,m =495,n =110,r ≠0;进行第五次循环时,m 除以n 的余数r =55,m =110,n =55,r ≠0;进行第六次循环时,m 除以n 的余数r =0,m =55,n =0,r =0,此时结束循环,输出的m 的值为55.优解:依题意,注意到5 280=25×3×5×11,12 155=5×11×221,因此5 280与12 155的最大公因子是55,即输出的m 的值为55.答案:5512.(2017·某某模拟)中国古代数学有着很多令人惊叹的成就.北宋沈括在《梦溪笔谈》卷十八《技艺》篇中首创隙积术.隙积术意即:将木桶一层层堆放成坛状,最上一层长有a 个,宽有b 个,共计ab 个木桶,每一层长宽各比上一层多一个,共堆放n 层,设最底层长有c 个,宽有d 个,则共计有木桶n [2a +c b +2c +a d +d -b ]6个,假设最上层有长2宽1共2个木桶,每一层的长宽各比上一层多一个,共堆放15层,则木桶的个数为________个.解析:根据题意可知,a =2,b =1,n =15,则c =2+14=16,d =1+14=15,代入题中所给的公式,可计算出木桶的个数为15×20+34×15+146=1 360. 答案:1 360。

人教A版高二数学选择性必修第二册专题5.4 《一元函数的导数及其应用》单元测试卷(B卷)【详解版】

人教A版高二数学选择性必修第二册专题5.4 《一元函数的导数及其应用》单元测试卷(B卷)【详解版】

专题5. 4《一元函数的导数及其应用》单元测试卷(B 卷提升篇)(新教材人教A,浙江专用)参考答案与试题详细解析第Ⅰ卷(选择题)一.选择题(共10小题,满分50分,每小题5分)1.(2020·内蒙古高三月考(文))如图是函数()y f x =的导函数()y f x ='的图象,则函数()y f x =的极小值点的个数为( )A .0B .1C .2D .3【答案】B 【详细解析】由图象,设()f x '与x 轴的两个交点横坐标分别为a 、b 其中a b <,知在(,)a -∞,(,)b +∞上()0f x '>,所以此时函数()f x 在(,)a -∞,(,)b +∞上单调递增, 在(,)a b 上,()0f x '<,此时()f x 在(,)a b 上单调递减, 所以x a =时,函数取得极大值,x b=时,函数取得极小值.则函数()y f x =的极小值点的个数为1. 故选: B2.(2020·湖南长郡中学高二期中)若函数()f x ,()g x 满足()()21f x xg x x +=-,且()11f =,则()()11f g ''+=( )A .1B .2C .3D .4【答案】C 【详细解析】因为函数()f x ,()g x 满足()()21f x xg x x +=-,且()11f =,所以()()211110f g +=-=,则()11g =-,对()()21f x xg x x +=-两边求导,可得()()()2f x g x xg x x +''+=,所以()()()1112f g g ''++=,因此()()113f g ''+=. 故选:C.3.(2020·安徽淮北一中高二期中)等比数列{}n a 中,12a =,84a =,函数128()()()()f x x x a x a x a =---…,则(0)(f '=( ) A .26 B .29C .212D .215【答案】C 【详细解析】等比数列{}n a 中,12a =,84a =,所以182********a a a a a a a a ====⨯=, 因为函数[]128()()()()f x x x a x a x a =--⋯-,[]128128()()()()()()()f x x a x a x a x x a x a x a '=--⋯-+--⋯-',则441211882(0)()82f a a a a a '=⋯===. 故选:C .4.(2020·天津经济技术开发区第二中学高三期中)函数3()1216f x x x =--的零点个数为( )A .0B .1C .2D .3【答案】C 【详细解析】由题得2()3123(2)(2)f x x x x '=-=+-,令()0f x '>得2x >或2x <-,令()0f x '<得22x -<<, 所以函数的单调递增区间为(,2),(2,)-∞-+∞,减区间为(2,2)-. 所以函数的极大值为(2)0f -=,极小值为(2)32f =-, 当x →-∞时,0,y <当x →+∞时,0,y > 所以函数的零点个数为2. 故选:C5.(2020·辽宁高三月考)点P 是曲线2ln y x x =-上任意一点,曲线在点P 处的切线与1y x =-平行,则P 的横坐标为( ) A .1 BC.2D.【答案】A 【详细解析】由题意,设()00,P x y ,00x >, 由2ln y x x =-得12y x x'=-,则00012x x y x x =-'=, 因为曲线在点P 处的切线与1y x =-平行, 所以00121x x -=,解得:01x =或012x =-(舍) 故选:A.6.(2020·宁夏银川一中高三月考(文))若函数()22ln f x x x a x =++在()0,1上单调递减,则实数a 的取值范围是( ) A .4a ≤ B .4a ≥C .4a ≤-D .4a ≥-【答案】C 【详细解析】 由题意可得:()220af x x x'=++≤在()0,1上恒成立,整理可得:222a x x ≤--,函数222y x x =--在()0,1上递减, 所以(4,0)y ∈-, 所以4a ≤-, 故选:C.7.(2020·湖北高三月考)若函数()2sin cos f x ax a x x =--是R 上的增函数,则实数a 的取值范围是( )A .,3⎛-∞ ⎝⎦B .3⎫+∞⎪⎪⎣⎭C .(-∞D .)+∞【答案】B 【详细解析】因为()2sin cos f x ax a x x =--,所以 ()2cos sin )2,tan f x a a x x x a a ϕϕ'=-+=-+= 因为()f x 在R 上的增函数, 所以()0f x '≥在R 上恒成立,所以min ()20f x a '=≥,即2a ≥所以22041a a a ≥⎧⎨≥+⎩,解得3a ≥故选:B8.(2020·全国高三专题练习(理))已知函数()x bf x e ax -=+(),a b R ∈,且(0)1f =,当0x >时,()cos(1)f x x x >-恒成立,则a 的取值范围为( ) A .(0,)+∞ B .(1,)e -+∞ C .(,)e -∞ D .(,)e +∞【答案】B 【详细解析】由题意,(0)1b f e -==,解得0b =,则()x f x e ax =+,则当0x >时,cos(1)xe ax x x +>-,即cos(1)xe a x x>--恒成立,令(),(0,)x e s x x x =∈+∞,则2(1)()x e x s x x '-=, 当(0,1)x ∈时,()0s x '<,(1,)x ∈+∞时,()0s x '>,所以()s x 在(0,1)上是减函数,在(1,)+∞是增函数,min ()(1)s x s e ==, 又因为当1x =时,cos(1)x -取得最大值1,所以当1x =时,cos(1)xe x x--取得最大值1e -,所以1a e >-. 故选:B.9.(2020·江西高三其他模拟(理))设函数()()1xf x e a x b =+-+在区间[]0,1上存在零点,则22a b +的最小值为( ) A .7 B .eC .2eD .3e【答案】C 【详细解析】由题意,函数()()1xf x e a x b =+-+,设t 为函数()f x 在[]0,1上的零点,则()10te a t b +-+=,即()10tt a b e -++=,即点(,)a b 在直线()10tt x y e -++=上,又由22a b +表示点(,)a b 到原点的距离的平方,≥即22222(1)1t e a b t ≥-++, 令()222(1)1t e g t t =-+,则()2222222222(22)(22)2(33)(22)(22)t t t e t t e t e t t g t t t t t -+---+'==-+-+, 因为220,330t e t t >-+>,所以()0g t '>, 可得函数()g t 在区间[]0,1t ∈上单调递增,所以当1t =时,函数取得最大值,最大值为()21g e =,所以22a b +的最小值为2e . 故选:C.10.(2020·浙江绍兴·高三月考)已知e 为自然对数的底数,,a b 为实数,且不等式ln (21)10x e a x b +--++≤对任意的(0,)x ∈+∞恒成立.则当21b a ++取最大值时,a 的值为( ) A .2e B .21e -C .3eD .31e -【答案】D 【详细解析】设()ln (21)1f x x e a x b =+--++,则()121f x e a x'=+--, 当21a e ≤-时,()0f x '>,所以()f x 在()0,∞+上递增,不符合条件, 故21a e >-,令()0f x '=得112x a e=+-,所以()f x 在10,12a e ⎛⎫⎪+-⎝⎭上递增,1,12a e ⎛⎫+∞⎪+-⎝⎭上递增, 故有()max 11ln 01212f x f b a e a e ⎛⎫==+≤⎪+-+-⎝⎭,即()ln 12b a e ≤+-, 则有()ln 122211a eb a a +-++≤++, 令1,2t a t e =+>,()()ln 22t e g t t-+=,则()()ln 222tt e t e g t t----'=在()2,e +∞上递减,且()30g e '=,所以()g t 在()2,3e e 上递增,()3,e +∞上递减,所以()()3g t g e ≤,此时21b a ++取得最大值,且13a e +=,所以31a e =-.故选:D第Ⅱ卷(非选择题)二.填空题(共7小题,单空每小题4分,两空每小题6分,共36分)11.(2020·湖北高三月考)函数()ln f x x x =,在点(),P e e 处的切线方程为__________. 【答案】2y x e =- 【详细解析】()ln f e e e e ==()ln 1f x x ='+,()ln 12f e e '=+=∴在点(),P e e 处的切线方程为2()y e x e -=-,即2y x e =-故答案为:2y x e =-12.(2020·全国高二课时练习)某批发商以每吨20元的价格购进一批建筑材料,若以每吨M 元零售,销量N (单位:吨)与零售价M (单位:元)有如下关系:28300170N M M =--,则该批材料零售价定为_______元时利润最大,利润的最大值为_________元. 【答案】30 23000 【详细解析】设该商品的利润为y 元,由题意知,32(20)15011700166000y N M M M M =-=--+-, 则2330011700y M M -+'=-,令0y '=,得30M =或130M =-(舍去), 当(0,30)M ∈时,0y '>,当(30,)M ∈+∞时,0y '<, 因此当30M =时,y 取得极大值,也是最大值,且max 23000y =. 故答案为:30,2300013.(2020·天津经济技术开发区第二中学高三期中)已知函数32()245f x ax x x =+-+,当23x =时,函数()f x 有极值,则函数()f x 在[]3,1-上的最大值为_________.【答案】13 【详细解析】()2344f x ax x '=+-,当23x =时,函数()f x 有极值, 2440333f a ⎛⎫'∴=-= ⎪⎝⎭,解得1a =,()()()2344322f x x x x x '∴=+-=-+,当()3,2x ∈--时,()0f x '>,()f x 单调递增, 当22,3x ⎛⎫∈- ⎪⎝⎭时,()0f x '<,()f x 单调递减,当2,13x ⎛⎫∈⎪⎝⎭时,()0f x '>,()f x 单调递增,()f x ∴在2x =-处取得极大值()213f -=,且()38f -=,()14f =,∴()f x 在[]3,1-上的最大值为13.故答案为:13.14.(2020·全国高三专题练习)已知函数()ln 1xf x ae x =--,设x =1是()f x 的极值点,则a =___,()f x 的单调增区间为___. 【答案】1e()1,+∞ 【详细解析】由题意可得:()1xf x ae x'=-1x =是()f x 的极值点()110f ae ∴=-=' 1a e⇒=即()1ln 1x f x ex -=-- ()11x f x e x-⇒-'= 令()0f x '>,可得1x >()f x ∴的单调递增区间为()1,+∞15.(2020·全国高二单元测试)已知函数()2ln(1)f x a x x =+-,对任意的(0,1),(0,1)p q ∈∈,当p q≠时,(1)(1)1f p f q p q+-+>-,则实数a 的取值范围是________.【答案】[15,)+∞. 【详细解析】 由题意,分式(1)(1)f p f q p q+-+-的几何意义为:表示点(1,(1))p f p ++与(1,(1))q f q ++连线的斜率, 因为实数,p q 在区间(0,1)内,故1p + 和1q +在区间(1,2)内,不等式(1)(1)1f p f q p q+-+>-恒成立,所以函数图象上在区间(1,2)内任意两点连线的斜率大于1, 故函数()2ln(1)f x a x x =+-的导数大于1在(1,2)内恒成立,由函数()2ln(1)f x a x x =+-满足10x +>,即定义域为(1,)-+∞,即()211af x x x =->+在(1,2)内恒成立,即2231a x x >++在(1,2)内恒成立, 设函数()2231g x x x =++,根据二次函数的性质, 可得函数()2231g x x x =++在(1,2)上是单调增函数,可得()()215g x g <=,所以15a ≥, 即实数a 的取值范围是[15,)+∞.16.(2020·辽宁高三月考)已知函数()22ln f x ax x x =-+有两个不同的极值点1x ,2x ,则a 的取值范围___________;且不等式()()1212f x f x x x t +<++恒成立,则实数t 的取值范围___________. 【答案】10,2⎛⎫ ⎪⎝⎭[)5,-+∞ 【详细解析】2221()(0)ax x f x x x'-+=>,因为函数()22ln f x ax x x =-+有两个不同的极值点12,x x ,所以方程22210ax x -+=有两个不相等的正实数根,于是有:121248010102a x x a x x a ⎧⎪∆=->⎪⎪+=>⎨⎪⎪=>⎪⎩,解得102a <<.()()221112221212122ln 2ln f x f x x x x ax x x ax x x x +--+--++=--()()212121212()23ln a x x x x x x x x ⎡⎤=+--++⎣⎦21ln 2a a=---, 设21()1ln 2,02h a a a a ⎛⎫=---<< ⎪⎝⎭, 22()0a h a a '-=>,故()h a 在102a <<上单调递增,故1()52h a h ⎛⎫<=-⎪⎝⎭,所以5t ≥-. 因此t 的取值范围是[)5,-+∞ 故答案为:10,2⎛⎫ ⎪⎝⎭;[)5,-+∞17.(2020·湖北荆州市·高二期末)已知函数1()ln (0)f x ax x a x=+>.(1)当1a =时,()f x 的极小值为________;(2)若()f x ax ≥在(0,)+∞上恒成立,则实数a 的取值范围为___________. 【答案】1 20,e⎛⎤ ⎥⎝⎦【详细解析】(1)1a =时,1()f x xlnx x=+,(0)x >, 21()1f x lnx x '=+-,312()0f x x x''=+>,故()f x '在(0,)+∞单调递增,而f '(1)0=,故(0,1)x ∈时,()0f x '<,()f x 单调递减,(1,)x ∈+∞时,()0f x '>,()f x 单调递增, 故()f x 极小值f =(1)1=;(2)若()f x ax 在(0,)+∞上恒成立,即21(1)a lnx x -在(0,)+∞恒成立, ①10lnx -即x e 时,0a >,(1)0lnx -,210x >, 故21(1)a lnx x-在(0,)+∞恒成立, ②10lnx ->即0x e <<时,即为21(1)ax lnx -在(0,)+∞恒成立,即21[](1)min a x lnx -,只需求出2()(1)g x x lnx =-的最大值即可,(0)x e <<,()(12)g x x lnx '=-,令()0g x '>,解得:0x <<令()0g x '<,解得x e <<,故()g x在单调递增,在)e 单调递减,故()2max e g x g ==, 故122ae e =,综上,(0a ∈,2]e.故答案为:1,(0,2]e .三.解答题(共5小题,满分64分,18--20每小题12分,21,22每小题14分) 18.(2020·南通西藏民族中学高二期中)已知函数f (x )=x +4x,g (x )=2x +a . (1)求函数f (x )=x +4x 在1,12⎡⎤⎢⎥⎣⎦上的值域; (2)若∀x 1∈1,12⎡⎤⎢⎥⎣⎦,∃x 2∈[2,3],使得f (x 1)≥g (x 2),求实数a 的取值范围. 【答案】(1)[5,17]2;(2)1a ≤. 【详细解析】(1)()222441x f x x x-'=-=, 因为1,12x ⎡⎤∈⎢⎥⎣⎦,所以()0f x '<,即函数()f x 为减函数,因为()51217,12f f ⎛⎫==⎪⎝⎭,所以值域为[5,17]2. (2)因为∀x 1∈1,12⎡⎤⎢⎥⎣⎦,∃x 2∈[2,3],使得f (x 1)≥g (x 2), 所以()()12min min f x g x ≥,因为2[2,3]x ∈,所以()2224a g x a ≥+=+,所以54≥+a ,即1a ≤.19.(2020·甘肃省岷县第一中学高二开学考试(理))已知函数()()32391f x x x x x R =--+∈.(1)求函数()f x 的单调区间.(2)若()210f x a -+≥对[]2,4x ∀∈-恒成立,求实数a 的取值范围. 【答案】(1)单调增区间(,1),(3,)-∞-+∞ 单调减区间()1,3- (2)252a ≤- 【详细解析】 (1)令,解得或,令,解得:. 故函数的单调增区间为,单调减区间为.(2)由(1)知在上单调递增,在上单调递减,在上单调递增,又,,, ∴, ∵对恒成立,∴,即,∴20.(2020·南昌县莲塘第三中学高二期末(理))已知函数2()2ln f x x x =-. (Ⅰ)求函数()f x 的单调区间; (Ⅱ)求证:当2x >时,()34f x x >-.【答案】(1)f (x )的单调增区间为(1,+∞), 单调减区间为(0,1);(2)见详细解析. 【详细解析】(1)依题意知函数的定义域为{x |x >0}, ∵f ′(x )=2x -2=2(1)(1)x x x+-,由f ′(x )>0, 得x>1; 由f ′(x )<0, 得0<x<1∴f (x )的单调增区间为(1,+∞), 单调减区间为(0,1). (2)设g (x )=f (x )-3x+1=x 2-2ln x -3x+4, ∴g ′(x )=2x -2--3=2232(21)(2)x x x x x x--+-=, ∵当x >2时,g ′(x )>0, ∴g (x )在(2,+∞)上为增函数, ∴g (x )>g (2)=4-2ln2-6+4>0,∴当x >2时, x 2-2lnx>3x-4, 即当x >2时()34f x x >-..21.(2020·江西景德镇一中高二期中)已知函数2()ln (2)f x x a x ax =-+-. (1)求函数()f x 的单调区间;(2)若对任意()0,x ∈+∞,函数()f x 的图象不在x 轴上方,求实数a 的取值范围. 【答案】(1)详见详细解析;(2)[1,)-+∞. 【详细解析】(1)函数2()ln (2)f x x a x ax =-+-定义域为()0,∞+, 则[]()(2)1211()2(2)a x x f x a x a x x-+-+'=-+-=, 当20a +≤时,()0f x '>,()f x 递增, 当20a +>时,令()0f x '>,解得102x a <<+,令()0f x '<,解得12x a >+, 所以()f x 在10,2a ⎛⎫ ⎪+⎝⎭递增,在1,2a ⎛⎫+∞ ⎪+⎝⎭递减;(2)若对任意()0,x ∈+∞,函数()f x 的图象不在x 轴上方, 则2()ln (2)0f x x a x ax =-+-≤,()0,x ∈+∞恒成立,则22ln 2x x a x x-≥+,()0,x ∈+∞恒成立, 令()22ln 2x x g x x x-=+,则()()()()22211ln x x x g x x x +-+-'=+, 令()1ln h x x x =-+-,则()110h x x'=--<, 所以()h x 在()0,∞+递减,而()10h =,所以当01x <<时,()0g x '>,当1x >时,()0g x '<, 所以当1x =时,()g x 取得最大值1-,所以1a ≥-, 所以实数a 的取值范围是[1,)-+∞.22.(2020·四川省阆中东风中学校高三月考(文))已知函数()()2ln 21f x x ax a x =+-+,其中a 为常数,且0a ≠.(1)当2a =时,求()f x 的单调区间;(2)若()f x 在1x =处取得极值,且在(]0,e 的最大值为1,求a 的值. 【答案】(1)在10,4⎛⎫ ⎪⎝⎭和()1,+∞上单调递增,在1,14⎡⎤⎢⎥⎣⎦上单调递减;(2)12a e =-或2a =-. 【详细解析】(1)()2ln 25f x x x x =+-,()()()411145x x f x x x x--'=+-=,令()0f x '=,得14x =或1,则列表如下:所以()f x 在10,4⎛⎫ ⎪⎝⎭和()1,+∞上单调递增,在1,14⎡⎤⎢⎥⎣⎦上单调递减. (2)∵()()()211ax x x f x ='--,令()0f x '=,11x =,212x a=, 因为()f x 在1x =处取得极值, 所以21112x x a=≠=, ①102a<时,()f x 在()0,1上单调递增,在(]1,e 上单调递减, 所以()f x 在区间(]1,e 上的最大值为()1f ,令()11f =,解得2a =-; ②当0a >,2102x a=>; (i )当112a <时,()f x 在10,2a ⎛⎫⎪⎝⎭上单调递增,1,12a ⎛⎫ ⎪⎝⎭上单调递减,()1,e 上单调递增,所以最大值1可能在12x a=或x e =处取得,而()2111111ln 21ln 10222224f a a a a a a a a ⎛⎫⎛⎫=+-+⋅=--< ⎪ ⎪⎝⎭⎝⎭,∴()()2ln 211f e e ae a e =+-+=,∴12a e =-, (ii )当112e a ≤<时,()f x 在区间()0,1上单调递增;11,2a ⎛⎫ ⎪⎝⎭上单调递减,1,2e a ⎛⎫ ⎪⎝⎭上单调递增, 所以最大值1可能在1x =或x e =处取得而()()1ln1210f a a =+-+<, 所以()()2ln 211f e e ae a e =+-+=,解得12a e =-,与2112x e a <=<矛盾; (iii )当21e 2x a=≥时,()f x 在区间()0,1上单调递增,在()1,e 单调递减, 所以最大值1可能在1x =处取得,而()()1ln1210f a a =+-+<,矛盾, 综上所述,12a e =-或2a =-.。

(新人教A)高三数学第二轮复习第二讲函数的图像与性质

(新人教A)高三数学第二轮复习第二讲函数的图像与性质

第二讲 函数(二)一、函数的图象1,图象的变换 (1)平移变换①函数(),y f x a =+的图象是把函数()y f x =的图象沿x 轴向右(0a >)或向右(0a <)平移||a 个单位得到的;②函数)0(,)(<+=a a x f y 的图象是把函数轴的图象沿y x f y )(=向上(0a >)或向下(0a <)平个单位得到的移a 。

(2)对称变换①函数)(x f y =与函数)(x f y -=的图象关于直线x=0对称;函数)(x f y =与函数)(x f y -=的图象关于直线y=0对称;函数)(x f y =与函数)(x f y --=的图象关于坐标原点对称; ②函数)(x a f y +=与函数)(x a f y -=的图象关于直线a x =对称。

③如果函数)(x f y =对于一切,R x ∈都有=+)(a x f )(a x f -,那么)(x f y = 的图象关于直线a x =对称。

④设函数y=f(x)的定义域为R ,满足条件f(a+x)=f(b -x),则函数y=f(x)的图像关于直线x=2ba +对称。

(3)伸缩变换①)0(),(>=a x af y 的图象,可将)(x f y =的图象上的每一点的纵坐标伸长)1(>a 或缩短)10(<<a 到原来的a 倍。

②)0(),(>=a ax f y 的图象,可将)(x f y =的图象上的每一点的横坐标伸长)10(<<a 或缩短)1(>a 到原来的a1倍。

例1.将下列变换的结果填在横线上: (1)将函数xy -=3的图象向右平移2个单位,得到函数 的图象;(2)将函数)13(log 2-=x y 的图象向左平移2个单位,得到函数 的图象;(3)将函数3)2(-=x y 的图象各点的横坐标伸长到原来的3倍(纵坐标不变)得到函数 的图象. 解析:(1)关键是答案为23--=x y ,还是)2(3--=x y ,可以取一个点检验,将函数xy -=3的图象向右平移2个单位后点(-1,3)变为(1,3),故答案为)2(3--=x y ,即xy -=23(2)关键是答案为)213(log 2+-=x y ,还是]1)2(3[log 2-+=x y ,注意到)13(log 2-=x y 的图象向左平移2个单位后(1,1)变为点(-1,1),所以后者正确,故答案为)53(log 2+=x y ;(3)函数3)2(-=x y 的图象经过变换后,点(3,0)变为(9,1),故答案为3)131(-=x y .评析:总结上述解答,应该明白一个函数)(x f 的图象的各种变换都是针对基本变量x (或y )进行的,所以变换后发生的变化都应该紧随着变量x (或y )的后面,应认真总结这些经验.注意,函数图象变换的规律也可以应用到曲线方程表示的图形的变换. 例2.已知函数,1-=x xy 给出下列三个命题中正确命题的序号是 ①函数的图象关于点(1,1)对称; ②函数的图象关于直线x y -=2对称; ③将函数图象向左平移一个单位,再向下平移一个单位后与函数xy 1=重合. .答案:①、②、③.(提示:111y x =+-) 例3.将奇函数)(x f y =的图象沿着x 轴的正方向平移2个单位得到图象C ,图象D 与C 关于原点对称,则D对应的函数是( )A .)2(--=x f yB .)2(-=x f yC .)2(+-=x f yD .)2(+=x f y答案D .(提示:)2()2()(---=⇒-=⇒=x f y x f y x f y ,即).2(+=x f y例4.已知f(x+199)=4x 2+4x+3(x ∈R),那么函数f(x)的最小值为____.分析:由f(x +199)的解析式求f(x)的解析式运算量较大,但这里我们注意到,y=f(x +100)与y=f(x),其图象仅是左右平移关系,它们取得的最大值和最小值是相同的,由2214434()22y x x x =++=++,立即求得f(x)的最小值即f(x +199)的最小值是2. 2.利用图象解决函数问题熟练掌握函数图象的有关知识是学习函数以及解决函数问题的重要基本技能,在学习时要抓住下面两个要点:(1)学习函数图象的最基本的能力是熟练掌握所学过的基本初等函数(如正、反比例函数,二次函数,指数、对数函数,三角函数)的图象;(2)“数形结合”是一种很重要的数学方法,在解决许多函数、方程、不等式及其它与函数有关的问题时,常常运用“数形结合”的方法解答问题或帮助分析问题,运用“数形结合”解答问题需要有下述能力与经验:1)必须有能力准确把握问题呈现的全部图象特征;2)必须能够列出等价的数学式子表达问题的图象特征。

高三数学二轮复习 专题高效升级卷17 统计与统计案例课件 文 新人教A版

高三数学二轮复习 专题高效升级卷17 统计与统计案例课件 文 新人教A版
专题高效升级卷17 统计与统计案例
一、选择题(本大题共12小题,每小题4分,共48 分)
1.下列抽样试验中,最适宜用系统抽样的是 ( )
A.某市的4个区共有2 000名学生,且4个区的学生 人数之比为3∶2∶8∶2,从中抽取200人入样
B.从某厂生产的2 000个电子元件中随机抽取5个入 样
C.从某厂生产的2 000个电子元件中随机抽取200 个入样
设选中的2人都来自高校C的事件为X,
则Xc3包)含共的3种基.本因事此件P(有X(1)03 c=1,c2). ,10(3 c1,c3),(c2, 故选中的2人都来自高校C的概率为 .
18.某个体服装店经营某种服装,一周内获纯利润y (元)与该周每天销售这种服装的件数x(件) 之间的一组数据如下:
x
答案:C
3.在某项体育比赛中,七位裁判为一选手打出 的分数如下:
90 89 90 95 93 94 93
去掉一个最高分和一个最低分后,所剩数据的 平均值和方差分别为( )
A.92,2
B.92,2.8
C.93,2
D.93,2.8
答案:B
4.为了了解高三学生的数学成绩,抽取某班60 名学生的数学成绩,将所得数据整理后,画
回归方程为 yˆ =aˆ +bˆ x=77.37-1.82x.
(2)因为单位成本平均变动 bˆ =-1.82<0, 且产量x的计量单位是千件,所以根据回归系 数b的意义有:
产量每增加一个单位即1 000件时,单位成本平 均减少1.82元.
(3)当产量为6 000件,即x=6时,代入回归 方程:
yˆ =77.37-1.82×6=66.45(元)
会购买力的某项指标,要从中抽取一个容量
为200的样本;(2)从20人中抽取6人参加 座谈会,给出下列抽样方法:a简单随机抽样; b系统抽样;c分层抽样.上述两个问题应采用 的抽样方法分别为( )

新(全国甲卷)高考数学大二轮总复习与增分策略 专题六 解析几何 第1讲 直线与圆练习 文-人教版高三

新(全国甲卷)高考数学大二轮总复习与增分策略 专题六 解析几何 第1讲 直线与圆练习 文-人教版高三

第1讲 直线与圆1.(2016·山东改编)已知圆M :x 2+y 2-2ay =0(a >0)截直线x +y =0所得线段的长度是22,则圆M 与圆N :(x -1)2+(y -1)2=1的位置关系是________. 答案 相交解析 ∵圆M :x 2+(y -a )2=a 2, ∴圆心坐标为M (0,a ),半径r 1为a , 圆心M 到直线x +y =0的距离d =|a |2,由几何知识得⎝⎛⎭⎪⎫|a |22+(2)2=a 2,解得a =2. ∴M (0,2),r 1=2.又圆N 的圆心坐标为N (1,1),半径r 2=1, ∴MN =1-02+1-22=2,r 1+r 2=3,r 1-r 2=1.∴r 1-r 2<MN <r 1+r 2,∴两圆相交.2.(2016·上海)已知平行直线l 1:2x +y -1=0,l 2:2x +y +1=0,则l 1与l 2的距离是________. 答案2553.(2016·浙江)已知a ∈R ,方程a 2x 2+(a +2)y 2+4x +8y +5a =0表示圆,则圆心坐标是______.半径是______. 答案 (-2,-4) 5解析 由已知方程表示圆,则a 2=a +2, 解得a =2或a =-1.当a =2时,方程不满足表示圆的条件,故舍去. 当a =-1时,原方程为x 2+y 2+4x +8y -5=0, 化为标准方程为(x +2)2+(y +4)2=25, 表示以(-2,-4)为圆心,半径为5的圆.4.(2016·课标全国乙)设直线y =x +2a 与圆C :x 2+y 2-2ay -2=0相交于A ,B 两点,若AB =23,则圆C 的面积为________.答案 4π解析 圆C :x 2+y 2-2ay -2=0,即C :x 2+(y -a )2=a 2+2,圆心为C (0,a ),C 到直线y =x +2a 的距离为d =|0-a +2a |2=|a |2.又由AB =23,得⎝ ⎛⎭⎪⎫2322+⎝ ⎛⎭⎪⎫|a |22=a 2+2,解得a 2=2,所以圆的面积为π(a 2+2)=4π.考查重点是直线间的平行和垂直的条件、与距离有关的问题.直线与圆的位置关系(特别是弦长问题),此类问题难度属于中低档,一般以填空题的形式出现.热点一 直线的方程及应用 1.两条直线平行与垂直的判定若两条不重合的直线l 1,l 2的斜率k 1,k 2存在,则l 1∥l 2⇔k 1=k 2,l 1⊥l 2⇔k 1k 2=-1.若给出的直线方程中存在字母系数,则要考虑斜率是否存在. 2.求直线方程要注意几种直线方程的局限性.点斜式、两点式、斜截式要求直线不能与x 轴垂直.而截距式方程不能表示过原点的直线,也不能表示垂直于坐标轴的直线. 3.两个距离公式(1)两平行直线l 1:Ax +By +C 1=0,l 2:Ax +By +C 2=0间的距离d =|C 1-C 2|A 2+B2. (2)点(x 0,y 0)到直线l :Ax +By +C =0的距离公式d =|Ax 0+By 0+C |A 2+B 2.例1 (1)已知直线l 1:(k -3)x +(4-k )y +1=0与l 2:2(k -3)x -2y +3=0平行,则k 的值是________.(2)过点(5,2)且在y 轴上的截距是在x 轴上的截距的2倍的直线方程是______________. 答案 (1)3或5 (2)2x +y -12=0或2x -5y =0解析 (1)两直线平行,则A 1B 2-A 2B 1=0且A 1C 2-A 2C 1≠0,所以有-2(k -3)-2(k -3)(4-k )=0,解得k =3或5,且满足条件A 1C 2-A 2C 1≠0.(2)若直线在坐标轴上的截距为0,设直线方程为y =kx ,由直线过点(5,2),可得k =25,此时直线方程为2x -5y =0;若直线在坐标轴上的截距不为0,根据题意设直线方程为x a +y2a=1,由直线过点(5,2),可得a =6,此时直线方程为2x +y -12=0.思维升华 (1)求解两条直线的平行或垂直问题时要考虑斜率不存在的情况;(2)对解题中可能出现的特殊情况,可用数形结合的方法分析研究.跟踪演练1 已知直线l 1:ax +2y +1=0与直线l 2:(3-a )x -y +a =0,若l 1⊥l 2,则a 的值为________. 答案 1或2解析 由l 1⊥l 2,则a (3-a )-2=0, 即a =1或a =2.热点二 圆的方程及应用 1.圆的标准方程当圆心为(a ,b ),半径为r 时,其标准方程为(x -a )2+(y -b )2=r 2,特别地,当圆心在原点时,方程为x 2+y 2=r 2. 2.圆的一般方程x 2+y 2+Dx +Ey +F =0,其中D 2+E 2-4F >0,表示以(-D 2,-E 2)为圆心,D 2+E 2-4F2为半径的圆.例2 (1)若圆C 经过(1,0),(3,0)两点,且与y 轴相切,则圆C 的方程为______________. (2)过点A (a ,a )可作圆x 2+y 2-2ax +a 2+2a -3=0的两条切线,则实数a 的取值范围为________________.答案 (1)(x -2)2+(y ±3)2=4 (2)a <-3或1<a <32解析 (1)因为圆C 经过(1,0),(3,0)两点,所以圆心在直线x =2上,又圆与y 轴相切,所以半径r =2,设圆心坐标为(2,b ),则(2-1)2+b 2=4,b 2=3,b =± 3.(2)圆x 2+y 2-2ax +a 2+2a -3=0的圆心为(a,0),且a <32,并且(a ,a )在圆外,即有a 2>3-2a ,解得a <-3或1<a <32.思维升华 解决与圆有关的问题一般有两种方法:(1)几何法,通过研究圆的性质、直线和圆、圆与圆的位置关系,进而求得圆的基本量和方程;(2)代数法,即用待定系数法先设出圆的方程,再由条件求得各系数.跟踪演练2 (1)(2015·课标全国Ⅰ)一个圆经过椭圆x 216+y 24=1的三个顶点,且圆心在x 轴的正半轴上,则该圆的标准方程为________________.(2)两条互相垂直的直线2x +y +2=0和ax +4y -2=0的交点为P ,若圆C 过点P 和点M (-3,2),且圆心在直线y =12x 上,则圆C 的标准方程为______________.答案 (1)⎝ ⎛⎭⎪⎫x -322+y 2=254(2)(x +6)2+(y +3)2=34解析 (1)由题意知圆过(4,0),(0,2),(0,-2)三点, (4,0),(0,-2)两点的垂直平分线方程为y +1=-2(x -2), 令y =0,解得x =32,圆心为⎝ ⎛⎭⎪⎫32,0,半径为52. 得该圆的标准方程为(x -32)2+y 2=254.(2)由直线2x +y +2=0和直线ax +4y -2=0垂直得2a +4=0,故a =-2,代入直线方程,联立解得交点坐标为P (-1,0),易求得线段MP 的垂直平分线的方程为x -y +3=0,设圆C 的标准方程为(x -a )2+(y -b )2=r 2(r >0),则圆心(a ,b )为直线x -y +3=0与直线y =12x的交点,由⎩⎪⎨⎪⎧x -y +3=0,y =12x ,解得圆心坐标为(-6,-3),从而得到r 2=34,所以圆C 的标准方程为(x +6)2+(y +3)2=34.热点三 直线与圆、圆与圆的位置关系1.直线与圆的位置关系:相交、相切和相离,判断的方法主要有点线距离法和判别式法. (1)点线距离法:设圆心到直线的距离为d ,圆的半径为r ,则d <r ⇔直线与圆相交,d =r ⇔直线与圆相切,d >r ⇔直线与圆相离.(2)判别式法:设圆C :(x -a )2+(y -b )2=r 2,直线l :Ax +By +C =0,方程组⎩⎪⎨⎪⎧Ax +By +C =0,x -a 2+y -b2=r2消去y ,得关于x 的一元二次方程根的判别式Δ,则直线与圆相离⇔Δ<0,直线与圆相切⇔Δ=0,直线与圆相交⇔Δ>0.2.圆与圆的位置关系有五种,即内含、内切、相交、外切、外离.设圆C 1:(x -a 1)2+(y -b 1)2=r 21,圆C 2:(x -a 2)2+(y -b 2)2=r 22,两圆心之间的距离为d ,则圆与圆的五种位置关系的判断方法如下: (1)d >r 1+r 2⇔两圆外离; (2)d =r 1+r 2⇔两圆外切; (3)|r 1-r 2|<d <r 1+r 2⇔两圆相交; (4)d =|r 1-r 2|(r 1≠r 2)⇔两圆内切; (5)0≤d <|r 1-r 2|(r 1≠r 2)⇔两圆内含.例3 (1)已知直线y =kx (k >0)与圆C :(x -2)2+y 2=1相交于A ,B 两点,若AB =255,则k =_________.(2)若直线y =x +b 与曲线x =1-y 2恰有一个公共点,则b 的取值范围是____________. 答案 (1)12(2)(-1,1]∪{-2}解析 (1)圆心C ()2,0,半径为1,圆心到直线的距离d =||2k k 2+1,而AB =255,得(||2k k 2+1)2+⎝⎛⎭⎪⎫552=1,解得k =12. (2)曲线x =1-y 2,即x 2+y 2=1(x ≥0)表示一个半径为1的半圆,如图所示.当直线y =x +b 经过点A (0,1)时,求得b =1; 当直线y =x +b 经过点B (1,0)时,求得b =-1;当直线和半圆相切于点D 时,由圆心O 到直线y =x +b 的距离等于半径, 可得|0-0+b |2=1,求得b =-2,或b =2(舍去).故当直线y =x +b 与曲线x =1-y 2恰有一个公共点时,b 的取值范围是-1<b ≤1或b =-2.思维升华 (1)讨论直线与圆及圆与圆的位置关系时,要注意数形结合,充分利用圆的几何性质寻找解题途径,减少运算量.(2)圆上的点与圆外点的距离的最值问题,可以转化为圆心到点的距离问题;圆上的点与直线上点的距离的最值问题,可以转化为圆心到直线的距离问题;圆上的点与另一圆上点的距离的最值问题,可以转化为圆心到圆心的距离问题.跟踪演练3 (1)过点P (-4,0)的直线l 与圆C :(x -1)2+y 2=5相交于A ,B 两点,若点A 恰好是线段PB 的中点,则直线l 的方程为____________.(2)已知在平面直角坐标系中,点A (22,0),B (0,1)到直线l 的距离分别为1,2,则这样的直线l 共有________条. 答案 (1)x ±3y +4=0 (2)3解析 (1)如果直线l 与x 轴平行,则A (1-5,0),B (1+5,0),A 不是PB 的中点,则直线l 与x 轴不平行;设l :x =my -4,圆心C 到直线l 的距离d =5m 2+1,令AB 中点为Q ,则AQ =5-d 2,PQ =3AQ =35-d 2,在Rt△CPQ 中PQ 2+CQ 2=PC 2,得d 2=52=251+m 2,解得m =±3,则直线l 的方程为x ±3y +4=0.(2)由题意得直线l 为圆(x -22)2+y 2=1(A 为圆心)与圆x 2+(y -1)2=4(B 为圆心)的公切线,∵AB =222+-12=3=1+2,∴两圆外切,∴两圆共有3条公切线.故答案为3.1.已知圆C 关于y 轴对称,经过点(1,0)且被x 轴分成的两段弧长比为1∶2,则圆C 的方程为______________.押题依据 直线和圆的方程是高考的必考点,经常以填空题的形式出现,利用几何法求圆的方程也是数形结合思想的应用. 答案 x 2+(y ±33)2=43解析 由已知得圆心在y 轴上,且被x 轴所分劣弧所对圆心角为23π.设圆心坐标为(0,a ),半径为r , 则r sin π3=1,r cos π3=|a |,解得r =23,即r 2=43,|a |=33,即a =±33, 故圆C 的方程为x 2+(y ±33)2=43. 2.设m ,n 为正实数,若直线(m +1)x +(n +1)y -4=0与圆x 2+y 2-4x -4y +4=0相切,则mn 的最小值为________.押题依据 直线与圆的位置关系是高考命题的热点,本题与基本不等式结合考查,灵活新颖,加之直线与圆的位置关系本身承载着不等关系,因此此类题在高考中出现的可能性很大. 答案 3+2 2解析 根据圆心到直线的距离是2得到m ,n 的关系,然后结合不等式即可求解. 由直线(m +1)x +(n +1)y -4=0与圆(x -2)2+(y -2)2=4相切,可得2|m +n |m +12+n +12=2,整理得m +n +1=mn ,由m ,n 为正实数,可知m +n ≥2mn ,令t =mn ,则2t +1≤t 2,因为t >0,所以t ≥1+2,所以mn ≥3+2 2.故mn 有最小值3+22,无最大值.3.若圆x 2+y 2=4与圆x 2+y 2+ax +2ay -9=0(a >0)相交,公共弦的长为22,则a =________. 押题依据 本题已知公共弦长,求参数的范围,情境新颖,符合高考命题的思路. 答案102解析 联立两圆方程⎩⎪⎨⎪⎧x 2+y 2=4,x 2+y 2+ax +2ay -9=0,可得公共弦所在直线方程为ax +2ay -5=0, 故圆心(0,0)到直线ax +2ay -5=0的距离为|-5|a 2+4a2=5a (a >0).故222-5a2=22,解得a 2=52,因为a >0,所以a =102.A 组 专题通关1.设A 、B 是x 轴上的两点,点P 的横坐标为2,且PA =PB ,若直线PA 的方程为x -y +1=0,则直线PB 的方程是____________. 答案 x +y -5=0解析 由于直线PA 的倾斜角为45°,且PA =PB ,故直线PB 的倾斜角为135°,又由题意知P (2,3),∴直线PB 的方程为y -3=-(x -2),即x +y -5=0.2.(教材改编)设直线ax -y +3=0与圆(x -1)2+(y -2)2=4相交于A 、B 两点,且弦AB 的长为23,则a =________. 答案 0解析 由弦心距、半弦长、半径构成直角三角形,得(|a +1|a 2+1)2+(-3)2=22,解得a =0.3.过坐标原点且与圆x 2+y 2-4x +2y +52=0相切的直线的方程为________________.答案 3x +y =0或x -3y =0解析 设直线方程为y =kx ,即kx -y =0. ∵圆方程可化为(x -2)2+(y +1)2=52,∴圆心为(2,-1),半径为102. 依题意有|2k +1|k 2+1=102,解得k =-3或k =13,∴直线方程为3x +y =0或x -3y =0.4.已知圆O 1的方程为x 2+y 2=4,圆O 2的方程为(x -a )2+y 2=1,如果这两个圆有且只有一个公共点,那么a 的所有取值构成的集合是____________. 答案 {1,-1,3,-3}解析 ∵两个圆有且只有一个公共点, ∴两个圆内切或外切.内切时,|a |=1;外切时,|a |=3,∴实数a 的取值集合是{1,-1,3,-3}.5.已知圆C 1:(x -2)2+(y -3)2=1,圆C 2:(x -3)2+(y -4)2=9,M ,N 分别是圆C 1,C 2上的动点,P 为x 轴上的动点,则PM +PN 的最小值为__________. 答案 52-4解析 两圆的圆心均在第一象限,先求PC 1+PC 2的最小值,作点C 1关于x 轴的对称点C 1′(2,-3),则(PC 1+PC 2)min =C 1′C 2=52,所以(PM +PN )min =52-(1+3)=52-4.6.已知直线l 1:ax -y +1=0,l 2:x +y +1=0,l 1∥l 2,则a 的值为________,直线l 1与l 2间的距离为________.答案 -12解析 ∵l 1∥l 2,∴a ·1=-1·1⇒a =-1, 此时l 1:x +y -1=0,∴l 1,l 2之间的距离为|1--1|2= 2.7.在平面直角坐标系xOy 中,过点P ()-2,0的直线与圆x 2+y 2=1相切于点T ,与圆()x -a 2+()y -32=3相交于点R ,S ,且PT =RS ,则正数a 的值为________.答案 4解析 由题意得PT =22-1=3,k PT =33,PT :y =33(x +2),即x -3y +2=0,又RS =PT =3,所以圆()x -a 2+()y -32=3的圆心到直线PT 距离为3-322=32,从而|a -1|2=32,因此正数a 的值为4. 8.(2016·课标全国丙)已知直线l :mx +y +3m -3=0与圆x 2+y 2=12交于A ,B 两点,过A ,B 分别作l 的垂线与x 轴交于C ,D 两点,若AB =23,则CD =______.答案 4解析 设AB 的中点为M ,由题意知,圆的半径R =23,AB =23,所以OM =3,解得m =-33, 由⎩⎨⎧x -3y +6=0,x 2+y 2=12,解得A (-3,3),B (0,23),则AC 的直线方程为y -3=-3(x+3),BD 的直线方程为y -23=-3x ,令y =0,解得C (-2,0),D (2,0),所以CD =4. 9.已知点A (3,3),B (5,2)到直线l 的距离相等,且直线l 经过两直线l 1:3x -y -1=0和l 2:x +y -3=0的交点,求直线l 的方程.解 解方程组⎩⎪⎨⎪⎧3x -y -1=0,x +y -3=0,得交点P (1,2).①若点A ,B 在直线l 的同侧,则l ∥AB . 而k AB =3-23-5=-12,由点斜式得直线l 的方程为y -2=-12(x -1),即x +2y -5=0.②若点A ,B 分别在直线l 的异侧,则直线l 经过线段AB 的中点(4,52),由两点式得直线l 的方程为y -2x -1=52-24-1,即x -6y +11=0.综上所述,直线l 的方程为x +2y -5=0或x -6y +11=0.10.(2015·课标全国Ⅰ)已知过点A (0,1)且斜率为k 的直线l 与圆C :(x -2)2+(y -3)2=1交于M ,N 两点. (1)求k 的取值范围;(2)若OM →·ON →=12,其中O 为坐标原点,求MN . 解 (1)由题设可知,直线l 的方程为y =kx +1, 因为l 与C 交于两点,所以|2k -3+1|1+k2<1. 解得4-73<k <4+73.所以k 的取值范围为⎝⎛⎭⎪⎫4-73,4+73.(2)设M (x 1,y 1),N (x 2,y 2).将y =kx +1代入方程(x -2)2+(y -3)2=1,整理得(1+k 2)x 2-4(1+k )x +7=0.所以x 1+x 2=41+k 1+k 2,x 1x 2=71+k 2. OM →·ON →=x 1x 2+y 1y 2=(1+k 2)x 1x 2+k (x 1+x 2)+1=4k 1+k 1+k2+8. 由题设可得4k 1+k 1+k 2+8=12,解得k =1, 所以l 的方程为y =x +1.故圆心C 在l 上,所以MN =2.B 组 能力提高11.直线y =k (x -1)与以A (3,2),B (2,3)为端点的线段有公共点,则k 的取值范围是________. 答案 [1,3]解析 因为直线y =k (x -1)恒过P (1,0),画出图形,直线y =k (x -1)与以A (3,2),B (2,3)为端点的线段有公共点,则直线落在阴影区域内,因为k PA =2-03-1=1, k PB =3-02-1=3,故k 的取值范围是[1,3].12.在平面直角坐标系xOy 中,圆C 1:(x -1)2+y 2=2,圆C 2:(x -m )2+(y +m )2=m 2,若圆C 2上存在点P 满足:过点P 向圆C 1作两条切线PA ,PB ,切点为A ,B ,△ABP 的面积为1,则正数m 的取值范围是__________.答案 [1,3+23]解析 设P (x ,y ),设PA ,PB 的夹角为2θ.△ABP 的面积S =12PA 2sin 2θ=PA 2·2PC 1·PA PC 1=1. 由2PA 3=PC 21=PA 2+2,解得PA =2,所以PC 1=2,所以点P 在圆(x -1)2+y 2=4上.所以|m -2|≤m -12+-m 2≤m +2,解得1≤m ≤3+2 3.13.已知圆O :x 2+y 2=4,若不过原点O 的直线l 与圆O 交于P 、Q 两点,且满足直线OP 、PQ 、OQ 的斜率依次成等比数列,则直线l 的斜率为________.答案 ±1解析 设l :y =kx +b (b ≠0),代入圆的方程,化简得(1+k 2)x 2+2kbx +b 2-4=0. 设P (x 1,y 1),Q (x 2,y 2),得x 1+x 2=-2kb 1+k 2,x 1x 2=b 2-41+k 2, k OP ·k OQ =y 1x 1·y 2x 2=(k +bx 1)(k +b x 2) =k 2+kb (x 1+x 2x 1x 2)+b 2x 1x 2 =k 2+kb (-2kb b 2-4)+b 21+k 2b 2-4=k 2b 2-4-2k 2b 2+k 2b 2+b 2b 2-4=b 2-4k 2b 2-4, 由k OP ·k OQ =k 2l ,得b 2-4k 2b 2-4=k 2, 解得k =±1.14.已知以点C (t ,2t)为圆心的圆与x 轴交于点O ,A ,与y 轴交于点O ,B ,其中O 为原点. (1)求证:△OAB 的面积为定值;(2)设直线y =-2x +4与圆C 交于点M ,N ,若OM =ON ,求圆C 的方程.(1)证明 由题意知圆C 过原点O ,且OC 2=t 2+4t 2. 则圆C 的方程为(x -t )2+(y -2t )2=t 2+4t 2, 令x =0,得y 1=0,y 2=4t; 令y =0,得x 1=0,x 2=2t .故S △OAB =12OA ×OB =12×|2t |×|4t|=4, 即△OAB 的面积为定值.(2)解 ∵OM =ON ,CM =CN ,∴OC 垂直平分线段MN .∵k MN =-2,∴k OC =12,∴直线OC 的方程为y =12x , ∴2t =12t ,解得t =2或t =-2. 当t =2时,圆心C 的坐标为(2,1),OC =5,此时圆心C 到直线y =-2x +4的距离d =15<5,圆C 与直线y =-2x +4相交于两点;当t =-2时,圆心C 的坐标为(-2,-1),OC =5,此时圆心C 到直线y =-2x +4的距离d =95>5,圆C 与直线y =-2x +4不相交, ∴t =-2不符合题意,应舍去.综上,圆C 的方程为(x -2)2+(y -1)2=5.。

高三数学第二轮复习专题讲座 人教版

高三数学第二轮复习专题讲座 人教版

高三数学第二轮复习专题讲座 人教版专题一 函数考点高考要求 1 映射的概念 了解 2 函数的概念 理解 3 函数的单调性的概念 了解 4 简单函数单调性的判断 掌握 5 函数的奇偶性 了解 6 反函数的概念了解 7 互为反函数的函数图象间的关系 了解 8 简单函数的反函数的求法 掌握 9 分数指数幂的概念 理解 10 有理数指数幂的运算性质 掌握 11 指数函数的概念、图象和性质 掌握 12 对数的概念 理解 13 对数的运算法制掌握 14 对数函数的概念、图象和性质 掌握 15运用函数的性质解决简单的实际问题掌握说明:1.了解:要求对所列知识的含义有初步的、感性的认识,知道这一知识内容是什么,并能在有关的问题中直接应用;2.理解和掌握:要求对所列知识内容有较为深刻的理性认识,能够解释、举例或变形、推断,并能利用知识解决有关问题;3.灵活和综合运用:要求系统的掌握知识的内在联系,能够运用所列知识分析和解决较为复杂的或综合性的问题.(以下两点分析主要针对的是2004年全国各地的高考试题,共15套) 二、高考考点分析:在2004年全国各地的高考题中,考查函数的试题或与函数有关的试题大约有56道,在150分中约占25分到30分.对函数,常常从以下几个方面加以考查.1知识点函数的解析式 定义域和值域(包括最大值和最小值) 函数的单调性 函数的奇偶性和周期性 函数的反函数 题量27335函数和一些分段函数,简单的函数方程为背景,难度以中等题和容易题为主,如: 例1.(重庆市)函数)23(log 21-=x y 的定义域是( D )A 、[1,)+∞B 、23(,)+∞C 、23[,1]D 、23(,1]例2.(天津市)函数123-=xy (01<≤-x )的反函数是( D )A 、)31(log 13≥+=x x yB 、)31(log 13≥+-=x x yC 、)131(log 13≤<+=x x yD 、)131(log 13≤<+-=x x y也有个别小题的难度较大,如 例3.(北京市)函数,,(),,x x P f x x x M ∈⎧=⎨-∈⎩其中P 、M 为实数集R 的两个非空子集,又规定f P y y f x x P (){|(),}==∈,f M y y f x x M (){|(),}==∈,给出下列四个判断:①若P M ⋂=∅,则f P f M ()()⋂=∅ ②若P M ⋂≠∅,则f P f M ()()⋂≠∅ ③若P M ⋃=R ,则()()f P f M ⋃=R ④若P M R ⋃≠,则()()f P f M ⋃≠R 其中正确判断有( B )A 、 1个B 、 2个C 、 3个D 、 4个分析:若P M ⋂≠∅,则只有}0{=⋂M P 这一种可能.②和④是正确的.2.对数形结合思想、函数图象及其变换的考查.对图象的考查有6道试题,也以小题为主,难度为中等. 例4.(上海市)设奇函数f (x )的定义域为[-5,5].若当x ∈[0,5]时f (x )的图象如右图,则不等式f (x )<0的解是]5,2()0,2( -. 例5.(上海市)若函数y =f (x )的图象可由函数y =lg(x +1)的图象绕坐标原点O 逆时针旋转2π得到,则f (x )为( A ) A 、10-x-1 B 、10x-1 C 、1-10-xD 、1-10x3.对函数思想的考查.利用函数的图象研究方程的解;利用函数的单调性证明不等式(常常利用函数的导数来判断和证明函数的单调性);利用函数的最值说明不等式恒成立等问题.在全部考题中,有7道小题考查了用函数研究方程或不等式的问题,有14道大题考查了函数与方程、不等式、数列等的综合问题. 例6.(1)(浙江省)已知⎩⎨⎧≥<-=,0,1,0,1)(x x x f 则不等式)2()2(+⋅++x f x x ≤5的解集是]23,(-∞.(2)(全国卷3)设函数2(1),1,()41, 1,x x f x x x ⎧+<⎪=⎨--≥⎪⎩则使得f (x )≥1的自变量x 的取值范围为( A )A 、(-∞,-2][0,10]B 、(-∞,-2][0,1]C 、(-∞,-2][1,10] D 、[-2,0][1,10]例7.(上海市)已知二次函数y =f 1(x )的图象以原点为顶点且过点(1,1),反比例函数y =f 2(x )的图象与直线y =x 的两个交点间距离为8,f (x )= f 1(x )+ f 2(x ). (1)求函数f (x )的表达式;(2)证明:当a >3时,关于x 的方程f (x )= f (a )有三个实数解.解:(1)由已知,设f 1(x )=ax 2,由f 1(1)=1,得a =1,故f 1(x )= x 2.设f 2(x )=xk(k >0),它的图象与直线y =x 的交点分别为A (k ,k )、B (-k ,-k ) 由AB =8,得k =8,故f 2(x )=x 8.所以f (x )=x 2+x8. (2)证法一:由f (x )=f (a )得x 2+x 8=a 2+a 8, 即x 8=-x 2+a 2+a 8.在同一坐标系内作出f 2(x )=x 8和f 3(x )= -x 2+a 2+a8的大致图象,其中f 2(x )的图象是以坐标轴为渐近线,且位于第一、三象限的双曲线,f 3(x )的图象是以(0,a 2+a8)为顶点,开口向下的抛物线.因此,,f 2(x )与f 3(x )的图象在第三象限有一个交点,即f (x )=f (a )有一个负数解. 又因为f 2(2)=4,,f 3(2)= -4+a 2+a8 当a >3时,f 3(2)-f 2(2)= a 2+a8-8>0, 所以当a >3时,在第一象限f 3(x )的图象上存在一点(2,f (2))在f 2(x )图象的上方. 所以f 2(x )与f 3(x )的图象在第一象限有两个交点,即f (x )=f (a )有两个正数解. 因此,方程f (x )=f (a )有三个实数解. 证法二:由f (x )=f (a ),得x 2+x 8=a 2+a 8, 即(x -a )(x +a -ax8)=0,得方程的一个解x 1=a . 方程x +a -ax8=0化为ax 2+a 2x -8=0,由a >3,∆=a 4+32a >0,得 x 2=a a a a 23242+--, x 3=aa a a 23242++-,因为x 2<0, x 3>0, 所以x 1≠ x 2,且x 2≠ x 3.若x 1= x 3,即a =aa a a 23242++-,则3a 2=a a 324+, a 4=4a ,得a =0或a =34,这与a >3矛盾,所以x 1≠ x 3. 故原方程f (x )=f (a )有三个实数解. 例8.(福建高考题)已知f (x )=2324()3x ax x x +-∈R 在区间[-1,1]上是增函数. (Ⅰ)求实数a 的值组成的集合A ; (Ⅱ)设关于x 的方程f (x )=3312x x +的两个非零实根为x 1、x 2.试问:是否存在实数m ,使得不等式m 2+tm +1≥|x 1-x 2|对任意a ∈A 及t ∈[-1,1]恒成立?若存在,求m 的取值范围;若不存在,请说明理由.解:(Ⅰ)f '(x )=4+2,22x ax - ∵f (x )在[-1,1]上是增函数,∴f '(x)≥0对x ∈[-1,1]恒成立,即x 2-ax -2≤0对x ∈[-1,1]恒成立. ①设ϕ(x )=x 2-ax -2,方法一:① ⇔ ⎩⎨⎧≤-+=-≤--=021)1(021)1(a a ϕϕ ⇔-1≤a ≤1,∵对x ∈[-1,1],只有当a =1时,f '(-1)=0以及当a =-1时,f '(1)=0∴A ={a |-1≤a ≤1}.方法二:①⇔ ⎪⎩⎪⎨⎧≤-+=-≥021)1(02a a ϕ或⎪⎩⎪⎨⎧≤--=<021)1(02a a ϕ⇔ 0≤a ≤1或-1≤a ≤0⇔ -1≤a ≤1.∵对x ∈[-1,1],只有当a =1时,f '(-1)=0以及当a =-1时,f '(1)=0, ∴A ={a |-1≤a ≤1}. (Ⅱ)由,02,0,3123242332=--=+=-+ax x x x x x ax x 或得 ∵△=a 2+8>0,∴x 1,x 2是方程x 2-ax -2=0的两非零实根,x 1+x 2=a ,x 1x 2=-2, 从而|x 1-x 2|=212214)(x x x x -+=82+a . ∵-1≤a ≤1,∴|x 1-x 2|=82+a ≤3.要使不等式m 2+tm +1≥|x 1-x 2|对任意a ∈A 及t ∈[-1,1]恒成立, 当且仅当m 2+tm +1≥3对任意t ∈[-1,1]恒成立,即m 2+tm -2≥0对任意t ∈[-1,1]恒成立. ②设g(t)=m 2+tm -2=mt +(m 2-2),方法一:②⇔ g (-1)=m 2-m -2≥0且g (1)=m 2+m -2≥0,⇔m ≥2或m ≤-2.所以,存在实数m ,使不等式m 2+tm +1≥|x 1-x 2|对任意a ∈A 及t ∈[-1,1]恒成立,其取值范围是{m |m ≥2,或m ≤-2}. 方法二:当m =0时,②显然不成立;当m ≠0时,②⇔m >0,g (-1)=m 2-m -2≥0 或m <0,g (1)=m 2+m -2≥0 ⇔ m ≥2或m ≤-2.所以,存在实数m ,使不等式m 2+tm +1≥|x 1-x 2|对任意a ∈A 及t ∈[-1,1]恒成立,其取值范围是{m |m ≥2,或m ≤-2}.说明:本题主要考查函数的单调性,导数的应用和不等式等有关知识,考查数形结合及分类讨论思想和灵活运用数学知识分析问题和解决问题的能力. 三、高考热点分析函数几乎贯穿了高中数学的始末,它与高中数学的每一部分内容几乎都有联系.对函数的认识,应该包含对函数的概念和性质的理解;对二次函数、指数函数、对数函数、三角函数等基本初等函数和分段函数的概念和性质的理解;函数图象的变换和应用;建立函数模型解决问题的意识等.在复习过程中,以下几点值得重视:1.重视对函数概念和基本性质的理解.包括定义域、值域(最值)、对应法则、对称性(包括奇偶性)、单调性、周期性、反函数、图象变换、基本初等函数(常常是载体)等.研究函数的性质要注意分析函数解析式的特征,同时要注意函数图象(形)的作用.对这部分知识的考查,除了一部分比较简单的小题直接考查函数某一方面的性质外,常常是对函数综合的类型较多(中等难度题,以小题和前三道大题为主),包括函数内部多种知识的综合,函数同方程、不等式、数列的综合.例1.(北京市)函数f x x ax ()=--223在区间[1,2]上存在反函数的充分必要条件是( D )A . a ∈-∞(,]1B . a ∈+∞[,)2C . a ∈[,]12D . a ∈-∞⋃+∞(,][,)12 说明:涉及二次函数的单调性、反函数的概念、充分必要条件等知识.例2. (福建省)已知函数y =log 2x 的反函数是y =f —1(x ),则函数y = f —1(1-x )的图象是( C )例3.(全国高考题3)已知函数y =f (x )是奇函数,当x ≥0时,f (x )=3x -1,设f (x )的反函数是y =g (x ),则g (-8)=___-2_____.例4.(湖北省)函数]1,0[)1(log )(2在++=x a x f a 上的最大值和最小值之和为a ,则a 的值为( B )A 、41B 、21 C 、2 D 、4例5.(北京市)在函数f x ax bx c ()=++2中,若a ,b ,c 成等比数列且f ()04=-,则f x ()有最大 值(填“大”或“小”),且该值为-3.例6.(湖南省)设函数,2)2(),0()4(.0,2,0,)(2-=-=-⎩⎨⎧>≤++=f f f x x c bx x x f 若则关于x 的方程x x f =)(解的个数为( C )A 、1B 、2C 、3D 、4例7.(江苏省)设k >1,f (x )=k (x -1)(x ∈R ) .在平面直角坐标系xOy 中,函数y =f (x )的图象与x 轴交于A 点,它的反函数y =f -1(x )的图象与y 轴交于B 点,并且这两个函数的图象交于P 点.已知四边形OAPB 的面积是3,则k 等于( B )A 、3B 、32C 、43D 、65例8.(上海市)记函数f (x )=132++-x x 的定义域为A ,g (x )=lg [(x -a -1)(2a -x )](a <1) 的定义域为B . (1)求A ;(2)若B ⊆A , 求实数a 的取值范围. 解:(1)2-13++x x ≥0,得11+-x x ≥0, x <-1或x ≥1,即A =(-∞,-1) [1,+ ∞). (2)由(x -a -1)(2a -x )>0,得(x -a -1)(x -2a )<0.因为a <1,所以a +1>2a ,故B =(2a ,a +1). 因为B ⊆A ,所以2a ≥1或a +1≤-1,即a ≥21或a ≤-2,而a <1, 所以21≤a <1或a ≤-2,故当B ⊆A 时,实数a 的取值范围是(-∞,-2] [21,1).例9.(2003年全国理科高考题)已知.0>c 设P :函数xc y =在R 上单调递减.Q :不等式1|2|>-+c x x 的解集为R ,如果P 和Q 有且仅有一个正确,求c 的取值范围.解:函数xc y =在R 上单调递减.10<<⇔c不等式|2|1|2| 1.x x c R y x x c +->⇔=+-R 的解集为函数在上恒大于 22,2,|2|2,2,1|2|2.|2|121.211,,0.,, 1.(0,][1,).22x c x c x x c c x c y x x c c x x c R c c P Q c P Q c c -≥⎧+-=⎨<⎩∴=+-∴+->⇔>⇔><≤≥⋃+∞R 函数在上的最小值为不等式的解集为如果正确且不正确则如果不正确且正确则所以的取值范围为 2.重视利用导数研究函数的单调性等性质,进而证明一些不等式或转化一些不等式恒成立问题. 例10.(全国高考题1)已知13)(23+-+=x x ax x f 在R 上是减函数,求a 的取值范围. 分析:函数13)(23+-+=x x ax x f 在R 上递减等价于0)(≤'x f 恒成立.解:函数f (x )的导数:.163)(2-+='x ax x f当0)(≤'x f (x ∈R )时,)(x f 是减函数.23610()ax x x +-≤∈R .3012360-≤⇔≤+=∆<⇔a a a 且所以,所求a 的取值范围是(].3,-∞-说明:这类问题在2004年全国各地的高考题中大量出现,需重视. 例11.(重庆市)设函数()(1)(),(1)f x x x x a a =-->(1)求导数/()f x ;并证明()f x 有两个不同的极值点12,x x ; (2)若不等式12()()0f x f x +≤成立,求a 的取值范围. 解:(1).)1(23)(2a x a x x f ++-='.0)(,;0)(,;0)(,:)())((3)(,,,,04)1(4.0)1(230)(221121212122>'><'<<<'<'--='<>≥+-=∆=++-='x f x x x f x x x x f x x x f x x x x x f x x x x a a a a x a x x f 时当时当时当的符号如下可判断由不妨设故方程有两个不同实根因得方程令因此1x 是极大值点,2x 是极小值点.(2)因故得不等式,0)()(21≤+x f x f :.0)(]2))[(1(]3))[((.0)())(1(212122121221212122213231≤++-++--++≤++++-+x x a x x x x a x x x x x x x x a x x a x x 即又由(I )知⎪⎪⎩⎪⎪⎨⎧=+=+.3),1(322121a x x a x x ,代入前面不等式,两边除以(1+a ),并化简得.02522≥+-a a.0)()(,2,.)(212:21成立不等式时当因此舍去或解不等式得≤+≥≤≥x f x f a a a 例12.(2003年江苏高考题)已知n a ,0>为正整数. (Ⅰ)设1)(,)(--='-=n n a x n y a x y 证明;(Ⅱ)设).()1()1(,,)()(1n f n n f a n a x x x f n n n n n '+>+'≥--=+证明对任意证明:(Ⅰ)因为nk knnC a x 0)(=∑=-k kn x a --)(,所以1)(--=-='∑k kn nk kn xa kC y nk n 0=∑=.)()(1111------=-n k k n k n a x n x a C (Ⅱ)对函数nn n a x x x f )()(--=求导数:nn n n n n n n n n n n n n a n n a n n a n x a x x x f a x x f a x a n n n n f a x n nx x f )()1()1(,,.)()(,.0)(,0].)([)(,)()(1111-->-+-+≥--=≥∴>'>≥--='--='----时当因此的增函数是关于时当时当所以∴))()(1(])1()1)[(1()1(1n n n n n a n n n a n n n n f --+>-+-++=+'+ ).()1())()(1(1n f n a n n n n n n n '+=--+>- 即对任意).()1()1(,1n f n n f a n n n '+>+'≥+四、二轮复习建议(正文用宋体五号字)1.进一步加强对基本概念、基础知识、基本方法的理解和训练(在函数性质和函数与其他知识的小综合上要多加训练,这是关键).2.在二轮复习过程中,做两件事情:一是分专题讲解“函数、导数与不等式”(重点)、“函数与数列”,二是在整个复习过程中,不断渗透函数的思想方法和数形结合的思想方法. 一些备选例题:1.(2000年春季)已知函数f (x )=ax 3+bx 2+cx +d 的图象如图所示,则( A )A 、b ∈(-∞,0)B 、 b ∈(0,1)C 、 b ∈(1,2)D 、 b ∈(2,+∞) 分析:显然,(想方程)方程f (x )=0的根为0、1、2,所以,可以设f (x )=ax (x -1)(x -2),与f (x )=ax 3+bx 2+cx +d 比较可得:b =-3a .(想不等式)又x >2时,有f (x )>0,于是有a >0,故b <0.2.(2000年上海)已知函数f (x )=xax x ++22,x ∈[)+∞,1.(1)当a =21时,求函数f (x )的最小值; (2)若对任意的x ∈[)+∞,1,f (x )>0恒成立,试求a 的取值范围.分析:本题考查求函数的最值的方法,以及等价变换和函数思想的运用.当a =21时,f (x )=221++xx ≥222212+=+⋅x x ,当且仅当22,21==x x x 即时等号成立,而[)∞+∉122,也就是说这个最小值是取不到的. 解:(1)当a =21时,f (x )=221++xx ,函数f (x )在区间[)+∞,1上为增函数(证明略),所以当x =1时,取到最小值f (1)=3.5.(2)解法一:f (x )>0恒成立,就是x 2+2x +a >0恒成立,而函数g (x )=x 2+2x +a 在[)+∞,1上增函数,所以当x =1时,g (x )取到最小值3+a ,故3+a >0,得:a >-3.解法二:f (x )>0恒成立,就是x 2+2x +a >0恒成立,即a >-x 2-2x 恒成立,这只要a 大于函数-x 2-2x 的最大值即可.而函数-x 2-2x 在[)+∞,1上为减函数,当x =1时,函数-x 2-2x 取到最大值-3,所以a >-3.说明:函数、方程不等式之间有着密切的联系,在解题时要重视这种联系,要善于从函数的高度理解方程和不等式的问题,也要善于利用方程和不等式的知识解决函数的问题.3.某工厂有一个容量为300吨的水塔,每天从早上6时起到晚上10时止供应该厂的生产和生活用水,已知该厂生活用水为每小时10吨,工业用水量W (吨)与时间t (小时,且规定早上6时t =0)的函数关系为W =100t .水塔的进水量分为10级,第一级每小时进水10吨,以后每提高一级,每小时进水量就增加10吨.若某天水塔原有水100吨,在开始供水的同时打开进水管,问进水量选择为第几级时,既能保证该厂的用水(水塔中水不空)又不会使水溢出?分析:本题主要考查由实际问题建立函数关系式、并利用函数关系解决实际问题.解本题时, 在建立函数关系式后,根据题意应有0<y ≤300对t 恒成立(注意区分不等式恒成立和解不等式的关系). 解:设进水量选第x 级,则t 小时后水塔中水的剩余量为y =100+10xt -10t -100t ,且0≤t ≤16.根据题意0<y ≤300,∴0<100+10xt -10t -100t ≤300.0 1 2 xy由左边得x >1+10(t t11-)=1+10〔-2)211(-t +41〕, 当t =4时,1+10〔-2)211(-t +41〕有最大值3.5.∴x >3.5.由右边得x ≤t t 1020++1,当t =16时,tt 1020++1有最小值4.75,∴x ≤4.75. 综合上述,进水量应选为第4级.说明:a 为实数,函数f (x )定义域为D ,若a >f (x )对x D ∈恒成立,则a >f (x )的最大值;若a <f (x )对x D ∈恒成立,则a <f (x )的最小值.4.设()x f 是定义在[-1,1]上的偶函数,()x g 与()x f 的图象关于直线01=-x 对称.且当[]3,2∈x 时,()()()()为实数a x x a x g 32422---⋅=(1)求函数()x f 的表达式;(2)在(]6,2∈a 或()+∞,6的情况下,分别讨论函数()x f 的最大值,并指出a 为何值时,()x f 的图像的最高点恰好落在直线12=y 上.分析:(1)注意到()x g 是定义在区间[]3,2上的函数,因此,根据对称性,我们只能求出()x f 在区间[]0,1-上的解析式,()x f 在区间[]1,0上的解析式,则可以根据函数的奇偶性去求.简答:()⎪⎩⎪⎨⎧≤≤+-≤≤-+-=1024012433x ax x x ax x x f(2)因为()x f 为偶函数,所以,()x f (11≤≤-x )的最大值,必等于()x f 在区间[]1,0上的最大值.故只需考虑10≤≤x 的情形,此时,()ax x x f 243+-=.对于这个三次函数,要求其最大值,比较容易想到的方法是:考虑其单调性.因此,可以求函数()x f 的导数.简答:如果()+∞∈,6a 可解得:8=a ; 如果(]6,2∈a ,可解得:61833>=a ,与(]6,2∈a 矛盾.故当8=a 时,函数()x f 的图像的最高点恰好落在直线12=y 上.说明:(1)函数的单调性为研究最值提供了可能;(2)奇偶性可以使得我们在研究函数性质时,将问题简化到定义域的对称区间上. 5.已知函数3211()(1)32f x x b x cx =+-+ (b 、c 为常数),(Ⅰ) 若()f x 在x =1和x =3处取得极值,试求b 、c 的值;(Ⅱ)若()f x 在12(,),(,)x x x ∈-∞+∞上单调递增且在12(,)x x x ∈上单调递减,又满足211x x ->,求证:22(2)b b c >+;(Ⅲ) 在(Ⅱ)的条件下,若1t x <,试比较2t bt c ++与1x 的大小,并加以证明. 解: (Ⅰ)'2()(1)f x x b x c =+-+,由题意得:1和3是方程2(1)0x b x c +-+=的两根,113,1 3.b c -=+⎧∴⎨=⨯⎩解得3,3.b c =-⎧⎨=⎩ (Ⅱ)由题得:当12(,),(,)x x x ∈-∞+∞时,'()0f x >;12(,)x x x ∈时, '()0f x <.12,x x ∴是方程2(1)0x b x c +-+=的两根,则12121,,x x b x x c +=-=222121212212122212(2)24[1()]2[1()]4()41() 1.b bc b b cx x x x x x x x x x x x ∴-+=--=-+--+-=+--=--211x x ->,2221()10,2(2)x x b b c ∴-->∴>+.(Ⅲ) 在(Ⅱ)的条件下,由上一问知212(1)()(),x b x c x x x x +-+=-- 即212()(),x bx c x x x x x ++=--+所以2112112()()()(1),t bt c x t x t x t x t x t x ++-=--+-=-+-2121111,10,0,0,x x t t x t x t x >+>+∴+-<<<∴-<又 2121()(1)0,.t x t x t bt c x ∴-+->++>即。

(通用版)高考数学二轮复习 稳取120分保分练(一)文-人教版高三全册数学试题

(通用版)高考数学二轮复习 稳取120分保分练(一)文-人教版高三全册数学试题

稳取120分保分练(一)一、选择题1.若z =2-i2+i ,则|z |=( )A.15 B .1 C .5D .25解析:选B z =2-i2+i=2-i 22+i 2-i =35-45i ,则|z |=⎝ ⎛⎭⎪⎫352+⎝ ⎛⎭⎪⎫-452=1.2.设集合A ={x ∈Z||x |≤2},B =⎩⎨⎧⎭⎬⎫x|32x ≤1,则A ∩B =( )A .{1,2}B .{-1,-2}C .{-2,-1,2}D .{-2,-1,0,2}解析:选C A ={-2,-1,0,1,2},B =⎩⎨⎧⎭⎬⎫x|x ≥32或x <0,所以A ∩B ={-2,-1,2}.3.向量a ,b 满足|a |=2,|b |=2,(a +b )⊥(2a -b ),则向量a 与b 的夹角为( ) A .45° B .60° C .90°D .120°解析:选C 因为(a +b )⊥(2a -b ),所以(a +b )·(2a -b )=2a 2+a ·b -b 2=4+a ·b -4=0,即a ·b =0,从而a ⊥b ,即向量a ,b 的夹角为90°.4.已知一组数据(2,3),(4,6),(6,9),(x 0,y 0)的线性回归方程为y ^=x +2,则x 0-y 0的值为( )A .2B .4C .-4D .-2解析:选D 由题意知x -=14(2+4+6+x 0)=14(12+x 0),y -=14(3+6+9+y 0)=14(18+y 0),∵线性回归方程为y ^=x +2, ∴14(18+y 0)=14(12+x 0)+2, 解得x 0-y 0=-2.5.已知a =243,b =425,c =2513,则( ) A .b <a <c B .a <b <c C .b <c <aD .c <a <b解析:选A ∵a =243,b =425=245,43>45,∴a >b ,又a =243=316,c =325,∴a <c ,故c >a >b .6.已知△ABC 中,a ,b ,c 分别为内角A ,B ,C 所对的边,且a =4,b +c =5,tan A +tan B +3=3tan A tan B ,则△ABC 的面积为( )A.32 B .3 3C.332D.32解析:选C 由题意可知,tan C =-tan(A +B )=-tan A +tan B1-tan A tan B,整理化简得,tan A +tan B +tan C =tan A tan B tan C ,所以tan C =3,即C =60°,所以cos C =a 2+b 2-c 22ab,把a=4,b +c =5,C =60°代入,解得b =32,所以△ABC 的面积S =12ab sin C =332,故选C.7.已知数列{a n }为等差数列,S n 为其前n 项和,S 3=3,a n -2+a n -1+a n =24,S n =54,则n 的值为( )A .9B .10C .11D .12解析:选D ∵S 3=3,∴a 1+a 2+a 3=3,则3a 2=3,a 2=1.∵a n -2+a n -1+a n =24,∴3a n -1=24,a n -1=8.∵{a n }为等差数列,∴S n =a 1+a n n2=a 2+a n -1n2=1+8n2=54,∴n =12. 8.如图,网格纸上小正方形的边长为1,实线画出的是某多面体的三视图,则该多面体的体积为( )A .20B .22C .24D .26解析:选C 由三视图可知:该几何体是一个棱长为3的正方体去掉3个棱长为1的小正方体剩下的部分,如图所示.该几何体的体积V =33-3×13=24.9.已知MOD 函数是一个求余函数,其格式为MOD(n ,m ),其结果为n 除以m 的余数,例如MOD(8,3)=2.如图是一个算法的程序框图,当输入的值为36时,则输出的结果为( )A .4B .5C .6D .7解析:选D 模拟执行程序框图,可得:n =36,i =2,MOD(36,2)=0,j =1,i =3,满足条件i <n ,MOD(36,3)=0,j =2,i =4,满足条件i <n , MOD(36,4)=0,j =3,i =5,满足条件i <n , MOD(36,5)=1,i =6,满足条件i <n , … 由36i∈N *,可得i =2,3,4,6,9,12,18,∴j =j +1执行了7次,故j =7.10.若函数f (x )的图象如图所示,则f (x )的解析式可能是( )A .f (x )=e x-1x 2-1B .f (x )=exx 2-1C .f (x )=x 3+x +1x 2-1D .f (x )=x 4+x +1x 2-1解析:选B 由题意,当x =0时,y <0,排除A ,当-1<x <0时,若x →-1,则y →-∞,排除C ,D 选项中,f (-2)=5,f (-3)=798>f (-2),不符合,排除D.故选B.11.已知球的直径SC =6,A ,B 是该球球面上的两点,且AB =SA =SB =3,则棱锥S ­ABC 的体积为( )A.324B.924C.322D.922解析:选D 如图,设O 是球心,则OA =OB =OS =OC =12SC =3.又AB =SA =SB =3,∴SA =OA =OB =SB ,取SO 的中点D ,连接AD ,BD ,∴AD ⊥SO ,BD ⊥SO ,又AD ∩BD =D ,∴SC ⊥平面ABD .又易求得AD =BD =332,∴S △ABD =12×3× ⎝ ⎛⎭⎪⎫3322-⎝ ⎛⎭⎪⎫322=924.∴V S ­ABC =V S ­ABD +V C ­ABD =13S △ABD ×SD +13S △ABD ×DC =13S △ABD ×SC =13×924×6=922. 12.设[x ]表示不小于实数x 的最小整数,如[2.6]=3,[-3.5]=-3.已知函数f (x )=[x ]2-2[x ],若函数F (x )=f (x )-k (x -2)+2在(-1,4]上有2个零点,则k 的取值X 围是( )A.⎣⎢⎡⎭⎪⎫-52,-1∪[2,5) B.⎣⎢⎡⎭⎪⎫-1,-23∪[5,10)C.⎝ ⎛⎦⎥⎤-43,-1∪[5,10)D.⎣⎢⎡⎦⎥⎤-43,-1∪[5,10) 解析:选B 令F (x )=0得f (x )=k (x -2)-2, 作出函数y =f (x )和y =k (x -2)-2的图象如图所示: 若函数F (x )=f (x )-k (x -2)+2在(-1,4]上有2个零点,则函数f (x )和g (x )=k (x -2)-2的图象在(-1,4]上有2个交点,经计算可得k PA =5,k PB =10,k PO =-1,k PC =-23,∴k 的取值X 围是⎣⎢⎡⎭⎪⎫-1,-23∪[5,10).二、填空题13.已知向量OA ―→⊥AB ―→,|OA ―→|=3,则OA ―→·OB ―→=________.解析:由OA ―→⊥AB ―→,得OA ―→·AB ―→=0,即OA ―→·(OB ―→-OA ―→)=OA ―→·OB ―→-|OA ―→|2=0, ∵|OA ―→|=3,∴OA ―→·OB ―→=|OA ―→|2=9.答案:914.在区间[-1,1]上随机取一个数x ,使sin πx 2的值介于0到12之间的概率为________.解析:当-1≤x ≤1时,-π2≤πx 2≤π2,由0≤sin πx 2≤12,得0≤πx 2≤π6,即0≤x ≤13,则sin πx 2的值介于0到12之间的概率P =132=16.答案:1615.已知双曲线x 216-y 236=1上一点P (x ,y )到双曲线一个焦点的距离是9,则x 2+y 2的值是________.解析:双曲线x 216-y 236=1的a =4,b =6,c =a 2+b 2=213,不妨设点P (x ,y )在右支上,由条件可知P 点到右焦点(213,0)的距离为9,即为 x -2132+y 2=9,且x 216-y 236=1,解得x =213,y =±9,则x 2+y 2=52+81=133.答案:13316.将函数y =sin 2x -cos 2x 的图象向右平移m (m >0)个单位以后得到的图象与y =n sin x cosx (n >0)的图象关于⎝ ⎛⎭⎪⎫π3,0对称,则n +m 的最小值为________.解析:将y =sin 2x -cos 2x =-cos 2x 的函数图象向右平移m 个单位以后得到y =-cos 2(x -m )=-cos(2x -2m )的图象,根据所得图象与y =n sin x cos x =n2sin 2x (n >0)的图象关于⎝ ⎛⎭⎪⎫π3,0对称,设点P (x 0,y 0)为y =-cos(2x -2m )上任意一点,则该点关于⎝ ⎛⎭⎪⎫π3,0的对称点为Q ⎝⎛⎭⎪⎫2π3-x 0,-y 0,且Q 在y =n2sin 2x (n >0)的图象上,故有⎩⎪⎨⎪⎧-cos 2x 0-2m =y 0,n 2sin ⎝ ⎛⎭⎪⎫4π3-2x 0=-y 0,求得n =2,sin ⎝ ⎛⎭⎪⎫2x 0-π3=cos(2x 0-2m ),即cos ⎝⎛⎭⎪⎫2x 0-5π6=cos(2x 0-2m ),∴-2m =-5π6+2k π,k ∈Z ,即m =5π12-k π,k ∈Z ,又m >0,故m 的最小值为5π12,则n +m 的最小值为2+5π12.答案:2+5π12三、解答题17.已知数列{a n }的前n 项和S n 满足a n =1-2S n . (1)求证:数列{a n }为等比数列;(2)设函数f (x )=log 13x ,b n =f (a 1)+f (a 2)+…+f (a n ),求T n =1b 1+1b 2+1b 3+…+1b n.解:(1)证明:∵数列{a n }的前n 项和S n 满足a n =1-2S n .∴a 1=1-2a 1,解得a 1=13.n ≥2时,a n -1=1-2S n -1,可得a n -a n -1=-2a n .∴a n =13a n -1.∴数列{a n }是首项和公比均为13的等比数列.(2)由(1)可知a n =⎝ ⎛⎭⎪⎫13n,则f (a n )=log 13a n =n .∴b n =1+2+…+n =n n +12.∴1b n =2⎝ ⎛⎭⎪⎫1n -1n +1.∴T n =1b 1+1b 2+1b 3+…+1b n =2⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1n +1 =2⎝⎛⎭⎪⎫1-1n +1=2nn +1. 18.已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,且a cos C +3a sin C =b +c . (1)求A ;(2)若a =7,△ABC 的面积为332,求b 与c 的值.解:(1)∵a cos C +3a sin C =b +c ,由正弦定理得sin A cos C +3sin A sin C =sin B +sin C , 即sin A cos C +3sin A sin C =sin(A +C )+sin C , 化简得3sin A -cos A =1,∴sin A -π6=12.在△ABC 中,0<A <π,∴A -π6=π6,得A =π3.(2)由已知得12bc sin π3=332,则bc =6,由已知及余弦定理得b 2+c 2-2bc cos π3=7,(b +c )2=25,b +c =5,联立方程组⎩⎪⎨⎪⎧bc =6,b +c =5,可得⎩⎪⎨⎪⎧b =2,c =3或⎩⎪⎨⎪⎧b =3,c =2.19.某初级中学共有学生2 000名,各年级男、女生人数如表:初一年级初二年级初三年级女生373x y男生377370z已知在全校学生中随机抽取1名学生,抽到初二年级女生的概率是0.19.(1)求x的值;(2)现用分层抽样的方法在全校抽取48名学生,问应在初三年级抽取多少名?(3)已知y≥245,z≥245,求初三年级中女生比男生多的概率.解:(1)∵在全校学生中随机抽取1名,抽到初二年级女生的概率是0.19,即x2 000=0.19,∴x=380.(2)初三年级人数为y+z=2 000-(373+377+380+370)=500,现用分层抽样的方法在全校抽取48名学生,应在初三年级抽取的人数为482 000×500=12名.(3)由题意,满足y+z=500,y≥245,z≥245的基本事件共有11个,y>z包含的事件共有5个,则y>z的概率为511.即初三年级中女生比男生多的概率为511.20.已知四棱台ABCD­A1B1C1D1的上下底面分别是边长为2和4的正方形,AA1=4且AA1⊥底面ABCD,点P为DD1的中点.(1)求证:AB1⊥平面PBC;(2)在BC边上找一点Q,使PQ∥平面A1ABB1,并求三棱锥Q­PBB1的体积.解:(1)证明:取AA1的中点M,连接BM,PM,BM与B1A相交于点N,∴PM∥AD∥BC,∴BM⊂平面PBC.∵AA1⊥平面ABCD,BC⊂平面ABCD,∴AA1⊥BC,∵四边形ABCD是正方形,∴AB⊥BC,又AB∩AA1=A,∴BC⊥平面ABB1A1.∵AB1⊂平面ABB1A1,∴BC⊥AB1.∵AB=AA1=4,∠BAM=∠B1A1A=90°,AM=B1A1=2,∴△ABM≌△A1AB1,∴∠MBA=∠B1AA1,∵∠BAB1+∠B1AA1=90°,∴∠MBA+∠BAB1=90°,即∠BNA=90°,∴BM⊥AB1.又BM∩BC=B,∴AB1⊥平面PBC.(2)在BC边上取一点Q,使BQ=3,∵PM为梯形ADD1A1的中位线,A1D1=2,AD=4,∴PM=3,PM∥AD,又∵BQ∥AD,∴PM綊BQ,∴四边形PMBQ 是平行四边形,∴PQ ∥BM , 又BM ⊂平面A 1ABB 1,PQ ⊄平面A 1ABB 1, ∴PQ ∥平面A 1ABB 1.∵BC ⊥平面ABB 1A 1,BM ⊂平面ABB 1A 1, ∴BQ ⊥BM ,∴PQ ⊥BQ . ∵AB =AA 1=4,AM =A 1B 1=2, ∴BM =AB 1=25, 则AN =AB ·AM BM =455. ∴B 1N =AB 1-AN =655.∴VQ ­PBB 1=VB 1­BPQ =13S △BPQ ·B 1N =13×12×3×25×655=6.。

高考数学复习 第二单元 第14讲 导数与函数的单调性练习 文(含解析)新人教A版-新人教A版高三全册

高考数学复习 第二单元 第14讲 导数与函数的单调性练习 文(含解析)新人教A版-新人教A版高三全册

第14讲导数与函数的单调性1.[2018·某某大学附中月考]函数f(x)=x2ln x的单调递减区间为()A.(0,√e)B.(√ee,+∞)C.(-∞,√ee )D.(0,√ee)2.设函数f(x)=x ln x,则f(x) ()A.在(0,5)上是增函数B.在(0,5)上是减函数C.在(0,1e )上是减函数,在(1e,5)上是增函数D.在(0,1e )上是增函数,在(1e,5)上是减函数3.[2018·某某一模]函数y=x+1e x的图像大致为()图K14-14.函数f(x)=xln x的单调递减区间是.5.若函数y=-43x3+ax有三个单调区间,则实数a的取值X围是.6.[2018·某某二模]若定义在R上的函数f(x)满足f'(x)+f(x)>1,其中f'(x)是f(x)的导函数,f(0)=5,则不等式e x[f(x)-1]>4(其中e为自然对数的底数)的解集为()A.(0,+∞)B.(-∞,0)∪(3,+∞)C.(-∞,0)∪(1,+∞)D.(3,+∞)7.[2018·某某闽侯二中、连江华侨中学等五校联考]若函数f(x)=x33-x2x2+x+1在区间12,3上单调递减,则实数a的取值X围为()A .(52,103) B .(103,+∞) C .[103,+∞) D .[2,+∞)8.[2018·某某三模] 若函数f (x )=x+xx -a ln x 在区间[1,2]上不单调,则实数a 的取值X 围是()A .(12,43)B .(43,+∞) C .[43,+∞)D .[12,43]9.[2018·某某模拟] 已知定义域为R 的奇函数y=f (x )的导函数为y=f'(x ),当x<0时,xf'(x )-f (x )<0,若a=x (e)e,b=x (ln2)ln2,c=x (-3)-3,则a ,b ,c 的大小关系为 ()A .b<a<cB .a<c<bC .a<b<cD .c<a<b10.[2018·某某模拟] 已知函数f (x )=e x-ln x ,则下面对函数f (x )的描述正确的是 () A .∀x ∈(0,+∞),f (x )≤2 B .∀x ∈(0,+∞),f (x )>2 C .∃a ∈(0,+∞),f (a )=0 D .f (x )min ∈(0,1)11.若函数f (x )=mx 2-ln x-1x 在(1,+∞)上单调递增,则实数m 的取值X 围为. 12.若函数f (x )=ln x+12ax 2-2x 存在单调递减区间,则实数a 的取值X 围为.13.已知函数f (x )=x 3+ax 2+2x-1.(1)若函数f (x )在区间[1,3]上单调递增,某某数a 的取值X 围; (2)若函数f (x )在区间[-2,-1]上单调递减,某某数a 的取值X 围.14.[2018·某某二模] 已知函数f (x )=sin x-x+mx 3(m ∈R).(1)当m=0时,证明:f (x )>-e x;(2)当x ≥0时,若函数f (x )单调递增,求m 的取值X 围.15.[2018·某某模拟] 已知函数f (x )=(x 2-2x )e x-a ln x (a ∈R)在区间(0,+∞)上单调递增,则a 的最大值是 () A .-eB .eC .-e 22D .4e 216.已知函数f (x )(x ∈R)满足f (1)=1,且f (x )的导函数f'(x )<12,则不等式f (x 2)<x 22+12的解集为.课时作业(十四)1.D[解析] 函数f (x )的定义域为(0,+∞),由题得f'(x )=2x ln x+x=x (2ln x+1),令f'(x )<0,得0<x<√e e,所以函数f (x )的单调递减区间为0,√e e,故选D .2.C[解析]∵f'(x )=ln x+1,∴当0<x<1e时,f'(x )<0,即f (x )在0,1e上是减函数;当1e<x<5时,f'(x )>0,即f (x )在1e,5上是增函数.3.D[解析] 因为y=x +1e x,所以y'=-xe x ,令y'>0,得x<0;令y'<0,得x>0;令y'=0,得x=0.所以y=x +1e x 在(-∞,0)上为增函数,在(0,+∞)上为减函数,且x=0是函数的极大值点,故选D .4.(0,1),(1,e)[解析]f (x )的定义域为(0,1)∪(1,+∞),f'(x )=ln x -1(ln x )2,令f'(x )<0,得0<x<1或1<x<e,即f (x )的单调递减区间是(0,1),(1,e).5.(0,+∞)[解析]y'=-4x 2+a ,因为函数有三个单调区间,所以方程-4x 2+a=0有两个不等实根,则Δ=0+16a>0,解得a>0. 6.A[解析] 设g (x )=e x [f (x )-1],则g'(x )=e x [f (x )-1]+e x f'(x )=e x [f (x )+f'(x )-1],∵f (x )+f'(x )>1,∴g'(x )>0, ∴函数g (x )在R 上单调递增.∵f (0)=5,∴g (0)=4,由e x [f (x )-1]>4,得g (x )>g (0),∴x>0. 故选A .7.C[解析]∵f (x )=x 33-x 2x 2+x+1,∴f'(x )=x 2-ax+1.若函数f (x )在区间12,3上单调递减,则x 2-ax+1≤0在12,3上恒成立,即a ≥x+1x在12,3上恒成立.令g (x )=x+1x,x ∈12,3,则g'(x )=(x +1)(x -1)x 2,令g'(x )>0,得1<x<3,令g'(x )<0,得12<x<1,∴g (x )在12,1上单调递减,在(1,3)上单调递增.又g12=52,g (3)=103,故a ≥103,即实数a 的取值X 围是103,+∞,故选C .8.A[解析]∵f (x )=x+x x -a ln x ,∴f'(x )=1-x x 2-x x =x 2-xx -xx 2.∵f (x )在区间[1,2]上不单调,∴f'(x )=0在(1,2)上有解,即x 2-ax-a=0在(1,2)上有解,即a=x 2x +1=11x 2+1x在(1,2)上有解,设t=1x ,12<t<1,则a=1x 2+x =1(x +12) 2-14在12,1上有解,∴12<a<43,即实数a 的取值X 围是12,43,故选A .9.A[解析] 构造新函数g (x )=x (x )x,则g (x )为偶函数,g'(x )=xx '(x )-x (x )x 2. ∵当x<0时,xf'(x )-f (x )<0,∴g'(x )<0,即函数g (x )在(-∞,0)上单调递减,∴函数g (x )在(0,+∞)上单调递增,结合0<ln2<e <3,可得g (ln2)<g (e)<g (3), ∴g (ln2)<g (e)<g (-3), 即b<a<c.10.B[解析]f (x )=e x-ln x 的定义域为(0,+∞),且f'(x )=e x-1x =x e x -1x.令g (x )=x e x -1,则g'(x )=(x+1)e x>0在(0,+∞)上恒成立, 则g (x )在(0,+∞)上单调递增, 又g (0)·g (1)=-(e -1)<0, 所以∃x 0∈(0,1),g (x 0)=0,则f (x )在(0,x 0)上单调递减,在(x 0,+∞)上单调递增, 所以f (x )min =f (x 0)=e x 0-ln x 0, 又e x 0=1x 0,所以x 0=-ln x 0,所以f (x )min =1x 0+x 0>2.故选B .11.227,+∞[解析]∵f'(x )=2mx-1x+1x 2≥0在(1,+∞)上恒成立,∴m ≥12-1x 3+1x 2在(1,+∞)上恒成立.令y=12-1x 3+1x 2,x ∈(1,+∞),由y'=123x 4-2x 3=0,得x=32,易知当x=32时,y max =227,∴m≥227.12.(-∞,1)[解析]f'(x )=1x +ax-2=xx 2-2x +1x(x>0),函数f (x )存在单调递减区间,即在定义域(0,+∞)内,存在使ax 2-2x+1≤0的区间,等价于a 小于2x -1x 2在(0,+∞)上的最大值.设g (x )=2x -1x 2(x>0),则g'(x )=-2x +2x 3,可知函数g (x )在区间(0,1)上为增函数,在区间(1,+∞)上为减函数,所以当x=1时,函数g (x )取得最大值1,所以a<1,故填(-∞,1).13.解:由f (x )=x 3+ax 2+2x-1,得f'(x )=3x 2+2ax+2.(1)因为函数f (x )在区间[1,3]上单调递增,所以f'(x )≥0在[1,3]上恒成立, 即a ≥-3x 2-22x在[1,3]上恒成立.令g (x )=-3x 2-22x,则g'(x )=-3x 2+22x 2,当x ∈[1,3]时,g'(x )<0,所以g (x )在[1,3]上单调递减,所以g (x )max =g (1)=-52,所以a ≥-52. (2)因为函数f (x )在区间[-2,-1]上单调递减,所以f'(x )≤0在[-2,-1]上恒成立,即a ≥-3x 2-22x 在[-2,-1]上恒成立,由(1)易知,g (x )=-3x 2-22x在[-2,-1]上单调递减,所以a ≥g (-2),即a ≥72.14.解:(1)证明:当m=0时,要证f (x )>-e x,即证e x-x+sin x>0,易知e x -x+sin x ≥e x -x-1,令g (x )=e x-x-1,则g'(x )=e x-1,当x>0时,g'(x )>0,g (x )单调递增, 当x<0时,g'(x )<0,g (x )单调递减,∴g (x )≥g (0)=0.∵取等号的条件不一致, ∴e x -x+sin x>0, ∴f (x )>-e x .(2)依题意知f'(x )=cos x-1+3mx 2≥0(x ≥0)恒成立,令F (x )=cos x-1+3mx 2(x ≥0),则F (0)=0,F'(x )=6mx-sin x.①当m ≥16时,令H (x )=x-sin x (x ≥0),则H'(x )=1-cos x ≥0,所以H (x )在(0,+∞)上单调递增, ∴H (x )≥H (0)=0,因此sin x ≤x (x ≥0),即-sin x ≥-x (x ≥0),∴F'(x )≥6mx-x=(6m-1)x ≥0,F (x )单调递增,∴F (x )≥F (0)=0,符合题意. ②当m ≤0时,Fπ2=-1+3mπ22<0,不符合题意,舍去.③当0<m<16时,设h (x )=F'(x ),则h'(x )=6m-cos x ,h'(0)=6m-1<0,h'π2=6m>0,∴h'(0)·h'π2<0,又h'(x )在0,π2上单调递增,∴存在x 1∈0,π2,使得h'(x 1)=0,∴当x ∈(0,x 1)时,h'(x )<0,则F'(x )在(0,x 1)上单调递减,∴当x ∈(0,x 1)时,F'(x )<F'(0)=0,∴F (x )在(0,x 1)上单调递减,∴F (x )<F (0)=0,不符合题意,舍去. 综上,m ≥16.15.A[解析] 因为函数f (x )=(x 2-2x )e x -a ln x (a∈R),所以f'(x )=e x (x 2-2x )+e x (2x-2)-xx =e x (x 2-2)-xx .因为函数f (x )=(x 2-2x )e x -a ln x (a ∈R)在区间(0,+∞)上单调递增,所以f'(x )=e x (x 2-2)-xx ≥0在区间(0,+∞)上恒成立,即a ≤e x(x 3-2x )在区间(0,+∞)上恒成立.令h (x )=e x (x 3-2x )(x>0),则h'(x )=e x (x 3-2x )+e x (3x 2-2)=e x (x 3-2x+3x 2-2)=e x (x-1)(x 2+4x+2).因为x ∈(0,+∞),所以x 2+4x+2>0.又因为e x>0,所以令h'(x )>0,可得x>1,所以函数h (x )在区间(1,+∞)上单调递增,在区间(0,1)上单调递减,所以h'(x )min =h (1)=e ×(1-2)=-e,所以a ≤-e .16.(-∞,-1)∪(1,+∞)[解析] 由题意构造函数F (x )=f (x )-12x ,则F'(x )=f'(x )-12.因为f'(x )<12,所以F'(x )=f'(x )-12<0,即函数F (x )在R 上单调递减.因为f (x 2)<x 22+12,f (1)=1,所以f (x 2)-x 22<f (1)-12,所以F (x 2)<F (1),所以x 2>1,解得x ∈(-∞,-1)∪(1,+∞).。

江西省安福中学2020届高三数学第二次段考试题 文 (无答案)新人教A版

江西省安福中学2020届高三数学第二次段考试题 文 (无答案)新人教A版

安福中学2020届高三第二次段考数学(文)试题一.选择题(本大题共有10个小题,每小题5分,共50分.)1.已知U ={}y | y =log 2x ,x >1,P =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫y ⎪⎪⎪ y =1x ,x >2,则∁U P = ( ) A.⎣⎢⎡⎭⎪⎫12,+∞ B.⎝ ⎛⎭⎪⎫0,12 C.()0,+∞ D.()-∞,0∪⎣⎢⎡⎭⎪⎫12,+∞ 2.把复数z 的共轭复数记作z -,i 为虚数单位,若z =1+i ,则(1+z )·z -=( )A .3-iB .3+iC .1+3iD .33.0a <是方程2210ax x ++=至少有一个负数根的( )A .必要不充分条件B .充分不必要条件C .充分必要条件D .既不充分也不必要条件4.若点(a ,b )在y =lg x 图象上,a ≠1,则下列点也在此图象上的是( ) A.⎝ ⎛⎭⎪⎫1a ,b B .(10a,1-b ) C.⎝ ⎛⎭⎪⎫10a ,b +1 D .(a 2,2b ) 5.给出如下四个命题:① 若“p 且q ”为假命题,则p 、q 均为假命题;②命题“若122,->>b a b a 则”的否命题为“若a b ≤,则221a b ≤-”;③ “R x ∈∀,x 2+1≥1”的否定是 “∃x ∈R,x 2+1≤1”;④ 在ABC ∆中,“A B >”是“sin sin A B >”的充要条件. 其中不正确...的命题的个数是( ) A .4 B .3 C . 2 D .16.设曲线y =ax 2在点(1,a )处的切线与直线2x -y -6=0平行,则a =( )A .1 B.12 C .-12D .-17.设f(x)为奇函数, 且在(-∞, 0)内是减函数, f (-2)= 0, 则x f(x)< 0的解集为( )A .(-1, 0)∪(2, +∞)B .(-∞, -2)∪(0, 2 )C .(-∞, -2)∪(2, +∞)D .(-2, 0)∪(0, 2 )8.设双曲线的—个焦点为F ;虚轴的—个端点为B ,如果直线FB 与该双曲线的一条渐近线垂直,那么此双曲线的离心率为( )A B C D . 9、下列图像中有一个是函数1)1(31)(223+-++=x a ax x x f )0,(≠∈a R a 的导数)(x f ' 的图像,则(1)f -等于( )。

2022版人教A版高中数学必修第二册练习题--专题强化练4 空间几何体的内切球和外接球

2022版人教A版高中数学必修第二册练习题--专题强化练4  空间几何体的内切球和外接球

2022版人教A版高中数学必修第二册--专题强化练4空间几何体的内切球和外接球一、选择题1.(2020内蒙古呼和浩特第二中学高一上期末,)已知正三棱柱ABC-A1B1C1的顶点都在球O的球面上,AB=2,AA1=4,则球O的表面积为()A.32π3B.32πC.64πD.64π32.(2020陕西西安电子科技大学附属中学高一上期末,)如图,正四棱锥P-ABCD 的侧棱和底面边长都等于2√2,则它的外接球的表面积为()A.16πB.12πC.8πD.4π3.(2020安徽合肥六校联盟高二上期末,)已知圆锥的底面半径为3,母线长为5,球O与圆锥的底面和侧面均相切,设球O的体积为V1,圆锥的体积为V2,则V1V2=()A.18B.38C.14D.8274.()设A,B,C,D是同一个半径为4的球的球面上四点,△ABC为等边三角形且其面积为9√3,则三棱锥D-ABC体积的最大值为()A.12√3B.18√3C.24√3D.54√35.()在封闭的直三棱柱ABC-A1B1C1内有一个体积为V的球.若AB⊥BC,AB=6,BC=8,AA1=3,则V的最大值是()A.4πB.9π2C.6πD.32π36.(2020江西高安中学高一上期中,)已知球O是正三棱锥A-BCD的外接球,BC=3,侧棱AB=2√3,点E在线段BD上,且BD=3BE,过点E作球O的截面,则所得截面圆面积的取值范围是()A.[5π4,4π] B.[2π,4π]C.[9π4,4π] D.[11π4,4π]二、填空题7.(2020湖南郴州高一上期末,)如图所示,边长为2的正方形SG1G2G3中,E、F分别是G1G2,G2G3的中点,沿SE、SF及EF把这个正方形折成一个三棱锥S-EFG,使G1、G2、G3三点重合,重合后记为点G,则三棱锥S-EFG的外接球的表面积为.8.(2020安徽合肥高三一模,)如图,已知四棱锥P-ABCD的外接球O的体积为36π,PA=3,侧棱PA与底面ABCD垂直,四边形ABCD为矩形,点M在球O的表面上运动,则四棱锥M-ABCD体积的最大值为.9.(2020广东中山第一中学高一上第二次段考,)如图,圆形纸片的圆心为O,半径为12 cm,该纸片上的正方形ABCD的中心为O,E,F,G,H为圆O上的点,△ABE,△BCF,△CDG,△ADH分别是以AB,BC,CD,DA为底边的等腰三角形.沿虚线剪开后,分别以AB,BC,CD,DA为折痕折起△ABE,△BCF,△CDG,△ADH,使得E,F,G,H重合,得到一个四棱锥.当该四棱锥的侧面积是底面积的2倍时,该四棱锥的外接球的表面积为.10.(2020广东广州白云高三下模拟,)将半径为r的5个球放入由一个半径不小于3r的球和这个球的内接正四面体A-BCD的四个面分割成的五个空间内,若此正四面体的棱长为2√6,则r的最大值为.答案全解全析一、选择题1.D过球心O作底面ABC的垂线,垂足为O',易知OO'=2,O'A=23×2×√32=2√33.易知OA2=OO'2+O'A2,所以OA=√4+43=√3,所以球O的表面积S=4π·OA2=64π3.故选D.2.A设正四棱锥外接球的球心为O,半径为R,正四棱锥底面的中心为O1,则O在正四棱锥的高PO1上.连接AC,在直角三角形ABC中,AC=√2AB=√2×2√2=4,所以AO1=2,所以正四棱锥的高PO1=√AP2-AO12=√(2√2)2-22=√8-4=2,因为PO1=AO1,所以O与O1重合,即正四棱锥外接球的球心是底面的中心O1,且球的半径R=2,故球的表面积S=4πR2=16π.故选A.3.B该几何体的轴截面如图所示,设球O的半径为r.易得圆锥的高为√52-32=4,故S△SAB=12×6×4=12×(5+5+6)r,解得r=32,故V1=43π×r3=9π2,V2=13π×32×4=12π,故V1V2=9π2×112π=38.4.B设△ABC的边长为a,则S△ABC=12a·a·sin 60°=9√3,所以a=6.设△ABC的外接圆的半径为r,则2r=6sin60°,得r=2√3,则球心到平面ABC的距离为√42-(2√3)2=2,所以点D到平面ABC的最大距离为2+4=6,所以三棱锥D-ABC体积的最大值为13×9√3×6=18√3,故选B.5.B易得AC=10.设△ABC的内切圆的半径为r,则12×6×8=12×(6+8+10)×r,所以r=2,因为2r=4>3,所以当球与三棱柱的上、下底面相切时,体积最大,此时球的直径为3,则半径R=32,所以球的体积V=43πR3=9π2.故选B.解题反思要使球的体积取最大值,则该球的半径应取到最大值,即该球与三棱柱的侧面或底面内切,因此需要讨论底面三角形内切圆直径与三棱柱高的关系,从而确定出球的半径的最大值.6.B设△BCD的中心为O1,球O的半径为R,连接AO1,则O在AO1上.连接O1D,OD,O1E,OE,如图,=√3,则O1D=3×sin 60°×23则AO1=√AD2-O1D2=√12-3=3.在Rt△OO1D中,R2=3+(3-R)2,解得R=2.∵BD=3BE,∴DE=2.在△DEO1中,O1E=√3+4-2×√3×2×cos30°=1,∴OE=√O1E2+OO12=√1+1=√2.过点E作球O的截面,当截面与OE垂直时,截面圆的面积最小,此时,截面圆的半径为√22-(√2)2=√2,面积为2π;当截面过球心时,截面圆的面积最大,最大面积为4π.故选B.二、填空题7.答案6π解析设三棱锥S-EFG外接球的半径为R.由题意可知,SG⊥EG,SG⊥GF,GE⊥GF,所以将三棱锥S-EFG补成如图所示的长方体,则长方体的外接球即为三棱锥的外接球.因为SG=2,GE=GF=1,所以外接球的直径2R=√22+12+12=√6,即R =√62.所以三棱锥S -EFG 的外接球的表面积S =4πR 2=6π.8.答案814解析 设球O 的半径为R ,则43πR 3=36π,故R =3.由题易知PA ,AB ,AD 两两垂直,所以将四棱锥P -ABCD 补成长方体,可知外接球的直径为长方体的体对角线,设长方体的长、宽、高分别为a ,b ,c ,则c =3,因为a 2+b 2+32=62,所以a 2+b 2=27,又a 2+b 2≥2ab ,所以ab ≤272,当且仅当a =b =3√62时,等号成立.要使得四棱锥M -ABCD 的体积最大,只需点M 为平面ABCD 的中心O'与球心O 连线所在的直线与球的交点(点M 、O'在球心O 两侧), 又OO'=12PA =32,所以四棱锥M -ABCD 体积的最大值为13×272×(32+3)=814.9.答案400π3cm 2解析 如图1,连接OE 交AB 于点I.图1设正方形的边长为x cm , 则OI =x2 cm ,IE =(12-x2)cm .因为该四棱锥的侧面积是底面积的2倍,所以4×x 2×(12-x2)=2x 2,所以x =8.设E ,F ,G ,H 重合于点P ,该四棱锥的外接球的球心为Q ,如图2,图2易知OC =4√2 cm ,PC =EA =√82+42=4√5 cm ,所以OP =√PC 2-OC 2=4√3 cm . 设外接球的半径为R cm , 则R 2=(4√3-R )2+(4√2)2,所以R =10√33,所以外接球的表面积S =4π×(10√33)2=400π3(cm 2).10.答案 1解析 如图1,设△BCD 的中心为O 1,则正四面体的外接球球心O 在AO 1上,连接OD ,O 1D.图1则O 1D =23×CD ×√32=2√2,AO 1=√AD 2-DO 12=4,设外接球的半径为R ,则R 2=(AO 1-R )2+DO 12,解得R =3.设正四面体A -BCD 内切球的半径为r 1,根据等体积法可得13r1×12×(2√6)2×sin 60°×4=13×12×(2√6)2×sin 60°×4,故r 1=1,根据题意得R =3≥3r ,r ≤r 1,所以r ≤1.设OO 1与球O 的球面相交于点Q ,如图所示,画出截面图,O 1Q =R -OO 1=2≥2r ,故r ≤1.综上所述,r的最大值为1.图2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

选择题专题训练(文六)
(时间:35分钟,满分:60分)
1.设集合U={1,2,3,4,5},A={1,2,3},B={2,5},则A ∩( U B )=( ) A .{2} B .{2,3} C .{3} D . {1,3} 2.已知函数=-=+-=)(,2
1
)(,11lg )(a f a f x x x f 则若( ) A .
2
1
B .-2
1 C .
2 D .-2
3.已知a +b 均为单位向量,它们的夹角为60°,那么|a +3b |=( ) A .7 B .10
C .13
D .4
4.函数)1(11>+-=
x x y 的反函数是 ( )
A .)1(222<+-=x x x y
B .)1(222
≥+-=x x x y C .)1(22
<-=x x x y D .)1(22
≥-=x x x y
5.73
)12(x
x -的展开式中常数项是( )
A .14
B .-14
C .42
D .-42
6.设)2,0(π
α∈若,53sin =α则)4
cos(2π
α+=( ) A .
5
7
B .51
C .2
7 D .4
7.椭圆14
22
=+y x 的两个焦点为F 1、F 2,过F 1作垂直于x 轴的直线与椭圆相交,一个交点为P ,则||2PF = ( )
A .
2
3
B .3
C .
2
7 D .4
8.设抛物线x y 82
=的准线与x 轴交于点Q ,若过点Q 的直线l 与抛物线有公共点,则直线l 的斜率的取值范围是( )
A .]2
1
,21[-
B .[-2,2]
C .[-1,1]
D .[-4,4]
9.为了得到函数)6
2sin(π
-
=x y 的图象,可以将函数x y 2cos =的图象( )
A .向右平移6π
个单位长度 B .向右平移

个单位长度 C .向左平移6
π
个单位长度
D .向左平移3
π
个单位长度
10.已知正四面体ABCD 的表面积为S ,其四个面的中心分别为E 、F 、G 、H ,设四面体EFGH
的表面积为T ,则
S
T
等于( )
A .
91
B .
9
4 C .
4
1 D .
3
1 11.从1,2,……,9这九个数中,随机抽取3个不同的数,则这3个数的和为偶数的概率是( )
A .
9
5 B .
94 C .2111 D .21
10 12.已知ca bc ab a c c b b a ++=+=+=+则,2,2,12
22222的最小值为( )
A .3-21
B .21-3
C .-21-3
D .2
1
+3
选择题专题训练(文六)
DBCB ABCC BACB。

相关文档
最新文档