数学经典易错题会诊与高考试题预测1

合集下载

高考冲刺数学易错题汇集

高考冲刺数学易错题汇集

高考冲刺数学易错题汇集高考冲刺数学易错题汇集在高考冲刺阶段,数学作为我们的必修科目,是我们最需要练习的科目之一。

但是数学难度较大,题目要求较高,加上高考的紧张压力,我们很容易犯错。

因此,我整理了一些高考义务教育阶段数学中易错题型,希望能够帮助大家提前做好复习准备,避免在考试中出现这些常见的错题。

一、三角函数1.【易错题型】如图,在△ABC中,角A的对边BC长度为4,角B的对边AC长度为3,角C的对边AB长度为2.则cotB+2sinA=【做题思路】cotB+2sinA=cotB+2sin(B+C)=cotB+2[sinBcosC+sinCcosB]=cot B+6cotB+8=7cotB+8。

【易错点评】易错的关键在于这道题要使用三角恒等式和三角函数的性质,将其有效的运用在计算中。

同时,需要注意在运算中的细节,例如将sinB和cosB分别算出来,最后再来进行加减运算。

2.【易错题型】正弦函数与余弦函数的值域是:( )A. [ -1 , 1 ]B. [ 1 , +∞ )C. [ -∞ , -1 ] ∪ [ 1 , +∞ )D. [ 0 , 1 ]【做题思路】根据三角函数的定义,易知y=sin(x)、y=cos(x)的解析式都在[-1,1]之间,因此该题的选项为A。

【易错点评】该题中易错的关键在于忽略了正弦函数与余弦函数的定义和解析式,只看到选项就随便选择,导致最后结果与实际情况不符。

二、解析几何1.【易错题型】若四边形ABCD 的边长分别为a、b、c、d,而且AB=BC,AD=CD,则它是一个矩形的充要条件是:A. a=c,b=dB. a=d,b=cC. a=b,c=dD. a=d,c=b【做题思路】在解析几何的学习中,我们应掌握矩形的定义及其相关性质,并根据题目中所给出的线段长度,确定此四边形是否为矩形。

根据题干所述,相邻两条边长度相等,即AB=BC,AD=CD,则该四边形为矩形的条件为AC垂直BD,即(a2-b2)+(c2-d2)=0。

高考数学典型易错题会诊(下)

高考数学典型易错题会诊(下)

高考数学典型易错题会诊(下)命题角度 3空间距离1.(典型例题)在空间中,与一个△ABC 三边所在直线距离都相等的点的集合是 ( )A .一条直线B .两条直线C .三条直线D .四条直线[考场错解]设该点为P ,且P 在平面ABC 上的射影为O ,因为P 到△ABC 三边所在直线距离都相等,所以O 到△ABC 的三边直线的距离都相等,即O 为△ABC 的内心,所以本题中符合条件的点在过0且与平面ABC 垂直的直线上,所以选A 。

[专家把脉] 在平面上与一个三角形三边所在直线等距离的点不只内心一个,实际任意两个角的外角平分线的交点(我们称其为傍心)也符合到三角形三边所在直线等距离[对症下药] 设该点为P ,且P 在平面ABC 上的射影为O ,因为P 到△ABC三边所在直线距离都相等,所以O 到△ABC 的三边所在直线的距离都相等,即O 为△ABC 的内心或傍心,所以本题中符合题意的点在过内心或傍心且与平面ABC 垂直的直线上,这样的直线有4条,所以选D 。

2. (典型例题)如图10-15,在棱长为4的正方体ABCD —A 1B 1C 1D 1中,O 是正方形A 1B 1C 1D 1的中心,点P 在棱CC 1上,且CC 1=4CP 。

(1)求直线AP 与平面BCC 1B 1所成角的大小(结果用反三角表示);(2)设O 点在平面D 1AP 上的射影为H ,求证:D 1H ⊥AP ;(3)求点P 到平面ABD 1的距离。

[考场错解] 第(3)问:∵ABCD —A 1B 1C 1D 1为正方体,∴AB ⊥面BCC 1B 1,∴BP ⊥AB ,∴BP 即为P 到平面ABD 1的距离,在Rt △BCP 中,BP=17[专家把脉] 线面垂直的判定有误,错解中BP ⊥AB ,但BP 与平面ABD 1不垂直,所以P 到平面ABD 1的距离不是BP 。

正解一:(1)如图10-16,连接BP ,∵AB ⊥平面BCC 1B 1,∴AP 与平面BCC 1B 1所成的角就是∠APB 。

数学经典易错题会诊与高考试题预测(含答案解析)9

数学经典易错题会诊与高考试题预测(含答案解析)9

经典易错题会诊与 高考试题预测(九)考点9 圆锥曲线►对椭圆相关知识的考查 ►对双曲线相关知识的考查 ►对抛物线相关知识的考查 ►对直线与圆锥曲线相关知识的考查 ►对轨迹问题的考查 ►考察圆锥曲线中的定值与最值问题 ►椭圆 ►双曲线 ►抛物线 ►直线与圆锥曲线►轨迹问题 ►圆锥曲线中的定值与最值问题 经典易错题会诊 命题角度1对椭圆相关知识的考查1.(典型例题Ⅰ)设椭圆的两个焦点分别为F 1、F 2,过F 2作椭圆长轴的垂线交椭圆于点P ,若△F l PF 2为等腰直角三角形,则椭圆的离心率是 ( ) 12.22.212.22.---D C B A[考场错解] A[专家把脉] 没有很好地理解椭圆的定义,错误地把||||21PF PF 当作离心率. [对症下药] D 设椭圆的方程为2222b y a x +=l (a ,b >0) 由题意可设|PF 2|=|F 1F 2|=k ,|PF 1|=2k ,则e=12222-=+=kk k ac2.(典型例题)设双曲线以椭圆92522y x +=1长轴的两个端点为焦点,其准线过椭圆的焦点,则双曲线的渐近线的斜率为 ( )A .±2B .±34C .±21D .±43[考场错解] D 由题意得a=5,b=3,则c=4而双曲线以椭圆92522y x +=1长轴的两个端点为焦点,则a=c =4,b=3 ∴k=43±=±a b [专家把脉] 没有很好理解a 、b 、c 的实际意义.[对症下药] C 设双曲线方程为2222by a x -=1,则由题意知c=5,c a 2=4 则a 2=20 b 2=5,而a=25 b=5∴双曲线渐近线斜率为±a b =21± 3.(典型例题)从集合{1,2,3…,11}中任选两个元素作为椭圆方程2222n y m x +=1中的m 和n ,则能组成落在矩形区域B={(x ,y)‖x|<11,且|y|<9}内的椭圆个数为 ( ) A .43 B .72 C .86 D .90[考场错解] D 由题意得,m 、n 都有10种可能,但m ≠n 故椭圆的个数10×10-10=90. [专家把脉] 没有注意,x 、y 的取值不同.[对症下药] B 由题意得m 有10种可能,n 只能从集合11,2,3,4,5,6,7,81中选取,且m ≠n ,故椭圆的个数:10×8-8=72. 4.(典型例题)设直线l 与椭圆162522y x +=1相交于A 、B 两点,l 又与双曲线x 2-y 2=1相交于C 、D 两点,C 、D 三等分线段AB ,求直线l 的方程 ( ) [考场错解] 设直线l 的方程为y=kx+b如图所示,l 与椭圆,双曲线的交点为A(x 1,y 1)、B (x 2,y 2)、C(x 3,y 3)、D(x 4,y 4),依题意有AB DB AC ,==3CD由)1(0)40025(50)2516(1162522222=-+++⎪⎩⎪⎨⎧=++=b bkx x k y x b kx y 得 所以x 1+x 2=-.2516502k bk +由⎪⎩⎪⎨⎧=-+=122y x bkx y 得(1-k 2)x 2-2bkx-(b 2+1)=0(2)若k=±1,则l 与双曲线最多只有一个交点,不合题意,故k ≠±1 所以x 3+x 4=212k bk -、由⇒=BD AC x 3-x 1=x 2-x 4 ⇒x 1+x 2=x 3+x 4⇒-⇒-=+2212251650k bk k bk bk=0或b =0①当k=0时,由(1)得x 1、2=±21645b - 由(2)得x 3、4=±12+b 由123x x CD AB -⇒==3(x 4-x 1)即1316161641022±=⇒+=-b b b 故l 的方程为y=±1316②当b=0时,由(1)得x 1、2=±2251620k+,由(2)得x 3、4=211k-±由123x x CD AB -⇒==3(x 4-x 3)即.2516,25161625164022x y l k k k ±=±=⇒-=+的方程为故 综上所述:直线l 的方程为:y=x y 2516,1316=±[专家把脉] 用斜截式设直线方程时没有注意斜率是否存在,致使造成思维片面,漏解. [对症下药] 解法一:首先讨论l 不与x 轴垂直时的,情况.设直线l 的方程为y=kx+b ,如图所示,l 与椭圆、双曲线的交点为:A(x 1,y 1)、B(x 2, y 2)、C(x 3,y 3)、D(x 4,y 4),依题意有CD AB BD AC 3,==.由⎪⎩⎪⎨⎧=++=.11625,22y x b kx y 得(16+25k 2)x 2+50bkx+(25b 2-400)=0.(1) 所以x 1+x 2=-.2516502k bk +由⎪⎩⎪⎨⎧=-+=.1,22y x b kx y 得(1-k 2+x 2-2bkx-(b 2+1)=0.若k=±1,则l 与双曲线最多只有一个交点,不合题意,故k ≠±1. 所以x 3+x 4=212kbk -由⇒-=-⇒=4213x x x x BD AC x 1+x 2=x 2+x 4001225165022=⇒=⇒-=+-⇒k bk kbk kbk或 b=0.①当k=0时,由(1)得.164522,1b x -±= 由(2)得x 3、4=±12+±b 由3312=-⇒=x x CD AB (x 4-x 3). 即.131611641022±=⇒+=-b b b 故l 的方程为 y=±1316②当b=0时,由(1)得x 1、2=2251620k+±自(2)得x 3、4=33,11122=-⇒=-±x x CD AB k 由(x4-x3).即.25161625164022±=⇒-=+k k k 故l 的方程为y=x 2516±.再讨论l 与x 轴垂直时的情况. 设直线l 的方程为x=c ,分别代入椭圆和双曲线方程可解得y l 、2=.25542c -±y 3、4=.||3||||3||.134122y y y y CD AB c -=-⇒=-±由 即.24125,2412516255822=±=⇒-=-x l c c c 的方程为故综上所述,直线l 的方程是:y=2516±x 、y=±1316和x=24125± 解法二:设l 与椭圆、双曲线的交点为:A(x 1,y 1)、B(x 2,y 2)、C(x 3,y 3)、D(x 4,y 4),则有⎪⎩⎪⎨⎧==-==+.4,3.12,1,116252222j y x i y x j ji i由i 的两个式子相减及j 的两个式子相减,得:⎩⎨⎧=-+--+=-++-+.0))(())((,0))((25))((163434343412121212y y y y x x x x y y y y x x x x 因C 、D 是AB 的三等分点,故CD 的中点(x 0,y 0)与AB 的中点重合,且.3CD AB =于是x 0=,221342x x x x +=+y 0=,223412y y y y +=+x 2-x 1=3 (x 4-x 3). 因此⎩⎨⎧-=-=--=-)2().()()1(),(25)(16340340340340y y y x x x y y y x x x若x 0y 0≠0,则x 2=x 1⇔x 4=x 3⇔y 4=y 3⇔y 2=y 1.因A 、B 、C 、D 互异,故x i ≠x j ,y i ≠y j ,这里ij=1,2,3,4且 i ≠j(1)÷(2)得16=-25,矛盾,所以x 0y 0=0. ①当x 0=0,y 0≠0时,由(2)得y 4=y 3≠0,这时l 平行 x 轴. 设l 的方程为y=b ,分别代入椭圆、双曲线方程得:x l 、2=,16452b -±x 3、4=.12+±b ∵x 2-x 1=3(x 4-x 3)410⇒1316161622±=⇒+=-b b b . 故l 的方程为y=±1316 ②当y 0=0,x 0≠0,由(2)得x 4=x 3≠0,这时l 平行y 轴. 设l 的方程为x=c ,分别代入椭圆、双曲线方程得:y l 、2=,25542c -±y3、4=.12-±c ∵y 2-y 1=3(y 4-y 3)2412516255822±=⇒-=-⇒c c c 故l 的方程为:24125±=x③当x 0=0,y 0=0时,这时l 通过坐标原点且不与x 轴垂直. 设l 的方程为y=kx ,分别代入椭圆、双曲线方程得:x 1、2=.11,25162024,32kx k-±=+±.2516)(33412±=⇒-=-k x x x x 故l 的方程为y=.2516x y ±= 综上所述,直线l 的方程是:y=x 2516±、y=1316±和x=.24125± 5.(典型例题)设A 、B 是椭圆3x 2+y 2=λ上的两点,点N(1,3)是线段AB 的中点,线段AB 的垂直平分线与椭圆相交于C 、D 两点.(1)确定A 的取值范围,并求直线AB 的方程;(Ⅱ)试判断是否存在这样的A ,使得A 、B 、C 、D 四点在同一个圆上?并说明理由.(此题不要求在答题卡上画图)[考场错解] (1)设A(x 1,y 1)B(x 2,y 2)则有:⇒⎪⎩⎪⎨⎧=+=+λλ2222212133y x y x (x 1-x 2)(x 1+x 2)+(y l -y 2)(y l +y 2)=0 依题意,x 1≠x 2 ∴k AB -2121)(3x x y y ++∵N(1,3)是AB 的中点, ∴x 1+x 2=2,y l +y 2=6从而k AB =-9又由N(1,3)在椭圆内,∴λ<3×12+32=12 ∴λ的取值范围是(-∞,12)直线AB 的方程为y-3=-9(x-1)即9x+y-12=0 [专家把脉]①用“差比法”求斜率时k AB =2)(3121y y x x ++-这地方很容易出错.②N(1,3)在椭圆内,λ>3×12+32=12应用结论时也易混淆.[对症下药] (1)解法1:依题意,可设直线AB 的方程为y=A(x-1)+3,代入3x 2+y 2=λ,整理得(k 2+3)x 2-2k(k-3)x+(k-3)2-λ=0.①设A(x 1,y 1)、B(x 2、y 2),则x 1,x 2是方程①的两个不同的根, ∴△=4[λ(k 2+3)-3(k-3)2]>0,② 且x 1+x 2=3)3(22+-k k k ,由N(1,3)是线段AB 的中点,得1221=+x x ,∴A(k-3)=k 2+3. 解得k=-1,代入②得,λ>12,即λ的取值范围是(12,+∞). 于是,直线AB 的方程为y-3=-(x-1),即x+y-4=0. 解法2:设A(x 1,y 1)、B(x 2,y 2),则有⇒⎪⎩⎪⎨⎧=+=+λλ2222212133y x y x (x 1-x 2)(x 1+x 2)+(y 1-y 2)(y 1+y 2)=0依题意,x 1≠x 2,∴k AB =-2121)(3y y x x ++∵N(1,3)是AB 的中点,∴x 1+x 2=2,y l +y 2=6,从而k AB =-1. 又由N(1,3)在椭圆内,∴λ>3×12+32=12, ∴λ的取值范围是(12,∞).直线AB 的方程为y-3=-(x-1),即x+y-4=0.(Ⅱ)解法1:∵CD 垂直平分AB ,∴直线CD 的方程为y-3 =x-1,即x-y+2=0,代入椭圆方程,整理得4x 2+4x+4 又设C(x 3,y 3),D(x 4,y 4),CD 的中点为M(x 0,y 0),则x 3, x 4是方程③的两根,∴x 3+x 4=-1,且x 0=21(x 3+x 4)=-21,y 0=x 0+2=23,即M(-21,23).于是由弦长公式可得|CD|=.)3(2||)1(1432-=-∙-+λx x k④ 将直线AB 的方程x+y-4=0,代入椭圆方程得4x 2-8x+ 16-λ=0 ⑤ 同理可得|AB|=.)12(2||.1212-=-+λx x k ⑥ ∵当λ>12时,)3(2-λ>)12(2-λ,∴|AB|<|CD|假设存在λ>12,使得A 、B 、C 、D 四点共圆,则CD 必为圆的直径,点M 为圆心.点M 到直线AB 的距离为d=.2232|42321|2|4|00=-+-=-+y x ⑦ 于是,由④、⑥、⑦式和勾股定理可得 |MA|2=|MB|2=d 2+.|2|2321229|2|22CD AB =-=-+=λλ 故当λ>12时,A 、B 、C 、D 四点均在以M 为圆心,|2|CD为半径的圆上. (注:上述解法中最后一步可按如下解法获得:)A 、B 、C 、D 共圆⇔△ACD 为直角三角形,A 为直角⇔|AN|2 =|CN|·|DN|, 即)2||)(2||()2(2d CD d CD AB -+=. ⑧ 由⑥式知,⑧式左边=212-λ,由④和⑦知,⑧式右边=,212)29232232)3(2)(2232)3(2(-=--=--+-λλλλ ∴⑧式成立,即A 、B 、C 、D 四点共圆解法2:由(Ⅰ)解法1及λ>12,∵CD 垂直平分AB ,∴直线CD 方程为y-3=x-1,代入椭圆方程,整理得4x2+4x+4-λ=0.③ 将直线AB 的方程x+y-4=0,代入椭圆方程,整理得 4x 2-8x+16-λ=0.⑤ 解③和⑤式可得 x l ,2=.231,21224,3-±-=-±λλx 不妨设A(1+)233,231(),233,231(,12213,1221-+-+---------λλλλλλD C )21233,23123()21233,23123(-------+=---+-+-+=∴λλλλλλλλCA CA计算可得0=∙CA CA ,∴A 在以CD 为直径的圆上.又B 为A 关于CD 的对称点,∴A 、B 、C 、D 四点共圆. (注:也可用勾股定理证明AC ⊥AD) 专家会诊1.重点掌握椭圆的定义和性质,加强直线与椭圆位置关系问题的研究.2.注重思维的全面性,例如求椭圆方程时只考虑到焦点在,轴上的情形;研究直线与椭圆位置关系时忽略了斜率不存在的情形……3.注重思想方法的训练,在分析直线与椭圆位置关系时要利用数形结合和设而不求法与弦长公式韦达定理联系去解决;关于参数范围问题常用思路有:判别式法,自身范围法等.求椭圆的方程常用方法有:定义法,直接法,待定系数法,相关点法,参数法等. 考场思维调练1 已知椭圆的中心O 是坐标原点,A 是它的左顶点,F 是它的左焦点,l 1,l 2分别为左右准线,l 1与x 轴交于O ,P 、Q 两点在椭圆上,且PM ⊥l 1于M,PN ⊥l 2于N ,QF ⊥AO ,则下列比值中等于椭圆离心率的有( ) ||||)5(;||||)4(;||||)3(;||||)2(;||||)1(BF QF BA AF BO AO PN PF PM PF A.1个 B .2个 C.4个 D .5个答案: C 解析:对(1),(4)的正确性容易判断;对(3),由于caaBO AO 2||||==e ,故(3)正确;对(5),可求得|QF|=,2ab|BF|=cb c c a 22=-,e BF QF =||||故,故(5)正确;(2)显然不对,所选C . 2 椭圆有这样的光学性质:从随圆的一个焦点出发的光线,经椭圆壁反射后,反射光线经过随圆的另一个焦点.今有一个水平放置的椭圆形台球盘,点A 、B 是它的焦点,长轴长为20,焦距为2c ,静放在点A 的小球 (小球的半径不计),从点A 沿直线出发,经椭圆壁反弹后第一次回到点A 时,小球经过的路程是 ( ) A .4a B .2(a-c)C.2(a+c) D .以上答案均有可能答案: D 解析:(1)静放在点A 的小球(小球的半径不计)从点A 沿直线出发,经椭圆壁右顶点反弹后第一次回到点A 时,小球经过的路程是2(d-c),则选B ;(2)静放在点A 的小球(小球的半径不计)从点A 沿直线出发,经椭圆壁左顶点反弹后第一次回到点A 时,小球经过的路程是2(a+c),则选C ;(3)静放在点A 的小球(小球的半径不计)从点A 沿直线出发,经椭圆壁非左右顶点反弹后第一次回到点A 时,小球经过的路程是4a ,则选A. 于是三种情况均有可能,故选D. 3 已知椭圆22ax +y 2=1(a>1),直线l 过点A(-a ,0)和点B(a ,ta)(tt>0)交椭圆于M .直线MO 交椭圆于N(1)用a ,t 表示△AMN 的面积S ;(2)若t ∈[1,2],a 为定值,求S 的最大值. 答案:易得l 的方程为了y=2t(x+a)…1分由,1)1(2222⎪⎪⎩⎪⎪⎨⎧=++=y a x x t y 得(a 2t 2+4)y 2-4aty=0解得了y=0或y=4422+t a at 即点M 的纵坐标y M =4422+t a at S=S △AMN =2S △AOM =|OA|·y M =4422+t a at (2)由(1)得,S=4422+t a at =t a ta 2244+ (t>0)令V=t4+a 2t ,V ′=-24t +a 2由V ′=O at 2=⇒ 当时t>a 2时,V ′>0;当0<t<a2时,V ′<0...10分 若1≤a ≤2,则,故a 2∈[1,2]当t=a 2时,S max =a 若a>2,则0<a 2<1,∵V=t4+ a 2t 在[1,2]上递增,进而S(t)为减函数.∴当t=1时,S max =2244a a +综上可得S max ⎪⎩⎪⎨⎧>+≤≤)2(44)21(22a a a a a 命题角度2对双曲线相关知识的考查 1.(典型例题1)已知双曲线x 2-22y =1的焦点为F 1、F 2,点M 在双曲线上且021=∙MF MF ,则点M 到x 轴的距离为 ( ) 3.332.35.34.D C B A[考场错解] B[专家把脉] 没有理解M 到x 轴的距离的意义.[对症下药] C 由题意得a=1,b=2,c=3可设M (x 0,y 0)|MF 1|=|ex 0+a|=|3x 0+1|,|MF 2|= |ex 0-a|=|3x 0-1|由|MF 1|2+|MF 2|2=|F 1F 2|2得 x 02=.332||,3435020==y y 则即点M 到x 轴的距离为.332 2.(典型例题)已知双曲线2222b y a x -=1(a>0,b>0)的右焦点为F ,右准线与一条渐近线交于点A ,△OAF 的面积为22a (O 为原点),则两条渐近线的夹角为 ( )A .30°B .45°C .60°D .90° [考场错解] B[专家把脉] 把两条渐近线的夹角看成渐近线的倾斜角.[对症下药] D 由题意得A(c ab c a ,2)s △OAF =21·c ·b a a ab c ab =⇒==2212,则两条渐近线为了y=x 与y=-x则求两条渐近线的夹角为90°.3.(典型例题Ⅲ)双曲线2222b y a x -=1(a>1,b>0)的焦距为2c ,直线l 过点(a ,0)和(0,b),且点(1,0)到直线l的距离与点(-1,0)到直线l 的距离之和s ≥54c ,求双曲线的离心率e 的取值范围. [考场错解] 直线l 的方程为b y ax +=1即bx+ay-ab=0点(-1,0)到直线l 的距离:22)1(ba ab ++,点(1,0)到直线l 的距离:22)1(b a a b +- ∴22)1(b a a b +++22)1(b a a b +-=c c ab b a ab 542222≥=+得5a 2222c a c ≥-于是得52221e e ≥-即4e 4-25e 2+25≤0解不等式得45≤e 2≤5,所以e 的取值范围是].5,25[]25,5[⋃-- [专家把脉] 没有理解双曲线离心率的意义及自身存在的范围e>1. [对症下药] 解法:直线J 的方程为byax+=1,即 bx+ay-ab=0. 由点到直线的距离公式,且a>1,得到点(1,0)到直线l 的距离d 1=.)1(22ba ab +-同理得到点(-1,0)到直线l 的距离d 2=.)1(22ba ab ++s=d 1+d 2=.2222cabb a ab =+ 由025254.215.25,542,542222222≤+-≥-≥-≥≥e e e e c a c a c c ab c s 即于是得即得解不等式,得.525,01.5452≤≤>>≤≤e e e e 的取值范围是所以由于 专家会诊1.注意双曲线两个定义的理解及应用,在第二定义中,要强调e>1,必须明确焦点与准线的对应性 2.由给定条件求出双曲线的方程,常用待定系数法,当焦点位置不确定时,方程可能有两种形式,应防止遗漏.3.掌握参数a 、b 、c 、e 的关系,渐近线及其几何意义,并注意灵活运用. 考场思维训练 1 已知F 1,F 2为双曲线2222b y a x -=1(a>0,b>0)的两个焦点,过F 2作垂直x 轴的直线,它与双曲线的一个交点为P ,且∠pF1F2=30°,则双 曲线的渐近线方程为 ( )xy D y C xy B x y A 2.33.3.22.±=±=±=±=答案: D 解析:由已知有212|||F F PF =tan30°=ac b 22,所以2a 2=b 2渐近线方程为y=±x 2,所以选取D2 若F l 、F 2双曲线2222b y a x -=1的左、右焦点,O 为坐标原点,P 在双曲线左支上,M 在右准线上,且满足||||||,11OP OF OP OF OMOP OM OP PM O F ∙=∙=(1)求此双曲线的离心率;答案:由−−→−=−−→−PMD F 1知四边形PF 1OM 为平行四边形,又由|||||||11−−→−−−→−−−→−∙−−→−=−−→−−−→−−−→−∙−−→−OPOMOPOMOF OPOF OP知OP 平分∠F 1OM, ∴PF 1OM 菱形,设半焦距为c ,由||1−−→−OF =c 知e a c a c c PMPF PF PF PMPF=−−→−−−→−+=+−−→−=−−→−=−−→−=−−→−||||,22||||,||||1121又,即c+e ca=1 e 2-e-2=0, ∴e=2(e=-1舍去)(2)若此双曲线过点N(2,3),求双曲线方程:答案:∵e=2=,a c ∴c=2a, ∴双曲线方程为)3,2(,132222将点==ay a x 代入, 有3a ,1434222=∴=-a a 即所求双曲线方程为9322y x -=1. (3)设(2)中双曲线的虚轴端点为B 1,B 2(B 1在y 轴正半轴上),求B 2作直线AB 与双曲线交于A 、B 两点,求B B A B 11⊥时,直线AB 的方程.答案:依题意得B1(0,3),B2(0,-3),设直线AB 的方程为y=kx-3,A(x 1,y 1),B(x 2,y 2)则由⎪⎪⎪⎩⎪⎪⎪⎨⎧=-=-+-⇒-=193.0186)3(32222y x kx x k kx y ∵双曲线的渐近线为y=±x 3,∴当k=±3时,AB 与双曲线只有一个交点, 即k ≠±3.∵x 1+x 2=.318,362212kx x kk --=∙-y 1+y 2=k(x 1+x 2)-6=2318k --,y 1y 2=k 2x 1x 2-k(x 1+x 2)+9=9又=−−→−AB1(x 1,y 1 -3),−−→−B B 1=(x 2,y 2 -3), −−→−A B 1⊥−−→−B B 1,09)(3212121=++++⇒y y y y x x 0931*******2=+--∙-+--kk,即k 2=5, ∴k=±5.故所求直线AB 的方程为y=5x-3或y=-5x-3.3 设双曲线42x -y 2=1的右顶点为A 、P 是双曲线上异于顶点的一个动点,从A 引双曲线的两条渐近线的平行线与直线OP(O 为坐标原点)分别交于Q 和R 两点.(1)证明:无论P 点在什么位置,总有||||2AR OQ OP ∙=;答案:设OP :y=kx 与AR :y=联立)2(21-x解得),212,212(kkk OR--=−−→− 同理可得),212,212(k k k OQ++=−−→−所以|−−→−OQ ·−−→−OR |,|41|4422k k -+ 设|−−→−OP |2=(m,n ),则由双曲线方程与OP 方程联立解得m 2=,414,4142222k k n k -=-所以|−−→−OP |2=m 2+n 2=||414422−−→−∙−−→−=-+OROQk k (点在双曲线上,1-4k 2>0);(2)设动点C 满足条件:)(21AR AQ AC +=,求点C 的轨迹方程.答案:∵ ),(21−−→−+−−→−=−−→−ARAQ AC 点C 为QR 的中心,设C (x,y ), 则有⎪⎪⎩⎪⎪⎨⎧-=-=22412412k k y k x ,消去k,可得所求轨迹方程为x 2-x 2-4y 2=0(x ≠0).命题角度3对抛物线相关知识的考查。

数学经典易错题会诊与高考试题预测

数学经典易错题会诊与高考试题预测

1 n2 n. 由 Sk2=(S k) 2,
2
S1 S4
2
( S1) , 即 ( S2 )2 .
a1 4a1
a12 ,(1) 43
d 2
(2a1
2 1 d) 2.(2) 2
由( 1)得 a1=0 或 a1=1. 当 a1=0 时,代入( 2)得 d=0 或 d=6. 若 a1=0,d=0, 则 an=0,s n=0, 从而 Sk2=(S k) 2 成立; 若 a1=0,d=6, 则 an=6(n-1), 由 S3=18,( S3)2=324,S 9=216 知 S9≠ (S 3) 2,故 所得数列不符合题意 . 当 a1=1 时 , 代入 (2) 得 4+6b=(2+d) 2 解得 d=0 或 d=2. 若 a1=1,d=0, 则 an=1,S n=n, 从而 Sk2=(S k) 2 成立; 若 a1=1,d=2, 则 an=2n-1,S n=1+3+… +(2n-1 )=n2, 从而 Sk2=(S k) 2
+(n-2) · an-2 ②
①- ②得
an-a n-1 =(n-1) · an-1 ∴ 当 n ≥ 3 时 , an =n , ∵
an 1
an= an
an 1
·
an an
1 2
·...·
a4 a3
?
a3 a2
? a2 =n·…·
4· 3× a2= n!
2
a2,∵ a2=a1=1
∴当 n≥ 2 时, an= n! .
得 an-a n-1 =(n-1)a n-1 ,∴ an =nan-1 . 由此类推: a n-1 =(n-1)a n-2 ,… a2 =2a1,由叠乘法可得 an= n!

高考数学压轴专题(易错题)备战高考《三角函数与解三角形》经典测试题附答案

高考数学压轴专题(易错题)备战高考《三角函数与解三角形》经典测试题附答案

【高中数学】数学《三角函数与解三角形》高考知识点(1)一、选择题1.在ABC ∆中,角A 、B 、C 所对的边分别为a 、b 、c ,且222b c a bc +=+若2sin sin sin B C A ⋅=,则ABC ∆的形状是()A .等腰三角形B .直角三角形C .等边三角形D .等腰直角三角形【答案】C 【解析】 【分析】直接利用余弦定理的应用求出A 的值,进一步利用正弦定理得到:b =c ,最后判断出三角形的形状. 【详解】在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c , 且b 2+c 2=a 2+bc .则:2221222b c a bc cosA bc bc +-===,由于:0<A <π,故:A 3π=.由于:sin B sin C =sin 2A , 利用正弦定理得:bc =a 2, 所以:b 2+c 2﹣2bc =0, 故:b =c ,所以:△ABC 为等边三角形. 故选C . 【点睛】本题考查了正弦定理和余弦定理及三角形面积公式的应用,主要考查学生的运算能力和转化能力,属于基础题型.2.已知函数()sin f x a x x =的一条对称轴为56x π=,函数()f x 在区间()12,x x 上具有单调性,且()()12f x f x =-,则下述四个结论:①实数a 的值为1;②()()1,x f x 和()()22,x f x 两点关于函数()f x 图象的一条对称轴对称; ③21x x -的最大值为π, ④12x x +的最小值为23π. 其中所有正确结论的编号是( )A .①②③B .①③④C .①④D .③④【答案】B 【解析】 【分析】 根据56x π=是函数()f x 的一条对称轴,确定函数()f x ,再根据函数()f x 在区间()12,x x 上具有单调性,得到21x x -的最大值为2Tπ=,然后由()()12f x f x =-,得到()()11,x f x 和()()22,x f x 两点关于函数()f x 的一个对称中心对称求解验证.【详解】 ∵56x π=是函数()f x 的一条对称轴,∴()53f x f x π⎛⎫=-⎪⎝⎭, 令0x =,得()503f f π⎛⎫=⎪⎝⎭,即-1a =,①正确; ∴()sin 2sin 3π⎛⎫=-=- ⎪⎝⎭f x x x x .又因为函数()f x 在区间()12,x x 上具有单调性, ∴21x x -的最大值为2Tπ=,且()()12f x f x =-, ∴()()11,x f x 和()()22,x f x 两点关于函数()f x 的一个对称中心对称,∴121233223x x x x k ππ⎛⎫⎛⎫-+- ⎪ ⎪+π⎝⎭⎝⎭=-=π,k Z ∈, ∴12223x x k ππ+=+,k Z ∈,当0k =时,12x x +取最小值23π,所以①③④正确,②错误. 故选:B 【点睛】本题主要考查三角函数的图象和性质,还考查了推理论证,运算求解的能力,属于中档题.3.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若(a ﹣c cos B )sin A =c cos A sin B ,则△ABC 的形状一定是( ) A .钝角三角形 B .直角三角形C .等腰三角形D .锐角三角形【答案】C 【解析】 【分析】根据题意,由(cos )sin cos sin a c B A c A B -=变形可得sin sin a A c C =,进而由正弦定理可得22a c =,即a c =,即可得答案. 【详解】根据题意,在ABC ∆中,(cos )sin cos sin a c B A c A B -=, 变形可得:sin cos sin cos sin (cos sin cos sin )sin()sin a A c B A c A B c B A A B c A B c C =+=+=+=,即有sin sin a A c C =,又由正弦定理可得22a c =,即a c =. 故选:C . 【点睛】本题主要考查三角形的形状判断,考查正弦定理的应用,意在考查学生对这些知识点的理解掌握水平,属于基础题.4.在ABC ∆中,角,,A B C 所对的边分别为,,a b c 满足,222b c a bc +-=,0AB BC ⋅>u ur u u r u u,2a =,则bc +的取值范围是( ) A .31,2⎛⎫ ⎪⎝⎭B.32⎫⎪⎪⎝⎭C .13,22⎛⎫⎪⎝⎭D .31,2⎛⎤ ⎥⎝⎦【答案】B 【解析】 【分析】利用余弦定理222cos 2b c a A bc+-=,可得3A π=,由|||cos()|0AB BC AB BC B π⋅=⋅->u u u u u u u u r u ur u r u r,可得B为钝角,由正弦定理可得sin sin(120)30)o o b c B B B ∴+=+-=+,结合B 的范围,可得解【详解】由余弦定理有:222cos 2b c a A bc+-=,又222b c a bc +-=故2221cos 222b c a bc A bc bc +-===又A 为三角形的内角,故3A π=又2a=sin sin sin(120)ob c c B C B ==- 又|||cos()|0AB BC AB BC B π⋅=⋅->u u u u u u u u r u ur u r u r故cos 0B B <∴为钝角3sin sin(120)sin 30)22o o b c B B B B B ∴+=+-=+=+(90,120)o o B ∈Q ,可得130(120150)sin(30)(,22o o o o B B +∈∴+∈,330))22o b c B ∴+=+∈ 故选:B 【点睛】本题考查了正弦定理、余弦定理和向量的综合应用,考查了学生综合分析,转化划归,数学运算能力,属于中档题5.函数()[]()cos 2,2f x x x ππ=∈-的图象与函数()sin g x x =的图象的交点横坐标的和为( ) A .53π B .2πC .76π D .π【答案】B 【解析】 【分析】根据两个函数相等,求出所有交点的横坐标,然后求和即可. 【详解】令sin cos2x x =,有2sin 12sin x x =-,所以sin 1x =-或1sin 2x =.又[],2x ππ∈-,所以2x π=-或32x π=或6x π=或56x π=,所以函数()[]()cos 2,2f x x x ππ=∈-的图象与函数()sin g x x =的图象交点的横坐标的和3522266s πππππ=-+++=,故选B. 【点睛】本题主要考查三角函数的图象及给值求角,侧重考查数学建模和数学运算的核心素养.6.在ABC ∆中,若sin :sin :sin 2:3:4A B C =,则ABC ∆是( ) A .直角三角形 B .钝角三角形C .锐角三角形D .等腰直角三角形【答案】B 【解析】 【分析】由题意利用正弦定理,推出a ,b ,c 的关系,然后利用余弦定理求出cosC 的值,即可得解. 【详解】∵sinA :sinB :sinC=2:3:4∴由正弦定理可得:a :b :c=2:3:4, ∴不妨令a=2x ,b=3x ,c=4x ,∴由余弦定理:c 2=a 2+b 2﹣2abcosC ,所以cosC=2222a b cab+-=2224916223x x x x x +-⨯⨯=﹣14, ∵0<C <π, ∴C 为钝角. 故选B . 【点睛】本题是基础题,考查正弦定理,余弦定理的应用,考查计算能力,常考题型.7.设当x θ=时,函数()sin 2cos f x x x =-取得最大值,则cos θ=()A .5-B .CD 【答案】B 【解析】 【分析】由辅助角公式可确定()max f x =sin 2cos θθ-=平方关系可构造出方程组求得结果. 【详解】()()sin 2cos f x x x x ϕ=-=+Q ,其中tan 2ϕ=- ()max f x ∴sin 2cos θθ-=又22sin cos 1θθ+= cos θ∴=【点睛】本题考查根据三角函数的最值求解三角函数值的问题,关键是能够确定三角函数的最值,从而得到关于所求三角函数值的方程,结合同角三角函数关系构造方程求得结果.8.△ABC 中,已知tanA =13,tanB =12,则∠C 等于( )A .30°B .45°C .60°D .135°【答案】D 【解析】 【分析】利用三角形内角和为180o ,可得:tan tan()tan(+)C A B A B π=--=-,利用两角和公式和已知条件,即可得解. 【详解】在△ABC 中,11tan tan 32tan tan()tan(+)=-1111tan tan 132A BC A B A B A B π++=--=-=-=---⋅,所以135C ?o .故选:D. 【点睛】本题考查了正切的两角和公式,考查了三角形内角和,考查了转化思想和计算能力,属于中档题.9.在△ABC 中,7b =,5c =,3B π∠=,则a 的值为 A .3 B .4C .7D .8【答案】D 【解析】 【分析】根据题中所给的条件两边一角,由余弦定理可得2222cos b a c ac B =+-,代入计算即可得到所求的值. 【详解】因为7,5,3b c B π==∠=,由余弦定理可得2222cos b a c ac B =+-,即214925252a a =+-⨯⨯,整理得25240a a --=, 解得8a =或5a =-(舍去),故选D. 【点睛】该题考查的是有关解三角形的问题,在解题的过程中,涉及到的知识点有余弦定理,解三角形所用的就是正弦定理和余弦定理,结合题中的条件,选择适当的方法求得结果.10.在∆ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .则“sin >sin A B ”是“a b >”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件【答案】C 【解析】由正弦定理得sin sin 22a b A B a b R R>⇔>⇔> ,所以“sin sin A B >”是“a b >”的充要条件,选C.11.函数y=ππππcos sin cos -sin 4444x x x x ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫+++++ ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦在一个周期内的图象是( ) A .B .C .D .【答案】B 【解析】 【分析】首先根据二倍角余弦公式化简得到函数的解析式,再由函数表达式得到函数的单调性和周期,进而得到选项. 【详解】根据两角和差公式展开得到: y=ππππcos sin cos -sin 4444x x x x ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫+++++ ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦22πππcos sin cos 2424x x x ⎛⎫⎛⎫⎛⎫+-+=+ ⎪ ⎪ ⎪⎝⎭⎝=⎝⎭⎭=-sin2x ,函数在0的右侧是单调递减的,且周期为π,故选B. 故答案选B . 【点睛】这个题目考查了三角函数的恒等变换,题型为已知函数表达式选择函数的图像,这种题目,一般是先根据函数的表达式得到函数的定义域,或者值域,进行排除;也可以根据函数的表达式判断函数的单调性,周期性等,之后结合选项选择.12.已知函数f (x )=sin 2x +sin 2(x 3π+),则f (x )的最小值为( ) A .12B .14C 3D .22【答案】A 【解析】 【分析】先通过降幂公式和辅助角法将函数转化为()11cos 223f x x π⎛⎫=-+ ⎪⎝⎭,再求最值. 【详解】已知函数f (x )=sin 2x +sin 2(x 3π+), =21cos 21cos 2322x x π⎛⎫-+⎪-⎝⎭+,=1cos 22111cos 222223x x x π⎛⎫⎛⎫--=-+ ⎪ ⎪ ⎪⎝⎭⎝⎭, 因为[]cos 21,13x π⎛⎫+∈- ⎪⎝⎭, 所以f (x )的最小值为12. 故选:A 【点睛】本题主要考查倍角公式及两角和与差的三角函数的逆用,还考查了运算求解的能力,属于中档题.13.在OAB ∆中,已知OB =u u u v 1AB u u u v=,45AOB ∠=︒,点P 满足(),OP OA OB λμλμ=+∈R u u u v u u u v u u u v ,其中λ,μ满足23λμ+=,则OP u u u v的最小值为( )ABCD【答案】A 【解析】 【分析】根据OB =u u u r,1AB =uu u r ,45AOB ∠=︒,由正弦定理可得OAB ∆为等腰直角三角形,进而求得点A 坐标.结合平面向量的数乘运算与坐标加法运算,用λ,μ表示出OP u u u r.再由23λμ+=,将OP u u u r 化为关于λ的二次表达式,由二次函数性质即可求得OP u u u r的最小值.【详解】在OAB ∆中,已知OB =u u u r,1AB =uu u r ,45AOB ∠=︒由正弦定理可得sin sin AB OBAOB OAB=∠∠u u u r u u u rsin 2OAB =∠,解得sin 1OAB ∠=即2OAB π∠=所以OAB ∆为等腰直角三角形以O 为原点,OB 所在直线为x 轴,以OB 的垂线为y 轴建立平面直角坐标系如下图所示:则点A 坐标为22⎝⎭所以2222OA ⎛= ⎝⎭u u u r ,)2,0OB =u u u r因为(),OP OA OB λμλμ=+∈R u u u r u u u r u u u r则)222,022OP λμ⎛ =+ ⎝⎭u u u r 222,22λμλ⎛⎫⎪ ⎪⎝⎭=则2222222OP λμλ⎛⎫=++⎛⎫⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭u u u r2222λλμμ=++因为23λμ+=,则32μλ=- 代入上式可得()()22322232λλλλ+-+-218518λλ-=+299555λ⎛⎫=-+ ⎪⎝⎭所以当95λ=时, min 93555OP ==u u u r 故选:A 【点睛】本题考查了平面向量基本定理的应用,正弦定理判断三角形形状,平面向量的坐标运算,属于中档题.14.若函数tan 23y x k π⎛⎫=-+ ⎪⎝⎭,0,6x π⎛⎫∈ ⎪⎝⎭的图象都在x 轴上方,则实数k 的取值范围为( )A .)+∞ B .)+∞C .()+∞D .()【答案】A 【解析】 【分析】计算tan 203x π⎛⎫<-< ⎪⎝⎭,tan 23x k π⎛⎫->- ⎪⎝⎭恒成立,得到答案. 【详解】∵0,6x π⎛⎫∈ ⎪⎝⎭,∴2033x ππ-<-<,∴tan 203x π⎛⎫-< ⎪⎝⎭,函数tan 23y x k π⎛⎫=-+ ⎪⎝⎭,0,6x π⎛⎫∈ ⎪⎝⎭的图象都在x 轴上方, 即对任意的0,6x π⎛⎫∈ ⎪⎝⎭,都有tan 203x k π⎛⎫-+> ⎪⎝⎭,即tan 23x k π⎛⎫->- ⎪⎝⎭,∵tan 23x π⎛⎫-> ⎪⎝⎭k -≤,k ≥ 故选:A . 【点睛】本题考查了三角函数恒成立问题,转化为三角函数值域是解题的关键.15.函数()22sin 3cos 2f x x x =+-,2,36x ππ⎡⎤∈-⎢⎥⎣⎦的值域为( ) A .40,3⎡⎤⎢⎥⎣⎦B .41,3⎡⎤⎢⎥⎣⎦C .51,4⎡⎤⎢⎥⎣⎦D .50,4⎡⎤⎢⎥⎣⎦【答案】A 【解析】 【分析】化简得到()23sin 2sin 1f x x x =-++,设sin t x =,利用二次函数性质得到答案. 【详解】根据22sin cos 1x x +=,得()23sin 2sin 1f x x x =-++,2,36x ππ⎡⎤∈-⎢⎥⎣⎦, 令sin t x =,由2,36x ππ⎡⎤∈-⎢⎥⎣⎦,得1sin 1,2x ⎡⎤∈-⎢⎥⎣⎦, 故[]0,1t ∈,有2321y t t =-++,[]0,1t ∈,二次函数对称轴为13t =, 当13t =时,最大值43y =;当1t =时,最小值0y =,综上,函数()f x 的值域为40,3⎡⎤⎢⎥⎣⎦.故选:A . 【点睛】本题考查了三角函数值域,换元可以简化运算,是解题的关键.16.某船开始看见灯塔A 时,灯塔A 在船南偏东30o 方向,后来船沿南偏东60︒的方向航行45km 后,看见灯塔A 在船正西方向,则这时船与灯塔A 的距离是( ) A .152km B .30kmC .15kmD .153km【答案】D 【解析】 【分析】如图所示,设灯塔位于A 处,船开始的位置为B ,船行45km 后处于C ,根据题意求出BAC ∠与BAC ∠的大小,在三角形ABC 中,利用正弦定理算出AC 的长,可得该时刻船与灯塔的距离. 【详解】设灯塔位于A 处,船开始的位置为B ,船行45km 后处于C ,如图所示,可得60DBC ∠=︒,30ABD ∠=︒,45BC =30ABC ∴∠=︒,120BAC ∠=︒在三角形ABC 中,利用正弦定理可得:sin sin AC BCABC BAC=∠∠,可得sin 1153sin 23BC ABC AC km BAC ∠===∠ 故选D 【点睛】本题主要考查的是正弦定理,以及特殊角的三角函数值,熟练掌握正弦定理是解决本题的关键,属于基础题.17.已知函数()3)(0f x x ωϕω=+>,)22ππ-<ϕ<,1(3A ,0)为()f x 图象的对称中心,B ,C 是该图象上相邻的最高点和最低点,若4BC =,则()f x 的单调递增区间是()A .2(23k -,42)3k +,k Z ∈ B .2(23k ππ-,42)3k ππ+,k Z ∈C .2(43k -,44)3k +,k Z ∈ D .2(43k ππ-,44)3k ππ+,k Z ∈【答案】C 【解析】 【分析】由三角函数图像的性质可求得:2πω=,6πϕ=-,即()sin()26f x x ππ=-,再令222262k x k ππππππ--+剟,求出函数的单调增区间即可.【详解】解:函数())(0f x x ωϕω=+>,)22ππ-<ϕ<, 因为1(3A ,0)为()f x 图象的对称中心,B ,C 是该图象上相邻的最高点和最低点,又4BC =,∴222()42T +=,即221216πω+=,求得2πω=.再根据123k πϕπ+=g ,k Z ∈,可得6πϕ=-,()3sin()26f x x ππ∴=-,令222262k x k ππππππ--+剟,求得244433k x k -+剟, 故()f x 的单调递增区间为2(43k -,44)3k +,k Z ∈, 故选:C . 【点睛】本题考查了三角函数图像的性质及单调性,属中档题.18.4cos2d cos sin xx x xπ=+⎰( )A .1)B 1C 1D .2【答案】C 【解析】 【分析】利用三角恒等变换中的倍角公式,对被积函数进行化简,再求积分. 【详解】因为22cos2cos sin cos sin cos sin cos sin x x xx x x x x x-==-++,∴4400cos 2d (cos sin )d (sin cos )14cos sin 0xx x x x x x x x πππ=-=+=+⎰⎰,故选C . 【点睛】本题考查三角恒等变换知与微积分基本定理的交汇.19.设函数()()sin f x x x x R =∈,则下列结论中错误的是( ) A .()f x 的一个周期为2π B .()f x 的最大值为2 C .()f x 在区间2,63ππ⎛⎫⎪⎝⎭上单调递减 D .3f x π⎛⎫+⎪⎝⎭的一个零点为6x π=【答案】D 【解析】 【分析】先利用两角和的正弦公式化简函数()f x ,再由奇偶性的定义判断A ;由三角函数的有界性判断B ;利用正弦函数的单调性判断C ;将6x π=代入 3f x π⎛⎫+ ⎪⎝⎭判断D .【详解】()sin f x x x = 23sin x π⎛⎫=+ ⎪⎝⎭,()f x 周期22,1T A ππ==正确; ()f x 的最大值为2,B 正确,25,,,63326x x πππππ⎛⎫⎛⎫∈∴+∈ ⎪⎪⎝⎭⎝⎭Q , ()f x ∴在2,63ππ⎛⎫⎪⎝⎭上递减,C 正确; 6x π=时,1032f x f ππ⎛⎫⎛⎫+==≠ ⎪ ⎪⎝⎭⎝⎭,6x π=不是3f x π⎛⎫+⎪⎝⎭的零点,D 不正确. 故选D. 【点睛】本题通过对多个命题真假的判断,综合考查两角和的正弦公式以及三角函数的单调性、三角函数的周期性、三角函数的最值与零点,意在考查对基础知识掌握的熟练程度,属于中档题.20.关于函数()()()sin tan cos tan f x x x =-有下述四个结论: ①()f x 是奇函数; ②()f x 在区间0,4π⎛⎫⎪⎝⎭单调递增; ③π是()f x 的周期; ④()f x 的最大值为2.其中所有正确结论的个数是( ) A .4 B .3C .2D .1【答案】C 【解析】 【分析】计算()()()sin tan cos tan f x x x -=--得到①错误,根据复合函数单调性判断法则判断②正确,()()f x f x π+=③正确,假设()f x 的最大值为2,取()2f a =,得到矛盾,④错误,得到答案. 【详解】()()()sin tan cos tan f x x x =-,()()()sin tan cos tan f x x x -=---⎡⎤⎡⎤⎣⎦⎣⎦()()sin tan cos tan x x =--,所以()f x 为非奇非偶函数,①错误;当0,4x π⎛⎫∈ ⎪⎝⎭时,令tan t x =,()0,1t ∈, 又()0,1t ∈时sin y t =单调递增,cos y t =单调递减,根据复合函数单调性判断法则, 当0,4x π⎛⎫∈ ⎪⎝⎭时,()sin tan y x =,()cos tan y x =-均为增函数, 所以()f x 在区间0,4π⎛⎫⎪⎝⎭单调递增,所以②正确; ()()()sin tan cos tan f x x x πππ+=+-+⎡⎤⎡⎤⎣⎦⎣⎦()()()sin tan cos tan x x f x =-=,所以π是()f x 的周期,所以③正确;假设()f x 的最大值为2,取()2f a =,必然()sin tan 1a =,()cos tan 1a =-, 则tan 22a k ππ=+,k Z ∈与tan 2a k ππ=+,k Z ∈矛盾,所以()f x 的最大值小于2,所以④错误. 故选:C . 【点睛】本题考查了三角函数奇偶性,单调性,周期,最值,意在考查学生对于三角函数知识的综合应用.。

高考数学压轴专题(易错题)备战高考《三角函数与解三角形》基础测试题及答案

高考数学压轴专题(易错题)备战高考《三角函数与解三角形》基础测试题及答案

新数学《三角函数与解三角形》专题解析一、选择题1.已知()0,απ∈,3sin 35πα⎛⎫+= ⎪⎝⎭,则cos 26πα⎛⎫+= ⎪⎝⎭( ) A .2425B .2425-C .725D .725-【答案】B 【解析】 【分析】根据余弦的二倍角公式先利用sin 3πα⎛⎫+ ⎪⎝⎭求得2cos 23πα⎛⎫+ ⎪⎝⎭.再由诱导公式求出sin 26πα⎛⎫+ ⎪⎝⎭,再利用同角三角函数关系中的平方关系求得cos 26πα⎛⎫+ ⎪⎝⎭.根据角的取值范围,舍去不合要求的解即可. 【详解】 因为3sin 35πα⎛⎫+= ⎪⎝⎭ 由余弦二倍角公式可得22237cos 212sin 1233525ππαα⎛⎫⎛⎫⎛⎫+=-+=-⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 而2cos 2cos 2sin 23626ππππααα⎛⎫⎛⎫⎛⎫+=++=-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭所以27sin 2cos 26325ππαα⎛⎫⎛⎫+=-+=- ⎪⎪⎝⎭⎝⎭由同角三角函数关系式可得24cos 2625πα⎛⎫+==± ⎪⎝⎭ 因为()0,απ∈ 则4,333πππα⎛⎫+∈ ⎪⎝⎭,而3sin 035πα⎛⎫+=>⎪⎝⎭ 所以,33ππαπ⎛⎫+∈ ⎪⎝⎭则,33ππαπ⎛⎫+∈ ⎪⎝⎭所以22,233ππαπ⎛⎫⎛⎫+∈ ⎪ ⎪⎝⎭⎝⎭32,3262ππππα⎛⎫⎛⎫+-∈ ⎪ ⎪⎝⎭⎝⎭,即32,662πππα⎛⎫+∈ ⎪⎝⎭又因为7sin 20625πα⎛⎫+=-< ⎪⎝⎭,所以32,62ππαπ⎛⎫+∈ ⎪⎝⎭故cos 206πα⎛⎫+< ⎪⎝⎭所以24cos 2625πα⎛⎫+=- ⎪⎝⎭ 故选:B 【点睛】本题考查了同角三角函数关系式及诱导公式的化简应用,三角函数恒等变形及角的范围确定,综合性较强,属于中档题.2.函数()[]()cos 2,2f x x x ππ=∈-的图象与函数()sin g x x =的图象的交点横坐标的和为( ) A .53πB .2πC .76π D .π【答案】B 【解析】 【分析】根据两个函数相等,求出所有交点的横坐标,然后求和即可. 【详解】令sin cos2x x =,有2sin 12sin x x =-,所以sin 1x =-或1sin 2x =.又[],2x ππ∈-,所以2x π=-或32x π=或6x π=或56x π=,所以函数()[]()cos 2,2f x x x ππ=∈-的图象与函数()sin g x x =的图象交点的横坐标的和3522266s πππππ=-+++=,故选B. 【点睛】本题主要考查三角函数的图象及给值求角,侧重考查数学建模和数学运算的核心素养.3.已知在锐角ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,若2cos cos b C c B =,则111tan tan tan A B C++的最小值为( )A B C D .【答案】A 【解析】 【分析】先根据已知条件,把边化成角得到B,C 关系式,结合均值定理可求.∵2cos cos b C c B =,∴2sin cos sinCcos B C B =, ∴tan 2tan C B =.又A B C π++=, ∴()()tan tan tan A B C B C π=-+=-+⎡⎤⎣⎦22tan tan 3tan 3tan 1tan tan 12tan 2tan 1B C B BB C B B +=-=-=---,∴21112tan 111tan tan tan 3tan tan 2tan B A B C B B B -++=++27tan 36tan B B =+. 又∵在锐角ABC ∆中, tan 0B >,∴27tan 36tan 3B B +≥=,当且仅当tan B =时取等号,∴min111tan tan tan A B C ⎛⎫++=⎪⎝⎭ A. 【点睛】本题主要考查正弦定理和均值定理,解三角形时边角互化是求解的主要策略,侧重考查数学运算的核心素养.4.已知函数sin(),0()cos(),0x a x f x x b x +≤⎧=⎨+>⎩的图像关于y 轴对称,则sin y x =的图像向左平移( )个单位,可以得到cos()y x a b =++的图像( ). A .4π B .3π C .2π D .π【答案】D 【解析】 【分析】根据条件确定,a b 关系,再化简()cos y x a b =++,最后根据诱导公式确定选项. 【详解】因为函数()()(),0,0sin x a x f x cos x b x ⎧+≤⎪=⎨+>⎪⎩的图像关于y 轴对称,所以sin cos 22a b ππ⎛⎫⎛⎫-+=+ ⎪ ⎪⎝⎭⎝⎭,()()sin cos a b ππ-+=+,即sin cos sin cos b a a b ,==,因此π2π()2a b k k Z +=+∈, 从而()()cos sin y x a b sinx x π=++=-=+,选D.本题考查偶函数性质、诱导公式、三角函数图象变换,考查基本分析识别能力,属中档题.5.已知函数()2sin()0,,2f x x πωϕωϕπ⎛⎫⎡⎤=+>∈ ⎪⎢⎥⎣⎦⎝⎭的部分图象如图所示,其中()01f =,5||2MN =,则点M 的横坐标为( )A .12B .25-C .1-D .23-【答案】C 【解析】 【分析】 由(0)1f =求出56πϕ=,由5||23MN πω=⇒=,再根据()2f x =可得答案.【详解】由函数()2sin()0,,2f x x πωϕωϕπ⎛⎫⎡⎤=+>∈ ⎪⎢⎥⎣⎦⎝⎭的部分图象,可得(0)2sin 1f ϕ==,56πϕ∴=, 22512||2243MN ππωω⎛⎫==+⋅= ⎪⎝⎭, ∴函数5()2sin 36f x x ππ⎛⎫=+ ⎪⎝⎭,令52sin 236x ππ⎛⎫+= ⎪⎝⎭, 得52,0362x k k ππππ+=+=得1x =-. 故选:C. 【点睛】本题主要考查三角函数的图象与性质,考查了数形结合思想的应用,解题的关键是利用勾股定理列方程求出3πω=,属于中档题.6.已知角α的终边与单位圆交于点34(,)55P -,则cos α的值为( ) A .35B .35-C .45D .45-【答案】B 【解析】 【分析】根据已知角α的终边与单位圆交于点34(,)55P -,结合三角函数的定义即可得到cos α的值. 【详解】因为角α的终边与单位圆交于点34(,)55P -, 所以34,,155x y r =-==, 所以3cos 5α=-, 故选B. 【点睛】该题考查的是有关已知角终边上一点求其三角函数值的问题,涉及到的知识点有三角函数的定义,属于简单题目.7.能使sin(2))y x x θθ=+++为奇函数,且在0,4⎡⎤⎢⎥⎣⎦π上是减函数的θ的一个值是( ) A .5π3B .43π C .23π D .3π 【答案】C 【解析】 【分析】首先利用辅助角公式化简函数,然后根据函数的奇偶性和单调性求得θ的值. 【详解】依题意π2sin 23y x θ⎛⎫=++⎪⎝⎭,由于函数为奇函数,故πππ,π33k k θθ+==-,当1,2k =时,2π3θ=或5π3θ=,由此排除B,D 两个选项.当2π3θ=时,()2sin 2π2sin 2y x x =+=-在0,4⎡⎤⎢⎥⎣⎦π上是减函数,符合题意.当5π3θ=时,()2sin 22π2sin 2y x x =+=,在0,4⎡⎤⎢⎥⎣⎦π上是增函数,不符合题意.故选C. 【点睛】本小题主要考查诱导公式的运用,考查三角函数的奇偶性和单调性,属于基础题.8.已知函数()sin (0)f x x x ωωω=+>的图象关于直线8x π=对称,则ω的最小值为( ) A .13B .23C .43D .83【答案】C 【解析】 【分析】利用辅助角公式将函数()y f x =的解析式化简为()2sin 3f x x πω⎛⎫=+⎪⎝⎭,根据题意得出()832k k Z πππωπ+=+∈,可得出关于ω的表达式,即可求出正数ω的最小值.【详解】()sin 2sin 3f x x x x πωωω⎛⎫=+=+ ⎪⎝⎭Q ,由于该函数的图象关于直线8x π=对称,则()832k k Z πππωπ+=+∈,得()483k k Z ω=+∈, 0ω>Q ,当0k =时,ω取得最小值43.故选:C. 【点睛】本题考查利用正弦型函数的对称性求参数,解题时要将三角函数的解析式利用三角恒等变换思想化简,并通过对称性列出参数的表达式求解,考查计算能力,属于中等题.9.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c .已知sin sin (sin cos )0B A C C +-=,a =2,c ,则C =A .π12B .π6C .π4D .π3【答案】B 【解析】 【分析】【详解】试题分析:根据诱导公式和两角和的正弦公式以及正弦定理计算即可 详解:sinB=sin (A+C )=sinAcosC+cosAsinC , ∵sinB+sinA (sinC ﹣cosC )=0,∴sinAcosC+cosAsinC+sinAsinC ﹣sinAcosC=0, ∴cosAsinC+sinAsinC=0, ∵sinC ≠0, ∴cosA=﹣sinA , ∴tanA=﹣1,∵π2<A <π, ∴A= 3π4,由正弦定理可得c sin sin aC A=, ∵a=2,,∴sinC=sin c A a=12=22, ∵a >c , ∴C=π6, 故选B .点睛:本题主要考查正弦定理及余弦定理的应用,属于难题.在解与三角形有关的问题时,正弦定理、余弦定理是两个主要依据. 解三角形时,有时可用正弦定理,有时也可用余弦定理,应注意用哪一个定理更方便、简捷一般来说 ,当条件中同时出现ab 及2b 、2a 时,往往用余弦定理,而题设中如果边和正弦、余弦函数交叉出现时,往往运用正弦定理将边化为正弦函数再结合和、差、倍角的正余弦公式进行解答.10.在OAB ∆中,已知OB =u u u v 1AB u u u v =,45AOB ∠=︒,点P 满足(),OP OA OB λμλμ=+∈R u u u v u u u v u u u v ,其中λ,μ满足23λμ+=,则OP u u u v的最小值为( )ABCD【答案】A 【解析】 【分析】根据OB =u u u r,1AB =uu u r ,45AOB ∠=︒,由正弦定理可得OAB ∆为等腰直角三角形,进而求得点A 坐标.结合平面向量的数乘运算与坐标加法运算,用λ,μ表示出OP u u u r.再由23λμ+=,将OP u u u r 化为关于λ的二次表达式,由二次函数性质即可求得OP u u u r的最小值.【详解】在OAB ∆中,已知2OB =u u u r,1AB =uu u r ,45AOB ∠=︒由正弦定理可得sin sin AB OBAOB OAB=∠∠u u u r u u u r 代入2sin 22OAB =∠,解得sin 1OAB ∠=即2OAB π∠=所以OAB ∆为等腰直角三角形以O 为原点,OB 所在直线为x 轴,以OB 的垂线为y 轴建立平面直角坐标系如下图所示:则点A 坐标为22,22⎛⎝⎭所以2222OA ⎛= ⎝⎭u u u r ,)2,0OB =u u u r因为(),OP OA OB λμλμ=+∈R u u u r u u u r u u u r则)222,022OP λμ⎛ =+ ⎝⎭u u u r 222,22λμλ⎛⎫⎪ ⎪⎝⎭= 则2222222OP λμλ⎛⎫=++⎛⎫⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭u u u r2222λλμμ=++因为23λμ+=,则32μλ=- 代入上式可得()()22322232λλλλ+-+-==所以当95λ=时, min OP ==u u u r 故选:A 【点睛】本题考查了平面向量基本定理的应用,正弦定理判断三角形形状,平面向量的坐标运算,属于中档题.11.已知2433sin 5cos 77ππαα⎛⎫⎛⎫+=-+ ⎪ ⎪⎝⎭⎝⎭,则tan 14πα⎛⎫-= ⎪⎝⎭( )A .53-B .35-C .35D .53【答案】B 【解析】 【分析】根据诱导公式计算得到35tan 73πα⎛⎫+= ⎪⎝⎭,故3tan tan 1472πππαα⎡⎤⎛⎫⎛⎫-=+- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,解得答案. 【详解】由诱导公式可知24333sin 3sin 33sin 777πππαπαα⎡⎤⎛⎫⎛⎫⎛⎫+=++=-+ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦, 又2433sin 5cos 77ππαα⎛⎫⎛⎫+=-+⎪ ⎪⎝⎭⎝⎭得333sin 5cos 77ππαα⎛⎫⎛⎫-+=-+ ⎪ ⎪⎝⎭⎝⎭, 所以35tan 73πα⎛⎫+= ⎪⎝⎭,313tan tan 314725tan 7πππααπα⎡⎤⎛⎫⎛⎫-=+-=-=- ⎪⎪⎢⎥⎛⎫⎝⎭⎝⎭⎣⎦+ ⎪⎝⎭. 故选:B . 【点睛】本题考查了三角恒等变换,意在考查学生的计算能力和转化能力.12.已知双曲线()222210,0x y a b a b-=>>的左右焦点分别为1F ,2F ,M 为双曲线上一点,若121cos 4F MF ∠=,122MF MF =,则此双曲线渐近线方程为( )A.y = B.3y x =±C .y x =±D .2y x =±【答案】A 【解析】 【分析】因为M 为双曲线上一点,可得122MF MF a -=,在12F MF ∆使用余弦定理,结合已知条件即可求得答案. 【详解】Q 双曲线()222210,0x y a b a b-=>>的左右焦点分别为1F ,2F ,M 为双曲线上一点 ∴ 121222MF MF a MF MF ⎧-=⎪⎨=⎪⎩,解得:14MF a =,22MF a = 在12F MF ∆中,根据余弦定理可得:∴ 12121222122c 2os F F MF MF M MF MF F F ∠=+-⋅⋅可得:2221(2)(4)(2)2424c a a a a =+-⋅⋅⋅ 化简可得:2c a =由双曲线性质可得:22222243b c a a a a =-=-= 可得:b =Q 双曲线渐近线方程为:b y x a=±则双曲线渐近线方程为: y = 故选:A. 【点睛】本题考查了求双曲线渐近线方程问题,解题关键是掌握双曲线的基本知识,数形结合,考查分析能力和计算能力,属于中档题.13.已知1tan 4,tan θθ+=则2sin ()4πθ+=( )A .15 B .14C .12D .34【答案】D 【解析】 【分析】根据同角三角函数的关系化简1tan 4tan θθ+=成关于正余弦的关系式,再利用降幂公式与诱导公式化简2sin ()4πθ+求解即可.【详解】 由题, 1tan 4,tan θθ+=则22sin cos sin cos 444sin cos 1cos sin sin cos θθθθθθθθθθ++=⇒=⇒=, 故1sin 22θ=. 所以2sin ()4πθ+=1cos 222πθ⎛⎫-+ ⎪⎝⎭1sin 2324θ+==. 故选:D【点睛】 本题主要考查了三角函数的公式运用,在有正切函数时可考虑转化为正余弦的关系进行化简,属于基础题.14.在ABC ∆中,角A ,B ,C所对的边分别为,,,3,sin a b c a c b A ===cos ,6a B b π⎛⎫+= ⎪⎝⎭则( ) A .1BCD【答案】C【解析】【分析】将sin b A = cos 6a B π⎛⎫+⎪⎝⎭结合正弦定理化简,求得B ,再由余弦定理即可求得b . 【详解】因为sin b A = cos 6a B π⎛⎫+ ⎪⎝⎭,展开得 sin b A =1?cos sin 2B a B -,由正弦定理化简得 sin sinB A =1?cos sin 2B sinA B -= cos B即tanB =,而三角形中0<B<π,所以π 6B = 由余弦定理可得2222cos b a c ac B =+- ,代入(2223236b π=+-⨯⨯解得b =【点睛】本题考查了三角函数式的化简,正弦定理与余弦定理的应用,属于基础题.15.在ABC ∆中,60B ∠=︒,AD 是BAC ∠的平分线交BC 于D ,2BD =,1cos 4BAC ∠=,则AD =() A .2B .2C .3D .6 【答案】A【解析】【分析】 先求出6sin 4BAD ∠=,再利用正弦定理求AD. 【详解】 ∵21cos 12sin 4BAC BAD ∠=-∠=, ∴6sin BAD ∠=.在ABD ∆中,sin sin AD BD B BAD =∠, ∴3sin 222sin 6B AD BD BAD =⋅=⋅=∠. 【点睛】本题主要考查二倍角的余弦和正弦定理解三角形,意在考查学生对这些知识的理解掌握水平和分析推理能力.16.已知函数()sin()f x x πϕ=+某个周期的图象如图所示,A ,B 分别是()f x 图象的最高点与最低点,C 是()f x 图象与x 轴的交点,则tan ∠BAC =( )A .12B .47C 255D 76565【解析】【分析】过A 作AD 垂直于x 轴于点D ,AB 与x 轴交于E ,设C (a ,0),可得32CD =,11,2AD DE ==,3tan 2CDCAD AD ∠==,1tan 2ED EAD AD ∠==,再利用tan tan()BAC CAD EAD ∠=∠-∠计算即可.【详解】过A 作AD 垂直于x 轴于点D ,AB 与x 轴交于E ,由题可得周期为2,设(,0)C a ,则1(,1)2B a +-,3(,1)2A a +, 所以32CD =,11,2AD DE ==, 3tan 2CD CAD AD ∠==,1tan 2ED EAD AD ∠== 所以tan tan tan tan()1tan tan CAD EAD BAC CAD EAD CAD EAD ∠-∠∠=∠-∠=+∠⋅∠ 31422317122-==+⨯. 故选:B【点睛】本题主要考查两角差的正切公式,涉及到正弦型函数图象等知识,考查学生数学运算能力,是一道中档题.17.已知函数()()sin x f x x R ωφ+=∈,,其中0ωπφπ>-<,≤.若函数()f x 的最小正周期为4π,且当23x π=时,()f x 取最大值,是( ) A .()f x 在区间[]2ππ--,上是减函数 B .()f x 在区间[]0π-,上是增函数C .()f x 在区间[]0π,上是减函数 D .()f x 在区间[]02π,上是增函数 【答案】B【解析】【分析】 先根据题目所给已知条件求得()f x 的解析式,然后求函数的单调区间,由此得出正确选项.【详解】由于函数()f x 的最小正周期为4π,故2π14π2ω==,即()1sin 2f x x φ⎛⎫=+ ⎪⎝⎭,2ππsin 1,33π6f φφ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭=⎭⎝.所以()1πsin 26f x x ⎛⎫=+ ⎪⎝⎭.由π1ππ2π2π2262k x k -≤+≤+,解得4π2π4π4π33k x k -≤≤+,故函数的递增区间是4π2π4π,4π33k k ⎡⎤-+⎢⎥⎣⎦,令0k =,则递增区间为4π2π,33⎡⎤-⎢⎥⎣⎦,故B 选项正确.所以本小题选B.【点睛】本小题主要考查三角函数解析式的求法,考查三角函数单调区间的求法,属于基础题.18.已知函数()sin()f x x ωϕ=+(0>ω,2πω<)的最小正周期为π,且其图象向左平移3π个单位后,得到函数()cos g x x ω=的图象,则函数()f x 的图象( ) A .关于直线12x π=对称 B .关于直线512x π=对称 C .关于点(,0)12π对称 D .关于点5(,0)12π对称 【答案】C【解析】 试题分析:依题意()()2,sin 2f x x ωϕ==+,平移后为2sin 2cos 2,36x x ππϕϕ⎛⎫++==- ⎪⎝⎭,()sin 26f x x π⎛⎫=- ⎪⎝⎭,关于,012π⎛⎫ ⎪⎝⎭对称. 考点:三角函数图象与性质.19.已知函数())(0f x x ωϕω=+>,)22ππ-<ϕ<,1(3A ,0)为()f x 图象的对称中心,B ,C 是该图象上相邻的最高点和最低点,若4BC =,则()f x 的单调递增区间是( )A .2(23k -,42)3k +,k Z ∈B .2(23k ππ-,42)3k ππ+,k Z ∈C .2(43k -,44)3k +,k Z ∈D .2(43k ππ-,44)3k ππ+,k Z ∈ 【答案】C【解析】【分析】由三角函数图像的性质可求得:2πω=,6πϕ=-,即()sin()26f x x ππ=-,再令222262k x k ππππππ--+剟,求出函数的单调增区间即可. 【详解】解:函数())(0f x x ωϕω=+>,)22ππ-<ϕ<, 因为1(3A ,0)为()f x 图象的对称中心,B ,C 是该图象上相邻的最高点和最低点,又4BC =,∴222()42T +=,即221216πω+=,求得2πω=. 再根据123k πϕπ+=g ,k Z ∈,可得6πϕ=-,()3sin()26f x x ππ∴=-, 令222262k x k ππππππ--+剟,求得244433k x k -+剟, 故()f x 的单调递增区间为2(43k -,44)3k +,k Z ∈, 故选:C .【点睛】本题考查了三角函数图像的性质及单调性,属中档题.20.设2α是第一象限角,且cos cos αα=-,则α是第( )象限角 A .一B .二C .三D .四【答案】B【解析】【分析】计算得到720180720k k α︒<<︒+︒,k Z ∈,再根据cos 0α<得到答案.【详解】 ∵2α是第一象限角,∴360903602k k α︒<<︒+︒,k Z ∈, ∴720180720k k α︒<<︒+︒,k Z ∈,∴α为第一象限角或第二象限角或终边在y 轴正半轴上的轴线角,∵cos cos αα=-,∴cos 0α<,∴α是第二象限角. 故选:B .【点睛】本题考查了角度所在象限,意在考查学生的计算能力和转化能力.。

最新高中高考数学经典易错题和高考试题预测8和答案

最新高中高考数学经典易错题和高考试题预测8和答案

经典易错题和高考试题预测(八)考点8 直线与圆 命题角度1 直线的方程 命题角度2 两直线的位置关系 命题角度3 简单线性规划 命题角度4 圆的方程 命题角度5 直线与圆 探究开放题预测 预测角度1 直线的方程 预测角度2 两直线的位置关系 预测角度3 线性规划 预测角度4 直线与圆 预测角度5 有关圆的综合问题经典易错题会诊 命题角度1 直线的方程 1.(典型例题)已知点A )(,,),0,3()0,0(),1,3(等于其中那么有相交于与的平分线设λλCE BC E BC AE BAC C B =<31.3.21.2.--D C B A [考场错解] ∵.3|,|3||,21||||||||:,2||,1||=∴=====λCE BC EB CE AB AC AB AC 故由内角平分线定理得[专家把脉]主要是没有考虑到.,,应为负值的方向相反与的向与λCE BC CE BC [对症下药].3,|,|3||-==λ故的方向相反与而CE BC CE BC2.(典型例题)点(1,-1)到直线x-y+1=0的距离是 ( )223.22.23.21.D C B A[考场错解]直接运用点到直线的距离公式.C 故选.2211|11)1(11|22=++⨯-+⨯ [专家把脉]在运用点到直线的距离公式时,没有理解直线Ax+By+C=0中,B 的取值,B 应取-1,而不是取1. [对症下药].22311|1)1()1(11|22D 故选=++-⨯-+⨯2.(典型例题)若直线2x-y+c=0按向量a=(1,-1)平移后与圆x 2+y 2=5相切,则c 的值为( )A.8或-2B.6或-4C.4或-6D.2或-8[考场错解]C.直线2x-y+c=0按向量a=(1,-1)平移后的直线方程为:2(x+1)-(y+1)+c=0即:2x-y+1+c=0,此直线与圆相切,故圆心到直线的距离等于半径,即4.55|1|12|10)1(02|22=∴=+=+++⨯-+⨯c c c 或-6, 故选C.[专家把脉]坐标平移公式运用错误,应用x-h,y-k 分别来替换原来的x,y. [对症下药]A 直线2x-y+c=0按向量a=(1,-1)平移后的直线为2x-y-3+c=0,此直线与圆相切有:85|)3()1(020|=∴-+-⨯+⨯c 或者说c=-2,故选A.4.(典型例题)设直线ax+by+c=0的倾斜角为a,且sina+cosa=0,则a 、b 满足 ( )A.A+b=1B.a-b=1C.a+b=0D.a-b=0[考场错解]C..0.19tan ,1tan 0cos sin C b a bk a a a a 故选又=+∴-===-=⇒=+[专家把脉]直线Ax+By+c=0的斜率k=.,BA BA 而不是-[对症下药]D .011tan 0cos sin =-∴=-==-=∴=+b a ba k tnaa a a a 又专家会诊1.已知直线的方程,求直线的斜率与倾斜角的范围,反之求直线方程,注意倾斜角的范围及斜率不存在时的情况。

高考题易错系列数学题解析

高考题易错系列数学题解析

高考题易错系列数学题解析数学是高考中的一门重要科目,对于很多考生来说,数学题可能是最容易出错的题型之一。

在复习备考过程中,了解和掌握一些常见易错题的解法是非常重要的。

本文将针对一些高考数学易错题进行解析,帮助考生更好地应对。

1. 高考数学易错题解析一:导数与函数在高考数学中,导数与函数是一种常见的考点。

考生容易在计算导数时出错,或者在根据导数求函数的性质时出问题。

针对导数与函数的易错点,我们可以重点进行解析和讲解。

2. 高考数学易错题解析二:集合与概率集合与概率是高考数学中的另一个容易出错的考点。

考生在解集合相关的题目时,往往未能准确找到正确的交集、并集或补集;而在解概率问题时,容易将概率的计算方法弄混。

我们将针对这些易错点进行详细的解析与说明。

3. 高考数学易错题解析三:几何与三角几何与三角是高考数学中的重要内容,也是容易出错的考点之一。

在解几何相关的问题时,考生常常没有将题目中的条件完全用上,或者在计算过程中出现了计算错误。

而在解三角函数相关的题目时,常常会忽略角度的单位或者使用错误的公式。

我们将通过具体例题进行解析,帮助考生更好地理解和掌握这些知识点。

4. 高考数学易错题解析四:函数方程与代数函数方程与代数是高考数学中的另一个重要考点,也是容易出错的地方。

考生在解函数方程时,常常会漏解或者解错,没有找到所有的解;而在解代数相关的题目时,常常会在运算过程中出现计算错误,导致最终答案错误。

我们将通过一些典型的函数方程与代数题目进行解析,帮助考生更好地应对这些难点。

5. 高考数学易错题解析五:数列与数论数列与数论是高考数学中的重要内容,也是容易出错的考点之一。

考生在解数列相关的题目时,常常会出现求和错误、项数判断错误等问题;而在解数论相关的题目时,常常会忽略一些定理或者公式的应用。

我们将通过一些典型的数列与数论题目进行解析,帮助考生更好地掌握解题方法。

通过对高考数学易错题的解析,我们希望能够帮助考生更好地理解和掌握这些考点,减少出错的可能性。

高考数学压轴专题(易错题)备战高考《不等式》经典测试题含解析

高考数学压轴专题(易错题)备战高考《不等式》经典测试题含解析

新数学《不等式》复习资料一、选择题1.若变量x ,y 满足2,{239,0,x y x y x +≤-≤≥则x 2+y 2的最大值是A .4B .9C .10D .12【答案】C 【解析】试题分析:画出可行域如图所示,点A (3,-1)到原点距离最大,所以22max ()10x y +=,选C.【考点】简单线性规划【名师点睛】本题主要考查简单线性规划的应用,是一道基础题目.从历年高考题目看,简单线性规划问题是不等式中的基本问题,往往围绕目标函数最值的确定,涉及直线的斜率、两点间的距离等,考查考生的绘图、用图能力,以及应用数学知识解决实际问题的能力.2.给出下列五个命题,其中正确命题的个数为( )①命题“0x R ∃∈,使得20010x x ++<”的否定是“x R ∀∈,均有210x x ++<”;②若正整数m 和n 满足m n ≤()2n m n m -; ③在ABC ∆中 ,A B >是sin sin A B >的充要条件;④一条光线经过点()1,3P ,射在直线:10l x y ++=上,反射后穿过点()1,1Q ,则入射光线所在直线的方程为5340x y -+=;⑤已知32()f x x mx nx k =+++的三个零点分别为一椭圆、一双曲线、一抛物线的离心率,则m n k ++为定值. A .2 B .3C .4D .5【答案】C 【解析】 【分析】①根据特称命题的否定的知识来判断;②根据基本不等式的知识来判断;③根据充要条件的知识来判断;④求得入射光线来判断;⑤利用抛物线的离心率判断. 【详解】①,命题“0x R ∃∈,使得20010x x ++<”的否定是“x R ∀∈,均有210x x ++≥”,故①错误.②,由于正整数m 和n 满足m n ≤,0n m -≥,由基本不等式得22m n m n+-=,当m n m =-即2n m =时等号成立,故②正确. ③,在ABC ∆中,由正弦定理得sin sin A B a b A B >⇔>⇔>,即sin sin A B A B >⇔>,所以A B >是sin sin A B >的充要条件,故③正确.④,设()1,1Q 关于直线10x y ++=的对称点为(),A a b ,则线段AQ 中点为11,22a b ++⎛⎫ ⎪⎝⎭,则1110221121112AQ a b b k a ++⎧++=⎪⎪⎪+⎨-⎪==+⎪-⎪⎩,解得2a b ==-,所以()2,2A --.所以入射光线为直线AP ,即312321y x --=----,化简得5340x y -+=.故④正确. ⑤,由于抛物线的离心率是1,所以(1)0f =,即10m n k +++=,所以1m n k ++=-为定值,所以⑤正确. 故选:C 【点睛】本小题主要考查特称命题的否定,考查基本不等式,考查充要条件,考查直线方程,考查椭圆、双曲线、抛物线的离心率,属于中档题.3.已知关于x 的不等式()()222240m x m x -+-+>得解集为R ,则实数m 的取值范围是( ) A .()2,6B .()(),26,-∞+∞UC .(](),26,-∞⋃+∞D .[)2,6【答案】D 【解析】 【分析】分20m -=和20m -≠两种情况讨论,结合题意得出关于m 的不等式组,即可解得实数m 的取值范围.【详解】当20m -=时,即当2m =时,则有40>,该不等式恒成立,合乎题意;当20m -≠时,则()()220421620m m m ->⎧⎪⎨∆=---<⎪⎩,解得26m <<. 综上所述,实数m 的取值范围是[)2,6. 故选:D. 【点睛】本题考查利用变系数的二次不等式恒成立求参数,要注意对首项系数是否为零进行分类讨论,考查运算求解能力,属于中等题.4.若实数,,a b c ,满足222a b a b ++=,2222a b c a b c ++++=,,则c 的最大值是( ) A .43B .2log 3C .25D .24log 3【答案】D 【解析】 【分析】利用基本不等式求出2a b+的最小值后可得221a ba b ++-的最大值,从而可得2c 的最大值,故可得c 的最大值. 【详解】因为222a b a b ++=,故222a b a b ++=≥= 整理得到24a b +≥,当且仅当1a b ==时等号成立. 又因为2222abca b c++++=,故2114211212133a b ca b a b +++==+≤+=--,当且仅当1a b ==时等号成立,故max 24log 3c =. 故选:D. 【点睛】本题考查基本不等式的应用以及指数不等式的解,应用基本不等式求最值时,需遵循“一正二定三相等”,如果多变量等式中有和式和积式的关系,则可利用基本不等式构造关于和式或积式的不等式,通过解不等式来求最值,求最值时要关注取等条件的验证.5.已知ABC V 是边长为1的等边三角形,若对任意实数k ,不等式||1k AB tBC +>u u u r u u u r恒成立,则实数t 的取值范围是( ). A.,33⎛⎛⎫-∞-⋃+∞ ⎪ ⎪⎝⎭⎝⎭B.,33⎛⎛⎫-∞-⋃+∞ ⎪ ⎪⎝⎭⎝⎭C.⎫+∞⎪⎪⎝⎭D.⎫+∞⎪⎪⎝⎭【答案】B 【解析】 【分析】根据向量的数量积运算,将目标式转化为关于k 的二次不等式恒成立的问题,由0<n ,即可求得结果. 【详解】因为ABC V 是边长为1的等边三角形,所以1cos1202AB BC ⋅=︒=-u u u r u u u r ,由||1k AB tBC +>u u u r u u u r 两边平方得2222()2()1k AB kt AB BC t BC +⋅+>u u u r u u u r u u u r u u u r ,即2210k kt t -+->,构造函数22()1f k k tk t =-+-, 由题意,()22410t t ∆--<=,解得t <或t >. 故选:B. 【点睛】本题考查向量数量积的运算,以及二次不等式恒成立问题求参数范围的问题,属综合中档题.6.若实数x ,y 满足40,30,0,x y x y y --≤⎧⎪-≥⎨⎪≥⎩,则2x y y +=的最大值为( )A .512B .8C .256D .64【答案】C 【解析】 【分析】作出可行域,如下图阴影部分所示,令x y m +=,可知要使2m z =取到最大值,只需m 取到最大值即可,根据图像平移得到答案. 【详解】作出可行域,如下图阴影部分所示,令x y m +=,可知要使2m z =取到最大值,只需m 取到最大值即可, 观察图像可知,当直线x y m +=过点()6,2A 时m 取到最大值8, 故2x yy +=的最大值为256.故选:C .【点睛】本题考查了线性规划问题,画出图像是解题的关键.7.已知实数x 、y 满足约束条件103300x y x y y -+≥⎧⎪--≤⎨⎪≥⎩,则2z x y =+的最大值为( )A .1-B .2C .7D .8【答案】C 【解析】 【分析】作出不等式组表示的平面区域,作出目标函数对应的直线,结合图象知当直线过点C 时,z 取得最大值.【详解】解:作出约束条件表示的可行域是以(1,0),(1,0),(2,3)-为顶点的三角形及其内部,如下图表示:当目标函数经过点()2,3C 时,z 取得最大值,最大值为7.故选:C. 【点睛】本题主要考查线性规划等基础知识;考查运算求解能力,数形结合思想,应用意识,属于中档题.8.已知函数24,0()(2)1,0x x f x x x x ⎧+>⎪=⎨⎪+-≤⎩,若方程()20f x m -=恰有三个不同的实数根,则实数m 的取值范围是( )A .(2,)+∞B .(4,)+∞C .(2,4)D .(3,4)【答案】A 【解析】 【分析】画出函数()f x 的图象,再根据基本不等式求解4y x x=+的最小值,数形结合求解即可. 【详解】画出函数()f x 的图象,如图所示.当0x >时,4()4f x x x=+….设()2g x m =,则方程()20f x m -=恰有三个不同的实数根,即()f x 和()2g x m =的图象有三个交点.由图象可知,24m >,即2m >,故实数m 的取值范围是(2,)+∞.故选:A 【点睛】本题考查分段函数的性质和图象以及函数的零点,考查数形结合以及化归转化思想.9.某企业生产甲、乙两种产品需用到A,B 两种原料,已知生产1吨每种产品所需原料及每天原料的可用总量如下表所示.若生产1吨甲、乙产品可获利润分别为3万元、4万元,则该企业每天可获得的最大利润为( )甲 乙 每天原料的可用总量 A(吨) 3 2 12 B(吨)128A .12万元B .16万元C .17万元D .18万元【答案】D 【解析】【分析】根据条件列可行域与目标函数,结合图象确定最大值取法,即得结果. 【详解】设每天甲、乙产品的产量分别为x 吨、y 吨由已知可得3212,28,0,0,x y x y x y +≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩目标函数34z x y =+,作出约束条件表示的可行域如图中阴影部分所示,可得目标函数在点P 处取得最大值,由28,3212,x y x y +=⎧⎨+=⎩得()2,3P ,则max 324318z =⨯+⨯=(万元).选D.【点睛】线性规划的实质是把代数问题几何化,即数形结合的思想.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大或最小值会在可行域的端点或边界上取得.10.抛物线的焦点为F ,准线为l ,A ,B 是抛物线上的两个动点,且满足23AFB π∠=,设线段AB 的中点M 在l 上的投影为N ,则MN AB 的最大值是( )A .34 B .33C .32D 3【答案】B 【解析】 【分析】 【详解】试题分析:设,A B 在直线l 上的投影分别是11,A B ,则1AF AA =,1BF BB =,又M是AB 中点,所以111()2MN AA BB =+,则1112MN AA BB AB AB +=⋅2AF BF AB +=,在ABF ∆中222AB AF BF =+22cos3AF BF π-22AF BF AF BF =++2()AF BF AF BF =+-2()AF BF ≥+2()2AF BF +-23()4AF BF =+,所以22()43AF BF AB+≤,即3AF BF AB +≤,所以3MN AB ≤,故选B .考点:抛物线的性质. 【名师点晴】在直线与抛物线的位置关系问题中,涉及到抛物线上的点到焦点的距离,焦点弦长,抛物线上的点到准线(或与准线平行的直线)的距离时,常常考虑用抛物线的定义进行问题的转化.象本题弦AB 的中点M 到准线的距离首先等于,A B 两点到准线距离之和的一半,然后转化为,A B 两点到焦点F 的距离,从而与弦长AB 之间可通过余弦定理建立关系.11.已知函数()2814f x x x =++,()()2log 4g x x =,若[]()15,4x a a ∀∈-≥-,(]20,1x ∃∈,使得()()12f x g x =成立,则a 的最大值为( )A .-4B .-3C .-2D .-1【答案】C 【解析】 【分析】由[]()15,4x a a ∀∈-≥-,(]20,1x ∃∈,使得()()12f x g x =成立得:()f x 的值域为()g x 的值域的子集,从而28142a a ++≤,故可求a 的最大值为2-.【详解】由[]()15,4x a a ∀∈-≥-,(]20,1x ∃∈,使得()()12f x g x =成立, 得:()f x 的值域为()g x 的值域的子集,由()()2log 4g x x =(]20,1x ∈()2g x ⇒≤ ,所以(](),2g x ∈-∞ 当43a --≤≤ 时,()21f x-#-,此时()f x 的值域为()g x 的值域的子集成立.当3a >-时,()22814f x a a -≤≤++,须满足()f x 的值域为()g x 的值域的子集,即28142a a ++≤,得62a -≤≤- 所以a 的最大值为2-. 故选:C. 【点睛】本题主要考查恒成立和存在性问题,注意把两类问题转化为函数值域的包含关系,此问题属于中档题目.12.若实数x ,y ,对任意实数m ,满足()()222122211x y m x y m x y m ⎧-≤-⎪⎪+≥+⎨⎪-+-≤⎪⎩,则由不等式组确定的可行域的面积是( ) A .14πB .12πC .πD .32π 【答案】A 【解析】 【分析】画出约束条件的可行域,然后求解可行域的面积. 【详解】实数x ,y ,对任意实数m ,满足2221222(1)()1x y m x y m x y m --⎧⎪++⎨⎪-+-⎩„…„的可行域如图:可行域是扇形,14个圆,面积为:211144ππ⨯⨯=.故选:A .【点睛】本题考查线性规划的应用,考查数形结合以及计算能力,意在考查学生对这些知识的理解掌握水平.13.已知x ,y 满足约束条件02340x y x y y -≥⎧⎪+≤⎨⎪≥⎩,若z ax y =+的最大值为4,则a =( )A .2B .12C .-2D .12-【答案】A 【解析】【分析】由约束条件可得到可行域,根据图象可知最优解为()2,0A ,代入可构造方程求得结果. 【详解】由约束条件可知可行域如下图阴影部分所示:当直线:l y ax z =-+经AOB V 区域时,当l 过点()2,0A 时,在y 轴上的截距最大, 即()2,0A 为最优解,42a ∴=,解得:2a =. 故选:A . 【点睛】本题考查线性规划中的根据目标函数的最值求解参数值的问题,关键是能够通过约束条件准确得到可行域,根据数形结合的方式确定最优解.14.在区间[]0,1内随机取两个数m 、n ,则关于x 的方程20x nx m -+=有实数根的概率为( ) A .18B .17C .16D .15【答案】A 【解析】 【分析】根据方程有实根可得到约束条件,根据不等式组表示的平面区域和几何概型概率公式可求得结果. 【详解】若方程20x nx m -+=有实数根,则40n m ∆=-≥.如图,400101n m m n -≥⎧⎪≤≤⎨⎪≤≤⎩表示的平面区域与正方形0101m n ≤≤⎧⎨≤≤⎩的面积之比即为所求的概率,即111124118S P S ⨯⨯===⨯阴影正方形. 故选:A .【点睛】 本题考查几何概型中面积型概率问题的求解,涉及到线性规划表示的平面区域面积的求解,关键是能够根据方程有实根确定约束条件.15.已知直线21y kx k =++与直线122y x =-+的交点位于第一象限,则实数k 的取值范围是( ) A .12k > B .16k <-或12k > C .62k -<< D .1162k -<< 【答案】D【解析】【分析】 联立21122y kx k y x =++⎧⎪⎨=-+⎪⎩,可解得交点坐标(,)x y ,由于直线21y kx k =++与直线122y x =-+的交点位于第一象限,可得00x y >⎧⎨>⎩,解得即可. 【详解】 解:联立21122y kx k y x =++⎧⎪⎨=-+⎪⎩,解得24216121k x k k y k -⎧=⎪⎪+⎨+⎪=⎪+⎩, Q 直线21y kx k =++与直线122y x =-+的交点位于第一象限, ∴2402161021k k k k -⎧>⎪⎪+⎨+⎪>⎪+⎩,解得:1162k -<<. 故选:D .【点睛】本题考查两直线的交点和分式不等式的解法,以及点所在象限的特征.16.数学中的数形结合,也可以组成世间万物的绚丽画面.一些优美的曲线是数学形象美、对称美、和谐美的结合产物,曲线22322():16C x y x y =+恰好是四叶玫瑰线.给出下列结论:①曲线C 经过5个整点(即横、纵坐标均为整数的点);②曲线C 上任意一点到坐标原点O 的距离都不超过2;③曲线C 围成区域的面积大于4π;④方程()223221)60(x y x y xy +=<表示的曲线C 在第二象限和第四象限其中正确结论的序号是( )A .①③B .②④C .①②③D .②③④ 【答案】B【解析】【分析】利用基本不等式得224x y +≤,可判断②;224x y +=和()3222216x y x y +=联立解得222x y ==可判断①③;由图可判断④.【详解】()2223222216162x y x yx y ⎛⎫++=≤ ⎪⎝⎭, 解得224x y +≤(当且仅当222x y ==时取等号),则②正确;将224x y +=和()3222216x y x y +=联立,解得222x y ==, 即圆224x y +=与曲线C 相切于点2,2,(2,2-,(2,2,2,2-, 则①和③都错误;由0xy <,得④正确.故选:B.【点睛】本题考查曲线与方程的应用,根据方程,判断曲线的性质及结论,考查学生逻辑推理能力,是一道有一定难度的题.17.已知正数x ,y 满足144x y +=,则x y +的最小值是( ) A .9B .6C .94D .52【答案】C【分析】先把x y +转化成114()4x y x y ⎛⎫+⋅+ ⎪⎝⎭,展开后利用均值不等式即可求解. 【详解】 Q 正数x ,y 满足144x y +=, 11414149()14524444y x y x x y x y x y xy x y ⎛⎫⎛⎫⎛⎫∴+=+⋅+=++++⨯= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭…, 当且仅当4144y x x y x y⎧=⎪⎪⎨⎪+=⎪⎩,即34x =,32y =时,取等号. 故选:C【点睛】本题主要考查了基本不等式在最值问题中的应用,基本不等式一定要把握好“一正,二定,三相等”的原则,属于基础题.18.设x ,y 满足约束条件则的最大值与最小值的比值为( ) A . B . C . D .【答案】A【解析】【分析】作出不等式组所表示的可行域,平移直线,观察直线在轴上取得最大值和最小值时相应的最优解,再将最优解代入目标函数可得出最大值和最小值,于此可得出答案。

数学经典易错题会诊与高考试题预测(含答案解析)6

数学经典易错题会诊与高考试题预测(含答案解析)6

经典易错题会诊与 高考试题预测(六)考点6 平面向量 经典易错题会诊命题角度1 向量及其运算 命题角度2 平面向量与三角、数列 命题角度3 平面向量与平面解析几何 命题角度4 解斜三角形 探究开放题预测预测角度1 向量与轨迹、直线、圆锥曲线等知识点结合 预测角度2 平面向量为背景的综合题 命题角度1 向量及其运算1 (典型例题)如图6-1,在 Rt △ABC 中,已知BC=a ,若长为 2a 的线段PQ 以点A 为中点,问PQ 与BC 的夹角θ取何值时BP .CQ 的值最大?并求出这个最大值.[考场错解],||)()(,,2BQ QP CB QP CB BQ BQ BQ CB BQ BQ CQ BP BQ CB CQ QP BQ BP ∙+∙+∙+=+∙+=∙∴+=+= 此后有的学生接着对上式进行变形,更多的不知怎样继续.[专家把脉] 此题是湖北省20典型例题)已知,|a|=2,|b|=3,a 与b 的夹角为45°,当向量a+λb 与λa+b 的夹角为锐角时,求实数A 的范围.[考场错解] 由已知a ·b=|a||b|·cos45°=3,∵a+λb 与λa+b 的夹角为锐角,∴(a+λb)·(λa+b)>0即λ|a|2+λ|b|2+(λ2+1)a ·b=0,∴2λ+9λ+ 3(λ2+1)>0,解得λ>6851168511--<+-λ或∴实数λ的范围是⎪⎪⎭⎫ ⎝⎛--∞-⋃⎪⎪⎭⎫ ⎝⎛+∞+-68511,,68511 [专家把脉] 解题时忽视了a+λb 与a λ+b 的夹角为0的情况,也就是(a+λb)·(λa+b)>0既包括了 a+λb 与λa+b 的夹角为锐角,也包括了a+λb 与λa+b 的夹角为0,而a+λb 与λa+b 的夹角为0不合题意. [对症下药] 由已知a ·b=|a|·|b|,|b|×cos45°=3.又a+λb 与λa+b 的夹角为锐角,∴(a+λb)·(λa+ b)>0,且a+λb ≠μ(λa+b)(其中μ k,μ>0)由(a+λb)· (λa+b)>0,得|a|2+λ|b|2+(λ2+1)a ·b>0即3λ2+11λ +3>0,解得λ>6851168511--<+-λ或.由a+λb ≠μ (λa+b),得μλ≠1,μ≠λ,即λ≠1,综上所述实数λ的取值范围是(-∞,6851168511+-⋃--,1)∪(1,+∞). 3.(典型例题)已知O 为△ABC 所在平面内一点且满足032=++OC OB OA ,则△AOB 与△AOC 的面积之比为 ( ) A .1 B.32.23C D .2[考场错解] OC OB O OC OB OA 2-=∴=++ ∴O 在BC 边上,且||2||OC OB = ,又△AOB 与△AOC 高相等,∴△AOB 与△AOC 的面积之比为2,∴选D .[专家把脉] 缺乏联想能力,将常用结论记错是本题错误的原因,实际上只有O 为△ABC 的重心的情况下,才有O OC OB OA =++ ,而本题无此已知条件. [对症下药] (1)如图6-3,在AB 上取一点D ,使OB OA OB OA OD AB D DB AD 3231212211,2|,|2||+=+++==∴=得的比分λ又由已知,,3231OC OD OB OA OC -=-=∴O 为CD 的中点,不妨设S △AOC =S ,则S △AOD =S(∵两者等底同高)∴,23|),|2||(,21S S BD AD S S AOB BOD =∆==∆ △AOB 的面积与△AOC 的面积之比为3:2,选B .(2)不妨设A(0,0),B(1,0),C(0,1),O(x,y),则由专家会诊向量的基本概念是向量的基础,学习时应注意对向量的夹角、模等概念的理解,不要把向量与实数胡乱类比;向量的运算包括两种形式:(1)向量式;(2)坐标式;在学习时不要过分偏重坐标式,有些题目用向量式来进行计算是比较方便的,那么对向量的加、减法法则、定比分点的向量式等内容就应重点学习,在应用时不要出错,解题时应善于将向量用一组基底来表示,要会应用向量共线的充要条件来解题.考场思维调练1 △ABC 内接于以O 为圆心,1为半径的圆,且.432O OC OB OA =++ (1)求||AB1. 答案:由已知得2OC OB OA 43-=+,所以62114121||2||)(||.41,1||||||,||16||912||4,||16)32(2222222222=+⨯-=+∙-=-=∴=∙∴====+∙+=+OA OA OB OB OA OB AB OB OA OC OB OA OC OB OB OA OA OC OB OA 即(2)求△ABC 的面积.答案:设∠AOB=θ,∠AOC=ϕ,∠BOC=γ,由OA ·OB =41,得cos θ=41,sin θ=415,S △AOB = 21|OA |·|OB |sinθ=21×1×1 ×815415=同理可求得cos ϕ=-1611,sin ϕ=15163,S △AOC =15323 .cos γ=-87,sinr=81,S △BOC =21×.1615815= 由于θ为锐角,ϕ,γ为钝角,所以OC 不可能在△AOB 内部,故△AOB 、△AOC 、△BOC 互不重叠∴S △ABC =S△AOB+ S △AOC +S △BOC =15329. 2 已知向量a=(1,1),b :(1,0),c 满足a ·c=0,且|a|=|c|,b ·c>0. (1)求向量c ;答案:设 =(m ,n),由a ·c=0,得m+n=0再由,|a|=|c|,得m 2+n 2=2,联立⎪⎩⎪⎨⎧=+=+222n m n m ,解得m=1,n= -1或m=-l ,n=1,又∵b ,c=(1,0)·(m ,n)=m>0. ∴m=1,n=-1,c=(1,-1).(2)若映射f:(x ,y)+(x ’,y ’)=xo+yc ,将(x ,y)看作点的坐标,问是否存在直线l ,使得l 上任一点在映射f 的作用下的点仍在直线l 上,若存在,求出直线l 的方程,若不存在,请说明理由.答案: xa+yc=y(1,1)+y(1,-1)=(x+y ,x-y),则f:(x ,y)→(x+y ,x-y).假设存在直线l 满足题意.当l 的斜率不存在时,没有符合条件的直线l;当l 的斜率存在时,设l :y=kx+m ,在l 上任取一点p(x 0,y 0),则p 在映射f 作用下的点Q(x 0+y 0,x 0-y 0),Q 也应在l 上,即x 0-y 0=k(x 0+y 0)+m 又(x 0,y 0)在l 上∴y 0=kx 0+m ,整理得(1-2k-k 2)x 0-(k+2)m=0,此式对于任意x 0恒成立.∴1-2k-k 2=0,(-k+2)m=0. 解得k=-1±2,m=0,综上所述,存在直线l :y=(-1±2)x 符合题意.3 已知A 、B 、C 三点共线,O 是该直线外一点,设OA =a ,,,c OC b OB ==且存在实数m ,使ma-3b+c O 成立.求点A 分 所成的比和m 的值.答案:解:设点A 分BC 所成比为λ,则BA =λAC ,所以OA -OB =λ(OC -OA ).即a-b=λ(c-d),则(1+λ)a-b-λc=0 (1)由已知条件得c=3b-ma 代人(1)得(1+λ)a-b-3λb+m λa=0,即(1+λ+m λ)a-(1+3λ)b=0 ∵OB OA 不共线,a 、b 不共线∴1+λ+m λ=0,1+3λ=0,解得λ=-31,m=2. ∴A 分BC 所成的比为-31,m=2.1.(典型例题)设函数f(x)=a ·b,其中a=(2cosx,1),b=(cosx,]3,3[,3ππ-∈x 且)求x;(2)若函数y=2sin2x的图像按向量c=(m,n)(|m|<2π)平移后得到函数y=f(x)的图像,求实数m 、n 之值.[考场错解](1)依题意,f(x)=2cos 2x+).32sin(212sin 3π++=x x由;3,332,323,33,23)32sin(,31)32sin(21ππππππππππ-=-=+∴≤+≤-∴≤≤--=+-=++x x x x x x 即得 (2)函数y=2sin2x 的图像按向量c=(m,n)平移后得到y=2sin2(x+m)-n 的图像,即y=f(x)的图像,由(1)得f(x)=2sin2(x+.1,12,2||,1)6-==∴<+n m m πππ[专家把脉]“化一”时出错,,1)32sin(21)62sin(212sin 32cos 2cos 2sin 3cos 22++++=++==+ππx x x x x x x 不是第(2)问在利用平移公式的时有错误.[对症下药](1)依题设,f(x)=,23)62sin(,31)62sin(21),62sin(212sin 3cos 22-=+-=++++=+πππx x x x x 得由 ;4.362,65622,33ππππππππ-=-=+∴≤+≤-∴≤≤-x x x x 即 (2)函数y=2sin2x 的图像按向量c=(m,n)平移后得到函数y=2sin2(x-m)+n 的图像,即函数y=f(x)的图像,由(1)得f(x)=2sin2(.1)12++πx.1,12,2||=-=∴<n m m ππ2.(典型例题)已知i,j 分别为x 轴,y 轴正方向上的单位向量,*).,2(2,5,1121N n n A A A A j OA j OA m n n n ∈≥===+- (1)求.)2(;87的坐标和求n n OB OA A A[考场错解](1)由已知有||21||,211111-+-+==n n n n n n n n A A A A A A A A 得 ).222(22222)1(23||||||||).0,29(,29292141||||||||)2(;161,161||,)21()21(||121144441211878732111+=∴+=∙-+=+++=--=-+++=+++===∴==∴--------+n OB n n B B B B OB OB OA OA A A A A OA OA A A A A A A A A n n n n n n n n nn n n n n n n n 得得[专家把脉]向量是一个既有方向又有大小的量,而错解中只研究大小而不管方向,把向量与实数混为一谈,出现了很多知识性的错误.[对症下药] (1) ,)21(4121,21,2216657687111A A A A A A A A A A A A A A A n n n n n n n ===∴=∴=-++-1n A .1614)21(,46871221j j A A j OA OA A A =∙=∴=-=又 ).12,12(,)12()12()22()1(33).29,0(.)29(2124,21,2121)1()2(1144412114132111++∴+++=+∙-++=++=-∴-=++++=+++=∴=∴==------+--+n n OB j n i n j i n j j B B OB OB OA j j j j j A A A A OA OA j A A j A A A A n n n n n n n n n n n n n n n n n n 的坐标是同理的坐标为知由3.(典型例题)在直角坐标平面中,已知点P 1(1,2),P 2(2,22),P 3(3,23)…,P n (n ,2n),其中n 是正整数,对平面上任一点A o ,记A 1为A o 关于点P 1的对称点,A 2为A 1,关于点P 2的对称点,…,A n 为A n-1关于点P n的对称点.(1)求向量2A A o 的坐标;(2)当点A o 在曲线C 上移动时.点A 2的轨迹是函数y=f(x)的图像,其中f(x)是以3为周期的周期函数,且当x ∈(0,3)时f(x)=lgx .求以曲线C 为图像的函数在(1,4)上的解析式; (3)对任意偶数n ,用n 表示向量n o A A 的坐标.[考场错解] 第(2)问,由(1)知2A A o =(2,4),依题意,将曲线C 按向量(2,4)平移得到y=f(x)的图像. ∴y=g(x)=f(x-2)+4.[专家把脉] 平移公式用错,应该为y=g(x)=f(x+2)-4.[对症下药] (1)设点A o (x ,y),A o 关于点P 1的对称点A 1的坐标为A 1(2-x ,4-y),A 1关于点P 2的对称点 A 2的坐标为A 2(2+x ,4+y ),所以,2A A o ={2,4}.(2)∵2A A o ={2,4},∴f(x)的图像由曲线C 向右平移2个单位,再向上平移4个单位得到. 因此,曲线C 是函数y=g(x)的图像,其中g(x)是以 3为周期的周期函数,且当x ∈(-2,1)时,g(x)=1g(x+2)-4,于是,当x ∈(1,4)时,g(x)=1g(x-1)-4.{}{}{}.3)12(4,3)12(2,22)2,12,12,1(2)(2,22)3(1314321122222422⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧-=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧-=+++=+++==+++=-----n n n n n n O k k k nn O n O n n P P P P P P A A k P P A A A A A A A A A A 得由于 专家会诊向量与三角函数、数列综合的题目,实际上是以向量为载体考查三角函数、数列的知识,解题的关键是利用向量的数量积等知识将问题转化为三角函数、数列的问题,转化时不要把向量与实数搞混淆,一般来说向量与三角函数结合的题目难度不大,向量与数列结合的题目,综合性强、能力要求较高.考场思维调练1 已知平面向量a=(3,-1),b=)23,21(,c=a+(sin2a-2cosa)b ,d=(a 2sin 412)a+(cosa)b ,a ∈(o ,2π),若c ⊥d ,求cosa . 答案:解析:由已知得a ·b=0,|a|2=a 2=4,|b|2=b 2=1,因为c ⊥d ,∴c ·d=0,即[a+(sin2λ-cos α)·b]. [(41sin 22α)a+(cos α)b]=0,得sin 22α+sin2α,cos α-2cos 2α=0, 即(sin2α+2cos α)(sin2α-cos α)=0, ∵α∈(0,2π),∴sin2α+cos α>0,∴sin2α=cos α,由于cos α>0,得sina=21 ,则cos α=23. 2设向量a=(cos23°,cos67°).b=(cos68°,cos22°),c =a+tb(t ∈R),求|c|的最小值.答案:解:|a|=167cos 23cos 22=+ =1, |b|=122cos 68cos 22=+ =1a ·b=cos23°cos68°+cos67°cos22°=cos23°cos68°+sin23°sin68°=cos(23°-68°)=22. ∴|c|2=(a+tb)2=|a|2+t 2|b|2+2ta ·b=t 2+1+2t ≥21. ∴|c|的最小值为22,此时t=-223 已知向量a=(2,2),向量b 与a 的夹角为43,且a ·b=-2. (1)求向量b;答案:设b=(x ,y),∵a ·b=-2,∴2x+2y=-2,即x+y=-1,(1),又∵a 与b 的夹角为43π,∴|b|=π43cos ||∙∙a b a =1,∴x 2+y 2=1 (2),联立(1)、(2)得x=-1,y=0或x=0,y=-1, ∴b=(-1,0)或b=(0,-1).(2)若t=(1,0)且b ⊥t ,c=(cosA ,2cos22c ),其中A 、C 是△ABC 的内角,若三角形的三个内角依次成等差列,试求,|b+c|的取值范围.答案:由题意得B=3π,A+C=32π,b ⊥t ,t=(1,0),∴b=(0,-1),b+C=(cosA ,cosC),|b+C|2=cos2A+cos 2c=1+21(cos2A+cos2C)1+21cos2A+cos2(32π-A))=1+21cos(2A+3π),∵0∠A<32π,∴3π∠2A+ππ353<,∴-1≤cos(2A+3π)<21,∴|b+c|2∈[45,21 ],∴|b+c|∈[25,22] 命题角度3平面向量与平面解析几何1.(典型例题)已知椭圆的中心在原点,离心率为21,一个焦点F(-m ,0)(m 是大于0的常数.) (1)求椭圆的方程;(2)设Q 是椭圆上的一点,且过点F 、 Q 的直线l 与y 轴交于点M ,若||2||QF MQ =,求直线l 的斜率. [考场错解] 第(2)问:设Q(xo ,yo),直线J 的方程为 y=k(x+m),则点M(0,km),由已知得F 、Q 、M 三点共线,且 ||2||QF MQ =,∴||2||QF MQ =由于F(-m ,0), M(0,km),由定比分点坐标公式,得x Q =62,12791,134,31,3222222±==+∴=+=-k k my m x Q km y m Q 解得上在椭圆又[专家把脉] 缺乏分类讨论的思想,没有考虑图形的多样性,将||2||QF MQ =进行转化时出现错误,依题意||2||QF MQ =应转化为QF MQ 2±=再分类求解k . [对症下药] (1)设所求椭圆方程为=+2222b y a x 1 (a>b>O).由已知得c=m ,.3,2,21m b m a a c ==∴= 故所求的椭圆方程是.1342222=+m y m x(2)设Q(x Q ,y Q ),直线l 的方程为y=k(x+m),则点M(0,km),∵M 、Q 、F 三点共线,||2||QF MQ =,∴QF MQ 2=.当QF MQ 2=时,由于F(-m ,0),M(0,km),由定比分点坐标公式,得,31,32km y m x Q Q =-=又Q 在椭圆;62,12791,13422222±==+∴=+k k m y m x 解得有上同理当.0,131,2222==+-=k mm k QF MQ 解得有时故直线l 的斜率是0, .62±2.(典型例题)如图6—4,梯形ABCD 的底边AB 在y 轴上,原点O 为AB 的中点,|AB|=.3242||,324-=CD AC ⊥BD ,M 为CD 的中点. (1)求点M 的轨迹方程;(2)过M 作AB 的垂线,垂足为N ,若存在常数λo ,使PN MP o λ=,且P 点到A 、B 的距离和为定值,求点P 的轨迹C 的方程.[考场错解] 第(2)问:设P(x ,y),M(x o ,y o ),则N(0,y o ) PN MP y y x PN y y x x MP o o o o λ=--=--=∴又),,(),,( ∴x-x o =-λo x,y-y o =λo (y o -y),∴λo =-1.[专家把脉] 对PN MP o λ=分析不够,匆忙设坐标进行坐标运算,实际上M 、N 、P 三点共线,它们的纵坐标是相等的,导致后面求出λo=-1是错误的. [对症下药] (1)解法1:设M(x ,y),则C(x ,-1+,0),3221,(),322=∙⊥+-+BD AC BD AC y x D y 得由 即(x ,y-1)·(x ,y+1)=0,得x 2+y 2=1,又x ≠0, ∴M 的轨迹方程是:x 2+y 2=1(x ≠0)解法2:设AC 与BD 交于E ,连结EM 、EO ,∵AC+BD ,∴∠CED=∠AEB=90°,又M 、O 分别为CD , AB 的中点,∴||21|||,|21||AB EO CD OM ==,又E 为分别以AB 、CD 为直径的圆的切点,∴O 、C 、M 三点共线,∴ |OM|=|OE|+|AB|=1,∴M 在以原点为圆心1为半径的圆上,轨迹方程为x 2+y 2=1(x ≠0).(2)设P(x ,y),则由已知可设M(xo ,y),N(0,y),又由 MP=λo PN 得(x-x o ,0)=λo (-x ,0),∴x o =(1+λo )x ,又 M 在x 2+y 2=1(x ≠0)上,∴P 的轨迹方程为(1+λo )2x 2+ y 2=1(x ≠0),又P 到A 、B 的距离之和为定值,∴P 的轨迹为经A ,BP 为焦点的椭圆,∴+=+-1(,98)1(112得O λλo )2=9,∴P 轨迹E 的方程为9x 2+y 2=1(x ≠O).3.(典型例题)如图6—5,ABCD 是边长为2的正方形纸片,以某动直线l 为折痕将正方形在其下方的部分向上翻折,使得每次翻折后点。

高考数学压轴专题(易错题)备战高考《三角函数与解三角形》经典测试题及答案

高考数学压轴专题(易错题)备战高考《三角函数与解三角形》经典测试题及答案

数学高考《三角函数与解三角形》复习资料一、选择题1.在ABC ∆中,若2sin sin cos 2CA B =,则ABC ∆是( ) A .等边三角形 B .等腰三角形C .不等边三角形D .直角三角形【答案】B 【解析】试题分析:因为2sin sin cos2CA B =,所以,1cos sin sin 2C A B +=,即2sin sin 1cos[()],cos()1A B A B A B π=+-+-=,故A=B ,三角形为等腰三角形,选B 。

考点:本题主要考查和差倍半的三角函数,三角形内角和定理,诱导公式。

点评:简单题,判断三角形的形状,一般有两种思路,一种是从角入手,一种是从边入手。

2.已知函数()2sin()0,,2f x x πωϕωϕπ⎛⎫⎡⎤=+>∈ ⎪⎢⎥⎣⎦⎝⎭的部分图象如图所示,其中()01f =,5||2MN =,则点M 的横坐标为( )A .12B .25-C .1-D .23-【答案】C 【解析】 【分析】 由(0)1f =求出56πϕ=,由5||23MN πω=⇒=,再根据()2f x =可得答案.【详解】由函数()2sin()0,,2f x x πωϕωϕπ⎛⎫⎡⎤=+>∈ ⎪⎢⎥⎣⎦⎝⎭的部分图象,可得(0)2sin 1f ϕ==,56πϕ∴=, 22512||2243MN ππωω⎛⎫==+⋅= ⎪⎝⎭,∴函数5()2sin 36f x x ππ⎛⎫=+ ⎪⎝⎭,令52sin 236x ππ⎛⎫+= ⎪⎝⎭, 得52,0362x k k ππππ+=+=得1x =-. 故选:C. 【点睛】本题主要考查三角函数的图象与性质,考查了数形结合思想的应用,解题的关键是利用勾股定理列方程求出3πω=,属于中档题.3.上世纪末河南出土的以鹤的尺骨(翅骨)制成的“骨笛”(图1),充分展示了我国古代高超的音律艺术及先进的数学水平,也印证了我国古代音律与历法的密切联系.图2为骨笛测量“春(秋)分”,“夏(冬)至”的示意图,图3是某骨笛的部分测量数据(骨笛的弯曲忽略不计),夏至(或冬至)日光(当日正午太阳光线)与春秋分日光(当日正午太阳光线)的夹角等于黄赤交角.由历法理论知,黄赤交角近1万年持续减小,其正切值及对应的年代如下表: 黄赤交角 2341︒'2357︒'2413︒'2428︒'2444︒'正切值 0.439 0.444 0.450 0.455 0.461 年代公元元年公元前2000年公元前4000年公元前6000年公元前8000年根据以上信息,通过计算黄赤交角,可估计该骨笛的大致年代是( ) A .公元前2000年到公元元年 B .公元前4000年到公元前2000年 C .公元前6000年到公元前4000年 D .早于公元前6000年【答案】D 【解析】 【分析】先理解题意,然后根据题意建立平面几何图形,在利用三角函数的知识计算出冬至日光与春秋分日光的夹角,即黄赤交角,即可得到正确选项. 【详解】解:由题意,可设冬至日光与垂直线夹角为α,春秋分日光与垂直线夹角为β, 则αβ-即为冬至日光与春秋分日光的夹角,即黄赤交角, 将图3近似画出如下平面几何图形:则16tan 1.610α==,169.4tan 0.6610β-==, tan tan 1.60.66tan()0.4571tan tan 1 1.60.66αβαβαβ---==≈++⨯g .0.4550.4570.461<<Q ,∴估计该骨笛的大致年代早于公元前6000年.故选:D . 【点睛】本题考查利用三角函数解决实际问题的能力,运用了两角和与差的正切公式,考查了转化思想,数学建模思想,以及数学运算能力,属中档题.4.{}n a 为等差数列,公差为d ,且01d <<,5()2k a k Z π≠∈,223557sin 2sin cos sin a a a a +⋅=,函数()sin(4)(0)f x d wx d w =+>在20,3π⎛⎫⎪⎝⎭上单调且存在020,3x π⎛⎫∈ ⎪⎝⎭,使得()f x 关于0(,0)x 对称,则w 的取值范围是( ) A .20,3⎛⎤ ⎥⎝⎦ B .30,2⎛⎤ ⎥⎝⎦C .24,33⎛⎤⎥⎝⎦D .33,42⎛⎤⎥⎝⎦【答案】D 【解析】 【分析】推导出sin4d =1,由此能求出d ,可得函数解析式,利用在203x π⎛⎫∈ ⎪⎝⎭,上单调且存在()()0020203x f x f x x π⎛⎫∈+-= ⎪⎝⎭,,,即可得出结论. 【详解】∵{a n }为等差数列,公差为d ,且0<d <1,a 52k π≠(k ∈Z ),sin 2a 3+2sin a 5•cos a 5=sin 2a 7, ∴2sin a 5cos a 5=sin 2a 7﹣sin 2a 3=2sin 372a a +cos 732a a -•2cos 372a a +sin 732a a -=2sin a 5cos2d •2cos a 5sin2d , ∴sin4d =1,∴d 8π=.∴f (x )8π=cosωx ,∵在203x π⎛⎫∈ ⎪⎝⎭,上单调 ∴23ππω≥, ∴ω32≤; 又存在()()0020203x f x f x x π⎛⎫∈+-= ⎪⎝⎭,,, 所以f (x )在(0,23π)上存在零点, 即223ππω<,得到ω34>. 故答案为 33,42⎛⎤⎥⎝⎦故选D 【点睛】本题考查等差数列的公差的求法,考查三角函数的图象与性质,准确求解数列的公差是本题关键,考查推理能力,是中档题.5.设当x θ=时,函数()sin 2cos f x x x =-取得最大值,则cos θ=()A .B .CD 【答案】B 【解析】 【分析】由辅助角公式可确定()max f x =sin 2cos θθ-=平方关系可构造出方程组求得结果. 【详解】()()sin 2cos f x x x x ϕ=-=+Q ,其中tan 2ϕ=-()max f x ∴sin 2cos θθ-=又22sin cos 1θθ+= cos θ∴=【点睛】本题考查根据三角函数的最值求解三角函数值的问题,关键是能够确定三角函数的最值,从而得到关于所求三角函数值的方程,结合同角三角函数关系构造方程求得结果.6.定义在R 上的函数()f x 既是偶函数又是周期函数,若()f x 的最小正周期是π,且当π0,2x ⎡⎤∈⎢⎥⎣⎦时,()sin f x x =,则5π3f ⎛⎫⎪⎝⎭的值为( )A .12-B .2C .D .12【答案】B 【解析】 分析:要求53f π⎛⎫⎪⎝⎭,则必须用()sin f x x =来求解,通过奇偶性和周期性,将变量转化到区间02π⎡⎤⎢⎥⎣⎦,上,再应用其解析式求解 详解:()f x Q 的最小正周期是π552333f f f ππππ⎛⎫⎛⎫⎛⎫∴=-=-⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()f x Q 是偶函数33f f ππ⎛⎫⎛⎫∴-= ⎪ ⎪⎝⎭⎝⎭,533f f ππ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭Q 当02x π⎡⎤∈⎢⎥⎣⎦,时,()sin f x x =,则5 sin 3332f f πππ⎛⎫⎛⎫===⎪ ⎪⎝⎭⎝⎭故选B点睛:本题是一道关于正弦函数的题目,掌握正弦函数的周期性是解题的关键,考查了函数的周期性和函数单调性的性质.7.在ABC ∆中,角,,A B C 所对应的边分别为,,a b c ,已知cos cos 2b C c B b +=,则ab=( )A .B .2CD .1【答案】B 【解析】 【分析】由正弦定理及题设可知,sin cos sin cos 2sin B C C B B +=,即sin()2sin B C B +=,又A B C π++=,可得sin 2sin A B =,再由正弦定理,可得解【详解】由正弦定理:2sin sin b cR B C==,又cos cos 2b C c B b += 得到sin cos sin cos 2sin B C C B B +=,即sin()2sin B C B +=在ABC ∆中,A B C π++=故sin()2sin A B π-=,即sin 2sin A B =故sin 2sin a A b B == 故选:B 【点睛】本题考查了正弦定理在边角互化中的应用,考查了学生综合分析,转化划归,数学运算能力,属于中档题8.已知πππsin()cos()0,322ααα++-=-<<则2πcos()3α+等于( )A B .35-C .45D .35【答案】C 【解析】 【分析】首先根据等式化简,得到4sin 65πα⎛⎫+=- ⎪⎝⎭,再利用诱导公式化简2cos 3πα⎛⎫+ ⎪⎝⎭求值. 【详解】解析:∵ππsin cos 32αα⎛⎫⎛⎫++-= ⎪ ⎪⎝⎭⎝⎭13sin sin sin 22ααααα+==6πα⎛⎫=+= ⎪⎝⎭ ∴π4sin 65()α+=-.又2ππππcos cos sin 32()())6(6ααα+=++=-+,∴2π4co (s 35)α+=. 故选:C 【点睛】本题考查三角恒等变换,化简求值,重点考查转化与变形,计算能力,属于基础题型.9.函数y=ππππcos sin cos -sin 4444x x x x ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫+++++ ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦在一个周期内的图象是( ) A .B .C .D .【答案】B 【解析】 【分析】首先根据二倍角余弦公式化简得到函数的解析式,再由函数表达式得到函数的单调性和周期,进而得到选项. 【详解】根据两角和差公式展开得到: y=ππππcos sin cos -sin 4444x x x x ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫+++++ ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦22πππcos sin cos 2424x x x ⎛⎫⎛⎫⎛⎫+-+=+ ⎪ ⎪ ⎪⎝⎭⎝=⎝⎭⎭=-sin2x ,函数在0的右侧是单调递减的,且周期为π,故选B. 故答案选B . 【点睛】这个题目考查了三角函数的恒等变换,题型为已知函数表达式选择函数的图像,这种题目,一般是先根据函数的表达式得到函数的定义域,或者值域,进行排除;也可以根据函数的表达式判断函数的单调性,周期性等,之后结合选项选择.10.若函数()sin()f x A x ωϕ=+(其中0A >,||)2πϕ<图象的一个对称中心为(3π,0),其相邻一条对称轴方程为712x π=,该对称轴处所对应的函数值为1-,为了得到()cos2g x x =的图象,则只要将()f x 的图象( )A .向右平移6π个单位长度 B .向左平移12π个单位长度 C .向左平移6π个单位长度 D .向右平移12π个单位长度【答案】B 【解析】 【分析】由函数的图象的顶点坐标求出A ,由周期求出ω,由五点法作图求出ϕ的值,可得()f x 的解析式,再根据函数()sin y A x ωϕ=+的图象变换规律,诱导公式,得出结论. 【详解】根据已知函数()()sin f x A x ωϕ=+(其中0A >,)2πϕ<的图象过点,03π⎛⎫ ⎪⎝⎭,7,112π⎛⎫-⎪⎝⎭, 可得1A =,1274123πππω⋅=-, 解得:2ω=. 再根据五点法作图可得23πϕπ⋅+=,可得:3πϕ=,可得函数解析式为:()sin 2.3f x x π⎛⎫=+⎪⎝⎭故把()sin 23f x x π⎛⎫=+ ⎪⎝⎭的图象向左平移12π个单位长度, 可得sin 2cos236y x x ππ⎛⎫=++= ⎪⎝⎭的图象, 故选B . 【点睛】本题主要考查由函数()sin y A x ωϕ=+的部分图象求解析式,由函数的图象的顶点坐标求出A ,由周期求出ω,由五点法作图求出ϕ的值,函数()sin y A x ωϕ=+的图象变换规律,诱导公式的应用,属于中档题.11.若,2παπ⎛⎫∈ ⎪⎝⎭,2cos2sin 4παα⎛⎫=- ⎪⎝⎭,则sin 2α的值为( ) A .78-B .78C .18-D .18【答案】A【分析】利用二倍角公式及两角差的正弦公式化简得到cos sin 4αα+=,再将两边平方利用二倍角正弦公式计算可得; 【详解】解:因为2cos2sin 4παα⎛⎫=-⎪⎝⎭所以()222cos sin sincos cossin 44ππαααα-=-所以()())2cos sin cos sin cos sin 2αααααα-+=- ,cos sin 02παπαα⎛⎫∈-≠ ⎪⎝⎭Q ,所以cos sin αα+=所以()21cos sin 8αα+=,即221cos 2cos sin sin 8αααα++=,11sin 28α+= 所以7sin 28α=- 故选:A 【点睛】本题考查两角和差的正弦公式、二倍角公式的应用,属于中档题;12.函数()2sin sin cos y x x x =+的最大值为( )A .1B 1CD .2【答案】A 【解析】由题意,得()22sin sin cos 2sin 2sin cos sin2cos21y x x x x x x x x =+=+=-+π2114x ⎛⎫=-+≤ ⎪⎝⎭;故选A.13.直线y a =与函数()tan (0)4f x x πωω⎛⎫=+> ⎪⎝⎭的图象的相邻两个交点的距离为2π,若()f x 在()(),0m m m ->上是增函数,则m 的取值范围是( )A .(0,]4πB .(0,]2πC .3(0,]4π D .3(0,]2π【解析】 【分析】根据直线y a =与函数()f x 的图象的相邻两个交点的距离为一个周期,得到12ω=,则()1tan 24f x x π⎛⎫=+ ⎪⎝⎭,然后求得其单调增区间,再根据()f x 在()(),0m m m ->上是增函数,由(,)m m -是增区间的子集求解. 【详解】因为直线y a =与函数()f x 的图象的相邻两个交点的距离为一个周期, 所以12ω=,()1tan 24f x x π⎛⎫=+ ⎪⎝⎭,由12242k x k πππππ-<+<+,得322()22k x k k ππππ-<<+∈Z , 所以()f x 在3,22ππ⎛⎫-⎪⎝⎭上是增函数, 由3(,),22m m ππ⎛⎫-⊆- ⎪⎝⎭, 解得02m π<≤.故选:B 【点睛】本题主要考查正切函数的图象和性质,还考查了运算求解的能力,属于中档题14.已知2433sin 5cos 77ππαα⎛⎫⎛⎫+=-+ ⎪ ⎪⎝⎭⎝⎭,则tan 14πα⎛⎫-= ⎪⎝⎭( )A .53-B .35-C .35D .53【答案】B 【解析】 【分析】根据诱导公式计算得到35tan 73πα⎛⎫+= ⎪⎝⎭,故3tan tan 1472πππαα⎡⎤⎛⎫⎛⎫-=+- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,解得答案. 【详解】由诱导公式可知24333sin 3sin 33sin 777πππαπαα⎡⎤⎛⎫⎛⎫⎛⎫+=++=-+⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,又2433sin 5cos 77ππαα⎛⎫⎛⎫+=-+⎪ ⎪⎝⎭⎝⎭得333sin 5cos 77ππαα⎛⎫⎛⎫-+=-+ ⎪ ⎪⎝⎭⎝⎭, 所以35tan 73πα⎛⎫+= ⎪⎝⎭,313tan tan 314725tan 7πππααπα⎡⎤⎛⎫⎛⎫-=+-=-=- ⎪⎪⎢⎥⎛⎫⎝⎭⎝⎭⎣⎦+ ⎪⎝⎭. 故选:B . 【点睛】本题考查了三角恒等变换,意在考查学生的计算能力和转化能力.15.函数2()sin cos 2cos f x a x a x x =+-的图象关于直线4πx =-对称,则()f x 的最大值为( ) A .2BC.D或【答案】D 【解析】 【分析】根据函数2()sin cos 2cos f x a x a x x =+-的图象关于直线4πx =-对称,则有()(0)2f f π-=,解得a ,得到函数再求最值.【详解】因为函数2()sin cos 2cos f x a x a x x =+-的图象关于直线4πx =-对称, 所以()(0)2f f π-=,即220a a +-=, 解得2a =-或1a =,当2a =-时,()sin 2cos 2cos 44f x x x x x π⎛⎫=--=-⎪⎝⎭,此时()f x的最大值为;当1a =时,()sin cos 2cos 4f x x x x x π⎛⎫=+-=- ⎪⎝⎭,此时()f x;综上()f x或. 故选:D 【点睛】本题主要考查三角函数的性质,还考查了分类讨论的思想和运算求解的能力,属于中档题.16.某船开始看见灯塔A 时,灯塔A 在船南偏东30o 方向,后来船沿南偏东60︒的方向航行45km 后,看见灯塔A 在船正西方向,则这时船与灯塔A 的距离是( ) A .152km B .30kmC .15kmD .153km【答案】D 【解析】 【分析】如图所示,设灯塔位于A 处,船开始的位置为B ,船行45km 后处于C ,根据题意求出BAC ∠与BAC ∠的大小,在三角形ABC 中,利用正弦定理算出AC 的长,可得该时刻船与灯塔的距离. 【详解】设灯塔位于A 处,船开始的位置为B ,船行45km 后处于C ,如图所示,可得60DBC ∠=︒,30ABD ∠=︒,45BC =30ABC ∴∠=︒,120BAC ∠=︒在三角形ABC 中,利用正弦定理可得:sin sin AC BCABC BAC=∠∠,可得sin 1153sin 23BC ABC AC km BAC ∠===∠ 故选D 【点睛】本题主要考查的是正弦定理,以及特殊角的三角函数值,熟练掌握正弦定理是解决本题的关键,属于基础题.17.已知曲线1:sin C y x =,21:cos 23C y x π⎛⎫=- ⎪⎝⎭,则下面结论正确的是( )A .把1C 上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移3π个单位长度,得到曲线2CB .把1C 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移3π个单位长度,得到曲线2CC .把1C 上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移3π个单位长度,得到曲线2CD .把1C 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移3π个单位长度,得到曲线2C 【答案】D 【解析】 【分析】根据三角函数的周期变换和左右平移变换依次得到各选项中所得的函数解析式,从而得到正确选项. 【详解】A 中,将sin y x =横坐标缩短到原来的12倍得:sin 2y x =;向右平移3π个单位长度后得:2sin 2sin 2sin 2cos 233266y x x x x πππππ⎛⎫⎛⎫⎛⎫⎛⎫=-=-=--=-- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,A 错误;B 中,将sin y x =横坐标伸长到原来的2倍得:1sin2y x =;向右平移3π个单位长度后得:11121sin sin cos cos 232622632y x x x x πππππ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-=-=--=- ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦,B 错误;C 中,将sin y x =横坐标缩短到原来的12倍得:sin 2y x =;向左平移3π个单位长度后得:2sin 2sin 2sin 2cos 233266y x x x x πππππ⎛⎫⎛⎫⎛⎫⎛⎫=+=+=++=+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,C 错误;D 中,将sin y x =横坐标伸长到原来的2倍得:1sin2y x =;向左平移3π个单位长度后得:1111sin sin cos cos 232622623y x x x x πππππ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=+=+=-+=- ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦,D 正确. 故选:D 【点睛】本题考查三角函数的周期变换和平移变换的问题,关键是能够准确掌握变换原则,得到变换后的函数解析式.18.40cos2d cos sin xx x xπ=+⎰( )A .1)B 1C 1D .2【答案】C 【解析】 【分析】利用三角恒等变换中的倍角公式,对被积函数进行化简,再求积分. 【详解】因为22cos2cos sin cos sin cos sin cos sin x x xx x x x x x-==-++,∴4400cos 2d (cos sin )d (sin cos )14cos sin 0xx x x x x x x x πππ=-=+=+⎰⎰,故选C . 【点睛】本题考查三角恒等变换知与微积分基本定理的交汇.19.在ABC △中,若a =3,c =7,∠C =60°,则边长b 为 A .5 B .8 C .5或-8 D .-5或8【答案】B 【解析】由余弦定理c 2=a 2+b 2-2ab cos C ,得24993b b =+-,即()()850b b -+=, 因为b >0,所以b =8.故选B .20.设函数()()sin f x x x x R =∈,则下列结论中错误的是( ) A .()f x 的一个周期为2π B .()f x 的最大值为2 C .()f x 在区间2,63ππ⎛⎫⎪⎝⎭上单调递减 D .3f x π⎛⎫+⎪⎝⎭的一个零点为6x π=【答案】D 【解析】 【分析】先利用两角和的正弦公式化简函数()f x ,再由奇偶性的定义判断A ;由三角函数的有界性判断B ;利用正弦函数的单调性判断C ;将6x π=代入 3f x π⎛⎫+ ⎪⎝⎭判断D .【详解】()sin f x x x = 23sin x π⎛⎫=+ ⎪⎝⎭,()f x 周期22,1T A ππ==正确; ()f x 的最大值为2,B 正确,25,,,63326x x πππππ⎛⎫⎛⎫∈∴+∈ ⎪⎪⎝⎭⎝⎭Q ,()f x ∴在2,63ππ⎛⎫⎪⎝⎭上递减,C 正确; 6x π=时,1032f x f ππ⎛⎫⎛⎫+==≠ ⎪ ⎪⎝⎭⎝⎭,6x π=不是3f x π⎛⎫+⎪⎝⎭的零点,D 不正确. 故选D. 【点睛】本题通过对多个命题真假的判断,综合考查两角和的正弦公式以及三角函数的单调性、三角函数的周期性、三角函数的最值与零点,意在考查对基础知识掌握的熟练程度,属于中档题.。

数学经典易错题会诊与高考试题预测1

数学经典易错题会诊与高考试题预测1

经典易错题会诊与2022届高考试题预测(一)考点1集合与简易逻辑集合的概念与性质集合与不等式集合的应用简易逻辑充要条件集合的运算逻辑在集合中的运用集合的工具性真假命题的判断充要条件的应用经典易错题会诊命题角度1 集合的概念与性质1.(典型例题)设全集U=R,集合M={x|x>1},P={x|x2>1},那么以下关系中正确的选项是 ( )A.M=P B.P⊂MC.M⊂P D.C UM P=ø[考场错解] D[专家把脉] 无视集合P中,x<-1局部.[对症下药] C ∵x2>1 ∴x>1或x<-1.故M⊂P.2.(典型例题)设P、Q为两个非空实数集合,定义集合P+Q={a+b|a∈P,b∈Q},假设P {0,2,5},Q={1,2,6},那么P+Q中元素的个数是〔〕A.9 B.8C.7 D.6[考场错解] A P中元素与Q中元素之和共有9个.[专家把脉]无视元素的互异性,即和相等的只能算一个.[对症下药] B P中元素分别与Q中元素相加和分别为1,2,3,4,6,7,8,11共8个.3.(典型例题)设f(n)=2n+1(n∈N),P={l,2,3,4,5},Q={3,4,5,6,7},记Pˆ={n∈N|f(n)∈P},Qˆ={n∈N|f(n)∈那么(Pˆ C N Qˆ) (Qˆ C N Pˆ)等于 ( )A.{0,3} B.{1,7}C.{3,4,5} D.{1,2,6,7}[考场错解] D P C N Q={6,7}.Q C N P={1,2}.应选D.[专家把脉]未理解集合Pˆ的意义.[对症下药] B ∵Pˆ ={1,3,5}.Qˆ={3,5,7}.∴Pˆ C N Qˆ={1}.Pˆ C N Qˆ={7}.应选B.4.(典型例题)设A、B为两个集合,以下四个命题:①A B⇔对任意x∈A,有x ∉B;②A B⇔ A B=ø;③A B ⇔ A B;④A B⇔存在x∈A, 使得x∉B.其中真命题的序号是_____.[考场错解]∵A B,即A不是B的子集,对于x ∈A,有x∉ B;A B=ø,故①②④正确.[专家把脉]对集合的概念理解不清.∵A B,即A不是B的子集,但是A,B可以有公共局部,即存在x ∈ A ,使得x ∉ B.不是对任意x ∈A,有x ∉B ,故④正确.“A B 〞是“任意x ∈A ,有x ∉B 〞的必要非充分条件.②同①.[对症下药] 画出集合A ,B 的文氏图或举例A={1,2},B={2,3,4},故①、②均不成立,③A {1,2,3},B={1,2},∴A B 但B ⊆A ,故也错.只有④正确,符合集合定义.故填④5.(典型例题Ⅰ)设A 、B 、I 均为非空集合,且满足A ⊆B ⊆I ,那么以下各式中错误的选项是 ( ) A .〔C I A 〕 B=I B .(C I A) (C I B)=I C .A (C I B)=øD .(C I A) (C I B)= C I B[考场错解] 因为集合A 与B 的补集的交集为A ,B 的交集的补集.应选D . [专家把脉] 对集合A ,B ,I 满足A ⊆B ⊆I 的条件,即集合之间包含关系理解不清.[对症下药] 如图是符合题意的韦恩图.从图中可观察A 、C 、D 均正确,只有B 不成立.或运用特例法,如A={1,2,3},B={1,2,3.4},I={1,2,3,4,5}.逐个检验只有B 错误. 专家会诊1.解答集合问题,首先要正确理解集合有关概念,特别是集合中元素的三要素;对于用描述法给出的集合{x|x ∈P},要紧紧抓住竖线前面的代表元素x 以及它所具有的性质P ;要重视发挥图示法的作用,充分运用数形结合(数轴,坐标系,文氏图)或特例法解集合与集合的包含关系以及集合的运算问题,直观地解决问题.2.注意空集ø的特殊性,在解题中,假设未能指明集合非空时,要考虑到空集的可能性,如A ⊆B ,那么有A=ø或A ≠ø 两种可能,此时应分类讨论.考场思维训练1 全集U=R ,集合M={1,2,3,4},集合N=⎭⎬⎫⎩⎨⎧-≤121|x x ,那么M (C U N)等于 ( ) A .{4} B .{3,4} C .{2,3,4} D . {1,2,3,4} 答案:B 解析:由N={},12|,121|+≤=⎭⎬⎫⎩⎨⎧-≤x x N x x 得C U N={}{}4,3)(,12|=⋂∴+N C M x x U 2 设集合M={x|x=3m+1,m ∈Z},N=y|y{=3n+2,n ∈Z},假设x 0∈M,y 0∈N ,那么x 0y 0与集合M,N 的关系是 ( )A.x 0y 0∈M B .x 0y 0∉M MM C.x 0y 0∈N D .x 0y 0∉N 答案: C 解析:∵x o..2)23(32369)23)(13(,23,,130C N n m mn n m mn n m y x n y N y m x M o o o o 故选∈+++=+++=++=∴+=∴∈+=∴∈3 设M={x|x4a ,a ∈R},N={y|y=3x,x ∈R},那么 ( ) A .M ∩N=Ø B .M=NC. M ⊃ND. M ⊂N答案:B 解析:M={}{}{}B N y y x x M R a x x a 选.0|0|,4|=>=>==∈=4 集合A={0,2,3},B={x|x=ab,a 、b ∈A 且a ≠b},那么B 的子集的个数是 ( ) A .4 B .8 C .16 D .15答案:解析:{},6,0=B 它的子集的个数为22=4。

高考数学经典易错题会诊与2020届高考试题预测(九)(含解析)

高考数学经典易错题会诊与2020届高考试题预测(九)(含解析)

高考数学经典易错题会诊与2020届高考试题预测(九)(含解析)考点9 圆锥曲线►对椭圆相关知识的考查 ►对双曲线相关知识的考查►对抛物线相关知识的考查 ►对直线与圆锥曲线相关知识的考查 ►对轨迹问题的考查 ►考察圆锥曲线中的定值与最值问题 ►椭圆 ►双曲线►抛物线 ►直线与圆锥曲线►轨迹问题 ►圆锥曲线中的定值与最值问题 经典易错题会诊 命题角度1对椭圆相关知识的考查1.(典型例题Ⅰ)设椭圆的两个焦点分别为F 1、F 2,过F 2作椭圆长轴的垂线交椭圆于点P ,若△F l PF 2为等腰直角三角形,则椭圆的离心率是 ( ) 12.22.212.22.---D C B A[考场错解] A[专家把脉] 没有很好地理解椭圆的定义,错误地把||||21PF PF 当作离心率. [对症下药] D 设椭圆的方程为2222by ax +=l (a ,b >0) 由题意可设|PF 2|=|F 1F 2|=k ,|PF 1|=2k ,则e=12222-=+=kk k ac2.(典型例题)设双曲线以椭圆92522y x +=1长轴的两个端点为焦点,其准线过椭圆的焦点,则双曲线的渐近线的斜率为 ( )A .±2B .±34C .±21 D .±43[考场错解] D 由题意得a=5,b=3,则c=4而双曲线以椭圆92522y x +=1长轴的两个端点为焦点,则a=c =4,b=3 ∴k=43±=±a b [专家把脉] 没有很好理解a 、b 、c 的实际意义. [对症下药] C 设双曲线方程为2222b y a x -=1,则由题意知c=5,ca 2=4 则a 2=20 b 2=5,而a=25 b=5 ∴双曲线渐近线斜率为±a b =21±3.(典型例题)从集合{1,2,3…,11}中任选两个元素作为椭圆方程2222ny mx +=1中的m 和n ,则能组成落在矩形区域B={(x ,y)‖x|<11,且|y|<9}内的椭圆个数为 ( ) A .43 B .72 C .86 D .90[考场错解] D 由题意得,m 、n 都有10种可能,但m ≠n 故椭圆的个数10×10-10=90. [专家把脉] 没有注意,x 、y 的取值不同.[对症下药] B 由题意得m 有10种可能,n 只能从集合11,2,3,4,5,6,7,81中选取,且m ≠n ,故椭圆的个数:10×8-8=72. 4.(典型例题)设直线l 与椭圆162522y x +=1相交于A 、B 两点,l 又与双曲线x 2-y 2=1相交于C 、D 两点,C 、D 三等分线段AB ,求直线l 的方程 ( ) [考场错解] 设直线l 的方程为y=kx+b如图所示,l 与椭圆,双曲线的交点为A(x 1,y 1)、B (x 2,y 2)、C(x 3,y 3)、D(x 4,y 4),依题意有AB DB AC ,==3由)1(0)40025(50)2516(1162522222=-+++⎪⎩⎪⎨⎧=++=b bkx x k y x bkx y 得 所以x 1+x 2=-.2516502k bk +由⎪⎩⎪⎨⎧=-+=122y x bkx y 得(1-k 2)x 2-2bkx-(b 2+1)=0(2)若k=±1,则l 与双曲线最多只有一个交点,不合题意,故k ≠±1 所以x 3+x 4=212k bk -、由⇒=BD AC x 3-x 1=x 2-x 4 ⇒x 1+x 2=x 3+x 4⇒-⇒-=+2212251650k bk k bk bk=0或b =0①当k=0时,由(1)得x 1、2=±21645b - 由(2)得x 3、4=±12+b 由123x x CD AB -⇒==3(x 4-x 1)即1316161641022±=⇒+=-b b b 故l 的方程为y=±1316②当b=0时,由(1)得x 1、2=±2251620k+,由(2)得x 3、4=211k-±由123x x CD AB -⇒==3(x 4-x 3)即.2516,25161625164022x y l k k k ±=±=⇒-=+的方程为故 综上所述:直线l 的方程为:y=x y 2516,1316=±[专家把脉] 用斜截式设直线方程时没有注意斜率是否存在,致使造成思维片面,漏解.[对症下药] 解法一:首先讨论l 不与x 轴垂直时的,情况.设直线l 的方程为y=kx+b ,如图所示,l 与椭圆、双曲线的交点为:A(x 1,y 1)、B(x 2, y 2)、C(x 3,y 3)、D(x 4,y 4),依题意有CD AB BD AC 3,==.由⎪⎩⎪⎨⎧=++=.11625,22y x b kx y 得(16+25k 2)x 2+50bkx+(25b 2-400)=0.(1) 所以x 1+x 2=-.2516502k bk +由⎪⎩⎪⎨⎧=-+=.1,22y x b kx y 得(1-k 2+x 2-2bkx-(b 2+1)=0.若k=±1,则l 与双曲线最多只有一个交点,不合题意,故k ≠±1. 所以x 3+x 4=212k bk -由⇒-=-⇒4213x x x x AC x 1+x 2=x 2+x 4001225165022=⇒=⇒-=+-⇒k bk k bk k bk 或 b=0.①当k=0时,由(1)得.164522,1b x -±= 由(2)得x 3、4=±12+±b 由3312=-⇒=x x CD AB (x 4-x 3). 即.131611641022±=⇒+=-b b b 故l 的方程为 y=±1316②当b=0时,由(1)得x 1、2=2251620k+±自(2)得x 3、4=33,11122=-⇒=-±x x k 由(x4-x3).即.25161625164022±=⇒-=+k k k 故l 的方程为y=x 2516±.再讨论l 与x 轴垂直时的情况. 设直线l 的方程为x=c ,分别代入椭圆和双曲线方程可解得y l 、2=.25542c -±y 3、4=.||3||||3||.134122y y y y c -=-⇒=-±由 即.24125,2412516255822=±=⇒-=-x l c c c 的方程为故综上所述,直线l 的方程是:y=2516±x 、y=±1316和x=24125± 解法二:设l 与椭圆、双曲线的交点为:A(x 1,y 1)、B(x 2,y 2)、C(x 3,y 3)、D(x 4,y 4),则有⎪⎩⎪⎨⎧==-==+.4,3.12,1,116252222j y x i y x j ji i由i 的两个式子相减及j 的两个式子相减,得:⎩⎨⎧=-+--+=-++-+.0))(())((,0))((25))((163434343412121212y y y y x x x x y y y y x x x x 因C 、D 是AB 的三等分点,故CD 的中点(x 0,y 0)与AB 的中点重合,且.3CD AB = 于是x 0=,221342x x x x +=+y 0=,223412y y y y +=+x 2-x 1=3 (x 4-x 3). 因此⎩⎨⎧-=-=--=-)2().()()1(),(25)(16340340340340y y y x x x y y y x x x 若x 0y 0≠0,则x 2=x 1⇔x 4=x 3⇔y 4=y 3⇔y 2=y 1.因A 、B 、C 、D 互异,故x i ≠x j ,y i ≠y j ,这里ij=1,2,3,4且 i ≠j(1)÷(2)得16=-25,矛盾,所以x 0y 0=0.①当x 0=0,y 0≠0时,由(2)得y 4=y 3≠0,这时l 平行 x 轴.设l 的方程为y=b ,分别代入椭圆、双曲线方程得:x l 、2=,16452b -±x 3、4=.12+±b ∵x 2-x 1=3(x 4-x 3)410⇒1316161622±=⇒+=-b b b . 故l 的方程为y=±1316 ②当y 0=0,x 0≠0,由(2)得x 4=x 3≠0,这时l 平行y 轴. 设l 的方程为x=c ,分别代入椭圆、双曲线方程得:y l 、2=,25542c -±y3、4=.12-±c ∵y 2-y 1=3(y 4-y 3)2412516255822±=⇒-=-⇒c c c 故l 的方程为:24125±=x③当x 0=0,y 0=0时,这时l 通过坐标原点且不与x 轴垂直. 设l 的方程为y=kx ,分别代入椭圆、双曲线方程得:x 1、2=.11,25162024,32kx k-±=+±.2516)(33412±=⇒-=-k x x x x 故l 的方程为y=.2516x y ±= 综上所述,直线l 的方程是:y=x 2516±、y=1316±和x=.24125± 5.(典型例题)设A 、B 是椭圆3x 2+y 2=λ上的两点,点N(1,3)是线段AB 的中点,线段AB的垂直平分线与椭圆相交于C 、D 两点.(1)确定A 的取值范围,并求直线AB 的方程;(Ⅱ)试判断是否存在这样的A ,使得A 、B 、C 、D 四点在同一个圆上?并说明理由.(此题不要求在答题卡上画图)[考场错解] (1)设A(x 1,y 1)B(x 2,y 2)则有:⇒⎪⎩⎪⎨⎧=+=+λλ2222212133y x y x (x 1-x 2)(x 1+x 2)+(y l -y 2)(y l +y 2)=0 依题意,x 1≠x 2 ∴k AB -2121)(3x x y y ++∵N(1,3)是AB 的中点, ∴x 1+x 2=2,y l +y 2=6从而k AB =-9又由N(1,3)在椭圆内,∴λ<3×12+32=12 ∴λ的取值范围是(-∞,12)直线AB 的方程为y-3=-9(x-1)即9x+y-12=0 [专家把脉]①用“差比法”求斜率时k AB =2)(3121y y x x ++-这地方很容易出错.②N(1,3)在椭圆内,λ>3×12+32=12应用结论时也易混淆.[对症下药] (1)解法1:依题意,可设直线AB 的方程为y=A(x-1)+3,代入3x 2+y 2=λ,整理得(k 2+3)x 2-2k(k-3)x+(k-3)2-λ=0.①设A(x 1,y 1)、B(x 2、y 2),则x 1,x 2是方程①的两个不同的根, ∴△=4[λ(k 2+3)-3(k-3)2]>0,② 且x 1+x 2=3)3(22+-k k k ,由N(1,3)是线段AB 的中点,得1221=+x x ,∴A(k-3)=k 2+3. 解得k=-1,代入②得,λ>12,即λ的取值范围是(12,+∞). 于是,直线AB 的方程为y-3=-(x-1),即x+y-4=0. 解法2:设A(x 1,y 1)、B(x 2,y 2),则有⇒⎪⎩⎪⎨⎧=+=+λλ2222212133y x y x (x 1-x 2)(x 1+x 2)+(y 1-y 2)(y 1+y 2)=0依题意,x 1≠x 2,∴k AB =-2121)(3y y x x ++∵N(1,3)是AB 的中点,∴x 1+x 2=2,y l +y 2=6,从而k AB =-1. 又由N(1,3)在椭圆内,∴λ>3×12+32=12, ∴λ的取值范围是(12,∞).直线AB 的方程为y-3=-(x-1),即x+y-4=0.(Ⅱ)解法1:∵CD 垂直平分AB ,∴直线CD 的方程为y-3 =x-1,即x-y+2=0,代入椭圆方程,整理得4x 2+4x+4又设C(x 3,y 3),D(x 4,y 4),CD 的中点为M(x 0,y 0),则x 3, x 4是方程③的两根,∴x 3+x 4=-1,且x 0=21(x 3+x 4)=-21,y 0=x 0+2=23,即M(-21,23).于是由弦长公式可得|CD|=.)3(2||)1(1432-=-∙-+λx x k④将直线AB 的方程x+y-4=0,代入椭圆方程得4x 2-8x+ 16-λ=0 ⑤同理可得|AB|=.)12(2||.1212-=-+λx x k ⑥ ∵当λ>12时,)3(2-λ>)12(2-λ,∴|AB|<|CD|假设存在λ>12,使得A 、B 、C 、D 四点共圆,则CD 必为圆的直径,点M 为圆心.点M 到直线AB 的距离为d=.2232|42321|2|4|00=-+-=-+y x ⑦ 于是,由④、⑥、⑦式和勾股定理可得 |MA|2=|MB|2=d 2+.|2|2321229|2|22CD AB =-=-+=λλ 故当λ>12时,A 、B 、C 、D 四点均在以M 为圆心,|2|CD为半径的圆上. (注:上述解法中最后一步可按如下解法获得:)A 、B 、C 、D 共圆⇔△ACD 为直角三角形,A 为直角⇔|AN|2 =|CN|·|DN|, 即)2||)(2||()2(2d CD d CD AB -+=. ⑧ 由⑥式知,⑧式左边=212-λ,由④和⑦知,⑧式右边=,212)29232232)3(2)(2232)3(2(-=--=--+-λλλλ∴⑧式成立,即A 、B 、C 、D 四点共圆解法2:由(Ⅰ)解法1及λ>12,∵CD 垂直平分AB ,∴直线CD 方程为y-3=x-1,代入椭圆方程,整理得4x2+4x+4-λ=0.③ 将直线AB 的方程x+y-4=0,代入椭圆方程,整理得 4x 2-8x+16-λ=0.⑤ 解③和⑤式可得 x l ,2=.231,21224,3-±-=-±λλx 不妨设A(1+)233,231(),233,231(,12213,1221-+-+---------λλλλλλD C )21233,23123()21233,23123(-------+=---+-+-+=∴λλλλλλλλCA CA计算可得0=∙CA CA ,∴A 在以CD 为直径的圆上.又B 为A 关于CD 的对称点,∴A 、B 、C 、D 四点共圆.(注:也可用勾股定理证明AC ⊥AD) 专家会诊1.重点掌握椭圆的定义和性质,加强直线与椭圆位置关系问题的研究.2.注重思维的全面性,例如求椭圆方程时只考虑到焦点在,轴上的情形;研究直线与椭圆位置关系时忽略了斜率不存在的情形……3.注重思想方法的训练,在分析直线与椭圆位置关系时要利用数形结合和设而不求法与弦长公式韦达定理联系去解决;关于参数范围问题常用思路有:判别式法,自身范围法等.求椭圆的方程常用方法有:定义法,直接法,待定系数法,相关点法,参数法等. 考场思维调练1 已知椭圆的中心O 是坐标原点,A 是它的左顶点,F 是它的左焦点,l 1,l 2分别为左右准线,l 1与x 轴交于O ,P 、Q 两点在椭圆上,且PM ⊥l 1于M,PN ⊥l 2于N ,QF ⊥AO ,则下列比值中等于椭圆离心率的有( ) ||||)5(;||||)4(;||||)3(;||||)2(;||||)1(BF QF BA AF BO AO PN PF PM PF A.1个 B .2个 C.4个 D .5个答案: C 解析:对(1),(4)的正确性容易判断;对(3),由于caaBO AO 2||||==e ,故(3)正确;对(5),可求得|QF|=,2ab|BF|=cb c c a 22=-,e BF QF =||||故,故(5)正确;(2)显然不对,所选C . 2 椭圆有这样的光学性质:从随圆的一个焦点出发的光线,经椭圆壁反射后,反射光线经过随圆的另一个焦点.今有一个水平放置的椭圆形台球盘,点A 、B 是它的焦点,长轴长为20,焦距为2c ,静放在点A 的小球 (小球的半径不计),从点A 沿直线出发,经椭圆壁反弹后第一次回到点A 时,小球经过的路程是 ( ) A .4a B .2(a-c)C.2(a+c) D .以上答案均有可能答案: D 解析:(1)静放在点A 的小球(小球的半径不计)从点A 沿直线出发,经椭圆壁右顶点反弹后第一次回到点A 时,小球经过的路程是2(d-c),则选B ;(2)静放在点A 的小球(小球的半径不计)从点A 沿直线出发,经椭圆壁左顶点反弹后第一次回到点A 时,小球经过的路程是2(a+c),则选C ;(3)静放在点A 的小球(小球的半径不计)从点A 沿直线出发,经椭圆壁非左右顶点反弹后第一次回到点A 时,小球经过的路程是4a ,则选A. 于是三种情况均有可能,故选D. 3 已知椭圆22ax +y 2=1(a>1),直线l 过点A(-a ,0)和点B(a ,ta)(tt>0)交椭圆于M .直线MO 交椭圆于N(1)用a ,t 表示△AMN 的面积S ;(2)若t ∈[1,2],a 为定值,求S 的最大值. 答案:易得l 的方程为了y=2t (x+a)…1分由,1)1(2222⎪⎪⎩⎪⎪⎨⎧=++=y a x x t y 得(a 2t 2+4)y 2-4aty=0 解得了y=0或y=4422+t a at 即点M 的纵坐标y M =4422+t a at S=S △AMN =2S △AOM =|OA|·y M =4422+t a at (2)由(1)得, S=4422+t a at=t a t a 2244+ (t>0)令V=t4+a 2t ,V ′=-24t +a 2由V ′=O at 2=⇒ 当时t>a 2时,V ′>0;当0<t<a2时,V ′<0...10分 若1≤a ≤2,则,故a 2∈[1,2]当t=a 2时,S max =a 若a>2,则0<a 2<1,∵V=t4+ a 2t 在[1,2]上递增,进而S(t)为减函数.∴当t=1时,S max =2244a a +综上可得S max ⎪⎩⎪⎨⎧>+≤≤)2(44)21(22a a a a a 命题角度2对双曲线相关知识的考查 1.(典型例题1)已知双曲线x 2-22y =1的焦点为F 1、F 2,点M 在双曲线上且021=∙MF MF ,则点M 到x 轴的距离为 ( ) 3.332.35.34.D C B A[考场错解] B[专家把脉] 没有理解M 到x 轴的距离的意义.[对症下药] C 由题意得a=1,b=2,c=3可设M (x 0,y 0)|MF 1|=|ex 0+a|=|3x 0+1|,|MF 2|= |ex 0-a|=|3x 0-1|由|MF 1|2+|MF 2|2=|F 1F 2|2得 x 02=.332||,3435020==y y 则即点M 到x 轴的距离为.332 2.(典型例题)已知双曲线2222b y a x -=1(a>0,b>0)的右焦点为F ,右准线与一条渐近线交于点A ,△OAF 的面积为22a (O 为原点),则两条渐近线的夹角为 ( )A .30°B .45°C .60°D .90° [考场错解] B[专家把脉] 把两条渐近线的夹角看成渐近线的倾斜角. [对症下药] D 由题意得A(c ab c a ,2)s △OAF=21·c ·b a a ab c ab =⇒==2212,则两条渐近线为了y=x 与y=-x 则求两条渐近线的夹角为90°. 3.(典型例题Ⅲ)双曲线2222b y a x -=1(a>1,b>0)的焦距为2c ,直线l 过点(a ,0)和(0,b),且点(1,0)到直线l 的距离与点(-1,0)到直线l 的距离之和s ≥54c ,求双曲线的离心率e 的取值范围.[考场错解] 直线l 的方程为b y ax+=1即bx+ay-ab=0点(-1,0)到直线l 的距离:22)1(ba ab ++,点(1,0)到直线l 的距离:22)1(b a a b +- ∴22)1(b a a b +++22)1(b a a b +-=c c ab b a ab 542222≥=+得5a 2222c a c ≥-于是得52221e e ≥-即4e 4-25e 2+25≤0解不等式得45≤e 2≤5,所以e 的取值范围是].5,25[]25,5[⋃-- [专家把脉] 没有理解双曲线离心率的意义及自身存在的范围e>1. [对症下药] 解法:直线J 的方程为byax+=1,即 bx+ay-ab=0. 由点到直线的距离公式,且a>1,得到点(1,0)到直线l 的距离d 1=.)1(22ba ab +-同理得到点(-1,0)到直线l 的距离d 2=.)1(22ba ab ++s=d 1+d 2=.2222cabb a ab =+ 由025254.215.25,542,542222222≤+-≥-≥-≥≥e e e e c a c a c c ab c s 即于是得即得解不等式,得.525,01.5452≤≤>>≤≤e e e e 的取值范围是所以由于 专家会诊1.注意双曲线两个定义的理解及应用,在第二定义中,要强调e>1,必须明确焦点与准线的对应性2.由给定条件求出双曲线的方程,常用待定系数法,当焦点位置不确定时,方程可能有两种形式,应防止遗漏.3.掌握参数a 、b 、c 、e 的关系,渐近线及其几何意义,并注意灵活运用. 考场思维训练 1 已知F 1,F 2为双曲线2222b y a x -=1(a>0,b>0)的两个焦点,过F 2作垂直x 轴的直线,它与双曲线的一个交点为P ,且∠pF1F2=30°,则双 曲线的渐近线方程为 ( )xy D y C xy B x y A 2.33.3.22.±=±=±=±=答案: D 解析:由已知有212|||F F PF =tan30°=ac b 22,所以2a 2=b 2渐近线方程为y=±x 2,所以选取D2 若F l 、F 2双曲线2222by ax -=1的左、右焦点,O 为坐标原点,P 在双曲线左支上,M 在右准线上,且满足11PM O F ==(1)求此双曲线的离心率; 答案:由−−→−=−−→−PMDF 1知四边形PF 1OM 为平行四边形,又由|||||||11−−→−−−→−−−→−∙−−→−=−−→−−−→−−−→−∙−−→−OPOMOPOMOF OPOF OP知OP 平分∠F 1OM, ∴PF 1OM 菱形,设半焦距为c ,由||1−−→−OF=c 知e a c a c c PMPF PF PF PMPF=−−→−−−→−+=+−−→−=−−→−=−−→−=−−→−||||,22||||,||||1121又,即c+e ca=1 e 2-e-2=0, ∴e=2(e=-1舍去)(2)若此双曲线过点N(2,3),求双曲线方程:答案:∵e=2=,a c ∴c=2a, ∴双曲线方程为)3,2(,132222将点==ay a x 代入, 有3a ,1434222=∴=-a a 即所求双曲线方程为9322y x -=1. (3)设(2)中双曲线的虚轴端点为B 1,B 2(B 1在y 轴正半轴上),求B 2作直线AB 与双曲线交于A 、B 两点,求B B A B 11⊥时,直线AB 的方程.答案:依题意得B1(0,3),B2(0,-3),设直线AB 的方程为y=kx-3,A(x 1,y 1),B(x 2,y 2)则由⎪⎪⎪⎩⎪⎪⎪⎨⎧=-=-+-⇒-=193.0186)3(32222y x kx x k kx y ∵双曲线的渐近线为y=±x 3,∴当k=±3时,AB 与双曲线只有一个交点,即k ≠±3.∵x 1+x 2=.318,362212k x x kk --=∙-y 1+y 2=k(x 1+x 2)-6=2318k --,y 1y 2=k 2x 1x 2-k(x 1+x 2)+9=9又=−−→−AB 1(x 1,y 1 -3),−−→−B B 1=(x 2,y 2 -3), −−→−A B 1⊥−−→−B B 1,09)(3212121=++++⇒y y y y x x 0931*******2=+--∙-+--kk,即k 2=5, ∴k=±5.故所求直线AB 的方程为y=5x-3或y=-5x-3.3 设双曲线42x -y 2=1的右顶点为A 、P 是双曲线上异于顶点的一个动点,从A 引双曲线的两条渐近线的平行线与直线OP(O 为坐标原点)分别交于Q 和R 两点. (1)证明:无论P 点在什么位置,总有||||2AR OQ OP ∙=;答案:设OP :y=kx 与AR :y=联立)2(21-x解得),212,212(kkk OR--=−−→− 同理可得),212,212(k k k OQ ++=−−→−所以|−−→−OQ ·−−→−OR |,|41|4422k k -+ 设|−−→−OP |2=(m,n ),则由双曲线方程与OP 方程联立解得m 2=,414,4142222k k n k -=-所以|−−→−OP |2=m 2+n 2=||414422−−→−∙−−→−=-+OROQkk (点在双曲线上,1-4k 2>0);(2)设动点C 满足条件:)(21+=,求点C 的轨迹方程.答案:∵ ),(21−−→−+−−→−=−−→−ARAQ AC 点C 为QR 的中心,设C (x,y ), 则有⎪⎪⎩⎪⎪⎨⎧-=-=22412412k k y k x ,消去k,可得所求轨迹方程为x 2-x 2-4y 2=0(x ≠0).命题角度3对抛物线相关知识的考查。

高考数学经典易错题会诊与2020届高考试题预测(一)(含答案)

高考数学经典易错题会诊与2020届高考试题预测(一)(含答案)

高考数学经典易错题会诊与2020届高考试题预测(一)考点1集合与简易逻辑集合的概念与性质集合与不等式集合的应用简易逻辑充要条件集合的运算逻辑在集合中的运用集合的工具性真假命题的判断充要条件的应用经典易错题会诊命题角度1 集合的概念与性质1.(典型例题)设全集U=R,集合M={x|x>1},P={x|x2>1},则下列关系中正确的是( )A.M=P B.P⊂MC.M⊂P D.C UM P=ø[考场错解] D[专家把脉] 忽视集合P中,x<-1部分.[对症下药] C ∵x2>1 ∴x>1或x<-1.故M⊂P.2.(典型例题)设P、Q为两个非空实数集合,定义集合P+Q={a+b|a∈P,b∈Q},若P{0,2,5},Q={1,2,6},则P+Q中元素的个数是()A.9 B.8C.7 D.6[考场错解] A P中元素与Q中元素之和共有9个.[专家把脉]忽视元素的互异性,即和相等的只能算一个.[对症下药] B P中元素分别与Q中元素相加和分别为1,2,3,4,6,7,8,11共8个.3.(典型例题)设f(n)=2n+1(n∈N),P={l,2,3,4,5},Q={3,4,5,6,7},记Pˆ={n∈N|f(n) ∈P},Qˆ={n∈N|f(n) ∈则(Pˆ C N Qˆ) (Qˆ C N Pˆ)等于 ( )A.{0,3} B.{1,7}C.{3,4,5} D.{1,2,6,7}[考场错解] D P C N Q={6,7}.Q C N P={1,2}.故选D.[专家把脉]未理解集合Pˆ的意义.[对症下药] B ∵Pˆ ={1,3,5}.Qˆ={3,5,7}.∴Pˆ C N Qˆ={1}. Pˆ C N Qˆ={7}.故选B.4.(典型例题)设A、B为两个集合,下列四个命题:①A B⇔对任意x∈A,有x ∉B;②A B⇔ A B=ø;③A B ⇔ A B;④A B⇔存在x∈A,使得x ∉B.其中真命题的序号是_____.[考场错解] ∵A B ,即A 不是B 的子集,对于x ∈A ,有x ∉ B;A B=ø,故①②④正确. [专家把脉] 对集合的概念理解不清.∵A B ,即A 不是B 的子集,但是A ,B 可以有公共部分,即存在x ∈ A ,使得x ∉ B.不是对任意x ∈A,有x ∉B ,故④正确.“A B ”是“任意x ∈A ,有x ∉B ”的必要非充分条件.②同①.[对症下药] 画出集合A ,B 的文氏图或举例A={1,2},B={2,3,4},故①、②均不成立,③A {1,2,3},B={1,2},∴A B 但B ⊆A ,故也错.只有④正确,符合集合定义.故填④5.(典型例题Ⅰ)设A 、B 、I 均为非空集合,且满足A ⊆B ⊆I ,则下列各式中错误的是 ( ) A .(C I A ) B=IB .(C I A) (C I B)=I C .A (C I B)=øD .(C I A) (C I B)= C I B[考场错解] 因为集合A 与B 的补集的交集为A ,B 的交集的补集.故选D . [专家把脉] 对集合A ,B ,I 满足A ⊆B ⊆I 的条件,即集合之间包含关系理解不清.[对症下药] 如图是符合题意的韦恩图.从图中可观察A 、C 、D 均正确,只有B 不成立.或运用特例法,如A={1,2,3},B={1,2,3.4},I={1,2,3,4,5}.逐个检验只有B 错误. 专家会诊1.解答集合问题,首先要正确理解集合有关概念,特别是集合中元素的三要素;对于用描述法给出的集合{x|x ∈P},要紧紧抓住竖线前面的代表元素x 以及它所具有的性质P ;要重视发挥图示法的作用,充分运用数形结合(数轴,坐标系,文氏图)或特例法解集合与集合的包含关系以及集合的运算问题,直观地解决问题.2.注意空集ø的特殊性,在解题中,若未能指明集合非空时,要考虑到空集的可能性,如A ⊆B ,则有A=ø或A ≠ø 两种可能,此时应分类讨论.考场思维训练1 全集U=R ,集合M={1,2,3,4},集合N=⎭⎬⎫⎩⎨⎧-≤121|x x ,则M (C U N)等于 ( ) A .{4} B .{3,4} C .{2,3,4} D . {1,2,3,4} 答案:B 解析:由N={},12|,121|+≤=⎭⎬⎫⎩⎨⎧-≤x x N x x 得C U N={}{}4,3)(,12|=⋂∴+N C M x x U 2 设集合M={x|x=3m+1,m ∈Z},N=y|y{=3n+2,n ∈Z},若x 0∈M,y 0∈N ,则x 0y 0与集合M,N 的关系是 ( )A.x 0y 0∈M B .x 0y 0∉M MM C.x 0y 0∈N D .x 0y 0∉N 答案: C 解析:∵x o..2)23(32369)23)(13(,23,,130C N n m mn n m mn n m y x n y N y m x M o o o o 故选∈+++=+++=++=∴+=∴∈+=∴∈3 设M={x|x4a ,a ∈R},N={y|y=3x,x ∈R},则 ( ) A .M ∩N=Ø B .M=NC. M ⊃ND. M ⊂N 答案:B 解析:M={}{}{}B N y y x x M R a x x a 选.0|0|,4|=>=>==∈=4 已知集合A={0,2,3},B={x|x=ab,a 、b ∈A 且a ≠b},则B 的子集的个数是 ( ) A .4 B .8 C .16 D .15答案:解析:{},6,0=B 它的子集的个数为22=4。

高考数学经典易错题会诊与2020届高考试题预测(六)(含解析)

高考数学经典易错题会诊与2020届高考试题预测(六)(含解析)

高考数学经典易错题会诊与2020届高考试题预测(六)考点6 平面向量 经典易错题会诊命题角度1 向量及其运算命题角度2 平面向量与三角、数列 命题角度3 平面向量与平面解析几何 命题角度4 解斜三角形 探究开放题预测预测角度1 向量与轨迹、直线、圆锥曲线等知识点结合 预测角度2 平面向量为背景的综合题命题角度1 向量及其运算1 (典型例题)如图6-1,在 Rt △ABC 中,已知BC=a ,若长为 2a 的线段PQ 以点A 为中点,问PQ 与BC 的夹角θ取何值时BP .CQ 的值最大?并求出这个最大值. [考场错解],||)()(,,2BQ QP CB QP CB BQ BQ BQ CB BQ BQ CQ BP BQ CB CQ QP BQ BP ∙+∙+∙+=+∙+=∙∴+=+= 此后有的学生接着对上式进行变形,更多的不知怎样继续.[专家把脉] 此题是湖北省20典型例题)已知,|a|=2,|b|=3,a 与b 的夹角为45°,当向量a+λb 与λa+b 的夹角为锐角时,求实数A 的范围.[考场错解] 由已知a ·b=|a||b|·cos45°=3,∵a+λb 与λa+b 的夹角为锐角,∴(a+λb)·(λa+b)>0即λ|a|2+λ|b|2+(λ2+1)a ·b=0,∴2λ+9λ+ 3(λ2+1)>0,解得λ>6851168511--<+-λ或∴实数λ的范围是 ⎪⎪⎭⎫ ⎝⎛--∞-⋃⎪⎪⎭⎫ ⎝⎛+∞+-68511,,68511 [专家把脉] 解题时忽视了a+λb 与a λ+b 的夹角为0的情况,也就是(a+λb)·(λa+b)>0既包括了 a+λb 与λa+b 的夹角为锐角,也包括了a+λb 与λa+b 的夹角为0,而a+λb 与λa+b 的夹角为0不合题意.[对症下药] 由已知a ·b=|a|·|b|,|b|×cos45°=3.又a+λb 与λa+b 的夹角为锐角,∴(a+λb)·(λa+ b)>0,且a+λb ≠μ(λa+b)(其中μ k,μ>0)由(a+λb)· (λa+b)>0,得|a|2+λ|b|2+(λ2+1)a ·b>0即3λ2+11λ +3>0,解得λ>6851168511--<+-λ或.由a+λb ≠μ (λa+b),得μλ≠1,μ≠λ,即λ≠1,综上所述实数λ的取值范围是(-∞,6851168511+-⋃--,1)∪(1,+∞).3.(典型例题)已知O 为△ABC 所在平面内一点且满足032=++OC OB OA ,则△AOB 与△AOC 的面积之比为 ( ) A .1 B.32.23C D .2[考场错解] OC OB O OC OB OA 2-=∴=++ ∴O 在BC 边上,且||2||OC OB = ,又△AOB 与△AOC 高相等,∴△AOB 与△AOC 的面积之比为2,∴选D .[专家把脉] 缺乏联想能力,将常用结论记错是本题错误的原因,实际上只有O 为△ABC 的重心的情况下,才有=++ ,而本题无此已知条件. [对症下药] (1)如图6-3,在AB 上取一点D ,使OB OA OB OA OD AB D DB AD 3231212211,2|,|2||+=+++==∴=得的比分λ又由已知,,3231OC OD OB OA OC -=-=∴O 为CD 的中点,不妨设S △AOC =S ,则S △AOD =S(∵两者等底同高)∴,23|),|2||(,21S S S S AOB BOD =∆==∆△AOB 的面积与△AOC 的面积之比为3:2,选B .(2)不妨设A(0,0),B(1,0),C(0,1),O(x,y),则由专家会诊向量的基本概念是向量的基础,学习时应注意对向量的夹角、模等概念的理解,不要把向量与实数胡乱类比;向量的运算包括两种形式:(1)向量式;(2)坐标式;在学习时不要过分偏重坐标式,有些题目用向量式来进行计算是比较方便的,那么对向量的加、减法法则、定比分点的向量式等内容就应重点学习,在应用时不要出错,解题时应善于将向量用一组基底来表示,要会应用向量共线的充要条件来解题.考场思维调练1 △ABC 内接于以O 为圆心,1为半径的圆,且.432O OC OB OA =++ (1)求||AB1. 答案:由已知得2OC OB OA 43-=+,所以62114121||.41,1||||||,||16||912||4,||16)32(2222222=+⨯-===∴=∙∴====+∙+=+AB OB OA OC OB OA OC OB OB OA OA OC OB OA 即(2)求△ABC 的面积.答案:设∠AOB=θ,∠AOC=ϕ,∠BOC=γ,由OA ·OB =41,得cos θ=41,sin θ=415,S △AOB= 21|OA |·|OB |sin θ=21×1×1 ×815415=同理可求得cos ϕ=-1611,sin ϕ=15163,S △AOC=15323.cos γ=-87,sinr=81,S △BOC =21×.1615815= 由于θ为锐角,ϕ,γ为钝角,所以OC 不可能在△AOB 内部,故△AOB 、△AOC 、△BOC 互不重叠∴S △ABC =S △AOB + S △AOC +S △BOC =15329. 2 已知向量a=(1,1),b :(1,0),c 满足a ·c=0,且|a|=|c|,b ·c>0. (1)求向量c ;答案:设 =(m ,n),由a ·c=0,得m+n=0再由,|a|=|c|,得m 2+n 2=2,联立⎪⎩⎪⎨⎧=+=+222n m n m ,解得m=1,n= -1或m=-l ,n=1,又∵b ,c=(1,0)·(m ,n)=m>0.∴m=1,n=-1,c=(1,-1).(2)若映射f:(x ,y)+(x ’,y ’)=xo+yc ,将(x ,y)看作点的坐标,问是否存在直线l ,使得l 上任一点在映射f 的作用下的点仍在直线l 上,若存在,求出直线l 的方程,若不存在,请说明理由.答案: xa+yc=y(1,1)+y(1,-1)=(x+y ,x-y),则f:(x ,y)→(x+y ,x-y).假设存在直线l 满足题意.当l 的斜率不存在时,没有符合条件的直线l;当l 的斜率存在时,设l :y=kx+m ,在l 上任取一点p(x 0,y 0),则p 在映射f 作用下的点Q(x 0+y 0,x 0-y 0),Q 也应在l 上,即x 0-y 0=k(x 0+y 0)+m 又(x 0,y 0)在l 上∴y 0=kx 0+m ,整理得(1-2k-k 2)x 0-(k+2)m=0,此式对于任意x 0恒成立.∴1-2k-k 2=0,(-k+2)m=0.解得k=-1±2,m=0,综上所述,存在直线l :y=(-1±2)x 符合题意.3 已知A 、B 、C 三点共线,O 是该直线外一点,设=a ,,,c OC b OB ==且存在实数m ,使ma-3b+c O 成立.求点A 分 所成的比和m 的值.答案:解:设点A 分所成比为λ,则BA =λ,所以-=λ(-).即a-b=λ(c-d),则(1+λ)a-b-λc=0 (1)由已知条件得c=3b-ma 代人(1)得(1+λ)a-b-3λb+m λa=0,即(1+λ+m λ)a-(1+3λ)b=0 ∵OB OA 不共线,a 、b 不共线∴1+λ+m λ=0,1+3λ=0,解得λ=-31,m=2.∴A 分BC 所成的比为-31,m=2.1.(典型例题)设函数f(x)=a ·b,其中a=(2cosx,1),b=(cosx,]3,3[,3ππ-∈x 且)求x;(2)若函数y=2sin2x 的图像按向量c=(m,n)(|m|<2π)平移后得到函数y=f(x)的图像,求实数m 、n 之值.[考场错解](1)依题意,f(x)=2cos 2x+).32sin(212sin 3π++=x x由;3,332,323,33,23)32sin(,31)32sin(21ππππππππππ-=-=+∴≤+≤-∴≤≤--=+-=++x x x x x x 即得 (2)函数y=2sin2x 的图像按向量c=(m,n)平移后得到y=2sin2(x+m)-n 的图像,即y=f(x)的图像,由(1)得f(x)=2sin2(x+.1,12,2||,1)6-==∴<+n m m πππ[专家把脉]“化一”时出错,,1)32sin(21)62sin(212sin 32cos 2cos 2sin 3cos 22++++=++==+ππx x x x x x x 不是第(2)问在利用平移公式的时有错误.[对症下药](1)依题设,f(x)=,23)62sin(,31)62sin(21),62sin(212sin 3cos 22-=+-=++++=+πππx x x x x 得由 ;4.362,65622,33ππππππππ-=-=+∴≤+≤-∴≤≤-x x x x 即 (2)函数y=2sin2x 的图像按向量c=(m,n)平移后得到函数y=2sin2(x-m)+n 的图像,即函数y=f(x)的图像,由(1)得f(x)=2sin2(.1)12++πx.1,12,2||=-=∴<n m m ππ2.(典型例题)已知i,j 分别为x 轴,y 轴正方向上的单位向量,*).,2(2,5,1121N n n A A A A j OA j OA m n n n ∈≥===+- (1)求.)2(;87的坐标和求n n OB OA A A[考场错解](1)由已知有||21||,211111-+-+==n n n n n n n n A A A A A A A A 得).222(22222)1(23||||||||).0,29(,29292141||||||||)2(;161,161||,)21()21(||121144441211878732111+=∴+=∙-+=+++=--=-+++=+++===∴==∴--------+n OB n n B B B B OB OB OA OA A A A A OA OA A A A A A A A A n n n n n n n n nn n n n n n n n 得得[专家把脉]向量是一个既有方向又有大小的量,而错解中只研究大小而不管方向,把向量与实数混为一谈,出现了很多知识性的错误. [对症下药] (1) ,)21(4121,21,2216657687111A A A A A A A A A A A A A A A n n n n n n n ===∴=∴=-++-1n A .1614)21(,46871221j A A OA OA A A =∙=∴=-=又 2,12(,)12()12()22()1(33).29,0(.)29(2124,21,2121)1()2(1144412114132111++∴+++=+∙-++=++=-∴-=++++=+++=∴=∴==------+--+n n OB j n i n j i n j j B B OB OB OA j j j j j A A A A OA OA j A A j A A A A n n n n n n n n n n n n n n n n n n 的坐标是同理的坐标为知由 3.(典型例题)在直角坐标平面中,已知点P 1(1,2),P 2(2,22),P 3(3,23)…,P n (n ,2n),其中n 是正整数,对平面上任一点A o ,记A 1为A o 关于点P 1的对称点,A 2为A 1,关于点P 2的对称点,…,A n 为A n-1关于点P n 的对称点. (1)求向量2A A o 的坐标;(2)当点A o 在曲线C 上移动时.点A 2的轨迹是函数y=f(x)的图像,其中f(x)是以3为周期的周期函数,且当x ∈(0,3)时f(x)=lgx .求以曲线C 为图像的函数在(1,4)上的解析式; (3)对任意偶数n ,用n 表示向量n o A A 的坐标.[考场错解] 第(2)问,由(1)知2A A o =(2,4),依题意,将曲线C 按向量(2,4)平移得到y=f(x)的图像.∴y=g(x)=f(x-2)+4.[专家把脉] 平移公式用错,应该为y=g(x)=f(x+2)-4.[对症下药] (1)设点A o (x ,y),A o 关于点P 1的对称点A 1的坐标为A 1(2-x ,4-y),A 1关于点P 2的对称点 A 2的坐标为A 2(2+x ,4+y ),所以,2A A o ={2,4}.(2)∵2A A o ={2,4},∴f(x)的图像由曲线C 向右平移2个单位,再向上平移4个单位得到. 因此,曲线C 是函数y=g(x)的图像,其中g(x)是以 3为周期的周期函数,且当x ∈(-2,1)时,g(x)=1g(x+2)-4,于是,当x ∈(1,4)时,g(x)=1g(x-1)-4.{}{}{}3)12(4,3)12(2,22)2,12,12,1(2)(2,22)3(1314321122222422⎪⎩⎪⎨⎧-=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧-=+++=+++==+++=-----n n n n n n O k k k nn O n O n n P P P P P P A A k P P A A A A A A A A A A 得由于专家会诊向量与三角函数、数列综合的题目,实际上是以向量为载体考查三角函数、数列的知识,解题的关键是利用向量的数量积等知识将问题转化为三角函数、数列的问题,转化时不要把向量与实数搞混淆,一般来说向量与三角函数结合的题目难度不大,向量与数列结合的题目,综合性强、能力要求较高.考场思维调练1 已知平面向量a=(3,-1),b=)23,21(,c=a+(sin2a-2cosa)b ,d=(a 2sin 412)a+(cosa)b ,a ∈(o ,2π),若c ⊥d ,求cosa . 答案:解析:由已知得a ·b=0,|a|2=a 2=4,|b|2=b 2=1,因为c ⊥d ,∴c ·d=0,即[a+(sin2λ-cos α)·b].[(41sin 22α)a+(cos α)b]=0,得sin 22α+sin2α,cos α-2cos 2α=0, 即(sin2α+2cos α)(sin2α-cos α)=0,∵α∈(0,2π),∴sin2α+cos α>0,∴sin2α=cos α,由于cos α>0,得sina=21 ,则cos α=23. 2设向量a=(cos23°,cos67°).b=(cos68°,cos22°),c =a+tb(t ∈R),求|c|的最小值.答案:解:|a|=167cos 23cos 22=+ =1, |b|=122cos 68cos 22=+ =1a ·b=cos23°cos68°+cos67°cos22°=cos23°cos68°+sin23°sin68°=cos(23°-68°)=22. ∴|c|2=(a+tb)2=|a|2+t 2|b|2+2ta ·b=t 2+1+2t ≥21. ∴|c|的最小值为22,此时t=-223 已知向量a=(2,2),向量b 与a 的夹角为43,且a ·b=-2. (1)求向量b;答案:设b=(x ,y),∵a ·b=-2,∴2x+2y=-2,即x+y=-1,(1),又∵a 与b 的夹角为43π,∴|b|=π43cos ||∙∙a b a =1,∴x 2+y 2=1 (2),联立(1)、(2)得x=-1,y=0或x=0,y=-1,∴b=(-1,0)或b=(0,-1).(2)若t=(1,0)且b ⊥t ,c=(cosA ,2cos22c ),其中A 、C 是△ABC 的内角,若三角形的三个内角依次成等差列,试求,|b+c|的取值范围.答案:由题意得B=3π,A+C=32π,b ⊥t ,t=(1,0),∴b=(0,-1),b+C=(cosA ,cosC),|b+C|2=cos2A+cos 2c=1+21(cos2A+cos2C)1+21 cos2A+cos2(32π-A))=1+21cos(2A+3π),∵0∠A<32π,∴3π∠2A+ππ353<,∴-1≤cos(2A+3π)<21,∴|b+c|2∈[45,21 ],∴|b+c|∈[25,22] 命题角度3平面向量与平面解析几何1.(典型例题)已知椭圆的中心在原点,离心率为21,一个焦点F(-m ,0)(m 是大于0的常数.)(1)求椭圆的方程;(2)设Q 是椭圆上的一点,且过点F 、 Q 的直线l 与y 轴交于点M ,若||2||QF MQ =,求直线l 的斜率.[考场错解] 第(2)问:设Q(xo ,yo),直线J 的方程为 y=k(x+m),则点M(0,km),由已知得F 、Q 、M 三点共线,且 ||2||QF MQ =,∴||2||QF MQ =由于F(-m ,0), M(0,km),由定比分点坐标公式,得 x Q =62,12791,134,31,3222222±==+∴=+=-k k m y m x Q km y m Q 解得上在椭圆又[专家把脉] 缺乏分类讨论的思想,没有考虑图形的多样性,将||2||QF MQ =进行转化时出现错误,依题意||2||=应转化为2±=再分类求解k . [对症下药] (1)设所求椭圆方程为=+2222by ax 1 (a>b>O).由已知得c=m ,.3,2,21m b m a a c ==∴= 故所求的椭圆方程是.1342222=+m y m x(2)设Q(x Q ,y Q ),直线l 的方程为y=k(x+m),则点M(0,km),∵M 、Q 、F 三点共线,||2||QF MQ =,∴QF MQ 2=.当QF MQ 2=时,由于F(-m ,0),M(0,km),由定比分点坐标公式,得,31,32km y m x Q Q =-=又Q 在椭圆;62,12791,13422222±==+∴=+k k my m x 解得有上同理当.0,131,2222==+-=k mm k QF MQ 解得有时故直线l 的斜率是0, .62±2.(典型例题)如图6—4,梯形ABCD 的底边AB 在y 轴上,原点O 为AB 的中点,|AB|=.3242||,324-=CD AC ⊥BD ,M 为CD 的中点. (1)求点M 的轨迹方程;(2)过M 作AB 的垂线,垂足为N ,若存在常数λo ,使PN MP o λ=,且P 点到A 、B 的距离和为定值,求点P 的轨迹C 的方程.[考场错解] 第(2)问:设P(x ,y),M(x o ,y o ),则N(0,y o ) PN MP y y x PN y y x x MP o o o o λ=--=--=∴又),,(),,( ∴x-x o =-λo x,y-y o =λo (y o -y),∴λo =-1.[专家把脉] 对PN MP o λ=分析不够,匆忙设坐标进行坐标运算,实际上M 、N 、P 三点共线,它们的纵坐标是相等的,导致后面求出λo=-1是错误的.[对症下药] (1)解法1:设M(x ,y),则C(x ,-1+,0),3221,(),322=∙⊥+-+BD AC BD AC y x D y 得由 即(x ,y-1)·(x ,y+1)=0,得x 2+y 2=1,又x ≠0,∴M 的轨迹方程是:x 2+y 2=1(x ≠0)解法2:设AC 与BD 交于E ,连结EM 、EO ,∵AC+BD ,∴∠CED=∠AEB=90°,又M 、O 分别为CD , AB 的中点,∴||21|||,|21||AB EO CD OM ==,又E 为分别以AB 、CD 为直径的圆的切点,∴O 、C 、M 三点共线,∴ |OM|=|OE|+|AB|=1,∴M 在以原点为圆心1为半径的圆上,轨迹方程为x 2+y 2=1(x ≠0).(2)设P(x ,y),则由已知可设M(xo ,y),N(0,y),又由 MP=λo PN 得(x-x o ,0)=λo (-x ,0),∴x o =(1+λo )x ,又 M 在x 2+y 2=1(x ≠0)上,∴P 的轨迹方程为(1+λo )2x 2+ y 2=1(x ≠0),又P 到A 、B 的距离之和为定值,∴P 的轨迹为经A ,BP 为焦点的椭圆,∴+=+-1(,98)1(112得O λλo )2=9,∴P 轨迹E 的方程为9x 2+y 2=1(x ≠O).3.(典型例题)如图6—5,ABCD 是边长为2的正方形纸片,以某动直线l 为折痕将正方形在其下方的部分向上翻折,使得每次翻折后点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

经典易错题会诊与2012届高考试题预测(一)考点1集合与简易逻辑集合的概念与性质集合与不等式集合的应用简易逻辑充要条件集合的运算逻辑在集合中的运用集合的工具性真假命题的判断充要条件的应用经典易错题会诊命题角度1 集合的概念与性质1.(典型例题)设全集U=R,集合M={x|x>1},P={x|x2>1},则下列关系中正确的是( )A.M=P B.P⊂MC.M⊂P D.C UM P=ø[考场错解] D[专家把脉] 忽视集合P中,x<-1部分.[对症下药] C ∵x2>1 ∴x>1或x<-1.故M⊂P.2.(典型例题)设P、Q为两个非空实数集合,定义集合P+Q={a+b|a∈P,b∈Q},若P{0,2,5},Q={1,2,6},则P+Q中元素的个数是()A.9 B.8C.7 D.6[考场错解] A P中元素与Q中元素之和共有9个.[专家把脉]忽视元素的互异性,即和相等的只能算一个.[对症下药] B P中元素分别与Q中元素相加和分别为1,2,3,4,6,7,8,11共8个.3.(典型例题)设f(n)=2n+1(n∈N),P={l,2,3,4,5},Q={3,4,5,6,7},记Pˆ={n∈N|f(n) ∈P},Qˆ={n∈N|f(n) ∈则(Pˆ C N Qˆ) (Qˆ C N Pˆ)等于 ( )A.{0,3} B.{1,7}C.{3,4,5} D.{1,2,6,7}[考场错解] D P C N Q={6,7}.Q C N P={1,2}.故选D.[专家把脉]未理解集合Pˆ的意义.[对症下药] B ∵P ˆ ={1,3,5}.Q ˆ={3,5,7}.∴P ˆ C N Q ˆ={1}. P ˆ C N Q ˆ={7}.故选B .4.(典型例题)设A 、B 为两个集合,下列四个命题:①A B ⇔对任意x ∈A,有x ∉B ;②A B ⇔ A B=ø;③A B ⇔ A B;④A B ⇔存在x ∈A, 使得x ∉B.其中真命题的序号是_____.[考场错解] ∵A B ,即A 不是B 的子集,对于x ∈A ,有x ∉ B;A B=ø,故①②④正确. [专家把脉] 对集合的概念理解不清.∵A B ,即A 不是B 的子集,但是A ,B 可以有公共部分,即存在x ∈ A ,使得x ∉ B.不是对任意x ∈A,有x ∉B ,故④正确.“A B ”是“任意x ∈A ,有x ∉B ”的必要非充分条件.②同①.[对症下药] 画出集合A ,B 的文氏图或举例A={1,2},B={2,3,4},故①、②均不成立,③A {1,2,3},B={1,2},∴A B 但B ⊆A ,故也错.只有④正确,符合集合定义.故填④5.(典型例题Ⅰ)设A 、B 、I 均为非空集合,且满足A ⊆B ⊆I ,则下列各式中错误的是 ( ) A .(C I A ) B=IB .(C I A) (C I B)=I C .A (C I B)=øD .(C I A) (C I B)= C I B[考场错解] 因为集合A 与B 的补集的交集为A ,B 的交集的补集.故选D . [专家把脉] 对集合A ,B ,I 满足A ⊆B ⊆I 的条件,即集合之间包含关系理解不清.[对症下药] 如图是符合题意的韦恩图.从图中可观察A 、C 、D 均正确,只有B 不成立.或运用特例法,如A={1,2,3},B={1,2,3.4},I={1,2,3,4,5}.逐个检验只有B 错误. 专家会诊1.解答集合问题,首先要正确理解集合有关概念,特别是集合中元素的三要素;对于用描述法给出的集合{x|x ∈P},要紧紧抓住竖线前面的代表元素x 以及它所具有的性质P ;要重视发挥图示法的作用,充分运用数形结合(数轴,坐标系,文氏图)或特例法解集合与集合的包含关系以及集合的运算问题,直观地解决问题.2.注意空集ø的特殊性,在解题中,若未能指明集合非空时,要考虑到空集的可能性,如A ⊆B ,则有A=ø或A ≠ø 两种可能,此时应分类讨论.考场思维训练1 全集U=R ,集合M={1,2,3,4},集合N=⎭⎬⎫⎩⎨⎧-≤121|x x ,则M (C U N)等于 ( ) A .{4} B .{3,4}C .{2,3,4}D . {1,2,3,4} 答案:B 解析:由N={},12|,121|+≤=⎭⎬⎫⎩⎨⎧-≤x x N x x 得C U N={}{}4,3)(,12|=⋂∴+N C M x x U 2 设集合M={x|x=3m+1,m ∈Z},N=y|y{=3n+2,n ∈Z},若x 0∈M,y 0∈N ,则x 0y 0与集合M,N 的关系是 ( )A.x 0y 0∈M B .x 0y 0∉M MM C.x 0y 0∈N D .x 0y 0∉N答案: C解析:∵x o..2)23(32369)23)(13(,23,,130C N n m mn n m mn n m y x n y N y m x M o o o o 故选∈+++=+++=++=∴+=∴∈+=∴∈3 设M={x|x4a ,a ∈R},N={y|y=3x,x ∈R},则 ( ) A .M ∩N=Ø B .M=NC. M ⊃ND. M ⊂N 答案:B 解析:M={}{}{}B N y y x x M R a x x a 选.0|0|,4|=>=>==∈=4 已知集合A={0,2,3},B={x|x=ab,a 、b ∈A 且a ≠b},则B 的子集的个数是 ( ) A .4 B .8 C .16 D .15答案:解析:{},6,0=B 它的子集的个数为22=4。

5 设集合M={(x ,y)|x=(y+3)·|y-1|+(y+3),-25≤y ≤3},若(a ,b)∈M ,且对M 中的其他元素(c ,d),总有c ≥a ,则a=_____.答案:解析:依题可知,本题等价于求函数不胜数x=f(y)=(y+3).|y-1|+(y+3)在.325时的最小值≤≤-y (1) 当.49,25,425)21(6)3()1)(3(,125min 22=-=++-=---=++-+=≤≤-x y y y y y y y x y 时所以时 1≤y ≤3时,x=(y+3)(y-1)+(y+3)=y 2+3y=(y+23)2-.49,49,25,494.4,1,49min =-===a x y x y 即有最小值时因此当而时所以当 命题角度 2 集合与不等式 1.(典型例题)集合A=⎭⎬⎫⎩⎨⎧+-011|x x x ,B={x|x-b|<a =,若“a=1”是“A ∩B ≠Ø”的充分条件,则b 的取值范围是 ( )A .-2≤b<2B .-2<b ≤2C .-3<b <-1D .-2<b <2[考场错解] A 当a=l 时,A={x|-1<x <1=且B={x|b-1<x <b+1=.A ∩B ≠Ø.b -1<1且b+1≥-1.故-2≤b <2.∴只有A 符合.[专家把脉] A ∩B ≠Ø时,在点-1和1处是空心点,故不含等于.[对症下药] D 当a=1时,A={x|-1<x <1=.B={x|b-1<x <b+1=.此时A ∩B ≠Ø的充要条件是b-1<1且b+1>-1.即-2<b <2.故只有D 符合.2.(典型例题)(1)设集合A={x|4x-1≥9,x ∈R},B={x|3+x x≥0,x ∈R},则A ∩B=_____. [考场错解] {x|x ≤-3或x ≥25}.[专家把脉] ∵3+x x≥0∴x(x+3)≥0.而此时x+3≠0.故不含x=-3. [对症下药] A={x|x ≤-3或x ≥25}.B={x|x-3或x ≥0}.∴A ∩B=≤-3或x ≥25}. 3.(典型例题)已知f(x)=222+-x a x (x ∈R)在区间[-1,1]上为增函数.(1)求实数a 的值所组成的集合A ; (2)设关于x 的方程f(x)=x1的两根为x 1,x 2,试问:是否存在实数m ,使得不等式m 2+tm+1≥|x 1-x 2|对任意a ∈A 及t ∈[-1,1]恒成立?若存在,求出m 的取值范围;若不存在,请说明理由.[考场错解] (1)因为f(x)=222+-x a x (x ∈R),所以f(x)=222)2(422+++-x ax x ,依题意f(x)≥0在[-1,1]上恒成立,即2x 2-2ax-4≤0在[-1,1]上恒成立. 当x=0时,a ∈R;当0<x ≤1时,a ≥x-x 2恒成立,又y=x-x2在(0,1)上单调递增,所以y=x-x 2的最大值为-1,得a ≥-1,当-1≤x<0时x-x2恒成立,由上知a ≤1.综上:a ∈R(注意应对所求出的a 的范围求交集). (2)方程f(x)=x1变形为x 2-ax-2=0,|x 1-x 2|=82+a ,又-1≤a ≤1,所以|x 1-x 2|=82+a 的取大值为3,m 2+tm+1≥|x 1-x 2|对任意a ∈A 及t ∈[-1,1]恒成立等价于m 2+tm+1≥3在t ∈[-1,1]恒成立,当 m=0时,显然不成立,当m>0时,t ≥m m 22-恒成立,所以-1≥mm 22-,解得m ≥2;当m<0时,t ≤m m 22-恒成立,所以1≤mm 22-,解得m ≤-2.综上:故不存在实数m ,使得不等式m 2+tm+1≥|x 1-x 2|对任意a ∈A 及t ∈[-1,1]恒成立.[专家把脉] (1)讨论x 求参数的范围,最后应求参数的交集而不是并集.因为x ∈[-1,1]时,f(x)≥0恒成立.(2)注意对求出的m 的值范围求并集而不是交集. [对症下药] (1)因为f(x)=222+-x a x (x ∈R),所以f ′(x)=222)2(422+++-x ax x ,依题意f ′(x)≥0在[-1,1]上恒成立,即2x 2-2ax-4≤0在[-1,1]上恒成立. 当x=0时,a ∈R ;当0<x ≤1时,a ≥x-x 2恒成立,又y=x-x2在(0,1)上单调递增,所以y=x-x 2的最大值为-1,得a ≥-1;当-1≤x<0时a ≤x-x2恒成立,由上知a ≤1.综上≤a ≤1(注意应对所求出的a 的范围求交集). (2)方法1:方程f(x)=x1变形为x 2-ax-2=0,|x 1-x 2|=82+a ,又-1≤a ≤1,所以|x 1-x 2|=82+a 的最大值为3,m 2+tm+1≥|x 1-x 2|对任意a ∈A 及t ∈[-1,1]恒成立等价于m 2+tm+1≥3在t ∈[- 1,1]恒成立,当m=0时,显然不成立,当m>0时,t ≥mm 22-恒成立,所以-1≥m m 22-,解得m ≥2;当m<0时,t ≤m m 22-恒成立,所以1<mm 22-,解得m ≤-2. 综上:存在实数m ,使得不等式m 2+tm+1≥|x 1-x 2|对任意a ∈A 及t ∈[-1,1]恒成立,m的取值范围是{m|m ≥2或m ≤-}2(注意对求出的m 的取值范围求并集).方法2:方程f(x)=x1变形为x 2-ax-2=0,|x 1-x 2|=82+a ,又-1≤a ≤1,所以|x 1-x 2|=82+a 的最大值为3,m 2+tm+1≥|x 1-x 2|对任意a ∈A 及t ∈[-1,1]恒成立等价于m 2+tm+1≥3在t ∈[-1,1]恒成立,令g(t)=tm+m 2-2,有g(-1)=m 2+m-2≥0,g(1)=m 2-m-2≥0,解得{m|m ≥2或m ≤-2}.(注意对求出的m 的取值范围求交集).专家会诊讨论参数a 的范围时,对各种情况得出的参数a 的范围,要分清是“或”还是“且”的关系,是“或”只能求并集,是“且”则求交集.考场思维训练1 设[x]表示不超过x 的最大整数,则不等式[x]2-5[x]+6≤0的解集为 ( ) A .(2,3) B .[2,3]C .[2,4]D .[2,4]答案:C 解析:由[x]2-5[x]+6≤0,解得2≤[x] ≤3,由[x]的定义知2≤x<4所选C.2 已知不等式|x-m|<1成立的充分非必要条件是2131 x ,则实数m 的取值范围是 ( )A.⎥⎦⎤⎢⎣⎡-21,34 B.⎥⎦⎤⎢⎣⎡-34,21C.⎪⎭⎫ ⎝⎛-∞-21, D.⎪⎭⎫⎢⎣⎡+∞,34答案:B解析:因不等式|x-m|<1等价于m-1<x<m+1,依题意有.,3421,211311B m m m 所以选≤≤-∴⎪⎪⎩⎪⎪⎨⎧≥+≤- 3 设A 、B 是两个集合,定义A-B={x|x ∈A ,且x ∉B}.若M={x|x+1≤2},N={x|x=sin α|α∈等R},则M-N 等于 ( ) A .[-3,1] B .[-3,0]C .[0,1]D . [-3,0] 答案:B4 已知集合A={x|(x-2)[x-(3a+1)]<0=, B={x|0)1(22 +--a x a x }.(1)当a=2时,求A ∩B ;(2)求使B ⊆A 的实数a 的取值范围.解析:(1)当a=2时,A=(2,7),B=(4,5)∴).5,4(=⋂B A (2)∵B=(2a,a 2+1),当a <==-=⎪⎩⎪⎨⎧≤++≥⊆+=A a a a a a A B a A ,31;1,21132,)2,13(312时当此时必须要使时Ø,使 )13,2(,31;+=>⊆a A a a A B 时当不存在的要使1,13122,2此时必须⎪⎩⎪⎨⎧+≤+≥⊆a a a A B ≤a ≤3. 综上可知,使A B ⊆的实数a 的取值范围为[1,3]|1|-⋃命题角度 3 集合的应用1.(典型例题)ω是正实数,设S ω={θ|f(x)=cos[ω(x+θ)]是奇函数},若对每个实数a,S ω∩(a,a+1)的元素不超过2个,且有a 使S ω∩(a ,a+1)含2个元素,则ω的取值范围是_____.[考场错解] (π,2π)[专家把脉] ∵a 使S ω∩(a,a+1)含两个元素,如果ωπ2>1时,则超过2个元素,注意区间端点.[对症下药] 由S ω∩(a ,a+1)的元素不超过两个,∴周期ωπ2×21<1.∴ω>π又∵有a使S ω∩(a ,a+1)含两个元素,∴ωπ2周期≥1.∴ω≤2π.故ω∈(π,2π).2.(典型例题)设函数f(x)=-||1x x+(x ∈R),区间M=[a,b](a<b),集合N={y|y=f(x),x ∈M},则使M=N 成立的实数对(a ,b)有 ( ) A.0个 B .1个C.2个 D .无数多个[考场错解] D ∵y=f(x)是奇函数,不妨设x>0.f(x)=-1+11+x ,∴f(x)在(0,+∞)上为减函数,即y=f(x)在[a ,b]上为减函数,∴y=f(x)的值域为⎥⎦⎤⎢⎣⎡+-+-||1,||1a a b b ,∴N ∈⎥⎦⎤⎢⎣⎡+-+-||1,||1a a b b ∵M=N ,∴M ⊆N ∴a ≥||1b b +-,且b ≤||1a a+-,故有无数组解. [专家把脉] 错误地理解了M=N,只是M ⊆N,忽视了M=N ,包含M ⊆N 和N ⊆M 两层含义.[对症下药]∵f(x)=⎪⎪⎩⎪⎪⎨⎧-+-≥++-)0(111)0(111 x x x x ,∵y=f(x)在[a ,b]上为减函数 ∴y=f(x)的值域为⎥⎦⎤⎢⎣⎡+-+-||1,||1a a b b ∵N={y|y=f(x)},∴N 表示f(x)的值域-b∴M=N ,∴b a a a b b b a =⇒⎪⎪⎩⎪⎪⎨⎧+-=+-=||1||1,而已知a<b ,∴满足题意的a 、b 不存在,故选A. 3.(典型例题)记函数f(x)=132++-x x 的定义域为A ,g(x)=1g[(x-a-1)(2a-x)](a<1)的定义域为B. (1)求A ;(2)若B ⊆A ,求实数a 的取值范围. [考场错解] (1)由2-13++x x ≥0,得x<-1或x ≥1.∴A={x|x<-1或x ≥1} (2)由(x-a-1)(2a-x)>0,得(x-a-1)(x-2a)<0.∵a<1,∴a+1>2a ,∴B=(2a ,a+1) ∵B ⊆A ∴2a>1或a+1≤-1 ∴a>21或a ≤-2又∵a<1∴a ≤-2或21<a<1 [专家把脉] 利用集合的包含关系时,忽视了端点的讨论. [对症下药] (1)由2-13++x x ≥0,得x<-1或x ≥1. (2)由(x-a-1)(2a-x)>0,得(x-a-1)(x-2a)<0.∵a<1,∴a+1>2a ,∴B=(2a ,a+1)∵B ⊆A,∴2a ≥1或a+1≤-1,即a ≥21或a ≤-2,而a<1,∴21≤a<1或a ≤-2,故当B ⊆A 时,实数a 的范围是(-∞,-2)∪[21,1].专家会诊集合与不等式、集合与函数、集合与方程等,都有紧密联系.因为集合是一种数学工具.在运用时注意知识的融会贯通.有时要用到分类讨论,数形结合的思想.考场思维训练1 已知集合A={x|(a 2-a)x+1=0,x ∈R},B={x|ax 2-x+1=0,x ∈R},若A ∪B=Ø,则a 的值为 ( )A .0B .1C .0或1D .0或4答案:B 解析:AUB=ø,∴A= ø且B=ø,由A=ø得a=0或1;由B=ø 得a>0且△<0,解得a>.1,41=∴a 2 设集合P={3,4,5},Q={4,5,6,7}定义P ※Q={(a ,b)|a ∈p ,b ∈Q ,则P ※Q 中元素的个数为 ( )A .3B .4C .7D .12 答案:D3 已知关于x 的不等式 ax ax --250的解集为M.(1)a=4时,求集合M ; 答案:(1)当a=4时,原不等式可化为4542<--x x ,即).2,45()2,(),2,45()2,(,0)2)(45(4⋃--∞⋃--∞∈∴<--为故M x x x(2)若3∈M 且5∉M ,求实数a 的取值范围. 答案:由3,359,03532<>∴<--∈a a aa M 或得 ① 由,251,055552<≤∴≥--∉a aa M 得② 由①、②得).25,9()35,1[.259,351⋃<<<≤的取值范围是因此或a a a命题角度4 简易逻辑1.(典型例题)对任意实数a 、b 、c ,给出下列命题:①“a=b ”是“ac=bc ”的充要条件;②“a+5是无理数”是“a 是无理数”的充要条件;③“a>b ”是“a2>b2”的充分条件;④“a<5”是“a<3”的必要条件. 其中真命题的个数是 ( ) A .1 B .2 C .3 D .4 [考场错解] D[专家把脉] 忽视①中c=0的情况,③中a ,b 小于0的情况.[对症下药] B ①中c=0时,非必要条件;③中0>a>b 时,非充分条件,②④正确. 2.(典型例题)给出下列三个命题 ①若a ≥b >-1,则bba a +≥+11 ②若正整数m 和n 满足m ≤n ,则2)(n m n m ≤- ③设P(x 1,y 1)为圆O 1:x 2+y 2=9上任一点,圆O 2以Q(a ,b)为圆心且半径为1.当(a-x 1)2+(b-y 1)2=1时,圆O 1与圆O 2相切 其中假命题的个数为 ( ) A .0 B .1 C .2 D .3 [考场错解] A[专家把脉] ③中(a-x 1)2+(b-y 1)2=1时,即圆 O 2与O 1上任一点距离为1,并不一定相切. [对症下药] B3.(典型例题)设原命题是“已知a ,b ,c ,d 是实数,若a=b ,c=d ,则a+c=b+d ”,则它的逆否命题是( )A.已知a ,b ,c ,d 是实数,若a+c ≠b+d ,则a ≠b 且c ≠dB.已知a ,b ,c ,d 是实数,若a+c ≠b+d ,则a ≠b 或c ≠dC.若a+c ≠b+d ,则a ,b ,c ,d 不是实数,且a ≠b ,c ≠dD.以上全不对 [考场错解] A[专家把脉] 没有分清“且”的否定是“或”,“或”的否定是“且”.[对症下药] B 逆否命题是“已知a ,b ,c ,d 是实数,若a+c ≠b+d ,则a ≠b 或c ≠d ”.4.(典型例题)已知c>0,设P :函数y=c x在R 上单调递减;Q :不等式x+|x-2c|>1的解集为R ,如果P 和Q 有且仅有一个正确,求c 的取值范围.[考场错解] 由函数y=c x在R 上单调递减,得0<c<1;∵x+|x-2c|=,2,22,22⎩⎨⎧≥-c x c cx c x 所以函数y=x+|x-2c|在R 上的最小值为2c ,因为不等式 x+|x-2c|>1的解集为R ,所以2c>1,得c>21.如果P 真,得0<c<1,如果Q 真,则c>21.所以c 的取值范围是(0,+∞).[专家把脉] 将P 和Q 有且仅有一个正确,错误理解成P 正确或Q 正确. [对症下药] 由函数y=c x在R 上单调递减,得0<c<1;∵x+|x-2c|=,2,22,22⎩⎨⎧≥-cx c cx c x 所以函数y=x+|x-2c|在R 上的最小值为2c ,因为不等式x+|x-2c|>1的解集为R ,所以2c>1,得c>21.如果P 真Q 假,则0<c ≤21;如果Q 真P 假,则c ≥1.所以c 的取值范围是(0, 21)∪[1,+∞]专家会诊1.在判断一个结论是否正确时,若正面不好判断,可以先假设它不成立,再推出矛盾,这就是正难则反.2.求解范围的题目,要正确使用逻辑连结词,“且”对应的是集合的交集,“或”对应的是集合的并集.考场思维训练1 已知条件P :|x+1|>2,条件q :5x-6>x 2,则⌝p 是⌝q 的 ( ) A.充要条件 B .充分但不必要条件C.必要但不充分条件D.既非充分也非必要条件答案:B解析:p:x<-3或x>1,q:2<x<3,则q 是p 的充分但不必要条件,故┒p 是┒q 的充分但不必要条件。

相关文档
最新文档