2012届高三上学期期中考试(数学理)
2012届高三二模考试数学试卷(理)及答案
2012届高三模拟考试数学试题数学试题(理科)本试卷共4页,21小题,满分150分.考试用时120分钟.注意事项:1.答卷前,考生要务必填写答题卷上密封线内的有关项目.2.选择题每小题选出答案后,用铅笔把答案代号填在答题卷对应的空格内.3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卷各题目指定区域内;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.请考生保持答题卷的整洁.考试结束后,将答题卷和答题卡交回. 参考公式:锥体的体积公式13V Sh =,其中S 为锥体的底面面积,h 为锥体的高. 一、选择题:本大题共8小题,每小题5分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.若复数(1)i ai ⋅+是纯虚数,则实数a 的值是( )A. 1B. 1-C.0D. 0或1-2.已知集合{||2,A x x x =≤∈R },{2,B x x =≤∈Z },则A B = ( )A. (0,2)B. [0,2]C. {0, 2}D. {0,1,2}3.设25025..12,25,()2.a b c ===,则,,a b c 的大小关系是(C )A.a c b >>B. c a b >>C. a b c >>D.b a c >>4.一空间几何体的三视图如图所示,则该几何体的体积为. A. 1 B. 3 C 6 D. 25.设向量(1,0)a = ,11(,)22b = ,则下列结论正确的是 ( )A.a b =B.2a b ⋅= C. a ∥b D. a b - 与b 垂直6.执行如图1所示的程序框图后,输出的值为5,则P 的取值范围( )A.715816P <≤ B. 1516P > C. 715816P ≤< D.3748P <≤ 7. 下列四个判断:①某校高三一班和高三二班的人数分别是,m n ,某次测试数学平均分分别是,a b ,则这两个班的数学平均分为2a b+; ②10名工人某天生产同一零件,生产的件数是15,17,14,10,15,17,17,16,14,12,设其平均数为a ,中位数为b ,众数为c ,则有b a c >>; ③从总体中抽取的样本12221111(,),(,),,(,),,n nn n i i i i x y x y x y x x y y n n ====∑∑ 若记,则回归直线y =bx a +必过点(,x y )④已知ξ服从正态分布(0N ,2)σ,且(20)0.4P ξ-≤≤=,则(2)0.2P ξ>= 其中正确的个数有: ( )A .0个B . 1 个C .2 个D .3个8. 定义符号函数1,0sgn 0,01,0x x x x >⎧⎪==⎨⎪-<⎩,设111sgn()1sgn()122()()22x x f x f x -+-+=⋅+2()f x ⋅,[0,1]x ∈,其中1()f x =12x +, 2()f x ⋅=2(1)x -, 若1[()][0,)2f f a ∈,则实数a 的取值范围是( )A. 1(0,]4B. 11(,)42C. 11(,]42D. 3[0,]8二、填空题:本大共7小题,考生作答6小题,每小题5分,满分30分.(一)必做题(9~13题)9.. 已知A 是单位圆上的点,且点A 在第二象限,点B 是此圆与x 轴正半轴的交点,记AOB α∠=, 若点A的纵坐标为35.则s i n α=_____________;tan(2)πα-=_______________.10.以抛物线24y x =的焦点为圆心,且被y 轴截得的弦长等于2的圆的方程为__________________.11.从如图所示的长方形区域内任取一个点()y x M ,,则点M 取自阴影部分的概率为____________.12.已知,x y 满足约束条件5000x y x y y ++⎧⎪-⎨⎪⎩≥≤≤,则24z x y =+的最小值是_________.13.设()11f x x x =-++,若不等式121()a a f x a+--≥对任意实数0a ≠恒成立,则x 取值集合是_______________________.(二)选做题(14~15题,考生只能从中选做一题) 14.(几何证明选讲选做题)如图,AB 是圆O 的直径,DE AD =,6,8==BD AB ,则ADAC= ;15.(坐标系与参数方程选做题) 已知直线l 方程是11x ty t =+⎧⎨=-⎩(t 为参数),,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,圆C 的极坐标方程为1ρ=,则圆C 上的点到直线l 的距离最小值是 三、解答题:本大题共6小题,满分80分,解答须写出文字说明、证明过程或演算步骤. 16. (本小题满分12分)已知等比数列{}n a 的前n 项和为n S , 11a =,且1S ,22S ,33S 成等差数列. (1)求数列{}n a 通项公式;(2)设n n b a n =+,求数列{}n b 前n 项和n T .17.(本小题满分14分) 有一个3×4×5的长方体, 它的六个面上均涂上颜色. 现将这个长方体锯成60个1×1×1的小正方体,从这些小正方体中随机地任取1个,设小正方体涂上颜色的面数为ξ. (1)求0ξ=的概率; (2)求ξ的分布列和数学期望.18.(本小题满分14分)如图5(1)中矩形ABCD 中,已知2AB =,AD =MN 分别为AD 和BC 的中点,对角线BD 与MN 交于O 点,沿MN 把矩形ABNM 折起,使平面ABNM 与平面MNCD 所成角为60 ,如图5(2).(1) 求证:BO DO ⊥;(2) 求AO 与平面BOD 所成角的正弦值.OABDC MNABDCMNO图6B A19.(本小题满分12分)在ABC ∆中,三个内角A ,B ,C 的对边分别为a ,b ,c ,其中2c =,且cos cos 1A bB a == (1)求证:ABC ∆是直角三角形;(2)如图6,设圆O 过,,A B C 三点,点P 位于劣弧AC ︿上,求PAC ∆面积最大值.20.(本小题满分14分)在直角坐标系xOy 中,动点P 与定点(1,0)F 的距离和它到定直线2x =的距离之比是2,设动点P 的轨迹为1C ,Q 是动圆2222:C x y r +=(12)r <<上一点. (1)求动点P 的轨迹1C 的方程; (2)设曲线1C上的三点1122(,),(,)A x y B C x y 与点F 的距离成等差数列,若线段AC 的垂直平分线与x 轴的交点为T ,求直线BT 的斜率k ;(3)若直线PQ 与1C 和动圆2C 均只有一个公共点,求P 、Q 两点的距离PQ 的最大值.21.(本小题满分14分)已知函数()ln(1)f x x mx =++,当0x =时,函数()f x 取得极大值. (1)求实数m 的值;(2)已知结论:若函数()ln(1)f x x mx =++在区间(,)a b 内导数都存在,且1a >-,则存在0(,)x a b ∈,使得0()()()f b f a f x b a-'=-.试用这个结论证明:若121x x -<<,函数121112()()()()()f x f x g x x x f x x x -=-+-,则对任意12(,)x x x ∈,都有()()f x g x >;(3)已知正数12,,,n λλλL ,满足121n λλλ+++=L ,求证:当2n ≥,n N ∈时,对任意大于1-,且互不相等的实数12,,,nx x x L ,都有1122()n n f x x x λλλ+++>L 1122()()()n n f x f x f x λλλ+++L .2012届高考模拟测试数学试题(理科)参考答案和评分标准一.选择题:CACBD ABB二填空题:9.35(2分)247(3分) 10. 22(1)2x y -+= 11. 13 12. 15- 13. 33(,][,)22-∞-+∞ 14. 4315.1三、解答题: 本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤.16.(本题满分14分)解:(1)设数列{}n a 的公比为q ,……………1分若1q =,则111S a ==,21244S a ==,31399S a ==,故13231022S S S +=≠⨯,与已知矛盾,故1q ≠,………………………………………………2分从而得1(1)111n nn a q q S q q--==--,………………………………………………4分由1S ,22S ,33S 成等差数列,得132322S S S +=⨯,即321113411q q q q--+⨯=⨯--, 解得13q =……………………………………………5分 所以11113n n n a a q--⎛⎫=⋅= ⎪⎝⎭.………………………………………………6分(2)由(1)得,11()3n n n b a n n -=+=+,………………………………7分 所以12(1)(2)()n n T a a a n =++++++1(1)(1)(12)12n n b q n nS n q -+=++++=+- ………………………………10分2111()(1)333.12213n n n n n n --+++-=+=-……………………………12分 17.(本题满分12分)(1)60个1×1×1的小正方体中,没有涂上颜色的有6个,61(0)6010P ξ=== … (3分) (2)由(1)可知1(0)10P ξ==;11(1)30P ξ==;2(2)5P ξ==;2(3)15P ξ== … (7分)… (10分)E ξ=0×110+1×1130+2×25+3×215=4730 …(12分)18(本题满分14分)解:(1)由题设,M ,N 是矩形的边AD 和BC 的中点,所以AM ⊥MN, BC ⊥MN, 折叠垂直关系不变,所以∠AMD 是平面ABNM 与平面MNCD 的平面角,依题意,所以∠AMD=60o , ………………………………………………………………………………………………………2分 由AM=DM ,可知△MAD 是正三角形,所以AD=2,在矩形ABCD 中,AB=2,AD=所以,,由题可知,由勾股定理可知三角形BOD 是直角三角形,所以BO ⊥DO ……………………………………………………………………………………… 5分解(2)设E ,F 是BD ,CD 的中点,则EF ⊥CD, OF ⊥CD, 所以,CD ⊥面OEF, OE CD⊥ 又BO=OD ,所以OE ⊥BD, OE⊥面ABCD, OE ⊂面BOD , 平面BOD ⊥平面ABCD过A 作AH ⊥BD ,由面面垂直的性质定理,可得AH ⊥平面BOD ,连结OH ,…………………… 8分 所以OH 是AO 在平面BOD 的投影,所以∠AOH 为所求的角,即AO 与平面BOD 所成角。
数学-常州市武进区2012届高三第一学期期中统考数学试题(理科)
常州市武进区2012届高三第一学期期中统考数学试题(理科)一.填空题(本大题共14小题,每小题5分,计70分)1.已知集合{}a A ,1-=,{}b B a,2=,若{}1=B A ,则=B A .2.已知平面向量()1,2a = , ()2,b m =- , 且//a b , 则23a b +=.3.函数ln(y e =-的定义域为 .4.已知函数2log ,0,()2,0.x x x f x x >⎧=⎨≤⎩若1()2f a =,则a = .5.若二次函数()f x 满足(2)(2)f x f x +=-,且()(0)(1)f a f f ≤<,则实数a 的取值范围是 .6.满足不等式组⎪⎩⎪⎨⎧>≤-+≤-+0,087032y x y x y x ,则目标函数y x k +=3的最大值为 .7.若*,x R n N ∈∈,规定:(1)(2)(1)n xx x x x n H=++⋅⋅⋅⋅⋅+-,例如:44(4)(3)(2)(1)24H -=-∙-∙-∙-=,则函数52()x f x x H -=∙的奇偶性为 . 8.等差数列{}n a 前n 项和为n S ,若7916a a +=,77S =,则12a = . 9.在ABC ∆中,若222,8AB AC BC =+=,则ABC ∆面积的最大值为 . 10.若sin()(0,0,||)2y A x A πωϕωϕ=+>><的最小值为2-,其图像相邻最高点与最低点横坐标之差为3π,又图像过点(0,1),则其解析式是 .11.若自然数n 使得作竖式加法n (n 1)(n 2)++++均不产生进位现象,则称n 为“可连数”;如:32是“可连数”,因为32+33+34不产生进位现象,23不是“可连数” ,因为23+24+25产生进位现象,那么自然数中小于100的“可连数”的个数为 .12.已知定义在R 上偶函数)(x f ,且0)1(=f ,当0>x 时有0)()(2'>-xx f x xf ,则不等式0)(>x xf 解集为 .13.已知)2,0(,∈y x ,且xy =1,则yx -+-4422的最小值是 . 14.已知集合{}{}1,2,3,1,2,3,4M N ==,定义函数:f M N →且点(1,(1)),A f (2,(2)),(3,(3))B f C f ;若ABC∆的内切圆圆心为D ,且()DA DC DB λλ+=∈R,则下列结论正确的有 .(填上正确命题的序号)① ABC ∆必是等腰三角形;② ABC ∆必是直角三角形; ③ 满足条件的实数λ有3个;④ 满足条件的函数有12个. 二.解答题(解答应写出文字说明、证明过程或演算步骤)15.(本题满分14分)在平面直角坐标系xOy 中,已知点6(,0)cos ,sin 5A P αα,(),其中20πα<<.⑴ 若,65cos =α求证:PA PO ⊥ ;⑵ 若PA PO = ,求)42sin(πα+的值.16.(本题满分14分)设函数sin ()2cos xf x x=+.⑴ 求()f x 的单调区间;⑵ 证明:对任意的0x ≥,都有()x x f 31≤.17.(本题满分14分) 我们将具有下列性质的所有函数组成集合M :函数()()y f x x D =∈,对任意,,2x y x y D +∈均满足1()[()()]22x y f f x f y +≥+,当且仅当x y =时等号成立。
浙江省浙大附中2012届高三数学上学期期中考试试题 理 新人教A版
2011学年第一学期期中考试高三数学(理)试卷一、选择题:共10小题,每小题5分,共50分,每小题给出的四个选项,只有一项是符合题目要求的.1.集合{}0,2,A a =,{}21,B a =,若{}0,1,2,4,16AB =,则a 的值为 ( ▲ )A .0B .1C .2D .4 2.下列命题中的真命题是 ( ▲ )A .若d c b a >>,,则bd ac >B .若,b a >则22b a >C .若,b a >则22b a >D .若,b a >则22b a >3.已知等差数列}{n a 中,1,16497==+a a a ,则12a 的值是 ( ▲ )A .15B .30C .31D .64 4.“1-=a ”是“函数2()21f x ax x =+-只有一个零点”的( ▲ ) A .充分必要条件 B .充分不必要条件C .必要不充分条件D .非充分必要条件5.已知向量(2,1),10,||52,||a a b a b b =⋅=+=则= ( ▲)A B .5 D .256.在△ABC 中,角A 、B 、C 的对边分别为c b a 、、,若20=++c b a ,三角形面积为310,60=A ,则=a ( ▲ )A .7B .8C .5D .67.不等式2|3||1|3x x a a ++-≥-对任意实数x 恒成立,则实数a 的取值范围为( ▲ ) A .[]4,1- B .(,2][5,)-∞-+∞C .(,1][4,)-∞-+∞D .[]5,2-8.已知正数x 、y 满足⎩⎨⎧≥+-≤-05302y x y x ,则14()2xy z -=⋅的最小值为( ▲ )A .1 B161D. 1329.已知函数()f x 在R 上满足2(1)2(1)31f x f x x x +=--++,则曲线()y f x =在点(1,(1))f 处的切线方程是 ( ▲ )A .20x y --=B . 0x y -=C .320x y +-=D .320x y --=10、已知函数xx x f ⎪⎭⎫⎝⎛--=31)1lg()(有两个零点21,x x ,则有 ( ▲ )A .121x x < B . 1212x x x x <+ C .1212x x x x =+ D . 1212x x x x >+二、填空题:共7小题,每小题4分,共计28分.请把答案填写在答卷相应的位置上......... 11.计算:(cos75sin75)(cos75sin75)+-= ▲ .12.函数)43lg()(2x x x f --=,则)(x f 的单调递减区间是 ▲ . 13.若对任意x >0,152++x x x≤a 恒成立,则a 的取值范围是 ▲14.如右图,测量河对岸的塔高AB 时,可以选与塔底B 在同一水平面内的两个测点C 与D ,测得15BCD ︒∠=.30BDC ︒∠=,30CD =米,并在点C 测得塔顶A 的仰角为60︒,则塔高AB = ▲ 米. 15.已知12-=n n a , 则=++++++1098321238910a a a a a a ▲16.设O 为ABC ∆的外心,且543=++,则ABC ∆的内角C 的值为 ▲ 17.设函数32()2ln f x x ex mx x =-+-,记()()f x g x x=,若函数()g x 至少存在一个零点,则实数m 的取值范围是 ▲ .三、解答题:共5小题,共计72分,请在答题卡指定区域.......内作答,解答时应写出文字说明、证明或演算步骤.18.(本题满分14分)已知sin 2().sin xf x x x=+(1)求()f x 的周期,并求()0,x π∈时的单调增区间. (2)在△ABC 中,c b a 、、分别是角A ,B ,C 所对的边,若3π=A ,且3=a ,求⋅的最大值. 19.(本题满分14分)集合{}2113x A x x -=≥+,{}ππsin ,,,062B y y a a a θθ⎡⎤==∈->⎢⎥⎣⎦且为常数.(1)求集合A 和B ;(2)若A B =∅,求a 的取值范围.20.(本题满分14分)已知函数14)(234-+-=ax x x x f 在区间[0,1]上单调递增,在区间[1,2]上单调递减。
宁夏回族自治区石嘴山市光明中学2012-2013届高三第一学期期中数学(理科)试题及参考答案
光明中学2012-2013届高三期中数学(理科)试题第Ⅰ卷(选择题60分)一、选择题:(本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知全集,R U =集合{}{}0107,732<+-=<≤=x x x B x x A ,则)(B A C R ⋂等于( )A.(-∞,3)∪(5,+∞)B. (-∞,3〕∪(5,+∞)C.(-∞,3〕∪〔5,+∞)D.(-∞,3)∪[5,+∞). 2.下列函数与x y =有相同图象的一个函数是( )A .2x y = B.xx y 2= C .)10(log ≠>=a a a y x a 且 D.x a a y log =3.若函数ax y =与xby -=在(0,+∞)上都是减函数,则bx ax y +=2在(0,+∞)上是( ) A .增函数B .减函数C .先增后减D .先减后增4.函数3)(5-+=x x x f 的零点落在的区间是( )A .[]1,0B .[]2,1C .[]3,2D .[]4,3 5.已知定义在R上的函数)(x f 是偶函数,对2)3()2()2( -=--=+∈f x f x f R x ,当有都 时,)2007(f 的值为( )A .2B .-2C .4D .-46.已知扇形的周长是3cm 2,则扇形的中心角的弧度数是( )A. 1B. 1或4C. 4D. 2或4 7.已知),1[)(3+∞-=在ax x x f 上是单调增函数,则a 的最大值是( ) 1 C .2 D .38 ).C D 9.若a >0,b >0,且函数32()422f x x ax bx =--+在x =1处有极值,则ab 的最大值等于( )A .2B .3C .6D .910.函数)sin()(ϕω+=x x f (其中2||πϕ<)的图象如图所示,为了得到x y ωsin =的图象,只需把)(x f y =的图象上所有点( ) A. 向左平移12π个单位长度 B. 向右平移12π个单位长度 C. 向左平移6π个单位长度 D. 向右平移6π个单位长度 11.则使方程()x f x m +=有解的实数m 的取值范围是( )A .(1,2)B .(,2]-∞-C .(,1)(2,)-∞⋃+∞D .(,1][2,)-∞⋃+∞12.已知()y f x =是定义在R 上的奇函数,且当0x >时不等式()()'0f x xf x +<成立,若()0.30.333a f =⋅,, , a b c 大小关系是( )A .c a b >>B .c b a >>C .b c a >>D .a c b >>高三期中数学试题(理科)答题卡一、选择题:(本大题共12小题,每小题5分,共60分)13.函数)4(log 2x y -=的定义域是 .14.由直线2,21==x x ,曲线xy 1=及x 轴所围图形的面积为 。
北京市师大附中2012届上学期高三年级开学测试理科数学试卷及答案
北京市师大附中2012届上学期高三年级开学测试理科数学试卷(本试卷满分100分,考试时间120分钟)卷I一、选择题1. 已知集合{}032|2<--=x x x A ,{}12|1>=-x x B ,则B A =( ) A. {}1x |x > B. {}3x |x < C.{}3x 1|x << D. {}3x -1|x << 2. 命题“R x ∈∃,使得1<x ”的否定是( )A. ∀x ∈R,都有1<xB. ∀x ∈R,都有1-≤x 或1≥xC. ∃x ∈R ,都有1≥xD. ∃x ∈R ,都有1>x3. 已知向量)2,(x a =,)1,3(-=b ,若(a +b )//(a -2b ),则实数x 的值为( ) A. -3 B. 2 C. 4 D. -64. 函数y=||x xa x (0<a<1)的图象的大致形状是( )5. 设α∈⎭⎬⎫⎩⎨⎧---3,2,1,21,31,21,1,2,则使αx y =为奇函数且在(0,+∞)上单调递减的α值的个数为( )A. 1B. 2C. 3D. 46. 已知平面上三个点A 、B 、C 满足CA BC AB ,4,3==则,5=BC AB ⋅+CA BC ⋅+AB CA ⋅的值等于( )A. 25B. 24C. -25D. -247. 已知()()31cos cos =-+βαβα,则βα22sin cos -的值为( ) A. 32 B. 31 C. 31- D. -328. 定义在),(+∞-∞上的偶函数)(x f 满足)()1(x f x f -=+,且)(x f 在[]0,1-上是增函数,下面五个关于)(x f 的命题中:①)(x f 是周期函数;②)(x f 图象关于1=x 对称;③)(x f 在[]1,0上是增函数;④)(x f 在[]2,1上为减函数;⑤)0()2(f f =,正确命题的个数是( )A. 1个B. 2个C. 3个D. 4个二、填空题 9. 函数x x x x f +-=)1()(的定义域是 。
2012届浙江省三校高三数学联考卷(理)2012216
2012届浙江省三校高三数学联考卷数学(理)试题一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的. (1) 计算21i i- 得 ( ▲ )A .3i -+ B. 1i -+ C. 1i - D. 22i -+(2) 从集合{1,1,2}A =-中随机选取一个数记为k ,从集合{2,1,2}B =-中随机选取一个数记为b ,则直线y kx b =+不经过第三象限的概率为 ( ▲ )A .29B. 13C. 49D. 59(3) 某程序的框图如图所示,则运行该程序后输出的B 的值是( ▲ ) A .63 B .31 C .15 D .7(4) 在圆06222=--+y x y x 内,过点E (0,1)的最长弦和最短弦分别是AC 和BD ,则四边形ABCD 的面积为 ( ▲ )A .25B .210C .215D .220(5) 已知函数()xx x f ⎪⎭⎫⎝⎛-=21lg 有两个零点1x 、2x ,则有 ( ▲ ).A 021<x x .B 121=x x .C 121>x x .D 1021<<x x(6) 若βα、均为锐角,且2sin sin cos cos sin ααβαβ=+,则βα与的大小关系为( ▲ )A .βα<B .βα> C .βα≤ D .不确定(7)在长方体ABCD —A 1B 1C 1D 1中,过长方体的顶点A 与长方体12条棱所成的角都相等的平面有 ( ▲ )A .1个B .2个C .3个D .4个(8)已知函数22, 1,(), 1,x ax x f x ax x x ⎧+≤⎪=⎨+>⎪⎩ 则“2a ≤-”是“()f x 在R 上单调递减”的( ▲ )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件(9) 设双曲线22221(0,0)x y a b ab-=>>的左、右焦点分别是1F 、2F ,过点2F 的直线交双曲线右支于不同的两点M 、N .若△1M N F 为正三角形,则该双曲线的离心率为(▲)A B C D 3(10) 设)(x f 是定义在R 上的奇函数,且当0≥x 时,2)(x x f =. 若对任意的[,2]x t t ∈+,不等式)(2)(x f t x f ≥+恒成立,则实数t 的取值范围是 ( ▲ )A .)+∞ B. [2)+∞, C. (0,2] D. [1]-二.填空题:本大题共7小题,每小题4分,满分28分.(11) 二项式5⎪⎭⎫ ⎝⎛+x m x 的展开式中3x 的系数为10,则实数m 等于___▲ .(12) 一空间几何体三视图如图所示,则该几何体的体积为___▲ .(13) 已知实数,x y 满足约束条件20,350,1,x y x y y -≤⎧⎪-+≥⎨⎪≥⎩则212x y z +-⎛⎫= ⎪⎝⎭的最大值等于___▲ .(14)在A B C ∆中,角,,A B C 所对的边分别是,,a b c ,若222b c a bc +=-,4AC AB ⋅=-且,则A B C ∆的面积 等于 ___▲ .(15) 将“你能HOLD 住吗”8个汉字及英文字母填入5×4的方格内,其中“你”字填入左上角,“吗”字填入右下角,将 其余6个汉字及英文字母依次填入方格,要求只能横读或 竖读成一句原话,如图所示为一种填法,则共有___▲ 种 不同的填法。
2012届高三上学期第二次月考数学卷 理科
学校 班级 姓名 考场 考号 装 订 线桃李中学2011—2012学年度第一学期月考试卷高三数学卷(理)一、 选择题(本大题共10小题,每小题5分,共50分)1.函数错误!未找到引用源。
的定义域为( )A .错误!未找到引用源。
B .错误!未找到引用源。
C .错误!未找到引用源。
D .错误!未找到引用源。
2.若错误!未找到引用源。
,则错误!未找到引用源。
的值等于( )A .错误!未找到引用源。
B .错误!未找到引用源。
C .错误!未找到引用源。
D . 错误!未找到引用源。
3.平面向量错误!未找到引用源。
与错误!未找到引用源。
的夹角为错误!未找到引用源。
, 错误!未找到引用源。
,错误!未找到引用源。
,则错误!未找到引用源。
错误!未找到引用源。
( )A .错误!未找到引用源。
B .错误!未找到引用源。
C .错误!未找到引用源。
D .错误!未找到引用源。
4.设等差数列{}n a 的前错误!未找到引用源。
项和为n S ,若25301(2)2a a x dx =⋅+⎰, 则95S S =( ) A .错误!未找到引用源。
B .错误!未找到引用源。
C .错误!未找到引用源。
D .错误!未找到引用源。
5.已知错误!未找到引用源。
,错误!未找到引用源。
,记错误!未找到引用源。
,要得到函数错误!未找到引用源。
的图像,只需将错误!未找到引用源。
的图像( ) A .向左平移错误!未找到引用源。
个单位 B .向右平移错误!未找到引用源。
个单位 C .向左平移错误!未找到引用源。
个单位 D .向右平移错误!未找到引用源。
个单位 6.下列命题中,真命题是( ) A .错误!未找到引用源。
B .错误!未找到引用源。
C .错误!未找到引用源。
D .错误!未找到引用源。
7.下面能得出错误!未找到引用源。
为锐角三角形的条件是( ) A .错误!未找到引用源。
B .错误!未找到引用源。
C .错误!未找到引用源。
北京市北师大附中2012届高三上学期开学测试(数学理)
北京市师大附中2012届上学期高三年级开学测试数学试卷(理科) (本试卷满分100分,考试时间120分钟) 卷I一、选择题1. 已知集合{}032|2<--=x x x A ,{}12|1>=-x x B ,则B A =( ) A. {}1x |x > B. {}3x |x < C.{}3x 1|x << D. {}3x -1|x << 2. 命题“R x ∈∃,使得1<x ”的否定是( )A. ∀x ∈R,都有1<x B. ∀x ∈R,都有1-≤x 或1≥x C. ∃x ∈R ,都有1≥x D. ∃x ∈R ,都有1>x3. 已知向量)2,(x a =,)1,3(-=b ,若(a +b )//(a -2b ),则实数x 的值为( ) A. -3 B. 2 C. 4 D. -64. 函数y=||x xa x(0<a<1)的图象的大致形状是( )5. 设α∈⎭⎬⎫⎩⎨⎧---3,2,1,21,31,21,1,2,则使αx y =为奇函数且在(0,+∞)上单调递减的α值的个数为( )A. 1B. 2C. 3D. 46. 已知平面上三个点A 、B 、C 43==则,5=⋅+⋅+⋅的值等于( )A. 25B. 24C. -25D. -247. 已知()()31cos cos =-+βαβα,则βα22sin cos -的值为( )A. 32B. 31C. 31-D. -328. 定义在),(+∞-∞上的偶函数)(x f 满足)()1(x f x f -=+,且)(x f 在[]0,1-上是增函数,下面五个关于)(x f 的命题中:①)(x f 是周期函数;②)(x f 图象关于1=x 对称;③)(x f 在[]1,0上是增函数;④)(x f 在[]2,1上为减函数;⑤)0()2(f f =,正确命题的个数是( )A. 1个B. 2个C. 3个D. 4个二、填空题 9. 函数xx x x f +-=)1()(的定义域是 。
广东省江门市2012届高三上学期期末调研测试数学(理科)试题
高二数学(理科)综合训练试题一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.⒈若全集R U =,集合}31|{≤≤=x x A ,}42|{≤≤=x x B ,}43|{≤<=x x C ,则A .CBC A U )(= B .C A C B U )(=C .B A C C U )(=D .B A C =⒉复数i iz +-=22(i 是虚数单位)的虚部是 A .i 54 B .i 54- C .54D .54-⒊函数xxx f -+=11log )(2(0≠x )的图象在A .一、三象限B .二、四象限C .一、二象限D .三、四象限⒋已知{}n a (*∈N n )为等差数列,其公差为2-,且7a 是3a 与9a 的等比中项,则{}n a 的首项=1a A .14B .16C .18D .20⒌已知命题p :“βαs i n s i n =,且βαc o s c o s =”,命题q :“βα=”。
则命题p 是命题q 的A .必要不充分条件B .充分不必要条件C .充要条件D .既不充分与不必要条件 ⒍如图1,正方体////D C B A ABCD -中,M 、E 是AB 的 三等分点,G 、N 是CD 的三等分点,F 、H 分别是BC 、MN 的中点,则四棱锥EFGH A -/的侧视图为_ D .. _ C. . _ B . . _ A ..⒎将一颗质地均匀的骰子(它是一种各面上分别标有点数1、2、3、4、5、6的正方体玩具)先后抛掷2次,记第一次出现的点数为m ,记第二次出现的点数为n ,向量)2 , 2(n m a --=,)1 , 1(=b ,则a 和b 共线的概率为 A .181B .121 C .91D .125⒏定义B A *、C B *、D C *、A D *的运算结果分别对应下图中的(1)、(2)、(3)、(4),那么下图中的(M)、(N)所对应的运算结果可能是(2) (3) (M) (N)A .DB *、D A * B .D B *、C A * C .C B *、D A * D .D C *、D A *二、填空题:本大题共6小题,每小题5分,满分30分. ⒐=+⎰-11 )2(dx x e x .⒑已知)1 , 3(1-=e ,23, 21(2=e ,若221)3(e t e ⋅-+=,21e t e k ⋅+⋅-=,若⊥,则实数k 和t 满足的一个关系式是 ,tt k 2+的最小值为 .⒒在ABC ∆中,若︒=75A ,︒=45B ,6=AB , 则=AC .⒓已知点)1 , 1(-A 和圆C :4)7()5(22=-+-y x , 从点A 发出的一束光线经过x 轴反射到圆周C 的最短路程是 .⒔如图2所示的程序框图,其输出结果 为 .⒕如图3,圆O 是ABC ∆的外接圆,过点C 的切线交AB 的延长线于点D ,72=CD ,3==BC AB ,则=AC .ABCDE 1A1B 1C 1D 三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 15.(本小题满分12分)已知函数b x b x x x f -+⋅=ωωω2cos 2cos sin 2)((其中0>b ,0>ω)的最大值为2,直线1x x =、2x x =是)(x f y =图象的任意两条对称轴,且||21x x -的最小值为2π. ⑴求b ,ω的值; ⑵若32)(=a f ,求)465sin(a -π的值.16.(本小题满分14分)为了解今年某校高三毕业班准备报考飞行员学生的体重(单位:千克)情况,将所得的数据整理后,画出了频率分布直方图(如图4),已知图中从左到右的前3个小组的频率之比为1∶2∶3,其中第2小组的频数为12。
2012届高三第三阶段考数学理
2011-2012学年第一学期第三阶段考试题数 学(理科)第I 卷 选择题 (共60分)24、选择题(本大题共12小题,满分60分。
每小题5分;每小题给出四个选项中,只有一个正确)1.设1z i =+(i 是虚数单位),则22z z+=( ) A .-1-i B .-1+iC .1-iD .1+i 2."0)3(""2|1|"<-<-x x x 是的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条3.已知tan 2α=,则2cos 2(sin cos )ααα-的值为( )A .3-B .3C .2-D .24、函数()1,1,1x y lnx x +=∈+∞-的反函数为 ( ) A .()1,0,1x x e y x e -=∈+∞+ B .()1,0,1x x e y x e +=∈+∞-C .()1,,01x x e y x e -=∈-∞+D .()1,,01x x e y x e +=∈-∞-5.若,a b R ∈,且0ab >,则下列不等式中,恒成立的是 ( )A .222a b ab +>B .a b +≥C .11a b +>D .2b a a b+≥6.设2lg ,(lg ),a e b e c === ( )A. a b c >>B. a c b >>C. c a b >>D. c b a >> 7.已知等差数列{}n a 中,26a =,515a =,若2n n b a =,则数列{}n b 的前5项和等于 ( ) A .30B .45C .90D .1868.若点P 在曲线73+-=x x y 上,则该曲线在点P 处的切线的倾斜角的取值范围是 ( )A .),0[πB .),43[)2,0(πππ⋃C .]43,2()2,0[πππ⋃D .),43[)2,0[πππ⋃9.将函数sin(2)3y x π=+的图象按向量α平移后所得的图象关于点原点中对称,则向量α的坐标可能为( )A .(,0)12π-B .(,0)6π-C .(,0)12πD .(,0)6π10.若a ,b ,c 均为单位向量,且0=⋅b a ,0)()(≤-⋅-c b c a ,则||c b a -+的最大值为 ( ) A .12- B . 1C .2 D.211.设等差数列{}n a 的前n 项和为n S ,若90S >,100S <,则12a ,222a , ,992a 中最大的是 ( )A .12aB .552aC .662aD .992a12.锐角三角形ABC 中,若2A B =,则下列叙述正确的是:①sin 3sin 2B C =;②3tan tan 122B C =;③64B ππ<<;④ab∈. ( ) A .①② B .②③ C .③④ D .①④第II 卷(非选择题共90分)二.填空题(本题共5小题,每小题4分,满分20分)13.已知向量(1,2),(,1a b x ==,若向量a b + 与向量a b - 平行,则实数x= 。
福建省泉州市2012届高三数学3月质量检查试题 理(2012泉州质检)
某某号某某(在此卷上答题无效)某某★启用前2012年某某市普通高中毕业班质量检查理科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题),第Ⅱ卷第21题为选考题,其它题为必考题.本试卷共6页,满分150分.考试时间120分钟. 注意事项:1.答题前,考生先将自己的某某、某某号填写在答题卡上.2.考生作答时,将答案答在答题卡上.请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效.在草稿纸、试题卷上答题无效.3.选择题答案使用2B 铅笔填涂,如需改动,用橡皮擦干净后,再选涂其它答案标号;非选择题答案使用0.5毫米的黑色中性(签字)笔或碳素笔书写,字体工整、笔迹清楚.4.做选考题时,考生按照题目要求作答,并用2B 铅笔在答题卡上把所选题目对应的题号涂黑.5.保持答题卡卡面清洁,不折叠、不破损.考试结束后,将本试卷和答题卡一并交回. 参考公式:样本数据1x 、2x 、…、n x 的标准差:s =x 为样本平均数; 柱体体积公式:V Sh =,其中S 为底面面积,h 为高;锥体体积公式:13V Sh =,其中S 为底面面积,h 为高; 球的表面积、体积公式:24S R π=,343V R π=,其中R 为球的半径.第Ⅰ卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题意要求的.1. 复数()1i i +等于 A .1i -+B .1i +C .1i --D .1i -2. 已知集合{}13A x x =<<,{}21log 2B x x =<<,则AB 等于A.{}03x x << B.{}23x x << C.{}13x x << D.{}14x x <<3. 已知(2,1),(1,3)a b ==--,则||a b -等于 ABC .5D .254. 执行右侧框图所表达的算法,如果最后输出的S 值为12012,那么判断框中实数a 的取值X 围是 A .20112012a ≤<B .20112012a <≤ C .20112012a ≤≤D .20122013a ≤<5. 下列四个条件:①x ,y ,z 均为直线;②x ,y 是直线,z 是平面;③x 是直线,y ,z 是平面;④x ,y ,z 均为平面. 其中,能使命题“,x y yz x z ⊥⇒⊥”成立的有A .1个B .2个C .3个D .4个6. 已知实数,x y 满足2220,0,4,x y x y x y ⎧-+≥⎪+≥⎨⎪+≤⎩则2z x y =+的最大值是 A .5 B .-1 C .2 D.7. 已知二次函数2()f x ax bx =+,则“(2)0f ≥”是“函数()f x 在()1,+∞单调递增”的A .充要条件B .充分不必要条件C .必要不充分条件D. 既不充分也不必要条件8. 已知12,A A 分别为椭圆2222:1(0)x y C a b a b +=>>的左右顶点,椭圆C 上异于12,A A 的点P 恒满足1249PA PA k k ⋅=-,则椭圆C 的离心率为A .49B .23 C .59D 9. 为调查某校学生喜欢数学课的人数比例,采用如下调查方法:(1)在该校中随机抽取100名学生,并编号为1,2,3, (100)(2)在箱内放置两个白球和三个红球,让抽取的100名学生分别从箱中随机摸出一球,记住其颜色并放回;(3)请下列两类学生举手:(ⅰ)摸到白球且号数为偶数的学生;(ⅱ)摸到红球且不喜欢数学课的学生.如果总共有26名学生举手,那么用概率与统计的知识估计,该校学生中喜欢数学课的人数比例大约是A.88%B. 90%C. 92%D.94%10. 函数的图象与方程的曲线有着密切的联系,如把抛物线2y x =的图象绕原点沿逆时针方向旋转90就得到函数2y x =的图象.若把双曲线2213x y -=绕原点按逆时针方向旋转一定角度θ后,能得到某一个函数的图象,则旋转角θ可以是A .30B .45C .60D .90某某号某某(在此卷上答题无效)某某★启用前2012年某某市普通高中毕业班质量检查理 科 数 学第Ⅱ卷(非选择题共100分)注意事项:用0.5毫米黑色签字笔在答题卡上书写作答,在试题卷上作答,答案无效.二、填空题:本大题共5小题,每小题4分,共20分.将答案填在答题卡的相应位置. 11. 已知等差数列}{n a 中,51a =,322a a =+,则11S =.12. 一个三棱锥的正视图和侧视图及其尺寸如图所示,则该三棱锥俯视图的面积为 .13. 在ABC中,60,B AC ==ABC 周长的最大值为 .14. 已知{}()(),min ,a b a a b a b b ≤⎧⎪=⎨>⎪⎩,设()31min ,f x x x ⎧⎫=⎨⎬⎩⎭,则由函数()f x 的图象与x 轴、直线x e =所围成的封闭图形的面积为 .15.数学与文学之间存在着许多奇妙的联系. 诗中有回文诗,如:“云边月影沙边雁,水外天光山外树”,倒过来读,便是“树外山光天外水,雁边沙影月边云”,其意境和韵味读来真是一种享受!数学中也有回文数,如:88,454,7337,43534等都是回文数,无论从左往右读,还是从右往左读,都是同一个数,称这样的数为“回文数”,读起来还真有趣!二位的回文数有11,22,33,44,55,66,77,88,99,共9个;三位的回文数有101,111,121,131,…,969,979,989,999,共90个; 四位的回文数有1001,1111,1221,…,9669,9779,9889,9999,共90个; 由此推测:10位的回文数总共有个.三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤. 16.(本小题满分13分)已知点(1,0)F ,直线:1l x =-,动点P 到点F 的距离等于它到直线l 的距离. (Ⅰ)试判断点P 的轨迹C 的形状,并写出其方程.(Ⅱ)是否存在过(4,2)N 的直线m ,使得直线m 被截得的弦AB 恰好被点N 所平分?17.(本小题满分13分)将边长为1的正三角形ABC 按如图所示的方式放置,其中顶点A 与坐标原点重合.记边AB 所在直线的倾斜角为θ,已知0,3πθ⎡⎤∈⎢⎥⎣⎦.(Ⅰ)试用θ表示BC 的坐标(要求将结果化简为形如(cos ,sin )αα的形式);123侧视图正视图(Ⅱ)定义:对于直角坐标平面内的任意两点()11,P x y 、()22,Q x y ,称1212x x y y -+-为P 、Q 两点间的“taxi 距离”,并用符号PQ 表示.试求BC 的最大值.18.(本小题满分13分) 已知12310,,,,A A A A 等10所高校举行的自主招生考试,某同学参加每所高校的考试获得通过的概率均为12. (Ⅰ)如果该同学10所高校的考试都参加,试求恰有2所通过的概率;(Ⅱ)假设该同学参加每所高校考试所需的费用均为a 元,该同学决定按12310,,,,A A A A 顺序参加考试,一旦通过某所高校的考试,就不再参加其它高校的考试,试求该同学参加考试所需费用ξ的分布列及数学期望.19. (本小题满分13分)如图,侧棱垂直底面的三棱柱111ABC A B C -中,AB AC ⊥,13AA AB AC ++=,(0)AB AC t t ==>,P 是侧棱1AA 上的动点.C 11C(Ⅰ)当1AA AB AC ==时,求证:11A C ABC ⊥平面; (Ⅱ)试求三棱锥1P BCC -的体积V 取得最大值时的t 值; (Ⅲ)若二面角1A BC C --的平面角的余弦值为10,试某某数t 的值. 20.(本小题满分14分)已知()0xf x x e =⋅,()()10f x f x '=,()()21f x f x '=,…,()()1n n f x f x -'=(n N *∈).(Ⅰ)请写出()n f x 的表达式(不需证明);(Ⅱ)设()n f x 的极小值点为(),n n n P x y ,求n y ;(Ⅲ)设()()22188n g x x n x n =--+-+,()n g x 的最大值为a ,()n f x 的最小值为b ,试求a b -的最小值.21. 本题有(1)、(2)、(3)三个选答题,每题7分,请考生任选2题作答,满分14分.如果多做,则按所做的前两题记分.作答时,先用2B 铅笔在答题卡上把所选题目对应的题号涂黑,并将所选题号填入括号中.作(1)(本小题满分7分)选修4—2:矩阵与变换 若二阶矩阵M 满足127103446M ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭. (Ⅰ)求二阶矩阵M ;(Ⅱ)把矩阵M 所对应的变换作用在曲线223861x xy y ++=上,求所得曲线的方程. (2)(本小题满分7分)选修4-4:坐标系与参数方程已知在直角坐标系xOy 中,曲线C 的参数方程为2cos 2sin x t y θθ=⎧⎨=⎩(t 为非零常数,θ为参数),在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,直线l 的方程为sin()4πρθ-=(Ⅰ)求曲线C 的普通方程并说明曲线的形状;(Ⅱ)是否存在实数t ,使得直线l 与曲线C 有两个不同的公共点A 、B ,且10OA OB ⋅=(其中O 为坐标原点)?若存在,请求出;否则,请说明理由.(3)(本小题满分7分)选修4—5:不等式选讲已知函数()24f x x x =-+-的最小值为m ,实数,,,,,a b c n p q 满足222222a b c n p q m ++=++=.(Ⅰ)求m 的值;(Ⅱ)求证:4442222n p q a b c++≥.2012届某某市普通中学高中毕业班质量检查理科数学试题参考解答及评分标准说明:一、本解答指出了每题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制定相应的评分细则.二、对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应给分数的一半;如果后继部分的解答有较严重的错误,就不再给分. 三、解答右端所注分数,表示考生正确做到这一步应得的累加分数.四、只给整数分数.选择题和填空题不给中间分.一、选择题:本大题考查基础知识和基本运算.每小题5分,满分50分. 1. A 2.B 3.C 4.A 5.C6. D7.C8.D 9.B 10.C二、填空题:本大题考查基础知识和基本运算.每小题4分,满分20分.11.3312.113..5415.90000三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤. 16. 本小题考查抛物线的标准方程、直线与圆锥曲线的位置关系等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、数形结合思想等.满分13分.解:(Ⅰ)因点P 到点F 的距离等于它到直线l 的距离,所以点P 的轨迹C 是以F 为焦点、直线1x =-为准线的抛物线, ………………2分 其方程为24y x =. ………………5分(Ⅱ)解法一:假设存在满足题设的直线m .设直线m 与轨迹C 交于1122(,),(,)A x y B x y ,依题意,得121284x x y y +=⎧⎨+=⎩. ………………6分①当直线m 的斜率不存在时,不合题意. ………………7分②当直线m 的斜率存在时,设直线m 的方程为2(4)y k x -=-,………8分联立方程组22(4)4y k x y x-=-⎧⎨=⎩,消去y ,得2222(844)(24)0k x k k x k --++-=,(*) ………………9分∴21228448k k x x k-++==,解得1k =. ………………10分 此时,方程(*)为2840x x -+=,其判别式大于零, ………………11分 ∴存在满足题设的直线m ………………12分且直线m 的方程为:24y x -=-即20x y --=. ………………13分解法二:假设存在满足题设的直线m .设直线m 与轨迹C 交于1122(,),(,)A x y B x y ,依题意,得121284x x y y +=⎧⎨+=⎩. ………………6分易判断直线m 不可能垂直y 轴, ………………7分 ∴设直线m 的方程为4(2)x a y -=-,………8分 联立方程组24(2)4x a y y x-=-⎧⎨=⎩,消去x ,得248160y ay a -+-=, ………………9分∵216(1)480a ∆=-+>,∴直线与轨迹C 必相交. ………………10分又1244y y a +==,∴1a =. ………………11分 ∴存在满足题设的直线m ………………12分且直线m 的方程为:24y x -=-即20x y --=. ………………13分解法三:假设存在满足题设的直线m .设直线m 与轨迹C 交于1122(,),(,)A x y B x y ,依题意,得121284x x y y +=⎧⎨+=⎩. ………………6分∵1122(,),(,)A x y B x y 在轨迹C 上,∴有2112224142y x y x ⎧=⎪⎨=⎪⎩()(),将(1)(2)-,得2212124()y y x x -=-. ………8分当12x x =时,弦AB 的中点不是N ,不合题意, ………9分 ∴12121241y y x x y y -==-+,即直线AB 的斜率1k =, ………10分注意到点N 在曲线C 的X 口内(或:经检验,直线m 与轨迹C 相交)…11分 ∴存在满足题设的直线m ………………12分且直线m 的方程为:24y x -=-即20x y --=. ………………13分 17. 本小题主要考查三角函数的定义、两角和与差的三角函数公式、平面向量等基础知识,考查运算求解能力,考查化归与转化思想.满分13分.解:(Ⅰ)解法一:因为()cos ,sin B θθ,cos ,sin 33C ππθθ⎛⎫⎛⎫⎛⎫++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, ……2分 所以cos cos ,sin sin 33BC ππθθθθ⎛⎫⎛⎫⎛⎫=+-+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭………3分 22cos ,sin 33ππθθ⎛⎫⎛⎫⎛⎫=++ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭. ………7分 解法二:平移BC 到AD (B 移到A ,C 移到D ),………2分由BC 的坐标与AD 的坐标相等,都等于点D 的坐标. ………3分 由平几知识易得直线AD 的倾斜角为23πθ+, ∵||1AD =,∴根据三角函数的定义可得22cos ,sin 33D ππθθ⎛⎫⎛⎫⎛⎫++ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭, 所以22cos ,sin 33BC ππθθ⎛⎫⎛⎫⎛⎫=++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. ………7分(Ⅱ)解法一:22cos sin 33BC ππθθ⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭,………8分 ∵0,3πθ⎡⎤∈⎢⎥⎣⎦,∴22[,]33ππθπ+∈, ………9分 ∴22cos sin 33BC ππθθ⎛⎫⎛⎫=-+++ ⎪ ⎪⎝⎭⎝⎭………11分512πθ⎛⎫=+ ⎪⎝⎭, ………12分所以当12πθ=时,BC. ………13分解法二:cos cos sin sin 33BC ππθθθθ⎛⎫⎛⎫=+-++- ⎪ ⎪⎝⎭⎝⎭,………8分 ∵03πθ≤≤,∴2333πππθπ≤+≤<,即03πθθπ≤<+<, ∴cos cos cos cos()33ππθθθθ⎛⎫+-=-+ ⎪⎝⎭. ………9分 ∵03πθ≤≤,∴()232πππθθ-≥+-,∴sin sin sin sin 33ππθθθθ⎛⎫⎛⎫+-=+- ⎪ ⎪⎝⎭⎝⎭, ………10分 ||||BC =cos cos()3πθθ-++sin sin 3πθθ⎛⎫+- ⎪⎝⎭Ks5u5sin()cos())6612πππθθθ=+++=+, ………12分所以当12πθ=时,BC. ………13分18. 本题主要考查概率与统计的基础知识,考查数据处理能力、运算求解能力以及应用用意识,考查必然与或然思想、分类与整合思想等.满分13分.解:(Ⅰ)因为该同学通过各校考试的概率均为12,所以该同学恰好通过2所高校自主招生考试的概率为2821011122P C ⎛⎫⎛⎫=- ⎪⎪⎝⎭⎝⎭451024=. ………4分(Ⅱ)设该同学共参加了i 次考试的概率为i P (110,i i Z ≤≤∈).∵91,19,21,102ii i i Z P i ⎧≤≤∈⎪⎪=⎨⎪=⎪⎩,∴所以该同学参加考试所需费用ξ的分布列如下:ξ a2a 3a 4a 5a 6a 7a 8a 9a 10aP12212 312 412 512 612 712 812 912 912………7分所以2991111(12910)2222E a ξ=⨯+⨯++⨯+⨯, ………8分 令29111129222S =⨯+⨯++⨯, …(1) 则2391011111128922222S =⨯+⨯++⨯+⨯, …(2) 由(1)-(2)得291011111922222S =+++-⨯,所以2891111192222S =++++-⨯, ………11分所以289911111191022222E a ξ⎛⎫=++++-⨯+⨯ ⎪⎝⎭911122a ⎛⎫=+++⎪⎝⎭10112112a -=-101212a ⎛⎫=- ⎪⎝⎭1023512a =(元). ………13分Ks5u 19. 本小题主要考查直线与直线、直线与平面、平面与平面的位置关系等基础知识,考查空间想象能力、推理论证能力及运算求解能力,考查化归与转化思想、数形结合思想、函数与方程思想及应用意识. 满分13分.解:(Ⅰ)证法一:∵1AA ⊥面ABC ,∴1AA AC ⊥,1AA AB ⊥. 又∵1AA AC =,∴四边形11AAC C 是正方形, ∴11AC A C ⊥. ………1分∵11111,,,,AB AC AB AA AA AC AAC C AA AC A ⊥⊥⊂=平面,∴11AB AAC C ⊥平面. ………2分又∵111AC AAC C ⊂平面, ∴1AB AC ⊥. ………3分 ∵111,,AB AC ABC ABAC A ⊂=平面,∴11A C ABC ⊥平面. ………4分证法二:∵1AA ⊥面ABC ,∴1AA AC ⊥,1AA AB ⊥. 又∵AB AC ⊥,∴分别以1,,AB AC AA 所在直线为,,x y z 轴建立空间直角坐标系. ……1分 则11(0,0,0),(0,1,1),(1,0,0),(0,1,0),(0,0,1)A C B C A ,11(0,1,1),(0,1,1),(1,0,0)AC AC AB =-==,Ks5u∴1110,0AC AC AC AB ⋅=⋅=, …2分 ∴111,AC AC AC AB ⊥⊥. …3分 又∵111,,AB AC ABC ABAC A ⊂=平面∴11A C ABC ⊥平面. …4分证法三:∵1AA ⊥面ABC ,∴1AA AC ⊥,1AA AB ⊥. 又∵AB AC ⊥,∴分别以1,,AB AC AA 所在直线为,,x y z 轴建立空间直角坐标系. ……1分 则11(0,0,0),(0,1,1),(1,0,0),(0,1,0),(0,0,1)A C B C A ,11(0,1,1),(0,1,1),(1,0,0)AC AC AB =-==. 设平面1ABC 的法向量(,,)n x y z =,则100n AC y z n AB x ⎧⋅=+=⎪⎨⋅==⎪⎩,解得0x y z =⎧⎨=-⎩.令1z =,则(0,1,1)n =-, ……3分∵1AC n =-, ∴11A C ABC ⊥平面. ……4分 (Ⅱ)∵111AA BB C C 平面,∴点P 到平面11BB C C 的距离等于点A 到平面11BB C C 的距离 ∴1112231113(32)(0)6232P BCC A BCC C ABC V V V V t t t t t ---====-=-<<, …5分 '(1)V t t =--,令'0V =,得0t =(舍去)或1t =,列表,得(0,1)1 3(1,)2'V + 0 - V递增极大值递减∴当1t =时,max 16V =. …8分 (Ⅲ)分别以1,,AB AC AA 所在直线为,,x y z 轴建立空间直角坐标系. 则11(0,0,0),(0,,32),(,0,0),(0,,0),(0,0,32)A C t t B t C t A t --,11(0,,23),(0,,32),(,0,0)AC t t AC t t AB t =-=-=,Ks5u 1(0,0,32)CC t =-,(,,0)BC t t =-. ……9分Ks5u设平面1ABC 的法向量1111(,,)n x y z =,则111111(32)00n AC ty t z n AB tx ⎧⋅=+-=⎪⎨⋅==⎪⎩,解得111023x t y z t =⎧⎪⎨-=⎪⎩,令1z t =,则1(0,23,)n t t =-. …10分 设平面1BCC 的法向量2222(,,)n x y z =,则2222120(32)0n BC tx ty n CC t z ⎧⋅=-+=⎪⎨⋅=-=⎪⎩. 由于302t <<,所以解得2220x y z =⎧⎨=⎩.令21y =,则2(1,1,0)n =. …11分 设二面角1A BC C --的平面角为θ,则有1212|||cos |||||2n n n n θ⋅===⋅.化简得2516120t t -+=,解得2t =(舍去)或65t =.所以当65t =时,二面角1A BC C --的平面角的余弦值为10. …13分20. 本题主要考查函数、导数、数列以及合情推理等基础知识,考查推理论证能力、运算求解能力,考查数形结合思想、化归与转化思想、分类与整合思想及有限与无限思想.满分14分.解:(Ⅰ)()()x n f x x n e =+⋅ (n N *∈). ……4分(Ⅱ)∵()()1xn f x x n e '=++⋅,∴当()1x n >-+时,()0n f x '>;当()1x n <-+时,()0n f x '<. ∴当()1x n =-+时,()n f x 取得极小值()()()11n n f n e -+-+=-,即()1n n y e -+=-(n N *∈). ……8分Ks5u (Ⅲ) 解法一:∵()()()()2213n g x x n n =-+++-,所以()2((1))3n a g n n =-+=-.……9分又()()()11n n b f n e -+=-+=-,∴()()213n a b n e-+-=-+,令()()()()2130x h x x ex -+=-+≥,则()()()123x h x x e -+'=--. ……10分∵()h x '在[)0,+∞单调递增,∴()()106h x h e -''≥=--, ∵()430h e-'=-<,()5420h e -'=->,∴存在()03,4x ∈使得()00h x '=. ……12分 ∵()h x '在[)0,+∞单调递增,∴当00x x ≤<时,()00h x '<;当0x x >时,()00h x '>, 即()h x 在[)0,x +∞单调递增,在[)00,x 单调递减,∴()()()0minh x h x =,又∵()43h e -=,()541h e -=+,()()43h h >, ∴当3n =时,a b -取得最小值4e -. ……14分 解法二: ∵()()()()2213n g x x n n =-+++-,所以()2((1))3n a g n n =-+=-.……9分又()()()11n n b f n e -+=-+=-,∴()()213n a b n e -+-=-+,令()()213n n c n e-+=-+,则1211125n n n n c c n ee+++-=-+-,……10分当3n ≥时,1211125n n n n c c n e e +++-=-+-,又因为3n ≥,所以251n -≥,210n e +>,1101n e +<<,所以2111250n n n e e ++-+->,所以1n n c c +>.……12分Ks5u又1232341114,1,c c c e e e=+=+=,123c c c >>,∴当3n =时,a b -取得最小值4e -. ……14分 21.(1)选修4—2:矩阵与变换本题主要考查矩阵、逆矩阵、曲线的线性变换等基础知识,考查运算求解能力及函数与方程思想.满分7分.解:(Ⅰ)记矩阵1234A ⎛⎫= ⎪⎝⎭,故2A =-,故1213122A --⎛⎫⎪= ⎪-⎝⎭. ……2分 由已知得121710710123146461122M A --⎛⎫⎛⎫⎛⎫⎛⎫ ⎪=== ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭⎝⎭. ……3分 (Ⅱ)设二阶矩阵M 所对应的变换为1211x x y y '⎛⎫⎛⎫⎛⎫=⎪ ⎪⎪'⎝⎭⎝⎭⎝⎭,得2x x yy x y'=+⎧⎨'=+⎩, 解得2x x y y x y ''=-+⎧⎨''=-⎩, ……5分又223861x xy y ++=,故有223(2)8(2)()6()1x y x y x y x y ''''''''-++-+-+-=,化简得2221x y ''+=.故所得曲线的方程为2221x y +=. ……7分(2)选修4—4:坐标系与参数方程本题主要考查曲线的参数方程、直线的极坐标方程等基础知识,考查运算求解能力以及化归与转化思想、分类与整合思想.满分7分.解:(Ⅰ)∵0t ≠,∴可将曲线C 的方程化为普通方程:2224x y t+=. ……1分①当1t =±时,曲线C 为圆心在原点,半径为2的圆; ……2分 ②当1t ≠±时,曲线C 为中心在原点的椭圆. ……3分 (Ⅱ)直线l 的普通方程为:40x y -+=. ……4分联立直线与曲线的方程,消y 得222(4)4x x t++=,化简得2222(1)8120t x t x t +++=.若直线l 与曲线C 有两个不同的公共点,则422644(1)120t t t ∆=-+⋅>,解得23t >.……5分又22121222812,,11t t x x x x t t +=-=++……6分 故12121212(4)(4)OA OB x x y y x x x x ⋅=+=+++121224()1610x x x x =+++=.解得23t =与23t >相矛盾. 故不存在满足题意的实数t . ……7分 (3)选修4—5;不等式选讲本题主要考查绝对值的几何意义、柯西不等式等基础知识,考查运算求解能力以及推理论证能力,考查函数与方程思想以及分类与整合思想.满分7分.解:(Ⅰ)法一: 26(4)()242(24)26(2)x x f x x x x x x -≥⎧⎪=-+-=<<⎨⎪-+≤⎩,……2分 可得函数的最小值为2.故2m =. ……3分Ks5u法二:()24(2)(4)2f x x x x x =-+-≥---=, ……2分 当且仅当24x ≤≤时,等号成立,故2m =. ……3分(Ⅱ) 222222222[()()()]()n p q a b c a b c++⋅++2222()n p q a b c a b c ≥⋅+⋅+⋅……5分即:444222()2n p q a b c ++⨯≥2222()4n p q ++=,故4442222n p q a b c++≥. ……7分。
北京市第六十六中学2012届高三上学期期中考试数学(理)试题
北京市第六十六中学2012届高三上学期期中考试数学(理)试题一、选择题(每小题5分,共40分,将正确答案的选项填在机读卡...上) 1.已知集合{}22A x x =-<<,{}220B x x x =-≤,则A B 等于A .()0,2B .(]0,2C .[)0,2D .[]0,22.已知数列{}n a 为等差数列,且12a =,2313a a +=,那么则456a a a ++等于(A )40 (B )42 (C )43 (D )453.已知平面向量a ,b 的夹角为60°,=a ,||1=b ,则|2|+=a b(C)(D)4.已知)(x f 是定义在R 上的偶函数,并满足)(1)2(x f x f -=+,当21≤≤x 时, 2)(-=x x f ,则(6.5)f =(A )4.5 (B ) 4.5- (C )0.5 (D )0.5- 5.函数()φω+=x A y sin (0>ω,2||πϕ<,()R x ∈)的部分图象如图所示,则函数表达式为 A .)48sin(4ππ+-=x y B . )48sin(4ππ-=x y C . )48sin(4ππ--=x y D . )48sin(4ππ+=x y 6.设函数21()ln 1(0)2f x x x x =-+>,则函数()y f x =A .在区间(0,1),(1,2)内均有零点B .在区间(0,1)内有零点,在区间(1,2)内无零点C .在区间(0,1),(1,2)内均无零点D .在区间(0,1)内无零点,在区间(1,2)内有零点 7.函数()()()⎩⎨⎧≥-<+-=0,10,1x x x x x f 则不等式()()111≤+++x f x x 的解集是A.{}121|-≤≤-x x B.{}1|≤x xC.{}12|-≤x x D.{}1212|-≤≤--x x8.如图,四面体OABC 的三条棱OC OB OA ,,两两垂直,2==OB OA ,3=OC ,D 为四面体OABC 外一点.给出下列命题.①不存在点D ,使四面体ABCD 有三个面是直角三角形 ②不存在点D ,使四面体ABCD 是正三棱锥③存在点D ,使CD 与AB 垂直并且相等④存在无数个点D ,使点O 在四面体ABCD 的外接球面上 其中真命题的序号是 (A )①②(B )②③(C )③(D )③④二、填空题:(每小题5分,共30分,将正确答案写在答题纸相应的位置上.........) 9.已知向量=(1,3)a ,=(3,)b n ,如果a 与b 共线,那么实数n 的值是______. 10.已知1sin()3απ+=-,且α是第二象限角,则sin 2α= . 11.函数sin (0)y x x π=≤≤的图象与x 轴围成图形的面积为 .12.若曲线()y g x =在点(1,(1))g 处的切线方程为21y x =+,则曲线()()ln f x g x x =+在点(1,(1))f 处切线的斜率为 ,该切线方程为 . 13.一个几何体的三视图如下图所示,则该几何体的表面积为__________________.14.考虑以下数列{}n a ,*n N ∈:① 21n a n n =++;② 21n a n =+;③ ln1n n a n =+. OABDC正视图侧视图俯视图其中满足性质“对任意正整数n ,212n nn a a a +++≤都成立”的数列有 (写出满足条件的所有序号);若数列{}n a 满足上述性质,且11a =,2058a =,则10a 的最小值为 .三、解答题:(共80分,将正确答案写在答题纸相应的位置上.........) 15. (本小题满分13分)已知函数()()cos sin cos f x x x x =⋅+(I )求()f x 的最小正周期;(II )设()8g x f x π⎛⎫=+⎪⎝⎭,判断函数()g x 的奇偶性,并加以证明。
2012届高三上学期期中考试II 理科数学试题
高三年级期中II 考试试卷数学(理科)一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若集合2{|||,},{|0,}A x x x x R B x x x x R ==∈=+≥∈,则A ∩B=( ) A.[-1,0] B.[0,+∞) C.[1,+∞) D.(- ∞,-1)2.已知点A (-1,0),B(1,3),向量a =(2k-1,2),若,AB a ⊥则实数k 的值为( )A.-2B.-1C.1D.23.复数Z= ()2(1)1i i +-的共轭复数是( )A. -1-iB. 1i -+C.1122i + D. 1122i - 4.已知等差数列{n a }的前n 项和为 n S ,若4518a a =-,则8S =( ) A.144 B.18 C.54 D.725.设复数Z 满足Z (2-3i) = 6+4i (i 为虚数单位),则Z 的模为( ) A.4 B.6 C.2 D.86.若A+B=3π则cosA ⋅cosB 的值是( )A.34 C. 32 D. 7.已知a 与b 均为单位向量,它们的夹角为060,则|b a 3-|=( )A. C. D. 8.设数列{n a }是等差数列,且2158,5a a =-=,n S 是数列{n a }的前n 项和,则( ) A.910S S < B. 910S S = C. 1110S S < D. 1110S S =9.设2,[0,1],()2,[1,2],x x f x x x ⎧∈=⎨-∈⎩函数图象与x 轴围成封闭区域的面积为( )A.34 B.45 C. 56 D. 6710.a ,b 是正实数,则2211(2)(2)a b ba+++的最小值是( )A.8B.4C.32D.1611.若点P 是∆ABC 的外心,且0,PA PB PC λ++=0120,C ∠=则实数λ=( )A.1B.2C.-1D.-212.已知函数21,0,()1,0,x x f x x ⎧+≥=⎨<⎩则满足不等式2(1)(2)f x f x ->的x 的取值范围是( )A.(-1,0)B.(0,1)C.(-1)D.()二.填空题:本大题共4小题,每小题5分,共20分。
北京师范大学附属实验中学2012届高三上学期期中考试(数学理)
北京师范大学附属实验中学2011-2012学年度第一学期期中试卷北京师范大学附属实验中学2011—2012学年度第一学期高三年级(数学(理))期中试卷 班级______ 姓名_______ 学号_______ 成绩_______一、选择题:本大题共8小题,每小题5分,共40分. 在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合A={0,1,2},集合B=={A a a x x ∈=,2|},则B A = (A ){0} (B ){1,2} (C ){0,2} (D )0,22.函数2)12ln(x x y -+=的导函数的零点为 (A )0.5或 -1 (B )(0.5,-1) (C )1 (D )0.53.函数x x x x x f 42cos 4cos 4cos sin 47)(-+-= )(R x ∈的最大值与最小值的和为 (A )12(B )14(C )36(D )164.等比数列}{n a 中,首项为1a ,公比为q ,前n 项之和为n S .若}{n S 为递减数列,则有 (A )01<a ,0>q (B )01>a ,0<q (C )01>a ,10<<q (D )01<a ,0<q5.已知点O 是边长为1的等边ABC ∆的中心,则=+∙+)()((A )91 (B )-91 (C )61 (D )61-6.已知0>c ,设p :函数x c y =在R 上单调递减;函数)122lg()(2++=x cx x g 的值域为R ,如果“q p ∧”为假命题,“q p ∨”为真命题,则c 的取值范围是 (A ))1,21((B )),21(+∞(C )),1[]21,0(+∞ (D )),(+∞-∞7.ABC ∆中,角A 、B 、C 所对的边分别为a 、b 、c ,若A bccos <,则ABC ∆为 (A )钝角三角形 (B )直角三角形 (C )锐角三角形 (D )等边三角形8. 已知函数)(x f 对任意R x ∈都有)2(2)()4(f x f x f =-+,若)1(-=x f y 的图像关于直线1=x 对称,且2)1(=f ,则)2011(f = (A )6(B )4(C )3(D )2第Ⅱ卷(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分.9.已知命题P :“032,2≥-+∈∀x x R x ”,则命题P 的否定是 _____________; 10.在数列}{n a 中,311=a ,设n S 为数列}{n a 的前项和,且n n a n n S )12(-=,则=n S ______;11.定义集合运算:},),(|{B y A x y x xy z z B A ∈∈+==⊗. 设集合A={0,1},B={2,3}则集合B A ⊗的所有元素之和为_____________;12.在ABC ∆中,已知oC 60=,=+++++++CB CB AC A C B A sin sin sin sin sin sin sin sin sin sin ______;13.函数42321)(xx x x x f ++-=的最大值与最小值的积为__________; 14.给出下列命题:① 若“0tan sin >-αα”则“α是第二或第四象限角”;②平面直角坐标系中有三个点A (4,5),B (-2,2),C (2,0),则ABC ∠tan =34; ③若1>a ,1>b 且b a b a lg lg )lg(+=+,则)1lg()1lg(-+-b a 的值为1; ④设][m 表示不大于m 的最大整数,若R y x ∈,,那么][][][y x y x +≥+;其中所有正确命题的序号是___________ .三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15.(本题13分)已知:向量(2cos ,2sin )44x x a = (sin ,)44x xb = ,函数()f x a b =+(1)求函数()y f x =的最小正周期及最值;(2)将函数()y f x =的图象纵坐标不变,横坐标伸长为原来的2倍后,再向左平移23π 得到函数()y g x =,判断函数()y g x =的奇偶性,并说明理由.16.(本题13分)已知:等差数列{}n a 的公差和等比数列{}n b 的公比都是d ,(1)d ≠且11a b =,44,a b =1010;a b =(1) 求数列{}n a ,{}n b 的通项公式; (2) 设数列{}n b 的前n 和为n T ,求n T ;(3) 16b 是否为数列{}n a 中的项?如果是,是第几项?如果不是,请说明理由.17.(本题13分)如图,港口B 在港口O 正东方120海里处,小岛C 在港口O 北偏东060方向和港口B 北偏西030方向上,一艘科学考察船从港口O 出发,沿北偏东030的OA 方向以每小时20海里的速度驶离港口O ,一艘快艇从港口B 出发,以每小时60海里的速度驶向小岛C ,在C 岛装运补给物资后给考察船送去,现两船同时出发,补给物资的装船时间需要1小时,问快艇驶离港口B 后最少要经过多少时间才能和考察船相遇?18.(本题14分) 已知函数:3()(3)13a f x x a x =+++ . (1)当3a =-时,求过点(1,0)曲线()y f x =的切线方程; (2)求函数()y f x =的单调区间;(3)函数是否存在极值?若有,则求出极值点;若没有,则说明理由.东19.(本题14分)设奇函数()f x 的定义域为)0()0,(∞+-∞ ,且在(0,)+∞上为增函数 (1)若(1)0,f = 解关于x 的不等式:(1log )0a f x +> (01)a << (2)若(2)1,f -=-当0,0m n >>时,恒有()()(),f m n f m f n ⋅=+求()11f t +<时,t 的取值范围.20.(本题13分) 已知数列{}k a 满足:112a =且211k k k a a a n+=+ (1,2,,1k n =- 其中n 是一个给定的正整数 (1)证明:数列{}k a 是一个单调数列; (2)证明:对一切1m n <<,m N ∈有:12321m n na n m n m +<<-+-+.。
福州市八县(市)一中2012届高三上学期期中联考(数学理)
福建省福州市八县(市)一中2011---2012学年度高三第一学期期中联考(数学理)考试日期: 11月10 日 完卷时间:120分钟 满 分:150 分一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一个是符合题目要求的。
1.已知:集合M={-1,0,2a },N={0,a ,-1},若N M ⊆,则实数a 的值为( ) A .0或1 B .-1 C .1或-1 D .1 2.若a ∈R ,m R ∈且0m >。
则“a ≠m ”是“|a|≠m ”的( ) A .充分而不必要条件 B .必要而不充分条件C .充要条件D .既不充分又不必要条件 3.设全集为R ,A =}01|{<xx ,则=A C R ( )A .}01|{≥xx B . {x | x 0≥} C .{x | x >0} D .}01|{>x x4.[]1cos (0,2 )y x x π=+∈的图象与直线32y =的交点的个数为( ) A .0B .1C .2D .35.A B C ∆的内角A 、B 、C 的对边分别为a 、b 、c ,若a 、b 、c 成等比数列,且2c a =,则cos B =( )A .34B .14C .4D .36.已知集合},{21x x A =,B={x ∈R| x 2+mx+1=0},若B A ⊆,则实数m 的取值范围是( ) A .(-1,1) B .(-2,2) C .(-∞,-2)∪(2,+∞) D .(-∞,-1)∪(1,+∞) 7.过原点与曲线)2)(1(--=x x x y 相切的直线方程是( ) A .02=-y x B .04=+y xC .02=-y x 或04=+y xD .02=-y x 或04=-y x 8.将函数x y 2sin =的图象向右平移4π个单位,再向上平移1个单位,所得函数图象对应的解析式为( )A .sin(2)14y x π=-+ B .22cos y x = C .22sin y x =D .cos 2y x =-9.已知)(x f y =为定义在R 上的奇函数,当0>x 时,|34|)(2+-=x x x f ,那么当0<x 时,=)(x f ( )A.|34|2++-x xB.|34|2+--x xC.|34|2+--x xD.|34|2+---x x 10.设x x x f --=)12sin(2)(,则在下列区间中函数f(x)不存在零点的区间是( ) A.[-1,0] B.[0,1] C.[ 1,2 ] D.[2,3 ] 11.给定以下命题:(1)函数cos y x x =+在区间(,)22ππ-上有唯一的零点;(2)向量a 与向量b 共线,则向量a 与向量b方向相同或是方向相反;(3)若角αβ=,则一定有tan tan αβ=;(4)若R x ∈∃0,使0)(0/=x f ,则函数)(x f 在0x x =处取得极大或是极小值。
2012届高三数学(理科)试题
2012届高三数学(理科)试题一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.对于函数,下列命题中正确的是()A.B.C.D.2.执行如图的程序,如果输出的x=256,那么可以在判断框内填入()A.i≥4?B.i≥3?C.i≤3?D.i≤4?3.数列的首项为,为等差数列且.若则,,则()A.0 B.3 C.8 D.114.若实数满足,且,则称与互补,记那么是与b互补的()A.必要而不充分条件B.充分而不必要条件C.充要条件D.既不充分也不必要条件5.设集合,,为虚数单位,R,则为()A.(0,1) B.(0,1] C.[0,1) D.[0,1]6.已知函数.当时,不等式恒成立,求实数的取值范围()A.B.C.D.7.设全集,,若C U P恒成立,则实数最大值是()A.C.C.D.8.设棱锥M-ABCD的底面是正方形,且MA=MD,MA⊥AB,△AMD的面积为1,则能够放入这个棱锥的最大球的半径为()A.2-1B.2+1C.+1D.-19.平面直角坐标系中,为坐标原点,给定两点,点满足,其中,且. 点的轨迹与双曲线交于两点,且以为直径的圆过原点,若双曲线的离心率不大于,则双曲线实轴长的取值范围为()A.B.C.D.10.在集合中任取一个偶数和一个奇数构成以原点为起点的向量.从所有得到的以原点为起点的向量中任取两个向量为邻边作平行四边形.记所有作成的平行四边形的个数为,其中面积不超过...的平行四边形的个数为,则()A.B.C.D.二、填空题:将正确答案填入题后横线上11.在中,,则的最大值为。
12.一个几何体的三视图及其尺寸(单位:cm)如图所示,则该几何体的侧面积为_______cm2.13.设双曲线C:(a>0,b>0)的右焦点为F,O为坐标原点.若以F为圆心,FO为半径的圆与双曲线C的一条渐近线交于点A(不同于O点),则△OAF的面积为14.如图:用四种不同颜色给图中的ABCDEF六个点涂色,要求每个点涂一种颜色,且图中每条线段的两个端点涂不同的颜色,则不同的涂色方法共有种.(用数字作答)15.已知函数,若对于任意的,恒成立,则的取值范围是______。
河北省唐山市开滦二中2012届高三上学期期中考试数学(理)试题 Word版含答案
2011~2012学年度第一学期高三年级期中考试数 学(理 科)试 卷说明:一、本试卷共4页,包括三道大题,22道小题,其中第一道大题为选择题.共150分.时间为120分钟.二、做选择题时,每小题选出答案后,用2B 铅笔把答题卡上对应题目的标号涂黑.如需改动,用橡皮将原选涂答案擦干净后,再选涂其他答案. 一、选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,有且只有一项符合题目要求.) 1. 复数ii+--124(i 是虚数单位)等于( ) A .i +3 B .i --3 C .i +-3 D .i -32. 已知全集U ={2,3,5,7,11},A ={2,|a -5|,7},C U A ={5,11},则a 的值为( ) A 、2 B 、8 C 、2或8 D 、-2或-83.已知b a ,是实数,则“ba⎪⎭⎫⎝⎛<⎪⎭⎫ ⎝⎛3131”是“b a 33log log >”的( )A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件4. 已知y x ,满足条件⎪⎪⎩⎪⎪⎨⎧≤-+≤-+≥≥0723083200y x y x y x ,则y x +最大值为 ( )A .37B .38 C .3 D .25. 若()2sin()f x x m ωϕ=++,对任意实数t 都有()(),()3888f t f t f πππ+=-=-且,则实数m 的值等于( )A .-1B .5±C .-5或-1D .5或16. 正项等比数列{}n a 中, 8165=a a ,则 lo 1032313log log a a a g +++ 的值是( ) A 、2 B 、5 C 、10 D 、207.若316sin =⎪⎭⎫⎝⎛-απ,则126cos 22-⎪⎭⎫ ⎝⎛+απ=( )A.31B. 31-C. 97D. 97- 8.阅读所给的程序框图,若输出的S 的值等于16,那么在程序框图中的判断框内应填写的条件是( )A.?5>iB.?6>iC.?7>iD.?8>i9. 设函数2()()f x g x x =+,曲线()y g x =在点(1,(1))g 处的切线方程为21y x =+,则 曲线()y f x =在点(1,(1))f 处切线的斜率为( ) A .2 B .14-C .4D .12-10. 已知函数()2cos(2)6f x x π=+,下面四个结论中正确的是 ( ) A .函数()f x 的最小正周期为2π B .函数()f x 的图象关于直线6x π=对称C .函数()f x 的图象是由2cos2y x =的图象向左平移6π个单位得到D .函数6f x π⎛⎫+ ⎪⎝⎭是奇函数11. 已知等差数列{}n a 的公差0d <,若462824,10a a a a ⋅=+=,则该数列的前n 项和n S 的最大值是( )A .50B .45C .40D .3512. 设函数()f x 的定义域为D ,若满足:①()f x 在D 内是单调函数; ②存在[],a b D ⊆()b a >,使得()f x 在[],a b 上的值域为[],a b ,那么就称()y f x =是定义域为D 的“成功函数”。
2012届高三上学期期中考试(数学理)
2012届高三上学期期中考试试题数学(理科)一.选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1 .若集合{},{}x A x x B xx-2=-1≤2+1≤3=≤1,则B A =A. {}x x -1≤<0B. {}x x 0<≤1C. {}x x 0≤≤2D. {}x x 0≤≤1 2.下面四个条件中,使a b >成立的充分而不必要的条件是A .1a b +>B .1a b ->C .22a b >D .33a b >3.已知函数⎩⎨⎧≤>=)0(2)0(log)(2x x x x f x,若21)(=a f ,则实数a 的值为A .-1 B.2 C .-1或2 D .1或2-4.已知等差数列{a n }的公差为d (d ≠0),且a 3+a 6+a 10+a 13=32,若a m =8,则m 为A .12B .8C .6D .45.函数y =ln1|2x -3|的大致图象为()6.在平行四边形ABCD 中,AE →=13AB →,AF →=14AD →,CE 与BF 相交于G 点.若AB →=a ,AD →=b ,则 AG →=A.27a +17bB.27a +37bC.37a +17bD.47a +27b 7.设,x y 满足约束条件04312x y x x y ≥⎧⎪≥⎨⎪+≤⎩,则221y x ++的最大值是A. 5B. 6C. 8D. 108.函数11x y x +=-的图像与函数2sin (24)y x x π=-≤≤的图像所有交点的横坐标之和等于A .2B . 4C . 6D .8二.填空题:本大题共6小题,考生做答6小题,每小题5分, 共30分. (一)必做题(9~12题)9.不等式212-<-x x 的解集为 .10.若6x x ⎛- ⎝⎭展开式的常数项为60,则常数a 的值为 . 11 .已知a ,b ,c 为△ABC 的三个内角A ,B ,C 的对边,向量m =(1,3-),n =(cos A ,sin A ).若m ⊥n ,且C c A b B a sin cos cos =+,则角B = .12.已知8,0,0=++>>ab b a b a ,,则b a +的最小值是 .13.如图,M 是正方体ABCD -A 1B 1C 1D 1的棱DD 1的中点,给出下列四个命题:①过M 点有且只有一条直线与直线AB ,B 1C 1都相交; ②过M 点有且只有一条直线与直线AB ,B 1C 1都垂直; ③过M 点有且只有一个平面与直线AB ,B 1C 1都相交; ④过M 点有且只有一个平面与直线AB ,B 1C 1都平行. 其中真命题是是 _______.(填写真命题的序号) (二)选做题:(14~15题,考生只能从中选做一题)14.(坐标系与参数方程选做题)在极坐标系中,曲线C 的极坐标方程为3)6sin(=-πθρ,点)3, 2(πA 到曲线C 上点的距离的最小值 .15.如图,EB 、EC 是⊙O 的两条切线,B 、C 是切点,A 、D 是⊙O 上两点,如果∠E =460,∠DCF =320,则∠A 的大小为 .三.解答题:本大题共6小题,满分80分. 解答须写出文字说明、证明过程或演算步骤. 16.(本题满分12分)在ABC ∆中,内角,,A B C 所对的边长分别是,,a b c , 已知4A π=,4cos 5B =.(I )求cos C 的值;(II )若10,B C D =为A B 的中点,求CD 的长.17.(本题满分12分)图乙图甲M 已知等差数列{a n }满足a 2=0,a 6+a 8= -10 (I )求数列{a n }的通项公式; (II )求数列12n n a -⎧⎫⎨⎬⎩⎭的前n 项和.18. (本题满分14分)如图甲,直角梯形ABCD 中,//AB CD ,2D AB π∠=,点M 、N 分别在A B ,CD 上,且MN AB ⊥,MC CB ⊥,2BC =,4M B =,现将梯形ABCD 沿MN 折起,使平面AMND 与平面MNCB 垂直(如图乙).(Ⅰ)求证://AB 平面DNC ;(Ⅱ)当DN 的长为何值时,二面角D BC N --的大小为30︒?19. ((本题满分14分)本着健康、低碳的生活理念,租自行车骑游的人越来越多。
函数的性质知识点总结与题型讲解
考点05 函数的性质(单调性、奇偶性)【高考再现】热点一 函数的单调性1.(2012年高考(天津文))下列函数中,既是偶函数,又在区间(1,2)内是增函数的为( )A .cos 2y x =B .2log ||y x =C .2x x e e y --= D .31y x =+ 2.(2012年高考(陕西文))下列函数中,既是奇函数又是增函数的为 ( )A .1y x =+B .2y x =-C .1y x =D .||y x x =【答案】D 【解析】该题主要考察函数的奇偶性和单调性,理解和掌握基本函数的性质是关键.A 是增函数,不是奇函数;B 和C 都不是定义域内的增函数,排除,只有D 正确,因此选D. 3.(2012年高考(安徽文))若函数()|2|f x x a =+的单调递增区间是[3,)+∞,则_____a =【方法总结】1.对于给出具体解析式的函数,证明其在某区间上的单调性有两种方法:(1)可以结合定义(基本步骤为取值、作差或作商、变形、判断)求解.(2)可导函数则可以利用导数解之.但是,对于抽象函数单调性的证明,一般采用定义法进行.2.求函数的单调区间与确定单调性的方法一致.(1)利用已知函数的单调性,即转化为已知函数的和、差或复合函数,求单调区间.(2)定义法:先求定义域,再利用单调性定义确定单调区间.(3)图象法:如果f (x )是以图象形式给出的,或者f (x )的图象易作出,可由图象的直观性写出它的单调区间.(4)导数法:利用导数取值的正负确定函数的单调区间.3.函数单调性的应用:f (x )在定义域上(或某一单调区间上)具有单调性,则f (x 1)<f (x 2)⇔ f (x 1)-f (x 2)<0,若函数是增函数,则f (x 1)<f (x 2) ⇔x 1<x 2,函数不等式(或方程)的求解,总是想方设法去掉抽象函数的符号,化为一般不等式(或方程)求解,但无论如何都必须在定义域内或给定的范围内进行. 热点二 函数的奇偶性4.(2012年高考(广东文))(函数)下列函数为偶函数的是 ( )A .sin y x =B .3y x =C .x y e =D .2ln 1y x =+5.(2012年高考(重庆文))函数()()(4)f x x a x =+- 为偶函数,则实数a =________【答案】4【解析】本题考查函数奇偶性的应用,若已知一个函数为偶函数,则应有其定义域关于原点对称,且对定义域内的一切a 都有()()f a f a =-成立.由函数()f x 为偶函数得()()f a f a =-即()(4)()(4)a a a a a a +-=-+-- 4a ⇒=.6.(2012年高考(上海文))已知)(x f y =是奇函数. 若2)()(+=x f x g 且1)1(=g .则=-)1(g _______ .7.(2012年高考(课标文))设函数()f x 22(+1)sin =1x x x ++的最大值为M ,最小值为m ,则=M m +____【答案】 2【解析】本题主要考查利用函数奇偶性、最值及转换与化归思想,是难题.222(1)sin 2sin ()1,11x x x x f x x x +++==+++设22sin (),()(),()1x x g x g x g x g x x +=-=-∴+Q 为奇函数,由奇函数图像的对称性知max min max min max min ()()0,[()1][()1]2()() 2.g x g x M m g x g x g x g x +=∴+=+++=++=【方法总结】三.规律总结一条规律奇、偶函数的定义域关于原点对称.函数的定义域关于原点对称是函数具有奇偶性的必要不充分条件.三种方法判断函数的奇偶性,一般有三种方法:(1)定义法;(2)图象法;(3)性质法. 三条结论(1)若对于R 上的任意的x 都有f (2a -x )=f (x )或f (-x )=f (2a +x ),则y =f (x )的图象关于直线x =a 对称.(2)若对于R 上的任意x 都有f (2a -x )=f (x ),且f (2b -x )=f (x )(其中a <b ),则:y =f (x )是以2(b -a )为周期的周期函数.(3)若f (x +a )=-f (x )或f (x +a )=1f x 或f (x +a )=-1f x ,那么函数f (x )是周期函数,其中一个周期为T =2a ;(3)若f (x +a )=f (x +b )(a ≠b ),那么函数f (x )是周期函数,其中一个周期为T =2|a -b |.【基础练习】1.(课本习题改编)下列函数中,在区间(0,1)上是增函数的是 ( )A .y =|x |B .y =3-xC .y =1xD .y =-x 2+4 【答案】A【解析】y =3-x 在R 上递减,y =1x在(0,+∞)上递减,y =-x 2+4在(0,+∞)上递减. 2.(经典习题)函数f (x )=ln(4+3x -x 2)的单调递减区间是( )A.⎝ ⎛⎦⎥⎤-∞,32B.⎣⎢⎡⎭⎪⎫32,+∞C.⎝ ⎛⎦⎥⎤-1,32D.⎣⎢⎡⎭⎪⎫32,43. (课本习题改编)若函数f (x )=x2x +1x -a 为奇函数,则a =( )A.12B.23C.34D .1 【答案】A【解析】∵f (x )=x2x +1x -a 是奇函数,利用赋值法,∴f (-1)=-f (1).∴-1-2+1-1-a =-12+11-a ,∴a +1=3(1-a ),解得a =12. 4. (经典习题)设函数f (x )和g (x )分别是R 上的偶函数和奇函数,则下列结论恒成立的是( ).A .f (x )+|g (x )|是偶函数B .f (x )-|g (x )|是奇函数C .|f (x )|+g (x )是偶函数D .|f (x )|-g (x )是奇函数【答案】A【解析】由题意知f (x )与|g (x )|均为偶函数,A 项:偶+偶=偶;B 项:偶-偶=偶,B 错;C 项与D 项:分别为偶+奇=偶,偶-奇=奇均不恒成立,故选A.6.(经典习题)已知f (x )在R 上是奇函数,且满足f (x +4)=f (x ),当x ∈(0,2)时,f (x )=2x 2,则f (7)等于________.【答案】-2【解析】由f (x +4)=f (x ),得f (7)=f (3)=f (-1),又f (x )为奇函数,∴f (-1)=-f (1),f (1)=2×12=2.∴f (7)=-2.【名校模拟】一.基础扎实1. (北京市西城区2012届高三下学期二模试卷文)给定函数:①3y x =;②21y x =-;③sin y x =;④2log y x =,其中奇函数是( )(A )① ② (B )③ ④(C )① ③(D )② ④【答案】C【解析】利用函数图象关于原点对称可知① ③图像满足条件.2. (2012年石家庄市高中毕业班第一次模拟考试理)已知.,若,则f(-a)的值为A. -3B. -2C. -1D. 03.(2012年河南豫东、豫北十所名校阶段性测试(三)理)已知函数.,则该函数是(A)偶函数,且单调递增(B)偶函数,且单调递减(C)奇函数,且单调递增(D)奇函数,且单调递减【答案】C【解析】 注意到当0x >时,0x -<,()()()()21120x x f x f x ---+=-+-=;当0x <时,0x ->,()()()()12210x x f x f x -+=-+-=;()00f =.因此,对任意x R ∈,均有()()0f x f x -+=,即函数()f x 是奇函数.当0x >时,函数()f x 是增函数,因此()f x 是增函数,选C.4.(2012洛阳示范高中联考高三理)下列函数中,在(1, 1)-内有零点且单调递增的是( )A .12log y x =B .21x y =-C .212y x =-D . 3y x =-5. (浙江省杭州学军中学2012届高三第二次月考理)若R x ∈、+∈N n ,定义:)2)(1(++=x x x M n x )1(-+n x Λ,例如:55-M =(-5)(-4)(-3)(-2)(-1) =-120,则函数199)(-=x xM x f 的奇偶性为( )A.是偶函数而不是奇函数B. 是奇函数而不是偶函数C.既是奇函数又是偶函数D.既不是奇函数又不是偶函数6.. (江西省2012届十所重点中学第二次联考文)已知2()35f x ax bx a b =+-+是偶函数,且其定义域为[61,]a a -,则a b +=( )A .17B .1-C .1D .7【答案】A【解析】因为偶函数的定义域关于原点对称,所以1610,7a a a -+==所以; 又()f x 为偶函数,所以223()535a x bx a b ax bx a b ---+=+-+,得0b =,所以a b +=17,选A. 67.(海南省洋浦中学2012届高三第一次月考数学理)函数)(x f 在区间]3,2[-是增函数,则)5(+=x f y 的递增区间是( ) A .]8,3[ B . ]2,7[--C .]5,0[D .]3,2[-8.(海南省洋浦中学2012届高三第一次月考数学理)已知函数y=f(x)是定义在R 上的奇函数,则下列函数中是奇函数的是 ( )①y=f(|x|);②y=f(-x);③y=x ·f(x);④y=f(x)+x.A.①③B.②③C.①④D.②④9.(湖北省黄冈中学2012届高三五月模拟考试理)下列函数中既是偶函数,又是区间[-1,0]上的减函数的是A .x y cos =B .1--=x yC .x x y +-=22lnD .x x e e y -+= 答案:D解析:由()()x x f x e e f x --=+=,所以函数()x x f x e e -=+为偶函数;又()211xxx xef x ee e-'=-=,当[]1,0x∈-时,()0f x'<,所以函数为减函数,故选D。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2011—2012学年度第一学期高三年级(数学(理))期中试卷 班级______ 姓名_______ 学号_______ 成绩_______
一、选择题:本大题共8小题,每小题5分,共40分. 在每小题列出的四个选项中,选出
符合题目要求的一项. 1.已知集合A={0,1,2},集合B=={A a a x x ∈=,2|},则B A = (A ){0} (B ){1,2} (C ){0,2} (D )0,2
2.函数2)12ln(x x y -+=的导函数的零点为 (A )0.5或 -1 (B )(0.5,-1) (C )1 (D )0.5
3.函数x x x x x f 42cos 4cos 4cos sin 47)(-+-= )(R x ∈的最大值与最小值的和为 (A )12
(B )14
(C )36
(D )16
4.等比数列}{n a 中,首项为1a ,公比为q ,前n 项之和为n S .若}{n S 为递减数列,则有 (A )01<a ,0>q (B )01>a ,0<q (C )01>a ,10<<q (D )01<a ,0<q
5.已知点O 是边长为1的等边ABC ∆的中心,则=+∙+)()(OC OA OB OA (A )9
1 (B )-
9
1
(C )
61 (D )6
1-
6.已知0>c ,设p :函数x
c y =在R 上单调递减;函数)122lg()(2++=x cx x g 的值域为R ,如果“q p ∧”为假命题,“q p ∨”为真命题,则c 的取值范围是 (A ))1,21(
(B )),2
1(
+∞ (C )
),1[]2
1,0(+∞ (D )),(+∞-∞ 7.ABC ∆中,角A 、B 、C 所对的边分别为a 、b 、c ,若A b
c cos <,则ABC ∆为
(A )钝角三角形 (B )直角三角形 (C )锐角三角形 (D )等边三角形
C
8. 已知函数)(x f 对任意R x ∈都有)2(2)()4(f x f x f =-+,若)1(-=x f y 的图像关于直线1=x 对称,且2)1(=f ,则)2011(f = (A )6 (B )4 (C )3
(D )2
第Ⅱ卷(非选择题 共110分)
二、填空题:本大题共6小题,每小题5分,共30分.
9.已知命题P :“032,2≥-+∈∀x x R x ”,则命题P 的否定是 _____________; 10.在数列}{n a 中,3
11=
a ,设n S 为数列}{n a 的前项和,且n n a n n S )12(-=,则
=n S ______;
11.定义集合运算:},),(|{B y A x y x xy z z B A ∈∈+==⊗. 设集合A={0,1},B={2,3}则集合B A ⊗的所有元素之和为_____________;
12.在ABC ∆中,已知o C 60=,
=++++
+++C
B C
B A C
A C
B A sin sin sin sin sin sin sin sin sin sin ______;
13.函数4
2
3
21)(x
x x
x x f ++-=
的最大值与最小值的积为__________;
14.给出下列命题:
① 若“0tan sin >-αα”则“α是第二或第四象限角”;
②平面直角坐标系中有三个点A (4,5),B (-2,2),C (2,0),则ABC ∠tan =
3
4;
③若1>a ,1>b 且b a b a lg lg )lg(+=+,则)1lg()1lg(-+-b a 的值为1; ④设][m 表示不大于m 的最大整数,若R y x ∈,,那么][][][y x y x +≥+;
其中所有正确命题的序号是___________ .
三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15.(本题13分)
已知:向量(2cos ,2sin )44x x a = (sin ,)44
x x
b = ,函数()f x a b =+
(1)求函数()y f x =的最小正周期及最值;
(2)将函数()y f x =的图象纵坐标不变,横坐标伸长为原来的2倍后,再向左平移2
3
π
得到函数()y g x =,判断函数()y g x =的奇偶性,并说明理由.
16.(本题13分)
已知:等差数列{}n a 的公差和等比数列{}n b 的公比都是d ,(1)d ≠且11a b =,44,a b =
1010;a b =
(1) 求数列{}n a ,{}n b 的通项公式;
(2) 设数列{}n b 的前n 和为n T ,求n T ;
(3) 16b 是否为数列{}n a 中的项?如果是,是第几项?如果不是,请说明理由.
17.(本题13分)
如图,港口B 在港口O 正东方120海里处,小岛C 在港口O 北偏东060方向和港口B 北偏西030方向上,一艘科学考察船从港口O 出发,沿北偏东030的O A 方向以每小时20海里的速度驶离港口O ,一艘快艇从港口B 出发,以每小时60海里的速度驶向小岛C ,在C 岛装运补给物资后给考察船送去,现两船同时出发,补给物资的装船时间需要1小时,问快艇驶离港口B 后最少要经过多少时间才能和考察船相遇?
18.(本题14分) 已知函数:3
()(3)13
a f x x a x =
+++ .
(1)当3a =-时,求过点(1,0)曲线()y f x =的切线方程; (2)求函数()y f x =的单调区间;
(3)函数是否存在极值?若有,则求出极值点;若没有,则说明理由.
19.(本题14分)
设奇函数()f x 的定义域为)0()0,(∞+-∞ ,且在(0,)+∞上为增函数 (1)若(1)0,f = 解关于x 的不等式:(1log )0a f x +> (01)a << (2)若(2)1,f -=-当0,0m n >>时,恒有()()(),f m n f m f n ⋅=+
求()11f t +<时,t 的取值范围.
20.(本题13分)
东
已知数列{}k a 满足:112
a =
且2
11k k k a a a n
+=+
(1,2,,
1
k n =- 其中n 是一个给定的正整数 (1)证明:数列{}k a 是一个单调数列; (2)证明:对一切1m n <<,m N ∈有:123
21
m n n a n m n m +<<
-+-+.。