串控制系统实验

合集下载

实验四 串级控制系统

实验四 串级控制系统

实验四 加热炉温度串级控制系统(实验地点:程控实验室,崇实楼407)一、实验目的1、熟悉串级控制系统的结构与特点。

2、掌握串级控制系统临界比例度参数整定方法。

3、研究一次、二次阶跃扰动对系统被控量的影响。

二、实验设备1、MATLAB 软件,2、PC 机 三、实验原理工业加热炉温度串级控制系统如图4-1所示,以加热炉出口温度为主控参数,以炉膛温度为副参数构成串级控制系统。

图4-1 加热炉温度串级控制系统工艺流程图图4-1中,主、副对象,即加热炉出口温度和炉膛温度特性传递函数分别为主对象:;)130)(130()(18001++=-s s e s G s 副对象:21802)1)(110()(++=-s s e s G s主控制器的传递函数为PI 或PID ,副控制器的传递函数为P 。

对PI 控制器有 221111)(),/(,111)(c c I c I I c I c c K s G T K K s K K s T K s G ==+=⎪⎪⎭⎫ ⎝⎛+=采用串级控制设计主、副PID 控制器参数,并给出整定后系统的阶跃响应曲线和阶跃扰动响应曲线,说明不同控制方案控制效果的区别。

四、实验过程串级控制系统的设计需要反复调整调节器参数进行实验,利用MATLAB 中的Simulink 进行仿真,可以方便、快捷地确定出调节器的参数。

1.建立加热炉温度串级控制系统的Simulink 模型 (图4-2)在MATLAB 环境中建立Simulink 模型如下:)(01s G 为主被控对象,)(02s G 为副被控对象,Step 为系统的输入,c 为系统的输出,q1为一次阶跃扰动,q2为二次阶跃扰动,可以用示波器观察输出波形。

PID1为主控制器,双击PID 控制器可设置参数:(PID 模块在MATLAB/Simulink Library Browser/Simulink Extras ),Step 为阶跃信号,参数起始时间应设置为0。

实验3 串级与单回路控制系统对比实验 实验报告

实验3 串级与单回路控制系统对比实验 实验报告

仲恺农业工程学院实验报告纸自动化 (院、系) 工业自动化 专业 工化 144 班 组 过程控制 课学号06/07/30 姓名 黄国盛、邓炎钊、汤敬麟 实验日期 教师评定串级与单回路控制系统对比实验一、 实验内容某隧道窖炉系统,以烧成带温度为主变量,燃烧室温度为副变量的串级控制系统,见右图。

其主副对象的传递函数G o1,G o2分别为:1)1)(3s (30s 1(s)1o ++=G 22)1)(s 1(10s 1(s)++=o G 调节规律选择:单回路采用PI 控制:串级主控制器采用PI 控制;副控制器采用P 控制。

二、 实验设备PC 一台、MATLAB R2015b三、实验要求1)试分别采用单回路和串级控制设计,画出控制系统原理框图。

2)进行参数整定,并给出整定后系统的阶跃响应曲线,并计算衰减率、调节时间、余 差。

3)分别加一次、二次单位阶跃扰动,给出响应曲线,计算超调量。

4)填写下表,对比实验结果,说明不同控制方案对系统的影响。

表一系统采用单回路控制和串级控制的对比四、实验指导1)用Simulink仿真;2)PID控制器模块的参数分别是比例增益、积分增益、微分增益;五、实验结果和分析1、建立单回路控制系统模型:图1 单回路PI控制系统模型整定结果为:P=1.4143 ; I=0.094741; 其阶跃响应曲线如下图:图2 单回路PI控制系统阶跃响应曲线图2、建立串级控制系统模型:图3 串级控制系统模型整定结果为:主控制器P=2.1877 ,I=0.11102; 副控制器P=4.8299其阶跃响应曲线如下图:图4 串级控制系统阶跃响应曲线图单回路控制和串级控制对比:图5 单回路控制和串级控制对比图因为主环是一个反馈控制,所以串级控制方案具有单回路控制系统的全部功能,但由于串级控制系统在结构上多一个副回路(随动控制),所以串级控制具有其余的一些优点:1、串级控制系统具有更高的工作频率。

由于副回路的存在,改善了对象的特性,使系统的工作频率得到提高。

串级控制系统实验

串级控制系统实验

实验四串级控制系统实验一、实验目的1.通过实验了解水箱液位串级控制系统组成原理。

2.掌握水箱液位串级控制系统调节器参数的整定与投运方法。

3.了解阶跃扰动分别作用于副对象和主对象时对系统主控制量的影响。

二、实验设备1.THPCAT-2型现场总线过程控制对象系统实验装置;2.AT-I智能调节仪表挂件、RS485/232转换器及RS485通讯线;3.PC机。

三、实验原理图4-1是串级控制系统的方框图,该系统有主、副两个控制回路,主、副调节器相串联工作,其中主调节器有自己独立的给定值R,它的输出m1作为副调节器的给定值,副调节器的输出m2控制执行器,以改变主参数C1。

图4-1 串级控制系统方框图R-主参数的给定值; C1-被控的主参数; C2-副参数;f 1(t)-作用在主对象上的扰动; f2(t)-作用在副对象上的扰动。

本实验要求针对水箱液位控制系统设计串级控制系统,它是由主控、副控两个回路组成。

主控回路中的调节器称主调节器,副控回路中的调节器称副调节器,主调节器的输出作为副调节器的给定,因而副控回路是一个随动控制系统。

副调节器的输出直接驱动电动调节阀,从而达到控制主对象液位的目的。

为了实现系统在阶跃给定和阶跃扰动作用下的无静差控制,系统的主调节器应为PI或PID控制。

由于副控回路的输出要求能快速、准确地复现主调节器输出信号的变化规律,对副参数的动态性能和余差无特殊的要求,因而副调节器可采用P调节器。

四、实验内容与要求1.实验前的准备工作:1)实验前应复习教科书有关章节,认真研读实验指导书,了解实验目的、项目、方法与步骤,明确实验过程中应注意的问题,并按实验项目准备记录等。

2)实验前应了解实验装置中的对象、水泵和所用控制组件的名称、作用及其所在位置,如图4-2所示,以便于在实验中对它们进行操作和观察。

3)熟悉实验装置面板图,要求做到由面板上的图形、文字符号能准确找到该设备的实际位置;4)熟悉工艺管道结构、每个手动阀门的位置及其作用。

基于Zstack的串口控制LED 实验报告-推荐下载

基于Zstack的串口控制LED 实验报告-推荐下载
3
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术通关,1系电过,力管根保线据护敷生高设产中技工资术艺料0不高试仅中卷可资配以料置解试技决卷术吊要是顶求指层,机配对组置电在不气进规设行范备继高进电中行保资空护料载高试与中卷带资问负料题荷试2下卷2,高总而中体且资配可料置保试时障卷,各调需类控要管试在路验最习;大题对限到设度位备内。进来在行确管调保路整机敷使组设其高过在中程正资1常料中工试,况卷要下安加与全强过,看度并22工且22作尽22下可22都能22可地护以缩1关正小于常故管工障路作高高;中中对资资于料料继试试电卷卷保破连护坏接进范管行围口整,处核或理对者高定对中值某资,些料审异试核常卷与高弯校中扁对资度图料固纸试定,卷盒编工位写况置复进.杂行保设自护备动层与处防装理腐置,跨高尤接中其地资要线料避弯试免曲卷错半调误径试高标方中高案资等,料,编试要5写、卷求重电保技要气护术设设装交备备置底4高调、动。中试电作管资高气,线料中课并敷3试资件且、设卷料中拒管技试试调绝路术验卷试动敷中方技作设包案术,技含以来术线及避槽系免、统不管启必架动要等方高多案中项;资方对料式整试,套卷为启突解动然决过停高程机中中。语高因文中此电资,气料电课试力件卷高中电中管气资壁设料薄备试、进卷接行保口调护不试装严工置等作调问并试题且技,进术合行,理过要利关求用运电管行力线高保敷中护设资装技料置术试做。卷到线技准缆术确敷指灵设导活原。。则对对:于于在调差分试动线过保盒程护处中装,高置当中高不资中同料资电试料压卷试回技卷路术调交问试叉题技时,术,作是应为指采调发用试电金人机属员一隔,变板需压进要器行在组隔事在开前发处掌生理握内;图部同纸故一资障线料时槽、,内设需,备要强制进电造行回厂外路家部须出电同具源时高高切中中断资资习料料题试试电卷卷源试切,验除线报从缆告而敷与采设相用完关高毕技中,术资要资料进料试行,卷检并主查且要和了保检解护测现装处场置理设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。

控制系统的典型环节的模拟实验报告

控制系统的典型环节的模拟实验报告

课程称呼:统制表面乙指挥教授:结果:之阳早格格创做真验称呼:统制系统典型关节的模拟真验典型:共组教死姓名:一、真验手段战央供(必挖)二、真验真质战本理(必挖)三、主要仪器设备(必挖)四、支配要领战真验步调五、真验数据记录战处理六、真验截止与分解(必挖)七、计划、心得一、真验手段战央供1.认识超矮频扫描示波器的使用要领2.掌握用运搁组成统制系统典型关节的电子电路3.丈量典型关节的阶跃赞同直线4.铜饱哦是暗夜男相识典型关节中参数的变更对于输出动背本能的效率二、真验真质战本理以运算搁大器为核心元件,由其分歧的RC输进搜集战反馈搜集组成的百般典型关节,如下图所示.左图中不妨得到:由上式可供得有下列模拟电路组成的典型关节的传播函数及其单位阶跃赞同1.积分关节连交电路图如下图所示战第一个真验相共,电源为峰峰值为30V 的阶跃函数电源,运搁为LM358型号运搁.正在那次真验中,R2本去不出当前电路中,所以咱们不妨共时安排R1的值战C 的值去改变该传播函数的其余参量值.简直表白式为:式中:RC T =由表白式不妨绘出正在阶跃函数的激励下,电路所出现的阶跃赞同图像真验央供积分关节的传播函数需要达到(1)ss G 1)(1=(2)ss G 5.01)(2= 2.比率微分关节连交电路图如下图所示正在该电路中,真验器材战第一次真验与第二次真验稳定,R2仍旧牢固为1M 不改变.R1与C 并联之后与运算搁大器的背端贯串,R2交正在运搁的输出端战背输进端二端,起到了背反馈安排效率.简直表白式为: 式中,12R R K =,C R T 1= 由表白式不妨绘出正在阶跃函数的激励下,电路所出现的阶跃赞同图像真验央供惯性关节的传播函数需要达到(1)s s G +=2)(1(2)s s G 21)(2+=3.惯性关节连交电路图如图所示正在该图中,电源由统制表面电子模拟箱中的阶跃赞同电源去代替,电源的峰峰值为30V ;正在模拟电子箱中,运算搁大器采与LM358型号的运算搁大器.正在统制表面电子模拟箱中,R2是一个牢固值,牢固为1M Ω,所以咱们不妨安排R1战C 去改变阶跃赞同函数图像的其余参数.电阻R2战电容C 并联交进正在运搁的背输进端战输出端之间,起到了背反馈安排效率.简直导出式如下 式中,12R R K =,C R T 2= 由表白式不妨绘出正在阶跃函数的激励下,电路所出现的阶跃赞同图像真验央供惯性关节的传播函数需要达到(1)11)(1+=s s G (2)15.01)(2+=s s G 三、主要仪器设备1.统制表面电子模拟真验箱一台2.超矮频缓扫描示波器一台3.万用表一只四、支配要领战真验步调(1)依照电路本理图,将本质的电路图连交起去(2)根据真验央供的传播函数算出R 1与C 的值.正在真验1中,T=RC=1,所以与R 1=1M Ω,C=1μF ;正在真验2中,T=RC=0.5,所以与R1=1M ΩμF (由二个1μμF 的电容)(3)将示波器的二个表笔交进输出端战输进端(4)交通电源,按下按钮,瞅察正在阶跃函数的直流电源激励下,输出端的阶跃赞同.2.比率微分关节(1)依照电路本理图,将本质的电路图连交起去(2)根据真验央供的传播函数算出R2、R1与C的值.由于R2牢固为1MΩ,所以只可安排R1战C的值去完毕真验.正在真验1中,K=2,T=1,所以与R1=0.5,R2Ω,C=1/R1=2μF (由二个1MΩΩ的电阻,由二个1μF并联起去得到2μF的电容)正在真验2中,K=1,T=2,所以R1=R2=1MΩ,C=1μF(3)将示波器的二个表笔交进输出端战输进端(4)交通电源,按下按钮,瞅察正在阶跃函数的直流电源激励下,输出端的阶跃赞同.3.惯性关节(1)依照电路本理图,将本质的电路图连交起去(2)根据真验央供的传播函数算出R1、R2与C的值.真验箱中R2电阻牢固为1MΩ.正在真验1中,T=1,K=1,所以R1=R2=1MΩ,C=1μF;正在真验2中,T=0.5,K=1,所以R1=R2=1MΩμF(由二个1μμF 的电容)(3)将示波器的二个表笔交进输出端战输进端(4)交通电源,按下按钮,瞅察正在阶跃函数的直流电源激励下,输出端的阶跃赞同.五、真验数据记录战处理1.积分关节(1)s s G 1)(1=(2)s s G 5.01)(2=2. 比率积分关节(1)s s G +=2)(1(2)s s G 21)(2+=3. 惯性关节(2)15.01)(2+=s s G六、真验截止与分解1.真验截止分解(1)积分关节 ①s s G 1)(1=表面值:降高时间为15s ,输出电压为15V .本质值:输出电压为14.2V ,降高时间为13.0s.缺面为9.0%与5.3% ②s s G 5.01)(2=表面值:降高时间为7.5s ,输出电压为15V .本质值:输出电压为14.2V ,降高时间为7.32s.缺面为3.0%与5.3%(2)比率积分关节①s s G +=2)(1表面值:降高时间70ms ,降高电压15V本质值:降高时间72.0ms ,降高电压14.8V .缺面为2.8%战1.3%. ②s s G 21)(2+=表面值:降高时间140ms ,降高电压15V本质值:降高时间为132ms ,降高电压为14.2V .缺面为5.7%战5.3%(3)惯性关节 ①11)(1+=s s G 表面值:时间常数为1s ,降高时间为4s ,降高电压1V本质值:降高时间为3.02s ,降高电压为1.00V . ②15.01)(2+=s s G 表面值:时间常数为0.5s ,降高时间为2s ,降高电压1V本质值:降高时间为1.38V ,降高电压为1.00V .2.真验缺面分解(1)运算搁大器处事状态下本去不是理念状态,引导本质值战表面值出进较多.(2)示波器的读数时,采与了光标丈量的要领.用肉眼预计是可达到仄稳值,制成了一定的缺面.(3)惯性关节的缺面比较大,大概是咱们不等到储能式电容局部将电量真足搁出便启通了电源,继承了下一步真验,引导降高时间战表面值相比,缺面很大,以至出现了过失.(4)积分关节战比率积分关节的降高电压均不达到15V,本果大概是微弱电流正在较大电阻值上爆收了压落,进而使被测值与表面值存留缺面.(5)比率积分关节的输出电压达到宁静之后,出现了一定范畴内的动摇,使得波形非常搀纯.本果大概是果为电容正在不竭充电战搁电的历程中,制成了一定范畴内的阻僧震荡.3.真验思索题分解(1)用运搁模拟典型关节时,其传播函数真正在那二个假设条件下近似导出的?问:假定运搁具备理念的“真短”战“真断”个性;运搁的固态量为整,输进量、输出量战反馈量皆不妨用瞬时值表示其动背变更.(2)积分关节战惯性关节主要不共是什么?正在什么条件县,惯性关节不妨近似天视为积分关节?正在什么条件下,又不妨视为比率关节?问:惯性关节的个性是,当输进做阶跃变更时,输出旗号不克不迭坐刻达到稳态值,稳态输出以指数顺序变更,而级分关节,当输进为单位阶跃旗号的时间,输出为输进对于时间的积分,输出旗号随时间浮现直线删少,当t趋背于无贫大的时间,惯性关节不妨近似的视为积分关节,当趋于0的时间,惯性关节不妨近似的视为比率关节.(3)怎么样根据阶跃赞同的波形,决定积分关节战惯性关节的时间常数?问:用示波器的“时标”启闭测出渡过时间t.由公式T=t/4预计时间常数.七、计划、心得1.阶跃赞同的输进不宜过大,可则会烧坏运算搁大器.2.电容式储能元件,使用完之后一定要先对于其举止搁面处理,才搞举止下一次真验.3.波形瞅察终端会出现阻僧震荡,是电容充电战搁电的时间出现的情况.4.惯性关节的个性是,当输进x(t)做阶跃变更时间,输出y (t)不克不迭坐刻达到稳态值,瞬态输出以指数顺序变更.二积分关节,当输进为单位阶跃旗号的额时间,输出为输进对于时间的积分,输出波形随时间浮现删少.5.当t趋背于无贫大时(s趋近于0),惯性关节不妨近似视为积分关节;当t趋近于0(s趋近于无贫大)时,惯性关节课近似视为比率关节.6.通过本次真验,将课上教过的表面分解战真验历程战截止分解稀切的分离正在所有,正在明白了何如真止积分关节、比率微分关节战惯性关节的电路的共时,也充分明白传播函数正在电路系统的统制关节核心的要害性.那次真验虽然很简朴,但是却对于咱们以去的统制表面真验挨下了前提.。

基于串级控制的变风量空调控制系统实验报告

基于串级控制的变风量空调控制系统实验报告

基于串级控制的变风量空调控制系统实验报告一、引言空调控制系统在现代建筑中起着至关重要的作用。

随着节能减排的要求不断提高,变风量空调控制系统应运而生。

本实验旨在研究基于串级控制的变风量空调控制系统的性能。

二、变风量空调控制系统概述变风量空调控制系统是一种根据室内外环境及用户需求自动调节空调送风量的系统。

该系统通过调节空调送风机的转速来实现变风量控制,以达到节能的目的。

三、串级控制原理及实现3.1 串级控制原理串级控制是将多个控制环节串联起来,通过级联控制的方式来提高系统的性能。

串级控制可分为前馈串级和反馈串级两种。

在变风量空调控制系统中,我们采用了反馈串级的方式。

3.2 串级控制实现串级控制实现需要借助控制算法和传感器。

首先,通过传感器获取室内外温度、湿度等环境参数。

然后,将这些参数传入控制算法中,计算出合适的送风量设定值。

最后,将设定值传入变风量空调控制器中,控制其输出的变风量。

四、实验设计及方法4.1 实验目标本实验的目标是验证基于串级控制的变风量空调控制系统的性能,并与传统控制系统进行对比。

4.2 实验流程1.设置室内外环境参数;2.激活空调控制系统;3.采集变风量空调控制系统的输出变风量数据;4.采集传统空调控制系统的输出变风量数据;5.分析和比较两种控制系统的性能。

五、实验结果与分析5.1 变风量空调控制系统的输出变风量数据时间变风量00:00:00 2000 m³00:05:00 1800 m³00:10:00 1600 m³00:15:00 1400 m³00:20:00 1200 m³5.2 传统空调控制系统的输出变风量数据时间变风量00:00:00 2000 m³00:05:00 1000 m³00:10:00 500 m³00:15:00 250 m³00:20:00 125 m³5.3 结果分析通过对比两种控制系统的输出变风量数据,我们可以看出基于串级控制的变风量空调控制系统的输出变风量更加稳定,能够更好地适应室内外环境的变化。

双容水箱串级PID控制实验液位

双容水箱串级PID控制实验液位

双容水箱液位串级PID控制实验一、实验目的1、进一步熟悉PID调节规律2、学习串级PID控制系统的组成和原理3、学习串级PID控制系统投运和参数整定二、实验设备1、四水箱实验系统DDC实验软件2、PC机(Window 2000 Professional 操作系统)三、实验原理1、控制系统的组成及原理一个控制器的输出用来改变另一个控制器的设定值,这样连接起来的两个控制器称为“串级”控制器。

两个控制器都有各自的测量输入,但只有主控制器具有自己独立的设定值,只有副控制器的输出信号送给被控对象,这样组成的系统称为串级控制系统。

本仿真系统的双容水箱串级控制系统如下图所示:图17-1 本仿真系统的双容水箱串级控制系统框图串级控制器术语说明主变量:y1称主变量。

使它保持平稳使控制的主要目的副变量:y2称副变量。

它是被控制过程中引出的中间变量副对象:上水箱主对象:下水箱主控制器:PID控制器1,它接受的是主变量的偏差e1,其输出是去改变副控制器的设定值副控制器:PID控制器2,它接受的是副变量的偏差e2,其输出去控制阀门副回路:处于串级控制系统内部的,由PID控制器2和上水箱组成的回路主回路:若将副回路看成一个以主控制器输出r2为输入,以副变量y2为输出的等效环节,则串级系统转化为一个单回路,即主回路。

串级控制系统从总体上看,仍然是一个定值控制系统,因此,主变量在干扰作用下的过渡过程和单回路定值控制系统的过渡过程具有相同的品质指标。

但是串级控制系统和单回路系统相比,在结构上从对象中引入一个中间变量(副变量)构成了一个回路,因此具有一系列的特点。

串级控制系统的主要优点有:1)副回路的干扰抑制作用发生在副回路的干扰,在影响主回路之前即可由副控制器加以校正2)主回路响应速度的改善副回路的存在,使副对象的相位滞后对控制系统的影响减小,从而改善了主回路的相应速度3)鲁棒性的增强串级系统对副对象及控制阀特性的变化具有较好的鲁棒性4)副回路控制的作用副回路可以按照主回路的需要对于质量流和能量流实施精确的控制由此可见,串级控制是改善调节过程极为有效的方法,因此得到了广泛的应用。

实验一 控制系统典型环节的模拟实验

实验一 控制系统典型环节的模拟实验

实验一控制系统典型环节的模拟实验一、实验目的1.掌握控制系统中各典型环节的电路模拟及其参数的测定方法。

2.测量典型环节的阶跃响应曲线,了解参数变化对环节输出性能的影响。

二、实验内容1.对表一所示各典型环节的传递函数设计相应的模拟电路(参见表二)2.测试各典型环节在单位阶跃信号作用下的输出响应。

3.改变各典型环节的相关参数,观测对输出响应的影响。

三、实验内容及步骤1.观测比例、积分、比例积分、比例微分和惯性环节的阶跃响应曲线。

①准备:使运放处于工作状态。

将信号发生器单元U1的ST端与+5V端用“短路块”短接,使模拟电路中的场效应管(K30A)夹断,这时运放处于工作状态。

②阶跃信号的产生:电路可采用图1-1所示电路,它由“阶跃信号单元”(U3)及“给定单元”(U4)组成。

具体线路形成:在U3单元中,将H1与+5V端用1号实验导线连接,H2端用1号实验导线接至U4单元的X端;在U4单元中,将Z端和GND端用1号实验导线连接,最后由插座的Y端输出信号。

以后实验若再用阶跃信号时,方法同上,不再赘述。

实验步骤:①按表二中的各典型环节的模拟电路图将线接好(先接比例)。

(PID先不接)②将模拟电路输入端(U i)与阶跃信号的输出端Y相连接;模拟电路的输出端(Uo)接至示波器。

③按下按钮(或松开按钮)SP时,用示波器观测输出端的实际响应曲线Uo(t),且将结果记下。

改变比例参数,重新观测结果。

④同理得积分、比例积分、比例微分和惯性环节的实际响应曲线,它们的理想曲线和实际响应曲线参见表三。

2.观察PID环节的响应曲线。

实验步骤:①将U1单元的周期性方波信号(U1 单元的ST端改为与S端用短路块短接,S11波段开关置于“方波”档,“OUT”端的输出电压即为方波信号电压,信号周期由波段开关S11和电位器W11调节,信号幅值由电位器W12调节。

以信号幅值小、信号周期较长比较适宜)。

②参照表二中的PID模拟电路图,按相关参数要求将PID电路连接好。

数字PID控制实验

数字PID控制实验

4.5.1数字PID 控制实验 1 标准PID 控制算法一.实验要求1. 了解和掌握连续控制系统的PID 控制的原理。

2. 了解和掌握被控对象数学模型的建立。

3. 了解和掌握数字PID 调节器控制参数的工程整定方法。

4. 观察和分析在标准PID 控制系统中,P.I.D 参数对系统性能的影响。

二.实验内容及步骤 ⑴ 确立模型结构本实验采用二个惯性环节串接组成实验被控对象,T1=0.2S ,T2=0.5S Ko=2。

S e T K s G τ-+⨯≈+⨯+=1S 110.2S 21S 5.01)(000⑵ 被控对象参数的确认被控对象参数的确认构成如图4-5-10所示。

本实验将函数发生器(B5)单元作为信号发生器,矩形波输出(OUT )施加于被测系统的输入端R ,观察矩形波从0V 阶跃到+2.5V 时被控对象的响应曲线。

图4-5-10 被控对象参数的确认构成实验步骤:注:将‘S ST ’用‘短路套’短接!① 在显示与功能选择(D1)单元中,通过波形选择按键选中‘矩形波’(矩形波指示灯亮)。

② B5的量程选择开关S2置下档,调节“设定电位器1”,使之矩形波宽度>2秒(D1单元左显示)。

③ 调节B5单元的“矩形波调幅”电位器使矩形波输出电压= 2.5V 左右(D1单元右显示)。

④ 构造模拟电路:按图4-5-10安置短路套及测孔联线,表如下。

(a )安置短路套 (b )测孔联线⑤ 运行、观察、记录:A)先运行LABACT 程序,选择界面的“工具”菜单选中“双迹示波器”(Alt+W )项,弹出双迹示波器的界面,点击开始,用虚拟示波器观察系统输入信号。

图4-5-11 被控对象响应曲线B) 在图4-5-112被控对象响应曲线上测得t1和t2。

通常取)∞=(3.0)(010Y t Y ,要求从图中测得1t ; 通常取)∞=(7.0)(020Y t Y ,要求从图中测得2t 。

计算0T 和τ:0.84730.3567t -1.204t )]t (y 1[ln -)]t (y 1[ln )]t (y 1[ln t )]t (y 1[n t 0.8473t t )]t (y 1[ln -)]t (y 1[ln t t T 212010201102122010120==-----=-=---=τC) 求得数字PID 调节器控制参数P K 、I T 、D T (工程整定法))/0.2(1)/0.37()/0.6(1)/0.5()/2.5(]27.0)/(35.1[10000200000T T T T T T T T T T K K D I P ττττττ+⨯=++⨯=+=据上式计算数字PID 调节器控制参数P K 、I T 、D T⑶ 数字PID 闭环控制系统实验模块号 跨接座号 1 A5 S5,S7,S10 2 A7 S2,S7,S9,P 3 B5‘S-ST ’1 输入信号R B5(OUT )→A5(H1)2 运放级联 A5A (OUTA )→A7(H1)3 示波器联接 ×1档B5(OUT )→B3(CH1) 4A7A (OUTA )→B3(CH2)数字PID 闭环控制系统实验构成见图4-5-12,观察和分析在标准PID 控制系统中,P.I.D 参数对系统性能的影响,分别改变P.I.D 参数,观察输出特性,填入实验报告,图4-5-12 数字PID 闭环控制系统实验构成实验步骤:注:将‘S ST ’用‘短路套’短接!① 在显示与功能选择(D1)单元中,通过波形选择按键选中‘矩形波’(矩形波指示灯亮)。

(整理)自动控制原理设计实验

(整理)自动控制原理设计实验

编号:自动控制原理Ⅰ实验课题:控制系统串联校正设计专业:智能科学与技术学生姓名:黎良贵学号:2008502112014 年 1 月 5 日一、 实验目的:1、了解控制系统中校正装置的作用;2、研究串联校正装置对系统的校正作用。

二、 实验基本原理:1、 滞后-超前校正超前校正的主要作用是增加相位稳定裕量,从而提高系统的稳定裕量,改善系统响应的动态特性。

滞后校正的主要作用则是改善系统的静态特性。

如果把这两种校正结合起来,就能同时改善系统的动态特性和静态特性。

滞后超前校正综合了滞后校正和超前校正的功能。

滞后-超前校正的线路由运算放大器及阻容网络组成。

2、 串联滞后校正串联滞后校正指的是校正装置的输出信号的相位角滞后于输入信号的相位角。

它的主要作用是降低中频段和高频段的开环增益,但同时使低频段的开环增益不受影响。

这样来兼顾静态性能与稳定性。

它的副作用是会在ωc 点产生一定的相角滞后。

三、 实验内容:设单位反馈系统的开环传递函数为设计串联校正装置,使系统满足下列要求静态速度误差系数1S K -≥250ν,相角裕量045≥γ,,并且要求系统校正后的截止频率s rad c /30≥ω。

四、 实验步骤:1、 用MATLAB 软件对原系统进行仿真,讨论校正方案;2、 对校正后的系统进行仿真,确定校正方案;)101.0)(11.0()(0++=s s s Ks G3、设计原系统和校正环节的电模拟电路及元器件有关参数;4、设计制作硬件电路,调试电路,观察原系统阶跃响应并记录系统的瞬态响应数据;5、加入校正装置,系统联调,观察并记录加入校正装置后系统的阶跃响应,记录系统的瞬态响应数据。

五、MATLAB仿真:程序:K=250;G=tf(K,[0.001 0.11 1 0]);[gm,pm,wcg,wcp]=margin(G);T1=10/wcp;b=7;Gc1=tf([T1 1],[b*T1 1])G1=G*Gc1;G10=feedback(G,1);step(G10)gridfigure[mag,pha,w]=bode(G1);Mag=20*log10(mag);[gm1,pm1,wcg1,wcp1]=margin(G1);phi=(45-pm1+20)*pi/180;alpha=(1+sin(phi))/(1-sin(phi));Mn=-10*log10(alpha);wcgn=spline(Mag,w,Mn);T=1/wcgn/sqrt(alpha);Tz=alpha*T;Gc2=tf([Tz 1],[T 1])G2=G1*Gc2;bode(G,'r',G2,'g')gridfiguregrid[gm2,pm2,wcg2,wcp2]=margin(G2)G11=feedback(G2,1);step(G11)grid结果:滞后校正网络传递函数:0.2126 s + 1------------1.488 s + 1超前校正网络传递函数:0.1039 s + 1--------------0.008316 s + 1校正之后的幅值裕量,相角裕量,相角交接频率,截止频率:gm2 =5.5355pm2 =49.2677wcg2 =105.9038wcp2 =34.0080其中相角裕量,截止频率分别为49.2677,34.0080均大于题目要求的45和30,仿真符合要求。

杭电《过程控制系统》实验报告

杭电《过程控制系统》实验报告

实验时间:5月25号序号:杭州电子科技大学自动化学院实验报告课程名称:自动化仪表与过程控制实验名称:一阶单容上水箱对象特性测试实验实验名称:上水箱液位PID整定实验实验名称:上水箱下水箱液位串级控制实验指导教师:尚群立学生姓名:俞超栋学生学号:09061821实验一、一阶单容上水箱对象特性测试实验一.实验目的(1)熟悉单容水箱的数学模型及其阶跃响应曲线。

(2)根据由实际测得的单容水箱液位的阶跃响应曲线,用相关的方法分别确定它们的参数。

二.实验设备AE2000型过程控制实验装置, PC 机,DCS 控制系统与监控软件。

三、系统结构框图单容水箱如图1-1所示:丹麦泵电动调节阀V1DCS控制系统手动输出hV2Q1Q2图1-1、 单容水箱系统结构图四、实验原理阶跃响应测试法是系统在开环运行条件下,待系统稳定后,通过调节器或其他操作器,手动改变对象的输入信号(阶跃信号),同时记录对象的输出数据或阶跃响应曲线。

然后根据已给定对象模型的结构形式,对实验数据进行处理,确定模型中各参数。

图解法是确定模型参数的一种实用方法。

不同的模型结构,有不同的图解方法。

单容水箱对象模型用一阶加时滞环节来近似描述时,常可用两点法直接求取对象参数。

如图1-1所示,设水箱的进水量为Q 1,出水量为Q 2,水箱的液面高度为h ,出水阀V 2固定于某一开度值。

根据物料动态平衡的关系,求得:在零初始条件下,对上式求拉氏变换,得:h1( t ) h1(∞ ) 0.63h1(∞)0 T式中,T 为水箱的时间常数(注意:阀V 2的开度大小会影响到水箱的时间常数),T=R 2*C ,K=R 2为单容对象的放大倍数,R 1、R 2分别为V 1、V 2阀的液阻,C 为水箱的容量系数。

令输入流量Q 1 的阶跃变化量为R 0,其拉氏变换式为Q 1(S )=R O /S ,R O 为常量,则输出液位高度的拉氏变换式为:当t=T 时,则有:h(T)=KR 0(1-e -1)=0.632KR 0=0.632h(∞) 即 h(t)=KR 0(1-e-t/T)当t —>∞时,h (∞)=KR 0,因而有 K=h (∞)/R0=输出稳态值/阶跃输入式(1-2)表示一阶惯性环节的响应曲线是一单调上升的指数函数,如图1-2所示。

自动控制原理线性系统串联校正实验报告五..

自动控制原理线性系统串联校正实验报告五..

武汉工程大学实验报告专业 电气自动化 班号 指导教师 姓名 同组者 无实验名称 线性系统串联校正实验日期 第 五 次实验 一、 实验目的1.熟练掌握用MATLAB 语句绘制频域曲线。

2.掌握控制系统频域范围内的分析校正方法。

3.掌握用频率特性法进行串联校正设计的思路和步骤。

二、 实验内容1.某单位负反馈控制系统的开环传递函数为)1()(+=s s Ks G ,试设计一超前校正装置,使校正后系统的静态速度误差系数120-=s K v ,相位裕量050=γ,增益裕量dB K g 10lg 20=。

解:取20=K ,求原系统的相角裕度。

num0=20; den0=[1,1,0]; w=0.1:1000;[gm1,pm1,wcg1,wcp1]=margin(num0,den0); [mag1,phase1]=bode(num0,den0,w);[gm1,pm1,wcg1,wcp1] margin(num0,den0) grid; ans =Inf 12.7580 Inf 4.4165 由结果可知,原系统相角裕度7580.12=r ,srad c /4165.4=ω,不满足指标要求,系统的Bode 图如图5-1所示。

考虑采用串联超前校正装置,以增加系统的相角裕度。

1010101010幅值(d b )--Go,-Gc,GoGcM a g n i t u d e (d B )1010101010P h a s e (d e g )Bode DiagramGm = Inf dB (at Inf rad/sec) , P m = 12.8 deg (at 4.42 rad/sec)Frequency (rad/sec)图5-1 原系统的Bode 图由),3,8.12,50(00000c m c Φ=Φ=+-=Φ令取为原系统的相角裕度εγγεγγ,mm ϕϕαsin 1sin 1-+=可知:e=3; r=50; r0=pm1;phic=(r-r0+e)*pi/180;alpha=(1+sin(phic))/(1-sin(phic)) 得:alpha = 4.6500[il,ii]=min(abs(mag1-1/sqrt(alpha)));wc=w( ii); T=1/(wc*sqrt(alpha)); num0=20; den0=[1,1,0]; numc=[alpha*T,1]; denc=[T,1];[num,den]=series(num0,den0,numc,denc); [gm,pm,wcg,wcp]=margin(num,den); printsys(numc,denc) disp('校正之后的系统开环传递函数为:');printsys(num,den) [mag2,phase2]=bode(numc,denc,w); [mag,phase]=bode(num,den,w); subplot(2,1,1);semilogx(w,20*log10(mag),w,20*log10(mag1),'--',w,20*log10(mag2),'-.'); grid; ylabel('幅值(db)'); title('--Go,-Gc,GoGc'); subplot(2,1,2); semilogx(w,phase,w,phase1,'--',w,phase2,'-',w,(w-180-w),':'); grid; ylabel('相位(0)'); xlabel('频率(rad/sec)');title(['校正前:幅值裕量=',num2str(20*log10(gm1)),'db','相位裕量=',num2str(pm1),'0';'校正后:幅值裕量=',num2str(20*log10(gm)),'db','相位裕量=',num2str(pm),'0'])1010101010-100-5050幅值(d b )--Go,-Gc,GoGc1010101010-200-150-100-50050相位(0)频率(rad/sec)图5-2 系统校正前后的传递函数及Bode 图 num/den = 0.35351 s + 1-------------- 0.076023 s + 1校正之后的系统开环传递函数为:num/den = 7.0701 s + 20 -----------------------------0.076023 s^3 + 1.076 s^2 + s 系统的SIMULINK 仿真:校正前SIMULINK 仿真模型:单位阶跃响应波形:校正后SIMULINK仿真模型:单位阶跃响应波形:分析:由以上阶跃响应波形可知,校正后,系统的超调量减小,调节时间变短,稳定性增强。

串级控制系统整定实验报告

串级控制系统整定实验报告

串级控制系统整定实验报告本次实验旨在掌握串级控制系统的整定方法,实验采用了PI控制器对串级控制系统进行整定,并对实验结果进行分析。

一、实验原理1. 串级控制系统的构成串级控制系统由两个控制器组成,上位控制器和下位控制器。

它们之间通过某种方式相互联系,实现对被控制对象的控制。

其中,上位控制器是控制整个系统的,它的输出信号和被控制对象发生作用,使被控制对象的输出达到预期值;下位控制器是控制被控制对象的,它通过控制被控制对象的输入量,使其输出符合要求。

2. PI控制器PI控制器是一种比较常见的控制器,在控制对象存在较大惯性时,应用比较广泛。

它就是对比例控制器和积分控制器的组合,可以使输出更快速地接近目标值,并且具有谷值现象消失的优点。

PI控制器的传递函数为:Gc(s) = Kp + Ki/s其中,Kp是比例增益,Ki是积分增益,s是惯性环节。

3. 整定方法常用的PI控制器整定方法有经验法和试验法两种。

经验法是根据系统的特性和经验,进行整定,通常情况下,只需要根据实际控制系统的特点和经验来确定比例增益和积分增益,整定起来比较简单,但缺点是精度不高。

试验法是通过不断试验调整比例增益和积分增益,让系统的响应满足某种条件,从而获得最优的控制效果。

试验法整定起来比较繁琐,但是精度高,能够获得最优的控制效果。

二、实验过程1. 实验装置及原理图本次实验的串级控制系统如下图所示:![image.png](attachment:image.png)其中,上位控制器采用了PI控制器,下位控制器采用了P控制器。

被控对象为有机硅喷淋塔,输出为有机硅的质量含量。

2. 实验步骤(1)按照上图将实验装置连接,打开实验软件。

(2)设置实验参数,并开始实验。

(3)通过试验方法进行PI控制器的参数整定,在试验过程中,不断调整比例增益和积分增益,使得系统的稳态误差尽可能小。

(4)根据实验结果进行分析。

三、实验结果分析经过试验,得到的PI控制器参数为:比例增益Kp=0.01,积分增益Ki=0.0001。

A3000过程控制实验指导 第四章

A3000过程控制实验指导 第四章

第四章串级控制系统实验第一节串级控制系统的连接实践一、串接控制系统的组成图4-1是串级控制系统的方框图。

该系统有主、副两个控制回路,主、副调节器相串联工作,其中主调节器有自己独立的设定值R,它的输出m1作为副调节器的给定值,副调节器的输出m2控制执行器,以改变主参数C1。

图4-1 串级控制系统的方框图R-主参数的给定值 C1-被控的主参数 C2-副参数f1(t)-作用在主对象上的扰动 f2(t)-作用在副对象上的扰动二、串级控制系统的特点1.改善了过程的动态特性由负反馈原理可知,副回路不仅能改变副对象的结构,而且还能使副对象的放大系数减小,频带变宽,从而使系统的响应速度变快,动态性能得到改善。

2.能与时克服进入副回路的各种二次扰动,提高了系统抗扰动能力串级控制系统由于比单回路控制系统多了一个副回路,当二次扰动进入副回路,由于主对象的时间常数大于副对象的时间常数,因而当扰动还没有影响到主控参数时,副调节器就开始动作,与时减小或消除扰动对主参数的影响。

基于这个特点,在设计串级控制系统时尽可能把可能产生的扰动都纳入到副回路中,以确保主参数的控制质量。

至于作用在主对象上的一次扰动对主参数的影响,一般通过主回路的控制来消除。

3.提高了系统的鲁棒性由于副回路的存在,它对副对象(包括执行机构)特性变化的灵敏度降低,即系统的鲁棒性得到了提高。

具有一定的自适应能力串级控制系统的主回路是一个定值控制系统,副回路则是一个随动系统。

主调节器能按照负荷和操作条件的变化,不断地自动改变副调节器的给定值,使副调节器的给定值能适应负荷和操作条件的变化。

三、串级控制系统的设计原则1.主、副回路的设计1)副回路不仅要包括生产过程中的主要扰动,而且应该尽可能包括更多的扰动信号。

2)主、副对象的时间常数要合理匹配,一般要求主、副对象时间常数的匹配能使主、副回路的工作频率之比大于3。

为此,要求主、副回路的时间常数之比应该在3~10之间。

实验3上、中水箱液位串级控制系统实验

实验3上、中水箱液位串级控制系统实验

实验3 上、中水箱液位串级控制系统实验一、实验目的1、掌握串级控制系统的基本概念和组成;2、掌握串级控制系统的投运与参数整定方法;3、研究阶跃扰动分别作用在副对象和主对象时对系统主被控量的影响。

二、实验设备AE2000B型过程控制实验装置、万用表一只三、实验原理上水箱液位作为副调节器调节对象,中水箱液位作为主调节器调节对象。

控制框图如图1所示:图1 上水箱中水箱液位串级控制框图四、实验内容与步骤1、设备的连接和检查:1)将AE2000B 实验对象的储水箱灌满水(至最高高度);2)打开以丹麦泵、电动调节阀、涡轮流量计组成的动力支路至上水箱的出水阀,关闭动力支路上通往其他对象的切换阀;3)打开上水箱和下水箱的出水阀至适当开度;4)检查电源开关是否关闭。

2、系统连线图:1)将I/O信号接口板上的下水箱液位的钮子开关打到OFF位置,上水箱液位的钮子开关打到ON位置;2)按图2所示连线;3)将主调节仪的4~20mA输出接至I/O信号面板的温度变送器转换电阻上转换成1~5V 电压信号,再将此转换信号接至另一调节仪(副调节器)的1端和2端作为外部给定,上水箱液位信号转换为1~5V的信号后接入副调节器的1~5V和地两端。

调节器输出的4~20mA接电动调节阀的4~20mA控制信号两端。

3、启动实验装置:1)将实验装置电源插头接到220V的单相电源上;2)打开电源单带漏电保护空气开关,电压表指示220V;3)打开总电源开关,即可开启电源。

4、实验步骤1)开启电动调节阀电源、24V电源、智能调节仪电源,调整好仪表各项参数;图2、实验接线2)设定主控参数和副控参数。

主调节器的参数与单回路闭环控制设定方法一样;3)启动动力支路,待系统稳定后,在上水箱给一个阶跃信号,观察实时曲线的变化,并记录此曲线;4)系统稳定后,在副回路上加干扰信号,观察主回路和副回路上的实时曲线的变化。

记录并保存曲线。

五、实验报告要求分析串级控制和单回路PID控制不同之处?六、注意事项1、实验线路接好后,必须经指导老师检查认可后方可接通电源;2、系统连接好以后,在老师的指导下,运行串级控制实验;3、为保护仪表及用电设备的使用寿命实验完毕,先关闭所有电源开关,再关电源总开关。

嵌入式控制系统综合实验

嵌入式控制系统综合实验
3.1 手写识别原理 ..................................................................................................... 4 3.2 手写识别程序设计 ............................................................................................... 6 3.3 手写识别硬件设计 ............................................................................................. 10 3.4 拼音九键输入原理 ............................................................................................. 10 3.5 拼音九键软件设计 ..............................................................................................11 3.6 拼音九键硬件设计 ............................................................................................. 13 4 编译调试.................................................................................................................... 14 4.1 手写识别、拼音输入法单项调试 ....................................................................... 14 4.2 手写识别、拼音输入法组合调试 ....................................................................... 18 5 总结............................................................................................................................ 19

串级控制系统实验心得

串级控制系统实验心得

串级控制系统实验心得
首先,从实验设计的角度来看,串级控制系统实验需要合理安
排实验方案和步骤。

在实验方案中,需要明确控制对象、控制器和
传感器的选取,并确定各个组件之间的连接方式。

在实验步骤中,
需要按照一定的顺序进行搭建和调试,确保实验的顺利进行。

其次,从实验过程的角度来看,串级控制系统实验需要注意实
验操作的准确性和稳定性。

在搭建系统时,要仔细连接各个组件,
确保信号传输的正确性。

在调试系统时,要注意参数的设置和调整,以达到期望的控制效果。

同时,要注意实验环境的稳定性,避免外
界干扰对实验结果的影响。

再次,从实验结果的角度来看,串级控制系统实验需要对实验
结果进行准确的记录和分析。

在实验过程中,可以通过观察和测量
系统的输入和输出信号,得到实验数据。

在分析实验结果时,可以
采用数学模型和控制理论的知识,对系统的稳定性、响应速度等进
行评估和比较,从而得出结论。

此外,从实验意义的角度来看,串级控制系统实验有助于加深
对控制系统原理的理解和应用能力的提高。

通过实际搭建和调试控
制系统,可以更加直观地感受到控制器对系统行为的影响,加深对控制策略和参数调整的理解。

同时,实验还可以培养实验操作和数据分析的能力,提高解决实际问题的能力。

综上所述,串级控制系统实验是一项有意义的实验,通过合理的实验设计、准确稳定的实验操作、准确分析实验结果,可以全面理解和掌握控制系统的原理和应用,提高解决实际问题的能力。

希望我的回答能够满足你的需求。

串级控制系统整定实验报告

串级控制系统整定实验报告

串级控制系统整定实验报告实验目的:掌握串级控制系统的整定方法,了解串级控制系统的特点和优势。

实验器材:1.信号发生器2.示波器3.串级控制系统实验装置4.计算机实验原理:串级控制系统是由两个或多个级联连接的控制环路组成的。

它以内环的输出作为外环的输入,通过内环的控制作用影响外环的控制效果。

内环的任务是根据外环发送过来的控制指令对被控对象进行快速而精确的调节,外环的任务则是为内环提供稳定的控制环境,并保持内环的输出在可接受的范围内。

实验步骤:1.搭建串级控制系统实验装置,根据实验要求连接信号发生器、示波器和计算机。

2.设计合理的控制结构,确定主控制器和辅助控制器的类型和参数。

3.根据实验要求设置信号发生器的输出频率,在示波器上观察到输入和输出信号的波形。

4.在计算机上打开数据采集软件,记录输入和输出信号的数据。

5.根据采集到的数据计算系统的频率响应曲线,并分析系统的参数,包括幅频特性、相频特性和相位裕量。

6.根据分析结果对控制器的参数进行整定,使系统的稳定性和性能达到要求。

7.重复实验步骤3-6,直到系统的控制效果满足要求。

实验结果:根据实验数据计算得到的频率响应曲线显示,系统在低频段(0~10Hz)具有较大的增益,但随着频率的增加,增益逐渐减小。

相频特性显示,系统的相位随着频率的增加而呈现出先增大后减小的趋势。

相位裕量为20°,说明系统具有较好的相位裕量,有一定的稳定性。

实验结论:通过实验可以得出,串级控制系统具有较好的控制效果和稳定性。

同时,通过频率响应曲线的分析和参数的计算,可以对控制器的参数进行整定,使系统的性能得到改善。

实验中还发现,串级控制系统整定方法具有一定的难度,需要丰富的理论知识和实践经验才能得到较好的结果。

因此,在实际应用中,需要根据系统的具体情况和要求选择合适的整定方法,并进行充分的实验验证,以确保系统的控制效果和稳定性。

双容水箱串级控制系统实验报告

双容水箱串级控制系统实验报告

双容水箱串级控制系统实验报告双容水箱串级控制系统实验报告所属课程:《集散控制系统》院(部):电子信息与电气工程学院学生姓名:安永军学号:201002040062专业班级:电气工程及其自动化2010级指导教师:邢春芳双容水箱串级控制系统的设计一、实训目的(1)熟悉集散控制系统(DCS)的组成。

(2)掌握MACS组态软件的使用方法。

(3)培养灵活组态的能力。

(4)掌握系统组态与装置调试的技能。

二、实训内容针对实验室内THSA-1型生产过程自动化技术综合实训设置,以双容水箱为对象设计液位串级控制系统, 用和利时的MACS进行组态实训,内容包括:(1)数据库组态。

(2)设备组态。

(3)算法组态。

(4)画面组态。

(5)系统组态。

三、实训设备和器材(1)THSA-1型生产过程自动化技术综合实训装置。

(2)和利时DCS控制系统。

四、实训步骤1、工程分析双容水箱液位串级控制系统需要两个输入测量信号,一个输出控制信号。

因此需要一个模拟输出模块FM148A和一个模拟输出模块FM151.采集下水箱液位信号(LT1)控制电动控制发的开度。

2、工程建立(1)打开:开始→程序→macsv组态软件→数据库总控。

(2)点击按钮或选择工程/新建工程,新建工程,输入工程名字:surunmin。

(3)点击“确定”按钮,然后在空白处选择这个工程,此时会显示当前域号为65535等信息。

(4)选择“编辑>域组号组态”,选择组号为1,将刚创建的工程从“未分组的域”移动到右边“该组所包括的域”里,点“确定”按钮。

出现当前域号:0等信息。

(5)在数据库总控组态中添加变量。

选择菜单栏,编辑→编辑数据库,弹出窗口,输入用户名和口令bjhc/3dlcz。

点击“确定”按钮,进入数据库组态编辑窗口。

(6)选择系统→数据操作,出现一个对话框,点击“确定”。

(7)因为双容水箱定制控制系统用到一个模块,两个通道,所以需要编辑两个点号。

点击“AI模拟量输入”选项出现图1。

控制理论实验报告线性定常系统的串联校正

控制理论实验报告线性定常系统的串联校正

实验报告课程名称:控制理论(乙)指导老师:成绩:__________________实验名称:线性定常系统的串联较正实验类型:______________同组学生姓名:__________一、实验目的和要求(必填)二、实验内容和原理(必填)三、主要仪器设备(必填)四、操作方法和实验步骤五、实验数据记录和处理六、实验结果与分析(必填)七、讨论、心得一、实验目的1.通过实验,理解所加校正装置的结构、特性和对系统性能的影响;2.掌握串联校正几种常用的设计方法和对系统的实时调试技术。

二、实验设备1.THBDC-2型控制理论·计算机控制技术实验平台;2.PC机一台(含“THBDC-2”软件)、USB数据采集卡、37针通信线1根、16芯数据排线、USB接口线。

三、实验内容1.观测未加校正装置时系统的动、静态性能;2.按动态性能的要求,分别用时域法或频域法(期望特性)设计串联校正装置;3.观测引入校正装置后系统的动、静态性能,并予以实时调试,使之动、静态性能均满足设计要求;4.利用上位机软件,分别对校正前和校正后的系统进行仿真,并与上述模拟系统实验的结果相比较。

四、实验原理图6-1为一加串联校正后系统的方框图。

图中校正装置G c (S)是与被控对象Go(S)串联连接。

图6-1 加串联校正后系统的方框图串联校正有以下三种形式: 1) 超前校正,这种校正是利用超前校正装置的相位超前特性来改善系统的动态性能。

2) 滞后校正,这种校正是利用滞后校正装置的高频幅值衰减特性,使系统在满足稳态性能的前提下又能满足其动态性能的要求。

3) 滞后超前校正,由于这种校正既有超前校正的特点,又有滞后校正的优点。

因而它适用系统需要同时改善稳态和动态性能的场合。

校正装置有无源和有源二种。

基于后者与被控对象相连接时,不存在着负载效应,故得到广泛地应用。

下面介绍两种常用的校正方法:零极点对消法(时域法;采用超前校正)和期望特性校正法(采用滞后校正)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

图3-1 串级控制系统方框图
R-主参数的给定值; C1-被控的主参数; C2-副参数;
1(t)-作用在主对象上的扰动; f2(t)-作用在副对象上的扰动。

本实验为水箱液位的串级控制系统,它是由主控、副控两个回路组成。

主控回路中的调节器称主
初始给定:
系统达到稳定状态打开电磁阀,产生扰动改变系统给定,即
阶跃扰动
根据扰动分别作用于主、副对象时系统输出的响应曲线,分析系统在阶跃扰动作用下的静、动态性能
1.实验名称、实验目的、实验设备、实验原理及内容由教师确定,实验前学生填好;
2.实验步骤、实验结果及分析由学生记录实验的过程,包括操作过程、实验结果、遇到哪些问题以及如何
解决等;
3.实验总结由学生在实验后填写,总结本次实验的收获、未解决的问题以及体会和建议等。

相关文档
最新文档